WO2012066827A1 - 生体試料調製方法 - Google Patents

生体試料調製方法 Download PDF

Info

Publication number
WO2012066827A1
WO2012066827A1 PCT/JP2011/067471 JP2011067471W WO2012066827A1 WO 2012066827 A1 WO2012066827 A1 WO 2012066827A1 JP 2011067471 W JP2011067471 W JP 2011067471W WO 2012066827 A1 WO2012066827 A1 WO 2012066827A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
tissue
section
stained
unstained
Prior art date
Application number
PCT/JP2011/067471
Other languages
English (en)
French (fr)
Inventor
森本 伸彦
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP11841752.6A priority Critical patent/EP2629078B1/en
Priority to JP2012544130A priority patent/JP5744905B2/ja
Priority to CN201180055314.6A priority patent/CN103221800B/zh
Publication of WO2012066827A1 publication Critical patent/WO2012066827A1/ja
Priority to US13/894,661 priority patent/US9530204B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/06Devices for withdrawing samples in the solid state, e.g. by cutting providing a thin slice, e.g. microtome
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a biological sample preparation method.
  • Non-Patent Document 1 a technique for collecting a fragment from a specific region of a tissue section of a living tissue by irradiating a high-power laser is known (for example, see Non-Patent Document 1).
  • the collected fragments are used for analysis of biomolecules such as nucleic acids and proteins existing in a specific region such as a lesion site.
  • the position of the fragment to be collected is accurately determined by staining the tissue section with a dye so that the tissue morphology can be identified with a microscope.
  • Leica MICROSYSTEMS "Laser Microdissection Leica LMD7000", [online], [October 5, 2010 search], Internet ⁇ URL: http://www.leica-microsystems.com/jp/products/light-microscopes / life-science-research / laser-microdissection / details / product / leica-lmd7000 />
  • the present invention has been made in view of the above-described circumstances, and provides a biological sample preparation method capable of collecting a sufficient amount of biomolecules from a desired region in a tissue section by a single operation. Objective.
  • the present invention relates to a slicing step for slicing a living tissue by a cross section, a staining step for staining one of two tissue sections sliced by the slicing step, and a tissue stained in the staining step.
  • a stained image capturing step for obtaining a stained image of a section, and a dividing line for dividing the tissue section into a plurality of fragments are defined for the other of the two tissue sections sliced by the slice section.
  • An unstained image capturing step for acquiring the unstained image, and an association step for associating the unstained image acquired in the unstained image capturing step with the stained image acquired in the stained image capturing step.
  • a biological sample preparation method is provided.
  • a fragment of a tissue section is prepared by dividing the other tissue section sliced in the slice section along the dividing line in the unstained image acquired in the unstained image photographing step. be able to.
  • one section in the stained image that was stained in the staining step and photographed in the stained image capturing step has the same tissue morphology as the other tissue section in the unstained image. Therefore, by referring to the part of one tissue section in the stained image that is associated with each fragment in the unstained image in the association step, the operator knows the tissue form that each fragment has, and Fragments of the desired region can be prepared or analyzed. Further, the tissue section from which the fragments are collected need not be thinned to a thickness suitable for staining. Therefore, a sufficient amount of biomolecules can be collected in a single operation by slicing the other tissue section thicker than one tissue section so that one fragment contains abundant biomolecules.
  • the unstained image capturing step may be performed by mounting the other tissue section on a substrate that can be divided along the dividing line. In this way, an unstained image in which a dividing line is defined for a tissue slice can be acquired simply by photographing a tissue slice mounted on the substrate.
  • the matching step matches the two contours extracted by the contour extraction step for extracting the contours of the two tissue sections from the unstained image and the stained image, respectively.
  • a superimposing step of superimposing the unstained image and the stained image may be included.
  • the matching step matches the feature point extraction step of extracting a plurality of the same feature points from the unstained image and the stained image, and the positions of the feature points extracted by the feature point extraction step.
  • the superimposing step of superimposing the unstained image and the stained image may be included. In this way, tissue sections in different images can be easily and more accurately associated.
  • a fragment designated by the operator can be selectively collected from a plurality of fragments.
  • the specifying step specifies a position to be collected from the tissue section based on the stained image, and specifies by the specifying step based on the unstained image. And determining a fragment associated with the position to be collected. By doing in this way, only the fragment
  • the tissue section may be divided into a plurality of pieces along the dividing line, and a collection step of collecting each piece by attaching position information on the tissue section may be included.
  • a collection step of collecting each piece by attaching position information on the tissue section may be included.
  • the biological sample preparation method according to the present embodiment includes a slicing step S1 for cutting two tissue sections 1 and 2 from a biological tissue, and a staining step S2 for staining one tissue section 1.
  • Contour extraction step (association step) S5 for extracting the contours 7 and 8 of the tissue sections 1 and 2 from the stained image 5 and the unstained image 6 respectively, and a superposition step for superimposing the stained image 5 and the unstained image 6 (Association step) S6, a designation step S7 for designating a position to be collected from the tissue section 2 based on the superimposed image, and a step for collecting the designated position from the other tissue section 2 And a step S8.
  • tissue sections 1 and 2 cut by a cross section are created. That is, the two tissue sections 1 and 2 have a cross section of a common tissue form.
  • One tissue section (hereinafter referred to as a section for staining) 1 is sliced into a thickness of about 1 to 10 ⁇ m, which is a thickness suitable for observation of a stained image.
  • the other tissue section (hereinafter referred to as analysis section) 2 is thicker than the staining section 1, and is sliced into a thickness of, for example, about 50 to 100 ⁇ m.
  • the staining section 1 is stained.
  • Staining refers to treatment for visualizing biomolecules with various microscopes, such as treatment with an enzyme in addition to staining with pigments, and appropriate determination according to the biomolecule to be analyzed. Can do.
  • the stained image 5 is obtained by enlarging and photographing the staining section 1 stained in the staining step S2 with a microscope.
  • substrate 4 should just have a plane which can affix the section
  • the substrate 4 is preferably made of a material transparent to visible light such as glass so that a transmitted light image can be observed with a microscope.
  • the substrate 4 may be made of a material that is translucent or opaque to visible light such as resin or metal.
  • the analysis section 2 is enlarged and photographed by a bright field microscope.
  • the dividing line 3 formed on the substrate 4 together with the analysis section 2 is also displayed. Thereby, the unstained image 6 in which the position of the dividing line 3 is defined with respect to the analysis section 2 can be easily acquired.
  • the dividing line 3 is configured so that the operator can divide the substrate 4 at the position, and is, for example, a groove formed in the substrate 4.
  • the groove can be formed manually by an operator using laser processing, chemical etching, dicing, glass cutting, or the like.
  • the analysis section 2 attached on the substrate 4 can also be divided into a plurality of pieces 2 a along the dividing line 3 together with the substrate 4.
