WO2012065365A1 - 异丙苯的生产方法 - Google Patents

异丙苯的生产方法 Download PDF

Info

Publication number
WO2012065365A1
WO2012065365A1 PCT/CN2011/001911 CN2011001911W WO2012065365A1 WO 2012065365 A1 WO2012065365 A1 WO 2012065365A1 CN 2011001911 W CN2011001911 W CN 2011001911W WO 2012065365 A1 WO2012065365 A1 WO 2012065365A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
cumene
transalkylation
reaction zone
benzene
Prior art date
Application number
PCT/CN2011/001911
Other languages
English (en)
French (fr)
Inventor
高焕新
周斌
魏一伦
顾瑞芳
方华
季树芳
姚辉
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010551962.8A external-priority patent/CN102464564B/zh
Priority claimed from CN201010551951XA external-priority patent/CN102464563B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020137014340A priority Critical patent/KR101844037B1/ko
Priority to SG2013038443A priority patent/SG190832A1/en
Priority to US13/886,000 priority patent/US9321705B2/en
Publication of WO2012065365A1 publication Critical patent/WO2012065365A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • C07C6/06Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond at a cyclic carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Definitions

  • the present invention relates to a process for producing cumene from benzene and propylene. Background technique
  • Cumene is an important organic chemical raw material and is the main intermediate compound for the production of phenol, acetone and fluorenyl styrene.
  • cumene is prepared by alkylation of propylene and benzene, and its by-product is mainly polyisopropylbenzene.
  • UOP announced the preparation of cumene by the reaction of propylene and benzene in the presence of an acidic catalyst (SPA method) (USP2382318).
  • SPA method acidic catalyst
  • USP2382318 an acidic catalyst
  • the SPA process uses solid phosphoric acid as the alkylation catalyst. Since the solid phosphoric acid cannot catalyze the transalkylation reaction, there is no transalkylation moiety in the process.
  • the SPA method can only be operated at a high benzene molar ratio (5 to 7), and its isopropyl yield is only about 95%.
  • Monsanto developed a cumene production process using A1C1 3 as an alkylation catalyst and industrial applications. Since A1C1 3 also cannot catalyze the transalkylation reaction, the production of cumene by the A1C1 3 method is still low in the yield of cumene, and there are also serious pollution problems and device corrosion problems.
  • the transalkylation of benzene with polycumene the molar ratio of benzene to polycumene, the space velocity of the feedstock, and the composition of the polyisopropylbenzene feedstock can significantly affect the conversion of polyisopropylbenzene and the positive
  • the amount of benzene formed, the transalkylation of polyisopropylbenzene tends to produce more impurities, n-propylbenzene, which can seriously reduce the quality of the product cumene. Therefore, through process optimization, increasing the conversion rate of polyisopropylbenzene and reducing the n-propylbenzene formed by transalkylation are of great significance for improving production efficiency and improving product quality.
  • the technical problem to be solved by the present invention is the problem that the content of n-propylbenzene in the transalkylation product existing in the prior art is high, and a new method for producing cumene is provided. This method greatly reduces the content of n-propylbenzene and improves product quality.
  • a method for producing cumene includes the following steps:
  • Step b) can be performed, for example, as follows:
  • the first benzene stream and the lighter component stream enter the first transalkylation reaction zone from the top, undergo a transalkylation reaction with the catalyst, and obtain a first cumene-containing material at the bottom;
  • the second benzene The stream of the stream and the heavier component enters the second transalkylation reaction zone from the top, undergoes a transalkylation reaction in contact with the catalyst, and obtains a second cumene-containing stream at the bottom of the second transalkylation reaction zone;
  • the first cumene-containing stream and the second cumene-containing stream are separately subjected to a subsequent refining process to obtain a product of cumene; or
  • the first benzene stream and the lighter component stream enter the first transalkylation reaction zone from the top, undergo a transalkylation reaction with the catalyst, and obtain a first cumene-containing stream at the bottom;
  • the propylbenzene stream and the heavier component stream are passed from the top to the second transalkylation reaction zone, contacted with the catalyst for transalkylation, and the second cumene is obtained at the bottom of the second transalkylation reaction zone.
  • the second cumene-containing stream enters a subsequent refining process to obtain a product of cumene.
  • first and second as used in the description of the above methods are merely for convenience of description and understanding, so as to distinguish between different objects, not for their time and / or The spatial order is subject to any specific restrictions.
  • the weight ratio of the first benzene stream to the lighter component stream is preferably in the range of 0.3 to 5, more preferably in the range of 0.7 to 3; the second benzene stream and the component are heavier
  • the weight ratio of the stream is preferably in the range of 0.3 to 5, more preferably in the range of 0.7 to 3.
  • the weight ratio of the first benzene stream to the lighter component stream is preferably in the range of 0.3 to 5, more preferably in the range of 0.7 to 3; the first cumene-containing stream and the heavier component stream Weight ratio Preferably, the range is from 0.3 to 5, more preferably from 0.7 to 3; the weight ratio of the first benzene stream to the stream containing the polysubstituted cumene is from 0.3 to 5.
  • the dicumyl content is preferably in the range of from 96 to 100% by weight.
  • the triisopropylbenzene content preferably ranges from 1 to 50% by weight.
  • the first transalkylation reaction zone and the second transalkylation reaction zone may both be fixed bed reactors, wherein the loaded catalyst is selected from the group consisting of Y zeolite, Beta zeolite, mordenite, SHY-1, SHY-2. Or a mesoporous material molecular sieve, such as MCM-22 as described in US Pat. No. 4,954, 325, wherein SHY-1 can be prepared according to the method disclosed in CN200410066636.2, and SHY-2 can be prepared according to the method disclosed in CN200610029979.0.
  • the loaded catalyst is selected from the group consisting of Y zeolite, Beta zeolite, mordenite, SHY-1, SHY-2.
  • a mesoporous material molecular sieve such as MCM-22 as described in US Pat. No. 4,954, 325, wherein SHY-1 can be prepared according to the method disclosed in CN200410066636.2, and SHY-2 can be prepared according to the method disclosed in CN2006100
  • the reaction conditions of the first transalkylation reaction zone can be, for example, a reaction temperature of 130 to 190 ° C, a reaction pressure of 1.0 to 3.0 MPa, a liquid phase space velocity of 0.5 to 10 hours, and a second transalkylation reaction zone.
  • the reaction conditions may be, for example, a reaction temperature of 150 to 210 ° C, a reaction pressure of 1.0 to 3.0 MPa, and a liquid phase space velocity of 0.5 to 10 hours.
  • the operation conditions of the human substituted isopropylbenzene column may be, for example, an operating pressure of -300 to 0 kPa. top temperature of 120 ⁇ 160 ° C, column bottom temperature of 190-250 ° C 0
  • the pressure refers to gauge pressure.
  • the polysubstituted isopropyl-containing stream refers to a product stream after alkylation of benzene and propylene in a hydrocarbonation reactor, including benzene, cumene, diisopropylbenzene, triisopropylbenzene, and n-propyl benzene.
  • the polysubstituted cumene means dicumyl and triisopropylbenzene, typically 90 to 100% by weight of the alkylation product stream.
  • the raw material benzene may be fresh benzene, recycled benzene in a subsequent stage or a mixture thereof.
