WO2012066843A1 - Glass compact and method for manufacturing same - Google Patents

Glass compact and method for manufacturing same Download PDF

Info

Publication number
WO2012066843A1
WO2012066843A1 PCT/JP2011/070824 JP2011070824W WO2012066843A1 WO 2012066843 A1 WO2012066843 A1 WO 2012066843A1 JP 2011070824 W JP2011070824 W JP 2011070824W WO 2012066843 A1 WO2012066843 A1 WO 2012066843A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
hole
droplet
glass droplet
convex portion
Prior art date
Application number
PCT/JP2011/070824
Other languages
French (fr)
Japanese (ja)
Inventor
直之 福本
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012544140A priority Critical patent/JPWO2012066843A1/en
Priority to CN201180055702.4A priority patent/CN103249683B/en
Publication of WO2012066843A1 publication Critical patent/WO2012066843A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/49Complex forms not covered by groups C03B2215/47 or C03B2215/48
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis

Definitions

  • the present invention relates to a glass molded body and a method for producing the same, and more particularly to a glass molded body obtained by pressure-molding molten glass droplets and a method for producing the same.
  • optical glass elements are digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, illumination lenses, or various mirrors. has been used extensively as.
  • the optical glass element is manufactured from a glass molded body.
  • a reheat press method is known as an example of a method for producing a glass molded body.
  • a glass gob having a predetermined mass and a predetermined shape is produced by grinding or polishing.
  • the glass gob is heated to a deformable temperature together with the molding die. Thereafter, the softened glass gob is pressure-molded into a desired shape by a molding die.
  • the temperature of the surface of the molten glass droplet is lowered after the molten glass droplet is supplied onto the lower mold until the molten glass droplet is pressure-formed by the lower mold and the upper mold.
  • the size of the molten glass droplet supplied onto the lower mold is very small, the temperature of the surface of the molten glass droplet tends to decrease particularly sharply.
  • the temperature of the surface of the molten glass droplet is lowered, the surface of the molten glass droplet may not be sufficiently transferred to the molding surface of the upper mold. In this case, the performance, quality, etc. as a glass molded body deteriorate.
  • An object of the present invention is to provide a glass molded body capable of sufficiently transferring the surface of the molten glass droplet to the molding surface of the upper mold and a method for producing the same.
  • a method for producing a glass molded body provides an upper mold having a concave molding surface, a lower mold, and a miniaturized member provided with a through-hole penetrating from the upper surface toward the lower surface. And a step of dropping a molten glass droplet having a diameter larger than the diameter of the through-hole toward the through-hole of the micronized member, so that a part of the molten glass droplet is smaller than the molten glass droplet.
  • a method for producing a glass molded body includes an upper mold having a concave molding surface, a lower mold, and a miniaturized member provided with a through-hole penetrating from the upper surface toward the lower surface, Preparing a preformed member provided with a recess or other through-hole, and dropping a molten glass droplet having a diameter larger than the diameter of the through-hole toward the through-hole of the micronized member A step of passing a part of the molten glass droplet through the through-hole as a small glass droplet smaller than the molten glass droplet and supplying the small glass droplet onto the lower mold, and the preforming member.
  • the convex portion is formed on the minute glass droplet so that the curvature radius of the convex portion is smaller than the curvature radius of the molding surface recessed in the upper mold. It is formed.
  • the diameter of the outer peripheral edge of the convex portion is smaller than the diameter of the opening end of the molding surface recessed in the upper mold.
  • the convex part is formed.
  • the glass molded body based on the present invention is manufactured by the above-described glass molded body manufacturing method based on one aspect of the present invention or the above-described glass molded body manufacturing method based on another aspect of the present invention.
  • the present invention it is possible to obtain a glass molded body capable of sufficiently transferring the surface of the molten glass droplet to the molding surface of the upper mold and a manufacturing method thereof.
  • step ST1 to step ST6 each step (step ST1 to step ST6) of the method for manufacturing a glass molded body in the embodiment will be described.
  • Step ST1 As shown in FIG. 1, first, a melting crucible 10, a miniaturized member 20, an upper mold 30, and a lower mold 40 are prepared. Molten crucible 10 stores molten glass 50. The molten glass 50 is heated to about 1000 ° C. by a heating device (not shown), and is constantly stirred by a stirring rod (not shown). The material of the molten glass 50 is, for example, SF57, SK5, or LaK8.
  • a nozzle 12 is suspended from the melting crucible 10.
  • the inner diameter of the nozzle 12 is, for example, 0.8 mm to 1 mm.
  • the nozzle 12 is heated to about 1100 ° C. by another heating device (not shown), the molten glass 51 is exposed at the lower end of the nozzle 12. The exposure amount of the molten glass 51 gradually increases as time passes.
  • the miniaturized member 20 is configured in a flat plate shape, for example.
  • the material of the miniaturized member 20 is made of stainless steel, for example.
  • the thickness L20 of the miniaturized member 20 is 5 mm, for example.
  • the interval between the nozzle 12 and the miniaturized member 20 may be appropriately selected from a value of 10 mm to 5000 mm, preferably 50 mm to 2000 mm.
  • the through-hole 23 penetrating from the upper surface 21 toward the lower surface 22 is provided in the miniaturized member 20.
  • the through hole 23 extends along the direction of gravity.
  • the diameter 23D (hole diameter) of the through hole 23 is, for example, 0.7 mm to 2.0 mm.
  • the miniaturized member 20 is horizontally supported by predetermined support means (not shown).
  • the through hole 23 is located immediately below the nozzle 12.
  • the opening end 23 ⁇ / b> S on the lower surface 22 side of the through hole 23 has a circular shape on the lower surface 22.
  • the upper mold 30 has a molding surface 31 that is formed flat at the lower end and a molding surface 32 that is recessed upwardly from the molding surface 31 in an arc shape in cross section.
  • the shape of the molding surface 32 may be designed according to a desired shape of a glass molded body obtained as a molded product.
  • the molding surface 32 in the present embodiment has a circular shape with an opening end 32 ⁇ / b> S having a diameter of 32 ⁇ / b> D on the molding surface 31.
  • the molding surface 32 has a curvature radius 32R.
  • step ST1 the upper mold 30 is retracted from the nozzle 12, the miniaturized member 20, and the lower mold 40.
  • the lower mold 40 has a molding surface 41 formed flat at the upper end.
  • the molding surface 41 is located below the through hole 23.
  • the shape of the molding surface 41 may be designed according to a desired shape of a glass molded body obtained as a molded product.
  • the molding surface 41 may be provided with predetermined irregularities.
  • the material of the upper mold 30 and the lower mold 40 is, for example, a cemented carbide material mainly composed of tungsten carbide.
  • the upper mold 30 and the lower mold 40 are heated to a predetermined temperature (for example, about 400 ° C.) by a heating device (not shown).
  • the temperatures of the upper mold 30 and the lower mold 40 may be the same or different.
  • Step ST2 As the nozzle 12 continues to be heated as shown in FIG. 2, the molten glass 51 (see FIG. 1) leaves the nozzle 12 and falls toward the through hole 23 as a molten glass droplet 52 (see arrow AR ⁇ b> 52).
  • the molten glass droplet 52 has a diameter 52D in a direction perpendicular to the dropping direction.
  • the diameter 52D is larger than the diameter 23D of the through hole 23 provided in the miniaturized member 20.
  • the diameter 23 ⁇ / b> D of the through hole 23 is set to be smaller than the diameter 52 ⁇ / b> D of the molten glass droplet 52.
  • Step ST3 As shown in FIG. 3, the molten glass droplet 52 (see FIG. 2) dripped from the nozzle 12 contacts the upper surface 21 in the vicinity of the through hole 23 of the miniaturized member 20. A part of the molten glass droplet 52 passes through the through hole 23 from the upper surface 21 side to the lower surface 22 side as a small glass droplet 54 smaller than the molten glass droplet 52 by the kinetic energy due to the dropping of the molten glass droplet 52 (arrow). (See AR58).
  • the minute glass droplet 54 is supplied onto the molding surface 41 of the lower mold 40 as a member to be molded.
  • the diameter 54D of the minute glass droplet 54 is, for example, 5 mm or less.
  • the remaining molten glass droplet 53 among the molten glass droplets 52 remains on the upper surface 21 of the micronized member 20.
  • the molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20.
  • the time from when the molten glass 51 at the tip of the nozzle 12 falls as the molten glass droplet 52 to when the minute glass droplet 54 is supplied onto the molding surface 41 is, for example, 1 second to 2 seconds.
  • the distance between the miniaturized member 20 and the molding surface 41 of the lower mold 40 is preferably as short as possible.
  • the weight of the molten glass droplet 52 (see FIG. 2) dropped from the nozzle 12 is set on the molding surface 41 of the lower mold 40 so that the minute glass droplet 54 having a predetermined weight can penetrate the through hole 23 in step ST3. It is preferably set to be twice or more the weight of the supplied small glass droplet 54.
  • the weight of the small glass droplet 54 can be adjusted by the diameter 23D of the through hole 23 or the distance between the nozzle 12 and the micronizing member 20.
  • Step ST4 As shown in FIG. 4, immediately after the minute glass droplet 54 is supplied onto the molding surface 41, the minute member 20 moves downward (see arrow AR20). The lower mold 40 may move upward toward the miniaturized member 20. The opening end 23 ⁇ / b> S on the lower surface 22 side of the miniaturizing member 20 abuts on the surface of the micro glass droplet 54. After the contact, the miniaturizing member 20 further moves down by a predetermined distance and stops. The opening end 23S (lower surface 22) of the micronizing member 20 is pressed against the surface of the micro glass droplet 54.
  • the minute glass droplets 54 supplied onto the molding surface 41 of the lower mold 40 are rapidly cooled by taking heat away from the air and the lower mold 40.
  • the cooling rate of the micro glass droplet 54 is relieved by the contact between the micro glass droplet 54 and the opening end 23S (the lower surface 22) of the micro member 20.
  • the opening end 23S of the micronizing member 20 due to the contact between the opening end 23S of the micronizing member 20 and the surface of the micro glass droplet 54, a part of the micro glass droplet 54 enters the through hole 23, and the micro glass droplet 54 has a dome-shaped convex portion 54T. It is formed.
  • the surface of the convex portion 54T is gradually cured by contact with air.
  • the outer peripheral edge 54S located at the lower end of the convex portion 54T has a circular shape corresponding to the shape of the opening end 23S.
  • the diameter 54TD of the outer peripheral edge 54S is substantially equal to the diameter 23D of the open end 23S.
  • the temperature of the miniaturized member 20 is lower than the temperature of the surface of the micro glass droplet 54.
  • the convex portion 54T is preliminarily formed. After a predetermined time has elapsed, the micronizing member 20 moves away from the micro glass droplet 54. Even after the micronized member 20 is separated from the micro glass droplet 54, the convex portion 54T maintains the dome shape.
  • the time from when the micronized member 20 comes into contact with the micro glass droplet 54 until it leaves the micro glass droplet 54 is, for example, 1 to 10 seconds. If the convex part 54T hardens
  • the contact time between the micronized member 20 and the micro glass droplet 54 is the size of the glass molded body obtained as a molded product, the shape of the glass molded body, the quality of the glass molded body, the temperature of the micro glass droplet 54, and the micro glass droplet 54. It may be optimized according to the material, the temperature of the miniaturized member 20, the ambient temperature, or the like.
  • the thickness L20 of the miniaturized member 20 may be appropriately designed so that the small glass droplet 54 on the molding surface 41 and the molten glass droplet 53 on the miniaturized member 20 do not come into contact with each other.
  • the thickness L20 is designed according to, for example, the diameter 23D of the through hole 23, the weight of the molten glass droplet 53, the temperature of the molten glass droplet 53, or the temperature of the miniaturized member 20.
  • the molten glass droplet 53 is removed from the micronized member 20 by means of suction or the like so that the microglass droplet 54 and the molten glass droplet 53 do not contact each other. May be.