  • the interval between the dividing lines 3 can be appropriately changed according to the size of the fragment 2a to be collected from the analysis section 2.
  • the interval between the dividing lines 3 is 0 so that a sufficient amount of biomolecules are contained in the collected fragment 2a while collecting the fragment 2a in a desired region from the analysis section 2 with sufficiently fine positional accuracy. .05 to 5.0 mm is preferred.
  • the method of pulling the substrate 4 is not particularly limited.
  • the substrate 4 is bonded onto a pressure-sensitive adhesive sheet that can be extended in the direction along the surface, and the substrate 4 is easily divided by pulling the pressure-sensitive adhesive sheet in the direction along the surface. be able to.
  • the dividing line 3 may be configured by, for example, gaps between a plurality of small pieces 4a that are divided in advance and aligned on the adhesive sheet. By doing so, the substrate 4 can be more reliably divided when the operator pulls the substrate 4 in the surface direction.
  • the contour 7 of the staining section 1 is extracted from the stained image 5 as shown in FIG. 3, and the contour 8 of the analytical section 2 is extracted from the unstained image 6 as shown in FIG. And the dividing line 3 is extracted.
  • a well-known method such as a method using a difference in brightness or differentiation between adjacent pixels can be used.
  • Image processing may be performed as appropriate so that the contours 7 and 8 are extracted more clearly. Examples of image processing include gamma curve correction, brightness adjustment, contrast enhancement, binarization of luminance, inversion of brightness, noise removal by a median filter, and the like.
  • the stained image 5 and the unstained image 6 are superimposed and displayed so that the positions of the extracted two contours 7 and 8 are matched.
  • the two images 5 and 6 may be superimposed at a relative position where the cross-correlation value between the contours 7 and 8 is the largest.
  • the positions of the staining section 1 and the analysis section 2 are associated with each other and stained in the same positional relationship as that defined for the analysis section 2 in the superimposed image.
  • a dividing line 3 is also defined for the section 1 for use.
  • the sections 1 and 2 in the stained image 5 and the unstained image 6 may have different orientations and front and back, or may have different magnifications due to being photographed with different microscopes and cameras. Accordingly, the images 5 and 6 may be appropriately operated such that one image is rotated, reversed, or reduced or enlarged so that the extracted contours 7 and 8 are more accurately matched.
  • the operator determines a region to be collected by observing the tissue form of the stained image 5 among the images displayed in a superimposed manner, and a fragment arranged at a position that matches the determined region Specify 2a.
  • the fragments 2a partitioned by the dividing line 3 are given row numbers A, B, C, D and column numbers 1, 2, 3,... And fragments to be collected using combinations of row numbers and column numbers. Specify the position of 2a.
  • the substrate 4 and the analysis section 2 are divided along the dividing line 3, and the fragment 2a at the position designated by the operator is selected and collected in the designated step S7.
  • the fragment 2 a having the same tissue form as the region determined based on the stained image 5 can be collected from the analysis section 2 in a state of being attached to the small piece 4 a of the substrate 4.
  • nucleic acids, proteins, sugar chains, lipids and the like can be analyzed as biomolecules.
  • a sufficient amount of biomolecules are contained in the fragment 2a collected from the analysis section 2 that is thicker than the thin section 1 for staining. Therefore, in order to collect a sufficient amount of biomolecules for analysis, the work that has been required to repeatedly collect fragments many times using a large number of sections for staining can be done in one or several times. There is an advantage that you can.
  • a method of associating the positions of the staining section 1 and the analysis section 2 a method of attaching a marker to the corresponding position of each tissue section 1 or 2 can be considered.
  • this method it is necessary to compare the two tissue sections 1 and 2 in detail in order to determine the position where the marker is attached, and attach the marker with high positional accuracy. Therefore, the work is complicated and the number of processes is increased.
  • the correspondence between the two tissue sections 1 and 2 can be easily performed. There is an advantage that it can be applied.
  • the analysis section 2 is divided and the desired fragment 2a is selectively recovered.
  • the stained image 5 was photographed to find the position of each fragment 2a and the stained sections. The position of 1 may be associated.
  • each fragment 2a is collected with its position information in the section 2 for analysis.
  • the row number and column number, which are the positional information of each fragment 2a, and the position of the well of the destination multi-plate 9 are collected.
  • Corresponding records are recorded in the list 10. As a result, it is possible to know which position the fragment 2a is housed in which position after the recovery.
  • each analysis result is obtained from the fragment 2a having any tissue form. It can be determined by searching and referring to the position of the section 1 for staining corresponding to each fragment 2a from the position information of each fragment 2a. As a result, the time from the preparation of the analysis section 2 to the analysis of the biomolecule is shortened. For example, even a biomolecule that is easily degraded, such as mRNA, can be analyzed quickly while it is fresh. To obtain accurate analysis results.
  • the contours 7 and 8 of the tissue sections 1 and 2 are extracted from the images 5 and 6 in order to superimpose the stained image 5 and the unstained image 6, but instead of this, A plurality of the same feature points may be extracted from the images 5 and 6, and these images 5 and 6 may be superimposed so that the positions of the extracted feature points coincide. In this way, the images 5 and 6 can be superimposed so that the two tissue sections 1 and 2 are exactly overlapped.
  • the feature point for example, a sharp pointed portion of the tissue sections 1 and 2 or a luminal structure can be used.
  • the extraction of the feature points is performed, for example, when the user inputs in each of the images 5 and 6.
  • the number of feature points specified at this time may be two or more, but is preferably three or more in order to improve the position accuracy when superimposing.
  • the division line 3 on which the analysis section 2 is divided is defined with respect to the analysis section 2.
  • the dividing line may be defined when the operator inputs the unstained image 6 or may be defined by image processing.
  • the fragment 2a to be collected is designated in a state where the stained image 5 and the unstained image 6 are superimposed. Instead, the stained image 5 and the unstained image 6 are designated.
  • the fragments 2a to be collected may be designated by displaying them side by side and comparing the two images 5 and 6. In this case, first, the position to be collected is specified by observing the stained image 5 (specifying step), the tissue sections 1 and 2 in the two images 5 and 6 are compared, and a fragment at a position corresponding to the specified position. 2a is determined (decision step). Even in this case, it is possible to specify and extract the fragment 2a of the region having a desired tissue form from the analysis section 2.
  • the unstained image 6 is photographed before the analysis section 2 is divided. Instead, the unstained image 6 of each fragment 2a is photographed after the segmentation and image processing is performed.
  • the piece 2a for analysis before the division may be reproduced by connecting the pieces 2a at the position of the dividing line 3. Even in this case, the positions of the analysis section 2 and the staining section 1 can be correlated as in the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 組織切片内の所望の領域から一度の操作で十分な量の生体分子を採取する。生体組織を一切断面によって薄切する薄切ステップ(S1)と、該薄切ステップ(S1)により薄切された2つの組織切片の内の一方を染色する染色ステップ(S2)と、染色された組織切片の染色画像を取得する染色画像撮影ステップ(S3)と、薄切ステップ(S1)により薄切された他方の組織切片に対して、該組織切片を複数の断片に分割する分割線が定義付けられた無染色画像を取得する無染色画像撮影ステップ(S4)と、無染色画像と染色画像とを対応付ける対応付けステップ(S5,S6)とを含む生体試料調製方法を提供する。

