WO2012065544A1 - 一种上行mimo自适应方法及装置 - Google Patents

一种上行mimo自适应方法及装置 Download PDF

Info

Publication number
WO2012065544A1
WO2012065544A1 PCT/CN2011/082235 CN2011082235W WO2012065544A1 WO 2012065544 A1 WO2012065544 A1 WO 2012065544A1 CN 2011082235 W CN2011082235 W CN 2011082235W WO 2012065544 A1 WO2012065544 A1 WO 2012065544A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
uplink data
total
transmission mode
period
Prior art date
Application number
PCT/CN2011/082235
Other languages
English (en)
French (fr)
Inventor
赖世明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012065544A1 publication Critical patent/WO2012065544A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink MIMO (Multiple Input Multiple-Output) adaptive method and apparatus.
  • uplink MIMO Multiple Input Multiple-Output
  • MIMO is one of the key technologies of the physical layer in the OFDMA (Orthogonal Frequency Division Multiple Access) system.
  • the signal source S(k) is transmitted by the multi-antenna antenna after time-space coding, and then passes through the wireless channel, and is received by the multi-antenna antenna at the receiving end, and the original signal is recovered after the spatio-temporal decoding at the receiving end.
  • the central idea of MIMO is to use multiple antennas to suppress channel fading.
  • the implementation method is to optimize the multipath antenna channel as a whole by transmitting and receiving, so as to achieve high communication capacity and spectrum utilization, which is a near-optimal. Spatial domain time domain joint diversity and interference cancellation processing.
  • STC Space Time Coding
  • SM Space Multiplexing
  • the SM technology takes advantage of the space.
  • the sender sends two characters at the same time in one character time, and sends another two characters in the next character time, as shown in Figure 2.
  • the high-speed data stream is divided into parallel data streams for simultaneous transmission. At this time, the transmission data of each antenna is different.
  • spatial demodulation multiplexing is performed and recombined into a high-speed serial data stream.
  • Uplink virtual MIMO when the terminal uses only one transmit antenna, MIMO can only be implemented by multiple terminal cooperation, that is, Virtual MIMO technology, as shown in Figure 3.
  • Virtual MIMO each terminal uses one transmit antenna and uses the same time-frequency resources.
  • the data of each terminal is encoded, interleaved, modulated, mapped, and modulated after the same data as the non-MIMO mode.
  • the carriers are coded in pairs according to the protocol and then sent to the base station.
  • the method in which two terminals cooperate to implement uplink Virtual MIMO is also called pairing mode.
  • Adaptive pairing refers to adaptively selecting appropriate terminals for pairing according to a certain method. After successful pairing, if channel conditions are deteriorated and transmission is unstable, then Adaptive split processing.
  • the present invention provides an uplink MIMO adaptive method and apparatus for solving resources in a utilization system that cannot be optimized by using any non-MIMO mode or MIMO mode in the prior art, and providing flexible data for users.
  • the problem with the transmission method is that
  • An embodiment of the present invention provides an uplink MIMO adaptive method, including:
  • the current uplink data transmission mode is one of a non-multiple input multiple output MIMO mode, a virtual MIMO mode, a space time coding STC mode, or a spatial multiplexing SM mode;
  • the uplink transmission is performed according to the error packet rate P and the total number of packets N_Total.
  • the determining, according to the determined current transmission mode, when the current time period reaches the preset transmission mode switching period, selecting the optimal transmission mode according to the error packet rate P and the total number of packets N-Total for uplink data transmission include:
  • the current uplink data transmission mode is non-MIMO mode, it is detected whether the current time period reaches a preset first transmission mode switching period, and if yes, according to the packet error rate P, the total number of packets N_Total, and the uplink.
  • the congestion coefficient switches the transmission mode of the uplink data to the virtual MIMO mode or the STC mode;
  • the current uplink data transmission mode is the virtual MIMO mode
  • the current uplink data transmission mode is STC mode, it is detected whether the current time period reaches the preset third transmission mode switching period, and if so, according to the packet error rate in the period?
  • the total number of packets N-Total and channel correlation switch the transmission mode of the uplink data to the SM mode or the non-MIMO mode;
  • the current uplink data transmission mode is the SM mode, it is detected whether the current time period reaches the preset fourth transmission mode switching period, and if yes, the uplink data is based on the packet error rate P and the total number of packets N_Total in the period.
  • the transmission mode is switched to the space-time coded STC mode.
  • the present invention further provides an uplink MIMO adaptive apparatus, including: an uplink data transmission mode determining module, configured to determine that a current uplink data transmission mode is one of a non-MIMO mode, a virtual MIMO mode, an STC mode, or an SM mode.
  • an uplink data transmission mode determining module configured to determine that a current uplink data transmission mode is one of a non-MIMO mode, a virtual MIMO mode, an STC mode, or an SM mode.
  • the uplink data transmission mode switching module is configured to select, according to the determined current transmission mode, that the current time period reaches a preset transmission mode switching period, and select an optimal according to the packet error rate P and the total number of packets N_Total in the period.
  • the transmission mode performs uplink data transmission.
  • the uplink data transmission mode switching module includes:
  • Non-MIMO mode switching module if the current uplink data transmission mode is non- In the MIMO mode, it is detected whether the current time period reaches the preset first transmission mode switching period. If yes, the uplink data transmission mode is switched according to the packet error rate ⁇ , the total number of packets N_Total, and the uplink congestion coefficient. For virtual MIMO mode or STC mode;
  • the virtual MIMO mode switching module is configured to detect whether the current time period reaches a preset second transmission mode switching period if the current uplink data transmission mode is the virtual MIMO mode, and if yes, according to the packet error rate P and the period The total number of packages N- Total is disassembled;
  • the STC mode switching module is configured to detect whether the current time period reaches a preset third transmission mode switching period if the current uplink data transmission mode is the STC mode, and if yes, according to the packet error rate P and the total packet in the period.
  • the number N-Total and channel correlation switch the transmission mode of the uplink data to the SM mode or the non-MIMO mode;
  • the SM mode switching module is configured to detect whether the current time period reaches a preset fourth transmission mode switching period if the current uplink data transmission mode is the SM mode, and if yes, according to the packet error rate P and the total packet in the cycle.
  • the number N-Total switches the transmission mode of the uplink data to the STC mode.
  • the method and the device provided by the present invention can solve the problem of utilizing resources in the system that cannot be optimized by using any non-MIMO mode or MIMO mode in the prior art, and provide a flexible data transmission mode for the user;
  • the packet transmission rate, congestion, correlation, etc. adaptively select the transmission mode of the uplink data, and improve the uplink throughput of the system on the basis of ensuring the reliability of the link.
  • 1 is a schematic diagram of the principle of data transmission in the STC mode in the prior art
  • FIG. 1 is a schematic diagram of the principle of data transmission in the SM mode in the prior art
  • 3 is a schematic diagram of the principle of uplink virtual MIMO in the prior art