  • Step ST5 As shown in FIG. 5, the lower mold 40 moves below the upper mold 30 after the miniaturized member 20 is separated from the small glass droplet 54.
  • the upper mold 30 may move above the lower mold 40. After the molding surface 32 of the upper mold 30 and the minute glass droplet 54 face each other, the upper mold 30 moves downward (see arrow AR30).
  • the time from when the miniaturized member 20 moves away from the small glass droplet 54 to when the upper mold 30 starts to move downward is, for example, 1 second to 10 seconds.
  • the convex portion 54T enters the molding surface 32 of the upper mold 30.
  • type 30 contact state shown in FIG. 5.
  • the convex portion 54T wets and spreads in the molding surface 32 from the center side of the molding surface 32 toward the outside (open end 32S).
  • the convex portion 54T is preliminarily molded into a predetermined shape and hardness so that the convex portion 54T easily spreads in the molding surface 32.
  • the convex portion 54T may be formed such that the curvature radius 54R of the convex portion 54T is smaller than the curvature radius 32R of the molding surface 32.
  • the radius of curvature 54R of the convex portion 54T is determined according to the diameter 23D of the through hole 23 provided in the miniaturized member 20 (see FIG. 4), the pushing amount of the miniaturized member 20 into the micro glass droplet 54, and the like.
  • the hardness of the convex portion 54T is determined according to the time for which the minute glass droplet 54 and the minute member 20 are in contact with each other.
  • the convex portion 54T can easily enter the molding surface 32.
  • the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54), no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T is in the molding surface 32. Can spread effectively wet.
  • the convex portion 54T may be formed such that the diameter 54TD of the outer peripheral edge 54S of the convex portion 54T is smaller than the diameter 32D of the opening end 32S of the molding surface 32.
  • the diameter 54TD of the outer peripheral edge 54S of the convex portion 54T is determined according to the diameter 23D (see FIG. 4) of the through hole 23 provided in the miniaturized member 20.
  • the convex portion 54T can easily enter the molding surface 32.
  • the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54), no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T is in the molding surface 32. Can spread effectively wet.
  • Step ST6 As shown in FIG. 6, the upper mold 30 further moves downward by a predetermined distance (see arrow AR31) and stops.
  • the space in the molding surface 32 of the upper mold 30 is filled with the minute glass droplets 54 (see FIG. 5).
  • the minute glass droplets 54 are pressurized by the upper mold 30 and the lower mold 40 and are radiated (heat removed) by contact with the upper mold 30 and the lower mold 40.
  • an air cylinder, a hydraulic cylinder, an electric cylinder using a servo motor, or the like may be used as a means for driving the upper mold 30 or the lower mold 40 to pressurize the minute glass droplets 54.
  • the amount of pressure applied to the minute glass droplets 54 may change over time or may be constant.
  • the amount of pressurization is determined according to the size of the minute glass droplet 54 and the like, but it is preferable that the minute glass droplet 54 and the entire surface of the molding surface 32 of the upper mold 30 are sufficiently in close contact with each other. .
  • the minute glass droplets 54 are solidified as a predetermined time (1 to 10 seconds) elapses.
  • the fine glass droplets 54 are cooled and solidified until the shape of the molding surface 56 (transfer surface) of the fine glass droplets 54 is maintained even when the pressurization by the upper mold 30 and the lower mold 40 is released.
  • the minute glass droplet 54 can be, for example, up to the vicinity of the glass transition point (Tg). It should be cooled. Thereafter, the pressurization to the minute glass droplet 54 is released.
  • a glass molded body 55 is obtained.
  • a molded surface 56 having high molding accuracy is formed on the glass molded body 55.
  • the glass molded body 55 is separated from the upper mold 30 and the lower mold 40 in about 1 to 10 seconds by a predetermined suction means (not shown). After separating the glass molded body 55 from the upper mold 30 and the lower mold 40, the upper mold 30 and the lower mold 40 may be subjected to a cleaning process.
  • the above-described steps ST1 to ST6 may be repeated at a cycle of about 1 minute.
  • the interval of dropping of the molten glass droplet 52 from the nozzle 12 in step ST2 may be set to about 15 seconds to about 30 seconds.
  • the small glass droplet 54 is supplied onto the molding surface 41 of the lower mold 40.
  • the minute glass droplet 54 is smaller than the weight of the molten glass droplet 53 dripped from the nozzle 12.
  • the diameter 54D (see FIG. 3) of the minute glass droplet 54 can be 5 mm or less.
  • the minute glass droplets 54 supplied onto the molding surface 41 of the lower mold 40 are rapidly cooled by taking heat away from the air and the lower mold 40.
  • the remaining molten glass droplet 53 among the molten glass droplets 52 remains on the upper surface 21 of the miniaturized member 20.
  • the molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20.
  • the minute glass droplet 54 and the opening end 23S (lower surface 22) of the minute member 20 come into contact with each other, the cooling rate of the minute glass droplet 54 is reduced.
  • a dome-shaped convex portion 54T is preliminarily formed on the minute glass droplet 54 by contact between the opening end 23S of the miniaturizing member 20 and the surface of the minute glass droplet 54 (see FIG. 4).
  • the minute glass droplets 54 are formed in the molding surface 32 from the center side of the molding surface 32 of the upper die 30 toward the outside (opening end 32S) with the convex portion 54T as a starting point during pressure molding by the upper die 30 and the lower die 40. Can spread out wet.
  • the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54 in FIG. 5)
  • no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T
  • the wetted surface can be effectively spread in the molding surface 32.
  • a molded surface 56 having high molding accuracy is formed on the glass molded body 55 manufactured by the method for manufacturing a glass molded body in the present embodiment.
  • the glass molded body 55 has high quality and can exhibit high performance as a molded product.
  • the glass molded body 55 is widely used as a glass optical element, as a digital camera lens, an optical pickup lens such as a DVD, a mobile phone camera lens, a coupling lens for optical communication, an illumination lens, or various mirrors. Can be done.
  • step ST4 (see FIG. 4) of the above-described embodiment, the description has been made based on the aspect in which the opening end 23S of the miniaturizing member 20 contacts the surface of the micro glass droplet 54.
  • the opening end 23 ⁇ / b> S of the preformed member 20 ⁇ / b> A prepared separately from the miniaturized member 20 may come into contact with the surface of the minute glass droplet 54.
  • a recess 23A provided in the preforming member 20A forms an open end 23S on the lower surface 22.
  • the preforming member 20A may be preheated to a predetermined temperature.
  • a through hole 23A1 may be provided in the same manner as the miniaturized member 20.
  • the preforming member 20A1 is also preferably heated to a predetermined temperature in advance.
  • the preforming member 20A further moves downward by a predetermined distance and stops.
  • the opening end 23 ⁇ / b> S of the preforming member 20 ⁇ / b> A is pressed against the surface of the minute glass droplet 54.
  • a part of the minute glass droplet 54 enters the through hole 23, and a dome-shaped convex portion 54T is formed on the upper part of the minute glass droplet 54.
  • the surface of the convex portion 54T is gradually cured by contact with air.
  • the convex portion 54T is preliminarily molded.
  • the convex portion 54T is molded, no air pocket is generated between the convex portion 54T and the molding surface 32 of the upper die 30 when the upper mold 30 and the lower mold 40 are pressure-molded.
  • the convex portion 54T can effectively wet and spread in the molding surface 32 of the upper mold 30. As a result, the same effect as that of the above-described embodiment can be obtained.
  • a miniaturized member 20B, an upper mold 30B, and a lower mold 40B are prepared.
  • the diameter 23D of the through hole 23 of the miniaturized member 20B is 1 mm.
  • the miniaturized member 20 ⁇ / b> B in the present embodiment has a tapered surface 24 at the top of the through hole 23.
  • the materials of the upper mold 30B and the lower mold 40B are both super hard materials mainly composed of tungsten carbide.
  • the molding surface 32 recessed in the molding surface 31 of the upper mold 30B has a radius of curvature (corresponding to the radius of curvature 32R in FIG. 1) of 1 mm and an opening end diameter (corresponding to the diameter 32D in FIG. 1) of 1.73 mm. is there.
  • the molding surface 42 is recessed in the molding surface 41.
  • the molding surface 42 has a radius of curvature of 2 mm and an opening end diameter of 3.43 mm.
  • a 0.5 ⁇ m thick protective film (not shown) made of a chromium metal film is formed by sputtering for the purpose of roughening the surface.
  • the roughening treatment is applied to the protective film. This roughening treatment was performed by immersing the surface of the protective film in an etching solution.
  • a chromium etchant containing ceric ammonium nitrate (ECR-2: manufactured by Nacalai Tesque, Inc.) was used.
  • a roughening treatment may be performed directly on the molding surface 42 of the lower mold 40B without forming a protective film. Further, a roughening process may be further performed on the molding surface 32 of the upper mold 30.
  • molten glass droplets were dropped from a nozzle (not shown). Some of the molten glass droplets 54 passed through the through hole 23 and were supplied onto the molding surface 41 of the lower mold 40B. Since the tapered surface 24 is provided in the upper portion of the through hole 23, variation in the drop position of the minute glass droplet 54 and variation in the weight of the minute glass droplet 54 are reduced. The remaining molten glass droplet 53 of the molten glass droplet remained on the upper surface 21 in the vicinity of the through hole 23 of the miniaturized member 20B (state shown in FIG. 9).
  • the micronized member 20 ⁇ / b> B was brought into contact with the surface of the micro glass droplet 54.
  • the protrusion 54T was formed by pushing the micronized member 20B into the micro glass droplet 54 by a predetermined amount.
  • the radius of curvature of the surface of the convex portion 54T is about 0.5 mm.
  • the molten glass droplet 53 remains on the upper surface 21 of the miniaturized member 20B.
  • the molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20.
  • the cooling rate of the micro glass droplet 54 is reduced.
  • the minute glass droplets 54 were pressure-formed by the upper mold 30B and the lower mold 40B. Due to the presence of the convex portion 54T, the minute glass droplet 54 is sufficiently spread in the molding surface 32 of the upper mold 30B. The minute glass droplets 54 are satisfactorily transferred to the molding surface 32 of the upper mold 30B. It was confirmed that a molded surface 56 having high molding accuracy was formed on the glass molded body 55 obtained by the manufacturing method in this example.
  • the temperature of the small glass droplet 54 rapidly decreases, and the small glass droplet 54 is heated by the lower mold 40B. Is deprived.
  • the surface of the minute glass droplet 54 is cured to a certain viscosity or less.
  • the (approximate) radius of curvature of the surface of the small glass droplet 54 is about 3.0 mm.
  • the curvature radius is larger than the curvature radius (1.0 mm) of the molding surface 32 of the upper mold 30B.
  • the minute glass droplets 54 were pressure-formed by the upper mold 30B and the lower mold 40B.
  • An air pocket S was generated between the surface of the minute glass droplet 54 and the molding surface 32 of the upper mold 30B.
  • the minute glass droplets 54 were not transferred well to the molding surface 32 of the upper mold 30 ⁇ / b> B, and the molding surface 56 having low molding accuracy was formed on the glass molding 55.
  • the glass molded body 55 is highly molded by the convex portions 54T being formed on the minute glass droplets 54 when the upper mold 30B and the lower mold 40B are pressurized. It can be seen that the molding surface 56 having accuracy is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Provided is a method for manufacturing glass compact, the method including the steps of: preparing an upper die provided with a recessed shaping surface, a lower die (40), and a micronizing member (20) provided with a through hole (23); dropping a molten glass drop to the through hole (23), the molten glass drop having a diameter greater than the hole diameter (23D) of the through hole (23); supplying a micro glass drop (54) having passed through the through hole (23) onto the lower die (40); pushing the open end (23S) of the through hole (23) located on the lower face (22) of the micronizing member (20) against the surface of the micro glass drop (54), thereby forming a projected portion (54T) on the micro glass drop (54); and allowing the upper die and the lower die (40) to apply pressure to the micro glass drop (54) so that the projected portion (54T) should wet and spread across the shaping surface of the upper die.