Description

生体試料調製方法
 本発明は、生体試料調製方法に関するものである。
 従来、高出力のレーザを照射することにより生体組織の組織切片の特定の領域から断片を採取する技術が知られている(例えば、非特許文献1参照。)。採取された断片は、病変部位などの特定の領域に存在する核酸やタンパク質などの生体分子の解析に使用される。このときに、組織切片を色素で染色して組織形態を顕微鏡で識別可能にすることにより、採取すべき断片の位置が正確に判断される。
Leica MICROSYSTEMS、"レーザマイクロダイセクション Leica LMD7000"、[online]、[平成22年10月5日検索]、インターネット<URL:http://www.leica-microsystems.com/jp/products/light-microscopes/life-science-research/laser-microdissection/details/product/leica-lmd7000/>
 しかしながら、組織切片の染色画像で組織形態を詳細に識別するためには、組織切片を数から10μm程度まで薄くする必要がある。したがって、採取した1つの断片に含まれる生体分子は少量であり、解析に十分な量の生体分子を集めるためには、多数の組織切片を用いて何度も断片の採取を繰り返さなければならないという不都合がある。一方、組織切片を厚くすることにより1つの断片から得られる生体分子の量を増やすことができる。しかし、その場合には細胞や組織が厚さ方向に重なるため組織切片全体が略均一に染色される。したがって、採取すべき断片の位置を染色画像から正確に判断できなくなるという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、組織切片内の所望の領域から一度の操作で十分な量の生体分子を採取することができる生体試料調製方法を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明は、生体組織を一切断面によって薄切する薄切ステップと、該薄切ステップにより薄切された2つの組織切片の内の一方を染色する染色ステップと、該染色ステップにおいて染色された組織切片の染色画像を取得する染色画像撮影ステップと、前記薄切ステップにより薄切された2つの前記組織切片の内の他方に対して、該組織切片を複数の断片に分割する分割線が定義付けられた無染色画像を取得する無染色画像撮影ステップと、該無染色画像撮影ステップにおいて取得された無染色画像と、前記染色画像撮影ステップにおいて取得された染色画像とを対応付ける対応付けステップとを含む生体試料調製方法を提供する。
 本発明によれば、薄切ステップにおいて薄切した他方の組織切片を、無染色画像撮影ステップにおいて取得された無染色画像内の分割線に沿って分割することにより、組織切片の断片を調製することができる。
 この場合に、染色ステップにおいて染色し、染色画像撮影ステップにおいて撮影した染色画像内の一方の切片は、無染色画像内の他方の組織切片と同一の組織形態を有する。したがって、対応付けステップにおいて無染色画像内の各断片と対応付けられた染色画像内の一方の組織切片の部位を参照することにより、操作者は、各断片が有する組織形態を知り、組織切片の所望の領域の断片を調製または解析することができる。また、断片を採取する方の組織切片は、染色に適した薄さまで薄くする必要がない。したがって、1つの断片に生体分子が豊富に含まれるように、他方の組織切片を一方の組織切片よりも厚く薄切して、一度の操作で十分な量の生体分子を採取することができる。
 上記発明においては、前記無染色画像撮影ステップが、前記分割線に沿って分割可能な基板上に前記他方の組織切片を搭載して撮影してもよい。
 このようにすることで、基板上に搭載された組織切片を撮影するだけで、組織切片に対して分割線が定義付けられた無染色画像を取得することができる。
 上記発明においては、前記対応付けステップが、前記無染色画像および前記染色画像から2つの前記組織切片の輪郭をそれぞれ抽出する輪郭抽出ステップと、該輪郭抽出ステップにより抽出された2つの前記輪郭を一致させるように前記無染色画像と前記染色画像とを重畳する重畳ステップとを含んでもよい。
 上記発明においては、前記対応付けステップが、前記無染色画像および前記染色画像から、同一の特徴点を複数抽出する特徴点抽出ステップと、該特徴点抽出ステップにより抽出された特徴点の位置を一致させるように前記無染色画像と前記染色画像を重畳する重畳ステップとを含んでもよい。
 このようにすることで、別々の画像内の組織切片を容易にかつより正確に対応付けることができる。
 上記発明においては、前記対応付けステップの後に、前記組織切片から採取すべき前記断片を指定する指定ステップと、前記組織切片を前記分割線に沿って複数の断片に分割し、前記指定ステップにおいて指定された前記断片を回収する回収ステップとを含む構成であってもよい。
 このようにすることで、複数の断片の中から、例えば操作者によって指定された断片を選択的に回収することができる。
 上記の指定ステップを含む構成においては、前記指定ステップが、前記染色画像に基づいて、前記組織切片から採取すべき位置を特定する特定ステップと、前記無染色画像に基づいて、該特定ステップにより特定された採取すべき位置に対応付けられた断片を決定する決定ステップとを含んでもよい。
 このようにすることで、染色画像から判断した所望の組織形態を有する断片のみを選択的に回収することができる。
 上記発明においては、前記組織切片を前記分割線に沿って複数の断片に分割し、その前記組織切片における位置情報を付して各前記断片を回収する回収ステップを含んでもよい。
 このようにすることで、他方の組織切片を分割して回収した後であっても、染色ステップ、染色画像撮影ステップおよび対応付けステップを行うことにより、回収された各断片がどのような組織形態を有するかを、位置情報に基づいて染色画像を参照して知ることができる。これにより、例えば、変性しやすい生体分子を解析したい場合など、他方の組織切片の処理を一方の組織切片の処理よりも優先して迅速に進めることができる。
 本発明によれば、組織切片内の所望の領域から一度の操作で十分な量の生体分子を採取することができるという効果を奏する。
