WO2012067246A1 - Proximity exposure device and proximity exposure method - Google Patents

Proximity exposure device and proximity exposure method Download PDF

Info

Publication number
WO2012067246A1
WO2012067246A1 PCT/JP2011/076719 JP2011076719W WO2012067246A1 WO 2012067246 A1 WO2012067246 A1 WO 2012067246A1 JP 2011076719 W JP2011076719 W JP 2011076719W WO 2012067246 A1 WO2012067246 A1 WO 2012067246A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
mask
substrate
proximity exposure
Prior art date
Application number
PCT/JP2011/076719
Other languages
French (fr)
Japanese (ja)
Inventor
工 富樫
洋徳 川島
Original Assignee
Nskテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nskテクノロジー株式会社 filed Critical Nskテクノロジー株式会社
Priority to CN201180055791.2A priority Critical patent/CN103299243B/en
Priority to JP2012544332A priority patent/JPWO2012067246A1/en
Publication of WO2012067246A1 publication Critical patent/WO2012067246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers

Definitions

  • the present invention relates to a proximity exposure apparatus and a proximity exposure method, and more particularly to a proximity exposure apparatus and a proximity exposure method suitable for exposure transfer of a TFT array substrate and a color filter substrate of a liquid crystal display device.
  • the collimation half angle is 1 to 2 °.
  • the collimation half-angle is determined by the relationship between the size of the integrator lens and the distance from the integrator lens to the collimation mirror. Is adjusted to 1.3 to 1.7 °.
  • the shape of the integrator lens is made circular by partially hiding the lens element in order to suppress a decrease in resolution even if the exposure gap varies.
  • a pulsed laser emitted from an excimer laser is incident on a beam shaping lens, converted into a parallel laser, and incident on a fly-eye lens having a diameter of 1/10. It is described that the laser beam is emitted as a uniform laser and the collimation half angle is set to 0.5 ° or less by a collimation mirror.
  • the illumination light intensity is uniformized by a uniformizing means comprising a rod lens between the light source and the fly-eye lens, and the photomask is illuminated by the fly-eye lens. It is described that the light intensity distribution is made uniform, and the ultraviolet illumination light emitted from the light source by the collimating means is converted into parallel light and applied to the photomask.
  • Illumination light emitted from a mercury lamp or an ultrahigh pressure mercury lamp used as a light source unit includes g-line (435 nm) light, h-line (404 nm) light, i-line (365 nm) light, and j-line (313 nm) light is included, and exposure was conventionally performed using g-line light, h-line light, and i-line light.
  • j-line light is used. It is known that the use of light in the wavelength range is effective (see, for example, Patent Document 5).
  • the proximity exposure apparatus described in Patent Document 7 includes a lamp unit having at least two types of lamps having different internal pressures, and selectively turns on each type of lamp.
  • Japanese Unexamined Patent Publication No. 2007-240714 Japanese Unexamined Patent Publication No. 2007-94310 Japanese Unexamined Patent Publication No. 2008-158282 Japanese Unexamined Patent Publication No. 2005-265985 Japanese Unexamined Patent Publication No. 2009-182191 Japanese Unexamined Patent Publication No. 2006-184709 Japanese Unexamined Patent Publication No. 2008-191252 Japanese Unexamined Patent Publication No. 2008-242365
  • Patent Document 3 also describes that the collimation half angle is determined by the size and shape of the integrator lens.
  • the same problem as in Patent Document 2 exists.
  • the pattern to be transferred onto the substrate has a high resolution
  • each pattern has a desired line width
  • the collimation half angle is required to be variable so as to give the desired line width for each pattern. It is done.
  • Patent Documents 1 to 5 are configured so as to have a fixed small collimation half angle aiming at high resolution, and are not configured to easily change the collimation half angle.
  • Patent Document 5 has a problem that the light source is limited to the excimer laser, and other light sources cannot be used.
  • the exposure apparatus described in Patent Document 6 relates to a projection exposure apparatus, and does not disclose that a plurality of types of lamps are switched and used.
  • the proximity exposure apparatus described in Patent Document 7 also has a problem that it is difficult to control at the time of switching because the lamps are switched by selectively emitting a plurality of types of lamps.
  • only a plurality of shutters are described, and it does not relate to proximity exposure.
  • the present invention has been made in view of the above-described problems, and an object thereof is a proximity exposure apparatus and a proximity exposure method capable of obtaining a high-resolution pattern having a desired line width by variably setting a collimation half angle. Is to provide. Another object is to obtain a high-resolution pattern by using a light source unit that irradiates light of a short wavelength, and by using a light source unit that irradiates light of another wavelength, It is another object of the present invention to provide a proximity exposure apparatus and a proximity exposure method capable of switching each light source unit at an appropriate timing.
  • the above object of the present invention can be achieved by the following constitution. (1) a substrate holder for holding the substrate; A mask holding unit for holding a mask so as to face the substrate; An illumination optical system that emits light for pattern exposure toward the mask; In the state where the substrate and the mask are brought close to a predetermined gap, the substrate is irradiated with light from the illumination optical system through the mask, and the pattern of the mask is transferred to the substrate A proximity exposure apparatus,
  • the proximity exposure apparatus wherein the illumination optical system includes a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred onto the substrate.
  • the illumination optical system further includes: a light source unit; and an integrator configured by a fly-eye lens including a plurality of lens cells to equalize the intensity of light from the light source unit.
  • the collimation half-angle adjustment mechanism is provided on an incident surface side or an emission surface side of the integrator, and blocks light incident on one of the plurality of lens cells or light emitted from any of the plurality of lens cells.
  • the proximity exposure apparatus according to (1) which is a light intensity reducing member that reduces light.
  • the proximity exposure apparatus according to (2) wherein the light intensity reducing member has a plurality of neutral density filters that can move independently.
  • the plurality of neutral density filters include a plurality of types of neutral density filters, and can be shielded with a plurality of neutral density ratios equal to or greater than the type of neutral density filters.
  • Proximity exposure device (5)
  • the illumination optical system further includes a light source unit and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
  • the proximity exposure apparatus according to (1), wherein the collimation half-angle adjustment mechanism is a lens that is provided between the light source unit and the integrator and changes a diameter or an incident angle of light incident on the integrator. .
  • the illumination optical system further includes a light source unit and an integrator that is configured by a fly-eye lens including a plurality of lens cells and uniformizes the intensity of light from the light source unit,
  • the illumination optical system further includes a light uniformizing optical component that is provided between the light source unit and the integrator and uniformizes the intensity of light from the light source unit (2).
  • the proximity exposure apparatus wherein the pattern of the mask has a line width different from a desired line width of the pattern exposed on the substrate.
  • the illumination optical system further includes a light source unit and an integrator that is configured by a fly-eye lens including a plurality of lens cells and uniformizes the intensity of light from the light source unit,
  • the proximity exposure according to (1), wherein the collimation half-angle adjustment mechanism is a light shielding member that is provided on an exit surface side of the integrator and shields light emitted from any of the plurality of lens cells. apparatus.
  • the proximity exposure apparatus according to (9), wherein light from the light source unit is directly incident on the integrator.
  • the illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and a second light source unit that irradiates light having spectral characteristics different from those of the first light source unit. And a plurality of light shielding members capable of shielding light from the first and second light source units, (1) The illumination optical system can irradiate the light of the first and second light source units at different timings by controlling the opening timing of the plurality of light shielding members. Proximity exposure device.
  • the plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second light shielding member capable of shielding light from the second light source unit, (9)
  • Each of the first and second light source units includes a plurality of first and second light source units
  • the first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units
  • the second light shielding member is provided for each of the plurality of second light source units, and includes a plurality of second light shielding members capable of shielding light from the plurality of second light source units, respectively.
  • the apparatus further includes a cassette that supports the plurality of first and second light source units so that light from the plurality of first and second light source units is incident on an incident surface of the integrator lens.
  • the proximity exposure apparatus according to (13), wherein the plurality of first and second light shielding members are attached to the cassette.
  • the plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second capable of shielding all light from the first and second light source units.
  • Each of the first and second light source units includes a plurality of first and second light source units,
  • the first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units, respectively.
  • the proximity exposure apparatus according to (15).
  • the apparatus further includes a cassette that supports the plurality of first and second light source units so that light from the plurality of first and second light source units is incident on an incident surface of the integrator lens.
  • the proximity exposure apparatus according to (16), wherein the plurality of first light shielding members are attached to the cassette.
  • the illumination optical system is a proximity exposure method of a proximity exposure apparatus having a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred to the substrate, Adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate by the collimation half angle adjustment mechanism; Irradiating the substrate with light from the illumination optical system through the mask in a state where the substrate and the mask are close to a predetermined gap, and exposing and transferring the pattern of the mask to the substrate;
  • a proximity exposure method comprising: (19)
  • the illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and a second light source unit that irradiates light having spectral characteristics different from those of
  • the exposure transfer step the light from the first and second light source units is made different by controlling the opening timing of the plurality of light shielding members in a state where the substrate and the mask are brought close to a predetermined gap.
  • the proximity exposure method according to (18) wherein the substrate is irradiated with light through the mask at a timing, and the pattern of the mask is transferred to the substrate.
  • the illumination optical system has a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate,
  • the collimation half-angle adjustment mechanism adjusts to a predetermined collimation half-angle corresponding to the desired line width of the pattern transferred to the substrate, and masks the light from the illumination optical system with the substrate and mask close to a predetermined gap. And irradiating the substrate through the mask, and transferring the mask pattern onto the substrate.
  • the collimation half angle can be set variably, and a high-resolution pattern having a desired line width can be obtained.
  • the illumination optical system includes a first light source unit that emits light having a peak wavelength at a short wavelength of 350 nm or less, the first light source unit,
  • the illumination optical system includes a second light source unit that emits light having different characteristics and a plurality of light shielding members capable of shielding light from the first and second light source units.
  • FIG. 4 It is a partial exploded perspective view for demonstrating the division
  • (A) is a front view which shows the modification of the mask holder of FIG. 20, (b) is the top view, (c) is the side view. It is a schematic diagram of the illumination optical system which concerns on the modification of 7th Embodiment of this invention.
  • (A) is the front view which shows the mask holder of FIG. 23, (b) is the top view, (c) is the side view. It is a graph which shows the light intensity distribution in the exposure surface at the time of exposing using the mask which has a general mask pattern, and an ideal light intensity distribution.
  • the divided sequential proximity exposure apparatus PE of one embodiment holds a mask stage 10 that holds a mask M and a glass substrate (hereinafter also simply referred to as “substrate W”) W.
  • a substrate stage 20 and an illumination optical system 70 (see FIG. 4) for irradiating light for pattern exposure are provided.
  • the substrate W is disposed so as to face the mask M, and a resist is coated on the surface (opposite surface side of the mask M) in order to expose and transfer the mask pattern drawn on the mask M.
  • the mask stage 10 is a mask stage base 11 in which a rectangular opening 11a is formed at the center, and a mask holding part that is mounted on the opening 11a of the mask stage base 11 so as to be movable in the X axis, Y axis, and ⁇ directions.
  • a mask holding frame 12 and a mask driving mechanism 16 that is provided on the upper surface of the mask stage base 11 and adjusts the position of the mask M by moving the mask holding frame 12 in the X axis, Y axis, and ⁇ directions. .
  • the mask stage base 11 is supported by a column 51 standing on the apparatus base 50 and a Z-axis moving device 52 provided at the upper end of the column 51 so as to be movable in the Z-axis direction (see FIG. 2). It is arranged above the stage 20.
  • a plurality of planar bearings 13 are arranged on the upper surface of the peripheral edge of the opening 11a of the mask stage base 11, and the mask holding frame 12 has a flange 12a provided at the outer peripheral edge of the upper end. It is mounted on the flat bearing 13. As a result, the mask holding frame 12 is inserted into the opening 11a of the mask stage base 11 through a predetermined gap, so that the mask holding frame 12 can move in the X axis, Y axis, and ⁇ directions by the gap.
  • a chuck portion 14 for holding the mask M is fixed to the lower surface of the mask holding frame 12 via a spacer 15.
  • the chuck portion 14 is provided with a plurality of suction nozzles 14a for sucking the peripheral portion of the mask M on which the mask pattern is not drawn, and the mask M is not shown in the drawing through the suction nozzle 14a. It is detachably held on the chuck portion 14 by the apparatus.
  • the chuck portion 14 can move in the X axis, Y axis, and ⁇ directions with respect to the mask stage base 11 together with the mask holding frame 12.
  • the mask driving mechanism 16 includes two Y-axis direction driving devices 16y attached to one side along the X-axis direction of the mask holding frame 12, and one X-axis attached to one side along the Y-axis direction of the mask holding frame 12.
  • Direction drive device 16x is attached to one side along the X-axis direction of the mask holding frame 12.
  • the Y-axis direction driving device 16y is installed on the mask stage base 11, and has a driving actuator (for example, an electric actuator) 16a having a rod 16b that expands and contracts in the Y-axis direction, and a pin support mechanism 16c at the tip of the rod 16b. And a guide rail 16e attached to a side portion of the mask holding frame 12 along the X-axis direction and movably attached to the slider 16d.
  • the X-axis direction drive device 16x has the same configuration as the Y-axis direction drive device 16y.
  • the mask holding frame 12 is moved in the X-axis direction by driving one X-axis direction drive device 16x, and the two Y-axis direction drive devices 16y are driven equally.
  • the mask holding frame 12 is moved in the Y axis direction.
  • the mask holding frame 12 is moved in the ⁇ direction (rotated about the Z axis) by driving one of the two Y-axis direction driving devices 16y.
  • a gap sensor 17 for measuring a gap between the opposing surfaces of the mask M and the substrate W, and a mounting position of the mask M held by the chuck portion 14.
  • an alignment camera 18 for confirming the above.
  • the gap sensor 17 and the alignment camera 18 are held so as to be movable in the X-axis and Y-axis directions via the moving mechanism 19 and are arranged in the mask holding frame 12.
  • aperture blades 38 are provided at both ends in the X-axis direction of the opening 11a of the mask stage base 11 to shield both ends of the mask M as necessary. It is done.
  • the aperture blade 38 is movable in the X-axis direction by an aperture blade drive mechanism 39 including a motor, a ball screw, a linear guide, and the like, and adjusts the shielding area at both ends of the mask M.
  • the aperture blades 38 are provided not only at both ends of the opening 11a in the X-axis direction but also at both ends of the opening 11a in the Y-axis direction.
  • the substrate stage 20 includes a substrate holding unit 21 that holds the substrate W, and a substrate that moves the substrate holding unit 21 in the X-axis, Y-axis, and Z-axis directions with respect to the apparatus base 50.
  • Drive mechanism 22 The substrate holding unit 21 detachably holds the substrate W by a vacuum suction mechanism (not shown).
  • the substrate drive mechanism 22 includes a Y-axis table 23, a Y-axis feed mechanism 24, an X-axis table 25, an X-axis feed mechanism 26, and a Z-tilt adjustment mechanism 27 below the substrate holder 21.
  • the Y-axis feed mechanism 24 includes a linear guide 28 and a feed drive mechanism 29, and a slider 30 attached to the back surface of the Y-axis table 23 extends 2 on the apparatus base 50.
  • the Y-axis table 23 is driven along the guide rail 31 by a motor 32 and a ball screw device 33 while straddling the guide rail 31 through a rolling element (not shown).
  • the X-axis feed mechanism 26 has the same configuration as the Y-axis feed mechanism 24, and drives the X-axis table 25 in the X direction with respect to the Y-axis table 23.
  • the Z-tilt adjustment mechanism 27 has one movable wedge mechanism, which is a combination of the wedge-shaped moving bodies 34 and 35 and the feed drive mechanism 36, arranged at one end in the X direction and two at the other end. Consists of.
  • the feed drive mechanisms 29 and 36 may be a combination of a motor and a ball screw device, or may be a linear motor having a stator and a mover. Further, the number of Z-tilt adjustment mechanisms 27 installed is arbitrary.
  • the substrate driving mechanism 22 feeds and drives the substrate holding unit 21 in the X direction and the Y direction, and moves the substrate holding unit 21 to Z so as to finely adjust the gap between the opposing surfaces of the mask M and the substrate W. Fine movement and tilt adjustment in the axial direction.
  • Bar mirrors 61 and 62 are respectively attached to the X-direction side and Y-direction side of the substrate holding unit 21, and a total of three laser interferometers are installed at the Y-direction end and the X-direction end of the apparatus base 50. 63, 64, 65 are provided. As a result, the laser beams are irradiated from the laser interferometers 63, 64, 65 to the bar mirrors 61, 62, the laser beams reflected by the bar mirrors 61, 62 are received, and the laser beams and the laser beams reflected by the bar mirrors 61, 62 are received. The position of the substrate stage 20 is detected by measuring interference with light.
  • the illumination optical system 70 includes a light source unit 73 including an ultra-high pressure mercury lamp 71 as a light emitting unit, and a reflecting mirror 72 that emits light generated from the lamp 71 with directivity. And an integrator 74 that is made up of a fly-eye lens composed of a plurality of lens cells and that uniformizes the intensity of light from the light source unit 73, and a plane mirror 75 that changes the direction of the optical path emitted from the exit surface of the integrator 74. A collimation mirror 76, and an exposure control shutter 77 that is disposed between the light source unit 73 and the integrator 74 and controls opening and closing so as to transmit and block the irradiated light.
  • the lamp 71 is not limited to a single lamp, and may be a combination of a plurality of lamps.
  • the light source unit 73 is not limited to the lamp 71 and may be laser light.
  • the illumination optical system 70 of the present embodiment is provided on the incident surface side of the integrator 74 as a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate W.
  • a light blocking member 78 that is a light intensity reducing member that blocks light incident on any of the plurality of lens cells so as to be set to a predetermined collimation half angle.
  • another integrator 79 as a light uniformizing optical component that uniformizes the intensity of light from the light source unit 73.
  • the collimation half angle is determined by the diameter of the integrator and the collimation mirror 76 (or collimation lens), but the light shielding member 78 is provided so that the emitted light from the integrator 74 does not diffuse and the emitted light becomes closer to parallel light. .
  • the light shielding member 78 is configured to be movable so as to shield a portion of the lens cell that contributes to light having a large angle within the collimation half angle and to give a predetermined collimation half angle.
  • the collimation half angle is preferably set between 0.1 and 2.0 °. When the collimation half angle is less than 0.1 °, the transfer pattern is distorted.
  • the collimation half angle is greater than 2.0 °
  • the amount of blur of the transfer pattern increases.
  • the light blocking member 78 if the light is blocked by the light blocking member 78, the illuminance uniformity deteriorates. In this case, the uniformity is improved by employing the integrator 74 having a large number of divisions.
  • the light shielding member 78 may be a metal such as iron, aluminum, tungsten, tantalum, tantalum is preferable in consideration of heat resistance, and light aluminum is preferable in consideration of mobility. Further, the light shielding member 78 may shield the outer portion of the lens cell so that the light from the light source unit 73 enters the integrator 74 in a circular shape, or the lens so that the light is incident in a square shape. The outer portion of the cell may be shielded from light.
  • the substrate W placed on the substrate stage 20 and the mask M having a mask pattern held on the mask holding frame 12 are opposed to each other.
  • the gap between them is adjusted to a gap of about 100 to 300 ⁇ m, for example, and is arranged close to each other.
  • light for exposure from the light source unit 73 is incident on another integrator 79, and further collected by an integrator 74 that is partially shielded by moving a light shielding member 78, and is collected by a plane mirror 75 and a collimation mirror 76.
  • the light is reflected to be a plane light having a predetermined collimation angle and enters the mask M.