Description

ガラス成形体およびその製造方法Glass molded body and method for producing the same
 本発明は、ガラス成形体およびその製造方法に関し、特に、溶融ガラス滴を加圧成形することによって得られるガラス成形体およびその製造方法に関する。 The present invention relates to a glass molded body and a method for producing the same, and more particularly to a glass molded body obtained by pressure-molding molten glass droplets and a method for producing the same.
 今日、ガラス製の光学素子(以下、光学ガラス素子という)は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、照明用レンズ、または各種ミラーとして広範囲にわたって使用されている。光学ガラス素子は、ガラス成形体から製造される。 Today, glass optical elements (hereinafter referred to as optical glass elements) are digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, illumination lenses, or various mirrors. Has been used extensively as. The optical glass element is manufactured from a glass molded body.
 ガラス成形体の製造方法の一例として、リヒートプレス法が知られる。リヒートプレス法においては、研削加工または研磨加工によって、所定の質量および所定の形状を有するガラスゴブが作製される。ガラスゴブは、成形金型とともに変形可能な温度にまで加熱される。その後、軟化したガラスゴブが成形金型によって所望の形状に加圧成形される。 A reheat press method is known as an example of a method for producing a glass molded body. In the reheat press method, a glass gob having a predetermined mass and a predetermined shape is produced by grinding or polishing. The glass gob is heated to a deformable temperature together with the molding die. Thereafter, the softened glass gob is pressure-molded into a desired shape by a molding die.
 従来のリヒートプレス法においては、ガラスゴブを作製する研削加工または研磨加工のために多くの労力と時間とを必要としていた。リヒートプレス法の改良として、上方から下型に向かって溶融ガラス滴を滴下し、下型上で溶融ガラス滴を冷却固化させることによってガラスゴブを作製する方法の検討が進められている。 In the conventional reheat press method, much labor and time are required for grinding or polishing to produce a glass gob. As an improvement of the reheat press method, a study of a method for producing a glass gob by dropping molten glass droplets from above toward the lower die and cooling and solidifying the molten glass droplets on the lower die has been underway.
 一方、上記のリヒートプレス法に代わるガラス成形体の製造方法として、上方から下型に向かって溶融ガラス滴を滴下した後、下型と上型とによって下型上の溶融ガラス滴を加圧成形することによってガラス成形体を製造する方法の検討も進められている(特開2002-154834号公報(特許文献1)参照)。当該方法によれば、リヒートプレス法とは異なり、成形金型等に対する加熱および冷却を繰り返す必要がなく、溶融ガラス滴から直接ガラス成形体を得ることができる。当該製造方法は、1回の成形に必要な時間が非常に短いため、近年特に注目されている。 On the other hand, as a method for producing a glass molded body in place of the above-mentioned reheat press method, molten glass droplets are dropped from above toward the lower mold, and then the molten glass droplets on the lower mold are pressed by the lower mold and the upper mold. Thus, a method for producing a glass molded body has been studied (see Japanese Patent Application Laid-Open No. 2002-154834 (Patent Document 1)). According to this method, unlike the reheat press method, it is not necessary to repeat heating and cooling of the molding die or the like, and a glass molded body can be obtained directly from molten glass droplets. The manufacturing method has attracted particular attention in recent years because the time required for one molding is very short.
 当該製造方法においては、下型上に溶融ガラス滴が供給されてから下型と上型とによって溶融ガラス滴を加圧成形するまでの間に、溶融ガラス滴の表面の温度が低下する。下型上に供給された溶融ガラス滴の大きさが非常に小さい場合、溶融ガラス滴の表面の温度は特に急峻に低下しやすい。溶融ガラス滴の表面の温度が低下すると、溶融ガラス滴の表面が上型の成形面に対して十分に転写されないことがある。この場合、ガラス成形体としての性能および品質等が低下する。 In this manufacturing method, the temperature of the surface of the molten glass droplet is lowered after the molten glass droplet is supplied onto the lower mold until the molten glass droplet is pressure-formed by the lower mold and the upper mold. When the size of the molten glass droplet supplied onto the lower mold is very small, the temperature of the surface of the molten glass droplet tends to decrease particularly sharply. When the temperature of the surface of the molten glass droplet is lowered, the surface of the molten glass droplet may not be sufficiently transferred to the molding surface of the upper mold. In this case, the performance, quality, etc. as a glass molded body deteriorate.
特開2002-154834号公報JP 2002-154834 A
 本発明は、溶融ガラス滴の表面を上型の成形面に対して十分転写することが可能なガラス成形体およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a glass molded body capable of sufficiently transferring the surface of the molten glass droplet to the molding surface of the upper mold and a method for producing the same.
 本発明のある局面に基づくガラス成形体の製造方法は、成形面が凹設された上型と、下型と、上面から下面に向かって貫通する貫通孔が設けられた微小化部材とを準備する工程と、上記貫通孔の孔径よりも大きな直径を有する溶融ガラス滴を上記微小化部材の上記貫通孔に向かって滴下することによって、上記溶融ガラス滴の一部を上記溶融ガラス滴よりも小さな微小ガラス滴として上記貫通孔を通過させ、上記微小ガラス滴を上記下型上に供給する工程と、上記微小化部材の上記下面側に位置する上記貫通孔の開口端を上記下型上に供給された上記微小ガラス滴の表面に押し当てることによって、上記微小ガラス滴に凸部を形成する工程と、上記凸部が上記上型の上記成形面内に濡れ広がるように、上記上型および上記下型によって上記微小ガラス滴を加圧する工程と、を備える。 A method for producing a glass molded body according to an aspect of the present invention provides an upper mold having a concave molding surface, a lower mold, and a miniaturized member provided with a through-hole penetrating from the upper surface toward the lower surface. And a step of dropping a molten glass droplet having a diameter larger than the diameter of the through-hole toward the through-hole of the micronized member, so that a part of the molten glass droplet is smaller than the molten glass droplet. A step of passing the through-hole as a small glass droplet and supplying the small glass droplet onto the lower mold; and an opening end of the through-hole located on the lower surface side of the miniaturized member is supplied onto the lower mold A step of forming a convex portion on the fine glass droplet by pressing against the surface of the fine glass droplet, and the upper die and the above so that the convex portion wets and spreads in the molding surface of the upper die. Above by lower mold And a step of pressurizing the small glass droplet, the.
 本発明の他の局面に基づくガラス成形体の製造方法は、成形面が凹設された上型と、下型と、上面から下面に向かって貫通する貫通孔が設けられた微小化部材と、凹部または他の貫通孔が設けられた予備成形部材とを準備する工程と、上記貫通孔の孔径よりも大きな直径を有する溶融ガラス滴を上記微小化部材の上記貫通孔に向かって滴下することによって、上記溶融ガラス滴の一部を上記溶融ガラス滴よりも小さな微小ガラス滴として上記貫通孔を通過させ、上記微小ガラス滴を上記下型上に供給する工程と、上記予備成形部材に設けられた上記凹部または上記他の貫通孔の開口端を上記下型上に供給された上記微小ガラス滴の表面に押し当てることによって、上記微小ガラス滴に凸部を形成する工程と、上記凸部が上記上型の上記成形面内に濡れ広がるように、上記上型および上記下型によって上記微小ガラス滴を加圧する工程と、を備える。 A method for producing a glass molded body according to another aspect of the present invention includes an upper mold having a concave molding surface, a lower mold, and a miniaturized member provided with a through-hole penetrating from the upper surface toward the lower surface, Preparing a preformed member provided with a recess or other through-hole, and dropping a molten glass droplet having a diameter larger than the diameter of the through-hole toward the through-hole of the micronized member A step of passing a part of the molten glass droplet through the through-hole as a small glass droplet smaller than the molten glass droplet and supplying the small glass droplet onto the lower mold, and the preforming member. A step of forming a convex portion on the micro glass droplet by pressing the opening end of the concave portion or the other through hole against the surface of the micro glass droplet supplied on the lower mold; Molding of upper mold As it spreads within, and a step of pressing the micro glass droplet by the upper die and the lower die.
 好ましくは、上記凸部を形成する工程においては、上記凸部の曲率半径が上記上型に凹設された上記成形面の曲率半径よりも小さくなるように、上記微小ガラス滴に上記凸部が形成される。 Preferably, in the step of forming the convex portion, the convex portion is formed on the minute glass droplet so that the curvature radius of the convex portion is smaller than the curvature radius of the molding surface recessed in the upper mold. It is formed.
 好ましくは、上記凸部を形成する工程においては、上記凸部の外周縁の直径が上記上型に凹設された上記成形面の開口端の直径よりも小さくなるように、上記微小ガラス滴に上記凸部が形成される。 Preferably, in the step of forming the convex portion, the diameter of the outer peripheral edge of the convex portion is smaller than the diameter of the opening end of the molding surface recessed in the upper mold. The convex part is formed.
 本発明に基づくガラス成形体は、本発明のある局面に基づく上記のガラス成形体の製造方法、または本発明の他の局面に基づく上記のガラス成形体の製造方法によって製造される。 The glass molded body based on the present invention is manufactured by the above-described glass molded body manufacturing method based on one aspect of the present invention or the above-described glass molded body manufacturing method based on another aspect of the present invention.
 本発明によれば、溶融ガラス滴の表面を上型の成形面に対して十分転写することが可能なガラス成形体およびその製造方法を得ることができる。 According to the present invention, it is possible to obtain a glass molded body capable of sufficiently transferring the surface of the molten glass droplet to the molding surface of the upper mold and a manufacturing method thereof.
実施の形態におけるガラス成形体の製造方法の第1ステップを示す断面図である。It is sectional drawing which shows the 1st step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の第2ステップを示す断面図である。It is sectional drawing which shows the 2nd step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の第3ステップを示す断面図である。It is sectional drawing which shows the 3rd step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の第4ステップを示す断面図である。It is sectional drawing which shows the 4th step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の第5ステップを示す断面図である。It is sectional drawing which shows the 5th step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の第6ステップを示す断面図である。It is sectional drawing which shows the 6th step of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the manufacturing method of the glass forming body in embodiment. 実施の形態におけるガラス成形体の製造方法の他の構成の変形例を示す断面図である。It is sectional drawing which shows the modification of the other structure of the manufacturing method of the glass forming body in embodiment. 実施例におけるガラス成形体の製造方法を示す第1断面図である。It is a 1st sectional view showing the manufacturing method of the glass fabrication object in an example. 実施例におけるガラス成形体の製造方法を示す第2断面図である。It is a 2nd sectional view showing the manufacturing method of the glass fabrication object in an example. 実施例におけるガラス成形体の製造方法を示す第3断面図である。It is a 3rd sectional view showing the manufacturing method of the glass fabrication object in an example. 比較例におけるガラス成形体の製造方法を示す第1断面図である。It is a 1st sectional view showing the manufacturing method of the glass fabrication object in a comparative example. 比較例におけるガラス成形体の製造方法を示す第2断面図である。It is a 2nd sectional view showing the manufacturing method of the glass fabrication object in a comparative example.
 本発明に基づいた実施の形態および実施例について、以下、図面を参照しながら説明する。実施の形態および実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and examples, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiments and examples, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 図1~図6を参照して、実施の形態におけるガラス成形体の製造方法の各工程(ステップST1~ステップST6)について説明する。
[Embodiment]
With reference to FIGS. 1 to 6, each step (step ST1 to step ST6) of the method for manufacturing a glass molded body in the embodiment will be described.
 (ステップST1)
 図1に示すように、まず、溶融ルツボ10、微小化部材20、上型30、および下型40が準備される。溶融ルツボ10は、溶融ガラス50を貯留している。溶融ガラス50は、加熱装置(図示せず)によって約1000℃にまで加熱され、攪拌棒(図示せず)によって常に攪拌されている。溶融ガラス50の材質は、たとえばSF57、SK5、またはLaK8である。
(Step ST1)
As shown in FIG. 1, first, a melting crucible 10, a miniaturized member 20, an upper mold 30, and a lower mold 40 are prepared. Molten crucible 10 stores molten glass 50. The molten glass 50 is heated to about 1000 ° C. by a heating device (not shown), and is constantly stirred by a stirring rod (not shown). The material of the molten glass 50 is, for example, SF57, SK5, or LaK8.
 溶融ルツボ10にはノズル12が垂設されている。ノズル12の内径は、たとえば0.8mm~1mmである。ノズル12が他の加熱装置(図示せず)によって約1100℃にまで加熱されると、ノズル12の下端に溶融ガラス51が露出する。溶融ガラス51の露出量は、時間が経過するにつれて次第に増加する。 A nozzle 12 is suspended from the melting crucible 10. The inner diameter of the nozzle 12 is, for example, 0.8 mm to 1 mm. When the nozzle 12 is heated to about 1100 ° C. by another heating device (not shown), the molten glass 51 is exposed at the lower end of the nozzle 12. The exposure amount of the molten glass 51 gradually increases as time passes.