  • the method of the invention divides the polysubstituted cumene into two streams with lighter and heavier components through proper rectification and cutting, and controls the content of diisopropylbenzene in the lighter stream to be at least 95% by weight.
  • the heavier component stream has a triisopropylbenzene content of at least greater than 0.5% by weight.
  • the two streams were subjected to a transalkylation reaction, which greatly reduced the content of n-propylbenzene.
  • the content of n-propylbenzene in isopropylbenzene was only 320 ppm, which improved the product quality and achieved good technical results.
  • FIG. 1 is a schematic diagram of a prior art process flow.
  • first transalkylation reaction zone and the second transalkylation reaction zone are separate, two parallel fixed bed reactors.
  • first transalkylation reaction zone and the second transalkylation reaction zone are separate, two fixed bed reactors in series.
  • the first transalkylation reaction zone and the second transalkylation reaction zone are contained within a fixed bed reactor.
  • Fig. 1 is the first transalkylation reaction zone
  • 2 is the second transalkylation reaction zone
  • 3 is a polysubstituted pyridine column
  • 4 is a first transalkylation reaction.
  • Zone catalyst bed 5 is the second transalkylation reaction zone catalyst bed
  • 6 is the feedstock containing polysubstituted cumene as the raw material
  • 7 is the first benzene stream as the raw material
  • 8 is the second as the raw material a benzene stream
  • 9 is a first cumene-containing stream discharged as a first transalkylation reaction zone
  • 10 is a second cumene-containing stream discharged as a second transalkylation reaction zone
  • 1 1 For the tar-containing heavy component stream which is discharged as a polysubstituted pyridine column, 12 is a heavier stream as a component of the multi-substituted isopropyl stump, and 13 is a polysubstituted pyridine benzene tower.
  • the lighter stream of the top discharge component, 20 is a cumene-containing stream discharged from the prior art as a transalkylation reaction zone, and 23 is a multi-substituted isopropylbenzene tower of the prior art. Material logistics. detailed description
  • FIG. 1 A prior art production process is illustrated in Figure 1, in which a stream 6 containing a polysubstituted cumene enters a polysubstituted pyridine column 3, and after rectification separation, a multi-substituted isopropylbenzene column overhead stream is obtained at the top of the column. 14.
  • the column kettle is subjected to a tar-containing heavy component stream 11 which is passed to a subsequent process.
  • the benzene stream 8 and the polysubstituted pyridine benzene overhead stream 14 are fed from the top to the transalkylation reaction zone, contacted with a catalyst for transalkylation, and bottom to provide a cumene containing stream 20 .
  • a method for producing cumene comprising the following steps:
  • Stream 6 containing polysubstituted cumene enters the polysubstituted pyridine benzene column 3, after rectification separation, the top of the column obtains a lighter stream 13 of the composition, and the middle part of the column obtains a heavier component 12, the column kettle Obtaining a tar-containing heavy component stream 1 1 , the tar-containing heavy component stream 11 enters a subsequent process; in the lighter component stream 13 , the diisopropylbenzene content is at least greater than 95% by weight; the heavier component stream 12 , the content of triisopropylbenzene is at least greater than 0.5% by weight, as shown in Figures 2, 3 and 4;
  • the first benzene stream 7 and the lighter component stream 13 enter the first transalkylation reaction zone 1 from the top, undergo a transalkylation reaction with the catalyst, and obtain the first cumene-containing benzene at the bottom.
  • Stream 9; the second benzene stream 8 and the heavier component stream 12 enter the second transalkylation reaction zone 2 from the top, undergo a transalkylation reaction with the catalyst, and a second cumene-containing stream 10 is obtained at the bottom.
  • the first cumene-containing stream 9 and the second cumene-containing stream 10 are respectively subjected to a subsequent purification process to obtain a product of cumene, for example, as shown in FIG.
  • the first benzene stream And the lighter stream 13 of the component enters the first transalkylation reaction zone 1 from the top, undergoes a transalkylation reaction in contact with the catalyst, and obtains a first cumene-containing stream 9 at the bottom; the first cumene-containing benzene
  • the stream 9 and the heavier stream 12 are from the top to the second transalkylation reaction zone 2, in contact with the catalyst for transalkylation, and the bottom to obtain a second cumene-containing stream 10;
  • the cumene-containing stream 10 is passed to a subsequent refining process to provide the product cumene, as shown, for example, in Figures 3 and 4.
  • stream 6 containing polysubstituted cumene enters the polysubstituted pyridine benzene column 3, and after rectification separation, the top of the column is obtained as a lighter fraction 13 and the middle portion of the column is heavier.
  • Stream 12 the column kettle is subjected to a tar-containing heavy component stream 1 1 and the stream 11 is passed to a subsequent process.
  • the first benzene stream 7 and the lighter fraction stream 13 enter the first transalkylation reaction zone 1 from the top, undergo a transalkylation reaction in contact with the catalyst, and a first cumene-containing stream 9 is obtained at the bottom.
  • the second benzene stream 8 and the heavier component stream 12 enter the second transalkylation reaction zone 2 from the top, undergo a transalkylation reaction in contact with the catalyst, and a second cumene-containing stream 10 is obtained at the bottom.
  • the first cumene-containing stream 9 and the second cumene-containing stream 10 are passed to a subsequent purification process to obtain the product cumene.
  • the feed stream 6 containing polysubstituted cumene enters the polysubstituted pyridine line 3, and after rectification separation, the top of the column obtains a lighter fraction 13 and the middle portion of the column is heavier.
  • the logistics 12, the tower kettle obtains the tar-containing heavy component stream 1 1, and the stream 1 1 enters the subsequent process.
  • the feed benzene stream 7 and the lighter component stream 13 are passed from the top to the first transalkylation reaction zone and contacted with a catalyst for a transalkylation reaction to provide a first cumene-containing stream 9.
  • the first cumene-containing stream 9 and the heavier component stream 12 enter the second transalkylation reaction zone from the top, undergo a transalkylation reaction with the catalyst, and a second cumene-containing stream is obtained at the bottom of the reaction. 10.
  • the stream 10 enters a subsequent refining process to obtain a product of cumene.
  • two separate columns may be employed as the first transalkylation reaction zone 1 and the second transalkylation reaction zone 2, respectively, as shown in FIG.
  • the step b2) can be carried out using a separate column, i.e., using a separate column to contain the first transalkylation reaction zone 1 and the second Both of the transalkylation reaction zones 2 are shown in FIG.
  • the method of the present invention separates the polysubstituted cumene into two streams which are lighter and heavier by appropriate fine cleavage, and the content of diisopropylbenzene in the stream 13 which is lighter in the control component is at least more than 95% by weight.
  • the trichlorobenzene content of stream 12 which controls the heavier component is at least greater than 0.5% by weight.
  • the distribution of the components in the multi-substituted cumene column 3 is monitored such that the position of the heavier stream 12 of the component in the middle of the column is removed to ensure that the component is lighter in the stream 13 of diisopropyl
  • the triphenylbenzene content of stream 12 having a benzene content of at least greater than 95% by weight and/or a heavier component is at least greater than 0.5% by weight.
  • the first transalkylation reactor was loaded with a molding catalyst of 20 g of Beta zeolite