本発明の一実施形態に係る生体試料調製方法の手順を示すフローチャートである。 無染色画像撮影ステップを説明する図であり、解析用切片を分割する前を示している。 無染色画像撮影ステップを説明する図であり、解析用切片を分割した後を示している。 染色用切片の輪郭が抽出された染色画像を示す図である。 解析用切片の輪郭と分割線とが抽出された無染色画像を示す図である。 染色画像と無染色画像を重畳して表示した状態を示す図である。 本実施形態に係る生体試料調製方法の変形例を示すフローチャートである。 図6の生体試料調製方法において各断片にその位置情報を付す方法の一例を説明する図である。
 以下に、本発明の一実施形態に係る生体試料調製方法について図面を参照して説明する。
 本実施形態に係る生体試料調製方法は、図1に示されるように、生体組織から2枚の組織切片1,2を切り出す薄切ステップS1と、一方の組織切片1を染色する染色ステップS2と、染色された一方の組織切片1を撮影する染色画像撮影ステップS3と、分割線3を有する基板4上に他方の組織切片2を貼り付けた状態で撮影する無染色画像撮影ステップS4と、取得された染色画像5および無染色画像6のそれぞれから組織切片1,2の輪郭7,8を抽出する輪郭抽出ステップ(対応付けステップ)S5と、染色画像5および無染色画像6を重畳する重畳ステップ(対応付けステップ)S6と、重畳された画像に基づいて組織切片2から採取すべき位置を指定する指定ステップS7と、他方の組織切片2から指定された位置を回収する回収ステップS8とを備えている。
 薄切ステップS1においては、一切断面によって切断された2枚の組織切片1,2を作成する。すなわち、2枚の組織切片1,2は、共通の組織形態の断面を有する。一方の組織切片(以下、染色用切片と言う。)1は、染色画像の観察に適した厚さである1から10μm程度の厚さに薄切する。他方の組織切片(以下、解析用切片と言う。)2は、染色用切片1より厚く、例えば、50から100μm程度の厚さに薄切する。
 染色ステップS2においては、染色用切片1を染色する。染色とは、色素による染色の他に、酵素と反応させて生体分子を発光させる処理など、生体分子を各種の顕微鏡で可視化するための処理を示し、解析すべき生体分子に応じて適宜決めることができる。
 染色画像撮影ステップS3においては、染色ステップS2において染色された染色用切片1を顕微鏡で拡大して撮影することにより染色画像5を取得する。基板4は、染色用切片1を貼り付け可能な平面を有するものであればよい。基板4は、好ましくは、顕微鏡で透過光像を観察できるようにガラスなどの可視光に透明な材料からなるものが用いられる。基板4は、樹脂や金属などの可視光に対して半透明または不透明な材料からなるものが用いられてもよい。
 無染色画像撮影ステップS4においては、例えば、明視野顕微鏡によって解析用切片2を拡大して撮影する。取得された無染色画像6内には、図2Aに示されるように、解析用切片2とともに基板4に形成された分割線3も表示される。これにより、解析用切片2に対して分割線3の位置が定義付けられた無染色画像6を容易に取得することができる。
 分割線3は、その位置において操作者が基板4を分割することができるように構成されたものであり、例えば、基板4に形成された溝である。溝は、レーザ加工や化学エッチング、ダイシング、または、ガラス切りなどを用いた操作者の手作業により形成することができる。これにより、操作者が基板4を表面方向に引っ張ることにより、図2Bに示されるように、分割線3の位置において基板4を複数の小片4aに分割することができる。このときに、基板4上に貼り付けられた解析用切片2も、基板4とともに分割線3に沿って複数の断片2aに分割することができる。分割線3の間隔は、解析用切片2から採取すべき断片2aの大きさによって適宜変更可能である。分割線3の間隔は、解析用切片2内から十分に細かい位置精度で所望の領域の断片2aを採取しつつ、採取した断片2aに十分な量の生体分子が含まれているように、0.05から5.0mmが好ましい。
 基板4を引っ張る方法に特に限定はないが、例えば、表面に沿う方向に伸展可能な粘着シート上に基板4を接着し、粘着シートを表面に沿う方向に引っ張ることにより基板4を容易に分割することができる。
 分割線3は、例えば、予め分割されて粘着シート上に整列された複数の小片4a同士の隙間によって構成されていてもよい。このようにすることで、操作者が基板4を表面方向に引っ張ったときにより確実に基板4を分割することができる。
 輪郭抽出ステップS5においては、図3に示されるように、染色画像5から染色用切片1の輪郭7を抽出し、図4に示されるように、無染色画像6から解析用切片2の輪郭8および分割線3を抽出する。輪郭7,8および分割線3を抽出する方法としては、例えば、隣り合った画素間の明度の差分または微分を利用する方法など、周知の方法を用いることができる。輪郭7,8がより鮮明に抽出されるように適宜画像処理を施してもよい。画像処理としては、例えば、ガンマカーブ補正、明暗調整、コントラスト強調、輝度の2値化、明度の反転、メジアンフィルタ等によるノイズ除去などが挙げられる。
 重畳ステップS6においては、図5に示されるように、抽出した2つの輪郭7,8の位置を一致させるように染色画像5および無染色画像6を重畳して表示する。2つ輪郭7,8を一致させるためには、例えば、輪郭7,8の相互相関値がもっとも大きくなる相対位置において2つの画像5,6を重畳すればよい。これにより、染色用切片1と解析用切片2との各位置が対応づけられるとともに、重畳して表示された画像内において、解析用切片2に対して定義されたのと同様の位置関係で染色用切片1に対しても分割線3が定義される。
 ここで、染色画像5および無染色画像6内の各切片1,2は、向きや表裏が異なったり異なる顕微鏡やカメラで撮影されたことにより倍率が異なったりすることがある。したがって、抽出した輪郭7,8がより正確に一致するように、一方の画像を回転、反転または縮小拡大させるなど、適宜画像5,6を操作してもよい。
 指定ステップS7においては、操作者が、重畳して表示された画像のうち染色画像5の組織形態を観察することにより採取すべき領域を決定し、決定した領域と一致する位置に配された断片2aを指定する。例えば、分割線3によって区画された断片2aに行番号A,B,C,Dと列番号1,2,3,…とを付し、行番号および列番号の組み合わせを用いて採取すべき断片2aの位置を指定する。