  • FIG. 4 is a schematic flowchart of a MIMO adaptive method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a current non-MIMO processing process according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a current virtual MIMO processing process according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a current STC processing flow according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a current SM processing flow according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a MIMO adaptive apparatus according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides an uplink MIMO adaptive method, including: determining a current uplink data transmission manner, and transmitting uplink data according to a packet error rate P, a total number of packets N—Total, an uplink congestion coefficient, and a channel correlation.
  • the optimal transmission mode is selected for the uplink data transmission, that is, the current uplink data transmission mode is determined to be in the non-MIMO mode, the virtual MIMO mode, the STC mode, or the SM mode.
  • the uplink data is selected according to the error packet rate P and the total number of packets N_Total in the period. transmission.
  • the current uplink data transmission mode is a non-MIMO mode
  • the current uplink data transmission mode is the virtual MIMO mode
  • the current uplink data transmission mode is the STC mode, it is detected whether the current time period reaches the preset third transmission mode switching cycle.
  • an uplink MIMO adaptive method provided by an embodiment of the present invention may be:
  • Step 401 Determine whether uplink MIMO adaptation is enabled, that is, whether the terminal supports the MIMO handover function, and if yes, proceed to step 402, otherwise proceed to step 410.
  • Step 402 Determine whether the current uplink data transmission is in the non-MIMO mode. If yes, go to step 403; otherwise, go to step 404.
  • Step 403 Enter the current non-MIMO processing flow, and then proceed to step 410.
  • Step 404 Determine whether the current uplink data transmission is in the virtual MIMO mode. If yes, go to step 405; otherwise, go to step 406.
  • Step 405 Enter the current virtual MIMO processing flow, and then proceed to step 410.
  • Step 406 Determine whether the current uplink data transmission is in the STC mode. If yes, go to step 407, otherwise go to step 408.
  • Step 407 Enter the current STC processing flow, and then proceed to step 410.
  • Step 408 Determine whether the current uplink data transmission is in the SM mode. If yes, proceed to step 409, otherwise proceed to step 410.
  • Step 409 Enter the current SM processing flow, and then proceed to step 410.
  • Step 410 End the process.
  • the above determination of the transmission mode in which the current uplink data transmission is performed may be implemented based on determining the value of the transmission mode flag bit.
  • the foregoing processing may be performed in a base station, and after the base station determines an optimal transmission mode, the terminal may be notified by control signaling.
  • the packet error rate counted during the set period is P: the packet error rate is the packet and total packet of the transmission error during the period.
  • the ratio of the number can reflect the current channel condition of the terminal by the error packet rate. If the packet error rate is greater than a certain threshold, the channel condition is considered to be deteriorated.
  • the total number of packets is N—Total: If the total number of packets in the period is lower than the threshold, the terminal is considered to have no service.
  • the setting of the specific threshold is related to the actual situation.
  • the correlation coefficient is Q (the minimum eigenvalue of the channel matrix / the maximum eigenvalue of the channel matrix):
  • the channel correlation reflects the independence between the channels, which can be expressed by the correlation coefficient, ie the minimum eigenvalue and maximum adjustment of the channel matrix
  • the ratio of values is expressed. If the ratio is 0, the channel is fully correlated, and the system will not be able to distinguish the data arriving by each channel; if the ratio is 1, the channel is completely independent, and the system can distinguish the data reached by each channel. If the channels are completely independent, then the SM can be successfully decoded. In the actual environment, the channels cannot be completely independent. As long as the correlation satisfies certain conditions, that is, the correlation coefficient is greater than the threshold, the SM can be successfully decoded.
  • the setting of the threshold is related to the actual environment.
  • the current non-MIMO processing flow in step 403 may specifically include:
  • Step 501 Count, according to the frame, a time period in which the current uplink data is transmitted through the non-MIMO mode;
  • Step 502 Determine whether the time period reaches the non-MIMO statistical period N1, if yes, proceed to step 503, otherwise proceed to step 511;
  • Step 503 Calculating the error packet rate P and the total number of packets in the cycle N_Total;
  • Step 504 Determine whether the total number of packets N_Total is greater than the threshold value P1, if yes, proceed to step 505, otherwise proceed to step 511;
  • Step 505 Determine whether the packet error rate is greater than the threshold value P5, if yes, proceed to step 509, otherwise proceed to step 506;
  • Step 506 Determine whether the uplink congestion coefficient is greater than the threshold P10, if yes, proceed to step 507, otherwise proceed to step 511;
  • Step 507 searching for a suitable terminal pairing
  • Step 508 Determine whether a suitable terminal is found, if yes, proceed to step 509, otherwise proceed to step 510;
  • Step 509 Switch to the STA mode, and proceed to step 511.
  • Step 510 Trigger the terminal to perform pairing, and proceed to step 511;
  • Step 511 End the process.
  • the current virtual MIMO processing process specifically includes:
  • Step 601 Count the time period in which the current uplink data is transmitted through the virtual MIMO mode according to the frame.
  • Step 602 Determine whether the time period reaches the virtual MIMO statistical period N2. If yes, go to step 603; otherwise, go to step 607.
  • Step 603 Calculate the packet error rate P and the total number of packets N—Total.
  • Step 604 Determine whether the total number of packets in the period N_Total is lower than the threshold value P2, and if yes, proceed to step 606, otherwise proceed to step 605.
  • Step 605 Determine whether the packet error rate P in the period is greater than a threshold value P6, and if yes, enter Step 606, otherwise proceed to step 607.
  • Step 606 Perform the disassembly process, and proceed to step 607.
  • Step 607 End the process.
  • the current uplink data transmission mode is STC mode, where the STC statistics period is N3, the STC has no traffic decision threshold of P3, the STC transmission stability decision threshold is P9, and the STC enters SM when the correlation coefficient threshold is P11, in a specific application, step 407
  • the current STC processing flow may specifically include:
  • Step 701 Count the time period in which the current uplink data is transmitted through the STC mode according to the frame.
  • Step 702 Determine whether the time period reaches the STC statistical period N3. If yes, go to step 703, otherwise go to step 709.
  • Step 703 The error packet rate and the total number of packets in the statistical period are N - Total.
  • Step 704 Determine whether the total number of packets N_Total is lower than the threshold value P3. If yes, proceed to step 705; otherwise, proceed to step 706.
  • Step 705 Switch to the non-MIMO mode, and go to step 709.
  • Step 706 Determine whether the packet error rate is lower than the threshold value P9. If yes, proceed to step 707; otherwise, proceed to step 709.
  • Step 707 Determine whether the channel correlation is greater than P11. If yes, go to step 708, otherwise go to step 709.
  • Step 708 Switch to the SM (terminal has SM capability) mode, and proceed to step 709.
  • Step 709 End the process.
  • Step 801 Count the time period in which the current uplink data is transmitted through the SM mode according to the frame statistics.