 微小化部材20は、たとえば平板状に構成される。微小化部材20の材質は、たとえばステンレス製である。微小化部材20の厚さL20は、たとえば5mmである。ノズル12と微小化部材20との間の間隔は、10mm以上5000mm以下、好ましくは50mm以上2000mm以下の値から適宜選択されるとよい。 The miniaturized member 20 is configured in a flat plate shape, for example. The material of the miniaturized member 20 is made of stainless steel, for example. The thickness L20 of the miniaturized member 20 is 5 mm, for example. The interval between the nozzle 12 and the miniaturized member 20 may be appropriately selected from a value of 10 mm to 5000 mm, preferably 50 mm to 2000 mm.
 微小化部材20には、上面21から下面22に向かって貫通する貫通孔23が設けられている。貫通孔23は重力方向に沿って延在している。貫通孔23の直径23D(孔径)は、たとえば0.7mm~2.0mmである。微小化部材20は、所定の支持手段(図示せず)によって水平支持されている。貫通孔23は、ノズル12の直下に位置している。貫通孔23の下面22側の開口端23Sは、下面22上において円形状を呈している。 The through-hole 23 penetrating from the upper surface 21 toward the lower surface 22 is provided in the miniaturized member 20. The through hole 23 extends along the direction of gravity. The diameter 23D (hole diameter) of the through hole 23 is, for example, 0.7 mm to 2.0 mm. The miniaturized member 20 is horizontally supported by predetermined support means (not shown). The through hole 23 is located immediately below the nozzle 12. The opening end 23 </ b> S on the lower surface 22 side of the through hole 23 has a circular shape on the lower surface 22.
 上型30は、下端に平坦に形成された成形面31と、成形面31から上方に向かって断面視円弧状に凹設された成形面32とを有している。成形面32の形状は、成形品として得られるガラス成形体の所望の形状に応じて設計されるとよい。本実施の形態における成形面32は、開口端32Sが成形面31上において直径32Dの円形状を呈している。成形面32は、曲率半径32Rを有している。ステップST1においては、ノズル12、微小化部材20、および下型40に対して、上型30は退避している。 The upper mold 30 has a molding surface 31 that is formed flat at the lower end and a molding surface 32 that is recessed upwardly from the molding surface 31 in an arc shape in cross section. The shape of the molding surface 32 may be designed according to a desired shape of a glass molded body obtained as a molded product. The molding surface 32 in the present embodiment has a circular shape with an opening end 32 </ b> S having a diameter of 32 </ b> D on the molding surface 31. The molding surface 32 has a curvature radius 32R. In step ST1, the upper mold 30 is retracted from the nozzle 12, the miniaturized member 20, and the lower mold 40.
 下型40は、上端に平坦に形成された成形面41を有している。成形面41は、貫通孔23の下方に位置している。成形面41の形状は、成形品として得られるガラス成形体の所望の形状に応じて設計されるとよい。成形面41には、所定の凹凸が設けられていてもよい。 The lower mold 40 has a molding surface 41 formed flat at the upper end. The molding surface 41 is located below the through hole 23. The shape of the molding surface 41 may be designed according to a desired shape of a glass molded body obtained as a molded product. The molding surface 41 may be provided with predetermined irregularities.
 上型30および下型40の材質は、たとえば炭化タングステンを主成分とする超硬材料である。上型30および下型40は、加熱装置(図示せず)によって所定の温度(たとえば約400℃)に加熱されている。上型30および下型40の温度は、同一であっても異なっていてもよい。 The material of the upper mold 30 and the lower mold 40 is, for example, a cemented carbide material mainly composed of tungsten carbide. The upper mold 30 and the lower mold 40 are heated to a predetermined temperature (for example, about 400 ° C.) by a heating device (not shown). The temperatures of the upper mold 30 and the lower mold 40 may be the same or different.
 (ステップST2)
 図2に示すように、ノズル12が加熱され続けることによって、溶融ガラス51(図1参照)はノズル12から離れ、溶融ガラス滴52として貫通孔23に向かって落下する(矢印AR52参照)。溶融ガラス滴52は、落下方向に対して垂直な方向において、直径52Dを有している。直径52Dは、微小化部材20に設けられた貫通孔23の直径23Dよりも大きい。換言すると、貫通孔23の直径23Dは、溶融ガラス滴52の直径52Dよりも小さくなるように設定されている。
(Step ST2)
As the nozzle 12 continues to be heated as shown in FIG. 2, the molten glass 51 (see FIG. 1) leaves the nozzle 12 and falls toward the through hole 23 as a molten glass droplet 52 (see arrow AR <b> 52). The molten glass droplet 52 has a diameter 52D in a direction perpendicular to the dropping direction. The diameter 52D is larger than the diameter 23D of the through hole 23 provided in the miniaturized member 20. In other words, the diameter 23 </ b> D of the through hole 23 is set to be smaller than the diameter 52 </ b> D of the molten glass droplet 52.
 (ステップST3)
 図3に示すように、ノズル12から滴下された溶融ガラス滴52(図2参照)は、微小化部材20の貫通孔23付近の上面21に接触する。溶融ガラス滴52の落下による運動エネルギーによって、溶融ガラス滴52の一部は、溶融ガラス滴52よりも小さな微小ガラス滴54として、上面21側から下面22側に向かって貫通孔23を通り抜ける(矢印AR58参照)。微小ガラス滴54は、被成形部材として下型40の成形面41上に供給される。微小ガラス滴54の直径54Dは、たとえば5mm以下である。溶融ガラス滴52のうち残部の溶融ガラス滴53は、微小化部材20の上面21上に残留する。溶融ガラス滴53は、微小化部材20の貫通孔23付近を加熱する。
(Step ST3)
As shown in FIG. 3, the molten glass droplet 52 (see FIG. 2) dripped from the nozzle 12 contacts the upper surface 21 in the vicinity of the through hole 23 of the miniaturized member 20. A part of the molten glass droplet 52 passes through the through hole 23 from the upper surface 21 side to the lower surface 22 side as a small glass droplet 54 smaller than the molten glass droplet 52 by the kinetic energy due to the dropping of the molten glass droplet 52 (arrow). (See AR58). The minute glass droplet 54 is supplied onto the molding surface 41 of the lower mold 40 as a member to be molded. The diameter 54D of the minute glass droplet 54 is, for example, 5 mm or less. The remaining molten glass droplet 53 among the molten glass droplets 52 remains on the upper surface 21 of the micronized member 20. The molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20.
 ノズル12先端の溶融ガラス51が溶融ガラス滴52として落下してから微小ガラス滴54が成形面41上に供給されるまでの時間は、たとえば1秒~2秒である。微小ガラス滴54の落下位置のバラツキを低減するために、微小化部材20と下型40の成形面41との間隔は可能な限り短いことが好ましい。 The time from when the molten glass 51 at the tip of the nozzle 12 falls as the molten glass droplet 52 to when the minute glass droplet 54 is supplied onto the molding surface 41 is, for example, 1 second to 2 seconds. In order to reduce the variation in the drop position of the small glass droplets 54, the distance between the miniaturized member 20 and the molding surface 41 of the lower mold 40 is preferably as short as possible.
 ステップST3において所定の重量の微小ガラス滴54が貫通孔23を貫通可能なように、ノズル12から滴下される溶融ガラス滴52(図2参照)の重量は、下型40の成形面41上に供給される微小ガラス滴54の重量の2倍以上に設定されていることが好ましい。微小ガラス滴54の重量は、貫通孔23の直径23D、またはノズル12と微小化部材20との間の間隔によっても調節されることができる。 The weight of the molten glass droplet 52 (see FIG. 2) dropped from the nozzle 12 is set on the molding surface 41 of the lower mold 40 so that the minute glass droplet 54 having a predetermined weight can penetrate the through hole 23 in step ST3. It is preferably set to be twice or more the weight of the supplied small glass droplet 54. The weight of the small glass droplet 54 can be adjusted by the diameter 23D of the through hole 23 or the distance between the nozzle 12 and the micronizing member 20.
 (ステップST4)
 図4に示すように、成形面41上に微小ガラス滴54が供給された直後、微小化部材20が下降移動する(矢印AR20参照)。下型40が微小化部材20に向かって上昇移動してもよい。微小化部材20の下面22側の開口端23Sは、微小ガラス滴54の表面に当接する。当該当接の後、微小化部材20はさらに所定の距離だけ下降移動して停止する。微小ガラス滴54の表面に、微小化部材20の開口端23S(下面22)が押し当てられる。
(Step ST4)
As shown in FIG. 4, immediately after the minute glass droplet 54 is supplied onto the molding surface 41, the minute member 20 moves downward (see arrow AR20). The lower mold 40 may move upward toward the miniaturized member 20. The opening end 23 </ b> S on the lower surface 22 side of the miniaturizing member 20 abuts on the surface of the micro glass droplet 54. After the contact, the miniaturizing member 20 further moves down by a predetermined distance and stops. The opening end 23S (lower surface 22) of the micronizing member 20 is pressed against the surface of the micro glass droplet 54.
 直径54Dがたとえば5mm以下である場合、下型40の成形面41上に供給された微小ガラス滴54は、空気および下型40に熱を奪われることによって急速に冷却される。これに対して、微小ガラス滴54と微小化部材20の開口端23S(下面22)とが接触することによって、微小ガラス滴54の冷却速度は緩和される。さらに、微小化部材20の開口端23Sと微小ガラス滴54の表面との接触によって、微小ガラス滴54の一部は貫通孔23内に入り込み、微小ガラス滴54にはドーム状の凸部54Tが形成される。 When the diameter 54D is, for example, 5 mm or less, the minute glass droplets 54 supplied onto the molding surface 41 of the lower mold 40 are rapidly cooled by taking heat away from the air and the lower mold 40. On the other hand, the cooling rate of the micro glass droplet 54 is relieved by the contact between the micro glass droplet 54 and the opening end 23S (the lower surface 22) of the micro member 20. Further, due to the contact between the opening end 23S of the micronizing member 20 and the surface of the micro glass droplet 54, a part of the micro glass droplet 54 enters the through hole 23, and the micro glass droplet 54 has a dome-shaped convex portion 54T. It is formed.
 凸部54Tの表面は空気との接触により徐々に硬化する。凸部54Tの下端に位置する外周縁54Sは、開口端23Sの形状に対応して円形状を呈する。外周縁54Sの直径54TDは、開口端23Sの直径23Dに略等しくなっている。 The surface of the convex portion 54T is gradually cured by contact with air. The outer peripheral edge 54S located at the lower end of the convex portion 54T has a circular shape corresponding to the shape of the opening end 23S. The diameter 54TD of the outer peripheral edge 54S is substantially equal to the diameter 23D of the open end 23S.
 微小化部材20の温度は微小ガラス滴54の表面の温度より低い。微小化部材20と微小ガラス滴54とが所定の時間接触することによって、凸部54Tが予備的に成形される。所定の時間経過後、微小化部材20は微小ガラス滴54から離れる。微小化部材20が微小ガラス滴54から離れた後も、凸部54Tはドーム状の形状を維持する。 The temperature of the miniaturized member 20 is lower than the temperature of the surface of the micro glass droplet 54. When the micronized member 20 and the micro glass droplet 54 are in contact with each other for a predetermined time, the convex portion 54T is preliminarily formed. After a predetermined time has elapsed, the micronizing member 20 moves away from the micro glass droplet 54. Even after the micronized member 20 is separated from the micro glass droplet 54, the convex portion 54T maintains the dome shape.
 微小化部材20が微小ガラス滴54に接触してから微小ガラス滴54から離れるまでの時間は、たとえば1秒~10秒である。凸部54Tが硬化しすぎると、次述するステップST5において凸部54Tが上型30の成形面32に転写されにくくなる。微小化部材20と微小ガラス滴54との接触時間は、成形品として得られるガラス成形体の大きさ、ガラス成形体の形状、ガラス成形体の品質、微小ガラス滴54の温度、微小ガラス滴54の材質、微小化部材20の温度、または周囲の温度等に応じて最適化されるとよい。 The time from when the micronized member 20 comes into contact with the micro glass droplet 54 until it leaves the micro glass droplet 54 is, for example, 1 to 10 seconds. If the convex part 54T hardens | cures too much, it will become difficult to transfer the convex part 54T to the molding surface 32 of the upper mold | type 30 in step ST5 mentioned below. The contact time between the micronized member 20 and the micro glass droplet 54 is the size of the glass molded body obtained as a molded product, the shape of the glass molded body, the quality of the glass molded body, the temperature of the micro glass droplet 54, and the micro glass droplet 54. It may be optimized according to the material, the temperature of the miniaturized member 20, the ambient temperature, or the like.
 ステップST4において成形面41上の微小ガラス滴54と微小化部材20上の溶融ガラス滴53とが接触しないように、微小化部材20の厚さL20が適宜設計されているとよい。厚さL20は、たとえば貫通孔23の直径23D、溶融ガラス滴53の重量、溶融ガラス滴53の温度、または微小化部材20の温度に応じて設計される。微小ガラス滴54と溶融ガラス滴53とが接触しないように、微小化部材20と微小ガラス滴54とを接触させる前に、溶融ガラス滴53を吸引等の手段によって微小化部材20上から除去してもよい。 In step ST4, the thickness L20 of the miniaturized member 20 may be appropriately designed so that the small glass droplet 54 on the molding surface 41 and the molten glass droplet 53 on the miniaturized member 20 do not come into contact with each other. The thickness L20 is designed according to, for example, the diameter 23D of the through hole 23, the weight of the molten glass droplet 53, the temperature of the molten glass droplet 53, or the temperature of the miniaturized member 20. Before the micronized member 20 and the small glass droplet 54 are brought into contact with each other, the molten glass droplet 53 is removed from the micronized member 20 by means of suction or the like so that the microglass droplet 54 and the molten glass droplet 53 do not contact each other. May be.