 回収ステップS8においては、基板4および解析用切片2を分割線3に沿って分割し、指定ステップS7において操作者により指定された位置の断片2aを選択して回収する。これにより、染色画像5に基づいて決定した領域と同様の組織形態を有する断片2aを、基板4の小片4aに貼り付けられた状態で解析用切片2から採取することができる。回収した断片2aからは、生体分子として、例えば、核酸、タンパク質、糖鎖、脂質などを解析することができる。
 この場合に、本実施形態によれば、薄い染色用切片1に比べて厚い解析用切片2から採取された断片2aには十分な量の生体分子が含まれている。したがって、解析に十分な量の生体分子を収集するために従来多数の染色用切片を用いて断片の採取を何度も繰り返す必要があった作業を、1回または数回の作業で済ますことができるという利点がある。
 また、このように厚い解析用切片2の場合、厚さ方向に細胞や組織が重なっているため、染色したときに全体が略均一に染まってしまい、組織形態を顕微鏡で識別することが困難である。そこで、解析用切片2と同一の組織形態を有する薄い染色用切片1を作成し、染色用切片1の染色画像5と解析用切片2の無染色画像6とを対応付けることにより、染色用切片1を参照して解析用切片2の各位置における詳細な組織形態を知ることが可能となる。これにより、解析用切片2からであっても所望の部位の断片2aを採取することができるという利点がある。
 また、染色用切片1と解析用切片2との位置を対応付ける方法として、それぞれの組織切片1,2の対応する位置にマーカを付す方法が考えられる。この方法の場合、マーカを付す位置を決めるために2つの組織切片1,2を詳細に比較し、高い位置精度でマーカを付す必要がある。したがって、作業が煩雑である上に工程数が増えるという不都合があった。これに対して、本実施形態によれば、2つの組織切片1,2を撮影してそれらの画像を重畳して表示するだけでよいので、簡便な作業で2つの組織切片1,2の対応付けを行うことができるという利点がある。
 なお、本実施形態においては、解析用切片2の断片2aの位置と染色用切片1の位置とを対応付けた後に、解析用切片2を分割して所望の断片2aを選択的に回収することとしたが、これに代えて、図6に示されるように、解析用切片2を分割して全ての断片2aを回収した後に、染色画像5を撮影して各断片2aの位置と染色用切片1の位置とを対応付けてもよい。
 この場合に、各断片2aを、解析用切片2内におけるその位置情報を付して回収する。例えば、図7に示されるように、断片2aをマルチウェルプレート9に回収するときには、各断片2aの位置情報である行番号および列番号と、回収する先のマルチプレート9のウェルの位置とを対応付けてリスト10に記録しておく。これにより、どの位置のウェルにどの位置の断片2aが収容されているかを回収した後でも知ることができる。
 このようにすることで、解析用切片2を用いた処理を優先して進めて各断片2aに含まれる生体分子の解析を行った後に、各解析結果がどのような組織形態の断片2aから得られたものであるのかを、各断片2aの位置情報からその各断片2aと対応する染色用切片1の部位を探して参照することにより知ることができる。これにより、解析用切片2を作成してから生体分子が解析されるまでの時間が短縮されるので、例えば、mRNAのように分解されやすい生体分子であっても新鮮なうちに迅速に解析を行って正確な解析結果を得ることができる。
 また、本実施形態においては、染色画像5と無染色画像6を重畳させるために各画像5,6から組織切片1,2の輪郭7,8を抽出することとしたが、これに代えて、各画像5,6から同一の特徴点を複数抽出し、抽出した特徴点の位置が一致するようにこれらの画像5,6を重畳してもよい。このようにしても、2つの組織切片1,2がぴったり重なるように画像5,6を重畳させることができる。
 特徴点としては、例えば、組織切片1,2の鋭くとがった箇所や、管腔構造などを用いることができる。特徴点の抽出は、例えば、ユーザが各画像5,6内に入力することにより行われる。このときに指定する特徴点の数は2つ以上であればよいが、重畳するときの位置精度を向上するために3つ以上であることが好ましい。
 また、4つ以上の特徴点を抽出し、4つ以上の中から3つの特徴点を採用し、採用した3つの特徴点が一致するときの2つの画像5,6の相互相関値を算出し、最も相互相関値が高かったときの特徴点の組み合わせを最終的に採用することとしてもよい。このようにすることで、例えば、ユーザが指定した特徴点のうち、位置が2つの画像5,6間でずれている特徴点が存在しても、2つの組織切片1,2がより正確に一致するように2つの画像5,6を重畳することができる。
 また、本実施形態においては、分割線3が形成された基板4に解析用切片2を貼り付けることにより、解析用切片2に対して該解析用切片2が分割される分割線3を定義づけることとしたが、これに代えて、解析用切片2を撮影した後に撮影された無染色画像6内で分割線を定義し、この定義された分割線に従って解析用切片2を分割することとしてもよい。分割線は、操作者が無染色画像6に入力することにより定義されてもよく、画像処理によって定義されてもよい。
 また、本実施形態においては、染色画像5と無染色画像6とを重畳した状態で採取すべき断片2aを指定することとしたが、これに代えて、染色画像5と無染色画像6とを並べて別々に表示し、2つの画像5,6を比較することにより採取すべき断片2aを指定してもよい。この場合、まず、染色画像5を観察して採取すべき位置を特定し(特定ステップ)、2つの画像5,6内の組織切片1,2を見比べて、特定した位置と対応する位置の断片2aを決定する(決定ステップ)。このようにしても、解析用切片2から、所望の組織形態を有する領域の断片2aを指定して採取することができる。
 また、本実施形態においては、解析用切片2の分割前に無染色画像6を撮影することとしたが、これに代えて、分割後に各断片2aの無染色画像6を撮影し、画像処理によって分割線3の位置において各断片2aをつなぎ合わせることにより、分割前の状態の解析用切片2を再現してもよい。このようにしても、上述した実施形態と同様にして、解析用切片2と染色用切片1との位置の対応付けを行うことができる。
 1 染色用切片
 2 解析用切片
 2a 断片
 3 分割線
 4 基板
 4a 小片
 5 染色画像
 6 無染色画像
 7,8 輪郭
 9 マルチウェルプレート
 10 リスト
 S1 薄切ステップ
 S2 染色ステップ
 S3 染色画像撮影ステップ
 S4 無染色画像撮影ステップ
 S5 輪郭抽出ステップ(対応付けステップ)
 S6 重畳ステップ(対応付けステップ)
 S7 指定ステップ
 S8 回収ステップ