  • Step 802 Determine whether the time period reaches the SM statistical period N4, and if yes, advance Go to step 803, otherwise go to step 807.
  • Step 803 Calculate the packet error rate P and the total number of packets N-Total.
  • Step 804 Determine whether the total number of packets in the period is lower than the threshold value P4. If yes, proceed to step 806, otherwise proceed to step 805.
  • Step 805 Determine whether the packet error rate is greater than the threshold value P7. If yes, proceed to step 806, otherwise proceed to step 807.
  • Step 806 Switch to the STC mode, and go to step 807.
  • Step 807 End the process.
  • an embodiment of the present invention further provides an uplink MIMO adaptive apparatus, including an uplink data transmission mode determining module 901 and an uplink data transmission mode switching module 906:
  • the uplink data transmission mode determining module 901 is configured to determine that the current uplink data transmission mode is one of a non-MIMO mode, a virtual MIMO mode, an STC mode, or an SM mode;
  • the uplink data transmission mode switching module 906 is configured to select, according to the determined current transmission mode, that the current time period reaches a preset transmission mode switching period, and select an optimal according to the packet error rate P and the total number of packets N_Total in the period.
  • the transmission mode performs uplink data transmission.
  • the uplink data transmission mode switching module 906 includes: a non-MIMO mode switching module 902, a virtual MIMO mode switching module 903, an STC mode switching module 904, and an SM mode switching module 905:
  • the non-MIMO mode switching module 902 is configured to detect whether the current time period reaches a preset first transmission mode switching period if the current uplink data transmission mode is a non-MIMO mode, and if yes, according to a packet error rate in the period.
  • the total number of packets N-Total and the uplink congestion coefficient switch the transmission mode of the uplink data to the virtual MIMO mode or the STC mode;
  • the virtual MIMO mode switching module 903 is configured to detect whether the current time period reaches a preset second transmission mode switching period if the current uplink data transmission mode is the virtual MIMO mode, and if yes, according to the packet error rate P in the period. And the total number of packages N-Total is disassembled;
  • the STC mode switching module 904 is configured to detect whether the current time period reaches a preset third transmission mode switching period if the current uplink data transmission mode is the STC mode, and if yes, according to the packet error rate in the period?
  • the SM mode switching module 905 is configured to detect whether the current time period reaches a preset fourth transmission mode switching period if the current uplink data transmission mode is the SM mode, and if yes, according to the packet error rate P and the total period.
  • the number of packets N-Total switches the transmission mode of the uplink data to the STC mode.
  • the non-MIMO mode switching module 902 switches the transmission mode of the uplink data to the virtual MIMO mode or the STC mode according to the packet error rate P, the total packet number N_Total, and the uplink congestion coefficient in the cycle, and specifically includes:
  • Step A1 determining a packet error rate of the uplink data transmission in the period P, a total number of packets N—Total, and a congestion coefficient;
  • Step A2 determining whether the total number of packets N_Total is greater than a preset first traffic determination threshold, and if yes, proceeding to step A3, otherwise ending the process;
  • Step A3 determining whether the packet error rate is greater than a preset first transmission stability decision threshold, if yes, proceeding to step A5, otherwise proceeding to step A4;
  • Step A4 determining whether the uplink congestion coefficient is greater than a preset first uplink congestion threshold, and if yes, proceeding to step A5, otherwise ending the process;
  • Step A5 Determine whether the paired terminal is found. If yes, switch the transmission mode of the uplink data to the STC mode. Otherwise, the terminal is triggered to perform pairing, and the process ends.
  • the virtual MIMO mode switching module 903 performs the splitting process according to the error packet rate P and the total number of packets N_Total in the cycle, including:
  • Step B1 determining the error packet rate P of the uplink data transmission in the period and the total number of packets N_Total; Step B2, determining whether the total number of packets N-Total in the period is lower than the preset second traffic Threshold, if yes, proceed to step B4, otherwise proceed to step B3;
  • Step B3 determining whether the packet error rate in the period is greater than a preset second transmission stability decision threshold, and if yes, proceeding to step B4, otherwise entering the step ending process;
  • step B4 the disassembly process is performed, and the process ends.
  • the STC mode switching module 904 switches the transmission mode of the uplink data to the SM mode or the non-MIMO mode according to the packet error rate P, the total packet number N_Total, and the channel correlation in the cycle, including:
  • Step C1 determining a packet error rate and a total number of packets of the uplink data transmission in the period, N—Total;
  • Step C2 determining whether the total number of packets N-Total is lower than a preset third traffic determination threshold, if yes, switching the transmission mode of the uplink data to the non-MIMO mode, and ending the process, otherwise proceeding to step C3;
  • Step C3 determining whether the packet error rate is lower than a preset third transmission stability decision threshold, and if yes, proceeding to step C4; otherwise, ending the process;
  • Step C4 Determine whether the channel correlation is greater than the correlation coefficient threshold. If yes, the uplink data transmission mode is switched to the SM mode, otherwise the process ends.
  • the SM mode switching module 905 switches the transmission mode of the uplink data to the STC mode according to the packet error rate P and the total number of packets N_Total in the period, and specifically includes:
  • Step D1 determining a packet error rate P and a total number of packets N_Total of the uplink data transmission in the period;
  • Step D2 determining whether the total number of packets is lower than a preset fourth traffic determination threshold, and if yes, going up
  • the data transmission mode is switched to the STC mode, otherwise it proceeds to step D3;
  • Step D3 Determine whether the packet error rate is greater than a preset fourth transmission stability decision threshold. If yes, the uplink data transmission mode is switched to the STC mode, otherwise the process ends.
  • the terminal If the terminal does not have uplink traffic, the terminal is in the uplink non-MIMO state, and a transmitting antenna is used to reduce the interference of the terminal to other terminals and reduce the overall interference of the system.
  • the terminal is in the uplink non-MIMO state, if the transmission is unstable or the uplink is congested. If there is no suitable terminal for pairing, it switches to the uplink STC state; if congestion occurs on the uplink and the transmission is stable, then a suitable terminal is searched for pairing, and when it is found, it enters the uplink virtual MIMO state.
  • the terminal is in the uplink virtual MIMO state. If the terminal has no traffic or the transmission is unstable, the terminal is disconnected.
  • the terminal is in the uplink STC state, and switches to the uplink non-MIMO state if there is no upstream traffic; if the transmission is stable and the correlation meets the condition, it switches to the SM state to provide the system uplink throughput.
  • the terminal is in the uplink SM state. If the terminal has no traffic or the transmission is unstable and goes to the STC state, the system stability and interference can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种上行MIMO自适应方法及装置,应用通信技术领域。本发明所提供的方法包括判断当前上行数据的传输方式,并根据误包率P、总包数N_Total、上行拥塞系数、信道相关性将上行数据的传输方式在非MIMO、虚拟MIMO、STC方式或SM方式中选择最优的传输方式进行上行数据的传输。应用发明提供的方法和装置能够解决现有技术中单独使用任意一种非MIMO方式或MIMO方式进行数据传输不能最优化的利用***中的资源,为用户提供灵活的数据传输方式的问题。本发明提供的方法和装置根据误包率、拥塞、相关性等情况来自适应的选择上行数据的传输方式,在保证链路可靠性的基础上提高***上行吞吐量。

Description

一种上行 MIMO 自适应方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种上行 MIMO ( Multiple-Input Multiple-Out-put, 多输入多输出) 自适应方法及装置。 背景技术
MIMO是 OFDMA ( Orthogonal Frequency Division Multiple Access, 正 交频分多址)***中物理层的关键技术之一。在 MIMO***中,信号源 S(k) 经过时空编码后由多跟天线发射出去, 再经过无线信道, 在接收端用多跟 天线进行接收, 在接收端进行时空解码后恢复出原始信号。
MIMO 的中心思想是利用多天线来抑制信道衰落, 实现方式是将多径 天线信道与发射、 接收视为一个整体进行优化, 从而实现高的通信容量和 频谱利用率, 是一种近于最优的空域时域联合分集和干扰对消处理。
MIMO技术主要有两种应用: STC ( Space Time Coding, 空时编码), 包括发射分集和接收分集; 以及 SM ( Spatial Multiplexing, 空间复用)。
分集 STC技术同时利用了时间和空间, 不提高***容量, 但是提高分 集和编码增益, 原理如图 1所示。 从图 1 中可以看到, 输入字符(即信息 源)被分为两组, 每组为两个字符。 在第一个字符时间内, 每组的两个字 符 [C1,C2]同时从两根天线发送。 下一个字符时间内, 两个字符 [C1,C2]被变 换成 [-C2*,C1*]再次从两根天线发出。 这样, 接收天线在两个字符时间内就 可以收到两个字符的两种不同形式, 通过解码技术后还原出字符。
SM技术利用了空间,发送方在一个字符时间内把两个字符同时发送出 去, 下一个字符时间内再发送另外两个字符, 如图 2所示。 高速的数据流 被分成并行的数据流同时进行发射, 此时每根天线的发射数据是不一样的, 在接收端再进行空间解调复用, 重新组合成高速串行数据流。
上行虚拟 MIMO, 当终端只使用一根发射天线时, 只能通过多个终端 协作的方式来实现 MIMO,即 Virtual MIMO技术,图 3所示。在使用 Virtual MIMO 的时候, 两个终端各使用一根发射天线, 并且使用完全相同的时频 资源, 每个终端的数据和非 MIMO模式一样进行编码、 交织、 调制、 映射, 调制后的数据子载波按照协议编码成对后发送给基站。 两个终端协作实现 上行 Virtual MIMO的方式也叫配对方式, 自适应配对是指根据某种方法自 适应的选择合适的终端进行配对, 成功配对后, 若信道条件发生恶化, 传 输不稳定, 则进行自适应拆对处理。
在现有技术中, 在选择上述三种方式或非 MIMO方式中的一种进行数 据传输时, 则在一定时期内只能通过选择的方式进行数据传输。 但是在具 体的应用环境中上述方式都存在一定的应用缺陷。 如: 在没有上行数据流 时, 应用 MIMO方式终端则会对其他终端造成干扰等, 上述情况使得数据 传输时, 不能最优化的利用***中的资源, 为用户提供灵活的数据传输方 式。 发明内容
本发明提供一种上行 MIMO 自适应方法及装置, 用于解决现有技术中 单独使用任意一种非 MIMO方式或 MIMO方式进行数据传输不能最优化的 利用***中的资源, 为用户提供灵活的数据传输方式的问题。
本发明实施例提供一种上行 MIMO自适应方法, 包括:
确定当前上行数据的传输方式为非多输入多输出 MIMO 方式、 虚拟 MIMO方式、 空时编码 STC方式或空间复用 SM方式中的一种;
基于确定的当前传输方式, 检测到当前时间周期达到预设的传输方式 切换周期时,根据周期内的误包率 P和总包数 N— Total选择最优的传输方式 进行上行数据的传输。 所述基于确定的当前传输方式, 检测到当前时间周期达到预设的传输 方式切换周期时,根据周期内的误包率 P和总包数 N— Total选择最优的传输 方式进行上行数据的传输包括:
如果当前上行数据的传输方式为非 MIMO方式, 则检测当前时间周期 是否达到预设的第一传输方式切换周期,如果是,则根据周期内的误包率 P、 总包数 N— Total和上行拥塞系数将上行数据的传输方式切换为虚拟 MIMO 方式或 STC方式;
如果当前上行数据的传输方式为虚拟 MIMO方式, 则检测当前时间周 期是否达到预设的第二传输方式切换周期, 如果是, 则根据周期内的误包 率 P和总包数 N— Total进行拆对处理;
如果当前上行数据的传输方式为 STC方式, 则检测当前时间周期是否 达到预设的第三传输方式切换周期, 如果是, 则根据周期内的误包率?、 总 包数 N— Total 和信道相关性将上行数据的传输方式切换为 SM 方式或非 MIMO方式;
如果当前上行数据的传输方式为 SM方式, 则检测当前时间周期是否 达到预设的第四传输方式切换周期, 如果是, 则根据周期内的误包率 P和 总包数 N— Total将上行数据的传输方式切换为空时编码 STC方式。
根据上述方法本发明还提供一种上行 MIMO自适应装置, 包括: 上行数据传输方式确定模块, 用于确定当前上行数据的传输方式为非 MIMO方式、 虚拟 MIMO方式、 STC方式或 SM方式中的一种;
上行数据传输方式切换模块, 用于基于确定的当前传输方式, 检测到 当前时间周期达到预设的传输方式切换周期时, 根据周期内的误包率 P和 总包数 N— Total选择最优的传输方式进行上行数据的传输。
所述上行数据传输方式切换模块包括:
非 MIMO 方式切换模块, 用于如果当前上行数据的传输方式为非 MIMO方式, 则检测当前时间周期是否达到预设的第一传输方式切换周期, 如果是, 则根据周期内的误包率卩、 总包数 N— Total和上行拥塞系数将上行 数据的传输方式切换为虚拟 MIMO方式或 STC方式;
虚拟 MIMO方式切换模块, 用于如果当前上行数据的传输方式为虚拟 MIMO方式, 则检测当前时间周期是否达到预设的第二传输方式切换周期, 如果是, 则根据周期内的误包率 P和总包数 N— Total进行拆对处理;
STC方式切换模块, 用于如果当前上行数据的传输方式为 STC方式, 则检测当前时间周期是否达到预设的第三传输方式切换周期, 如果是, 则 根据周期内的误包率 P、 总包数 N— Total和信道相关性将上行数据的传输方 式切换为 SM方式或非 MIMO方式;
SM方式切换模块, 用于如果当前上行数据的传输方式为 SM方式, 则 检测当前时间周期是否达到预设的第四传输方式切换周期, 如果是, 则根 据周期内的误包率 P和总包数 N— Total将上行数据的传输方式切换为 STC 方式。
本发明提供的方法和装置, 能够解决现有技术中单独使用任意一种非 MIMO方式或 MIMO方式进行数据传输不能最优化的利用***中的资源, 为用户提供灵活的数据传输方式的问题; 根据误包率、 拥塞、 相关性等情 况来自适应的选择上行数据的传输方式, 在保证链路可靠性的基础上提高 ***上行吞吐量。 附图说明
图 1为现有技术中 STC方式进行数据传输的原理示意图;
图 1为现有技术中 SM方式进行数据传输的原理示意图;
图 3为现有技术中上行虚拟 MIMO的原理示意图;
图 4为本发明实施例一种 MIMO自适应方法的流程示意图;
图 5为本发明实施例当前非 MIMO处理流程示意图; 图 6为本发明实施例当前虚拟 MIMO处理流程示意图;
图 7本发明实施例当前 STC处理流程示意图;
图 8本发明实施例当前 SM处理流程示意图;
图 9本发明实施例一种 MIMO自适应装置的结构示意图。 具体实施方式
本发明实施例提供一种上行 MIMO 自适应方法, 包括: 判断当前上行 数据的传输方式, 并根据误包率 P、 总包数 N— Total、 上行拥塞系数、 信道 相关性将上行数据的传输方式在非 MIMO、 虚拟 MIMO、 STC方式或 SM 方式中选择最优的传输方式进行上行数据的传输, 即: 确定当前上行数据 的传输方式为非 MIMO方式、虚拟 MIMO方式、 STC方式或 SM方式中的 一种; 基于确定的当前传输方式, 检测到当前时间周期达到预设的传输方 式切换周期时,根据周期内的误包率 P和总包数 N— Total选择最优的传输方 式进行上行数据的传输。
具体地, 如果当前上行数据的传输方式为非 MIMO方式, 则检测当前 时间周期是否达到预设的第一传输方式切换周期, 如果是, 则根据周期内 的误包率 P、 总包数 N— Total和上行拥塞系数将上行数据的传输方式切换为 虚拟 MIMO方式或 STC方式;如果当前上行数据的传输方式为虚拟 MIMO 方式, 则检测当前时间周期是否达到预设的第二传输方式切换周期, 如果 是, 则根据周期内的误包率 P和总包数 N— Total进行拆对处理; 如果当前上 行数据的传输方式为 STC方式, 则检测当前时间周期是否达到预设的第三 传输方式切换周期, 如果是, 则根据周期内的误包率卩、 总包数 N— Total和 信道相关性将上行数据的传输方式切换为 SM方式或非 MIMO方式; 如果 当前上行数据的传输方式为 SM方式, 则检测当前时间周期是否达到预设 的第四传输方式切换周期, 如果是, 则根据周期内的误包率 P 和总包数 N Total将上行数据的传输方式切换为 STC方式。 如图 4所示, 本发明实施例所提供的一种上行 MIMO自适应方法, 具 体的实现方式可以是:
步驟 401 , 判断上行 MIMO 自适应是否使能, 即终端是否支持 MIMO 切换功能, 如果是则进入步驟 402, 否则进入步驟 410。
步驟 402, 判断当前上行数据传输是否处于非 MIMO方式, 如果是则 进入步驟 403 , 否则进入步驟 404。
步驟 403: 进入当前非 MIMO处理流程, 然后进入步驟 410。
步驟 404: 判断当前上行数据传输是否处于虚拟 MIMO方式, 如果是 则进入步驟 405, 否则进入步驟 406。
步驟 405: 进入当前虚拟 MIMO处理流程, 然后进入步驟 410。
步驟 406: 判断当前上行数据传输是否处于 STC方式, 如果是则进入 步驟 407, 否则进入步驟 408。
步驟 407: 进入当前 STC处理流程, 然后进入步驟 410。
步驟 408: 判断当前上行数据传输是否处于 SM方式, 如果是则进入步 驟 409, 否则进入步驟 410。
步驟 409: 进入当前 SM处理流程, 然后进入步驟 410。
步驟 410: 结束流程。
由于传输方式标志位的不同取值对应不同传输方式, 因此上述判断当 前上行数据传输所处于的传输方式, 可以基于确定传输方式标志位的取值 来实现。
上述处理可以在基站中进行, 基站确定最优的传输方式后, 可通过控 制信令告知终端。
为了方便描述, 以下将后续流程中所需使用的判断参数进行详细的说 明:
设定周期内统计到的误包率为 P:误包率是周期内传输错误的包与总包 数的比值, 可以用误包率反映终端当前的信道条件, 如果误包率大于一定 门限值则认为信道条件恶化。
总包数为 N— Total: 如果周期内的总包数低于门限值, 则认为终端没有 业务, 具体门限值的设置跟实际情况有关。
***的拥塞系数为 M ( 1^=实际使用的带宽 /空口带宽): 拥塞反映*** 资源的使用情况, 如果实际流量与空口带宽的比值超过拥塞门限, 则认为 ***开始出现拥塞, 比值越大, ***越拥塞。 拥塞门限取值的设置跟实际 环境有关。
相关性系数为 Q (信道矩阵的最小特征值 /信道矩阵的最大特征值): 信 道相关性反映信道之间的独立性, 可以用相关性系数来表示, 即信道矩阵 的最小特征值与最大调整值的比值来表示。 如果比值为 0, 则信道全相关, ***将无法区分由各个信道到达的数据; 如果比值为 1 , 则信道完全独立, ***可以区分由各个信道达到的数据。 如果信道完全独立, 那么 SM可以 成功解码, 实际环境中信道是不能完全独立的, 只要相关性满足一定的条 件, 即相关性系数大于门限值, SM就可以成功解码。 门限值的设置跟实际 环境有关。
如图 5所示, 当前上行数据的传输方式为非 MIMO方式时, 其中, 非 MIMO统计周期为 Nl、 非 MIMO没有流量判决门限为 PI (总包数小于 PI 认为没有流量)、 非 MIMO传输不稳判决门限为 P5、 非 MIMO传输稳定判 决门限为 P8和***上行拥塞进入门限为 P 10;则在具体的应用中,步驟 403 当前非 MIMO处理流程具体可以包括:
步驟 501 : 根据帧统计当前上行数据通过非 MIMO方式传输的时间周 期;
步驟 502: 判断所述时间周期是否达到非 MIMO统计周期 N1 , 如果是 则进入步驟 503 , 否则进入步驟 511 ; 步驟 503: 计算周期内的误包率 P与总包数 N— Total;
步驟 504: 判断总包数 N— Total是否大于门限值 P1 ,如果是则进入步驟 505 , 否则进入步驟 511 ;
步驟 505: 判断误包率是否大于门限值 P5, 如果是则进入步驟 509, 否 则进入步驟 506;
步驟 506: 判断上行拥塞系数是否大于门限值 P10, 如果是则进入步驟 507, 否则进入步驟 511 ;
步驟 507, 寻找合适的终端配对;
步驟 508: 判断是否找到合适的终端, 如果是则进入步驟 509, 否则进 入步驟 510;
步驟 509: 切换到 STA方式, 进入步驟 511 ;
步驟 510: 触发终端进行配对, 进入步驟 511 ;
步驟 511 : 结束流程。
如图 6所示, 当前上行数据的传输方式为虚拟 MIMO方式时, 其中, 虚拟 MIMO统计周期为 N2、 虚拟 MIMO没有流量判决门限为 P2、 虚拟 MIMO传输不稳判决门限为 P6; 则在具体的应用中, 步驟 405 当前虚拟 MIMO处理流程具体包括:
步驟 601 : 根据帧统计当前上行数据通过虚拟 MIMO方式传输的时间 周期。
步驟 602: 判断所述时间周期是否达到虚拟 MIMO统计周期 N2, 如果 是则进入步驟 603 , 否则进入步驟 607。
步驟 603: 计算误包率 P与总包数 N— Total。
步驟 604: 判断周期内的总包数 N— Total是否低于门限值 P2,如果是则 进入步驟 606, 否则进入步驟 605。
步驟 605: 判断周期内的误包率 P是否大于门限值 P6, 如果是则进入 步驟 606, 否则进入步驟 607。
步驟 606: 进行拆对处理, 进入步驟 607。
步驟 607: 结束流程。
如图 7所示, 当前上行数据的传输方式为 STC方式, 其中, STC统计 周期为 N3、 STC没有流量判决门限为 P3、 STC传输稳定判决门限为 P9和 STC进入 SM时的相关性系数门限为 P11 , 则在具体的应用中, 步驟 407 当前 STC处理流程具体可以包括:
步驟 701 : 根据帧统计当前上行数据通过 STC方式传输的时间周期。 步驟 702: 判断所述时间周期是否达到 STC统计周期 N3 , 如果是则进 入步驟 703 , 否则进入步驟 709。
步驟 703: 统计周期内的误包率与总包数 N— Total。
步驟 704: 判断总包数 N— Total是否低于门限值 P3 ,如果是则进入步驟 705 , 否则进入步驟 706。
步驟 705: 切换到非 MIMO方式, 进入步驟 709。
步驟 706: 判断误包率是否低于门限值 P9, 如果是则进入步驟 707; 否 则进入步驟 709。
步驟 707: 判断信道相关性是否大于 P11 , 如果是则进入步驟 708, 否 则进入步驟 709。
步驟 708: 切换到 SM (终端有 SM能力)方式, 进入步驟 709。
步驟 709: 结束流程。
如图 8所示, 当前上行数据的传输方式为 SM方式时, 其中, SM统计 周期为 N4、 SM没有流量判决门限为 P4、 SM传输不稳定判决门限为 P7。 则在具体的应用中, 步驟 409当前 SM处理流程的具体实现方式可以是: 步驟 801 : 根据帧统计当前上行数据通过 SM方式传输的时间周期。 步驟 802: 判断所述时间周期是否达到 SM统计周期 N4, 如果是则进 入步驟 803 , 否则进入步驟 807。
步驟 803: 计算周期内的误包率 P与总包数 N— Total。
步驟 804: 判断周期内的总包数是否低于门限值 P4, 如果是则进入步 驟 806, 否则进入步驟 805。
步驟 805: 判断误包率是否大于门限值 P7, 如果是则进入步驟 806, 否 则进入步驟 807。
步驟 806: 切换到 STC方式, 进入步驟 807。
步驟 807: 结束流程。
如图 9所示, 本发明实施例还提供一种上行 MIMO自适应装置, 包括 上行数据传输方式确定模块 901和上行数据传输方式切换模块 906:
上行数据传输方式确定模块 901 ,用于确定当前上行数据的传输方式为 非 MIMO方式、 虚拟 MIMO方式、 STC方式或 SM方式中的一种;
上行数据传输方式切换模块 906, 用于基于确定的当前传输方式,检测 到当前时间周期达到预设的传输方式切换周期时, 根据周期内的误包率 P 和总包数 N— Total选择最优的传输方式进行上行数据的传输。
其中, 上行数据传输方式切换模块 906包括: 非 MIMO方式切换模块 902、 虚拟 MIMO方式切换模块 903、 STC方式切换模块 904和 SM方式切 换模块 905:
非 MIMO方式切换模块 902, 用于如果当前上行数据的传输方式为非 MIMO方式, 则检测当前时间周期是否达到预设的第一传输方式切换周期, 如果是, 则根据周期内的误包率卩、 总包数 N— Total和上行拥塞系数将上行 数据的传输方式切换为虚拟 MIMO方式或 STC方式;
虚拟 MIMO方式切换模块 903 , 用于如果当前上行数据的传输方式为 虚拟 MIMO方式, 则检测当前时间周期是否达到预设的第二传输方式切换 周期, 如果是, 则根据周期内的误包率 P和总包数 N— Total进行拆对处理; STC方式切换模块 904, 用于如果当前上行数据的传输方式为 STC方 式, 则检测当前时间周期是否达到预设的第三传输方式切换周期, 如果是, 则根据周期内的误包率?、 总包数 N— Total和信道相关性将上行数据的传输 方式切换为 SM方式或非 MIMO方式;
SM方式切换模块 905 ,用于如果当前上行数据的传输方式为 SM方式, 则检测当前时间周期是否达到预设的第四传输方式切换周期, 如果是, 则 根据周期内的误包率 P和总包数 N— Total将上行数据的传输方式切换为 STC 方式。
所述非 MIMO 方式切换模块 902 根据周期内的误包率 P、 总包数 N— Total和上行拥塞系数将上行数据的传输方式切换为虚拟 MIMO方式或 STC方式具体包括:
步驟 A1, 确定周期内上行数据传输的误包率 P、 总包数 N— Total和上 行拥塞系数;
步驟 A2, 判断所述总包数 N— Total是否大于预设的第一流量判决门限 值, 如果是则转入步驟 A3 , 否则结束流程;
步驟 A3 , 判断误包率是否大于预设的第一传输稳定判决门限值, 如果 是则转入步驟 A5 , 否则转入步驟 A4;
步驟 A4, 判断上行拥塞系数是否大于预设的第一上行拥塞门限值, 如 果是则转入步驟 A5, 否则结束流程;
步驟 A5, 判断是否找到配对的终端, 如果是则将上行数据的传输方式 切换为 STC方式, 否则触发终端进行配对, 并结束流程。
所述虚拟 MIMO方式切换模块 903根据周期内的误包率 P和总包数 N— Total进行拆对处理具体包括:
步驟 B 1 , 确定周期内上行数据传输的误包率 P与总包数 N— Total; 步驟 B2 , 判断周期内的总包数 N— Total是否低于预设的第二流量判决 门限值, 如果是则进入步驟 B4, 否则进入步驟 B3;
步驟 B3: 判断周期内的误包率是否大于预设的第二传输稳定判决门限 值, 如果是则进入步驟 B4, 否则进入步驟结束流程;
步驟 B4, 进行拆对处理, 结束流程。
所述 STC方式切换模块 904根据周期内的误包率 P、 总包数 N— Total 和信道相关性将上行数据的传输方式切换为 SM方式或非 MIMO方式具体 包括:
步驟 C1 , 确定周期内上行数据传输的误包率与总包数 N— Total;
步驟 C2, 判断总包数 N— Total是否低于预设的第三流量判决门限值, 如果是则将上行数据的传输方式切换到非 MIMO方式, 并结束流程, 否则 进入步驟 C3;
步驟 C3 , 判断误包率是否低于预设的第三传输稳定判决门限值 , 如果 是则进入步驟 C4; 否则结束流程;
步驟 C4, 判断信道相关性是否大于相关性系数门限值, 如果是则上行 数据的传输方式切换为 SM方式, 否则结束流程。
所述 SM方式切换模块 905根据周期内的误包率 P和总包数 N— Total 将上行数据的传输方式切换为 STC方式具体包括:
步驟 D1 , 确定周期内上行数据传输的误包率 P和总包数 N— Total; 步驟 D2, 判断所述总包数是否低于预设的第四流量判决门限值, 如果 是则将上行数据的传输方式切换为 STC方式, 否则进入步驟 D3;
步驟 D3, 判断误包率是否大于预设的第四传输稳定判决门限值, 如果 是则上行数据的传输方式切换为 STC方式, 否则结束流程。
如果终端没有上行流量则让终端处于上行非 MIMO状态, 使用一根发 射天线, 降低该终端对其他终端的干扰、 降低***的总体干扰。
终端处于上行非 MIMO状态, 如果出现传输不稳定或者上行出现拥塞 而又没有合适的终端进行配对, 则切换到上行 STC状态; 如果上行出现拥 塞并且传输稳定, 则寻找一个合适的终端进行配对, 找到了则进入上行虚 拟 MIMO状态。
终端处于上行虚拟 MIMO状态, 如果终端没有流量或者传输不稳定则 进行拆对处理。
终端处于上行 STC状态,如果无上行流量则切换到上行非 MIMO状态; 如果传输稳定并且相关性满足条件, 则切换到 SM状态, 提供***上行吞 吐量。
终端处于上行 SM状态,如果终端没有流量或者传输不稳定则且到 STC 状态, 可以提高***稳定性、 降低干扰。
上述上行 MIMO自适应装置位于基站。 术人员根据本发明的技术方案得出其它的实施方式, 同样属于本发明的技 术创新范围。 显然, 本领域的技术人员可以对本发明进行各种改动和变型 而不脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动 和变型在内。

Claims

权利要求书
1、 一种上行 MIMO自适应方法, 其特征在于, 包括:
确定当前上行数据的传输方式为非多输入多输出 MIMO 方式、 虚拟 MIMO方式、 空时编码 STC方式或空间复用 SM方式中的一种;
基于确定的当前传输方式, 检测到当前时间周期达到预设的传输方式 切换周期时,根据周期内的误包率 P和总包数 N— Total选择最优的传输方式 进行上行数据的传输。
2、 如权利要求 1所述的方法, 其特征在于, 所述基于确定的当前传输 方式, 检测到当前时间周期达到预设的传输方式切换周期时, 根据周期内 的误包率 P和总包数 N— Total选择最优的传输方式进行上行数据的传输包 括:
如果当前上行数据的传输方式为非 MIMO方式, 则检测当前时间周期 是否达到预设的第一传输方式切换周期,如果是,则根据周期内的误包率 P、 总包数 N— Total和上行拥塞系数将上行数据的传输方式切换为虚拟 MIMO 方式或 STC方式;
如果当前上行数据的传输方式为虚拟 MIMO方式, 则检测当前时间周 期是否达到预设的第二传输方式切换周期, 如果是, 则根据周期内的误包 率 P和总包数 N— Total进行拆对处理;
如果当前上行数据的传输方式为 STC方式, 则检测当前时间周期是否 达到预设的第三传输方式切换周期, 如果是, 则根据周期内的误包率?、 总 包数 N— Total 和信道相关性将上行数据的传输方式切换为 SM 方式或非 MIMO方式;
如果当前上行数据的传输方式为 SM方式, 则检测当前时间周期是否 达到预设的第四传输方式切换周期, 如果是, 则根据周期内的误包率 P和 总包数 N— Total将上行数据的传输方式切换为 STC方式。
3、 如权利要求 2所述的方法, 其特征在于, 如果当前上行数据的传输 方式为非 MIMO方式, 所述根据周期内的误包率 P、 总包数 N— Total和上 行拥塞系数将上行数据的传输方式切换为虚拟 MIMO方式或 STC方式包 括:
A1 ,确定周期内上行数据传输的误包率 P、 总包数 N— Total和上行拥塞 系数;
A2, 判断所述总包数 N— Total是否大于预设的第一流量判决门限值, 如果是则转入步驟 A3 , 否则结束流程;
A3 , 判断误包率是否大于预设的第一传输稳定判决门限值, 如果是则 转入步驟 A5, 否则转入步驟 A4;
A4, 上行拥塞系数是否大于预设的第一上行拥塞门限值, 如果是则转 入步驟 A5, 否则结束流程;
A5 , 判断是否找到配对的终端, 如果是则将上行数据的传输方式切换 为 STC方式, 否则触发终端进行配对, 并结束流程。
4、 如权利要求 2所述的方法, 其特征在于, 如果当前上行数据的传输 方式为虚拟 MIMO方式, 所述根据周期内的误包率 P和总包数 N— Total进 行拆对处理包括:
B1 , 确定周期内上行数据传输的误包率 P与总包数 N— Total;
B2, 判断周期内的总包数 N— Total是否低于预设的第二流量判决门限 值, 如果是则进入步驟 B4, 否则进入步驟 B3;
B3: 判断周期内的误包率是否大于预设的第二传输稳定判决门限值, 如果是则进入步驟 B4, 否则进入步驟结束流程;
B4, 进行拆对处理, 结束流程。
5、 如权利要求 2所述的方法, 其特征在于, 如果当前上行数据的传输 方式为 STC方式, 所述根据周期内的误包率 P、 总包数 N Total和信道相 关性将上行数据的传输方式切换为 SM方式或非 MIMO方式包括:
C1 , 确定周期内上行数据传输的误包率与总包数 N— Total;
C2, 判断总包数 N— Total是否低于预设的第三流量判决门限值, 如果 是则将上行数据的传输方式切换到非 MIMO方式, 并结束流程, 否则进入 步驟 C3;
C3 , 判断误包率是否低于预设的第三传输稳定判决门限值, 如果是则 进入步驟 C4; 否则结束流程;
C4, 判断信道相关性是否大于相关性系数门限值, 如果是则上行数据 的传输方式切换为 SM方式, 否则结束流程。
6、 如权利要求 2所述的方法, 其特征在于, 如果当前上行数据的传输 方式为 SM方式,所述根据周期内的误包率 P和总包数 N— Total将上行数据 的传输方式切换为 STC方式包括:
D1 , 确定周期内上行数据传输的误包率 P和总包数 N— Total;
D2, 判断所述总包数是否低于预设的第四流量判决门限值, 如果是则 将上行数据的传输方式切换为 STC方式, 否则进入步驟 D3;
D3 , 判断误包率是否大于预设的第四传输稳定判决门限值, 如果是则 上行数据的传输方式切换为 STC方式, 否则结束流程。
7、 一种上行 MIMO自适应装置, 其特征在于, 包括:
上行数据传输方式确定模块, 用于确定当前上行数据的传输方式为非 MIMO方式、 虚拟 MIMO方式、 STC方式或 SM方式中的一种;
上行数据传输方式切换模块, 用于基于确定的当前传输方式, 检测到 当前时间周期达到预设的传输方式切换周期时, 根据周期内的误包率 P和 总包数 N— Total选择最优的传输方式进行上行数据的传输。
8、 如权利要求 7所述的装置, 其特征在于, 所述上行数据传输方式切 换模块包括: 非 MIMO 方式切换模块, 用于如果当前上行数据的传输方式为非 MIMO方式, 则检测当前时间周期是否达到预设的第一传输方式切换周期, 如果是, 则根据周期内的误包率卩、 总包数 N— Total和上行拥塞系数将上行 数据的传输方式切换为虚拟 MIMO方式或 STC方式;
虚拟 MIMO方式切换模块, 用于如果当前上行数据的传输方式为虚拟 MIMO方式, 则检测当前时间周期是否达到预设的第二传输方式切换周期, 如果是, 则根据周期内的误包率 P和总包数 N— Total进行拆对处理;
STC方式切换模块, 用于如果当前上行数据的传输方式为 STC方式, 则检测当前时间周期是否达到预设的第三传输方式切换周期, 如果是, 则 根据周期内的误包率 P、 总包数 N— Total和信道相关性将上行数据的传输方 式切换为 SM方式或非 MIMO方式;
SM方式切换模块, 用于如果当前上行数据的传输方式为 SM方式, 则 检测当前时间周期是否达到预设的第四传输方式切换周期, 如果是, 则根 据周期内的误包率 P和总包数 N— Total将上行数据的传输方式切换为 STC 方式。
9、如权利要求 8所述的装置, 其特征在于, 所述非 MIMO方式切换模 块根据周期内的误包率 P、 总包数 N— Total和上行拥塞系数将上行数据的传 输方式切换为虚拟 MIMO方式或 STC方式包括:
A1 ,确定周期内上行数据传输的误包率 P、 总包数 N— Total和上行拥塞 系数;
A2, 判断所述总包数 N— Total是否大于预设的第一流量判决门限值, 如果是则转入步驟 A3, 否则结束流程;
A3 , 判断误包率是否大于预设的第一传输稳定判决门限值, 如果是则 转入步驟 A5, 否则转入步驟 A4;
A4, 上行拥塞系数是否大于预设的第一上行拥塞门限值, 如果是则转 入步驟 A5, 否则结束流程;
A5 , 判断是否找到配对的终端, 如果是则将上行数据的传输方式切换 为 STC方式, 否则触发终端进行配对, 并结束流程。
10、 如权利要求 8所述的装置, 其特征在于, 所述虚拟 MIMO方式切 换模块根据周期内的误包率 P和总包数 N— Total进行拆对处理包括:
B1 , 确定周期内上行数据传输的误包率 P与总包数 N— Total;
B2, 判断周期内的总包数 N— Total是否低于预设的第二流量判决门限 值, 如果是则进入步驟 B4, 否则进入步驟 B3;
B3: 判断周期内的误包率是否大于预设的第二传输稳定判决门限值, 如果是则进入步驟 B4, 否则进入步驟结束流程;
B4, 进行拆对处理, 结束流程。
11、 如权利要求 8所述的装置, 其特征在于, 所述 STC方式切换模块 根据周期内的误包率 P、 总包数 N— Total和信道相关性将上行数据的传输方 式切换为 SM方式或非 MIMO方式包括:
C1 , 确定周期内上行数据传输的误包率与总包数 N— Total;
C2, 判断总包数 N— Total是否低于预设的第三流量判决门限值, 如果 是则将上行数据的传输方式切换到非 MIMO方式, 并结束流程, 否则进入 步驟 C3;
C3 , 判断误包率是否低于预设的第三传输稳定判决门限值, 如果是则 进入步驟 C4; 否则结束流程;
C4, 判断信道相关性是否大于相关性系数门限值, 如果是则上行数据 的传输方式切换为 SM方式, 否则结束流程。
12、 如权利要求 8所述的装置, 其特征在于, 所述 SM方式切换模块 根据周期内的误包率 P和总包数 N— Total将上行数据的传输方式切换为 STC 方式包括: Dl , 确定周期内上行数据传输的误包率 P和总包数 N— Total;
D2, 判断所述总包数是否低于预设的第四流量判决门限值, 如果是则 将上行数据的传输方式切换为 STC方式, 否则进入步驟 D3;
D3 , 判断误包率是否大于预设的第四传输稳定判决门限值, 如果是则 上行数据的传输方式切换为 STC方式, 否则结束流程。
PCT/CN2011/082235 2010-11-17 2011-11-15 一种上行mimo自适应方法及装置 WO2012065544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010549117.7A CN102468931B (zh) 2010-11-17 2010-11-17 一种上行mimo自适应方法及装置
CN201010549117.7 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012065544A1 true WO2012065544A1 (zh) 2012-05-24

Family

ID=46072149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082235 WO2012065544A1 (zh) 2010-11-17 2011-11-15 一种上行mimo自适应方法及装置

Country Status (2)

Country Link
CN (1) CN102468931B (zh)
WO (1) WO2012065544A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992554A (zh) * 2005-12-29 2007-07-04 上海贝尔阿尔卡特股份有限公司 无线通信***中干扰消除的方法和设备
CN101431778A (zh) * 2007-11-06 2009-05-13 大唐移动通信设备有限公司 一种多入多出模式自适应切换方法及装置
CN101729119A (zh) * 2008-10-15 2010-06-09 中兴通讯股份有限公司 一种下行多输入多输出模式自适应切换的方法和***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1774676B1 (en) * 2004-08-02 2009-06-03 Nokia Corporation Outer loop power control with transport block diversity transmission
CN101621352B (zh) * 2008-07-04 2013-03-27 电信科学技术研究院 天线模式自适应切换方法、***及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992554A (zh) * 2005-12-29 2007-07-04 上海贝尔阿尔卡特股份有限公司 无线通信***中干扰消除的方法和设备
CN101431778A (zh) * 2007-11-06 2009-05-13 大唐移动通信设备有限公司 一种多入多出模式自适应切换方法及装置
CN101729119A (zh) * 2008-10-15 2010-06-09 中兴通讯股份有限公司 一种下行多输入多输出模式自适应切换的方法和***

Also Published As

Publication number Publication date
CN102468931B (zh) 2014-10-29
CN102468931A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US9736832B2 (en) Wireless communications system that supports multiple modes of operation
US8755455B2 (en) Quality of service and rate selection
EP1772975B1 (en) Method and apparatus for detecting signal in a mimo communication system
WO2010043129A1 (zh) 一种下行多输入多输出模式自适应切换的方法和***
JP5042156B2 (ja) 無線通信システム、無線通信装置及び無線通信方法
CN101150343A (zh) 一种mimo移动通信方法及***
WO2006075661A1 (ja) 無線通信方法、無線受信装置、無線送信装置、および無線通信システム
WO2006030274A1 (en) Method and apparatus to balance maximum information rate with quality of service in a mimo system
SG176479A1 (en) Method for selecting transmission parameters for a data transmission and data transmission controller
WO2007000742A2 (en) Adaptive modulation for cooperative coded systems
Martorell et al. Cross-layer fast link adaptation for MIMO-OFDM based WLANs
US11418976B2 (en) Wireless adaptation based on multidimensional input
US9843411B2 (en) System and method for rate adaptation based on total number of spatial streams in MU-MIMO transmissions
Suikkanen et al. Study of adaptive detection for MIMO-OFDM systems
Dekorsy A cutoff rate based cross-layer metric for MIMO-HARQ transmission
CN102891707B (zh) 选择传输模式的方法和基站
EP1497944B1 (en) Diagonally layered multi-antenna transmission for frequency selective channels
WO2012065544A1 (zh) 一种上行mimo自适应方法及装置
WO2013107122A1 (zh) 一种多用户mimo***的自适应harq方法和装置
CN112105063A (zh) 基于多维输入的无线自适应
Dubois et al. Novel diversity combining in OFDM-based MIMO systems
Zhang et al. Approaching MIMO-OFDM capacity with per antenna power and rate feedback
Islam et al. Buffer-aided BICM-OFDM relaying
KR101184370B1 (ko) Mimo 시스템에서 전송 모드 및 전송 레이트 조정 방법 및 장치
Onizawa et al. Packet-combining demodulation scheme for cooperative MIMO-OFDM transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842274

Country of ref document: EP

Kind code of ref document: A1