 (ステップST5)
 図5に示すように、微小化部材20が微小ガラス滴54から離れた後、下型40が上型30の下方に移動する。上型30が下型40の上方に移動してもよい。上型30の成形面32と微小ガラス滴54とが対向した後、上型30は下降移動する(矢印AR30参照)。微小化部材20が微小ガラス滴54から離れてから上型30が下降移動を開始するまでの時間は、たとえば1秒~10秒である。
(Step ST5)
As shown in FIG. 5, the lower mold 40 moves below the upper mold 30 after the miniaturized member 20 is separated from the small glass droplet 54. The upper mold 30 may move above the lower mold 40. After the molding surface 32 of the upper mold 30 and the minute glass droplet 54 face each other, the upper mold 30 moves downward (see arrow AR30). The time from when the miniaturized member 20 moves away from the small glass droplet 54 to when the upper mold 30 starts to move downward is, for example, 1 second to 10 seconds.
 凸部54Tは上型30の成形面32内に入り込む。凸部54Tの表面と上型30の成形面32とが接触する(図5に示す状態)。凸部54Tは、成形面32の中央側から外側(開口端32S)に向かって成形面32内に濡れ広がる。凸部54Tが成形面32内に濡れ広がりやすいように、上述のステップST4(図4参照)において、予め凸部54Tが所定の形状および硬さに予備成形されているとよい。 The convex portion 54T enters the molding surface 32 of the upper mold 30. The surface of the convex part 54T and the molding surface 32 of the upper mold | type 30 contact (state shown in FIG. 5). The convex portion 54T wets and spreads in the molding surface 32 from the center side of the molding surface 32 toward the outside (open end 32S). In the above-described step ST4 (see FIG. 4), it is preferable that the convex portion 54T is preliminarily molded into a predetermined shape and hardness so that the convex portion 54T easily spreads in the molding surface 32.
 たとえば、凸部54Tは、凸部54Tの曲率半径54Rが成形面32の曲率半径32Rよりも小さくなるように形成されているとよい。凸部54Tの曲率半径54Rは、微小化部材20に設ける貫通孔23の直径23D(図4参照)、および微小化部材20の微小ガラス滴54に対する押し込み量等に応じて決定される。凸部54Tの硬さは、微小ガラス滴54と微小化部材20とが接触する時間等に応じて決定される。 For example, the convex portion 54T may be formed such that the curvature radius 54R of the convex portion 54T is smaller than the curvature radius 32R of the molding surface 32. The radius of curvature 54R of the convex portion 54T is determined according to the diameter 23D of the through hole 23 provided in the miniaturized member 20 (see FIG. 4), the pushing amount of the miniaturized member 20 into the micro glass droplet 54, and the like. The hardness of the convex portion 54T is determined according to the time for which the minute glass droplet 54 and the minute member 20 are in contact with each other.
 曲率半径54Rが曲率半径32Rよりも小さい場合、凸部54Tは成形面32内に容易に入り込むことができる。凸部54Tが成形面32内に存在していた空気を押し出すことによって(矢印AR54参照)、凸部54Tと成形面32との間に空気溜まりが発生せず、凸部54Tは成形面32内に効果的に濡れ広がることができる。 When the curvature radius 54R is smaller than the curvature radius 32R, the convex portion 54T can easily enter the molding surface 32. When the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54), no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T is in the molding surface 32. Can spread effectively wet.
 また、凸部54Tは、凸部54Tの外周縁54Sの直径54TDが成形面32の開口端32Sの直径32Dよりも小さくなるように形成されていてもよい。凸部54Tの外周縁54Sの直径54TDは、微小化部材20に設ける貫通孔23の直径23D(図4参照)に応じて決定される。 Further, the convex portion 54T may be formed such that the diameter 54TD of the outer peripheral edge 54S of the convex portion 54T is smaller than the diameter 32D of the opening end 32S of the molding surface 32. The diameter 54TD of the outer peripheral edge 54S of the convex portion 54T is determined according to the diameter 23D (see FIG. 4) of the through hole 23 provided in the miniaturized member 20.
 直径54TDが直径32Dよりも小さい場合、凸部54Tは成形面32内に容易に入り込むことができる。凸部54Tが成形面32内に存在していた空気を押し出すことによって(矢印AR54参照)、凸部54Tと成形面32との間に空気溜まりが発生せず、凸部54Tは成形面32内に効果的に濡れ広がることができる。 When the diameter 54TD is smaller than the diameter 32D, the convex portion 54T can easily enter the molding surface 32. When the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54), no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T is in the molding surface 32. Can spread effectively wet.
 (ステップST6)
 図6に示すように、上型30はさらに所定の距離だけ下降移動した後(矢印AR31参照)停止する。上型30の成形面32内の空間は、微小ガラス滴54(図5参照)によって埋め尽くされる。微小ガラス滴54は、上型30および下型40によって加圧され、上型30および下型40との接触によって放熱(脱熱)される。微小ガラス滴54を加圧するために上型30または下型40を駆動するための手段としては、エアシリンダ、油圧シリンダ、またはサーボモータを用いた電動シリンダ等が利用されるとよい。
(Step ST6)
As shown in FIG. 6, the upper mold 30 further moves downward by a predetermined distance (see arrow AR31) and stops. The space in the molding surface 32 of the upper mold 30 is filled with the minute glass droplets 54 (see FIG. 5). The minute glass droplets 54 are pressurized by the upper mold 30 and the lower mold 40 and are radiated (heat removed) by contact with the upper mold 30 and the lower mold 40. As a means for driving the upper mold 30 or the lower mold 40 to pressurize the minute glass droplets 54, an air cylinder, a hydraulic cylinder, an electric cylinder using a servo motor, or the like may be used.
 微小ガラス滴54に対する加圧量は、経時的に変化しても、一定であってもよい。当該加圧量は、微小ガラス滴54の大きさ等に応じて決定されるが、微小ガラス滴54と上型30の成形面32の表面全体とが十分に密着するように設定されるとよい。所定の時間(1秒~10秒)が経過することによって微小ガラス滴54は固化する。 The amount of pressure applied to the minute glass droplets 54 may change over time or may be constant. The amount of pressurization is determined according to the size of the minute glass droplet 54 and the like, but it is preferable that the minute glass droplet 54 and the entire surface of the molding surface 32 of the upper mold 30 are sufficiently in close contact with each other. . The minute glass droplets 54 are solidified as a predetermined time (1 to 10 seconds) elapses.
 微小ガラス滴54は、上型30および下型40による加圧が解除されても微小ガラス滴54の被成形面56(転写面)の形状が維持されるまで冷却固化される。微小ガラス滴54の材質、微小ガラス滴54の大きさ、微小ガラス滴54の形状、または必要とされる成形精度に応じて異なるが、微小ガラス滴54は、たとえばガラス転移点(Tg)付近まで冷却されるとよい。その後、微小ガラス滴54に対する加圧が解除される。 The fine glass droplets 54 are cooled and solidified until the shape of the molding surface 56 (transfer surface) of the fine glass droplets 54 is maintained even when the pressurization by the upper mold 30 and the lower mold 40 is released. Depending on the material of the minute glass droplet 54, the size of the minute glass droplet 54, the shape of the minute glass droplet 54, or the required forming accuracy, the minute glass droplet 54 can be, for example, up to the vicinity of the glass transition point (Tg). It should be cooled. Thereafter, the pressurization to the minute glass droplet 54 is released.
 以上のようにして、ガラス成形体55が得られる。ガラス成形体55には、高い成形精度を有する被成形面56が形成されている。ガラス成形体55は、所定の吸引手段(図示せず)などによって、約1秒~10秒で上型30および下型40から分離される。ガラス成形体55を上型30および下型40から分離した後、上型30および下型40にはクリーニング処理が施されるとよい。 Thus, a glass molded body 55 is obtained. A molded surface 56 having high molding accuracy is formed on the glass molded body 55. The glass molded body 55 is separated from the upper mold 30 and the lower mold 40 in about 1 to 10 seconds by a predetermined suction means (not shown). After separating the glass molded body 55 from the upper mold 30 and the lower mold 40, the upper mold 30 and the lower mold 40 may be subjected to a cleaning process.
 本実施の形態におけるガラス成形体の製造方法は、上記のステップST1~ステップST6が約1分間の周期で繰り返されるとよい。この場合、ステップST2におけるノズル12からの溶融ガラス滴52の滴下の間隔は、約15秒~約30秒に設定されるとよい。 In the method for manufacturing a glass molded body in the present embodiment, the above-described steps ST1 to ST6 may be repeated at a cycle of about 1 minute. In this case, the interval of dropping of the molten glass droplet 52 from the nozzle 12 in step ST2 may be set to about 15 seconds to about 30 seconds.
 (作用・効果)
 微小化部材20の貫通孔23を効果的に活用することによって、微小ガラス滴54が下型40の成形面41上に供給される。微小ガラス滴54は、ノズル12から滴下される溶融ガラス滴53の重量よりも小さい。本実施の形態におけるガラス成形体の製造方法によれば、微小ガラス滴54の直径54D(図3参照)を5mm以下にすることができる。
(Action / Effect)
By effectively utilizing the through hole 23 of the miniaturized member 20, the small glass droplet 54 is supplied onto the molding surface 41 of the lower mold 40. The minute glass droplet 54 is smaller than the weight of the molten glass droplet 53 dripped from the nozzle 12. According to the method for manufacturing a glass molded body in the present embodiment, the diameter 54D (see FIG. 3) of the minute glass droplet 54 can be 5 mm or less.
 直径54Dがたとえば5mm以下である場合、下型40の成形面41上に供給された微小ガラス滴54は、空気および下型40に熱を奪われることによって急速に冷却される。これに対して、溶融ガラス滴52のうち残部の溶融ガラス滴53が微小化部材20の上面21上に残留している。溶融ガラス滴53は、微小化部材20の貫通孔23付近を加熱する。微小ガラス滴54と微小化部材20の開口端23S(下面22)とが接触することによって、微小ガラス滴54の冷却速度は緩和される。さらに、微小化部材20の開口端23Sと微小ガラス滴54の表面との接触によって、微小ガラス滴54にはドーム状の凸部54Tが予備的に成形される(図4参照)。 When the diameter 54D is, for example, 5 mm or less, the minute glass droplets 54 supplied onto the molding surface 41 of the lower mold 40 are rapidly cooled by taking heat away from the air and the lower mold 40. On the other hand, the remaining molten glass droplet 53 among the molten glass droplets 52 remains on the upper surface 21 of the miniaturized member 20. The molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20. When the minute glass droplet 54 and the opening end 23S (lower surface 22) of the minute member 20 come into contact with each other, the cooling rate of the minute glass droplet 54 is reduced. Further, a dome-shaped convex portion 54T is preliminarily formed on the minute glass droplet 54 by contact between the opening end 23S of the miniaturizing member 20 and the surface of the minute glass droplet 54 (see FIG. 4).
 微小ガラス滴54は、上型30および下型40による加圧成形の際、凸部54Tを起点として上型30の成形面32の中央側から外側(開口端32S)に向かって成形面32内に濡れ広がることができる。凸部54Tが成形面32内に存在していた空気を押し出すことによって(図5中の矢印AR54参照)、凸部54Tと成形面32との間に空気溜まりが発生せず、凸部54Tは成形面32内に効果的に濡れ広がることができる。 The minute glass droplets 54 are formed in the molding surface 32 from the center side of the molding surface 32 of the upper die 30 toward the outside (opening end 32S) with the convex portion 54T as a starting point during pressure molding by the upper die 30 and the lower die 40. Can spread out wet. When the convex portion 54T pushes out the air that was present in the molding surface 32 (see arrow AR54 in FIG. 5), no air pool is generated between the convex portion 54T and the molding surface 32, and the convex portion 54T The wetted surface can be effectively spread in the molding surface 32.
 本実施の形態におけるガラス成形体の製造方法によって製造されたガラス成形体55には、高い成形精度を有する被成形面56が形成される。ガラス成形体55は、高い品質を有し、成形品として高い性能を発揮することが可能となる。ガラス成形体55は、ガラス製の光学素子として、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、照明用レンズ、または各種ミラーとして広範囲にわたって使用されることができる。 A molded surface 56 having high molding accuracy is formed on the glass molded body 55 manufactured by the method for manufacturing a glass molded body in the present embodiment. The glass molded body 55 has high quality and can exhibit high performance as a molded product. The glass molded body 55 is widely used as a glass optical element, as a digital camera lens, an optical pickup lens such as a DVD, a mobile phone camera lens, a coupling lens for optical communication, an illumination lens, or various mirrors. Can be done.
 [実施の形態の他の構成]
 以下、上述の実施の形態の他の構成について説明する。ここでは、上述の実施の形態におけるガラス成形体の製造方法との相違点について説明する。上述の実施の形態のステップST4(図4参照)においては、微小化部材20の開口端23Sが微小ガラス滴54の表面に接触するという態様に基づいて説明した。
[Other configurations of the embodiment]
Hereinafter, another configuration of the above-described embodiment will be described. Here, differences from the glass molded body manufacturing method according to the above-described embodiment will be described. In step ST4 (see FIG. 4) of the above-described embodiment, the description has been made based on the aspect in which the opening end 23S of the miniaturizing member 20 contacts the surface of the micro glass droplet 54.
 図7を参照して、微小ガラス滴54の表面には、微小化部材20とは別に準備された予備成形部材20Aの開口端23Sが接触してもよい。予備成形部材20Aを用いる場合、予備成形部材20Aに設けられた凹部23Aが、下面22上に開口端23Sを形成している。予備成形部材20Aは、予め所定の温度に加熱されているとよい。 Referring to FIG. 7, the opening end 23 </ b> S of the preformed member 20 </ b> A prepared separately from the miniaturized member 20 may come into contact with the surface of the minute glass droplet 54. When the preforming member 20A is used, a recess 23A provided in the preforming member 20A forms an open end 23S on the lower surface 22. The preforming member 20A may be preheated to a predetermined temperature.