Claims (7)

  1.  生体組織を一切断面によって薄切する薄切ステップと、
     該薄切ステップにより薄切された2つの組織切片の内の一方を染色する染色ステップと、
     該染色ステップにおいて染色された組織切片の染色画像を取得する染色画像撮影ステップと、
     前記薄切ステップにより薄切された2つの前記組織切片の内の他方に対して、該組織切片を複数の断片に分割する分割線が定義付けられた無染色画像を取得する無染色画像撮影ステップと、
     該無染色画像撮影ステップにおいて取得された無染色画像と、前記染色画像撮影ステップにおいて取得された染色画像とを対応付ける対応付けステップとを含む生体試料調製方法。
  2.  前記無染色画像撮影ステップが、前記分割線に沿って分割可能な基板上に前記他方の組織切片を搭載して撮影する請求項1に記載の生体試料調製方法。
  3.  前記対応付けステップが、前記無染色画像および前記染色画像から2つの前記組織切片の輪郭をそれぞれ抽出する輪郭抽出ステップと、該輪郭抽出ステップにより抽出された2つの前記輪郭を一致させるように前記無染色画像と前記染色画像とを重畳する重畳ステップとを含む請求項1または請求項2に記載の生体試料調製方法。
  4.  前記対応付けステップが、前記無染色画像および前記染色画像から、同一の特徴点を複数抽出する特徴点抽出ステップと、該特徴点抽出ステップにより抽出された特徴点の位置を一致させるように前記無染色画像と前記染色画像を重畳する重畳ステップとを含む請求項1または請求項2に記載の生体試料調製方法。
  5.  前記対応付けステップの後に、前記組織切片から採取すべき前記断片を指定する指定ステップと、
     前記組織切片を前記分割線に沿って複数の断片に分割し、前記指定ステップにおいて指定された前記断片を回収する回収ステップとを含む請求項1から請求項4のいずれかに記載の生体試料調製方法。
  6.  前記指定ステップが、前記染色画像に基づいて、前記組織切片から採取すべき位置を特定する特定ステップと、前記無染色画像に基づいて、該特定ステップにより特定された採取すべき位置に対応付けられた断片を決定する決定ステップとを含む請求項5に記載の生体試料調製方法。
  7.  前記組織切片を前記分割線に沿って複数の断片に分割し、その前記組織切片における位置情報を付して各前記断片を回収する回収ステップを含む請求項1から請求項4のいずれかに記載の生体試料調製方法。
PCT/JP2011/067471 2010-11-19 2011-07-29 生体試料調製方法 WO2012066827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11841752.6A EP2629078B1 (en) 2010-11-19 2011-07-29 Method for preparing biological sample
JP2012544130A JP5744905B2 (ja) 2010-11-19 2011-07-29 生体試料調製方法
CN201180055314.6A CN103221800B (zh) 2010-11-19 2011-07-29 生物体试样制备方法
US13/894,661 US9530204B2 (en) 2010-11-19 2013-05-15 Method of preparing biological specimen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010259094 2010-11-19
JP2010-259094 2010-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/894,661 Continuation US9530204B2 (en) 2010-11-19 2013-05-15 Method of preparing biological specimen

Publications (1)

Publication Number Publication Date
WO2012066827A1 true WO2012066827A1 (ja) 2012-05-24

Family

ID=46083771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067471 WO2012066827A1 (ja) 2010-11-19 2011-07-29 生体試料調製方法

Country Status (5)

Country Link
US (1) US9530204B2 (ja)
EP (1) EP2629078B1 (ja)
JP (1) JP5744905B2 (ja)
CN (1) CN103221800B (ja)
WO (1) WO2012066827A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002082A1 (ja) * 2013-07-03 2015-01-08 コニカミノルタ株式会社 画像処理装置、病理診断支援システム、画像処理プログラム及び病理診断支援方法
JP2015081899A (ja) * 2013-10-24 2015-04-27 オリンパス株式会社 細胞分取方法
WO2016067456A1 (ja) * 2014-10-31 2016-05-06 オリンパス株式会社 画像処理方法および細胞分取方法
JP2019536010A (ja) * 2016-10-19 2019-12-12 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 生体試料の染色システムおよび方法
US11561156B2 (en) 2015-04-20 2023-01-24 Ventana Medical Systems, Inc. Inkjet deposition of reagents for histological samples

