WO2012068875A1 - 多速率光信号传输方法、***及光网络单元 - Google Patents

多速率光信号传输方法、***及光网络单元 Download PDF

Info

Publication number
WO2012068875A1
WO2012068875A1 PCT/CN2011/076067 CN2011076067W WO2012068875A1 WO 2012068875 A1 WO2012068875 A1 WO 2012068875A1 CN 2011076067 W CN2011076067 W CN 2011076067W WO 2012068875 A1 WO2012068875 A1 WO 2012068875A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
optical
optical signal
onu
signal transmission
Prior art date
Application number
PCT/CN2011/076067
Other languages
English (en)
French (fr)
Inventor
朱松林
耿丹
张伟良
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012068875A1 publication Critical patent/WO2012068875A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present invention relates to the field of communications, and in particular to a multi-rate optical signal transmission method, system, and optical network unit.
  • GPON Gigabit-Capable Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • GPON and EPON are two important branches of the PON family, similar to other PON technologies.
  • GPON and EPON are also passive optical access technologies that use point-to-multipoint topology.
  • the topology of the PON system is shown in Figure 1, and the PON is the optical line terminal (OLT) on the central office side.
  • the Optical Line Terminal is composed of an ONU (Optical Network Unit) on the user side and an Optical Distribution Network (ODN).
  • the point-to-multipoint network structure is usually used.
  • the ODN consists of passive optical components such as single-mode fibers, optical splitters, and optical connectors.
  • the ODN provides an optical transmission medium for the physical connection between the OLT and the ONU.
  • the widely used EPON has a downlink rate and an uplink rate of 1.25 Gbit/s, a GPON downlink rate of 2.5 Gbit/s, and an uplink rate of 1.25 Gbit/s.
  • the next-generation PON technology based on EPON and GPON technologies is rapidly developing.
  • the next-generation PON based on EPON technology The technology is 10G EPON technology with downlink rate and uplink rate of 10Gbit/s.
  • the next-generation PON technology based on GPON technology is XGPON technology with downlink rate of 10Gbit/s and uplink rate of 2.5Gbit/s (or 10Gbit/s).
  • the operator plans to share the ODN network of the existing EPON system with the EPON and 10G EPON networks.
  • the GPON and 10G GPON networks share the ODN network of the existing GPON system, when the existing EPON (or GPON)
  • the operator needs to send a technician to the ONU to replace the ONU of the EPON (or GPON) with the ONU of the 10G EPON (or XGPON).
  • the above operation will result in the operator's operating cost.
  • the addition and replacement of an existing EPON (or GPON) ONU will result in a temporary interruption of user traffic under the ONU.
  • the EPON (or GPON) ONU needs to be replaced with the 10G EPON (or The ONU of the XG PON) causes a temporary interruption of user services under the ONU, and no effective solution has yet been proposed.
  • the present invention is directed to a multi-rate optical signal transmission method and system, and an optical network unit ONU, which are required to solve the problem that when the rate of an ONU user of an existing EPON (or GPON) system needs to be upgraded in the related art,
  • the ONU of the EPON (or GPON) is replaced with the ONU of the 10G EPON (or XGPON), causing a temporary interruption of user services under the ONU.
  • a multi-rate optical signal transmission method for use in a passive optical network PON, including: an optical network unit ONU receiving an optical signal rate selection command sent by an optical line terminal OLT; and the ONU Selecting an optical device for optical signal rate included in the optical signal rate selection command for optical signal transmission; wherein the ONU includes at least two optical devices, each optical device transmitting optical signals of different rates.
  • the ONU selects an optical device for optical signal transmission with an optical signal rate included in the optical signal rate selection command, and includes any one of the following: the ONU selects a first optical device supporting the first rate in an initial state to perform a rate of optical signal transmission, when the optical signal rate corresponding to the optical signal rate selection command is the second rate, the ONU switches to the second optical device supporting the second rate to perform the second rate optical signal transmission, The first rate is different from the second rate; the ONU selects, in an initial state, the first optical device that supports the first rate to perform optical signal transmission at a first rate, where the optical signal rate selection command corresponds to When the optical signal rate is the second rate, the ONU simultaneously turns on the second optical device supporting the second rate to perform the second rate optical signal transmission; the ONU selects all the optical devices it contains in the initial state to perform different Rate of optical signal transmission.
  • the at least two optical devices have different operating wavelengths.
  • the operating wavelengths of the at least two optical devices are different, including: the uplink signals output by the respective optical devices are combined by a wavelength division multiplexing device WDMlr; and the downlink signals of different working wavelengths are demultiplexed by the WDMlr to different Optical device.
  • an optical network unit ONU comprising: at least two optical devices, wherein each optical device is configured to transmit optical signals of different rates.
  • the optical network unit ONU includes: a switching module, configured to select, in an initial state, a first optical device supporting the first rate to perform optical signal transmission at a first rate, where the optical signal rate selects a command corresponding to the light When the signal rate is the second rate, switching to the second optical device supporting the second rate to perform the second rate optical signal transmission, where the first rate is different from the second rate; And selecting, by the first state, the first optical device that supports the first rate to perform optical signal transmission at a first rate, where the optical signal rate corresponding to the optical signal rate selection command is a second rate, and simultaneously supporting the second rate
  • the second optical device performs the second rate optical signal transmission;
  • the selection module is configured to select all of the optical devices it contains in the initial state to perform optical signal transmission at different rates.
  • the ONU further includes a wavelength division multiplexing device WDM1r, configured to, when the operating wavelengths of the at least two optical devices are different, combine the uplink signals output by the optical devices to form a combined wave output, and split the downlink signals of different working wavelengths.
  • WDM1r wavelength division multiplexing device
  • a multi-rate optical signal transmission system for use in a passive optical network PON, including: an optical line terminal OLT, configured to transmit an optical signal rate selection command; an optical network unit ONU, set Selecting a command for receiving the optical signal rate; selecting an optical device for optical signal rate included in the optical signal rate selection command to perform optical signal transmission; wherein the ONU includes at least two optical devices, each optical device Transmit light signals at different rates.
  • the ONU is configured to: select, in an initial state, a first optical device that supports the first rate to perform optical signal transmission at a first rate, and when the optical signal rate corresponding to the optical signal rate selection command is a second rate, switch to a support station.
  • the second optical device of the second rate performs the second rate optical signal transmission, wherein the first rate is different from the second rate; or: the first optical device supporting the first rate is selected in an initial state Performing a first rate of optical signal transmission, when the optical signal rate corresponding to the optical signal rate selection command is a second rate, simultaneously turning on the second optical device supporting the second rate to perform the second rate optical signal transmission; or
  • In the initial state all the optical devices it contains are selected for optical signal transmission at different rates.
  • the ONU further includes a multiplexer/demultiplexer device WDM1r, configured to realize an multiplexed output of an uplink signal outputted by each optical device when the operating wavelengths of the at least two optical devices are different; and to divide the downlink signals of different working wavelengths Wave to different optical devices.
  • the ONU includes at least two optical devices, each of which transmits optical signals of different rates, and the ONU receives an optical signal rate selection command sent by the optical line terminal OLT, and the selection and the optical signal rate selection command are included.
  • FIG. 1 is a topological structural diagram of a PON system according to the related art
  • FIG. 2 is a process flow diagram of a multi-rate optical signal transmission method according to an embodiment of the present invention
  • FIG. 3 is a support of an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network in which a GPON system and an XGPON system coexist according to an embodiment of the present invention
  • FIG. 5 is a diagram supporting two rates according to an embodiment of the present invention.
  • FIG. 6 is a first schematic structural diagram of an optical network unit ONU according to an embodiment of the present invention
  • FIG. 7 is a second embodiment of an optical network unit ONU according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a third structure of an optical network unit ONU according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a multi-rate optical signal transmission system according to an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION will be described in detail with reference to the accompanying drawings in conjunction with the embodiments. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the embodiment of the present invention provides a multi-rate optical signal transmission method, which is applied to a passive optical network PON.
  • the processing flow is as shown in FIG.
  • Step 202 The optical network unit ONU receives the optical signal rate selection command sent by the optical line terminal OLT.
  • the ONU includes At least two optical devices, each optical device transmitting optical signals of different rates.
  • the ONU includes at least two optical devices, each of which transmits optical signals of different rates, and the ONU receives an optical signal rate selection command sent by the optical line terminal OLT, and the selection and the optical signal rate selection command are included.
  • the optical signal rate optical device performs optical signal transmission, and the rate of the user under the ONU needs to be upgraded, or when the high-speed ONU supports the low-rate user, there is no need to interrupt the user service to update the ONU and reduce the cost.
  • the ONU can select optical devices for optical signal transmission in the optical signal rate selection command for optical signal transmission.
  • the ONU selects the first optical device supporting the first rate to perform the optical signal transmission at the first rate in the initial state, and when the optical signal rate corresponding to the optical signal rate selection command is the second rate, the ONU switches to the second optical source that supports the second rate.
  • the device performs a second rate of optical signal transmission, wherein the first rate is different from the second rate;
  • the ONU selects the first optical device supporting the first rate to perform the optical signal transmission at the first rate in the initial state, and when the optical signal rate corresponding to the optical signal rate selection command is the second rate, the ONU simultaneously turns on the second light supporting the second rate.
  • the device performs a second rate of optical signal transmission; the ONU selects all of the optical devices it contains in the initial state for optical signal transmission at different rates.
  • the first rate is different from the second rate, and the first rate may be greater than the second rate or may be smaller than the second rate.
  • At least two optical devices have different operating wavelengths
  • a multiplexer/demultiplexer device may be provided, and an uplink signal output by each optical device is combined by a multiplexer/demultiplexer device, and The downstream signals of different working wavelengths are split to different optical devices by the multiplexer/demultiplexer.
  • the multi-rate optical signal transmission method provided by the embodiment of the present invention is applicable to the ONU multi-rate support in the PON system, and solves the problem that the rate of the user under the ONU in the existing PON system needs to be upgraded, or the high-rate ONU supports the rate user. The temporary disruption of user services and the increase in operator operating costs.
  • the ONU includes two or more kinds of optical devices, and the ONU is at least ⁇ Select one of the following methods to select the working rate: Mode 1: The ONU works at a certain rate that can be supported in the initial state, and its rate needs to be increased.
  • Mode 2 The ONU operates at a certain rate that can be supported in the initial state, and needs to support lower (or higher) rate user, under the command of the OLT, open the working channel of the OLT specified rate while maintaining the original rate;
  • Method 3 ONU in the initial ⁇ 1 state to support part or all Rate work.
  • the following is a description of the specific embodiments.
  • the specific embodiments are based on ONUs that support two rates. In actual applications, ONUs that support more than two rates can be selected.
  • the implementation process and the implementation of ONUs supporting two rates are implemented. The process is similar.
  • Example 1 The structure of an ONU supporting two rates is shown in Figure 3.
  • the ONU contains two optical devices.
  • One of the optical devices supporting the XGPON system operates at an optical rate of 10 Gbit/s and receives 2.5 Gbits.
  • the /s optical signal can receive a downlink wavelength range of 1575nm to 1580nm, and the transmitted upstream wavelength is 1260nm to 1280nm.
  • the other optical device supporting the GPON system receives the downlink 2.5Gbit/s optical signal and receives the uplink 1.25Gbit/
  • the optical signal of s can receive a downlink wavelength range of 1480 nm to 1500 nm, and the uplink wavelength of the transmission is 1290 nm to 1330 nm.
  • the ONU can also include an optical device for receiving a cable television (CATTV) signal, or Other optical devices.
  • CATV cable television
  • the receiving wavelength range is from 1550 nm to 1560 nm.
  • the downlink signal of XGPON, the downlink signal of GPON and the downlink signal of CATV are separated by the wavelength division multiplexing device WDMlr shown in FIG. 3, and then reach the optical device supporting the XGPON system, the optical device supporting the GPON system, and the receiving the CATV signal.
  • the uplink signal of the XGPON and the uplink signal of the GPON are merged into the ODN network of the system through the WDMlr shown in FIG. 3, and then transmitted to the OLT.
  • ONU's optical devices supporting the XGPON system and optical devices supporting the GPON system are managed by a set of media access control MAC chips and traffic management TM chips.
  • the ONU can be applied to the GPON shown in Figure 4.
  • the structure of the ONU in FIG. 4 is as shown in FIG. 3.
  • the ONU can work in one of the following three ways: Mode 1: ONU upgrade: The ONU starts the optical device supporting the GPON system rate in the initial state. At this time, the ONU is the ONU supporting the GPON system, and the OLT and ONU of the GPON system. Register activation and work in the same way as the GPON system. When the bandwidth of all users connected to the ONU needs to be upgraded, the ONU needs to be upgraded to an ONU that supports the XGPON rate.
  • the OLT of the GPON system gives the ONU an order to turn off the optical device of the GPON system rate and turn on the optical device of the XGPON system rate.
  • the ONU at this time is an ONU supporting the XGPON system, and the OLT and ONU of the XGPON system are registered and activated according to the manner of the XGPON system. The ONU completes the rate upgrade work.
  • the ONU starts the optical device supporting the XPON system rate in the initial state.
  • the ONU is the ONU supporting the XGPON system, and the OLT and the ONU of the XGPON system are registered and activated according to the manner of the XGPON system.
  • the ONU needs to be downgraded to an ONU supporting the GPON rate, and the OLT of the XGPON system gives the ONU an order to turn off the optical device of the XGPON system rate and turn on the optical device of the GPON system rate.
  • the ONU at this time is an ONU supporting the GPON system, and the OLT and the ONU of the GPON system are registered and activated according to the manner of the GPON system.
  • the ONU completes the work of rate degradation.
  • the ONU starts the optical device supporting the GPON system rate in the initial state.
  • the ONU is an ONU supporting the GPON system, and the OLT of the GPON system and the ONU are registered and activated according to the GPON system.
  • the ONU not only needs to reserve the existing working rate for the users who do not need the bandwidth upgrade, but also needs to upgrade the users who need the bandwidth upgrade to the ONUs that support the XGPON rate.
  • the OLT of the system gives the ONU the command to maintain the optical device of the GPON system rate and turn on the optical device of the XGPON system rate.
  • the ONU is the ONU supporting the GPON system, and also the ONU supporting the XGPON system, the OLT of the XGPON system, and the OLT of the XGPON system.
  • the ONU performs registration activation and operation in the manner of the XGPON system.
  • the optical device of the GPON system and the optical device of the ONU that satisfies the GPON system and the MAC chip and the TM chip that controls the optical device operate according to the GPON system.
  • the optical device of the ONU of the GPON system only receives the downlink signal of the GPON system, that is, 1480 nm to The downlink signal of 1500nm filters out the downlink signal of the XGPON system, that is, the downlink signal from 1575nm to 1580nm.
  • the optical device of the ONU of the GPON system only transmits the uplink signal of the GPON system to the OLT of the GPON system, that is, the uplink signal of 1290nm to 1330nm, GPON
  • the 1290nm to 1330nm uplink signal of the system passes through the WDMlr at the ONU and enters the optical splitter in FIG. 4, and then is transmitted to the WDMlr in FIG.
  • the OLT of the XGPON system and the optical device of the ONU that satisfies the XGPON system and the MAC chip and the TM chip that controls the optical device operate according to the XGPON system, and the optical device of the ONU of the XGPON system is only connected to the downlink signal of the XGPON system, that is, 1575 nm.
  • the 1260nm to 1280nm uplink signal of the XGPON system passes through the WDMlr at the ONU and enters the optical splitter in FIG. 4, and then is transmitted to the WDMlr in FIG. 4 near the OLT, and after the WDMlr is demultiplexed, it reaches the OLT of the XGPON system.
  • the CATV downlink signal reaches the ONU through the WDMlr and the splitter, and reaches the CATV optical device through the partial wave of the WDMlr on the ONU side.
  • the ONU can also be upgraded to work at a higher rate, enabling the ONU to meet both GPON and XGPON rates.
  • the above content is: The ONU initially works at the GPON rate, and then on the basis of maintaining the GPON rate, the optical device supporting the XGPON rate is turned on, so that the rate of the XGPON can be simultaneously operated.
  • the ONU can also initially work at the XGPON rate, and then, based on maintaining the XGPON rate, the optical device supporting the GPON rate is turned on, so that the rate of the GPON can be simultaneously operated. Said. Method three:
  • the ONU turns on the GPON-rate optical device and the XGPON-rate optical device in an initial state.
  • the ONU at this time is an ONU that supports the GPON system, and is also an ONU that supports the XGPON system.
  • the optical device of the GPON system and the optical device of the ONU that satisfies the GPON system and the MAC chip and the TM chip that controls the optical device operate according to the GPON system.
  • the optical device of the ONU of the GPON system only receives the downlink signal of the GPON system, and the GPON system
  • the ONU optical device only transmits the uplink signal of the GPON system to the OLT of the GPON system.
  • the OLT of the XGPON system and the optical device of the ONU that satisfies the XGPON system and the MAC chip and the TM chip that controls the optical device are in accordance with the XGPON system.
  • the optical device of the ONU of the XGPON system only receives the downlink signal of the XGPON system, and the optical device of the ONU of the XGPON system transmits only the uplink signal of the XGPON system to the OLT of the XGPON system.
  • the working mode of the OLT and the ONU works in the same way as the two optical devices in the second mode, and is not mentioned here.
  • two optical devices correspond to one media access control chip and one traffic management chip.
  • each optical device may also be associated with one media access control chip and one traffic management chip.
  • an embodiment of the present invention further provides an optical network unit ONU, which has the structure shown in FIG. 6, and includes: at least two optical devices 601, wherein each optical device 601 is configured to transmit light at different rates. signal.
  • each optical device 601 is configured to transmit light at different rates. signal.
  • the optical network unit ONU may include: a switching module 701, configured to select, at an initial state, a first optical device supporting the first rate to perform optical signal transmission at a first rate, an optical signal rate When the optical signal rate corresponding to the command is the second rate, switch to the second optical device supporting the second rate to perform the second rate optical signal transmission, where the first rate is different from the second rate; the opening module 702 is set to Selecting a first optical device that supports the first rate in an initial state to perform optical signal transmission at a first rate, and when the optical signal rate corresponding to the optical signal rate selection command is at a second rate, simultaneously opening a second optical device supporting the second rate The second rate of optical signal transmission; the selection module 703 is configured to select all of the optical devices it contains in the initial state to perform optical signal transmission at different rates.
  • a switching module 701 configured to select, at an initial state, a first optical device supporting the first rate to perform optical signal transmission at a first rate, an optical signal rate When the optical signal rate corresponding to the command is the second rate,
  • the at least two optical devices 601 have different operating wavelengths.
  • the ONU further includes a multiplexer/demultiplexer WDMlr 801 configured to combine the uplink signals output by the respective optical devices to form a combined output; to split the downlink signals of different operating wavelengths into different Optical device.
  • WDMlr 801 configured to combine the uplink signals output by the respective optical devices to form a combined output; to split the downlink signals of different operating wavelengths into different Optical device.
  • an embodiment of the present invention further provides a multi-rate optical signal transmission system, which is applied to a passive optical network PON.
  • the schematic diagram of the structure is as shown in FIG.
  • an optical line terminal OLT 901 configured to send Optical signal rate selection command
  • the optical network unit ONU 902 is configured to receive an optical signal rate selection command; select an optical device that transmits an optical signal rate included in the optical signal rate selection command to perform optical signal transmission; wherein the ONU includes at least two optical devices, each of the optical The device transmits optical signals at different rates.
  • the ONU may be configured to: select, in an initial state, a first optical device that supports the first rate to perform optical signal transmission at a first rate, and when the optical signal rate corresponding to the optical signal rate selection command is a second rate, switch Performing a second rate of optical signal transmission to a second optical device supporting the second rate, wherein the first rate is different from the second rate; or: selecting, in the initial state, the first optical device supporting the first rate to perform the first rate Optical signal transmission, when the optical signal rate corresponding to the optical signal rate selection command is the second rate, the second optical device supporting the second rate is simultaneously enabled to perform the second rate optical signal transmission; or, in the initial state, all the contents thereof are selected.
  • the optical device performs optical signal transmission at different rates.
  • the at least two optical devices have different operating wavelengths.
  • the ONU further includes a multiplexer/demultiplexer WDM1r configured to combine the uplink signals output by the respective optical devices into a combined output; and split the downlink signals of different operating wavelengths into different optical devices. From the above description, it can be seen that the present invention achieves the following technical effects:
  • the ONU includes at least two optical devices, each of which transmits optical signals of different rates, and the ONU receives the optical line terminals.
  • the optical signal rate selection command sent by the OLT selects an optical device that transmits the optical signal rate included in the optical signal rate selection command for optical signal transmission, and the rate of the user under the ONU needs to be upgraded, or the high-rate ONU supports the low-rate user. , there is no need to interrupt the user service to update the ONU, and reduce the cost.
  • a general-purpose computing device which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种多速率光信号传输方法、***及光网络单元,该方法应用于PON中,包括:ONU接收OLT发出的光信号速率选择命令;以及ONU选择与光信号速率选择命令中包含的光信号速率的光器件进行光信号传输;其中,ONU中包含至少两个光器件,每个光器件传输不同速率的光信号。采用本发明能够解决相关技术中当现有的EPON(或者GPON)***的ONU的用户的速率需要升求,需要将EPON(或者GPON)的ONU更换为10GEPON(或者XGPON)的ONU,导致ONU下的用户业务的暂时性中断的问题。

Description

多速率光信号传输方法、 ***及光网络单元 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多速率光信号传输方法、 *** 及光网络单元。 背景技术 吉比特无源光网络 ( GPON, Gigabit-Capable Passive Optical Network ) 技 术和以太网无源光网络( EPON , Ethernet Passive Optical Network ) 是 PON家 族中两个重要的技术分支, 和其它 PON技术类似, GPON和 EPON也是釆用 点到多点拓朴结构的无源光接入技术。 通常, PON***的拓朴结构如图 1所示, PON由局侧的光线路终端( OLT,
Optical Line Terminal ), 用户侧的光网络单元( ONU, Optical Network Unit )以 及光分配网络 ( ODN , Optical Distribution Network )组成, 通常釆用点到多点 的网络结构。 ODN由单模光纤、 光分路器、 光连接器等无源光器件组成, ODN 为 OLT和 ONU之间的物理连接提供光传输媒质。 目前广泛应用的 EPON的下行速率和上行速率均为 1.25Gbit/s, GPON的 下行速率为 2.5Gbit/s, 上行速率为 1.25Gbit/s。 随着互联网等通信技术的发展, 接入 PON***的用户数逐渐增多, 并且用户对带宽的需求日益增加, 以 EPON 和 GPON技术为基础的下一代 PON技术迅速发展, 基于 EPON技术的下一代 PON技术为下行速率和上行速率均为 10Gbit/s的 10G EPON技术,基于 GPON 技术的下一代 PON技术为下行速率为 10Gbit/s、 上行速率为 2.5Gbit/s (或者 10Gbit/s )的 XGPON技术。 为充分利用现有 ODN网络, 运营商规划 EPON和 10G EPON网络共用现有的 EPON***的 ODN网络, GPON和 10G GPON网 络共用现有的 GPON***的 ODN网络, 当现有的 EPON (或者 GPON ) *** 的 ONU的用户的速率需要升级时,运营商需要派技术人员到存放 ONU的现场 将 EPON (或者 GPON ) 的 ONU更换为 10G EPON (或者 XGPON ) 的 ONU, 上述操作会导致运营商的运营成本增加, 并且更换现有 EPON (或者 GPON ) 的 ONU会导致 ONU下的用户业务的暂时性中断。 针对相关技术中当现有的 EPON (或者 GPON ) ***的 ONU的用户的速 率需要升级时, 需要将 EPON (或者 GPON )的 ONU更换为 10G EPON (或者 XG PON ) 的 ONU, 导致 ONU下的用户业务的暂时性中断的问题, 目前尚未 提出有效的解决方案。 发明内容 本发明旨在提供一种多速率光信号传输方法、 ***及光网络单元 ONU, 以解决相关技术中当现有的 EPON (或者 GPON ) ***的 ONU的用户的速率 需要升级时, 需要将 EPON (或者 GPON ) 的 ONU更换为 10G EPON (或者 XGPON ) 的 ONU, 导致 ONU下的用户业务的暂时性中断的问题。 根据本发明的一个方面, 提供了一种多速率光信号传输方法, 应用于无源 光网络 PON中, 包括: 光网络单元 ONU接收光线路终端 OLT发出的光信号 速率选择命令; 以及所述 ONU选择与所述光信号速率选择命令中包含的光信 号速率的光器件进行光信号传输; 其中, 所述 ONU 中包含至少两个光器件, 每个光器件传输不同速率的光信号。 所述 ONU选择与所述光信号速率选择命令中包含的光信号速率的光器件 进行光信号传输, 包括下列任意之一: 所述 ONU在初始状态选择支持第一速 率的第一光器件进行第一速率的光信号传输, 所述光信号速率选择命令对应的 光信号速率为第二速率时, 所述 ONU切换到支持所述第二速率的第二光器件 进行第二速率的光信号传输, 其中, 所述第一速率与所述第二速率不同; 所述 ONU 在初始状态选择支持所述第一速率的第一光器件进行第一速率的光信号 传输, 所述光信号速率选择命令对应的光信号速率为第二速率时, 所述 ONU 同时开启支持所述第二速率的第二光器件进行第二速率的光信号传输; 所述 ONU在初始状态选择其包含的所有光器件进行不同速率的光信号传输。 所述至少两个光器件的工作波长不同。 所述至少两个光器件的工作波长不同, 包括: 各个光器件输出的上行信号 通过一个波分复用器件 WDMlr实现合波输出; 以及不同工作波长的下行信号 通过所述 WDMlr分波到不同的光器件。 才艮据本发明的另一方面, 提供了一种光网络单元 ONU, 包括: 至少两个 光器件, 其中, 每个光器件设置为传输不同速率的光信号。 光网络单元 ONU 包括: 切换模块, 设置为在初始状态选择支持第一速率 的第一光器件进行第一速率的光信号传输, 所述光信号速率选择命令对应的光 信号速率为第二速率时, 切换到支持所述第二速率的第二光器件进行第二速率 的光信号传输, 其中, 所述第一速率与所述第二速率不同; 开启模块, 设置为 在初始状态选择支持所述第一速率的第一光器件进行第一速率的光信号传输, 所述光信号速率选择命令对应的光信号速率为第二速率时, 同时开启支持所述 第二速率的第二光器件进行第二速率的光信号传输; 选择模块, 设置为在初始 状态选择其包含的所有光器件进行不同速率的光信号传输。 所述 ONU还包括波分复用器件 WDMlr,设置为在所述至少两个光器件的 工作波长不同时, 将各个光器件输出的上行信号实现合波输出, 将不同工作波 长的下行信号分波到不同的光器件。 根据本发明的另一方面, 提供了一种多速率光信号传输***, 应用于无源 光网络 PON中, 包括: 光线路终端 OLT, 设置为发送光信号速率选择命令; 光网络单元 ONU, 设置为接收所述光信号速率选择命令; 选择与所述光信号 速率选择命令中包含的光信号速率的光器件进行光信号传输; 其中,所述 ONU 中包含至少两个光器件, 每个光器件传输不同速率的光信号。 所述 ONU设置为: 在初始状态选择支持第一速率的第一光器件进行第一 速率的光信号传输, 所述光信号速率选择命令对应的光信号速率为第二速率 时,切换到支持所述第二速率的第二光器件进行第二速率的光信号传输,其中, 所述第一速率与所述第二速率不同; 或者, 在初始状态选择支持所述第一速率 的第一光器件进行第一速率的光信号传输, 所述光信号速率选择命令对应的光 信号速率为第二速率时, 同时开启支持所述第二速率的第二光器件进行第二速 率的光信号传输; 或者, 在初始状态选择其包含的所有光器件进行不同速率的 光信号传输。 所述 ONU还包括合波 /分波器件 WDMlr, 设置为在所述至少两个光器件 的工作波长不同时, 将各个光器件输出的上行信号实现合波输出; 将不同工作 波长的下行信号分波到不同的光器件。 釆用本发明实施例, ONU 中包含至少两个光器件, 每个光器件传输不同 速率的光信号, ONU接收光线路终端 OLT发出的光信号速率选择命令, 选择 与光信号速率选择命令中包含的光信号速率的光器件进行光信号传输,在 ONU 下的用户的速率需要升级, 或者高速率的 ONU支持低速率用户时, 不需要中 断用户业务去更新 ONU, 降氐成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是根据相关技术的 PON***的拓朴结构图; 图 2是根据本发明实施例的多速率光信号传输方法的处理流程图; 图 3是 居本发明实施例的支持两种速率的 ONU的第一种结构示意图; 图 4是才艮据本发明实施例的 GPON***与 XGPON***共存的网络的结构 示意图; 图 5是才艮据本发明实施例的支持两种速率的 ONU的第二种结构示意图; 图 6是才艮据本发明实施例的光网络单元 ONU的第一种结构示意图; 图 7是才艮据本发明实施例的光网络单元 ONU的第二种结构示意图; 图 8是才艮据本发明实施例的光网络单元 ONU的第三种结构示意图; 图 9是根据本发明实施例的多速率光信号传输***的结构示意图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中提到, 当现有的 EPON (或者 GPON ) ***的 ONU的用户的 速率需要升级时, 运营商需要派技术人员到存放 ONU的现场将 EPON (或者 GPON ) 的 ONU更换为 10G EPON (或者 XGPON ) 的 ONU, 上述操作会导 致运营商的运营成本增加, 并且更换现有 EPON (或者 GPON ) 的 ONU会导 致 ONU下的用户业务的暂时性中断。 为解决上述技术问题, 本发明实施例提 供了一种多速率光信号传输方法, 应用于无源光网络 PON中, 处理流程如图 2 所示, 包括: 步骤 202、 光网络单元 ONU接收光线路终端 OLT发出的光信号速率选择 命令; 步骤 204、 ONU选择与光信号速率选择命令中包含的光信号速率的光器件 进行光信号传输; 其中, ONU 中包含至少两个光器件, 每个光器件传输不同 速率的光信号。 釆用本发明实施例, ONU 中包含至少两个光器件, 每个光器件传输不同 速率的光信号, ONU接收光线路终端 OLT发出的光信号速率选择命令, 选择 与光信号速率选择命令中包含的光信号速率的光器件进行光信号传输,在 ONU 下的用户的速率需要升级, 或者高速率的 ONU支持低速率用户时, 不需要中 断用户业务去更新 ONU, 降氏成本。 实施时, ONU 选择与光信号速率选择命令中包含的光信号速率的光器件 进行光信号传输可以有多种实施方式, 包括下列任意之一:
ONU 在初始状态选择支持第一速率的第一光器件进行第一速率的光信号 传输, 光信号速率选择命令对应的光信号速率为第二速率时, ONU 切换到支 持第二速率的第二光器件进行第二速率的光信号传输, 其中, 第一速率与第二 速率不同;
ONU 在初始状态选择支持第一速率的第一光器件进行第一速率的光信号 传输, 光信号速率选择命令对应的光信号速率为第二速率时, ONU 同时开启 支持第二速率的第二光器件进行第二速率的光信号传输; ONU在初始状态选择其包含的所有光器件进行不同速率的光信号传输。 实施时, 第一速率与第二速率不同, 第一速率可以大于第二速率, 也可以 小于第二速率。 实施时, 较优的, 至少两个光器件的工作波长不同, 对应的, 可以设置一 个合波 /分波器件, 各个光器件输出的上行信号通过合波 /分波器件实现合波输 出, 以及不同工作波长的下行信号通过合波 /分波器件分波到不同的光器件。 本发明实施例提供的多速率光信号传输方法适用于 PON***中 ONU多速 率支持, 解决了当现有的 PON***中的 ONU下的用户的速率需要升级, 或者 高速率的 ONU支持氏速率用户时造成的用户业务暂时中断和运营商运营成本 增力口的问题。 为将本发明实施例提供的多速率光信号传输方法阐释地更清楚更详尽, 现 从另外一个角度对其进行说明: 实施时, ONU中包含两种或者多种速率的光器件, ONU至少釆取下述方 式之一选择工作的速率: 方式一: ONU 在初始状态以能支持的某个速率工作, 在其速率需要提高
(或者降低)时, 在 OLT的命令(即前文的光信号速率选择命令)下调节到指 定速率上工作; 方式二: ONU 在初始状态以能支持的某个速率工作, 在其需要支持更低 (或者更高)速率的用户时, 在 OLT的命令下, 在保持原速率的工作的情况下 开启 OLT指定的速率的工作通道; 方式三: ONU在初始 ^1 态以能支持的部分或者所有速率工作。 现以几个具体实施例进行说明, 具体实施例均以支持两种速率的 ONU为 例, 实际应用中还可以选择支持两种以上速率的 ONU, 具体实施流程与支持 两种速率的 ONU的实施流程相类似。 实例一 支持两种速率的 ONU的结构如图 3所示, ONU包含两个光器件, 其中一 个支持 XGPON***的光器件的工作速率为接收下行为 10Gbit/s的光信号, 发 送上行为 2.5Gbit/s的光信号, 能够接收的下行波长范围为 1575nm到 1580nm, 发送的上行波长为 1260nm到 1280nm, 另一个支持 GPON***的光器件为接 收下行 2.5Gbit/s的光信号, 接收上行 1.25Gbit/s的光信号, 能够接收的下行波 长范围为 1480nm到 1500nm, 发送的上行波长为 1290nm到 1330nm, 当然, ONU中还可以包括一个用于接收有线电视 ( CATV, Cable Television ) 信号的 光器件, 或其他光器件。 接收波长范围为 1550nm到 1560nm。 XGPON的下行 信号、 GPON的下行信号和 CATV的下行信号通过图 3中所示的波分复用器件 WDMlr分波后分别到达支持 XGPON***的光器件、 支持 GPON***的光器 件和接收 CATV信号的模块; XGPON的上行信号和 GPON的上行信号通过图 3中所示的 WDMlr合波后进入***的 ODN网络, 然后传输至 OLT。 ONU的 支持 XGPON ***的光器件和支持 GPON ***的光器件由一组媒质接入控制 MAC芯片和流量管理 TM芯片管理控制。 ONU可以应用在图 4所示的 GPON ***与 XGPON***共存的网络中, 图 4中的 ONU的结构如图 3所示。 ONU 可以选择下述三种方式之一进行工作: 方式一: ONU升级: ONU在初始状态时启动支持 GPON***速率的光器件工作,此时 ONU是 支持 GPON***的 ONU, GPON***的 OLT和 ONU按照 GPON***的方式 进行注册激活和工作。 当该 ONU下连接的全部用户的带宽需要升级时, ONU 需要升级为支持 XGPON速率的 ONU, 则 GPON***的 OLT给 ONU下达关 闭 GPON***速率的光器件、 并开启 XGPON***速率的光器件的命令, 此时 的 ONU是支持 XGPON***的 ONU , XGPON***的 OLT和 ONU按照 XGPON ***的方式进行注册激活和工作。 ONU完成速率升级的工作。
ONU降级:
ONU在初始状态时启动支持 XPON***速率的光器件工作,此时 ONU是 支持 XGPON***的 ONU, XGPON***的 OLT和 ONU按照 XGPON***的 方式进行注册激活和工作。 当该 ONU下连接的全部用户的带宽需要降级时, ONU需要降级为支持 GPON速率的 ONU, 则 XGPON***的 OLT给 ONU下 达关闭 XGPON***速率的光器件、 并开启 GPON***速率的光器件的命令, 此时的 ONU是支持 GPON***的 ONU , GPON***的 OLT和 ONU按照 GPON ***的方式进行注册激活和工作。 ONU完成速率降级的工作。 方式二:
ONU在初始状态时启动支持 GPON***速率的光器件工作,此时 ONU是 支持 GPON***的 ONU, GPON***的 OLT和所述 ONU按照 GPON***的 方式进行注册激活和工作。 当该 ONU下连接的部分用户的带宽需要升级时, ONU除了为不需要带宽 升级的用户保留现有的工作速率之外, 还需要为需要带宽升级的用户升级为支 持 XGPON速率的 ONU, 则 GPON***的 OLT给 ONU下达保持 GPON*** 速率的光器件、 并开启 XGPON***速率的光器件的命令, 此时的 ONU是即 支持 GPON***的 ONU, 同时也是支持 XGPON***的 ONU, XGPON*** 的 OLT和 ONU按照 XGPON***的方式进行注册激活和工作。 GPON***的 OLT和满足 GPON***的 ONU的光器件及控制该光器件的 MAC芯片和 TM芯片按照 GPON ***的方式进行工作, GPON ***的 ONU 的光器件只接收 GPON***的下行信号, 即 1480nm到 1500nm的下行信号, 滤出 XGPON***的下行信号, 即 1575nm到 1580nm的下行信号; GPON系 统的 ONU的光器件只发送 GPON ***的上行信号给 GPON ***的 OLT, 即 1290nm到 1330nm的上行信号, GPON***的 1290nm到 1330nm的上行信号 通过 ONU处的 WDMlr后进入图 4中的分光器, 然后传输到图 4中靠近 OLT 的 WDMlr, 经过该 WDMlr的分波后到达 GPON***的 OLT。 XGPON*** 的 OLT和满足 XGPON***的 ONU的光器件及控制该光器件的 MAC芯片和 TM芯片按照 XGPON***的方式进行工作, XGPON***的 ONU的光器件只 接) XGPON***的下行信号, 即 1575nm到 1580nm的下行信号,滤出 GPON ***的下行信号, 即 1480nm到 1500nm的下行信号; XGPON***的 ONU的 光器件只发送 XGPON***的上行信号给 XGPON***的 OLT, 即 1260nm到 1280nm的上行信号, XGPON***的 1260nm到 1280nm的上行信号通过 ONU 处的 WDMlr后进入图 4中的分光器,然后传输到图 4中靠近 OLT的 WDMlr, 经过该 WDMlr的分波后到达 XGPON***的 OLT。 除此之夕卜, CATV下行信号通过 WDMlr和分光器后到达 ONU,通过 ONU 侧的 WDMlr的分波到达 CATV光器件。 ONU在保持了现有速率的工作之外, 还可以升级到更高速率上进行工作,使得 ONU可以同时满足 GPON和 XGPON 两种速率的用户。 上述内容为: ONU初始工作在 GPON速率上, 然后在保持 GPON速率的基础上, 开启了支持 XGPON速率的光器件, 从而可以同时工作 在 XGPON的速率。 在其他的实施例中也可以釆用 ONU初始工作在 XGPON 速率上,然后在保持 XGPON速率的基础上,开启了支持 GPON速率的光器件, 从而可以同时工作在 GPON的速率, 此处不再赞述。 方式三:
ONU在初始状态开启 GPON速率的光器件和 XGPON速率的光器件, 此 时的 ONU是即支持 GPON***的 ONU, 同时也是支持 XGPON***的 ONU。 GPON***的 OLT和满足 GPON***的 ONU的光器件及控制该光器件的 MAC 芯片和 TM芯片按照 GPON***的方式进行工作, GPON***的 ONU的光器 件只接收 GPON***的下行信号, GPON***的 ONU的光器件只发送 GPON ***的上行信号给 GPON***的 OLT。 XGPON***的 OLT和满足 XGPON系 统的 ONU的光器件及控制该光器件的 MAC芯片和 TM芯片按照 XGPON系 统的方式进行工作, XGPON***的 ONU的光器件只接收 XGPON***的下行 信号, XGPON***的 ONU的光器件只发送 XGPON***的上行信号给 XGPON ***的 OLT。 OLT和 ONU的工作方式与方式二中同时开启两种光器件的工作 方式相同, 此处不再赞述。 在本发明实施例中, 两个光器件对应一个媒质接入控制芯片和一个流量管 理芯片, 在其他实施例中也可以釆用每个光器件对应一个媒质接入控制芯片和 一个流量管理芯片, 如图 5所示。 基于同一发明构思, 本发明实施例还提供了一种光网络单元 ONU, 其结 构如图 6所示, 包括: 至少两个光器件 601 , 其中, 每个光器件 601设置为传 输不同速率的光信号。 在一个实施例中, 如图 7所示, 光网络单元 ONU可以包括: 切换模块 701 , 设置为在初始状态选择支持第一速率的第一光器件进行第 一速率的光信号传输, 光信号速率选择命令对应的光信号速率为第二速率时, 切换到支持第二速率的第二光器件进行第二速率的光信号传输, 其中, 第一速 率与第二速率不同; 开启模块 702, 设置为在初始状态选择支持第一速率的第一光器件进行第 一速率的光信号传输, 光信号速率选择命令对应的光信号速率为第二速率时, 同时开启支持第二速率的第二光器件进行第二速率的光信号传输; 选择模块 703 , 设置为在初始状态选择其包含的所有光器件进行不同速率 的光信号传输。 在一个实施例中, 至少两个光器件 601的工作波长不同。 在一个实施例中, 如图 8所示, ONU还包括合波 /分波器件 WDMlr 801 , 设置为将各个光器件输出的上行信号实现合波输出; 将不同工作波长的下行信 号分波到不同的光器件。 基于同一发明构思, 本发明实施例还提供了一种多速率光信号传输***, 应用于无源光网络 PON中, 其结构示意图如图 9所示, 包括: 光线路终端 OLT 901 , 设置为发送光信号速率选择命令; 光网络单元 ONU 902, 设置为接收光信号速率选择命令; 选择与光信号速 率选择命令中包含的光信号速率的光器件进行光信号传输; 其中, ONU 中包 含至少两个光器件, 每个光器件传输不同速率的光信号。 在一个实施例中, ONU 可以设置为: 在初始状态选择支持第一速率的第 一光器件进行第一速率的光信号传输, 光信号速率选择命令对应的光信号速率 为第二速率时, 切换到支持第二速率的第二光器件进行第二速率的光信号传 输, 其中, 第一速率与第二速率不同; 或者, 在初始状态选择支持第一速率的 第一光器件进行第一速率的光信号传输, 光信号速率选择命令对应的光信号速 率为第二速率时, 同时开启支持第二速率的第二光器件进行第二速率的光信号 传输;或者,在初始状态选择其包含的所有光器件进行不同速率的光信号传输。 在一个实施例中, 至少两个光器件的工作波长不同。 在一个实施例中, ONU中还包括合波 /分波器件 WDMlr,设置为将各个光 器件输出的上行信号实现合波输出; 将不同工作波长的下行信号分波到不同的 光器件。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 釆用本发明实施例, ONU 中包含至少两个光器件, 每个光器件传输不同 速率的光信号, ONU接收光线路终端 OLT发出的光信号速率选择命令, 选择 与光信号速率选择命令中包含的光信号速率的光器件进行光信号传输,在 ONU 下的用户的速率需要升级, 或者高速率的 ONU支持低速率用户时, 不需要中 断用户业务去更新 ONU, 降氐成本。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者将它们分 别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成 电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种多速率光信号传输方法, 应用于无源光网络 PON中, 包括:
光网络单元 ONU接收光线路终端 OLT发出的光信号速率选择命令; 以及
所述 ONU选择与所述光信号速率选择命令中包含的光信号速率的 光器件进行光信号传输;
其中, 所述 ONU 中包含至少两个光器件, 每个光器件传输不同速 率的光信号。
2. 根据权利要求 1 所述的方法, 其中, 所述 ONU选择与所述光信号速率 选择命令中包含的光信号速率的光器件进行光信号传输, 包括下列任意 之一:
所述 ONU在初始状态选择支持第一速率的第一光器件进行第一速 率的光信号传输, 所述光信号速率选择命令对应的光信号速率为第二速 率时, 所述 ONU切换到支持所述第二速率的第二光器件进行第二速率 的光信号传输, 其中, 所述第一速率与所述第二速率不同;
所述 ONU在初始状态选择支持所述第一速率的第一光器件进行第 一速率的光信号传输, 所述光信号速率选择命令对应的光信号速率为第 二速率时, 所述 ONU 同时开启支持所述第二速率的第二光器件进行第 二速率的光信号传输;
所述 ONU在初始状态选择其包含的所有光器件进行不同速率的光 信号传输。
3. 居权利要求 1或 2所述的方法, 其中, 所述至少两个光器件的工作波 长不同。
4. 根据权利要求 3所述的方法, 其中, 所述至少两个光器件的工作波长不 同, 包括:
各个光器件输出的上行信号通过一个波分复用器件 WDMlr实现合 波输出; 以及
不同工作波长的下行信号通过所述 WDMlr分波到不同的光器件。
5. —种光网络单元 ONU, 包括:
至少两个光器件, 其中, 每个光器件设置为传输不同速率的光信号。
6. 根据权利要求 5所述的光网络单元, 其中, 包括:
切换模块, 设置为在初始状态选择支持第一速率的第一光器件进行 第一速率的光信号传输, 所述光信号速率选择命令对应的光信号速率为 第二速率时, 切换到支持所述第二速率的第二光器件进行第二速率的光 信号传输, 其中, 所述第一速率与所述第二速率不同;
开启模块, 设置为在初始状态选择支持所述第一速率的第一光器件 进行第一速率的光信号传输, 所述光信号速率选择命令对应的光信号速 率为第二速率时, 同时开启支持所述第二速率的第二光器件进行第二速 率的光信号传输;
选择模块, 设置为在初始状态选择其包含的所有光器件进行不同速 率的光信号传输。
7. 根据权利要求 5或 6所述的光网络单元, 其中, 所述 ONU还包括波分 复用器件 WDMlr, 设置为在所述至少两个光器件的工作波长不同时, 将各个光器件输出的上行信号实现合波输出, 将不同工作波长的下行信 号分波到不同的光器件。
8. —种多速率光信号传输***, 应用于无源光网络 PON中, 包括:
光线路终端 OLT, 设置为发送光信号速率选择命令;
光网络单元 ONU, 设置为接收所述光信号速率选择命令; 选择与所 述光信号速率选择命令中包含的光信号速率的光器件进行光信号传输; 其中, 所述 ONU 中包含至少两个光器件, 每个光器件传输不同速率的 光信号。
9. 根据权利要求 8所述的***, 其中, 所述 ONU设置为: 在初始状态选 择支持第一速率的第一光器件进行第一速率的光信号传输, 所述光信号 速率选择命令对应的光信号速率为第二速率时, 切换到支持所述第二速 率的第二光器件进行第二速率的光信号传输, 其中, 所述第一速率与所 述第二速率不同; 或者, 在初始状态选择支持所述第一速率的第一光器 件进行第一速率的光信号传输, 所述光信号速率选择命令对应的光信号 速率为第二速率时, 同时开启支持所述第二速率的第二光器件进行第二 速率的光信号传输; 或者, 在初始状态选择其包含的所有光器件进行不 同速率的光信号传输。
10. 根据权利要求 8或 9所述的***, 其中, 所述 ONU还包括合波 /分波器 件 WDMlr, 设置为在所述至少两个光器件的工作波长不同时, 将各个 光器件输出的上行信号实现合波输出; 将不同工作波长的下行信号分波 到不同的光器件。
PCT/CN2011/076067 2010-11-23 2011-06-21 多速率光信号传输方法、***及光网络单元 WO2012068875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010557393.8 2010-11-23
CN201010557393.8A CN102480651B (zh) 2010-11-23 2010-11-23 多速率光信号传输方法、***及光网络单元

Publications (1)

Publication Number Publication Date
WO2012068875A1 true WO2012068875A1 (zh) 2012-05-31

Family

ID=46093107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076067 WO2012068875A1 (zh) 2010-11-23 2011-06-21 多速率光信号传输方法、***及光网络单元

Country Status (2)

Country Link
CN (1) CN102480651B (zh)
WO (1) WO2012068875A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763963A (zh) * 2014-12-18 2016-07-13 中兴通讯股份有限公司 一种业务传输方法和装置
CN105792026B (zh) * 2014-12-22 2021-07-06 中兴通讯股份有限公司 光线路终端的控制方法、光线路终端及光线路***
CN106685529B (zh) * 2015-11-06 2019-04-09 中国电信股份有限公司 用于调节线路速率的方法、装置和***
CN105530068B (zh) * 2015-12-11 2018-09-21 中国航空工业集团公司西安航空计算技术研究所 一种基于通信协议特性分级的机载波分复用网络波长分配方法
CN106209244B (zh) * 2016-06-29 2018-08-31 武汉电信器件有限公司 多功能的olt光模块
CN109286864B (zh) * 2017-07-21 2021-08-17 深圳市中兴微电子技术有限公司 一种基于注册的信息处理方法、装置及存储介质
CN109756292B (zh) * 2017-11-01 2022-11-29 中兴通讯股份有限公司 无源光网络***,数据传输方法、装置
CN109803185B (zh) * 2017-11-15 2022-01-07 中兴通讯股份有限公司 一种onu和olt的匹配方法、装置及存储介质
WO2020140239A1 (zh) * 2019-01-03 2020-07-09 华为技术有限公司 一种光通信装置、光线路终端和光通信的处理方法
CN112235662A (zh) * 2019-07-15 2021-01-15 中兴通讯股份有限公司 一种降低无源光网络上行时延的方法及相关设备
CN113382317B (zh) * 2020-03-09 2022-05-10 中国电信股份有限公司 光通信方法、***以及olt和onu
CN111736266B (zh) * 2020-05-22 2021-11-19 浙江大学 一种面向PON的WDM1r合波器
CN115119085A (zh) * 2022-06-20 2022-09-27 中磊电子(苏州)有限公司 多标准光网络终端与其运作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420639A (zh) * 2008-05-06 2009-04-29 上海未来宽带技术及应用工程研究中心有限公司 配有pon口及ge口的光网络单元设备、网络***及实现方法
CN101436948A (zh) * 2008-12-02 2009-05-20 浪潮电子信息产业股份有限公司 一种SCM/Ethernet复合PON网络及其承载VoD业务的方法
US20100226649A1 (en) * 2009-03-04 2010-09-09 Futurewei Technologies, Inc. Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
CN101877798A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 现有无源光网络和下一代无源光网络的共存***,升级方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009584B (zh) * 2006-01-24 2011-04-20 华为技术有限公司 对无源光网络进行网络速率升级的方法、设备和***
CN101425867B (zh) * 2007-10-31 2012-12-05 中兴通讯股份有限公司 一种wdm接入网***
JP5097641B2 (ja) * 2008-08-07 2012-12-12 株式会社日立製作所 受動光網システム、光多重終端装置及び光網終端装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420639A (zh) * 2008-05-06 2009-04-29 上海未来宽带技术及应用工程研究中心有限公司 配有pon口及ge口的光网络单元设备、网络***及实现方法
CN101436948A (zh) * 2008-12-02 2009-05-20 浪潮电子信息产业股份有限公司 一种SCM/Ethernet复合PON网络及其承载VoD业务的方法
US20100226649A1 (en) * 2009-03-04 2010-09-09 Futurewei Technologies, Inc. Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
CN101877798A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 现有无源光网络和下一代无源光网络的共存***,升级方法

Also Published As

Publication number Publication date
CN102480651B (zh) 2015-07-22
CN102480651A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2012068875A1 (zh) 多速率光信号传输方法、***及光网络单元
Song et al. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms
JP4697458B2 (ja) 光伝送システム
CN102106103A (zh) 光网络
WO2012149810A1 (zh) 无源光网络***及其下行传输方法
EP1863207A1 (en) System and method for protecting an optical network
JP5068594B2 (ja) 光ネットワーク終端装置、光アクセスシステムおよび通信サービスシステム
KR101727779B1 (ko) 파장 가변 광 모듈 기반 수동형 광 망 거리 확장장치 및 그 방법
EP1933487A2 (en) System and method for protecting an optical network
JP5853822B2 (ja) 加入者側装置登録方法
JP2011135280A (ja) 光通信システム、光通信方法およびolt
JP2015522992A (ja) 多波長パッシブ光ネットワーク上での波長切替えのための方法、システム、および装置
WO2012090323A1 (ja) 論理リンク管理方法および通信装置
US20230030158A1 (en) Optical communication apparatus, optical communication system and optical communication method
WO2013053249A1 (zh) 光信号传输方法及装置
JP5689528B2 (ja) 長距離ボックス及び長距離ボックスのアップリンク/ダウンリンク光に対する処理方法
JP2011147023A (ja) 光通信システム、局側装置、加入者側装置、及び光通信方法
US9065589B2 (en) Apparatus and method for operating a wavelength division multiplexing access network
JP2013506329A (ja) パッシブ光ネットワークの装置および方法
KR20180031072A (ko) 다주기 필드 awg를 이용한 pon 시스템들의 업그레이드
CN111064542B (zh) 一种基于pon***动态分配波长的方法
WO2008000164A1 (fr) Procédé et système de renouvellement d'un réseau optique passif
JP2012235409A (ja) 光回線ユニット、局側装置および通信経路制御方法
JP2013207716A (ja) 加入者側装置登録方法
Kosmatos et al. An end-to-end real-time connectivity testbed exploiting standardized dynamic data-plane PON technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843121

Country of ref document: EP

Kind code of ref document: A1