  • the exposure light transmitted through the mask M exposes the positive resist applied on the surface of the substrate W, and the mask pattern of the mask M is exposed and transferred to the substrate W.
  • a predetermined collimation half angle can be given by partially blocking the light incident on the integrator 74 by the movement of the light blocking member 78, so that a desired pattern to be transferred to the substrate W to be exposed can be obtained.
  • the collimation half angle can be variably set according to the line width, and a high-resolution pattern having a desired line width can be obtained.
  • the integrators 74 and 79 can make the light intensity uniform by subdividing. Therefore, the integrators 74 and 79 can select different division numbers in consideration of the illuminance distribution.
  • the light intensity reducing member may be a neutral density filter that attenuates light incident on any of the plurality of lens cells instead of the light shielding member 78.
  • the light blocking member 78 and the neutral density filter are provided on the incident surface side of the integrator 74, but are provided on the output surface side of the integrator 74 so that the collimation half angle of the light for pattern exposure is 0.1 to 2.0.
  • the light emitted from any one of the plurality of lens cells may be blocked or dimmed so that the light intensity is highest in the vicinity of the incident angle of 0 °.
  • the light homogenizing optical component it is preferable to use another integrator 79 because it is possible to obtain parallel light even when a plurality of light source units are provided.
  • a kaleidoscope composed of a rod integrator or mirror that is an internal reflection type optical element, a diffusion plate, or the like may also be used.
  • the positional relationship between the integrator 74 and the other integrator 79 is arbitrary.
  • the other integrator 79 may be arranged on the downstream side of the integrator 74, or at least one of the integrator 74 and the other integrator 79 is Further, it may be arranged upstream of the exposure control shutter 77.
  • the proximity exposure apparatus has a configuration in which a light shielding member 78 is provided on the exit surface side of the integrator 74 and no light uniformizing optical component is provided. Also good.
  • the proximity exposure apparatus and the proximity exposure according to the first embodiment are used in that a plurality of neutral density filters 78a and 78b are used as the light intensity reducing member that is a collimation half angle adjustment mechanism. Different from the method.
  • the illumination optical system 70a includes a movable first neutral density filter 78a having a first attenuation ratio and a movable second density having a second attenuation ratio as a light intensity reducing member. And a neutral density filter 78b.
  • the lens cell portion of the integrator 74 that contributes to light with a large angle within the collimation half angle is dimmed by moving at least one of the first neutral density filter 78a and the second neutral density filter 78b.
  • the light intensity can be variably set so that the vicinity of the incident angle of 0 ° is the highest, and a high-resolution pattern having a desired line width can be obtained.
  • the light is attenuated alone or jointly to reduce
  • the light incident on the lens cell can be dimmed with two dimming rates.
  • the sum of the first attenuation rate of the first attenuation filter 78a and the second attenuation rate of the second attenuation filter 78b is 100% or more, the two attenuation filters 78a and 78b You may make it light-shield the part of a lens cell using both.
  • the light intensity reducing member only needs to have a plurality of neutral density filters that can move independently of each other, and is not limited to two as in the present embodiment, and may be three or more. Good. Therefore, a plurality of neutral density filters are constituted by a plurality of types of neutral density filters and selectively used, so that light can be shielded with a plurality of neutral density ratios that are equal to or greater than the types of neutral density filters.
  • first and second light shielding members 78a and 78b are provided on the exit surface side of the integrator 74, and light uniformizing optics.
  • the structure which does not provide components may be sufficient.
  • the integrator 74 is provided between the light source unit 73 and the integrator 74.
  • a lens 80 that is movable in the vertical direction with respect to the incident surface is provided.
  • the lens 80 of the present embodiment can be applied in combination with the light intensity reducing member of the first embodiment or the light intensity reducing member of the second embodiment, or the light intensity reducing member of the first embodiment. It is also possible to apply in combination with both the light intensity reducing member of the second embodiment.
  • the lens 80 is moved to change the incident light diameter or the incident angle to the integrator 74 to weaken the intensity of light outside the collimation half angle of the light for pattern exposure.
  • a high-resolution pattern with a desired line width can be obtained by setting the light intensity to be highest in the vicinity of an incident angle of 0 ° between ⁇ 2.0 °.
  • the lens 80 is disposed between the light source unit 73 and another integrator 79 that is a light uniformizing optical component, but a modification of the present embodiment shown in FIG. 10.
  • the lens 80 may be arranged between the light source unit 73 and the integrator 74 without providing the light uniformizing optical component as in the proximity exposure apparatus according to the above.
  • the light source unit 73 can be moved in the vertical direction with respect to the incident surface of the integrator 74 as a collimation half-angle adjustment mechanism instead of providing the above-described light intensity reducing member and lens. Provided.
  • the light source unit 73 is moved to change the incident light diameter to the integrator 74, thereby reducing the intensity of light outside the collimation half angle of the light for pattern exposure.
  • a high-resolution pattern with a desired line width can be obtained by making the light intensity the highest in the vicinity of an incident angle of 0 ° between 0.0 °.
  • the proximity exposure apparatus may have a configuration in which the light uniformizing optical component is not provided.
  • the illumination optical system 70d of the present embodiment includes a plurality of bandpass filters 90a and 90b that respectively transmit different wavelengths ⁇ [nm].
  • the filter switching mechanism 91 provided is further provided.
  • the mask M used in the present embodiment is made of a translucent substrate, and as shown in FIG. 14, a main pattern portion (light transmission portion) 81 having a line-shaped main opening, and a main pattern portion 81.
  • the phase shift mask includes a side-transparent line-shaped auxiliary pattern portion (light transmission portion) 83, and the main pattern portion 81 and the auxiliary pattern portion 83 are partitioned by a phase shift film 84.
  • the outer portion of the auxiliary pattern portion 83 is a light shielding film (chrome film) 82 that shields light.
  • the auxiliary pattern portion 83 is an opening that is not resolved after the development processing, and is arranged symmetrically on both sides with respect to the center O of the main pattern portion 81.
  • a plurality of auxiliary pattern portions 83 may be arranged symmetrically on both sides with respect to the center O of the main pattern portion 81.
  • the phase shift film 84 can improve the resolution that has deteriorated due to light interference by shifting the phase of the light passing therethrough by 180 °.
  • the phase difference of 180 ° is given by giving it by -1).
  • the phase shift film 84 can also change the degree of interference according to the phase shift amount. Further, the degree of interference can be changed even if the amount of transmission through the phase shift film 84 is changed.
  • the line width A of the main pattern portion 81 is 15 ⁇ m or less, and is set wider than the line width of the pattern that is exposed and transferred onto the surface of the substrate W.
  • the width B of the phase shift film 84 is set to 2/3 or less of the line width A of the main pattern portion 81
  • the line width C of the auxiliary pattern portion 83 is set to 2/3 or less of the width B of the phase shift film. Is set.
  • the line widths A and C of the main pattern portion 81 and the auxiliary pattern portion 83 of the mask pattern P and the width B of the phase shift film 84 are obtained by calculating the intensity of light irradiated to the substrate W and obtained by each mask pattern.
  • the intensity distribution in the line width direction to be obtained is calculated by simulation, and is determined by whether the line width of the pattern on the substrate obtained after the development processing or the contrast necessary for fine line resolution is obtained.
  • the mask M having the phase shift film 84 has a predetermined wavelength ⁇ of light to be transmitted in relation to the film thickness d in order to improve the resolution due to the phase shift.
  • the band-pass filters 90a and 90b that transmit the wavelength ⁇ according to the photosensitive characteristics of the substrate W are selected from the plurality of band-pass filters 90a and 90b that can be switched. Then, light having a wavelength transmitted through the bandpass filters 90a and 90b is irradiated through the mask M, and a line-shaped pattern 85 is formed on the surface of the substrate W facing the main pattern portion 81 by the mask pattern of the mask M. .
  • the mask M on which the mask pattern P is not formed is attracted and held by the chuck portion 14, the mask M is bent by its own weight, and the opposing surface of the mask M and the substrate W The gap g between them tends to be small near the center of the mask M, and tends to be large at the periphery, and the intensity distribution obtained by changing the gap g at each position of the mask M is different.
  • the exposure amount (energy amount) necessary for the resist to form a pattern after the development processing is such that the line width of the pattern formed on the substrate at each position in the exposure region where the gap g is different is substantially constant.
  • the amount of energy is preferably a line width of a pattern formed on the substrate W in consideration of the sensitivity of the resist applied to the substrate W and the gap g between the opposing surfaces of the substrate W and the mask M. It is determined to be the width of.
  • the mask pattern P of the mask M is not limited to the shape described above, and the main pattern portion includes two main openings parallel to each other via the phase shift film or the light shielding film, and the auxiliary pattern portion is You may arrange
  • the main pattern portion 81 includes two main openings 81 a and 81 a that are parallel to each other via the phase shift film 84, and the auxiliary pattern portion 83 is 2 through the phase shift film 84.
  • the main openings 81a and 81a are arranged outside the book.
  • the auxiliary pattern portion 83 is arranged symmetrically with respect to the center O between the two main openings 81a and 81a.
  • the mask of the present embodiment is configured to have a phase shift film, but is not limited to this.
  • the mask pattern P has a main pattern portion 81 and an auxiliary pattern portion 83 separated by a light shielding film 82 without using a phase shift film, as shown in FIG. It may be a configuration.
  • the mask of a pattern having a line width different from the desired line width of the pattern transferred to the substrate W as in the present embodiment is used in combination with the illumination optical system 70d provided with the collimation half-angle adjustment mechanism.
  • a resolution pattern can be formed.
  • the mask of the present embodiment can also be applied to the collimation half-angle adjustment mechanism of the second to fourth embodiments.
  • the proximity exposure apparatus has a configuration in which a light shielding member 78 is provided on the exit surface side of the integrator 74 and no light uniformizing optical component is provided. Also good.
  • the illumination optical system 70e includes ultrahigh pressure mercury lamps 71a and 71b as light emitting units and reflections emitted with directivity to the light generated from these lamps 71a and 71b.
  • An integrator configured by mirrors 72a and 72b, first and second light source units 73a and 73b including the mirrors 72a and 72b, and a fly-eye lens including a plurality of lens cells, and uniformizing the intensity of light from the light source units 73a and 73b 74, a plane mirror 75 that changes the direction of the light path emitted from the exit surface of the integrator 74, a collimation mirror 76, and the first and second light source units 73a and 73b, respectively, are arranged in front of each other, Mechanical first and second light shielding members (a plurality of light shielding members) 177 and 178 that are controlled to open and close so as to pass and block.
  • the first light source unit 73a emits light having a peak wavelength at 350 nm or less, specifically, a short wavelength of j-line (313 nm), and the second light source unit 73b is 350 nm or more, for example, i-line ( Irradiating light having a peak wavelength at a wavelength of 365 nm).
  • the first light shielding member 177 capable of shielding light from the first light source unit 73a and the second light shielding member 178 capable of shielding light from the second light source unit 73b include the light source units 73a and 73b.
  • each light shielding member 177 and 178 is also arbitrary, and may be a rotary type or a slide type.
  • the substrate W placed on the substrate stage 20 and the mask M having a mask pattern held on the mask holding frame 12 are opposed to each other.
  • the gaps are adjusted to a predetermined gap, for example, about 100 to 150 ⁇ m, and are arranged close to each other.
  • the first light shielding member 177 is closed and the second light shielding member 178 is opened, and the light from the second light source unit 73 b is incident on the integrator 74, and the plane mirror 75 and the collimation mirror 76. And is incident on the mask M.
  • the first light blocking member 177 is also controlled to be opened, so that light having a short wavelength is incident on the integrator 74 from the first light source unit 73a and reflected by the plane mirror 75 and the collimation mirror 76. Is incident on the mask M. Then, each light of the first light source unit 73a and the second light source unit 73b that has passed through the mask M exposes the positive resist applied on the surface of the substrate W so that the mask pattern of the mask M is exposed to the substrate W. Transcribed. At this time, the thinned pattern can be transferred by the short-wavelength light from the first light source unit 73a, and the resist in the contact portion with the substrate W is also exposed by the light from the second light source unit 73b. can do.
  • the illumination optical system 70e includes the first light source unit 73a that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and the first light source unit 73a.
  • a second light source unit 73b that emits light having spectral characteristics different from those of the first light source unit 73a, and first and second light shielding members 177 that can block light from the first and second light source units 73a and 73b. 178.
  • the opening timings of the first and second light shielding members 177 and 178 are controlled to control the first and second light source units 73a and 73b. Is irradiated onto the substrate W through the mask M at different timings, and the pattern of the mask M is transferred to the substrate W. Therefore, a high-resolution pattern can be obtained, the throughput can be improved, and the light sources 73a and 73b can be switched at an appropriate timing.
  • FIG. 19 is a schematic diagram of an illumination optical system according to a modification of the present embodiment.
  • the plurality of light shielding members includes a first light shielding member 177 capable of shielding light from the first light source unit 73a and all light from the first and second light source units 73a and 73b.
  • a second light shielding member 179 capable of shielding the light. As shown in FIG. 19, the second light shielding member 179 may be provided on the incident surface side of the integrator 74, or may be provided on the output surface side of the integrator 74.
  • the same effect can be obtained by controlling the light shielding member 179, similarly to the light shielding member 178 of the above embodiment.
  • the second light shielding member 179 can use an existing light shielding member provided in the proximity exposure apparatus having one light source unit as it is, and can reduce the apparatus cost.
  • the illumination optical system 70g differs from the proximity exposure apparatus and proximity exposure method of the sixth embodiment in the configuration of the first and second light source units and the plurality of light shielding members.
  • the first and second light source units 73c and 73d include a plurality of first and second light source units 73c and 73d, respectively.
  • the cassette 181 and the frame 182 the light from all the light source parts 73 c and 73 d is arranged to be incident on the incident surface of the integrator 74.
  • each of the cassettes 181 includes ten first light source parts 73d arranged in the width direction and divided in the vertical direction, and ten second light source parts 73d arranged in the width direction. It is attached to the center in two steps.
  • the frame 182 is provided with a plurality of cassettes 181 in the vertical direction and a plurality of cassettes 181 in the horizontal direction.
  • Each of the first and second light source units 73c and 73d also includes ultrahigh pressure mercury lamps 71c and 71d as light emitting units, and reflecting mirrors 72c and 72d that emit light with directivity emitted from the lamps 71c and 71d.
  • the first light source unit 73c irradiates light having a peak wavelength at 350 nm or less, specifically at a short wavelength of j-line (313 nm), and the second light source unit 73d is 350 nm or more.
  • light having a peak wavelength at the wavelength of i-line (365 nm) is irradiated. That is, the illumination optical system 70g of the present embodiment uses a plurality of first and second light source units 73c and 73d that are reduced in size as compared with those of the sixth embodiment that emit light with power of 10 kw or less. Configured.
  • the cassette 181 is provided with a plurality of light shielding members 183 and 184 on the front surface of the respective opening portions 181a of the light source portions 73c and 73d. That is, the plurality of first light shielding members 183 are provided for each of the plurality of first light source parts 73c, and are opened and closed around the rotation shafts 183a provided around the respective openings 181a. The light from the light source unit 73c is passed / shielded.
  • a plurality of second light shielding members 184 are provided for each of the plurality of second light source parts 73d, and are opened and closed around a rotation shaft 184a provided around each opening part 181a. The light from the light source unit 73d is passed / shielded.
  • the first and second light shielding members 183 and 184 may be attached to the cassette 181 as in the present embodiment, or may be attached to the frame 182.
  • the plurality of first light shielding members 183 are closed and the plurality of second light shielding members 184 are opened, so that the plurality of second light source units 73d are controlled. Is incident on the integrator 74, reflected by the plane mirror 75 and the collimation mirror 76, and incident on the mask M.
  • the plurality of first light shielding members 183 are also controlled to open, so that light having a short wavelength is incident on the integrator 74 from the plurality of first light source units 73c, and the plane mirror 75 and collimation are performed. The light is reflected by the mirror 76 and enters the mask M.
  • each light of the plurality of first light source units 73c and the plurality of second light source units 73d transmitted through the mask M exposes the positive resist applied on the surface of the substrate W, and the mask pattern of the mask M is formed. It is exposed and transferred to the substrate W. Therefore, also in the present embodiment, the thinned pattern can be transferred by the short wavelength light from the plurality of first light source portions 73c, and the substrate can be transferred by the light from the plurality of second light source portions 73d. The resist in contact with W can also be exposed.
  • the small light source units 73c and 73d as in the present embodiment, since the area of the glass of the lamp is small, the light absorption on the short wavelength side is small, so that it is possible to secure the light emission amount necessary for exposure. it can.
  • the arrangement of the two types of light source units 73c and 73d is determined in advance in the cassette 181, and a plurality of light source units 73c and 73d are arranged adjacent to each other, as in the modification shown in FIG.
  • the first and second light shielding members 183 and 184 that can collectively shield the light sources 73c and 73d may be configured.
  • the plurality of light shielding members 179, 183 are capable of shielding light from the plurality of first light source units 73c, and the first and second light source units 73c. , 73d, and a second light shielding member 179 that can shield all light.
  • the second light shielding member 179 may be provided on the incident surface side of the integrator 74 as illustrated in FIG. 23, or may be provided on the emission surface side of the integrator 74. For this reason, a plurality of first light shielding members 183 are attached to the cassette 181 only on the front surface of the plurality of first light source parts 73c.
  • the same effect can be obtained by controlling the light shielding member 179, similarly to the light shielding member 184 of the above embodiment. Can do.
  • the second light shielding member 179 can use an existing light shielding member provided in a proximity exposure apparatus having one type of light source unit as it is, and can reduce the apparatus cost.
  • the illumination optical systems 70e to 70h of the sixth or seventh embodiment can be applied in combination with the illumination optical systems 70 to 70d having the collimation half angle adjustment mechanism of the first to fifth embodiments.
  • the proximity exposure apparatus and proximity exposure method of the present invention may be applied to the production of a TFT array substrate, and can also be applied to the production of a color filter substrate.
  • the light transmittance at the opening of the mask pattern may be set to 90% or less.
  • the proximity scanning exposure apparatus exposes light for exposure via a plurality of masks M on which a mask pattern is formed on a substantially rectangular substrate W that is floated and supported in the vicinity of the mask M and is transported in a predetermined direction. , And a mask pattern is exposed and transferred onto the substrate W, and a scanning exposure method is adopted in which exposure transfer is performed while the substrate W is moved relative to the plurality of masks M.
  • the light source unit of the present invention is not limited to the two types of light source units, the first and second light source units, and has another type of light source unit that has spectral characteristics different from those of the first and second light source units. It may be a configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An illumination optical system (70) comprises: a light source (73); an integrator (74) which is constructed from a fly eye lens comprising a plurality of lens cells, and makes the intensity of light from the light source (73) uniform; and a movable light occluding member (78) which is provided on the incident surface side of the integrator (74), and occludes light that is incident at any of the plurality of lens cells in such a way that variable setting is performed to a specified collimation half angle. Thus, the collimation half angle is variably set, and a high-resolution pattern having a desired line width can be obtained.

Description

近接露光装置及び近接露光方法Proximity exposure apparatus and proximity exposure method
 本発明は、近接露光装置及び近接露光方法に関し、より詳細には、液晶ディスプレイ装置のTFTアレイ基板やカラーフィルタ基板の露光転写に好適な近接露光装置及び近接露光方法に関する。 The present invention relates to a proximity exposure apparatus and a proximity exposure method, and more particularly to a proximity exposure apparatus and a proximity exposure method suitable for exposure transfer of a TFT array substrate and a color filter substrate of a liquid crystal display device.
 近年、フラットパネルディスプレイ装置には、画素の開口率の向上のため、カラーフィルタ等においても高解像度が要求されてきている。高解像度を得る露光装置としては、ミラープロジェクション露光装置やレンズプロジェクション露光装置があるものの、装置が高価であったり、大型のパネルに対するスループットが低いという問題がある。 In recent years, flat panel display devices have been required to have high resolution in color filters and the like in order to improve the aperture ratio of pixels. As an exposure apparatus for obtaining high resolution, there are a mirror projection exposure apparatus and a lens projection exposure apparatus, but there are problems that the apparatus is expensive and the throughput for a large panel is low.
 一方、マスクと基板とを近接対向させて露光する近接露光装置では、装置自体は比較的安価であるが、露光面での光強度分布は通常、図11に示すように、回折や干渉の影響により滑らかな曲線となる。このため、近接露光装置においては、この光強度分布を、図11に示す理想の光強度分布に近づけて、高解像度化を図ることが望ましい。また、高解像度化を図る手法としては、種々考案されている(例えば、特許文献1~5参照。)。 On the other hand, in a proximity exposure apparatus that exposes a mask and a substrate in close proximity to each other, the apparatus itself is relatively inexpensive, but the light intensity distribution on the exposure surface is usually affected by diffraction and interference as shown in FIG. A smoother curve. For this reason, in the proximity exposure apparatus, it is desirable to increase the resolution by bringing the light intensity distribution close to the ideal light intensity distribution shown in FIG. Further, various techniques for increasing the resolution have been devised (see, for example, Patent Documents 1 to 5).
 特許文献1に記載のカラーフィルタの製造方法では、コリメーション半角を1~2°とすることが開示されている。また、特許文献2に記載のプロキシミティ露光方法では、コリメーション半角が、インテグレータレンズの大きさと、インテグレータレンズからコリメーションミラーまでの距離の関係で決まることが開示されており、該レンズのサイズ、該距離を操作して、1.3~1.7°に調整することが記載されている。特許文献3に記載の近接露光装置では、露光ギャップが変動しても解像度の低下を抑えるべく、レンズエレメントを部分的に隠して、インテグレータレンズの形状を円形にすることが開示されている。
 特許文献4に記載のプロキシミティ露光装置では、エキシマレーザから出射されたパルス状のレーザがビーム整形レンズに入射して、平行なレーザに変換され、径を1/10にしたフライアイレンズに入射し、均一化されたレーザとして出射され、コリメーションミラーによってコリメーション半角が0.5°以下とされることが記載されている。また、特許文献5に記載の露光照明装置では、光源とフライアイレンズとの間にロッドレンズからなる均一化手段で照明光の強度分布を均一化し、フライアイレンズでフォトマスクに照射される照明光の強度分布を均一化し、コリメート手段で光源から放射された紫外線の照明光を平行光にしてフォトマスクに照射することが記載されている。
In the method of manufacturing a color filter described in Patent Document 1, it is disclosed that the collimation half angle is 1 to 2 °. Further, in the proximity exposure method described in Patent Document 2, it is disclosed that the collimation half-angle is determined by the relationship between the size of the integrator lens and the distance from the integrator lens to the collimation mirror. Is adjusted to 1.3 to 1.7 °. In the proximity exposure apparatus described in Patent Document 3, it is disclosed that the shape of the integrator lens is made circular by partially hiding the lens element in order to suppress a decrease in resolution even if the exposure gap varies.
In the proximity exposure apparatus described in Patent Document 4, a pulsed laser emitted from an excimer laser is incident on a beam shaping lens, converted into a parallel laser, and incident on a fly-eye lens having a diameter of 1/10. It is described that the laser beam is emitted as a uniform laser and the collimation half angle is set to 0.5 ° or less by a collimation mirror. Moreover, in the exposure illumination apparatus described in Patent Document 5, the illumination light intensity is uniformized by a uniformizing means comprising a rod lens between the light source and the fly-eye lens, and the photomask is illuminated by the fly-eye lens. It is described that the light intensity distribution is made uniform, and the ultraviolet illumination light emitted from the light source by the collimating means is converted into parallel light and applied to the photomask.
 また、光源部として用いられている水銀ランプ又は超高圧水銀ランプから射出される照明光には、g線(435nm)の光、h線(404nm)の光、i線(365nm)の光、及びj線(313nm)の光が含まれており、従来はg線の光、h線の光、i線の光を用いて露光を行っていたが、高解像度化を図るためには、j線の波長域の光の利用が有効であることが知られている(例えば、特許文献5参照。)。特許文献6に記載の投影露光装置では、j線の波長域の光のパワーがg線、h線、i線の波長域の光のパワーと比較して小さいという点を考慮し、j線の波長域の光を利用すると共に、他の波長域の光も波長選択フィルタによって切り替えて利用し、色収差の補正が行われた状態で高解像度を重視した露光と、高スループットを重視した露光の双方を行うことが開示されている。 Illumination light emitted from a mercury lamp or an ultrahigh pressure mercury lamp used as a light source unit includes g-line (435 nm) light, h-line (404 nm) light, i-line (365 nm) light, and j-line (313 nm) light is included, and exposure was conventionally performed using g-line light, h-line light, and i-line light. However, in order to increase the resolution, j-line light is used. It is known that the use of light in the wavelength range is effective (see, for example, Patent Document 5). In the projection exposure apparatus described in Patent Document 6, in consideration of the fact that the power of light in the wavelength range of j-line is smaller than the power of light in the wavelength range of g-line, h-line, and i-line, While using light in the wavelength range, and switching to use light in other wavelength ranges with a wavelength selection filter, both exposure that emphasizes high resolution and exposure that emphasizes high throughput with chromatic aberration corrected Is disclosed.
 また、特許文献7に記載の近接露光装置では、内圧の異なるランプを少なくとも2種以上有するランプユニットを備え、各種類のランプを選択的に点灯させることが開示されている。 Further, it is disclosed that the proximity exposure apparatus described in Patent Document 7 includes a lamp unit having at least two types of lamps having different internal pressures, and selectively turns on each type of lamp.
 さらに、特許文献8に記載のレーザーの直接描画による露光装置では、露光用の光と、露光効率を上げるための過熱用の光とを混合した光によって露光するもので、各光を個別に遮光するシャッター部が記載されている。 Further, in the exposure apparatus using direct laser writing described in Patent Document 8, exposure is performed by mixing light for exposure and superheating light for increasing the exposure efficiency, and each light is individually shielded. The shutter part to perform is described.
日本国特開2007-240714号公報Japanese Unexamined Patent Publication No. 2007-240714 日本国特開2007-94310号公報Japanese Unexamined Patent Publication No. 2007-94310 日本国特開2008-158282号公報Japanese Unexamined Patent Publication No. 2008-158282 日本国特開2005-265985号公報Japanese Unexamined Patent Publication No. 2005-265985 日本国特開2009-182191号公報Japanese Unexamined Patent Publication No. 2009-182191 日本国特開2006-184709号公報Japanese Unexamined Patent Publication No. 2006-184709 日本国特開2008-191252号公報Japanese Unexamined Patent Publication No. 2008-191252 日本国特開2008-242365号公報Japanese Unexamined Patent Publication No. 2008-242365
 ところで、コリメーション半角を設定する際に、特許文献2に記載のインテグレータレンズからコリメーションミラーまでの距離を変更することは、照明光学系の大きさが変わってしまい現実的ではない。また、特許文献3にも、インテグレータレンズの大きさや形状によってコリメーション半角が決まることが記載されているが、コリメーション半角を設定する際には、特許文献2と同様の課題が存在する。
 また、基板に露光転写されるパターンは、高解像度であることが望ましいものの、パターン毎に所望の線幅があり、パターン毎に所望の線幅を与えるようにコリメーション半角を可変にすることが求められる。これらの特許文献1~5では、高解像度を狙って、決まった小さいコリメーション半角となるように構成されており、コリメーション半角を容易に変更できるような構成ではない。特に、特許文献5では、エキシマレーザに光源が限定されており、他の光源を使用できないという課題がある。
By the way, when setting the collimation half-angle, changing the distance from the integrator lens to the collimation mirror described in Patent Document 2 is not realistic because the size of the illumination optical system changes. Patent Document 3 also describes that the collimation half angle is determined by the size and shape of the integrator lens. However, when setting the collimation half angle, the same problem as in Patent Document 2 exists.
Moreover, although it is desirable that the pattern to be transferred onto the substrate has a high resolution, each pattern has a desired line width, and the collimation half angle is required to be variable so as to give the desired line width for each pattern. It is done. These Patent Documents 1 to 5 are configured so as to have a fixed small collimation half angle aiming at high resolution, and are not configured to easily change the collimation half angle. In particular, Patent Document 5 has a problem that the light source is limited to the excimer laser, and other light sources cannot be used.
 また、特許文献6に記載の露光装置は、投影露光装置に関するものであり、また、複数種類のランプを切り替えて利用することについては開示されていない。また、特許文献7に記載の近接露光装置においても、複数種類のランプを選択的に発光することで、ランプの切り替えを行うものであり、切り替え時の制御が難しいという問題がある。また、特許文献8に記載の露光装置では、複数のシャッターについて記載されているのみであり、近接露光に関するものではない。 Further, the exposure apparatus described in Patent Document 6 relates to a projection exposure apparatus, and does not disclose that a plurality of types of lamps are switched and used. The proximity exposure apparatus described in Patent Document 7 also has a problem that it is difficult to control at the time of switching because the lamps are switched by selectively emitting a plurality of types of lamps. Moreover, in the exposure apparatus described in Patent Document 8, only a plurality of shutters are described, and it does not relate to proximity exposure.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、コリメーション半角を可変に設定して、所望の線幅の高解像度なパターンを得る事ができる近接露光装置及び近接露光方法を提供することにある。また、他の目的は、短波長の光を照射する光源部を利用して、高解像度なパターンを得る事ができるとともに、また、他の波長の光を照射する光源部を利用して、スループットを向上することができ、さらに、各光源部の切り替えを適切なタイミングで行うことができる近接露光装置及び近接露光方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object thereof is a proximity exposure apparatus and a proximity exposure method capable of obtaining a high-resolution pattern having a desired line width by variably setting a collimation half angle. Is to provide. Another object is to obtain a high-resolution pattern by using a light source unit that irradiates light of a short wavelength, and by using a light source unit that irradiates light of another wavelength, It is another object of the present invention to provide a proximity exposure apparatus and a proximity exposure method capable of switching each light source unit at an appropriate timing.
 本発明の上記目的は、下記の構成により達成される。
(1) 基板を保持する基板保持部と、
 前記基板と対向するように、マスクを保持するマスク保持部と、
 前記マスクに向けてパターン露光用の光を照射する照明光学系と、
を有し、前記基板と前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの光を前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に転写する近接露光装置であって、
 前記照明光学系は、前記基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構を有することを特徴とする近接露光装置。
(2) 前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
 前記コリメーション半角調整機構は、前記インテグレータの入射面側又は出射面側に設けられ、前記複数のレンズセルのいずれかに入射される光または前記複数のレンズセルのいずれかから出射される光を遮光又は減光する光強度低減部材であることを特徴とする(1)に記載の近接露光装置。
(3) 前記光強度低減部材は、それぞれ独立して移動可能な複数の減光フィルタを有することを特徴とする(2)に記載の近接露光装置。
(4) 前記複数の減光フィルタは、複数種類の減光フィルタからなり、前記減光フィルタの種類以上の複数の減光率にて遮光可能であることを特徴とする(3)に記載の近接露光装置。
(5) 前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
 前記コリメーション半角調整機構は、前記光源部と前記インテグレータとの間に設けられ、前記インテグレータへの入射光径または入射角を変更するレンズであることを特徴とする(1)に記載の近接露光装置。
(6) 前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
 前記コリメーション半角調整機構は、前記インテグレータへの入射光径を変更すべく、前記インテグレータの入射面に対して鉛直方向に移動可能な前記光源部であることを特徴とする(1)に記載の近接露光装置。
(7) 前記照明光学系は、前記光源部と前記インテグレータとの間に設けられ、前記光源部からの光の強度を均一化する光均一化光学部品をさらに備えることを特徴とする(2)から(6)のいずれかに記載の近接露光装置。
(8) 前記マスクのパターンは、前記基板に露光されるパターンの所望の線幅と異なる線幅を有することを特徴とする(1)に記載の近接露光装置。
(9) 前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
 前記コリメーション半角調整機構は、前記インテグレータの出射面側に設けられ、前記複数のレンズセルのいずれかから出射される光を遮光する遮光部材であることを特徴とする(1)に記載の近接露光装置。
(10) 前記光源部からの光は直接、前記インテグレータに入射されることを特徴とする(9)に記載の近接露光装置。
(11) 前記照明光学系は、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部と、該第1の光源部と分光特性の異なる光を照射する第2の光源部と、前記第1及び第2の光源部からの光を遮光可能な複数の遮光部材と、を有し、
 前記照明光学系は、前記複数の遮光部材の開タイミングを制御することによって前記第1及び第2の光源部の前記光を異なるタイミングで照射可能であることを特徴とする(1)に記載の近接露光装置。
(12) 前記複数の遮光部材は、前記第1の光源部からの光を遮光可能な第1の遮光部材と、前記第2の光源部からの光を遮光可能な第2の遮光部材と、を有することを特徴とする(11)に記載の近接露光装置。
(13) 前記第1及び第2の光源部は、それぞれ複数の第1及び第2の光源部からなり、
 前記第1の遮光部材は、前記複数の第1の光源部毎に設けられ、前記複数の第1の光源部からの光をそれぞれ遮光可能な複数の第1の遮光部材からなり、
 前記第2の遮光部材は、前記複数の第2の光源部毎に設けられ、前記複数の第2の光源部からの光をそれぞれ遮光可能な複数の第2の遮光部材からなることを特徴とする(12)に記載の近接露光装置。
(14) 前記複数の第1及び第2の光源部の光がインテグレータレンズの入射面に入射されるように、前記複数の第1及び第2の光源部を支持するカセットをさらに備え、
 前記複数の第1及び第2の遮光部材は、前記カセットに取り付けられることを特徴とする(13)に記載の近接露光装置。
(15) 前記複数の遮光部材は、前記第1の光源部からの光を遮光可能な第1の遮光部材と、前記第1及び第2の光源部からの全ての光を遮光可能な第2の遮光部材と、を有することを特徴とする(11)に記載の近接露光装置。
(16) 前記第1及び第2の光源部は、それぞれ複数の第1及び第2の光源部からなり、
 前記第1の遮光部材は、前記複数の第1の光源部毎に設けられ、前記複数の第1の光源部からの光をそれぞれ遮光可能な複数の第1の遮光部材からなることを特徴とする(15)に記載の近接露光装置。
(17) 前記複数の第1及び第2の光源部の光がインテグレータレンズの入射面に入射されるように、前記複数の第1及び第2の光源部を支持するカセットをさらに備え、
 前記複数の第1の遮光部材は、前記カセットに取り付けられることを特徴とする(16)に記載の近接露光装置。
(18) 基板を保持する基板保持部と、前記基板と対向するように、マスクを保持するマスク保持部と、前記マスクに向けてパターン露光用の光を照射する照明光学系と、を有し、前記照明光学系は、前記基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構を有する近接露光装置の近接露光方法であって、
 前記コリメーション半角調整機構によって基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整する工程と、
 前記基板と前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの光を前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に露光転写する工程と、を備えることを特徴とする近接露光方法。
(19) 前記照明光学系は、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部と、該第1の光源部と分光特性の異なる光を照射する第2の光源部と、前記第1及び第2の光源部からの光を遮光可能な複数の遮光部材と、を有し、
 前記露光転写工程では、前記基板と前記マスクとを所定のギャップに近接させた状態で、前記複数の遮光部材の開タイミングを制御することで前記第1及び第2の光源部からの光を異なるタイミングで前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に転写することを特徴とする(18)に記載の近接露光方法。
The above object of the present invention can be achieved by the following constitution.
(1) a substrate holder for holding the substrate;
A mask holding unit for holding a mask so as to face the substrate;
An illumination optical system that emits light for pattern exposure toward the mask;
In the state where the substrate and the mask are brought close to a predetermined gap, the substrate is irradiated with light from the illumination optical system through the mask, and the pattern of the mask is transferred to the substrate A proximity exposure apparatus,
The proximity exposure apparatus, wherein the illumination optical system includes a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred onto the substrate.
(2) The illumination optical system further includes: a light source unit; and an integrator configured by a fly-eye lens including a plurality of lens cells to equalize the intensity of light from the light source unit.
The collimation half-angle adjustment mechanism is provided on an incident surface side or an emission surface side of the integrator, and blocks light incident on one of the plurality of lens cells or light emitted from any of the plurality of lens cells. Alternatively, the proximity exposure apparatus according to (1), which is a light intensity reducing member that reduces light.
(3) The proximity exposure apparatus according to (2), wherein the light intensity reducing member has a plurality of neutral density filters that can move independently.
(4) The plurality of neutral density filters include a plurality of types of neutral density filters, and can be shielded with a plurality of neutral density ratios equal to or greater than the type of neutral density filters. Proximity exposure device.
(5) The illumination optical system further includes a light source unit and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
The proximity exposure apparatus according to (1), wherein the collimation half-angle adjustment mechanism is a lens that is provided between the light source unit and the integrator and changes a diameter or an incident angle of light incident on the integrator. .
(6) The illumination optical system further includes a light source unit and an integrator that is configured by a fly-eye lens including a plurality of lens cells and uniformizes the intensity of light from the light source unit,
The proximity according to (1), wherein the collimation half-angle adjustment mechanism is the light source unit that is movable in a vertical direction with respect to an incident surface of the integrator so as to change an incident light diameter to the integrator. Exposure device.
(7) The illumination optical system further includes a light uniformizing optical component that is provided between the light source unit and the integrator and uniformizes the intensity of light from the light source unit (2). To the proximity exposure apparatus according to any one of (6).
(8) The proximity exposure apparatus according to (1), wherein the pattern of the mask has a line width different from a desired line width of the pattern exposed on the substrate.
(9) The illumination optical system further includes a light source unit and an integrator that is configured by a fly-eye lens including a plurality of lens cells and uniformizes the intensity of light from the light source unit,
The proximity exposure according to (1), wherein the collimation half-angle adjustment mechanism is a light shielding member that is provided on an exit surface side of the integrator and shields light emitted from any of the plurality of lens cells. apparatus.
(10) The proximity exposure apparatus according to (9), wherein light from the light source unit is directly incident on the integrator.
(11) The illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and a second light source unit that irradiates light having spectral characteristics different from those of the first light source unit. And a plurality of light shielding members capable of shielding light from the first and second light source units,
(1) The illumination optical system can irradiate the light of the first and second light source units at different timings by controlling the opening timing of the plurality of light shielding members. Proximity exposure device.
(12) The plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second light shielding member capable of shielding light from the second light source unit, (9) The proximity exposure apparatus according to (11),
(13) Each of the first and second light source units includes a plurality of first and second light source units,
The first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units,
The second light shielding member is provided for each of the plurality of second light source units, and includes a plurality of second light shielding members capable of shielding light from the plurality of second light source units, respectively. The proximity exposure apparatus according to (12).
(14) The apparatus further includes a cassette that supports the plurality of first and second light source units so that light from the plurality of first and second light source units is incident on an incident surface of the integrator lens.
The proximity exposure apparatus according to (13), wherein the plurality of first and second light shielding members are attached to the cassette.
(15) The plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second capable of shielding all light from the first and second light source units. The proximity exposure apparatus according to (11), further comprising: a light shielding member.
(16) Each of the first and second light source units includes a plurality of first and second light source units,
The first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units, respectively. The proximity exposure apparatus according to (15).
(17) The apparatus further includes a cassette that supports the plurality of first and second light source units so that light from the plurality of first and second light source units is incident on an incident surface of the integrator lens.
The proximity exposure apparatus according to (16), wherein the plurality of first light shielding members are attached to the cassette.
(18) a substrate holding unit that holds the substrate; a mask holding unit that holds the mask so as to face the substrate; and an illumination optical system that emits light for pattern exposure toward the mask. The illumination optical system is a proximity exposure method of a proximity exposure apparatus having a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred to the substrate,
Adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate by the collimation half angle adjustment mechanism;
Irradiating the substrate with light from the illumination optical system through the mask in a state where the substrate and the mask are close to a predetermined gap, and exposing and transferring the pattern of the mask to the substrate; A proximity exposure method comprising:
(19) The illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and a second light source unit that irradiates light having spectral characteristics different from those of the first light source unit. And a plurality of light shielding members capable of shielding light from the first and second light source units,
In the exposure transfer step, the light from the first and second light source units is made different by controlling the opening timing of the plurality of light shielding members in a state where the substrate and the mask are brought close to a predetermined gap. The proximity exposure method according to (18), wherein the substrate is irradiated with light through the mask at a timing, and the pattern of the mask is transferred to the substrate.
 本発明の近接露光装置及び近接露光方法によれば、照明光学系が、基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構を有し、コリメーション半角調整機構によって基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整し、基板とマスクとを所定のギャップに近接させた状態で、照明光学系からの光をマスクを介して前記基板に照射し、マスクのパターンを基板に転写する。これにより、コリメーション半角を可変に設定して、所望の線幅の高解像度なパターンを得る事ができる。 According to the proximity exposure apparatus and the proximity exposure method of the present invention, the illumination optical system has a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate, The collimation half-angle adjustment mechanism adjusts to a predetermined collimation half-angle corresponding to the desired line width of the pattern transferred to the substrate, and masks the light from the illumination optical system with the substrate and mask close to a predetermined gap. And irradiating the substrate through the mask, and transferring the mask pattern onto the substrate. Thereby, the collimation half angle can be set variably, and a high-resolution pattern having a desired line width can be obtained.
 また、本発明の近接露光装置及び近接露光方法によれば、照明光学系は、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部と、該第1の光源部と分光特性の異なる光を照射する第2の光源部と、第1及び第2の光源部からの光を遮光可能な複数の遮光部材と、を有し、照明光学系は、複数の遮光部材の開タイミングを制御することによって第1及び第2の光源部の光を異なるタイミングで照射可能である。これにより、短波長の光を照射する第1の光源部を利用して、高解像度なパターンを得る事ができるとともに、また、第2の光源部を利用して、スループットを向上することができ、さらに、各光源部の切り替えを適切なタイミングで行うことができる。 Further, according to the proximity exposure apparatus and the proximity exposure method of the present invention, the illumination optical system includes a first light source unit that emits light having a peak wavelength at a short wavelength of 350 nm or less, the first light source unit, The illumination optical system includes a second light source unit that emits light having different characteristics and a plurality of light shielding members capable of shielding light from the first and second light source units. By controlling the timing, it is possible to irradiate the light from the first and second light source units at different timings. Accordingly, a high-resolution pattern can be obtained by using the first light source unit that irradiates light having a short wavelength, and the throughput can be improved by using the second light source unit. Furthermore, switching of each light source unit can be performed at an appropriate timing.
本発明の第1実施形態に係る分割逐次近接露光装置を説明するための一部分解斜視図である。It is a partial exploded perspective view for demonstrating the division | segmentation successive proximity exposure apparatus which concerns on 1st Embodiment of this invention. 図1に示す分割逐次近接露光装置の正面図である。It is a front view of the division | segmentation successive proximity exposure apparatus shown in FIG. マスクステージの断面図である。It is sectional drawing of a mask stage. 第1実施形態の照明光学系の模式図である。It is a schematic diagram of the illumination optical system of 1st Embodiment. (a)は、図4のV部拡大図であり、(b)は、インテグレータを細分化した状態を示すV部拡大図である。(A) is the V section enlarged view of FIG. 4, (b) is the V section enlarged view which shows the state which subdivided the integrator. 第1実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 1st Embodiment. 本発明の第2実施形態に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on 2nd Embodiment of this invention. 第2実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 2nd Embodiment. 本発明の第3実施形態に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on 3rd Embodiment of this invention. 第3実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 3rd Embodiment. 本発明の第4実施形態に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on 4th Embodiment of this invention. 第4実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 4th Embodiment. 本発明の第5実施形態に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on 5th Embodiment of this invention. 本実施形態のマスクパターンを備えるマスクと露光転写される基板のパターンの模式図である。It is a schematic diagram of the pattern of the board | substrate with which the mask provided with the mask pattern of this embodiment and exposure transfer are carried out. 本実施形態の他のマスクパターンを備えるマスクと露光転写される基板のパターンの模式図である。It is a schematic diagram of the pattern of the board | substrate which carries out exposure transfer by the mask provided with the other mask pattern of this embodiment. 本実施形態のさらに他のマスクパターンを備えるマスクの模式図である。It is a schematic diagram of a mask provided with the further another mask pattern of this embodiment. 第5実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 5th Embodiment. 第6実施形態の照明光学系の模式図である。It is a schematic diagram of the illumination optical system of 6th Embodiment. 第6実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 6th Embodiment. 本発明の第7実施形態に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on 7th Embodiment of this invention. (a)は、図20のマスクホルダを示す正面図であり、(b)はその上面図であり、(c)はその側面図である。(A) is a front view which shows the mask holder of FIG. 20, (b) is the top view, (c) is the side view. (a)は、図20のマスクホルダの変形例を示す正面図であり、(b)はその上面図であり、(c)はその側面図である。(A) is a front view which shows the modification of the mask holder of FIG. 20, (b) is the top view, (c) is the side view. 本発明の第7実施形態の変形例に係る照明光学系の模式図である。It is a schematic diagram of the illumination optical system which concerns on the modification of 7th Embodiment of this invention. (a)は、図23のマスクホルダを示す正面図であり、(b)はその上面図であり、(c)はその側面図である。(A) is the front view which shows the mask holder of FIG. 23, (b) is the top view, (c) is the side view. 一般的なマスクパターンを有するマスクを用いて露光した場合の露光面での光の強度分布と、理想の光の強度分布を示すグラフである。It is a graph which shows the light intensity distribution in the exposure surface at the time of exposing using the mask which has a general mask pattern, and an ideal light intensity distribution.
 以下、本発明の各実施形態に係る近接露光装置及び近接露光方法を図面に基づいて詳細に説明する。 Hereinafter, a proximity exposure apparatus and a proximity exposure method according to each embodiment of the present invention will be described in detail with reference to the drawings.
(第1実施形態)
 図1及び図2に示すように、一実施形態の分割逐次近接露光装置PEは、マスクMを保持するマスクステージ10と、ガラス基板(以下、単に「基板W」とも称する。)Wを保持する基板ステージ20と、パターン露光用の光を照射する照明光学系70(図4参照。)と、を備えている。
(First embodiment)
As shown in FIGS. 1 and 2, the divided sequential proximity exposure apparatus PE of one embodiment holds a mask stage 10 that holds a mask M and a glass substrate (hereinafter also simply referred to as “substrate W”) W. A substrate stage 20 and an illumination optical system 70 (see FIG. 4) for irradiating light for pattern exposure are provided.
 なお、基板Wは、マスクMに対向配置されており、このマスクMに描かれたマスクパターンを露光転写すべく表面(マスクMの対向面側)にレジストが塗布されている。 The substrate W is disposed so as to face the mask M, and a resist is coated on the surface (opposite surface side of the mask M) in order to expose and transfer the mask pattern drawn on the mask M.
 マスクステージ10は、中央部に矩形形状の開口11aが形成されるマスクステージベース11と、マスクステージベース11の開口11aにX軸,Y軸,θ方向に移動可能に
装着されるマスク保持部であるマスク保持枠12と、マスクステージベース11の上面に設けられ、マスク保持枠12をX軸,Y軸,θ方向に移動させて、マスクMの位置を調整するマスク駆動機構16と、を備える。
The mask stage 10 is a mask stage base 11 in which a rectangular opening 11a is formed at the center, and a mask holding part that is mounted on the opening 11a of the mask stage base 11 so as to be movable in the X axis, Y axis, and θ directions. A mask holding frame 12 and a mask driving mechanism 16 that is provided on the upper surface of the mask stage base 11 and adjusts the position of the mask M by moving the mask holding frame 12 in the X axis, Y axis, and θ directions. .
 マスクステージベース11は、装置ベース50上に立設される支柱51、及び支柱51の上端部に設けられるZ軸移動装置52によりZ軸方向に移動可能に支持され(図2参照。)、基板ステージ20の上方に配置される。 The mask stage base 11 is supported by a column 51 standing on the apparatus base 50 and a Z-axis moving device 52 provided at the upper end of the column 51 so as to be movable in the Z-axis direction (see FIG. 2). It is arranged above the stage 20.
 図3に示すように、マスクステージベース11の開口11aの周縁部の上面には、平面ベアリング13が複数箇所配置されており、マスク保持枠12は、その上端外周縁部に設けられるフランジ12aを平面ベアリング13に載置している。これにより、マスク保持枠12は、マスクステージベース11の開口11aに所定のすき間を介して挿入されるので、このすき間分だけX軸,Y軸,θ方向に移動可能となる。 As shown in FIG. 3, a plurality of planar bearings 13 are arranged on the upper surface of the peripheral edge of the opening 11a of the mask stage base 11, and the mask holding frame 12 has a flange 12a provided at the outer peripheral edge of the upper end. It is mounted on the flat bearing 13. As a result, the mask holding frame 12 is inserted into the opening 11a of the mask stage base 11 through a predetermined gap, so that the mask holding frame 12 can move in the X axis, Y axis, and θ directions by the gap.
 また、マスク保持枠12の下面には、マスクMを保持するチャック部14が間座15を介して固定されている。このチャック部14には、マスクMのマスクパターンが描かれていない周縁部を吸着するための複数の吸引ノズル14aが開設されており、マスクMは、吸引ノズル14aを介して図示しない真空式吸着装置によりチャック部14に着脱自在に保持される。また、チャック部14は、マスク保持枠12と共にマスクステージベース11に対してX軸,Y軸,θ方向に移動可能である。 Further, a chuck portion 14 for holding the mask M is fixed to the lower surface of the mask holding frame 12 via a spacer 15. The chuck portion 14 is provided with a plurality of suction nozzles 14a for sucking the peripheral portion of the mask M on which the mask pattern is not drawn, and the mask M is not shown in the drawing through the suction nozzle 14a. It is detachably held on the chuck portion 14 by the apparatus. The chuck portion 14 can move in the X axis, Y axis, and θ directions with respect to the mask stage base 11 together with the mask holding frame 12.
 マスク駆動機構16は、マスク保持枠12のX軸方向に沿う一辺に取り付けられる2台のY軸方向駆動装置16yと、マスク保持枠12のY軸方向に沿う一辺に取り付けられる1台のX軸方向駆動装置16xと、を備える。 The mask driving mechanism 16 includes two Y-axis direction driving devices 16y attached to one side along the X-axis direction of the mask holding frame 12, and one X-axis attached to one side along the Y-axis direction of the mask holding frame 12. Direction drive device 16x.
 Y軸方向駆動装置16yは、マスクステージベース11上に設置され、Y軸方向に伸縮するロッド16bを有する駆動用アクチュエータ(例えば、電動アクチュエータ等)16aと、ロッド16bの先端にピン支持機構16cを介して連結されるスライダ16dと、マスク保持枠12のX軸方向に沿う辺部に取り付けられ、スライダ16dを移動可能に取り付ける案内レール16eと、を備える。なお、X軸方向駆動装置16xも、Y軸方向駆動装置16yと同様の構成を有する。 The Y-axis direction driving device 16y is installed on the mask stage base 11, and has a driving actuator (for example, an electric actuator) 16a having a rod 16b that expands and contracts in the Y-axis direction, and a pin support mechanism 16c at the tip of the rod 16b. And a guide rail 16e attached to a side portion of the mask holding frame 12 along the X-axis direction and movably attached to the slider 16d. The X-axis direction drive device 16x has the same configuration as the Y-axis direction drive device 16y.
 そして、マスク駆動機構16では、1台のX軸方向駆動装置16xを駆動させることによりマスク保持枠12をX軸方向に移動させ、2台のY軸方向駆動装置16yを同等に駆動させることによりマスク保持枠12をY軸方向に移動させる。また、2台のY軸方向駆動装置16yのどちらか一方を駆動することによりマスク保持枠12をθ方向に移動(Z軸回りの回転)させる。 In the mask drive mechanism 16, the mask holding frame 12 is moved in the X-axis direction by driving one X-axis direction drive device 16x, and the two Y-axis direction drive devices 16y are driven equally. The mask holding frame 12 is moved in the Y axis direction. In addition, the mask holding frame 12 is moved in the θ direction (rotated about the Z axis) by driving one of the two Y-axis direction driving devices 16y.
 さらに、マスクステージベース11の上面には、図1に示すように、マスクMと基板Wとの対向面間のギャップを測定するギャップセンサ17と、チャック部14に保持されるマスクMの取り付け位置を確認するためのアライメントカメラ18と、が設けられる。これらギャップセンサ17及びアライメントカメラ18は、移動機構19を介してX軸,Y軸方向に移動可能に保持され、マスク保持枠12内に配置される。 Further, on the upper surface of the mask stage base 11, as shown in FIG. 1, a gap sensor 17 for measuring a gap between the opposing surfaces of the mask M and the substrate W, and a mounting position of the mask M held by the chuck portion 14. And an alignment camera 18 for confirming the above. The gap sensor 17 and the alignment camera 18 are held so as to be movable in the X-axis and Y-axis directions via the moving mechanism 19 and are arranged in the mask holding frame 12.
 また、マスク保持枠12上には、図1に示すように、マスクステージベース11の開口11aのX軸方向の両端部に、マスクMの両端部を必要に応じて遮蔽するアパーチャブレード38が設けられる。このアパーチャブレード38は、モータ、ボールねじ、及びリニアガイド等からなるアパーチャブレード駆動機構39によりX軸方向に移動可能とされて、マスクMの両端部の遮蔽面積を調整する。なお、アパーチャブレード38は、開口11aのX軸方向の両端部だけでなく、開口11aのY軸方向の両端部に同様に設けられている。 On the mask holding frame 12, as shown in FIG. 1, aperture blades 38 are provided at both ends in the X-axis direction of the opening 11a of the mask stage base 11 to shield both ends of the mask M as necessary. It is done. The aperture blade 38 is movable in the X-axis direction by an aperture blade drive mechanism 39 including a motor, a ball screw, a linear guide, and the like, and adjusts the shielding area at both ends of the mask M. The aperture blades 38 are provided not only at both ends of the opening 11a in the X-axis direction but also at both ends of the opening 11a in the Y-axis direction.
 基板ステージ20は、図1及び図2に示すように、基板Wを保持する基板保持部21と、基板保持部21を装置ベース50に対してX軸,Y軸,Z軸方向に移動する基板駆動機構22と、を備える。基板保持部21は、図示しない真空吸着機構によって基板Wを着脱自在に保持する。基板駆動機構22は、基板保持部21の下方に、Y軸テーブル23、Y軸送り機構24、X軸テーブル25、X軸送り機構26、及びZ-チルト調整機構27と、を備える。 As shown in FIGS. 1 and 2, the substrate stage 20 includes a substrate holding unit 21 that holds the substrate W, and a substrate that moves the substrate holding unit 21 in the X-axis, Y-axis, and Z-axis directions with respect to the apparatus base 50. Drive mechanism 22. The substrate holding unit 21 detachably holds the substrate W by a vacuum suction mechanism (not shown). The substrate drive mechanism 22 includes a Y-axis table 23, a Y-axis feed mechanism 24, an X-axis table 25, an X-axis feed mechanism 26, and a Z-tilt adjustment mechanism 27 below the substrate holder 21.
 Y軸送り機構24は、図2に示すように、リニアガイド28と送り駆動機構29とを備えて構成され、Y軸テーブル23の裏面に取り付けられたスライダ30が、装置ベース50上に延びる2本の案内レール31に転動体(図示せず)を介して跨架されると共に、モータ32とボールねじ装置33とによってY軸テーブル23を案内レール31に沿って駆動する。 As shown in FIG. 2, the Y-axis feed mechanism 24 includes a linear guide 28 and a feed drive mechanism 29, and a slider 30 attached to the back surface of the Y-axis table 23 extends 2 on the apparatus base 50. The Y-axis table 23 is driven along the guide rail 31 by a motor 32 and a ball screw device 33 while straddling the guide rail 31 through a rolling element (not shown).
 なお、X軸送り機構26もY軸送り機構24と同様の構成を有し、X軸テーブル25をY軸テーブル23に対してX方向に駆動する。また、Z-チルト調整機構27は、くさび状の移動体34,35と送り駆動機構36とを組み合わせてなる可動くさび機構をX方向の一端側に1台、他端側に2台配置することで構成される。なお、送り駆動機構29,36は、モータとボールねじ装置とを組み合わせた構成であってもよく、固定子と可動子とを有するリニアモータであってもよい。また、Z-チルト調整機構27の設置数は任意である。 The X-axis feed mechanism 26 has the same configuration as the Y-axis feed mechanism 24, and drives the X-axis table 25 in the X direction with respect to the Y-axis table 23. The Z-tilt adjustment mechanism 27 has one movable wedge mechanism, which is a combination of the wedge-shaped moving bodies 34 and 35 and the feed drive mechanism 36, arranged at one end in the X direction and two at the other end. Consists of. The feed drive mechanisms 29 and 36 may be a combination of a motor and a ball screw device, or may be a linear motor having a stator and a mover. Further, the number of Z-tilt adjustment mechanisms 27 installed is arbitrary.
 これにより、基板駆動機構22は、基板保持部21をX方向及びY方向に送り駆動するとともに、マスクMと基板Wとの対向面間のギャップを微調整するように、基板保持部21をZ軸方向に微動且つチルト調整する。 Thereby, the substrate driving mechanism 22 feeds and drives the substrate holding unit 21 in the X direction and the Y direction, and moves the substrate holding unit 21 to Z so as to finely adjust the gap between the opposing surfaces of the mask M and the substrate W. Fine movement and tilt adjustment in the axial direction.
 基板保持部21のX方向側部とY方向側部にはそれぞれバーミラー61,62が取り付けられ、また、装置ベース50のY方向端部とX方向端部には、計3台のレーザー干渉計63,64,65が設けられている。これにより、レーザー干渉計63,64,65からレーザー光をバーミラー61,62に照射し、バーミラー61,62により反射されたレーザー光を受光して、レーザー光とバーミラー61,62により反射されたレーザー光との干渉を測定して基板ステージ20の位置を検出する。 Bar mirrors 61 and 62 are respectively attached to the X-direction side and Y-direction side of the substrate holding unit 21, and a total of three laser interferometers are installed at the Y-direction end and the X-direction end of the apparatus base 50. 63, 64, 65 are provided. As a result, the laser beams are irradiated from the laser interferometers 63, 64, 65 to the bar mirrors 61, 62, the laser beams reflected by the bar mirrors 61, 62 are received, and the laser beams and the laser beams reflected by the bar mirrors 61, 62 are received. The position of the substrate stage 20 is detected by measuring interference with light.
 図4に示すように、照明光学系70は、発光部としての超高圧水銀ランプ71と、このランプ71から発生された光に指向性をもたせて射出する反射鏡72と、を含む光源部73と、複数のレンズセルからなるフライアイレンズによって構成されている、光源部73からの光の強度を均一化するインテグレータ74と、インテグレータ74の出射面から出射された光路の向きを変える平面鏡75と、コリメーションミラー76と、光源部73とインテグレータ74との間に配置されて照射された光を透過・遮断するように開閉制御する露光制御用シャッター77と、を備える。なお、ランプ71は単一のランプに限らず、複数個のランプを組み合わせたものであってもよい。また、光源部73としては、ランプ71に限らず、レーザー光であってもよい。 As shown in FIG. 4, the illumination optical system 70 includes a light source unit 73 including an ultra-high pressure mercury lamp 71 as a light emitting unit, and a reflecting mirror 72 that emits light generated from the lamp 71 with directivity. And an integrator 74 that is made up of a fly-eye lens composed of a plurality of lens cells and that uniformizes the intensity of light from the light source unit 73, and a plane mirror 75 that changes the direction of the optical path emitted from the exit surface of the integrator 74. A collimation mirror 76, and an exposure control shutter 77 that is disposed between the light source unit 73 and the integrator 74 and controls opening and closing so as to transmit and block the irradiated light. The lamp 71 is not limited to a single lamp, and may be a combination of a plurality of lamps. The light source unit 73 is not limited to the lamp 71 and may be laser light.
 また、本実施形態の照明光学系70は、基板Wに転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構として、インテグレータ74の入射面側に設けられ、所定のコリメーション半角に設定されるように、複数のレンズセルのいずれかに入射される光を遮光する光強度低減部材である遮光部材78と、光源部73とインテグレータ74との間に設けられ、光源部73からの光の強度を均一化する光均一化光学部品としての他のインテグレータ79と、を備える。 The illumination optical system 70 of the present embodiment is provided on the incident surface side of the integrator 74 as a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate W. Provided between the light source unit 73 and the integrator 74, and a light blocking member 78 that is a light intensity reducing member that blocks light incident on any of the plurality of lens cells so as to be set to a predetermined collimation half angle. And another integrator 79 as a light uniformizing optical component that uniformizes the intensity of light from the light source unit 73.
 コリメーション半角は、インテグレータ径とコリメーションミラー76(又は、コリメーションレンズ)によって決まるが、遮光部材78は、インテグレータ74からの出射光が拡散せずに、出射光がより平行光に近くなるように設けられる。具体的に、遮光部材78は、コリメーション半角内の角度の大きい光に寄与するレンズセルの部分を遮光して、所定のコリメーション半角を与えるように移動可能に構成される。なお、コリメーション半角は、0.1~2.0°の間で設定されるようにするのが好ましい。コリメーション半角が0.1°より小さいと、転写パターンに歪みが発生する一方、2.0°より大きいと、転写パターンのぼけ量が大きくなる。ただし、遮光部材78によって遮光すると、照度均一性が悪化するため、その場合には、分割数の多いインテグレータ74を採用することで均一性を向上させている。 The collimation half angle is determined by the diameter of the integrator and the collimation mirror 76 (or collimation lens), but the light shielding member 78 is provided so that the emitted light from the integrator 74 does not diffuse and the emitted light becomes closer to parallel light. . Specifically, the light shielding member 78 is configured to be movable so as to shield a portion of the lens cell that contributes to light having a large angle within the collimation half angle and to give a predetermined collimation half angle. The collimation half angle is preferably set between 0.1 and 2.0 °. When the collimation half angle is less than 0.1 °, the transfer pattern is distorted. On the other hand, when the collimation half angle is greater than 2.0 °, the amount of blur of the transfer pattern increases. However, if the light is blocked by the light blocking member 78, the illuminance uniformity deteriorates. In this case, the uniformity is improved by employing the integrator 74 having a large number of divisions.
 また、遮光部材78としては、鉄、アルミニウム、タングステン、タンタルなどの金属であればよく、耐熱性を考慮するとタンタルが好ましく、可動性を考慮すると、軽いアルミニウムが好ましい。また、遮光部材78は、光源部73からの光がインテグレータ74内に円形形状に入射されるようにレンズセルの外側部分を遮光するようにしてもよいし、四角形形状に入射されるようにレンズセルの外側部分を遮光するようにしてもよい。 Further, the light shielding member 78 may be a metal such as iron, aluminum, tungsten, tantalum, tantalum is preferable in consideration of heat resistance, and light aluminum is preferable in consideration of mobility. Further, the light shielding member 78 may shield the outer portion of the lens cell so that the light from the light source unit 73 enters the integrator 74 in a circular shape, or the lens so that the light is incident in a square shape. The outer portion of the cell may be shielded from light.
 このような露光装置PEにおいて、図4に示すように、基板ステージ20上に載置された基板Wと、マスク保持枠12に保持された、マスクパターンを有するマスクMとが、これらの対向面間のギャップを例えば100~300μm程度の隙間に調整されて近接対向配置される。そして、光源部73からの露光用の光が、他のインテグレータ79に入射され、さらに、遮光部材78を可動して部分的に遮光されたインテグレータ74で集光され、平面鏡75およびコリメーションミラー76で反射されて所定のコリメーション角を持った平面光とされてマスクMに入射する。そして、マスクMを透過した露光用の光は、基板Wの表面に塗布されたポジ型レジストを感光させてマスクMのマスクパターンが基板Wに露光転写される。 In such an exposure apparatus PE, as shown in FIG. 4, the substrate W placed on the substrate stage 20 and the mask M having a mask pattern held on the mask holding frame 12 are opposed to each other. The gap between them is adjusted to a gap of about 100 to 300 μm, for example, and is arranged close to each other. Then, light for exposure from the light source unit 73 is incident on another integrator 79, and further collected by an integrator 74 that is partially shielded by moving a light shielding member 78, and is collected by a plane mirror 75 and a collimation mirror 76. The light is reflected to be a plane light having a predetermined collimation angle and enters the mask M. Then, the exposure light transmitted through the mask M exposes the positive resist applied on the surface of the substrate W, and the mask pattern of the mask M is exposed and transferred to the substrate W.
 従って、遮光部材78の移動によってインテグレータ74に入射される光を部分的に遮光することで、所定のコリメーション半角を与えることができるので、露光すべき対象となる基板Wに転写されるパターンの所望の線幅に応じてコリメーション半角を可変に設定することができ、所望の線幅の高解像度なパターンを得る事ができる。 Accordingly, a predetermined collimation half angle can be given by partially blocking the light incident on the integrator 74 by the movement of the light blocking member 78, so that a desired pattern to be transferred to the substrate W to be exposed can be obtained. The collimation half angle can be variably set according to the line width, and a high-resolution pattern having a desired line width can be obtained.
 また、光源部73とインテグレータ74との間に設けられ、光源部73からの光の強度を均一化する他のインテグレータ79をさらに備えるので、コリメーション半角を小さくすることで悪化する露光面内での照度分布を改善することができる。
 図5(a)(b)に示すように、インテグレータ74,79は、細分化することによって光の強度を均一化することができる。このため、インテグレータ74,79は、照度分布を考慮して、分割数の異なるものを選択することができる。
Further, since it is further provided with another integrator 79 that is provided between the light source unit 73 and the integrator 74 and uniformizes the intensity of light from the light source unit 73, it can be deteriorated by reducing the collimation half angle. The illuminance distribution can be improved.
As shown in FIGS. 5A and 5B, the integrators 74 and 79 can make the light intensity uniform by subdividing. Therefore, the integrators 74 and 79 can select different division numbers in consideration of the illuminance distribution.
 なお、光強度低減部材としては、遮光部材78の代わりに、複数のレンズセルのいずれかに入射される光を減光する減光フィルタであってもよい。また、遮光部材78や減光フィルタは、インテグレータ74の入射面側に設けられているが、インテグレータ74の出射面側に設けて、パターン露光用の光のコリメーション半角が0.1~2.0°の間で、光強度は入射角0°近傍が最も高くなるように、複数のレンズセルのいずれかから出射される光を遮光又は減光するようにしてもよい。 It should be noted that the light intensity reducing member may be a neutral density filter that attenuates light incident on any of the plurality of lens cells instead of the light shielding member 78. The light blocking member 78 and the neutral density filter are provided on the incident surface side of the integrator 74, but are provided on the output surface side of the integrator 74 so that the collimation half angle of the light for pattern exposure is 0.1 to 2.0. The light emitted from any one of the plurality of lens cells may be blocked or dimmed so that the light intensity is highest in the vicinity of the incident angle of 0 °.
 また、光均一化光学部品としては、他のインテグレータ79を用いることが、複数の光源部を有する場合にも平行光を得る事ができて好ましいが、他のインテグレータ79に限らず、ロッド状の内面反射型の光学素子であるロッドインテグレーターやミラーで構成されるカレイドスコープ、拡散板などであってもよい。 Further, as the light homogenizing optical component, it is preferable to use another integrator 79 because it is possible to obtain parallel light even when a plurality of light source units are provided. A kaleidoscope composed of a rod integrator or mirror that is an internal reflection type optical element, a diffusion plate, or the like may also be used.
 さらに、インテグレータ74や他のインテグレータ79の位置関係は任意であり、例えば、他のインテグレータ79がインテグレータ74の下流側に配置されてもよいし、また、インテグレータ74と他のインテグレータ79の少なくとも一方が、露光制御用シャッター77の上流側に配置されてもよい。 Further, the positional relationship between the integrator 74 and the other integrator 79 is arbitrary. For example, the other integrator 79 may be arranged on the downstream side of the integrator 74, or at least one of the integrator 74 and the other integrator 79 is Further, it may be arranged upstream of the exposure control shutter 77.
 例えば、図6に示すように、本実施形態の変形例に係る近接露光装置としては、遮光部材78が、インテグレータ74の出射面側に設けられ、光均一化光学部品を設けない構成であってもよい。 For example, as shown in FIG. 6, the proximity exposure apparatus according to the modification of the present embodiment has a configuration in which a light shielding member 78 is provided on the exit surface side of the integrator 74 and no light uniformizing optical component is provided. Also good.
(第2実施形態)
 次に、本発明の第2実施形態に係る近接露光装置及び近接露光方法について、図7を参照して説明する。なお、本実施形態では、照明光学系70aにおいて、コリメーション半角調整機構である光強度低減部材として、複数枚の減光フィルタ78a,78bを用いる点で、第1実施形態の近接露光装置及び近接露光方法と異なる。
(Second Embodiment)
Next, a proximity exposure apparatus and a proximity exposure method according to the second embodiment of the present invention will be described with reference to FIG. In the present embodiment, in the illumination optical system 70a, the proximity exposure apparatus and the proximity exposure according to the first embodiment are used in that a plurality of neutral density filters 78a and 78b are used as the light intensity reducing member that is a collimation half angle adjustment mechanism. Different from the method.
 具体的に、照明光学系70aは、光強度低減部材として、第1の減光率を有する移動可能な第1の減光フィルタ78aと、第2の減光率を有する移動可能な第2の減光フィルタ78bと、を有する。このため、コリメーション半角内の角度の大きい光に寄与するインテグレータ74のレンズセルの部分を第1の減光フィルタ78aと第2の減光フィルタ78bの少なくとも一方を移動させて減光し、0.1~2.0°の間で、光強度は入射角0°近傍が最も高くなるように可変に設定し、所望の線幅の高解像度なパターンを得る事ができる。 Specifically, the illumination optical system 70a includes a movable first neutral density filter 78a having a first attenuation ratio and a movable second density having a second attenuation ratio as a light intensity reducing member. And a neutral density filter 78b. For this reason, the lens cell portion of the integrator 74 that contributes to light with a large angle within the collimation half angle is dimmed by moving at least one of the first neutral density filter 78a and the second neutral density filter 78b. Between 1 and 2.0 °, the light intensity can be variably set so that the vicinity of the incident angle of 0 ° is the highest, and a high-resolution pattern having a desired line width can be obtained.
 なお、第1の減光フィルタ78aの第1の減光率と第2の減光フィルタ78bの第2の減光率が異なる場合には、単独、または共同して減光することで、3つの減光率でレンズセルに入射される光を減光することができる。また、第1の減光フィルタ78aの第1の減光率と第2の減光フィルタ78bの第2の減光率の合計が100%以上である場合、2つの減光フィルタ78a,78bの両方を用いてレンズセルの部分を遮光するようにしてもよい。
 また、光強度低減部材は、それぞれ独立に移動可能な複数の減光フィルタを有する構成であればよく、本実施形態のような2つに限定されるものでなく、3つ以上であってもよい。従って、複数の減光フィルタを、複数種類の減光フィルタで構成し、選択的に使用することで、減光フィルタの種類以上の複数の減光率にて遮光することができる。
When the first attenuation rate of the first neutral density filter 78a and the second attenuation factor of the second neutral density filter 78b are different, the light is attenuated alone or jointly to reduce The light incident on the lens cell can be dimmed with two dimming rates. Further, when the sum of the first attenuation rate of the first attenuation filter 78a and the second attenuation rate of the second attenuation filter 78b is 100% or more, the two attenuation filters 78a and 78b You may make it light-shield the part of a lens cell using both.
Further, the light intensity reducing member only needs to have a plurality of neutral density filters that can move independently of each other, and is not limited to two as in the present embodiment, and may be three or more. Good. Therefore, a plurality of neutral density filters are constituted by a plurality of types of neutral density filters and selectively used, so that light can be shielded with a plurality of neutral density ratios that are equal to or greater than the types of neutral density filters.
 また、図8に示すように、本実施形態の変形例に係る近接露光装置としては、第1及び第2の遮光部材78a,78bが、インテグレータ74の出射面側に設けられ、光均一化光学部品を設けない構成であってもよい。 Further, as shown in FIG. 8, in the proximity exposure apparatus according to the modification of the present embodiment, first and second light shielding members 78a and 78b are provided on the exit surface side of the integrator 74, and light uniformizing optics. The structure which does not provide components may be sufficient.
(第3実施形態)
 次に、本発明の第3実施形態に係る近接露光装置及び近接露光方法について、図9を参照して説明する。本実施形態の照明光学系70bにおいては、第1及び第2実施形態のような光強度低減部材を設ける代わりに、コリメーション半角調整機構として、光源部73とインテグレータ74との間に、インテグレータ74の入射面に対して鉛直方向に移動可能なレンズ80を設けている。本実施形態を第1及び第2実施形態と組み合わせて用いる事で、照度低下を抑え目的を達成する事も可能となる。さらに、図9ではレンズ80を両凸レンズにしているが、凸レンズと凹レンズを組合せる事で、平行光の照射領域を変更する事が可能となる。
(Third embodiment)
Next, a proximity exposure apparatus and a proximity exposure method according to a third embodiment of the present invention will be described with reference to FIG. In the illumination optical system 70b of this embodiment, instead of providing the light intensity reducing member as in the first and second embodiments, as a collimation half-angle adjustment mechanism, the integrator 74 is provided between the light source unit 73 and the integrator 74. A lens 80 that is movable in the vertical direction with respect to the incident surface is provided. By using this embodiment in combination with the first and second embodiments, it is possible to suppress the decrease in illuminance and achieve the object. Furthermore, although the lens 80 is a biconvex lens in FIG. 9, it is possible to change the irradiation region of parallel light by combining the convex lens and the concave lens.
 なお、本実施形態のレンズ80は、第1実施形態の光強度低減部材、または、第2実施形態の光強度低減部材と組み合わせて適用可能であり、或いは、第1実施形態の光強度低減部材と第2実施形態の光強度低減部材の両方と組み合わせて適用することも可能である。 The lens 80 of the present embodiment can be applied in combination with the light intensity reducing member of the first embodiment or the light intensity reducing member of the second embodiment, or the light intensity reducing member of the first embodiment. It is also possible to apply in combination with both the light intensity reducing member of the second embodiment.
 従って、本実施形態においては、レンズ80を移動させて、インテグレータ74への入射光径または入射角を変更して、パターン露光用の光のコリメーション半角の外側の光の強度を弱め、0.1~2.0°の間で、光強度は入射角0°近傍が最も高くなるようにすることで、所望の線幅の高解像度なパターンを得る事ができる。 Therefore, in the present embodiment, the lens 80 is moved to change the incident light diameter or the incident angle to the integrator 74 to weaken the intensity of light outside the collimation half angle of the light for pattern exposure. A high-resolution pattern with a desired line width can be obtained by setting the light intensity to be highest in the vicinity of an incident angle of 0 ° between ˜2.0 °.
 また、図9に示す実施形態では、レンズ80は、光源部73と、光均一化光学部品である他のインテグレータ79との間に配置されているが、図10に示す本実施形態の変形例に係る近接露光装置のように、光均一化光学部品を設けず、レンズ80は、光源部73とインテグレータ74との間に、配置されてもよい。 In the embodiment shown in FIG. 9, the lens 80 is disposed between the light source unit 73 and another integrator 79 that is a light uniformizing optical component, but a modification of the present embodiment shown in FIG. 10. The lens 80 may be arranged between the light source unit 73 and the integrator 74 without providing the light uniformizing optical component as in the proximity exposure apparatus according to the above.
(第4実施形態)
 次に、本発明の第4実施形態に係る近接露光装置及び近接露光方法について、図11を参照して説明する。なお、本実施形態の照明光学系70cにおいては、上述した光強度低減部材やレンズを設ける代わりに、コリメーション半角調整機構として、光源部73をインテグレータ74の入射面に対して鉛直方向に移動可能に設けている。
(Fourth embodiment)
Next, a proximity exposure apparatus and a proximity exposure method according to the fourth embodiment of the present invention will be described with reference to FIG. In the illumination optical system 70c of the present embodiment, the light source unit 73 can be moved in the vertical direction with respect to the incident surface of the integrator 74 as a collimation half-angle adjustment mechanism instead of providing the above-described light intensity reducing member and lens. Provided.
 従って、本実施形態においては、光源部73を移動させて、インテグレータ74への入射光径を変更して、パターン露光用の光のコリメーション半角の外側の光の強度を弱め、0.1~2.0°の間で、光強度は入射角0°近傍が最も高くなるようにすることで、所望の線幅の高解像度なパターンを得る事ができる。 Therefore, in the present embodiment, the light source unit 73 is moved to change the incident light diameter to the integrator 74, thereby reducing the intensity of light outside the collimation half angle of the light for pattern exposure. A high-resolution pattern with a desired line width can be obtained by making the light intensity the highest in the vicinity of an incident angle of 0 ° between 0.0 °.
 なお、図12に示すように、本実施形態の変形例に係る近接露光装置においても、光均一化光学部品を設けない構成であってもよい。 Note that, as shown in FIG. 12, the proximity exposure apparatus according to the modification of the present embodiment may have a configuration in which the light uniformizing optical component is not provided.
(第5実施形態)
 次に、本発明の第5実施形態に係る近接露光装置及び近接露光方法について、図13~図15を参照して説明する。図13に示すように、本実施形態の照明光学系70dにおいては、第1実施形態の照明光学系70に、互いに異なる各波長λ[nm]をそれぞれ透過する複数のバンドパスフィルタ90a,90bを備えたフィルタ切替機構91をさらに備える。
(Fifth embodiment)
Next, a proximity exposure apparatus and a proximity exposure method according to a fifth embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 13, in the illumination optical system 70d of the present embodiment, the illumination optical system 70 of the first embodiment includes a plurality of bandpass filters 90a and 90b that respectively transmit different wavelengths λ [nm]. The filter switching mechanism 91 provided is further provided.
 また、本実施形態で使用されるマスクMは、透光性基板からなり、図14に示すように、ライン状の主開口を有する主パターン部(光透過部)81と、主パターン部81の側方に透過性でライン状の補助パターン部(光透過部)83とを備え、主パターン部81と補助パターン部83とが、位相シフト膜84によって仕切られた位相シフトマスクである。なお、図14中、補助パターン部83の外側部分は、光を遮光する遮光膜(クロム膜)82である。 Further, the mask M used in the present embodiment is made of a translucent substrate, and as shown in FIG. 14, a main pattern portion (light transmission portion) 81 having a line-shaped main opening, and a main pattern portion 81. The phase shift mask includes a side-transparent line-shaped auxiliary pattern portion (light transmission portion) 83, and the main pattern portion 81 and the auxiliary pattern portion 83 are partitioned by a phase shift film 84. In FIG. 14, the outer portion of the auxiliary pattern portion 83 is a light shielding film (chrome film) 82 that shields light.
 補助パターン部83は、現像処理後によって解像されない開口であり、主パターン部81の中心Oに対して両側側方に対称に配置される。なお、補助パターン部83は、主パターン部81の中心Oに対して両側側方にそれぞれ複数対称に配置されてもよい。 The auxiliary pattern portion 83 is an opening that is not resolved after the development processing, and is arranged symmetrically on both sides with respect to the center O of the main pattern portion 81. A plurality of auxiliary pattern portions 83 may be arranged symmetrically on both sides with respect to the center O of the main pattern portion 81.
 また、位相シフト膜84は、通過する光の位相を180°ずらすことにより、光の干渉で劣化していた解像度を改善することができる。また、位相シフト膜84の厚さd[nm]は、基板Wに照射される光の波長をλ[nm]、位相シフト膜84の屈折率をnとしたとき、d=λ/2(n-1)で与えられるようにすることで、180°の位相差が与えられる。位相シフト膜84は、位相シフト量に応じて干渉度合いを変更することも可能である。さらに、位相シフト膜84での透過量を変えても干渉度合いを変える事が可能である。 Also, the phase shift film 84 can improve the resolution that has deteriorated due to light interference by shifting the phase of the light passing therethrough by 180 °. The thickness d [nm] of the phase shift film 84 is such that d = λ / 2 (n) where λ [nm] is the wavelength of light irradiated to the substrate W and n is the refractive index of the phase shift film 84. The phase difference of 180 ° is given by giving it by -1). The phase shift film 84 can also change the degree of interference according to the phase shift amount. Further, the degree of interference can be changed even if the amount of transmission through the phase shift film 84 is changed.
 主パターン部81の線幅Aは、15μm以下であり、基板Wの表面に露光転写されるパターンの線幅よりも広く設定されている。また、位相シフト膜84の幅Bは、主パターン部81の線幅Aの2/3以下に設定され、補助パターン部83の線幅Cは、位相シフト膜の幅Bの2/3以下に設定される。なお、マスクパターンPの主パターン部81と補助パターン部83の各線幅A,C及び位相シフト膜84の幅Bは、基板Wに照射される光の強度を計算によって求め、各マスクパターンによって得られるライン幅方向の強度分布をシミュレーションによって計算し、現像処理後に得られる基板上のパターンの線幅や細線解像に必要なコントラストが得られているかどうかによって決定される。 The line width A of the main pattern portion 81 is 15 μm or less, and is set wider than the line width of the pattern that is exposed and transferred onto the surface of the substrate W. The width B of the phase shift film 84 is set to 2/3 or less of the line width A of the main pattern portion 81, and the line width C of the auxiliary pattern portion 83 is set to 2/3 or less of the width B of the phase shift film. Is set. Note that the line widths A and C of the main pattern portion 81 and the auxiliary pattern portion 83 of the mask pattern P and the width B of the phase shift film 84 are obtained by calculating the intensity of light irradiated to the substrate W and obtained by each mask pattern. The intensity distribution in the line width direction to be obtained is calculated by simulation, and is determined by whether the line width of the pattern on the substrate obtained after the development processing or the contrast necessary for fine line resolution is obtained.
 さらに、位相シフト膜84を有するマスクMは、位相シフトによる解像度を向上させるため、膜厚dとの関係で、透過させる光の波長λが予め決まっていることから、基板Wの感光特性に応じた波長と対応付けられている。また、照明光学系70dでは、切換え可能に配置された複数のバンドパスフィルタ90a,90bのうちから、基板Wの感光特性に応じた波長λを透過するバンドパスフィルタ90a,90bを選択する。そして、バンドパスフィルタ90a,90bを透過した波長の光をマスクMを介して照射し、マスクMのマスクパターンによって主パターン部81に対向する基板Wの表面にライン状のパターン85が形成される。 Further, the mask M having the phase shift film 84 has a predetermined wavelength λ of light to be transmitted in relation to the film thickness d in order to improve the resolution due to the phase shift. Are associated with different wavelengths. In the illumination optical system 70d, the band- pass filters 90a and 90b that transmit the wavelength λ according to the photosensitive characteristics of the substrate W are selected from the plurality of band- pass filters 90a and 90b that can be switched. Then, light having a wavelength transmitted through the bandpass filters 90a and 90b is irradiated through the mask M, and a line-shaped pattern 85 is formed on the surface of the substrate W facing the main pattern portion 81 by the mask pattern of the mask M. .
 また、マスクMは、マスクパターンPが形成されていないマスクMの周縁部がチャック部14に吸着されて保持されるので、マスクMの自重によって撓みが生じ、マスクMと基板Wとの対向面間のギャップgは、マスクMの中心付近で小さく、周縁部で大きくなる傾向があり、マスクMの各位置でのギャップgが変化することで得られる強度分布が異なる。 Further, since the peripheral portion of the mask M on which the mask pattern P is not formed is attracted and held by the chuck portion 14, the mask M is bent by its own weight, and the opposing surface of the mask M and the substrate W The gap g between them tends to be small near the center of the mask M, and tends to be large at the periphery, and the intensity distribution obtained by changing the gap g at each position of the mask M is different.
 このため、現像処理後にレジストがパターンを形成するために必要な露光量(エネルギー量)は、ギャップgが異なる露光領域における各位置で基板上に形成されるパターンの線幅が略一定となるように決定される。従って、エネルギー量は、基板Wに塗布されたレジストの感度、及び基板WとマスクMとの対向面間とのギャップgとを考慮して、基板W上に形成されるパターンの線幅が所望の幅となるように決定される。 For this reason, the exposure amount (energy amount) necessary for the resist to form a pattern after the development processing is such that the line width of the pattern formed on the substrate at each position in the exposure region where the gap g is different is substantially constant. To be determined. Accordingly, the amount of energy is preferably a line width of a pattern formed on the substrate W in consideration of the sensitivity of the resist applied to the substrate W and the gap g between the opposing surfaces of the substrate W and the mask M. It is determined to be the width of.
 なお、マスクMのマスクパターンPは、上述した形状に限定されるものでなく、主パターン部が、位相シフト膜又は遮光膜を介して互いに平行な2本の主開口を備え、補助パターン部が、2本の主開口の外側と内側の少なくとも片側に配置されてもよい。例えば、図15に示すように、主パターン部81は、位相シフト膜84を介して互いに平行な2本の主開口81a,81aを備え、補助パターン部83は、位相シフト膜84を介して2本の主開口81a,81aの外側に配置される。また、補助パターン部83は、2本の主開口81a,81a間の中心Oに対して対称に配置されている。
 また、本実施形態のマスクは、位相シフト膜を有する構成としているが、これに限定されるものではない。例えば、細線解像コントラストが得られるならば、図16に示すように、マスクパターンPは、位相シフト膜を用いずに、遮光膜82によって仕切られた主パターン部81と補助パターン部83を有する構成であってもよい。
The mask pattern P of the mask M is not limited to the shape described above, and the main pattern portion includes two main openings parallel to each other via the phase shift film or the light shielding film, and the auxiliary pattern portion is You may arrange | position at least one side of the outer side and inner side of two main openings. For example, as shown in FIG. 15, the main pattern portion 81 includes two main openings 81 a and 81 a that are parallel to each other via the phase shift film 84, and the auxiliary pattern portion 83 is 2 through the phase shift film 84. The main openings 81a and 81a are arranged outside the book. Further, the auxiliary pattern portion 83 is arranged symmetrically with respect to the center O between the two main openings 81a and 81a.
Further, the mask of the present embodiment is configured to have a phase shift film, but is not limited to this. For example, if a fine line resolution contrast is obtained, the mask pattern P has a main pattern portion 81 and an auxiliary pattern portion 83 separated by a light shielding film 82 without using a phase shift film, as shown in FIG. It may be a configuration.
 従って、本実施形態のような、基板Wに転写されるパターンの所望の線幅と異なる線幅を有するパターンのマスクを、コリメーション半角調整機構を備えた照明光学系70dと共に使用することでより高解像度のパターンを形成することができる。
 なお、本実施形態のマスクは、第2~第4実施形態のコリメーション半角調整機構にも適用可能である。
Accordingly, the mask of a pattern having a line width different from the desired line width of the pattern transferred to the substrate W as in the present embodiment is used in combination with the illumination optical system 70d provided with the collimation half-angle adjustment mechanism. A resolution pattern can be formed.
Note that the mask of the present embodiment can also be applied to the collimation half-angle adjustment mechanism of the second to fourth embodiments.
 また、図17に示すように、本実施形態の変形例に係る近接露光装置としては、遮光部材78が、インテグレータ74の出射面側に設けられ、光均一化光学部品を設けない構成であってもよい。 Also, as shown in FIG. 17, the proximity exposure apparatus according to the modification of the present embodiment has a configuration in which a light shielding member 78 is provided on the exit surface side of the integrator 74 and no light uniformizing optical component is provided. Also good.
(第6実施形態) (Sixth embodiment)
 図18に示すように、第6実施形態の照明光学系70eは、発光部としての超高圧水銀ランプ71a,71bと、これらランプ71a,71bから発生された光に指向性をもたせて射出する反射鏡72a,72bと、それぞれを含む第1及び第2の光源部73a,73bと、複数のレンズセルからなるフライアイレンズによって構成され、光源部73a,73bからの光の強度を均一化するインテグレータ74と、インテグレータ74の出射面から出射された光路の向きを変える平面鏡75と、コリメーションミラー76と、第1及び第2の光源部73a,73bの前方でそれぞれ配置されて、照射された光を通過・遮断するように開閉制御する機械式の第1及び第2の遮光部材(複数の遮光部材)177,178と、を備える。 As shown in FIG. 18, the illumination optical system 70e according to the sixth embodiment includes ultrahigh pressure mercury lamps 71a and 71b as light emitting units and reflections emitted with directivity to the light generated from these lamps 71a and 71b. An integrator configured by mirrors 72a and 72b, first and second light source units 73a and 73b including the mirrors 72a and 72b, and a fly-eye lens including a plurality of lens cells, and uniformizing the intensity of light from the light source units 73a and 73b 74, a plane mirror 75 that changes the direction of the light path emitted from the exit surface of the integrator 74, a collimation mirror 76, and the first and second light source units 73a and 73b, respectively, are arranged in front of each other, Mechanical first and second light shielding members (a plurality of light shielding members) 177 and 178 that are controlled to open and close so as to pass and block.
 第1の光源部73aは、350nm以下、具体的には、j線(313nm)の短波長においてピーク波長を有する光を照射し、第2の光源部73bは、350nm以上、例えば、i線(365nm)の波長においてピーク波長を有する光を照射する。なお、各光源部73a,73bの発光部71a,71bとしては、超高圧水銀ランプに限らず、レーザー光であってもよい。また、第1の光源部73aからの光を遮光可能な第1の遮光部材177と、第2の光源部73bからの光を遮光可能な第2の遮光部材178は、各光源部73a,73bからの光を通過・遮断可能な機械式のものであればよく、各光源部73a,73bの波長の種類、照射時間、照射方向に応じて、開閉角度や、開閉間隔を変えることができる。また、各遮光部材177,178の機械式に開閉する機構も任意であり、回転式やスライド式であってもよい。 The first light source unit 73a emits light having a peak wavelength at 350 nm or less, specifically, a short wavelength of j-line (313 nm), and the second light source unit 73b is 350 nm or more, for example, i-line ( Irradiating light having a peak wavelength at a wavelength of 365 nm). In addition, as light emission part 71a, 71b of each light source part 73a, 73b, not only an ultrahigh pressure mercury lamp but a laser beam may be sufficient. The first light shielding member 177 capable of shielding light from the first light source unit 73a and the second light shielding member 178 capable of shielding light from the second light source unit 73b include the light source units 73a and 73b. As long as it is a mechanical type that can pass and block light from the light source, the open / close angle and open / close interval can be changed according to the type of wavelength, the irradiation time, and the irradiation direction of the light source units 73a and 73b. Moreover, the mechanism which opens and closes mechanically of each light shielding member 177 and 178 is also arbitrary, and may be a rotary type or a slide type.
 このような露光装置PEにおいて、図18に示すように、基板ステージ20上に載置された基板Wと、マスク保持枠12に保持された、マスクパターンを有するマスクMとが、これらの対向面間を所定のギャップ、例えば100~150μm程度に調整して近接対向配置される。そして、まず、第1の遮光部材177を閉制御とし、第2の遮光部材178を開制御して、第2の光源部73bからの光が、インテグレータ74に入射され、平面鏡75およびコリメーションミラー76で反射されてマスクMに入射する。また、所定の時間が経過した後、第1の遮光部材177も開制御することで、第1の光源部73aから短波長の光が、インテグレータ74に入射され、平面鏡75およびコリメーションミラー76で反射されてマスクMに入射する。そして、マスクMを透過した第1の光源部73a及び第2の光源部73bの各光は、基板Wの表面に塗布されたポジ型レジストを感光させてマスクMのマスクパターンが基板Wに露光転写される。この際、第1の光源部73aからの短波長の光によって細線化されたパターンを転写することができると共に、第2の光源部73bからの光によって、基板Wとの接触部分のレジストも感光することができる。 In such an exposure apparatus PE, as shown in FIG. 18, the substrate W placed on the substrate stage 20 and the mask M having a mask pattern held on the mask holding frame 12 are opposed to each other. The gaps are adjusted to a predetermined gap, for example, about 100 to 150 μm, and are arranged close to each other. First, the first light shielding member 177 is closed and the second light shielding member 178 is opened, and the light from the second light source unit 73 b is incident on the integrator 74, and the plane mirror 75 and the collimation mirror 76. And is incident on the mask M. In addition, after the predetermined time has elapsed, the first light blocking member 177 is also controlled to be opened, so that light having a short wavelength is incident on the integrator 74 from the first light source unit 73a and reflected by the plane mirror 75 and the collimation mirror 76. Is incident on the mask M. Then, each light of the first light source unit 73a and the second light source unit 73b that has passed through the mask M exposes the positive resist applied on the surface of the substrate W so that the mask pattern of the mask M is exposed to the substrate W. Transcribed. At this time, the thinned pattern can be transferred by the short-wavelength light from the first light source unit 73a, and the resist in the contact portion with the substrate W is also exposed by the light from the second light source unit 73b. can do.
 以上説明したように、本実施形態の近接露光装置及び近接露光方法によれば、照明光学系70eは、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部73aと、第1の光源部73aと分光特性の異なる光を照射する第2の光源部73bと、第1及び第2の光源部73a,73bからの光を遮光可能な第1及び第2の遮光部材177,178と、を有する。そして、基板WとマスクMとを所定のギャップに近接させた状態で、第1及び第2の遮光部材177,178の開タイミングを制御することで第1及び第2の光源部73a,73bからの光を異なるタイミングでマスクMを介して基板Wに照射し、マスクMのパターンを基板Wに転写する。従って、高解像度なパターンを得る事ができるとともに、スループットを向上することができ、さらに、各光源部73a,73bの切り替えを適切なタイミングで行うことができる。 As described above, according to the proximity exposure apparatus and the proximity exposure method of the present embodiment, the illumination optical system 70e includes the first light source unit 73a that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, and the first light source unit 73a. A second light source unit 73b that emits light having spectral characteristics different from those of the first light source unit 73a, and first and second light shielding members 177 that can block light from the first and second light source units 73a and 73b. 178. Then, in a state where the substrate W and the mask M are brought close to a predetermined gap, the opening timings of the first and second light shielding members 177 and 178 are controlled to control the first and second light source units 73a and 73b. Is irradiated onto the substrate W through the mask M at different timings, and the pattern of the mask M is transferred to the substrate W. Therefore, a high-resolution pattern can be obtained, the throughput can be improved, and the light sources 73a and 73b can be switched at an appropriate timing.
 図19は、本実施形態の変形例に係る照明光学系の模式図である。この照明光学系70fでは、複数の遮光部材が、第1の光源部73aからの光を遮光可能な第1の遮光部材177と、第1及び第2の光源部73a,73bからの全ての光を遮光可能な第2の遮光部材179と、を有する。第2の遮光部材179は、図19のように、インテグレータ74の入射面側に設けられてもよいし、インテグレータ74の出射面側に設けられてもよい。このような2つの遮光部材177,179を有する照明光学系70fの場合にも、上記実施形態の遮光部材178と同様に、遮光部材179を制御することで同様の効果を奏することができる。
 また、このような第2の遮光部材179は、1つの光源部を有する近接露光装置に設けられている既存の遮光部材をそのまま使用することができ、装置コストを低減することができる。
FIG. 19 is a schematic diagram of an illumination optical system according to a modification of the present embodiment. In the illumination optical system 70f, the plurality of light shielding members includes a first light shielding member 177 capable of shielding light from the first light source unit 73a and all light from the first and second light source units 73a and 73b. A second light shielding member 179 capable of shielding the light. As shown in FIG. 19, the second light shielding member 179 may be provided on the incident surface side of the integrator 74, or may be provided on the output surface side of the integrator 74. In the case of the illumination optical system 70f having such two light shielding members 177 and 179, the same effect can be obtained by controlling the light shielding member 179, similarly to the light shielding member 178 of the above embodiment.
In addition, the second light shielding member 179 can use an existing light shielding member provided in the proximity exposure apparatus having one light source unit as it is, and can reduce the apparatus cost.
(第7実施形態)
 次に、本発明の第7実施形態に係る近接露光装置及び近接露光方法について、図20及び図21を参照して説明する。なお、本実施形態では、照明光学系70gにおいて、第1及び第2の光源部と複数の遮光部材の構成において、第6実施形態の近接露光装置及び近接露光方法と異なる。
(Seventh embodiment)
Next, a proximity exposure apparatus and a proximity exposure method according to the seventh embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the illumination optical system 70g differs from the proximity exposure apparatus and proximity exposure method of the sixth embodiment in the configuration of the first and second light source units and the plurality of light shielding members.
 図20及び図21に示すように、照明光学系70gでは、第1及び第2の光源部73c,73dは、複数の第1及び第2の光源部73c,73dをそれぞれ備えており、複数のカセット181とフレーム182とを用いて、全ての光源部73c,73dの光がインテグレータ74の入射面に入射されるように配置されている。例えば、各カセット181には、10個の第1の光源部73dが5個ずつ幅方向に並んで上下に分かれて取り付けられ、10個の第2の光源部73dが5個ずつ幅方向に並んで中央に二段に亘って取り付けられている。また、フレーム182には、上下方向に複数段のカセット181が、左右方向に複数列のカセット181が取り付けられる。 As shown in FIGS. 20 and 21, in the illumination optical system 70g, the first and second light source units 73c and 73d include a plurality of first and second light source units 73c and 73d, respectively. Using the cassette 181 and the frame 182, the light from all the light source parts 73 c and 73 d is arranged to be incident on the incident surface of the integrator 74. For example, each of the cassettes 181 includes ten first light source parts 73d arranged in the width direction and divided in the vertical direction, and ten second light source parts 73d arranged in the width direction. It is attached to the center in two steps. The frame 182 is provided with a plurality of cassettes 181 in the vertical direction and a plurality of cassettes 181 in the horizontal direction.
 各第1及び第2の光源部73c,73dも、発光部としての超高圧水銀ランプ71c,71dと、これらランプ71c,71dから発生された光に指向性をもたせて射出する反射鏡72c,72dと、をそれぞれ含み、第1の光源部73cは、350nm以下、具体的には、j線(313nm)の短波長においてピーク波長を有する光を照射し、第2の光源部73dは、350nm以上、例えば、i線(365nm)の波長においてピーク波長を有する光を照射する。即ち、本実施形態の照明光学系70gでは、10kw以下の電力で発光するような、第6実施形態のものと比較して小型化された第1及び第2の光源部73c,73dを複数使用して構成されている。 Each of the first and second light source units 73c and 73d also includes ultrahigh pressure mercury lamps 71c and 71d as light emitting units, and reflecting mirrors 72c and 72d that emit light with directivity emitted from the lamps 71c and 71d. The first light source unit 73c irradiates light having a peak wavelength at 350 nm or less, specifically at a short wavelength of j-line (313 nm), and the second light source unit 73d is 350 nm or more. For example, light having a peak wavelength at the wavelength of i-line (365 nm) is irradiated. That is, the illumination optical system 70g of the present embodiment uses a plurality of first and second light source units 73c and 73d that are reduced in size as compared with those of the sixth embodiment that emit light with power of 10 kw or less. Configured.
 また、カセット181には、各光源部73c,73dの各開口部181aの前面に、複数の遮光部材183,184が設けられている。即ち、複数の第1の遮光部材183が、複数の第1の光源部73c毎に設けられ、各開口部181aの周囲に設けられた回転軸183a回りに開閉することで、複数の第1の光源部73cからの光をそれぞれ通過・遮光する。また、複数の第2の遮光部材184が、複数の第2の光源部73d毎に設けられ、各開口部181aの周囲に設けられた回転軸184a回りに開閉することで、複数の第2の光源部73dからの光をそれぞれ通過・遮光する。なお、第1及び第2の遮光部材183,184は、本実施形態のようにカセット181に取り付けられてもよいし、フレーム182に取り付けられてもよい。 Further, the cassette 181 is provided with a plurality of light shielding members 183 and 184 on the front surface of the respective opening portions 181a of the light source portions 73c and 73d. That is, the plurality of first light shielding members 183 are provided for each of the plurality of first light source parts 73c, and are opened and closed around the rotation shafts 183a provided around the respective openings 181a. The light from the light source unit 73c is passed / shielded. In addition, a plurality of second light shielding members 184 are provided for each of the plurality of second light source parts 73d, and are opened and closed around a rotation shaft 184a provided around each opening part 181a. The light from the light source unit 73d is passed / shielded. The first and second light shielding members 183 and 184 may be attached to the cassette 181 as in the present embodiment, or may be attached to the frame 182.
 従って、本実施形態のような照明光学系70hにおいても、複数の第1の遮光部材183を閉制御とし、複数の第2の遮光部材184を開制御して、複数の第2の光源部73dからの光が、インテグレータ74に入射され、平面鏡75およびコリメーションミラー76で反射されてマスクMに入射する。また、所定の時間が経過した後、複数の第1の遮光部材183も開制御することで、複数の第1の光源部73cから短波長の光が、インテグレータ74に入射され、平面鏡75およびコリメーションミラー76で反射されてマスクMに入射する。そして、マスクMを透過した複数の第1の光源部73c及び複数の第2の光源部73dの各光は、基板Wの表面に塗布されたポジ型レジストを感光させてマスクMのマスクパターンが基板Wに露光転写される。従って、本実施形態においても、複数の第1の光源部73cからの短波長の光によって細線化されたパターンを転写することができると共に、複数の第2の光源部73dからの光によって、基板Wとの接触部分のレジストも感光することができる。
 また、本実施形態のように、小型の光源部73c,73dの場合、ランプのガラスの面積が小さくなるため短波長側の光の吸収が小さいので、露光に必要な発光量を確保することができる。
Therefore, also in the illumination optical system 70h as in the present embodiment, the plurality of first light shielding members 183 are closed and the plurality of second light shielding members 184 are opened, so that the plurality of second light source units 73d are controlled. Is incident on the integrator 74, reflected by the plane mirror 75 and the collimation mirror 76, and incident on the mask M. In addition, after the predetermined time has elapsed, the plurality of first light shielding members 183 are also controlled to open, so that light having a short wavelength is incident on the integrator 74 from the plurality of first light source units 73c, and the plane mirror 75 and collimation are performed. The light is reflected by the mirror 76 and enters the mask M. Then, each light of the plurality of first light source units 73c and the plurality of second light source units 73d transmitted through the mask M exposes the positive resist applied on the surface of the substrate W, and the mask pattern of the mask M is formed. It is exposed and transferred to the substrate W. Therefore, also in the present embodiment, the thinned pattern can be transferred by the short wavelength light from the plurality of first light source portions 73c, and the substrate can be transferred by the light from the plurality of second light source portions 73d. The resist in contact with W can also be exposed.
In addition, in the case of the small light source units 73c and 73d as in the present embodiment, since the area of the glass of the lamp is small, the light absorption on the short wavelength side is small, so that it is possible to secure the light emission amount necessary for exposure. it can.
 なお、カセット181内で2種類の光源部73c,73dの配置が予め決まっており、複数の各光源部73c,73dが隣り合って配置されている場合には、図22に示す変形例のように、複数の各光源部73c,73dを纏めて遮光可能な第1及び第2の遮光部材183,184を構成してもよい。 In the case where the arrangement of the two types of light source units 73c and 73d is determined in advance in the cassette 181, and a plurality of light source units 73c and 73d are arranged adjacent to each other, as in the modification shown in FIG. In addition, the first and second light shielding members 183 and 184 that can collectively shield the light sources 73c and 73d may be configured.
 図23及び図24は、本実施形態の変形例に係る照明光学系の模式図である。この照明光学系70hでは、複数の遮光部材179,183が、複数の第1の光源部73cからの光を遮光可能な複数の第1の遮光部材183と、第1及び第2の光源部73c,73dからの全ての光を遮光可能な第2の遮光部材179と、を有する。第2の遮光部材179は、図23のように、インテグレータ74の入射面側に設けられてもよいし、インテグレータ74の出射面側に設けられてもよい。このため、カセット181には、複数の第1の光源部73cの前面にのみ、複数の第1の遮光部材183が取り付けられている。 23 and 24 are schematic views of an illumination optical system according to a modification of the present embodiment. In the illumination optical system 70h, the plurality of light shielding members 179, 183 are capable of shielding light from the plurality of first light source units 73c, and the first and second light source units 73c. , 73d, and a second light shielding member 179 that can shield all light. The second light shielding member 179 may be provided on the incident surface side of the integrator 74 as illustrated in FIG. 23, or may be provided on the emission surface side of the integrator 74. For this reason, a plurality of first light shielding members 183 are attached to the cassette 181 only on the front surface of the plurality of first light source parts 73c.
 このような第1及び第2の遮光部材183,179を有する照明光学系70hの場合にも、上記実施形態の遮光部材184と同様に、遮光部材179を制御することで同様の効果を奏することができる。
 また、このような第2の遮光部材179は、1種類の光源部を有する近接露光装置に設けられている既存の遮光部材をそのまま使用することができ、装置コストを低減することができる。
In the case of the illumination optical system 70h having the first and second light shielding members 183 and 179, the same effect can be obtained by controlling the light shielding member 179, similarly to the light shielding member 184 of the above embodiment. Can do.
In addition, the second light shielding member 179 can use an existing light shielding member provided in a proximity exposure apparatus having one type of light source unit as it is, and can reduce the apparatus cost.
 なお、第6又は第7実施形態の照明光学系70e~70hは、第1~第5実施形態のコリメーション半角調整機構を有する照明光学系70~70dと組み合わせて適用可能である。 The illumination optical systems 70e to 70h of the sixth or seventh embodiment can be applied in combination with the illumination optical systems 70 to 70d having the collimation half angle adjustment mechanism of the first to fifth embodiments.
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 本発明の近接露光装置及び近接露光方法は、TFTアレイ基板の作成に適用されてもよく、また、カラーフィルタ基板の作成にも適用可能である。
 また、マスクパターンの開口部における光透過率が90%以下となるように設定してもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
The proximity exposure apparatus and proximity exposure method of the present invention may be applied to the production of a TFT array substrate, and can also be applied to the production of a color filter substrate.
Alternatively, the light transmittance at the opening of the mask pattern may be set to 90% or less.
 また、上記実施形態では、本発明のマスクを近接露光装置に適用した例について説明したが、これに限定されず、近接スキャン露光装置にも同様に適用することができ、同様の効果を奏する。近接スキャン露光装置は、マスクMに近接して浮上・支持されながら、所定方向に搬送される略矩形状の基板Wに対して、マスクパターンを形成した複数のマスクMを介して露光用の光を照射し、基板Wにマスクパターンを露光転写するものであり、基板Wが複数のマスクMに対して相対移動しながら露光転写が行われるスキャン露光方式を採用している。
 さらに、本発明の光源部は、第1及び第2の光源部の2種類の光源部に限らず、第1及び第2の光源部と分光特性が異なる、さらに他の種類の光源部を有する構成であってもよい。
Moreover, although the said embodiment demonstrated the example which applied the mask of this invention to the proximity exposure apparatus, it is not limited to this, It can apply similarly to a proximity scan exposure apparatus, and there exists the same effect. The proximity scanning exposure apparatus exposes light for exposure via a plurality of masks M on which a mask pattern is formed on a substantially rectangular substrate W that is floated and supported in the vicinity of the mask M and is transported in a predetermined direction. , And a mask pattern is exposed and transferred onto the substrate W, and a scanning exposure method is adopted in which exposure transfer is performed while the substrate W is moved relative to the plurality of masks M.
Furthermore, the light source unit of the present invention is not limited to the two types of light source units, the first and second light source units, and has another type of light source unit that has spectral characteristics different from those of the first and second light source units. It may be a configuration.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月19日出願の日本特許出願2010-258937、2010年12月14日出願の日本特許出願2010-278412に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2010-258937 filed on November 19, 2010 and Japanese Patent Application No. 2010-278812 filed on December 14, 2010, the contents of which are incorporated herein by reference.
12  マスク保持枠(マスク保持部)
21  基板保持部
70,70a~70h  照明光学系
73  光源部
73a,73c 第1の光源部
73b,73d 第2の光源部
74  インテグレータ(フライアイレンズ)
78  遮光部材(光強度低減部材)
78a 第1の減光フィルタ
78b 第2の減光フィルタ
79  他のインテグレータ(フライアイレンズ)
80  レンズ
177,183 第1の遮光部材
178,179,184 第2の遮光部材
g   マスクと基板との対向面間のギャップ
M   マスク
PE  分割逐次近接露光装置(近接露光装置)
W   ガラス基板(基板)
12 Mask holding frame (mask holding part)
21 Substrate holding part 70, 70a to 70h Illumination optical system 73 Light source part 73a, 73c First light source part 73b, 73d Second light source part 74 Integrator (fly eye lens)
78 Light shielding member (light intensity reducing member)
78a First neutral density filter 78b Second neutral density filter 79 Other integrator (fly eye lens)
80 Lenses 177, 183 First light shielding members 178, 179, 184 Second light shielding member g Gap between facing surfaces of mask and substrate M Mask PE Division sequential proximity exposure apparatus (proximity exposure apparatus)
W Glass substrate (substrate)

Claims (19)

  1.  基板を保持する基板保持部と、
     前記基板と対向するように、マスクを保持するマスク保持部と、
     前記マスクに向けてパターン露光用の光を照射する照明光学系と、
    を有し、前記基板と前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの光を前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に転写する近接露光装置であって、
     前記照明光学系は、前記基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構を有することを特徴とする近接露光装置。
    A substrate holder for holding the substrate;
    A mask holding unit for holding a mask so as to face the substrate;
    An illumination optical system that emits light for pattern exposure toward the mask;
    In the state where the substrate and the mask are brought close to a predetermined gap, the substrate is irradiated with light from the illumination optical system through the mask, and the pattern of the mask is transferred to the substrate A proximity exposure apparatus,
    The proximity exposure apparatus, wherein the illumination optical system includes a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred onto the substrate.
  2.  前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
     前記コリメーション半角調整機構は、前記インテグレータの入射面側又は出射面側に設けられ、前記複数のレンズセルのいずれかに入射される光または前記複数のレンズセルのいずれかから出射される光を遮光又は減光する光強度低減部材であることを特徴とする請求項1に記載の近接露光装置。
    The illumination optical system further includes a light source unit, and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
    The collimation half-angle adjustment mechanism is provided on an incident surface side or an emission surface side of the integrator, and blocks light incident on one of the plurality of lens cells or light emitted from any of the plurality of lens cells. The proximity exposure apparatus according to claim 1, wherein the proximity exposure apparatus is a light intensity reducing member that reduces light.
  3.  前記光強度低減部材は、それぞれ独立して移動可能な複数の減光フィルタを有することを特徴とする請求項2に記載の近接露光装置。 3. The proximity exposure apparatus according to claim 2, wherein the light intensity reducing member has a plurality of neutral density filters that can be moved independently of each other.
  4.  前記複数の減光フィルタは、複数種類の減光フィルタからなり、前記減光フィルタの種類以上の複数の減光率にて遮光可能であることを特徴とする請求項3に記載の近接露光装置。 4. The proximity exposure apparatus according to claim 3, wherein the plurality of neutral density filters include a plurality of types of neutral density filters, and can be shielded with a plurality of neutral density ratios equal to or greater than the type of neutral density filters. .
  5.  前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
     前記コリメーション半角調整機構は、前記光源部と前記インテグレータとの間に設けられ、前記インテグレータへの入射光径または入射角を変更するレンズであることを特徴とする請求項1に記載の近接露光装置。
    The illumination optical system further includes a light source unit, and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
    2. The proximity exposure apparatus according to claim 1, wherein the collimation half-angle adjusting mechanism is a lens that is provided between the light source unit and the integrator and changes an incident light diameter or an incident angle to the integrator. .
  6.  前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
     前記コリメーション半角調整機構は、前記インテグレータへの入射光径を変更すべく、前記インテグレータの入射面に対して鉛直方向に移動可能な前記光源部であることを特徴とする請求項1に記載の近接露光装置。
    The illumination optical system further includes a light source unit, and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
    2. The proximity according to claim 1, wherein the collimation half-angle adjustment mechanism is the light source unit that is movable in a vertical direction with respect to an incident surface of the integrator so as to change an incident light diameter to the integrator. Exposure device.
  7.  前記照明光学系は、前記光源部と前記インテグレータとの間に設けられ、前記光源部からの光の強度を均一化する光均一化光学部品をさらに備えることを特徴とする請求項2から6のいずれか1項に記載の近接露光装置。 The illumination optical system further includes a light uniformizing optical component that is provided between the light source unit and the integrator and uniformizes the intensity of light from the light source unit. The proximity exposure apparatus according to any one of the above.
  8.  前記マスクのパターンは、前記基板に転写されるパターンの所望の線幅と異なる線幅を有することを特徴とする請求項1に記載の近接露光装置。 The proximity exposure apparatus according to claim 1, wherein the pattern of the mask has a line width different from a desired line width of the pattern transferred to the substrate.
  9.  前記照明光学系は、光源部と、複数のレンズセルからなるフライアイレンズによって構成されている、該光源部からの光の強度を均一化するインテグレータと、をさらに備え、
     前記コリメーション半角調整機構は、前記インテグレータの出射面側に設けられ、前記複数のレンズセルのいずれかから出射される光を遮光する遮光部材であることを特徴とする請求項1に記載の近接露光装置。
    The illumination optical system further includes a light source unit, and an integrator configured to equalize the intensity of light from the light source unit, which includes a fly-eye lens including a plurality of lens cells.
    2. The proximity exposure according to claim 1, wherein the collimation half-angle adjustment mechanism is a light-shielding member that is provided on an exit surface side of the integrator and shields light emitted from any of the plurality of lens cells. apparatus.
  10.  前記光源部からの光は直接、前記インテグレータに入射されることを特徴とする請求項9に記載の近接露光装置。 The proximity exposure apparatus according to claim 9, wherein light from the light source unit is directly incident on the integrator.
  11.  前記照明光学系は、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部と、該第1の光源部と分光特性の異なる光を照射する第2の光源部と、前記第1及び第2の光源部からの光を遮光可能な複数の遮光部材と、を有し、
     前記照明光学系は、前記複数の遮光部材の開タイミングを制御することによって前記第1及び第2の光源部の前記光を異なるタイミングで照射可能であることを特徴とする請求項1に記載の近接露光装置。
    The illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, a second light source unit that irradiates light having spectral characteristics different from those of the first light source unit, A plurality of light shielding members capable of shielding light from the first and second light source units,
    The said illumination optical system can irradiate the said light of the said 1st and 2nd light source part at a different timing by controlling the opening timing of these light-shielding members. Proximity exposure device.
  12.  前記複数の遮光部材は、前記第1の光源部からの光を遮光可能な第1の遮光部材と、前記第2の光源部からの光を遮光可能な第2の遮光部材と、を有することを特徴とする請求項11に記載の近接露光装置。 The plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second light shielding member capable of shielding light from the second light source unit. The proximity exposure apparatus according to claim 11.
  13.  前記第1及び第2の光源部は、それぞれ複数の第1及び第2の光源部からなり、
     前記第1の遮光部材は、前記複数の第1の光源部毎に設けられ、前記複数の第1の光源部からの光をそれぞれ遮光可能な複数の第1の遮光部材からなり、
     前記第2の遮光部材は、前記複数の第2の光源部毎に設けられ、前記複数の第2の光源部からの光をそれぞれ遮光可能な複数の第2の遮光部材からなることを特徴とする請求項12に記載の近接露光装置。
    Each of the first and second light source units includes a plurality of first and second light source units,
    The first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units,
    The second light shielding member is provided for each of the plurality of second light source units, and includes a plurality of second light shielding members capable of shielding light from the plurality of second light source units, respectively. The proximity exposure apparatus according to claim 12.
  14.  前記複数の第1及び第2の光源部の光がインテグレータレンズの入射面に入射されるように、前記複数の第1及び第2の光源部を支持するカセットをさらに備え、
     前記複数の第1及び第2の遮光部材は、前記カセットに取り付けられることを特徴とする請求項13に記載の近接露光装置。
    A cassette supporting the plurality of first and second light source units so that the light of the plurality of first and second light source units is incident on an incident surface of the integrator lens;
    The proximity exposure apparatus according to claim 13, wherein the plurality of first and second light shielding members are attached to the cassette.
  15.  前記複数の遮光部材は、前記第1の光源部からの光を遮光可能な第1の遮光部材と、前記第1及び第2の光源部からの全ての光を遮光可能な第2の遮光部材と、を有することを特徴とする請求項11に記載の近接露光装置。 The plurality of light shielding members include a first light shielding member capable of shielding light from the first light source unit, and a second light shielding member capable of shielding all light from the first and second light source units. The proximity exposure apparatus according to claim 11, further comprising:
  16.  前記第1及び第2の光源部は、それぞれ複数の第1及び第2の光源部からなり、
     前記第1の遮光部材は、前記複数の第1の光源部毎に設けられ、前記複数の第1の光源部からの光をそれぞれ遮光可能な複数の第1の遮光部材からなることを特徴とする請求項15に記載の近接露光装置。
    Each of the first and second light source units includes a plurality of first and second light source units,
    The first light shielding member is provided for each of the plurality of first light source units, and includes a plurality of first light shielding members capable of shielding light from the plurality of first light source units, respectively. The proximity exposure apparatus according to claim 15.
  17.  前記複数の第1及び第2の光源部の光がインテグレータレンズの入射面に入射されるように、前記複数の第1及び第2の光源部を支持するカセットをさらに備え、
     前記複数の第1の遮光部材は、前記カセットに取り付けられることを特徴とする請求項16に記載の近接露光装置。
    A cassette supporting the plurality of first and second light source units so that the light of the plurality of first and second light source units is incident on an incident surface of the integrator lens;
    The proximity exposure apparatus according to claim 16, wherein the plurality of first light shielding members are attached to the cassette.
  18.  基板を保持する基板保持部と、前記基板と対向するように、マスクを保持するマスク保持部と、前記マスクに向けてパターン露光用の光を照射する照明光学系と、を有し、前記照明光学系は、前記基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整するためのコリメーション半角調整機構を有する近接露光装置の近接露光方法であって、
     前記コリメーション半角調整機構によって基板に転写されるパターンの所望の線幅に対応する所定のコリメーション半角に調整する工程と、
     前記基板と前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの光を前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に露光転写する工程と、を備えることを特徴とする近接露光方法。
    A substrate holding unit that holds the substrate; a mask holding unit that holds the mask so as to face the substrate; and an illumination optical system that emits light for pattern exposure toward the mask. The optical system is a proximity exposure method of a proximity exposure apparatus having a collimation half angle adjustment mechanism for adjusting to a predetermined collimation half angle corresponding to a desired line width of a pattern transferred to the substrate,
    Adjusting to a predetermined collimation half angle corresponding to a desired line width of the pattern transferred to the substrate by the collimation half angle adjustment mechanism;
    Irradiating the substrate with light from the illumination optical system through the mask in a state where the substrate and the mask are close to a predetermined gap, and exposing and transferring the pattern of the mask to the substrate; A proximity exposure method comprising:
  19.  前記照明光学系は、350nm以下の短波長においてピーク波長を有する光を照射する第1の光源部と、該第1の光源部と分光特性の異なる光を照射する第2の光源部と、前記第1及び第2の光源部からの光を遮光可能な複数の遮光部材と、を有し、
     前記露光転写工程では、前記基板と前記マスクとを所定のギャップに近接させた状態で、前記複数の遮光部材の開タイミングを制御することで前記第1及び第2の光源部からの光を異なるタイミングで前記マスクを介して前記基板に照射し、前記マスクのパターンを前記基板に転写することを特徴とする請求項18に記載の近接露光方法。
    The illumination optical system includes a first light source unit that irradiates light having a peak wavelength at a short wavelength of 350 nm or less, a second light source unit that irradiates light having spectral characteristics different from those of the first light source unit, A plurality of light shielding members capable of shielding light from the first and second light source units,
    In the exposure transfer step, the light from the first and second light source units is made different by controlling the opening timing of the plurality of light shielding members in a state where the substrate and the mask are brought close to a predetermined gap. 19. The proximity exposure method according to claim 18, wherein the substrate is irradiated with light through the mask at a timing, and the pattern of the mask is transferred to the substrate.
PCT/JP2011/076719 2010-11-19 2011-11-18 Proximity exposure device and proximity exposure method WO2012067246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180055791.2A CN103299243B (en) 2010-11-19 2011-11-18 Proximity printing device and proximity printing method
JP2012544332A JPWO2012067246A1 (en) 2010-11-19 2011-11-18 Proximity exposure apparatus and proximity exposure method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010258937 2010-11-19
JP2010-258937 2010-11-19
JP2010-278412 2010-12-14
JP2010278412 2010-12-14

Publications (1)

Publication Number Publication Date
WO2012067246A1 true WO2012067246A1 (en) 2012-05-24

Family

ID=46084165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076719 WO2012067246A1 (en) 2010-11-19 2011-11-18 Proximity exposure device and proximity exposure method

Country Status (3)

Country Link
JP (1) JPWO2012067246A1 (en)
CN (1) CN103299243B (en)
WO (1) WO2012067246A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179740A1 (en) * 2019-03-04 2020-09-10 株式会社ブイ・テクノロジー Light source device for exposure, exposure device, and exposure method
JPWO2019146448A1 (en) * 2018-01-24 2021-01-07 株式会社ニコン Exposure device and exposure method
WO2021070643A1 (en) * 2019-10-11 2021-04-15 株式会社ブイ・テクノロジー Lighting device for proximity exposure device, led unit, proximity exposure device, and exposure method of proximity exposure device
TWI753032B (en) * 2016-11-07 2022-01-21 日商Hoya股份有限公司 Photomask, method of manufacturing a photomask for proximity exposure, and method of manufacturing a display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065445B (en) * 2017-01-22 2018-11-27 武汉华星光电技术有限公司 A kind of exposure device
JP6951926B2 (en) * 2017-06-06 2021-10-20 株式会社オーク製作所 Exposure device
KR102049806B1 (en) * 2018-04-25 2020-01-22 한국과학기술연구원 Method and apparatus for surface planarization of object using light source of specific wavelength and reactive gas

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136853A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Mask for proximity exposing and production thereof
JPH0695356A (en) * 1992-09-17 1994-04-08 Sharp Corp Formation of data for mask
JPH07176475A (en) * 1993-10-27 1995-07-14 Canon Inc Projecting exposure apparatus and manufacture of device using the same apparatus
JPH09190974A (en) * 1996-12-20 1997-07-22 Canon Inc Exposure system and manufacture of element using it
JP2002141261A (en) * 2000-10-30 2002-05-17 Nikon Corp Surface position detector and manufacturing method, aligner and manufacturing method and manufacturing method of microdevice
JP2002217083A (en) * 2001-01-12 2002-08-02 Canon Inc Illumination system and aligner
JP2003218000A (en) * 2002-01-18 2003-07-31 Pentax Corp Exposure apparatus
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2005037637A (en) * 2003-07-14 2005-02-10 Toppan Printing Co Ltd Aligner
JP2008164729A (en) * 2006-12-27 2008-07-17 Ushio Inc Light irradiator, light irradiation apparatus, and exposure method
JP2008171974A (en) * 2007-01-11 2008-07-24 Canon Inc Light volume controller, exposure device, and device manufacturing method
JP2008191252A (en) * 2007-02-01 2008-08-21 Phoenix Denki Kk Light source for exposure and exposure apparatus using the same
JP2009163205A (en) * 2007-12-31 2009-07-23 Lg Display Co Ltd Exposure apparatus and exposure method for photosensitive film
JP2009244913A (en) * 2009-07-29 2009-10-22 Dainippon Printing Co Ltd Proximity exposure device and exposure method using the proximity device
JP2009253209A (en) * 2008-04-10 2009-10-29 Canon Inc Exposure apparatus, and device manufacturing method
JP2010251363A (en) * 2009-04-10 2010-11-04 Nikon Corp Exposure method, exposure apparatus, and device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251310A (en) * 1992-03-06 1993-09-28 Nikon Corp Exposure controller
JP2946950B2 (en) * 1992-06-25 1999-09-13 キヤノン株式会社 Illumination apparatus and exposure apparatus using the same
JP2891219B2 (en) * 1996-12-20 1999-05-17 キヤノン株式会社 Exposure apparatus and element manufacturing method using the same
JP4310816B2 (en) * 1997-03-14 2009-08-12 株式会社ニコン Illumination apparatus, projection exposure apparatus, device manufacturing method, and projection exposure apparatus adjustment method
JP3005203B2 (en) * 1997-03-24 2000-01-31 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP2005032847A (en) * 2003-07-09 2005-02-03 Advanced Lcd Technologies Development Center Co Ltd Crystallization equipment, crystallization method, and device
KR101138681B1 (en) * 2009-04-09 2012-04-24 닛본 세이고 가부시끼가이샤 Light irradiation apparatus for exposure apparatus, exposure apparatus, and exposure method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136853A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Mask for proximity exposing and production thereof
JPH0695356A (en) * 1992-09-17 1994-04-08 Sharp Corp Formation of data for mask
JPH07176475A (en) * 1993-10-27 1995-07-14 Canon Inc Projecting exposure apparatus and manufacture of device using the same apparatus
JPH09190974A (en) * 1996-12-20 1997-07-22 Canon Inc Exposure system and manufacture of element using it
JP2002141261A (en) * 2000-10-30 2002-05-17 Nikon Corp Surface position detector and manufacturing method, aligner and manufacturing method and manufacturing method of microdevice
JP2002217083A (en) * 2001-01-12 2002-08-02 Canon Inc Illumination system and aligner
JP2003218000A (en) * 2002-01-18 2003-07-31 Pentax Corp Exposure apparatus
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2005037637A (en) * 2003-07-14 2005-02-10 Toppan Printing Co Ltd Aligner
JP2008164729A (en) * 2006-12-27 2008-07-17 Ushio Inc Light irradiator, light irradiation apparatus, and exposure method
JP2008171974A (en) * 2007-01-11 2008-07-24 Canon Inc Light volume controller, exposure device, and device manufacturing method
JP2008191252A (en) * 2007-02-01 2008-08-21 Phoenix Denki Kk Light source for exposure and exposure apparatus using the same
JP2009163205A (en) * 2007-12-31 2009-07-23 Lg Display Co Ltd Exposure apparatus and exposure method for photosensitive film
JP2009253209A (en) * 2008-04-10 2009-10-29 Canon Inc Exposure apparatus, and device manufacturing method
JP2010251363A (en) * 2009-04-10 2010-11-04 Nikon Corp Exposure method, exposure apparatus, and device manufacturing method
JP2009244913A (en) * 2009-07-29 2009-10-22 Dainippon Printing Co Ltd Proximity exposure device and exposure method using the proximity device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753032B (en) * 2016-11-07 2022-01-21 日商Hoya股份有限公司 Photomask, method of manufacturing a photomask for proximity exposure, and method of manufacturing a display device
JPWO2019146448A1 (en) * 2018-01-24 2021-01-07 株式会社ニコン Exposure device and exposure method
WO2020179740A1 (en) * 2019-03-04 2020-09-10 株式会社ブイ・テクノロジー Light source device for exposure, exposure device, and exposure method
WO2021070643A1 (en) * 2019-10-11 2021-04-15 株式会社ブイ・テクノロジー Lighting device for proximity exposure device, led unit, proximity exposure device, and exposure method of proximity exposure device

Also Published As

Publication number Publication date
CN103299243A (en) 2013-09-11
JPWO2012067246A1 (en) 2014-05-19
CN103299243B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2012067246A1 (en) Proximity exposure device and proximity exposure method
TWI459149B (en) A lighting optical device, an exposure apparatus, and an element manufacturing method
TWI474126B (en) Exposure apparatus and electronic device manufacturing method
US8908151B2 (en) Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system
TWI476539B (en) An illumination optical system, an exposure apparatus, and an exposure method
JP5365641B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2010061674A1 (en) Correction unit, illumination optical system, exposure device, and device manufacturing method
WO2016190381A1 (en) Lighting device for exposure, exposure apparatus and exposure method
JP3600869B2 (en) Projection optical system and projection exposure apparatus having the optical system
JP2012058324A (en) Near field exposure mask, near field exposure device and near field exposure method
TWI460545B (en) A lighting optical device, an exposure apparatus, and a method for manufacturing the same
JP5541164B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR101662882B1 (en) Exposure apparatus, and method of manufacturing article
JP2009169255A (en) Exposure device, method of manufacturing substrate, and mask
JP2013021265A (en) Illumination device, exposure device, exposure method, and manufacturing method of device
JP5239829B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US10126660B2 (en) Multilayer film reflector, method of manufacturing multilayer film reflector, projection optical system, exposure apparatus, and method of manufacturing device
TWI480705B (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2018003418A1 (en) Method for manufacturing illuminance adjustment filter, illuminance adjustment filter, lighting optical system, and exposure device
JP5239830B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5396885B2 (en) Shielding unit, illumination optical system, exposure apparatus, and device manufacturing method
JPH04225359A (en) Projection type exposure device
JP5187632B2 (en) Correction unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5532620B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR20210142602A (en) Exposure apparatus, illumination optical system, and device manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180055791.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842292

Country of ref document: EP

Kind code of ref document: A1