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310598B2 (en) 2009-03-11 2016-04-12 Sakura Finetek U.S.A., Inc. Autofocus method and autofocus device
US10139613B2 (en) 2010-08-20 2018-11-27 Sakura Finetek U.S.A., Inc. Digital microscope and method of sensing an image of a tissue sample
DE102012218382B4 (de) 2012-10-09 2015-04-23 Leica Microsystems Cms Gmbh Verfahren zum Festlegen eines Lasermikrodissektionsbereichs und zugehöriges Lasermikrodissektionssystem
DE102013103971A1 (de) 2013-04-19 2014-11-06 Sensovation Ag Verfahren zum Erzeugen eines aus mehreren Teilbildern zusammengesetzten Gesamtbilds eines Objekts
US10007102B2 (en) 2013-12-23 2018-06-26 Sakura Finetek U.S.A., Inc. Microscope with slide clamping assembly
WO2016145366A1 (en) 2015-03-11 2016-09-15 Timothy Ragan System and methods for serial staining and imaging
US11280803B2 (en) 2016-11-22 2022-03-22 Sakura Finetek U.S.A., Inc. Slide management system
CN106973258B (zh) * 2017-02-08 2020-05-22 上海交通大学 病理切片信息快速获取装置
JP2022525886A (ja) * 2019-03-19 2022-05-20 マイクロヴィジュアル, インク. 組織切片化、染色、およびスキャニングのための自動システムおよび方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505431A (ja) * 1998-02-25 2002-02-19 アメリカ合衆国 迅速な分子プロファイリングのための細胞アッセイ法
JP2002505432A (ja) * 1998-02-25 2002-02-19 ザ ユナイテッド ステイツ オブ アメリカ リプレゼンティッド バイ ザ シークレタリー デパートメント オブ ヘルス アンド ヒューマン サービシーズ 迅速な分子プロファイリングのための腫瘍組織マイクロアレイ
JP2002202229A (ja) * 2000-10-31 2002-07-19 Fuji Photo Film Co Ltd 生体試料の切断方法およびそれに用いる装置
JP2002286592A (ja) * 2001-03-22 2002-10-03 Olympus Optical Co Ltd サンプルからその一部分を選抜する方法、その選抜方法に用いる担体、その選抜用担体の製造方法およびその選抜を行う装置
JP2010085219A (ja) * 2008-09-30 2010-04-15 Nec Soft Ltd 顕微質量分析の二次元解析画像と、光学顕微鏡撮影の二次元可視画像との自動的位置重ね合わせ方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448510A (en) * 1966-05-20 1969-06-10 Western Electric Co Methods and apparatus for separating articles initially in a compact array,and composite assemblies so formed
US3932220A (en) 1970-08-11 1976-01-13 Liotta Lance A Method for isolating bacterial colonies
DE2127768C3 (de) 1971-06-04 1979-03-29 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Entschwefelung von Gasen
JPS5946429B2 (ja) 1978-12-22 1984-11-12 株式会社東芝 発光表示装置の製造方法
EP0117262B1 (de) 1983-02-25 1988-04-20 Winfried Dr. med. Stöcker Verfahren und Vorrichtungen für Untersuchungen an unbeweglich gemachtem biologischem Material
US4752347A (en) * 1986-10-03 1988-06-21 Rada David C Apparatus for preparing tissue sections
US4914022A (en) * 1987-10-21 1990-04-03 Amc Cancer Research Center Method for preparing multiple tissue samples for microscopic investigation and testing
JPH04197253A (ja) 1990-11-29 1992-07-16 Shiseido Co Ltd 皮脂腺機能の測定方法と装置
JPH06308118A (ja) 1993-04-26 1994-11-04 Fujitsu Ltd 細胞の選別と電極刺入方法および装置
JP3007540B2 (ja) 1994-10-17 2000-02-07 浜松ホトニクス株式会社 画像表示装置
WO1997029354A1 (de) 1996-02-05 1997-08-14 Bayer Aktiengesellschaft Verfahren und vorrichtung zum sortieren und zur gewinnung von planar ausgebrachten biologischen objekten wie biologische zellen bzw. zellorganellen, histologischen schnitten, chromosomenteilchen etc. mit laserstrahlen
JP3604108B2 (ja) 1997-02-17 2004-12-22 株式会社シチズン電子 チップ型光半導体の製造方法
JPH11148887A (ja) 1997-11-17 1999-06-02 Japan Science & Technology Corp 生体サンプルの切断方法および切断片回収方法、 並びにそのための装置
JPH11163006A (ja) 1997-11-27 1999-06-18 Hitachi Ltd ペレットボンディング方法
US6699710B1 (en) 1998-02-25 2004-03-02 The United States Of America As Represented By The Department Of Health And Human Services Tumor tissue microarrays for rapid molecular profiling
US20020192812A1 (en) * 2000-01-10 2002-12-19 Sheldon Dan M. Apparatus and method for removing microbial contaminants from a flowing fluid
DE10003588C2 (de) 2000-01-25 2002-10-02 Sl Microtest Wissenschaftliche Verfahren zum Isolieren eines Teils einer Schicht biologischen Materials
CA2424176A1 (en) 2000-10-18 2002-05-16 Virtual Arrays, Inc. Multiplexed cell analysis system
JP2004537712A (ja) 2000-10-18 2004-12-16 バーチャル・アレイズ・インコーポレーテッド 多重細胞分析システム
US6733987B2 (en) 2000-10-31 2004-05-11 Fuji Photo Film Co., Ltd. Method for cutting a biological sample and a device used therefor
CA2411524C (en) 2000-12-08 2007-02-27 Flexcell International Corporation Method and apparatus to grow and mechanically condition cell cultures
JP2003007652A (ja) 2001-06-26 2003-01-10 Mitsubishi Electric Corp 半導体チップの製造方法
JP2003152056A (ja) 2001-11-08 2003-05-23 Sony Corp 半導体素子保持具及びその製造方法
US7756305B2 (en) * 2002-01-23 2010-07-13 The Regents Of The University Of California Fast 3D cytometry for information in tissue engineering
JP2005034058A (ja) 2003-07-15 2005-02-10 Nitto Denko Corp 微生物または細胞の試験方法及び該方法に使用する粘着シート
FR2878859B1 (fr) 2004-12-02 2007-03-23 Alphelys Sarl Dispositif de prelevement de carottes pour tissue array
JP2007114542A (ja) 2005-10-21 2007-05-10 Olympus Corp 顕微鏡観察装置および顕微鏡観察方法
WO2007074769A1 (ja) * 2005-12-27 2007-07-05 Kyoto University 生物組織固定・包埋・薄切用カセット及びその操作方法
US7657070B2 (en) * 2006-01-20 2010-02-02 Sakura Finetek U.S.A., Inc. Automated system of processing biological specimens and method
CN100587451C (zh) * 2006-02-14 2010-02-03 大连医科大学 组织特定区域的捕获方法及专用设备
US8131476B2 (en) * 2006-08-07 2012-03-06 General Electric Company System and method for co-registering multi-channel images of a tissue micro array
WO2008053916A1 (fr) 2006-11-01 2008-05-08 Kurume University Dispositif de guidage de coupe pour préparer une section de texture, dispositif de préparation de section de texture, et procédé pour préparer une section de texture
JP2008286528A (ja) 2007-05-15 2008-11-27 Commercial Resource Ltd マイクロナイフとマイクロナイフ製造方法
JP2009044123A (ja) 2007-07-19 2009-02-26 Citizen Finetech Miyota Co Ltd 電子部品の製造方法および電子部品。
JP5710098B2 (ja) 2008-03-27 2015-04-30 日立化成株式会社 半導体装置の製造方法
US20090304244A1 (en) * 2008-06-06 2009-12-10 Applied Spectral Imaging Ltd. Method and a system for presenting sections of a histological specimen
JP5493460B2 (ja) 2008-08-20 2014-05-14 日立化成株式会社 半導体装置の製造方法及びダイシングテープ一体型接着シート
US8340389B2 (en) * 2008-11-26 2012-12-25 Agilent Technologies, Inc. Cellular- or sub-cellular-based visualization information using virtual stains
WO2011149009A1 (ja) 2010-05-28 2011-12-01 オリンパス株式会社 細胞分取装置、細胞分取システムおよび細胞分取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505431A (ja) * 1998-02-25 2002-02-19 アメリカ合衆国 迅速な分子プロファイリングのための細胞アッセイ法
JP2002505432A (ja) * 1998-02-25 2002-02-19 ザ ユナイテッド ステイツ オブ アメリカ リプレゼンティッド バイ ザ シークレタリー デパートメント オブ ヘルス アンド ヒューマン サービシーズ 迅速な分子プロファイリングのための腫瘍組織マイクロアレイ
JP2002202229A (ja) * 2000-10-31 2002-07-19 Fuji Photo Film Co Ltd 生体試料の切断方法およびそれに用いる装置
JP2002286592A (ja) * 2001-03-22 2002-10-03 Olympus Optical Co Ltd サンプルからその一部分を選抜する方法、その選抜方法に用いる担体、その選抜用担体の製造方法およびその選抜を行う装置
JP2010085219A (ja) * 2008-09-30 2010-04-15 Nec Soft Ltd 顕微質量分析の二次元解析画像と、光学顕微鏡撮影の二次元可視画像との自動的位置重ね合わせ方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Laser Microdissection Leica LMB7000", LEICA MICROSYSTEMS, 5 October 2010 (2010-10-05), Retrieved from the Internet <URL:URL: http://www.leica>
See also references of EP2629078A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002082A1 (ja) * 2013-07-03 2015-01-08 コニカミノルタ株式会社 画像処理装置、病理診断支援システム、画像処理プログラム及び病理診断支援方法
US9779500B2 (en) 2013-07-03 2017-10-03 Konica Minolta, Inc. Image processing device, pathological diagnosis support system, image processing program, and pathological diagnosis support method
JP2015081899A (ja) * 2013-10-24 2015-04-27 オリンパス株式会社 細胞分取方法
WO2016067456A1 (ja) * 2014-10-31 2016-05-06 オリンパス株式会社 画像処理方法および細胞分取方法
US11561156B2 (en) 2015-04-20 2023-01-24 Ventana Medical Systems, Inc. Inkjet deposition of reagents for histological samples
JP2019536010A (ja) * 2016-10-19 2019-12-12 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 生体試料の染色システムおよび方法
JP7213802B2 (ja) 2016-10-19 2023-01-27 エフ.ホフマン-ラ ロシュ アーゲー 生体試料の染色システムおよび方法
US11668726B2 (en) 2016-10-19 2023-06-06 Ventana Medical Systems, Inc. Systems and methods for staining of biological samples