 図8に示す予備成形部材20A1のように、開口端23Sを形成するためには、微小化部材20と同様に貫通孔23A1が設けられていてもよい。予備成形部材20A1も、予め所定の温度に加熱されているとよい。 As in the preformed member 20A1 shown in FIG. 8, in order to form the open end 23S, a through hole 23A1 may be provided in the same manner as the miniaturized member 20. The preforming member 20A1 is also preferably heated to a predetermined temperature in advance.
 図7を再び参照して、予備成形部材20Aの開口端23Sが微小ガラス滴54の表面に当接した後、予備成形部材20Aはさらに所定の距離だけ下降移動して停止する。微小ガラス滴54の表面に、予備成形部材20Aの開口端23Sが押し当てられる。上述の実施の形態と同様に、微小ガラス滴54の一部は貫通孔23内に入り込み、微小ガラス滴54の上部にドーム状の凸部54Tが形成される。凸部54Tの表面は空気との接触により徐々に硬化する。凸部54Tは予備的に成形される。 Referring again to FIG. 7, after the opening end 23S of the preforming member 20A comes into contact with the surface of the minute glass droplet 54, the preforming member 20A further moves downward by a predetermined distance and stops. The opening end 23 </ b> S of the preforming member 20 </ b> A is pressed against the surface of the minute glass droplet 54. Similar to the above-described embodiment, a part of the minute glass droplet 54 enters the through hole 23, and a dome-shaped convex portion 54T is formed on the upper part of the minute glass droplet 54. The surface of the convex portion 54T is gradually cured by contact with air. The convex portion 54T is preliminarily molded.
 凸部54Tが成形されていることによって、上型30と下型40との加圧成形時に、凸部54Tと上型30の成形面32との間に空気溜まりは発生しない。凸部54Tは上型30の成形面32内に効果的に濡れ広がることができる。結果として、上述の実施の形態と同様の効果を得ることができる。 Since the convex portion 54T is molded, no air pocket is generated between the convex portion 54T and the molding surface 32 of the upper die 30 when the upper mold 30 and the lower mold 40 are pressure-molded. The convex portion 54T can effectively wet and spread in the molding surface 32 of the upper mold 30. As a result, the same effect as that of the above-described embodiment can be obtained.
 [実施例]
 図9~図11を参照して、上述の実施の形態に基づく実施例について説明する。図9を参照して、本実施例では、まず、微小化部材20B、上型30B、および下型40Bが準備される。微小化部材20Bの貫通孔23の直径23Dは1mmである。本実施例における微小化部材20Bは、貫通孔23の上部にテーパー面24を有している。上型30Bおよび下型40Bの材質は、いずれも炭化タングステンを主成分とする超硬材料である。
[Example]
An example based on the above-described embodiment will be described with reference to FIGS. Referring to FIG. 9, in this embodiment, first, a miniaturized member 20B, an upper mold 30B, and a lower mold 40B are prepared. The diameter 23D of the through hole 23 of the miniaturized member 20B is 1 mm. The miniaturized member 20 </ b> B in the present embodiment has a tapered surface 24 at the top of the through hole 23. The materials of the upper mold 30B and the lower mold 40B are both super hard materials mainly composed of tungsten carbide.
 上型30Bの成形面31に凹設された成形面32は、曲率半径(図1における曲率半径32Rに対応)が1mm、開口端の直径(図1における直径32Dに対応)が1.73mmである。下型40Bは、成形面41に成形面42が凹設されている。成形面42は、曲率半径が2mm、開口端の直径が3.43mmである。 The molding surface 32 recessed in the molding surface 31 of the upper mold 30B has a radius of curvature (corresponding to the radius of curvature 32R in FIG. 1) of 1 mm and an opening end diameter (corresponding to the diameter 32D in FIG. 1) of 1.73 mm. is there. In the lower mold 40B, the molding surface 42 is recessed in the molding surface 41. The molding surface 42 has a radius of curvature of 2 mm and an opening end diameter of 3.43 mm.
 下型40Bの成形面42の表面には、当該表面を粗面化することを目的として、クロムの金属膜からなる厚さ0.5μmの保護膜(図示せず)がスパッタ法により成膜され、当該保護膜に粗面化処理が施されている。この粗面化処理は、保護膜の表面をエッチング液に浸漬することによって行なわれた。エッチング液としては、硝酸第2セリウムアンモンを含むクロムエッチング液(ECR-2:ナカライテスク株式会社製)が使用された。 On the surface of the molding surface 42 of the lower mold 40B, a 0.5 μm thick protective film (not shown) made of a chromium metal film is formed by sputtering for the purpose of roughening the surface. The roughening treatment is applied to the protective film. This roughening treatment was performed by immersing the surface of the protective film in an etching solution. As the etchant, a chromium etchant containing ceric ammonium nitrate (ECR-2: manufactured by Nacalai Tesque, Inc.) was used.
 下型40Bの成形面42の表面に成膜された保護膜が粗面化されることによって、微小ガラス滴54と成形面42との間に空気溜まりが発生することを抑制できる。下型40Bの成形面42の表面を粗面化するためには、保護膜を成膜せずに、下型40Bの成形面42に対して直接粗面化処理を施してもよい。また、上型30の成形面32に粗面化処理がさらに施されてもよい。 When the protective film formed on the surface of the molding surface 42 of the lower mold 40B is roughened, it is possible to suppress the occurrence of air accumulation between the minute glass droplets 54 and the molding surface 42. In order to roughen the surface of the molding surface 42 of the lower mold 40B, a roughening treatment may be performed directly on the molding surface 42 of the lower mold 40B without forming a protective film. Further, a roughening process may be further performed on the molding surface 32 of the upper mold 30.
 上型30Bおよび下型40Bを約450℃に加熱した状態で、ノズル(図示せず)から溶融ガラス滴を落下させた。溶融ガラス滴の一部の微小ガラス滴54が、貫通孔23を通り抜けて、下型40Bの成形面41上に供給された。テーパー面24が貫通孔23の上部に設けられていることによって、微小ガラス滴54の落下位置のバラツキ、および微小ガラス滴54の重量のバラツキが低減されている。溶融ガラス滴の残部の溶融ガラス滴53は、微小化部材20Bの貫通孔23付近における上面21上に残留した(図9に示す状態)。 While the upper mold 30B and the lower mold 40B were heated to about 450 ° C., molten glass droplets were dropped from a nozzle (not shown). Some of the molten glass droplets 54 passed through the through hole 23 and were supplied onto the molding surface 41 of the lower mold 40B. Since the tapered surface 24 is provided in the upper portion of the through hole 23, variation in the drop position of the minute glass droplet 54 and variation in the weight of the minute glass droplet 54 are reduced. The remaining molten glass droplet 53 of the molten glass droplet remained on the upper surface 21 in the vicinity of the through hole 23 of the miniaturized member 20B (state shown in FIG. 9).
 図10に示すように、微小化部材20Bを微小ガラス滴54の表面に接触させた。微小化部材20Bを微小ガラス滴54に対して所定の量だけ押し込むことによって、凸部54Tを形成した。本実施例における凸部54Tの表面の曲率半径は約0.5mmである。上述の実施の形態と同様に、溶融ガラス滴53が微小化部材20Bの上面21上に残留している。溶融ガラス滴53は、微小化部材20の貫通孔23付近を加熱する。微小化部材20Bが微小ガラス滴54に接触することによって、微小ガラス滴54の冷却速度は緩和されている。 As shown in FIG. 10, the micronized member 20 </ b> B was brought into contact with the surface of the micro glass droplet 54. The protrusion 54T was formed by pushing the micronized member 20B into the micro glass droplet 54 by a predetermined amount. In this embodiment, the radius of curvature of the surface of the convex portion 54T is about 0.5 mm. Similar to the above-described embodiment, the molten glass droplet 53 remains on the upper surface 21 of the miniaturized member 20B. The molten glass droplet 53 heats the vicinity of the through hole 23 of the miniaturized member 20. When the micronized member 20B comes into contact with the micro glass droplet 54, the cooling rate of the micro glass droplet 54 is reduced.
 図11に示すように、下型40Bを上型30Bの下方に移動した後、微小ガラス滴54を上型30Bおよび下型40Bによって加圧成形した。凸部54Tの存在によって、微小ガラス滴54は上型30Bの成形面32内に十分に濡れ広がる。微小ガラス滴54は、上型30Bの成形面32に対して良好に転写される。本実施例における製造方法によって得られたガラス成形体55には、高い成形精度を有する被成形面56が形成されていることが確認された。 As shown in FIG. 11, after moving the lower mold 40B below the upper mold 30B, the minute glass droplets 54 were pressure-formed by the upper mold 30B and the lower mold 40B. Due to the presence of the convex portion 54T, the minute glass droplet 54 is sufficiently spread in the molding surface 32 of the upper mold 30B. The minute glass droplets 54 are satisfactorily transferred to the molding surface 32 of the upper mold 30B. It was confirmed that a molded surface 56 having high molding accuracy was formed on the glass molded body 55 obtained by the manufacturing method in this example.
 [比較例]
 図12および図13を参照して、上述の実施例に対する比較例について説明する。本比較例においては、微小化部材20は微小ガラス滴54に接触しない。微小ガラス滴54には、凸部54Tが形成されていない。
[Comparative example]
With reference to FIG. 12 and FIG. 13, the comparative example with respect to the above-mentioned Example is demonstrated. In this comparative example, the miniaturized member 20 does not contact the small glass droplet 54. The minute glass droplet 54 is not formed with a convex portion 54T.
 図12に示すように、微小ガラス滴54が下型40Bの成形面41上に供給された時点で、微小ガラス滴54の温度は急速に低下し、さらに微小ガラス滴54は下型40Bによって熱を奪われている。微小ガラス滴54の表面は一定の粘度以下にまで硬化している。微小ガラス滴54の表面の(近似)曲率半径は約3.0mmである。当該曲率半径は、上型30Bの成形面32の曲率半径(1.0mm)よりも大きい。 As shown in FIG. 12, when the small glass droplet 54 is supplied onto the molding surface 41 of the lower mold 40B, the temperature of the small glass droplet 54 rapidly decreases, and the small glass droplet 54 is heated by the lower mold 40B. Is deprived. The surface of the minute glass droplet 54 is cured to a certain viscosity or less. The (approximate) radius of curvature of the surface of the small glass droplet 54 is about 3.0 mm. The curvature radius is larger than the curvature radius (1.0 mm) of the molding surface 32 of the upper mold 30B.
 図13に示すように、下型40Bを上型30Bの下方に移動した後、微小ガラス滴54を上型30Bおよび下型40Bによって加圧成形した。微小ガラス滴54の表面と上型30Bの成形面32との間に空気溜まりSが発生した。微小ガラス滴54は、上型30Bの成形面32に対して良好に転写されず、ガラス成形体55には低い成形精度を有する被成形面56が形成された。 As shown in FIG. 13, after the lower mold 40B was moved below the upper mold 30B, the minute glass droplets 54 were pressure-formed by the upper mold 30B and the lower mold 40B. An air pocket S was generated between the surface of the minute glass droplet 54 and the molding surface 32 of the upper mold 30B. The minute glass droplets 54 were not transferred well to the molding surface 32 of the upper mold 30 </ b> B, and the molding surface 56 having low molding accuracy was formed on the glass molding 55.
 別の比較例として、微小ガラス滴54が上型30Bの成形面32に対して良好に転写されるように、上型30Bと下型40Bとによる加圧量を増加させたところ、被成形面56にヒビおよび割れが発生した。ヒビおよび割れの発生の原因は、転写面(被成形面56)が冷却されている状態で、転写面に大きな加圧力が作用したことによるものと推察される。 As another comparative example, when the amount of pressure applied by the upper mold 30B and the lower mold 40B is increased so that the minute glass droplets 54 are transferred well to the molding surface 32 of the upper mold 30B, the molding surface 56 was cracked and cracked. The cause of the occurrence of cracks and cracks is presumed to be that a large pressing force was applied to the transfer surface while the transfer surface (molded surface 56) was cooled.
 したがって、上述の実施例および比較例の対比から、上型30Bおよび下型40Bの加圧成時において微小ガラス滴54に凸部54Tが形成されていることによって、ガラス成形体55には高い成形精度を有する被成形面56が形成されることがわかる。 Therefore, from the comparison of the above-described examples and comparative examples, the glass molded body 55 is highly molded by the convex portions 54T being formed on the minute glass droplets 54 when the upper mold 30B and the lower mold 40B are pressurized. It can be seen that the molding surface 56 having accuracy is formed.
 以上、本発明に基づいた実施の形態および実施例について説明したが、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments and examples based on the present invention have been described above, the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 溶融ルツボ、12 ノズル、20,20B 微小化部材、20A,20A1 予備成形部材、21 上面、22 下面、23,23A1 貫通孔、23A 凹部、23D,32D,52D,54D,54TD 直径、23S,32S 開口端、24 テーパー面、30,30B 上型、31,32,41,42 成形面、32R,54R 曲率半径、40,40B 下型、50 溶融ガラス、51 溶融ガラス、52,53 溶融ガラス滴、54 微小ガラス滴、54S 外周縁、54T 凸部、55 ガラス成形体、56 被成形面、AR20,AR30,AR31,AR52,AR54,AR58 矢印、ST1~ST6 ステップ、L20 厚さ。 10 melting crucible, 12 nozzle, 20, 20B miniaturized member, 20A, 20A1 preformed member, 21 upper surface, 22 lower surface, 23, 23A1 through hole, 23A recessed portion, 23D, 32D, 52D, 54D, 54TD diameter, 23S, 32S Open end, 24 taper surface, 30, 30B upper mold, 31, 32, 41, 42 molding surface, 32R, 54R curvature radius, 40, 40B lower mold, 50 molten glass, 51 molten glass, 52, 53 molten glass droplets, 54, small glass droplets, 54S outer periphery, 54T protrusion, 55 glass molded body, 56 molded surface, AR20, AR30, AR31, AR52, AR54, AR58 arrows, ST1 to ST6 steps, L20 thickness.

Claims (5)

  1.  成形面(32)が凹設された上型(30)と、下型(40)と、上面(21)から下面(22)に向かって貫通する貫通孔(23)が設けられた微小化部材(20)とを準備する工程と、
     前記貫通孔の孔径(23D)よりも大きな直径(52D)を有する溶融ガラス滴(52)を前記微小化部材の前記貫通孔に向かって滴下することによって、前記溶融ガラス滴の一部を前記溶融ガラス滴よりも小さな微小ガラス滴(54)として前記貫通孔を通過させ、前記微小ガラス滴を前記下型上に供給する工程と、
     前記微小化部材の前記下面側に位置する前記貫通孔の開口端(23S)を前記下型上に供給された前記微小ガラス滴の表面に押し当てることによって、前記微小ガラス滴に凸部(54T)を形成する工程と、
     前記凸部が前記上型の前記成形面内に濡れ広がるように、前記上型および前記下型によって前記微小ガラス滴を加圧する工程と、を備える、
    ガラス成形体の製造方法。
    A miniaturized member provided with an upper mold (30) having a molding surface (32) recessed, a lower mold (40), and a through hole (23) penetrating from the upper surface (21) toward the lower surface (22). A step of preparing (20);
    A molten glass droplet (52) having a diameter (52D) larger than the hole diameter (23D) of the through hole is dropped toward the through hole of the miniaturized member, thereby partially melting the molten glass droplet. Passing the through-hole as a micro glass droplet (54) smaller than a glass droplet, and supplying the micro glass droplet onto the lower mold;
    By pressing the open end (23S) of the through hole located on the lower surface side of the micronizing member against the surface of the microglass droplet supplied onto the lower mold, a convex portion (54T )
    Pressing the fine glass droplets with the upper mold and the lower mold so that the convex portion wets and spreads within the molding surface of the upper mold,
    A method for producing a glass molded body.
  2.  成形面(32)が凹設された上型(30)と、下型(40)と、上面(21)から下面(22)に向かって貫通する貫通孔(23)が設けられた微小化部材(20)と、凹部(23A)または他の貫通孔(23A1)が設けられた予備成形部材(20A,20A1)とを準備する工程と、
     前記貫通孔の孔径(23D)よりも大きな直径(52D)を有する溶融ガラス滴(52)を前記微小化部材の前記貫通孔に向かって滴下することによって、前記溶融ガラス滴の一部を前記溶融ガラス滴よりも小さな微小ガラス滴(54)として前記貫通孔を通過させ、前記微小ガラス滴を前記下型上に供給する工程と、
     前記予備成形部材に設けられた前記凹部または前記他の貫通孔の開口端(23S)を前記下型上に供給された前記微小ガラス滴の表面に押し当てることによって、前記微小ガラス滴に凸部(54T)を形成する工程と、
     前記凸部が前記上型の前記成形面内に濡れ広がるように、前記上型および前記下型によって前記微小ガラス滴を加圧する工程と、を備える、
    ガラス成形体の製造方法。
    A miniaturized member provided with an upper mold (30) having a molding surface (32) recessed, a lower mold (40), and a through hole (23) penetrating from the upper surface (21) toward the lower surface (22). (20) and a step of preparing a preformed member (20A, 20A1) provided with a recess (23A) or another through hole (23A1);
    A molten glass droplet (52) having a diameter (52D) larger than the hole diameter (23D) of the through hole is dropped toward the through hole of the miniaturized member, thereby partially melting the molten glass droplet. Passing the through-hole as a micro glass droplet (54) smaller than a glass droplet, and supplying the micro glass droplet onto the lower mold;
    A convex portion is formed on the minute glass droplet by pressing an opening end (23S) of the concave portion or the other through hole provided in the preforming member against the surface of the minute glass droplet supplied to the lower mold. Forming (54T);
    Pressing the fine glass droplets with the upper mold and the lower mold so that the convex portion wets and spreads within the molding surface of the upper mold,
    A method for producing a glass molded body.
  3.  前記凸部(54T)を形成する工程においては、前記凸部の曲率半径(54R)が前記上型に凹設された前記成形面の曲率半径(32R)よりも小さくなるように、前記微小ガラス滴に前記凸部が形成される、
    請求項1または2に記載のガラス成形体の製造方法。
    In the step of forming the convex portion (54T), the fine glass is formed such that the radius of curvature (54R) of the convex portion is smaller than the radius of curvature (32R) of the molding surface recessed in the upper mold. The protrusions are formed on the droplets;
    The manufacturing method of the glass forming body of Claim 1 or 2.
  4.  前記凸部(54T)を形成する工程においては、前記凸部の外周縁(54S)の直径(54TD)が前記上型に凹設された前記成形面の前記開口端(32S)の直径(32D)よりも小さくなるように、前記微小ガラス滴に前記凸部が形成される、
    請求項1または2に記載のガラス成形体の製造方法。
    In the step of forming the convex portion (54T), the diameter (54TD) of the outer peripheral edge (54S) of the convex portion is the diameter (32D) of the opening end (32S) of the molding surface that is recessed in the upper mold. ), The convex portions are formed on the micro glass droplets,
    The manufacturing method of the glass forming body of Claim 1 or 2.
  5.  請求項1~4のいずれかに記載のガラス成形体の製造方法によって製造された、
    ガラス成形体(55)。
    Produced by the method for producing a glass molded body according to any one of claims 1 to 4,
    Glass molded body (55).
PCT/JP2011/070824 2010-11-19 2011-09-13 Glass compact and method for manufacturing same WO2012066843A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012544140A JPWO2012066843A1 (en) 2010-11-19 2011-09-13 Glass molded body and method for producing the same
CN201180055702.4A CN103249683B (en) 2010-11-19 2011-09-13 Glass shaping body and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-258763 2010-11-19
JP2010258763 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012066843A1 true WO2012066843A1 (en) 2012-05-24

Family

ID=46083786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070824 WO2012066843A1 (en) 2010-11-19 2011-09-13 Glass compact and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2012066843A1 (en)
CN (1) CN103249683B (en)
WO (1) WO2012066843A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166524A (en) * 1992-11-27 1994-06-14 Olympus Optical Co Ltd Method for forming optical element
JP2003292327A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Method for producing optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950434B2 (en) * 2002-06-26 2007-08-01 Hoya株式会社 Method for producing glass molded body
JP2005060133A (en) * 2003-08-08 2005-03-10 Hoya Corp Method for manufacturing molten glass, method for manufacturing glass molding, and method for manufacturing optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166524A (en) * 1992-11-27 1994-06-14 Olympus Optical Co Ltd Method for forming optical element
JP2003292327A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Method for producing optical element

Also Published As

Publication number Publication date
CN103249683B (en) 2016-01-13
CN103249683A (en) 2013-08-14
JPWO2012066843A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5565285B2 (en) Manufacturing method of glass optical element
JP5382276B1 (en) Method for manufacturing lens barrel-integrated lens
JP4309859B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
JP2004339039A (en) Optical element manufacturing method
JP5099053B2 (en) Method for producing glass mold and method for producing glass molded body
JP4045833B2 (en) Optical element manufacturing method
JPH01133948A (en) Manufacture of optical element
WO2012066843A1 (en) Glass compact and method for manufacturing same
JP2007119335A (en) Method of manufacturing glass gob, manufacturing apparatus thereof and method of manufacturing optical device
JP5565265B2 (en) Method for producing glass molded body
JP4779861B2 (en) Manufacturing method of glass optical element
CN102757168A (en) Method for producing preset-shaped glass member for precision stamping molding and method for producing optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP2012086996A (en) Molding die and method for manufacturing glass molded article
JP2006089313A (en) Method of molding plastic material
JP5018503B2 (en) Molten glass droplet miniaturized member, glass gob manufacturing method, and glass molded body manufacturing method
JP2001019448A (en) Production of glass blank for optical element, production of optical element using the same and glass optical element
JP2002062416A (en) Method for manufacturing optical device or method for manufacturing device, and optical system, device for photographing and device for observation having the same
JP5652398B2 (en) Method for producing glass gob and method for producing glass molded body
JP2011057515A (en) Glass gob and method for manufacturing glass molding
JP2010241614A (en) Production method of glass molding
WO2010050298A1 (en) Apparatus for producing glass molded body and method for producing glass molded body
JPH0445454B2 (en)
JP2011126758A (en) Molding die for optical element and method for molding optical element by using the same
WO2013172245A1 (en) Method for manufacturing glass molding and lower die for molding glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841668

Country of ref document: EP

Kind code of ref document: A1