  • the second transalkylation reactor was loaded with a molding catalyst of 50 g of MCM-22 zeolite.
  • the reaction conditions of the first transalkylation reactor are: reaction temperature 150 ° C, reaction pressure 1.2 MPa, first benzene flow rate (stream 7) 40 g / h, polysubstituted cumene (stream 13), amount of 20 g /hour, the content of diisopropylbenzene in stream 13 is 98%.
  • reaction conditions of the second transalkylation reactor are: reaction temperature 180 ° C, reaction pressure 1.5 MPa, second benzene flow rate (stream 8 ) 80 g / h, polysubstituted cumene (stream 12 ) flow rate 80 g / h , the content of triisopropylbenzene in the stream 12 is 10%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: column top temperature 132 °C, column kettle temperature 215 °C:, operating pressure -80 MPa.
  • the first transalkylation reactor was loaded with a molding catalyst of 30 g of Beta zeolite
  • the second transalkylation reactor was loaded with a molding catalyst of 40 g of MCM-22 zeolite.
  • the reaction conditions of the first transalkylation reactor are: reaction temperature 143 ° C, reaction pressure 1.2 MPa, first benzene flow rate (stream 7) 60 g / hr, polysubstituted cumene (stream 13) amount of 20 g /hour, the content of diisopropylbenzene in stream 13 is 99%.
  • reaction conditions of the second transalkylation reactor are: reaction temperature 175 ° C, reaction pressure 1.5 MPa, second benzene flow rate (stream 8 ) 60 g / h, polysubstituted cumene (stream 12 ) flow rate 40 g / h , Logistics 12 The content of triisopropylbenzene is 8%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: the temperature at the top of the column is 128 ° C, the temperature in the column is 209 ° C, and the operating pressure is -135 MPa.
  • the first transalkylation reactor was loaded with a molding catalyst of 50 g of Beta zeolite
  • the second transalkylation reactor was loaded with a molding catalyst of 40 g of SHY-1 zeolite.
  • the reaction conditions of the first transalkylation reactor are: reaction temperature 150 ° C, reaction pressure 1.2 MPa, first benzene flow rate (stream 7) 100 g / h, polysubstituted cumene (stream 13), amount of 60 g /hour, the content of diisopropylbenzene in stream 13 is 98%.
  • reaction conditions of the second transalkylation reactor are: reaction temperature 180 ° C, reaction pressure 1.5 MPa, second benzene flow rate (stream 8) 80 g / hr, polysubstituted cumene (stream 12) flow rate 80 g / h , the content of triisopropylbenzene in the stream 12 is 5%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: the temperature at the top of the column is 132 ° C, the temperature in the column is 213 ° C, and the operating pressure is -95 MPa.
  • the first transalkylation reactor was loaded with a molding catalyst of 50 g of Beta zeolite, and the second transalkylation reactor was loaded with 50 g of a shaped catalyst of SHY-1.
  • the first alkyl reactor reaction conditions are: reaction temperature 145 ° C, reaction pressure 1.3 MPa, first benzene flow (stream 7) 120 g / h, polysubstituted cumene (stream 13) amount of 90 g / Hours, the content of diisopropylbenzene in stream 13 is 99%.
  • reaction conditions of the second transalkylation reactor are: reaction temperature 178 ° C, reaction pressure 1.5 MPa, second benzene flow rate (stream 8) 120 g / hr, polysubstituted cumene (stream 12) flow rate 100 g / hour , the content of triisopropylbenzene in the stream 12 is 12%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: column top temperature 125 ° C, column kettle temperature 215 ° C, operating pressure -80 MPa.
  • the first transalkylation reaction zone and the second transalkylation reaction zone are separate, two fixed bed reactors in series.
  • the first transalkylation reaction zone was loaded with a molding catalyst of 15 g of Beta zeolite
  • the second transalkylation reaction zone was loaded with a molding catalyst of 60 g of SHY-1 zeolite.
  • the reaction conditions of the first transalkylation reaction zone are: reaction temperature 150 ° C, benzene flow rate (stream 6) 1 10 g / h, polysubstituted cumene (stream 8) access 20 g / h, stream 8 2
  • the cumene content is 99%.
  • reaction conditions of the second transalkylation reaction zone are: reaction temperature 178 ° C, outlet pressure of the second reaction zone 1.5 MPa, flow 9 flow rate 90 g / hr, and urethane content of the stream 9 6%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: column top temperature 134 ° C, column kettle temperature 215 ° C, operating pressure -80 MPa.
  • the first transalkylation reaction zone and the second transalkylation reaction zone are separate, two fixed bed reactors in series.
  • the first transalkylation reaction zone was loaded with a molding catalyst of 50 g of Beta zeolite
  • the second transalkylation reaction zone was loaded with a molding catalyst of 30 g of SHY-2 zeolite.
  • the reaction conditions of the first transalkylation reaction zone are: reaction temperature 148 ° C, benzene flow rate (stream 6 ) 100 g / hr, polysubstituted cumene (stream 8 ) feed amount 50 g / h, stream 8 dichotomous
  • the propylbenzene content is 99%.
  • reaction conditions of the second transalkylation reaction zone are: reaction temperature 185 ° C, outlet pressure of the second reaction zone 1.5 MPa, polysubstituted cumene (stream 9) flow rate 25 g / h, stream 9 triisopropylbenzene content 8 %. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: top temperature 129 ° C, column temperature 210 ° C, operating pressure -120 MPa.
  • the first transalkylation reaction zone and the second transalkylation reaction zone It is a separate, two series fixed bed reactor.
  • the first transalkylation reaction zone was loaded with 40 g of a shaped catalyst of Beta zeolite, and the second transalkylation reaction zone was loaded with 40 g of a shaped catalyst of MCM-49 zeolite.
  • the reaction conditions of the first transalkylation reaction zone are: reaction temperature 151. C, benzene flow (stream 6) 80 g / h, polysubstituted cumene (stream 8) feed 40 g / h, stream 8 dicumyl content 98%.
  • reaction conditions of the second transalkylation reaction zone are: reaction temperature 171 ° C, outlet pressure of the second reaction zone 1.5 MPa, polysubstituted cumene (stream 9) flow rate 50 g / h, stream 9 triisopropylbenzene content 5 %. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: the temperature at the top of the column is 134 ° C, the temperature in the column is 215 ° C, and the operating pressure is -80 MPa.
  • the first transalkylation reaction zone and the second transalkylation reaction zone are contained in a fixed bed reactor.
  • the first transalkylation reaction zone was loaded with a shaped catalyst of 60 g of Beta zeolite and the second transalkylation reaction zone was loaded with 20 g of MCM-22 shaped catalyst.
  • the reaction conditions of the first alkyl reaction zone are: reaction temperature 145 ° C, benzene flow rate (stream 6) 120 g / h, polysubstituted cumene (stream 8) feed amount 70 g / h, stream 8 diisopropyl
  • the benzene content is 99%.
  • the reaction conditions of the second transalkylation reaction zone are: reaction temperature 170. C, reactor outlet pressure 1.5MPa, multi-substituted cumene (stream 9) flow rate 20g / hour, the content of triisopropylbenzene in stream 9 is 10%. Continuous reaction for 5 days.
  • the operating conditions of the multi-substituted isopropylbenzene column are: column top temperature 125 °C, column kettle temperature 208 °C, operating pressure -150 MPa.
  • the polysubstituted pyridine column only draws the stream from the top of the column, and the stream all enters the transalkylation reactor.
  • the transalkylation reaction zone is loaded with 50 g of Beta zeolite forming catalyst, reaction temperature 153 ° C, reaction pressure l. l MPa, benzene flow rate 100 g / h, polysubstituted cumene flow rate 80 g / h, multi-substituted isopropyl
  • the content of diisopropylbenzene in benzene was 96%, and the reaction was continued for 5 days. Reaction results: The conversion of polyisopropylbenzene was only 35%, and the content of n-propylbenzene in cumene was 560 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

异丙苯的生产方法 技术领域
本发明涉及一种用苯与丙烯生产异丙苯的方法。 背景技术
异丙苯是一种重要的有机化工原料, 是生产苯酚、 丙酮和 -曱 基苯乙烯的主要中间化合物。 在工业上异丙苯是通过丙烯和苯的烷基 化反应制备的, 其副产物主要为多异丙苯。 早在 1945年 UOP就公布 了在酸性催化剂存在下, 以丙烯和苯反应制备异丙苯的方法(SPA法) ( USP2382318 ) 。 SPA法以固体磷酸为烷基化催化剂, 由于固体磷酸 不能够催化烷基转移反应, 所以在工艺流程中没有烷基转移部分。 因 此, SPA 法只能在高的苯烯摩尔比 (5 ~ 7 ) 条件下运行, 而且其异丙 笨的收率仅为 95 %左右。上世纪八十年代, Monsanto公司开发以 A1C13 为烷基化催化剂的异丙苯生产工艺, 并实现工业应用。 由于 A1C13同样 不能催化烷基转移反应, 因此, 以 A1C13法生产异丙苯在异丙苯的收率 方面仍然较低, 同时也存在严重的污染问题和装置腐蚀问题。
在上世纪九十年代, Dow、 CD Tech, Mobil-Badger, Enichem和 UOP等( US4992606、 US5362697、 US5453554、 US5522984, US5672799, US6162416, US6051521 )公司相继公布了以微孔沸石为催化剂, 具有 烷基转移能力的固定床工艺流程。 在现有技术中, 苯和丙烯首先在烃 化反应器中进行烷基化反应, 烷基化反应生成的多取代异丙苯经过精 馏***分离后, 多取代异丙苯在和苯混合后进入一个单床层的烷基转 移反应器进行烷基转移反应。
在苯和多异丙苯的烷基转移反应中, 苯和多异丙苯的摩尔比、 原 料空速、 以及多异丙苯原料的组成都会显著影响多异丙苯的转化率和 杂质正丙苯的生成量, 多异丙苯的烷基转移反应往往会产生更多的杂 质正丙苯, 这会严重降低产品异丙苯的质量。 因此, 通过工艺优化, 提高多异丙苯转化率, 降低烷基转移生成的正丙苯, 对提高生产效率、 提高产品质量意义重大。 发明内容 本发明所要解决的技术问题是现有技术存在的烷基转移产物中正 丙苯含量较高的问题, 提供一种新的生产异丙苯的方法。 该方法大幅 度降低了正丙苯含量, 提高了产品质量。
为解决上述技术问题, 本发明采用的技术方案如下: 一种异丙苯 的生产方法, 包括以下步骤:
a )使含多取代异丙苯的物流进入多取代异丙苯塔 , 经精馏分离后, 塔顶得到组分较轻的物流, 塔中部得到组分较重的物流; 和
b )使所述组分较轻的物流和组分较重的物流分别与苯物流一起进 入第一和第二烷基转移反应区, 与催化剂接触进行烷基转移反应, 分 别得到第一和第二含异丙苯的物流, 对其进行后处理以得到产品异丙 苯。
其中步骤 b ) 例如能够如下进行:
bl ) 第一股苯物流和组分较轻的物流从顶部进入第一烷基转移反 应区, 与催化剂接触进行烷基转移反应, 底部得到第一含异丙苯的物 Ί; 第二股苯物流和组分较重的物流从顶部进入第二烷基转移反应区, 与催化剂接触进行烷基转移反应, 在该第二烷基转移反应区的底部得 到第二含异丙苯的物流; 所述第一含异丙苯的物流和第二含异丙苯的 物流分别进入后续精制流程, 得到产品异丙苯; 或者,
b2 ) 第一股苯物流和组分较轻的物流从顶部进入第一烷基转移反 应区, 与催化剂接触进行烷基转移反应, 底部得到第一含异丙苯的物 流; 该第一含异丙苯的物流和组分较重的物流一起从顶部进入第二烷 基转移反应区, 与催化剂接触进行烷基转移反应, 在该第二烷基转移 反应区的底部得到第二含异丙苯的物流; 该第二含异丙苯的物流进入 后续精制流程, 得到产品异丙苯。
其中, 需要注意的是, 以上方法描述中所适用的 "第一"、 "第二" 等术语仅仅是为了描述和理解方便, 以在不同对象之间加以区分, 而 并非对其时间和 /或空间顺序加以任何特定的限制。
上述技术方案中, 步骤 bl ) 中, 第一股苯物流与组分较轻的物流 的重量比优选范围为 0.3~5 , 更优选范围为 0.7〜3; 第二股苯物流与组 分较重的物流的重量比优选范围为 0.3~5, 更优选范围为 0.7〜3。 步骤 b2 ) 中, 第一股苯物流与组分较轻的物流的重量比优选范围为 0.3~5 , 更优选范围为 0.7〜3; 第一含异丙苯的物流与组分较重的物流的重量比 优选范围为 0.3〜5 , 更优选范围为 0.7〜3; 第一股苯物流与含多取代异 丙苯的物流的重量比为 0.3~5。 组分较轻的物流中, 二异丙苯含量优选 范围为 96〜100重量%。 组分较重的物流中, 三异丙苯含量优选范围为 1-50重量%。
上述技术方案中, 第一烷基转移反应区和第二烷基转移反应区可 都是固定床反应器, 其中装填的催化剂选自 Y沸石、 Beta沸石、 丝光 沸石、 SHY- 1、 SHY-2 或中孔材料分子筛, 例如 US4954325 所述的 MCM-22„ 其中 SHY- 1可按照 CN200410066636.2中公开的方法制备, SHY-2可按照 CN200610029979.0中公开的方法制备。
上述技术方案中, 第一烷基转移反应区反应条件可例如为: 反应 温度 130 ~ 190°C , 反应压力 1.0 ~ 3.0MPa , 液相空速为 0.5~10小时人 第二烷基转移反应区反应条件可例如为: 反应温度 150 ~ 210°C, 反应 压力 1.0 ~ 3.0MPa, 液相空速为 0.5〜10小时人 多取代异丙苯塔操作条 件可例如为: 操作压力为 -300~0kPa 塔顶温度为 120〜160 °C, 塔釜温度 为 190-250 °C 0
本发明方法中, 所述压力是指表压。 所述含多取代异丙笨的物流 是指苯和丙烯在烃化反应器中进行烷基化反应后的产物流, 其中包括 苯、 异丙苯、 二异丙苯、 三异丙苯和正丙苯。 所述多取代异丙苯指二 异丙苯和三异丙苯, 一般其在烃化产物流中的重量百分比为 90〜100%。 原料苯可以是新鲜苯、 后续工段的回收苯或其混合物。
本发明方法将多取代异丙苯经过适当的精馏切割, 分离成组分较 轻和较重的两个物流, 控制组分较轻的物流中二异丙苯含量至少大于 95重量%, 控制组分较重的物流中三异丙苯含量至少大于 0.5重量%。 这两股物流分别进行烷基转移反应, 大幅度降低了正丙苯的含量, 异 丙苯中正丙苯含量最低仅为 320ppm, 提高了产品质量, 取得了较好的 技术效果。 附图说明
图 1为现有技术工艺流程示意图。
图 2、 图 3和图 4为本发明的工艺流程示意图。
图 2 中, 第一烷基转移反应区和第二烷基转移反应区是独立的、 两个并联的固定床反应器。 图 3 中, 第一烷基转移反应区和第二烷基转移反应区是独立的、 两个串联的固定床反应器。
图 4 中, 第一烷基转移反应区和第二烷基转移反应区包含在一个 固定床反应器内。
图 1、 图 2、 图 3和图 4中, 1 为第一烷基转移反应区, 2为第二 烷基转移反应区, 3为多取代异丙苯塔, 4为第一烷基转移反应区催化 剂床层, 5为第二烷基转移反应区催化剂床层, 6为作为原料的含多取 代异丙苯的物流, 7为作为原料的第一股苯物流, 8为作为原料的第二 股苯物流, 9为作为第一烷基转移反应区出料的第一含异丙苯的物流, 10为作为第二烷基转移反应区出料的第二含异丙苯的物流, 1 1为作为 多取代异丙苯塔釜液出料的含焦油的重组分物流, 12 为作为多取代异 丙笨塔中部出料的组分较重的物流, 13 为作为多取代异丙苯塔塔顶出 料的组分较轻的物流, 20 为现有技术中的作为烷基转移反应区出料的 含异丙苯的物流, 23为现有技术中的多取代异丙苯塔塔顶出料物流。 具体实施方式
图 1 中例示了现有技术的生产方法, 含多取代异丙苯的物流 6进 入多取代异丙苯塔 3 , 经精馏分离后, 塔顶得到多取代异丙苯塔塔顶出 料物流 14, 塔釜得到含焦油的重组分物流 11 , 该含焦油的重组分物流 1 1进入后续流程。苯物流 8和多取代异丙苯塔塔顶出料物流 14从顶部 进入烷基转移反应区, 与催化剂接触进行烷基转移反应, 底部得到含 异丙苯的物流 20。
本发明采用的技术方案如下: 一种异丙苯的生产方法, 包括以下 步骤:
a ) 含多取代异丙苯的物流 6进入多取代异丙苯塔 3 , 经精馏分离 后, 塔顶得到组分较轻的物流 13, 塔中部得到组分较重的物流 12, 塔 釜得到含焦油的重组分物流 1 1,该含焦油的重组分物流 11进入后续流 程; 组分较轻的物流 13中, 二异丙苯含量至少大于 95重量%; 组分较 重的物流 12中, 三异丙苯含量至少大于 0.5重量%, 例如如图 2、 3和 4所示; 和
bl ) 第一股苯物流 7和组分较轻的物流 13从顶部进入第一烷基转 移反应区 1, 与催化剂接触进行烷基转移反应, 底部得到第一含异丙苯 的物流 9; 第二股苯物流 8和组分较重的物流 12从顶部进入第二烷基 转移反应区 2, 与催化剂接触进行烷基转移反应, 底部得到第二含异丙 苯的物流 10;所述第一含异丙苯的物流 9和第二含异丙苯的物流 10分 别进入后续精制流程, 得到产品异丙苯, 例如如图 2所示; 或者, b2 ) 第一股苯物流 7和组分较轻的物流 13从顶部进入第一烷基转 移反应区 1, 与催化剂接触进行烷基转移反应, 底部得到第一含异丙苯 的物流 9; 所述第一含异丙苯的物流 9和组分较重的物流 12—起从顶 部 入第二烷基转移反应区 2, 与催化剂接触进行烷基转移反应, 底部 后得到第二含异丙苯的物流 10;该第二含异丙苯的物流 10进入后续精 制流程, 得到产品异丙苯, 例如如图 3和 4所示。
具体地,图 2中,含多取代异丙苯的物流 6进入多取代异丙苯塔 3 , 经精馏分离后, 塔顶得到组分较轻的物流 13 , 塔中部得到组分较重的 物流 12, 塔釜得到含焦油的重组分物流 1 1, 该物流 11进入后续流程。 第一股苯物流 7和组分较轻的物流 13从顶部进入第一烷基转移反应区 1 , 与催化剂接触进行烷基转移反应, 底部得到第一含异丙苯的物流 9。 第二股苯物流 8和组分较重的物流 12从顶部进入第二烷基转移反应区 2 ,与催化剂接触进行烷基转移反应,底部得到第二含异丙苯的物流 10。 第一含异丙苯的物流 9和第二含异丙苯的物流 10进入后续精制流程, 得到产品异丙苯。
图 3和图 4中, 含多取代异丙苯的原料物流 6进入多取代异丙苯 塔 3, 经精馏分离后, 塔顶得到组分较轻的物流 13, 塔中部得到组分 较重的物流 12, 塔釜得到含焦油的重组分物流 1 1, 该物流 1 1 进入后 续流程。 原料苯物流 7和组分较轻的物流 13从顶部进入第一烷基转移 反应区, 与催化剂接触进行烷基转移反应, 反应后得到第一含异丙苯 的物流 9。 该第一含异丙苯的物流 9和组分较重的物流 12从顶部进入 第二烷基转移反应区, 与催化剂接触进行烷基转移反应, 反应后底部 得到第二含异丙苯的物流 10。 该物流 10进入后续精制流程, 得到产品 异丙苯。 实施步骤 b2 ) 时, 可采用两个单独的塔分别作为所述第一烷 基转移反应区 1和第二烷基转移反应区 2 , 如图 3所示。 另外, 本领域 技术人员能够理解, 在一个实施方案中, 能够采用一个单独的塔来实 施所述步骤 b2 ),即采用一个单独的塔来包含所述第一烷基转移反应区 1和第二烷基转移反应区 2二者, 如图 4所示。 本发明方法将多取代异丙苯经过适当的精镏切割, 分离成组分较 轻和较重的两个物流, 控制组分较轻的物流 13中二异丙苯含量至少大 于 95重量%, 控制组分较重的物流 12中三异丙苯含量至少大于 0.5重 量%。 其中, 对多取代异丙苯塔 3中的组分分布进行监测, 使得取出所 述塔中部的组分较重的物流 12的位異能够确保所述组分较轻的物流 13 中二异丙苯含量至少大于 95重量%和/或组分较重的物流 12中三异丙 苯含量至少大于 0.5重量%。
下面通过实施例对本发明作进一步阐述。 实施例
【实施例 1】
按图 2的工艺流程,第一烷基转移反应器装载有 20克 Beta沸石的 成型催化剂,第二烷基转移反应器装载有 50克 MCM-22沸石的成型催 化剂。 第一烷基转移反应器反应条件为: 反应温度 150 °C , 反应压力 1.2MPa, 第一股苯流量(物流 7 ) 40克 /小时, 多取代异丙苯(物流 13 ) 通入量 20克 /小时, 物流 13中二异丙苯含量 98%。 第二烷基转移反应 器反应条件为: 反应温度 180°C, 反应压力 1.5MPa , 第二股苯流量(物 流 8 ) 80克 /小时, 多取代异丙苯(物流 12 ) 流量 80克 /小时, 物流 12 中三异丙苯含量 10%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 132 °C, 塔釜温度 215 °C:, 操作压力 -80MPa。
反应结果: 第一烷基转移反应器多异丙苯转化率 65% , 异丙苯中 正丙苯含量 450ppm。 第二烷基转移反应器多异丙苯转化率 55%, 异丙 苯中正丙苯含量 520ppm。
【实施例 2】
按图 2的工艺流程,第一烷基转移反应器装载有 30克 Beta沸石的 成型催化剂,第二烷基转移反应器装栽有 40克 MCM-22沸石的成型催 化剂。 第一烷基转移反应器反应条件为: 反应温度 143 °C, 反应压力 1.2MPa, 第一股苯流量(物流 7 ) 60克 /小时, 多取代异丙苯(物流 13 ) 通入量 20克 /小时, 物流 13中二异丙苯含量 99%。 第二烷基转移反应 器反应条件为: 反应温度 175 °C , 反应压力 1.5MPa, 第二股苯流量(物 流 8 ) 60克 /小时, 多取代异丙苯(物流 12 ) 流量 40克 /小时, 物流 12 中三异丙苯含量 8%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 128°C, 塔釜温度 209°C, 操作压力 -135MPa。
反应结果: 第一烷基转移反应器多异丙苯转化率 48%, 异丙苯中 正丙苯含量 320ppm。 第二烷基转移反应器多异丙苯转化率 55%, 异丙 苯中正丙苯含量 430ppm。
【实施例 3]
按图 2的工艺流程,第一烷基转移反应器装载有 50克 Beta沸石的 成型催化剂,第二烷基转移反应器装载有 40克 SHY-1沸石的成型催化 剂。 第一烷基转移反应器反应条件为: 反应温度 150°C , 反应压力 1.2MPa, 第一股苯流量 (物流 7) 100 克 /小时, 多取代异丙苯 (物流 13 ) 通入量 60克 /小时, 物流 13中二异丙苯含量 98%。 第二烷基转移 反应器反应条件为: 反应温度 180°C, 反应压力 1.5MPa, 第二股苯流 量 (物流 8) 80克 /小时, 多取代异丙苯 (物流 12) 流量 80克 /小时, 物流 12中三异丙苯含量 5%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 132°C, 塔釜温度 213°C, 操作压力 -95MPa。
反应结果: 第一烷基转移反应器多异丙苯转化率 62%, 异丙苯中 正丙苯含量 430ppm。 第二烷基转移反应器多异丙苯转化率 45%, 异丙 苯中正丙苯含量 480ppm。
【实施例 4]
按图 2的工艺流程,第一烷基转移反应器装载有 50克 Beta沸石的 成型催化剂, 第二烷基转移反应器装载有 50克 SHY-1的成型催化剂。 第一烷基反应器反应条件为: 反应温度 145°C, 反应压力 1.3MPa, 第 一股苯流量 (物流 7) 120克 /小时, 多取代异丙苯 (物流 13) 通入量 90克 /小时, 物流 13 中二异丙苯含量 99%。 第二烷基转移反应器反应 条件为: 反应温度 178°C, 反应压力 1.5MPa, 第二股苯流量 (物流 8) 120克 /小时, 多取代异丙苯 (物流 12) 流量 100克 /小时, 物流 12中 三异丙苯含量 12%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 125°C, 塔釜温度 215°C, 操作压力 -80MPa。
反应结果: 第一烷基转移反应器多异丙苯转化率 45%, 异丙苯中 正丙苯含量 410ppm。 第二烷基转移反应器多异丙苯转化率 50%, 异丙 苯中正丙苯含量 480ppm。
【实施例 5 ]
按图 3 的工艺流程, 第一烷基转移反应区和第二烷基转移反应区 是独立的、 两个串联的固定床反应器。 第一烷基转移反应区装载有 15 克 Beta沸石的成型催化剂, 第二烷基转移反应区装载有 60克 SHY-1 沸石的成型催化剂。 第一烷基转移反应区反应条件为: 反应温度 150 °C, 苯流量(物流 6 ) 1 10克 /小时, 多取代异丙苯(物流 8 )通入量 20 克 /小时, 物流 8中二异丙苯含量 99%。 第二烷基转移反应区反应条件 为: 反应温度 178 °C , 第二反应区出口压力 1.5MPa, 物流 9流量 90克 /小时, 物流 9中三异丙苯含量 6%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 134°C, 塔釜温度 215 °C, 操作压力 -80MPa。
反应结果: 第一烷基转移反应区多异丙苯转化率 60%, 异丙苯中 正丙苯含量 460ppm。 第二烷基转移反应区多异丙苯转化率 53%, 异丙 苯中正丙苯含量 480ppm。
【实施例 6]
按图 3 的工艺流程, 第一烷基转移反应区和第二烷基转移反应区 是独立的、 两个串联的固定床反应器。 第一烷基转移反应区装载有 50 克 Beta沸石的成型催化剂, 第二烷基转移反应区装载有 30克 SHY-2 沸石的成型催化剂。 第一烷基转移反应区反应条件为: 反应温度 148 °C , 苯流量(物流 6 ) 100克 /小时, 多取代异丙苯(物流 8 )通入量 50 克 /小时, 物流 8中二异丙苯含量 99%。 第二烷基转移反应区反应条件 为: 反应温度 185 °C , 第二反应区出口压力 1.5MPa, 多取代异丙苯(物 流 9 ) 流量 25克 /小时, 物流 9中三异丙苯含量 8%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 129 °C, 塔釜温度 210°C , 操作压力 -120MPa。
反应结果: 第一烷基转移反应区多异丙苯转化率 53%, 异丙苯中 正丙苯含量 430ppm。 第二烷基转移反应区多异丙苯转化率 56%, 异丙 苯中正丙苯含量 510ppm。
【实施例 7 ]
按图 3 的工艺流程, 第一烷基转移反应区和第二烷基转移反应区 是独立的、 两个串联的固定床反应器。 第一烷基转移反应区装载有 40 克 Beta沸石的成型催化剂,第二烷基转移反应区装载有 40克 MCM-49 沸石的成型催化剂。 第一烷基转移反应区反应条件为: 反应温度 151 。C , 苯流量 (物流 6 ) 80克 /小时, 多取代异丙苯 (物流 8 ) 通入量 40 克 /小时, 物流 8中二异丙苯含量 98%。 第二烷基转移反应区反应条件 为: 反应温度 171 °C, 第二反应区出口压力 1.5MPa, 多取代异丙苯(物 流 9 ) 流量 50克 /小时, 物流 9中三异丙苯含量 5%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 134°C, 塔釜温度 215 °C , 操作压力 -80MPa。
反应结果: 第一烷基转移反应区多异丙苯转化率 57%, 异丙苯中 正丙苯含量 450ppm。 第二烷基转移反应区多异丙苯转化率 52%, 异丙 苯中正丙笨含量 470ppm。
【实施例 81
按图 4 的工艺流程, 第一烷基转移反应区和第二烷基转移反应区 包含在一个固定床反应器内。 第一烷基转移反应区装载有 60 克 Beta 沸石的成型催化剂,第二烷基转移反应区装载有 20克 MCM-22的成型 催化剂。 第一烷基反应区反应条件为: 反应温度 145 °C , 苯流量(物流 6 ) 120克 /小时, 多取代异丙苯 (物流 8 ) 通入量 70克 /小时, 物流 8 中二异丙苯含量 99%。 第二烷基转移反应区反应条件为: 反应温度 170 。C , 反应器出口压力 1.5MPa, 多取代异丙苯 (物流 9 ) 流量 20克 /小 时, 物流 9中三异丙苯含量 10%。 连续反应 5天。
多取代异丙苯塔操作条件为: 塔顶温度 125 °C, 塔釜温度 208 °C , 操作压力 -150MPa。
反应结果: 第一烷基转移反应区多异丙苯转化率 53%, 异丙苯中 正丙苯含量 300ppm。 第二烷基转移反应区多异丙苯转化率 45%, 异丙 苯中正丙苯含量 360ppm。
【比较例 1】
按图 1 的工艺流程, 烷基转移部分只有一个反应器, 多取代异丙 苯塔仅从塔顶引出物流, 该物流全部进入烷基转移反应器。 烷基转移 反应区装载有 50克 Beta沸石的成型催化剂, 反应温度 153 °C, 反应压 力 l . l MPa, 苯流量 100克 /小时, 多取代异丙苯流量 80克 /小时, 多取 代异丙苯中二异丙苯含量 96%, 连续反应 5天。 反应结果: 多异丙苯转化率只有 35%, 异丙苯中正丙苯含量 560ppm。
【比较例 2】
同 【比较例 1】 , 只是烷基转移反应区装载有 60克 MCM-22沸石 的成型催化剂, 反应温度 185 °C, 反应压力 1.5MPa, 苯流量 80克 /小 时,多取代异丙苯流量 80克 /小时,多取代异丙苯中二异丙苯含量 96%, 连续反应 5天。
反应结果: 多异丙苯转化率 55%, 异丙苯中正丙苯含量 820ppm。 【比较例 3】
同 【比较例 1】 , 只是烷基转移反应区装载有 60克 MCM-22沸石 的成型催化剂, 反应温度 172 °C , 反应压力 1.5MPa, 苯流量 100克 /小 时,多取代异丙苯流量 80克 /小时,多取代异丙苯中二异丙苯含量 96% , 连续反应 5天。
反应结果: 多异丙苯转化率 40%, 异丙苯中正丙苯含量 630ppm。

Claims

权 利 要 求
1. 一种异丙苯的生产方法, 包括以下步骤:
a) 使含多取代异丙苯的物流 (6) 进入多取代异丙苯塔 (3), 经 精馏分离后, 在塔顶得到组分较轻的物流( 13), 以及在塔中部得到组 分较重的物流 ( 12), 塔釜得到含焦油的重组分物流 ( 11 ), 该含焦油 的重组分物流 ( 11 ) 进入后续流程; 在组分较轻的物流 ( 13) 中, 二 异丙苯含量至少大于 95重量%; 在组分较重的物流 ( 12) 中, 三异丙 笨含量至少大于 0.5重量%;
bl ) 第一股苯物流(7) 和组分较轻的物流( 13) 从顶部进入第一 烷基转移反应区 ( 1 ), 与催化剂接触进行烷基转移反应, 在该第一烷 基转移反应区 ( 1 ) 的底部得到第一含异丙苯的物流 (9); 第二股苯物 流(8)和组分较重的物流( 12)从顶部进入第二烷基转移反应区 (2), 与催化剂接触进行烷基转移反应, 在该第二烷基转移反应区 (2) 的底 部得到第二含异丙苯的物流 ( 10); 所述第一含异丙苯的物流 (9) 和 第二含异丙苯的物流 ( 10) 进入后续精制流程, 得到产品异丙苯; 或 者,
bl) 第一股苯物流(7) 和组分较轻的物流 ( 13) 从顶部进入第一 烷基转移反应区 ( 1 ), 与催化剂接触进行烷基转移反应, 在该第一烷 基转移反应区 ( 1) 的底部得到第一含异丙苯的物流(9); 所述第一含 异丙苯的物流(9) 和组分较重的物流( 12) 从顶部进入第二烷基转移 反应区 (2), 与催化剂接触进行烷基转移反应, 在该第二烷基转移反 应区 (2) 的底部得到第二含异丙苯的物流 ( 10); 该第二含异丙苯的 物流 ( 10) 进入后续精制流程, 得到产品异丙苯。
2. 根据权利要求 1所述的异丙苯的生产方法,其特征在于步骤 bl ) 中, 第一股苯物流 (7) 与组分较轻的物流 ( 13) 的重量比为 0.3~5; 第二股笨物流 (8) 与组分较重的物流 ( 12) 的重量比为 0.3〜5; 步骤 b2)中, 第一股苯物流(7)与组分较轻的物流( 13)的重量比为 0.3〜5; 第一含异丙苯的物流(9) 与组分较重的物流( 12) 的重量比为 0.3〜5。
3. 根据权利要求 2所述的异丙苯的生产方法,其特征在于步骤 bl) 中, 第一股苯物流 (7) 与组分较轻的物流 ( 13) 的重量比为 0.7~3; 第二股苯物流 (8) 与组分较重的物流 ( 12) 的重量比为 0.7〜3; 步骤 b2)中, 第一股苯物流(7)与组分较轻的物流( 13 )的重量比为 0.7~3; 第一含异丙苯的物流 (9) 与物流 ( 12) 的重量比为 0.7〜3。
4. 根据权利要求 1 所述的异丙苯的生产方法, 其特征在于在组分 较轻的物流 ( 13 ) 中, 二异丙苯含量为 96〜100重量%; 在组分较重的 物流 ( 12) 中, 三异丙苯含量为 1〜50重量%。
5. 根据权利要求 1 所述的异丙苯的生产方法, 其特征在于所述催 化剂选自 Y沸石、 Beta沸石、 丝光沸石、 SHY-1、 SHY-2或 MCM-22。
6. 根据权利要求 1 所述的异丙苯的生产方法, 其特征在于第一烷 基转移反应区 ( 1 ) 中, 反应温度为 130~ 190°C, 反应压力为 1.0 ~ 3崖 Pa, 液相空速为 0.5~10小时人
7. 根据权利要求 1 所述的异丙苯的生产方法, 其特征在于第二烷 基转移反应区 (2) 中, 反应温度为 150~210°C, 反应压力为 1.0~ 3.0MPa, 液相空速为 0.5~10小时人
8. 根据权利要求 1 所述的异丙苯的生产方法, 其特征在于多取代 异丙苯塔(3 ) 的操作压力为 -300~0kPa, 塔顶温度为 120〜160°C, 塔釜 温度为 190〜250°C。
9. 根据权利要求 1所述的异丙苯的生产方法,其特征在于步骤 b2) 中,第一股苯物流(7)与含多取代异丙苯的物流(6)的重量比为 0.3〜5。
PCT/CN2011/001911 2010-11-17 2011-11-15 异丙苯的生产方法 WO2012065365A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137014340A KR101844037B1 (ko) 2010-11-17 2011-11-15 큐멘의 제조 방법
SG2013038443A SG190832A1 (en) 2010-11-17 2011-11-15 A process for producing isopropyl benzene
US13/886,000 US9321705B2 (en) 2010-11-17 2011-11-15 Process for producing cumene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010551962.8 2010-11-17
CN201010551951.X 2010-11-17
CN201010551962.8A CN102464564B (zh) 2010-11-17 2010-11-17 生产异丙苯的方法
CN201010551951XA CN102464563B (zh) 2010-11-17 2010-11-17 异丙苯的生产方法

Publications (1)

Publication Number Publication Date
WO2012065365A1 true WO2012065365A1 (zh) 2012-05-24

Family

ID=46083495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001911 WO2012065365A1 (zh) 2010-11-17 2011-11-15 异丙苯的生产方法

Country Status (4)

Country Link
US (1) US9321705B2 (zh)
KR (1) KR101844037B1 (zh)
SG (1) SG190832A1 (zh)
WO (1) WO2012065365A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058011A (zh) * 1990-06-08 1992-01-22 Abb鲁姆斯克雷斯特公司 在催化剂浆液存在下的烷基转移
CN1915944A (zh) * 2005-08-15 2007-02-21 中国石油化工股份有限公司 生产异丙苯的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382318A (en) 1942-04-08 1945-08-14 Universal Oil Prod Co Alkylation of benzene
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
US5003119A (en) * 1988-05-09 1991-03-26 Lummus Crest, Inc. Manufacture of alkylbenzenes
EP0424393B1 (en) 1988-05-09 1995-08-09 Abb Lummus Global Inc. Manufacture of alkylbenzenes
US4992606A (en) 1988-10-06 1991-02-12 Mobil Oil Corp. Process for preparing short chain alkyl aromatic compounds
US5362697A (en) 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
IT1264626B1 (it) 1993-06-16 1996-10-04 Eniricerche Spa Processo per la preparazione di cumene
US5522984A (en) 1994-08-18 1996-06-04 Uop Modified zeolite beta, processes for preparation and use thereof
US6162416A (en) 1996-07-12 2000-12-19 Uop Llc Zeolite beta and its use in aromatic alkylation
US6051521A (en) 1998-08-25 2000-04-18 Mobil Oil Corporation Method of producing an aromatics alkylation catalyst
CN1314589C (zh) 2004-09-24 2007-05-09 中国石油化工股份有限公司 多孔材料及其合成方法
US7799961B2 (en) 2005-03-31 2010-09-21 Exxonmobil Chemical Patents Inc. Process of using a high activity catalyst for the transalkylation of aromatics
CN100491311C (zh) 2005-06-22 2009-05-27 中国石油化工股份有限公司 异丙苯的生产方法
CN100567149C (zh) 2006-08-11 2009-12-09 中国石油化工股份有限公司 有机硅微孔沸石及其合成方法
US9150469B2 (en) * 2009-05-18 2015-10-06 Uop Llc Aromatic alkylation process with reduced byproduct formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058011A (zh) * 1990-06-08 1992-01-22 Abb鲁姆斯克雷斯特公司 在催化剂浆液存在下的烷基转移
CN1915944A (zh) * 2005-08-15 2007-02-21 中国石油化工股份有限公司 生产异丙苯的方法

Also Published As

Publication number Publication date
US20130237730A1 (en) 2013-09-12
KR101844037B1 (ko) 2018-03-30
US9321705B2 (en) 2016-04-26
KR20140001929A (ko) 2014-01-07
SG190832A1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US8653314B2 (en) Method for providing a co-feed in the coupling of toluene with a carbon source
KR101217915B1 (ko) 에탄올로부터의 올레핀의 제조 방법
JP6021905B2 (ja) C1〜c8アルコールを用いた芳香族炭化水素のアルキル化のための方法
WO2018195865A1 (zh) 制甲苯、对二甲苯、低碳烯烃中至少一种的催化剂的原位制备方法及反应工艺
JP2017002051A (ja) オレフィンによる芳香族炭化水素のアルキル化法
KR101512860B1 (ko) 프로필렌의 제조 방법
CN103664488B (zh) 脱除含氧化合物杂质的芳烃甲醇烷基化方法
TW201026639A (en) Process for producing cumene
CN102040458B (zh) 纯乙烯或干气与苯反应生产乙苯的方法
CN101993331B (zh) 纯乙烯或干气与苯烷基化制乙苯的方法
CN1263715C (zh) 制备烷基和烯基取代的芳族化合物的综合工艺
KR101520523B1 (ko) 에너지 저소비를 위한 큐멘 제조장치 및 제조방법
CN1058476C (zh) 制备乙苯或其取代衍生物的方法
US8318999B2 (en) Method of coupling a carbon source with toluene to form a styrene ethylbenzene
TWI589555B (zh) 製造酚的方法
CN102464566B (zh) 苯和丙烯生产异丙苯的方法
WO2012065365A1 (zh) 异丙苯的生产方法
TWI674252B (zh) 一種由苯和丙烯生產異丙苯的方法
TWI765356B (zh) 烷基芳族化合物之製造
CN102464565B (zh) 由苯和丙烯生产异丙苯的方法
CN102924220B (zh) 一种增产乙苯的方法
US20120296130A1 (en) Method for alkylation of toluene to form styrene utilizing an oxy-dehydrogenation reactor
CN102464564B (zh) 生产异丙苯的方法
CN102464563B (zh) 异丙苯的生产方法
WO2013162629A2 (en) Use of an oxidant in the coupling of toluene with a carbon source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13886000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014340

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11841571

Country of ref document: EP

Kind code of ref document: A1