Also Published As

Publication number Publication date
EP2629078B1 (en) 2019-04-17
US20130250090A1 (en) 2013-09-26
CN103221800A (zh) 2013-07-24
US9530204B2 (en) 2016-12-27
CN103221800B (zh) 2015-07-15
EP2629078A4 (en) 2017-08-30
JP5744905B2 (ja) 2015-07-08
JPWO2012066827A1 (ja) 2014-05-12
EP2629078A1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5744905B2 (ja) 生体試料調製方法
EP3167278B1 (en) Pure spectrum extraction from biological samples
Kukulski et al. Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers
US8995733B2 (en) Microdissection method and information processing system
EP3323108B1 (en) Digital pathology system
US10533931B2 (en) Method and examination system for examining and processing a microscopic sample
JP2013504060A (ja) カメラを用いる検体定量測定機器、方法及びそのシステム
US10685210B2 (en) Tissue microarray registration and analysis
JP2013174823A (ja) 画像処理装置、顕微鏡システム、及び画像処理方法
EP3323107B1 (en) Information transformation in digital pathology
KR20170007181A (ko) 조직학적 염색제의 공간 다중화
US8965098B2 (en) Cell-image analyzing apparatus
JP7040537B2 (ja) イメージング質量分析装置
JP2003240773A (ja) 癌診断における異常部及び異常度特定方法
JP7452544B2 (ja) 情報処理装置およびプログラム
JP2006226916A (ja) 定量分析装置、定量分析方法および定量分析プログラム
US20210087602A1 (en) Apparatus for screening and diagnosis of meningitis
JP6202984B2 (ja) 細胞分取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011841752

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012544130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE