WO2012063408A1 - Aluminum-based phosphorescent composite material and method for producing same - Google Patents

Aluminum-based phosphorescent composite material and method for producing same Download PDF

Info

Publication number
WO2012063408A1
WO2012063408A1 PCT/JP2011/005795 JP2011005795W WO2012063408A1 WO 2012063408 A1 WO2012063408 A1 WO 2012063408A1 JP 2011005795 W JP2011005795 W JP 2011005795W WO 2012063408 A1 WO2012063408 A1 WO 2012063408A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
aluminum
phosphorescent
composite material
sintering
Prior art date
Application number
PCT/JP2011/005795
Other languages
French (fr)
Japanese (ja)
Inventor
正広 久保田
Original Assignee
学校法人 日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 日本大学 filed Critical 学校法人 日本大学
Publication of WO2012063408A1 publication Critical patent/WO2012063408A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass

Definitions

  • the present invention relates to an aluminum-based composite material having luminous properties and a method for producing the same.
  • Patent Document 1 describes an aluminum-based composite material having a light emitting function, in which luminescent pigment particles are dispersed in aluminum.
  • This aluminum-based composite material is manufactured by press-molding luminescent pigment particles to form a preform, and pressurizing and infiltrating molten aluminum into the preform.
  • the aluminum-based composite material described in Patent Document 1 is obtained by dispersing luminescent pigment particles in aluminum obtained by solidifying a molten aluminum, its mechanical strength is the normal mechanical strength of a pure aluminum material. It was the same level as (100 MPa or less at room temperature). Therefore, the mechanical strength may be insufficient to be applied as a building material or a building structure material. Accordingly, the present invention solves the problems of the prior art as described above, and has an aluminum-based phosphorescent composite material that has phosphorescent properties, is inexpensive and lightweight, and has high mechanical strength at room temperature and high temperature, and its manufacture. It is an object to provide a method.
  • the aluminum-based phosphorescent composite material according to one embodiment of the present invention is a sintered body of a mixed powder of a phosphorescent material powder and an aluminum powder whose strength is increased by applying mechanical energy. It is characterized by.
  • the aluminum powder has increased strength by applying mechanical grinding.
  • the method for producing an aluminum-based phosphorescent composite material includes a strengthening step for imparting mechanical energy to the aluminum powder to increase the strength of the aluminum powder, a powder of the phosphorescent material, It comprises a mixing step of mixing the aluminum powder with increased strength to form a mixed powder, and a sintering step of sintering and molding the mixed powder.
  • the method for producing an aluminum-based phosphorescent composite material provides mechanical energy to the aluminum powder and the phosphorescent material powder to increase the strength of the aluminum powder and the aluminum powder. After mixing with the powder of the phosphorescent material, the mixed powder is sintered and molded.
  • the aluminum-based phosphorescent composite material of the present invention is a sintered body of a powder mixture of a phosphorescent material powder and an aluminum powder with enhanced strength, it has phosphorescence, is inexpensive and lightweight, has room temperature and High mechanical strength at high temperatures.
  • the method for producing an aluminum-based phosphorescent composite material according to the present invention includes a step of imparting mechanical energy to the aluminum powder to increase the strength of the aluminum powder.
  • an aluminum-based phosphorescent composite material having high mechanical strength at high temperatures can be produced.
  • Embodiments of an aluminum-based phosphorescent composite material and a method for producing the same according to the present invention will be described in detail below.
  • mechanical energy is imparted to the aluminum powder by stirring, strain is introduced into the aluminum powder, work hardening is performed, and mechanical strength and hardness are increased.
  • a lubricant such as stearic acid may be mixed with the aluminum powder and the phosphorescent material powder.
  • the method of stirring and mixing the powder while applying mechanical energy is not particularly limited as long as the mechanical strength and hardness of the aluminum powder can be sufficiently increased, but the mechanical grinding method is preferable.
  • mechanical grinding metal balls and powder are placed in a metal container, and the container is continuously rotated, causing the metal balls to collide violently with the powder and repeatedly from the metal balls to the powder. This is a method of applying an impact (mechanical energy).
  • the time for applying mechanical grinding to the powder is preferably from 5 minutes to 10 hours.
  • the longer the time for applying mechanical grinding the more strain is introduced into the aluminum powder and the greater mechanical energy is applied, so the mechanical strength and hardness are further increased.
  • the powder of the phosphorescent material is finely pulverized and the particles are uniformly dispersed in the aluminum powder, the hardness is further increased.
  • the powder of the phosphorescent material is finely pulverized, the phosphorescent property tends to decrease. Therefore, it is preferable to determine the length of time for applying the mechanical grinding in consideration of the balance with the above-described action.
  • a mixed powder of the aluminum powder with increased mechanical strength and hardness and the phosphorescent material powder is obtained, so this mixed powder is made into a mold (the material of the mold is metal, ceramics, carbon, etc.) And then sintered into a desired shape.
  • the aluminum base luminous composite material which has luminous property is obtained. Since this aluminum-based luminous composite material is aluminum, the metal component is inexpensive, lightweight, and has excellent workability. Further, since the mechanical strength and hardness of the aluminum powder are increased, the mechanical strength (for example, specific strength) and hardness of the aluminum-based phosphorescent composite material at room temperature and high temperature are superior to those of pure aluminum materials. .
  • the kind of the sintering method is not particularly limited, and a general sintering method can be adopted, but it is preferable to perform the sintering by the discharge plasma sintering method. Since the discharge plasma sintering method can obtain a sintered body in a short time, compared with the conventional powder metallurgy method (a method in which a powder is cold processed and then hot extruded to obtain a sintered body). It is possible to greatly reduce the time and process required for manufacturing the bonded body. Therefore, the sintered body can be manufactured at a low cost.
  • the sintering conditions such as pressure, temperature, and time are not particularly limited, and may be set as appropriate according to mechanical strength, hardness, density, and the like required for the aluminum-based phosphorescent composite material.
  • the mixing method of the aluminum powder having enhanced mechanical strength and hardness and the powder of the phosphorescent material may be a mixing method (mechanical grinding method or the like) to which mechanical energy as described above is applied, A general mixing method in which no mechanical energy is applied may be used. And this mixed powder is sintered and shape
  • the phosphorescent material may decompose in the solid phase and react with the solid phase with aluminum. Therefore, it is preferable to perform the sintering at a low temperature that does not cause the aluminum and phosphorescent material to react.
  • aluminum and a phosphorescent material react, although mechanical strength and hardness improve, luminous property may fall, and it is unpreferable.
  • the above-described method for separately performing the strengthening step and the mixing step is employed, solid-phase decomposition and solid-phase reaction of the phosphorescent material in sintering are suppressed, so that the mechanical strength and hardness are maintained. , Can exhibit excellent luminous properties.
  • the aluminum powder and the phosphorescent material powder are reacted at a high temperature to improve the mechanical strength and hardness, the powder with improved mechanical strength and hardness, and the phosphorescence that is not exposed to a separately prepared high temperature. If the powders of the materials are mixed and sintered, an aluminum-based phosphorescent composite material having both excellent mechanical strength and hardness and excellent phosphorescence can be obtained.
  • Such an aluminum-based phosphorescent composite material according to this embodiment has excellent mechanical strength and hardness and excellent phosphorescence, and can be suitably used as a building material or a building structure material.
  • handrails, door knobs, and the like used in public facilities such as stations, airports, hospitals, schools, commercial buildings, and movie theaters are generally made of wood or stainless steel. From the viewpoint of crime prevention and safety during emergency evacuation, it is preferable that handrails and door knobs emit light in dark places and dark places, so now fluorescent tapes are attached to handrails and door knobs or fluorescent paints. Or is applied.
  • the use of fluorescent tape and fluorescent paint is limited in terms of weather resistance. Moreover, since there is a possibility that the fluorescent tape or the fluorescent paint may be peeled off or the fluorescent ability may be lowered after the service life, it is necessary to periodically reapply the fluorescent tape or reapply the fluorescent paint.
  • a handrail, a door knob, etc. are manufactured with the aluminum group luminous composite material of this embodiment, it is not necessary to perform the operation
  • the aluminum-based phosphorescent composite material of this embodiment includes anti-slip stairs, floor markings, wall markings, switches, outlets, road signs, guidance signs, emergency flashlights, evacuation Tools, emergency equipment, digestive organs, fire hydrants, fire alarms, life-saving equipment, floor level markings, and other safety signs. It can also be applied to interior goods, leisure goods, toys, stationery, automobile goods, darkroom goods, fishing equipment, fishing equipment, and the like.
  • the type of phosphorescent material that can be used in the present invention is not particularly limited, but aluminates such as calcium aluminate, strontium aluminate, barium aluminate, calcium oxide, strontium oxide, barium oxide, aluminum oxide, Metal oxides such as cerium oxide and metal sulfides such as zinc sulfide, calcium sulfide, germanium sulfide, strontium sulfide, and yttrium sulfide are preferable.
  • the mixing ratio of the aluminum powder and the phosphorescent material powder is not particularly limited, but the ratio of the volume of the phosphorescent material powder to the total volume of the aluminum powder and the phosphorescent material powder is 10% or more and 50%. The following is preferable. If it is less than 10%, the luminous property of the aluminum-based luminous composite material may be insufficient, and if it is more than 50%, the mechanical strength of the aluminum-based luminous composite material may be insufficient. .
  • the aluminum powder used as a starting material is a pure aluminum powder having a purity of 99.9% and an average particle diameter of 25 ⁇ m.
  • the powder of the phosphorescent material is trade name G201-60 (hereinafter referred to as “LG”) manufactured by Tail Navi Co., Ltd.
  • LG powder is a composite oxide mainly composed of SrAl2O4.
  • a vibration type ball mill capable of giving a complex vibration in the vertical and horizontal directions to the mill container by a motor rotating at 800 min ⁇ 1 was used.
  • 70 tool steel balls having a diameter of 6 mm (about 70 g), a total of 10 g of aluminum powder and LG powder, and 0.25 g of stearic acid as an anti-seizure agent , was charged.
  • Al-10LG 10% by volume
  • Al-30LG 70% by volume: 30% by volume
  • Al-50LG 50% by volume: 50% by volume
  • the processing time for mechanical grinding was 5 minutes, 30 minutes, and 60 minutes.
  • the powder was charged into and taken out from the mill container in an argon atmosphere. And about the mixed powder which gave mechanical grinding, micro Vickers hardness HV0.01 was measured. The relationship between the processing time of mechanical grinding and the micro Vickers hardness HV0.01 of the obtained mixed powder is shown in the graph of FIG.
  • each mixed powder having a mechanical grinding processing time of 5 minutes was solidified and formed with a discharge plasma sintering apparatus.
  • a graphite die outer diameter 50 mm, inner diameter 20.1 mm, height 40 mm
  • a graphite punch were used, and this was filled with 5 g of mixed powder.
  • the inside of the chamber was kept under vacuum, and sintering was performed under the conditions of a sintering temperature of 673K, 773K, or 873K, a sintering pressure of 49 MPa, and a holding time of 15 minutes.
  • the relationship between the sintering temperature and the Vickers hardness HV1 and relative density of the sintered body is shown in the graph of FIG.
  • micro Vickers hardness HV 0.01 of the mixed powder and the Vickers hardness HV 1 of the sintered body were polished with emery paper and then buffed with abrasive alumina particles, respectively, and the micro Vickers hardness meter or Vickers hardness meter, respectively. Measured with The relative density of the sintered body was measured based on the Archimedes method. The mass of the sintered body in water was measured by treating the surface of the sintered body with paraffin. Furthermore, the structural analysis of the sintered body was performed by X-ray diffraction (XRD) (see the X-ray diffraction chart in FIG. 3).
  • XRD X-ray diffraction
  • X-ray diffraction was measured using CuK ⁇ rays with an intensity of 40 kV and 60 mA under conditions of a diffraction rate of 1.66 ⁇ 10 ⁇ 2 deg / s and a diffraction angle of 20 to 80 °.
  • pure Al was lower in hardness than each mixed powder at each treatment time. . In particular, it was 70 HV lower than the mixed powder treated with Al-50LG for 60 minutes. Moreover, when the processing time of mechanical grinding was 5 minutes, even if the addition amount of LG powder increased, the big difference in the hardness of each mixed powder was not recognized, but 50HV was shown. Further, when the processing time of mechanical grinding was 30 minutes, the hardness of Al-30LG and Al-50LG was slightly higher than that when the processing time was 5 minutes.
  • FIG. 3 shows the X-ray diffraction result of each sintered body obtained by sintering the mixed powder whose mechanical grinding time is 60 minutes at a sintering temperature of 873K.
  • the X-ray diffraction results of LG powder are also shown.
  • Most of the LG diffraction peaks were identified as SrAl2 O4.
  • Each sintered body was composed of diffraction peaks from aluminum and SrAl 2 O 4 ⁇ , and formation of a compound due to a solid phase reaction during mechanical grinding treatment or sintering was not observed. From this, it is considered that SrAl2 ⁇ O4 is thermodynamically stable and suitable as a material to be dispersed in aluminum.
  • FIG. 4 shows the result of observing the structure of each sintered body obtained by sintering the mixed powder having a mechanical grinding time of 5 minutes at a sintering temperature of 873K.
  • the structure was observed by observing the sintered body with an optical microscope after corroding the sintered body with the Keller solution.
  • the gray part corresponds to the particles of LG powder added, and the white part corresponds to aluminum as a matrix.
  • Al-10LG shown in FIG. 4 (a) the amount of dispersed particles is small, and in Al-30LG shown in FIG. 4 (b) and Al-50LG shown in FIG. 4 (c), compared to Al-10LG. Many coarse particles were observed.
  • the phosphorescent property of each manufactured sintered body was evaluated.
  • brightness and illuminance as indicators of light brightness.
  • brightness is used to express the degree to which a light source is shining. Therefore, here, the brightness of the sintered body is measured to evaluate the phosphorescence. did.
  • the specific method of evaluation of luminous properties is as follows.
  • a sintered body, a light source, and a luminance meter were arranged in a dark room as shown in FIG. That is, the light source 2 was disposed at a position 50 cm away from the sintered body 1 and the luminance meter 3 was disposed at a position 1 m away from the sintered body 1.
  • the light source 2 a black light (trade name Neo Ball 5 Black Light 15W manufactured by Toshiba Lighting & Technology Co., Ltd.) is used.
  • the luminance meter 3 a product name CS-100A manufactured by Konica Minolta (brightness measurement range 0.01 to 49900 cd / m 2 ) was used.
  • the method for measuring the luminance of the sintered body 1 is as follows.
  • the sintered body 1 was irradiated with light from the light source 2 for a predetermined time, and the luminance of the light emitted from the sintered body 1 was measured with the luminance meter 3 within 1 minute after the irradiation was completed.
  • the light irradiation time is 1 minute, 5 minutes, or 10 minutes.
  • the graph of FIG. 6 shows the relationship between the light irradiation time and the luminance in the sintered body of Al-50LG.
  • the sintered body having a sintering temperature of 673K and the sintered body having a temperature of 773K there was no difference in luminance between the case where the light irradiation time was 1 minute and the case where the light irradiation time was 5 minutes, but the light irradiation time was reduced to 10 minutes. Then, the luminance was improved by 0.01 cd / m 2 compared to the case of 1 minute and the case of 5 minutes.
  • the sintered body with a sintering temperature of 873 K has a luminance of 0.05 cd / m 2 regardless of the irradiation time of light, showing the highest luminance among the sintered bodies of Al-50LG. It was. Therefore, when sintering by the discharge plasma sintering method, in order to obtain high brightness
  • the graph of FIG. 7 shows the relationship between the processing time of mechanical grinding and the brightness of the sintered body. If mechanical grinding time is 5 minutes, the brightness of the sintered body of Al-50LG is 0.05cd / m 2, the luminance of the sintered body of Al-30LG was 0.03cd / m 2 . On the other hand, when the mechanical grinding time was increased to 30 minutes and 60 minutes, the brightness of the sintered body was lowered and almost no light was emitted. In order that the powder of the phosphorescent material emits stable luminance, it is considered that a suitable particle size exists. However, it is considered that the particles of the LG powder are refined by mechanical grinding, and the function of phosphorescence is reduced.

Abstract

The present invention provides an aluminum-based phosphorescent composite material that exhibits phosphorescence, is inexpensive and lightweight, and has high mechanical strength at room temperature and at high temperatures, and a method for producing same. An aluminum powder and a phosphorescent material powder are introduced into a mixing device and are subjected to mechanical grinding. In this way, mechanical energy is applied to the aluminum powder, and thus, the aluminum powder is subjected to stress and work hardened, increasing the mechanical strength and the hardness thereof. With this process, it is possible to obtain a powder mixture of the aluminum powder with increased mechanical strength and hardness and the phosphorescent material powder. The powder mixture is introduced into a mold, sintered by spark plasma sintering, and molded into a desired shape.

Description

アルミニウム基蓄光性複合材料及びその製造方法Aluminum-based phosphorescent composite material and method for producing the same
 本発明は、蓄光性を有するアルミニウム基複合材料及びその製造方法に関する。 The present invention relates to an aluminum-based composite material having luminous properties and a method for producing the same.
 近年、地球温暖化問題の観点から、より安価且つ軽量であり、さらに室温及び高温で高い機械的強度を有する材料の開発が望まれている。また、高機能化の観点から、様々な機能を有する軽量な材料の開発が望まれている。例えば、安価で軽量なアルミニウムに高強度化と蓄光性の付与とがなされれば、高強度化により、建築材料や建築構造材等としての適用が可能となるとともに、蓄光性により、安全性や防犯性の優れた建築材料や建築構造材等を製造することができる。また、蓄光性により、太陽光や蛍光灯の光を有効利用することが可能となるため、地球温暖化問題の解決の一助となり得る。 In recent years, it has been desired to develop a material that is cheaper and lighter and has high mechanical strength at room temperature and high temperature from the viewpoint of global warming. In addition, from the viewpoint of high functionality, development of lightweight materials having various functions is desired. For example, if high-strength and light-gathering properties are imparted to inexpensive and lightweight aluminum, it will be possible to apply it as a building material or building structure material, etc., due to the high-strength material, and the light-storing property will enhance safety and It is possible to manufacture building materials and building structural materials that are excellent in crime prevention. In addition, the luminous properties enable effective use of sunlight and light from fluorescent lamps, which can help solve the global warming problem.
 特許文献1には、発光顔料粒子がアルミニウム中に分散されてなる、発光機能を有するアルミニウム基複合材料が記載されている。このアルミニウム基複合材料は、発光顔料粒子を加圧成形してプリフォームを形成し、このプリフォームにアルミニウム溶湯を加圧浸透させることにより製造される。 Patent Document 1 describes an aluminum-based composite material having a light emitting function, in which luminescent pigment particles are dispersed in aluminum. This aluminum-based composite material is manufactured by press-molding luminescent pigment particles to form a preform, and pressurizing and infiltrating molten aluminum into the preform.
日本国特許公開公報 2006-225754AJapanese Patent Publication No. 2006-225754A
 しかしながら、特許文献1に記載のアルミニウム基複合材料は、アルミニウム溶湯が凝固してなるアルミニウム中に発光顔料粒子が分散したものであるため、その機械的強度は、純アルミニウム材料の通常の機械的強度(室温で100MPa以下)と同レベルであった。よって、建築材料や建築構造材として適用するには、機械的強度が不十分である場合があった。
 そこで、本発明は、上記のような従来技術が有する問題点を解決し、蓄光性を有するとともに、安価且つ軽量であり室温及び高温で高い機械的強度を有するアルミニウム基蓄光性複合材料及びその製造方法を提供することを課題とする。
However, since the aluminum-based composite material described in Patent Document 1 is obtained by dispersing luminescent pigment particles in aluminum obtained by solidifying a molten aluminum, its mechanical strength is the normal mechanical strength of a pure aluminum material. It was the same level as (100 MPa or less at room temperature). Therefore, the mechanical strength may be insufficient to be applied as a building material or a building structure material.
Accordingly, the present invention solves the problems of the prior art as described above, and has an aluminum-based phosphorescent composite material that has phosphorescent properties, is inexpensive and lightweight, and has high mechanical strength at room temperature and high temperature, and its manufacture. It is an object to provide a method.
 前記課題を解決するため、本発明の態様は、次のような構成からなる。すなわち、本発明の一態様に係るアルミニウム基蓄光性複合材料は、蓄光材料の粉末と、機械的エネルギーを付与することにより強度が高められたアルミニウム粉末と、の混合粉末の焼結体であることを特徴とする。
 このようなアルミニウム基蓄光性複合材料においては、前記アルミニウム粉末は、メカニカルグラインディングを施すことにより強度が高められたものであることが好ましい。また、放電プラズマ焼結法による焼結体であることが好ましい。
In order to solve the above-described problems, an aspect of the present invention has the following configuration. That is, the aluminum-based phosphorescent composite material according to one embodiment of the present invention is a sintered body of a mixed powder of a phosphorescent material powder and an aluminum powder whose strength is increased by applying mechanical energy. It is characterized by.
In such an aluminum-based phosphorescent composite material, it is preferable that the aluminum powder has increased strength by applying mechanical grinding. Moreover, it is preferable that it is a sintered compact by a discharge plasma sintering method.
 また、本発明の他の態様に係るアルミニウム基蓄光性複合材料の製造方法は、アルミニウム粉末に機械的エネルギーを付与して前記アルミニウム粉末の強度を高める高強度化工程と、蓄光材料の粉末と、前記強度が高められたアルミニウム粉末と、を混合して混合粉末とする混合工程と、前記混合粉末を焼結して成形する焼結工程と、を備えることを特徴とする。 Further, the method for producing an aluminum-based phosphorescent composite material according to another aspect of the present invention includes a strengthening step for imparting mechanical energy to the aluminum powder to increase the strength of the aluminum powder, a powder of the phosphorescent material, It comprises a mixing step of mixing the aluminum powder with increased strength to form a mixed powder, and a sintering step of sintering and molding the mixed powder.
 さらに、本発明の他の態様に係るアルミニウム基蓄光性複合材料の製造方法は、アルミニウム粉末及び蓄光材料の粉末に機械的エネルギーを付与して、前記アルミニウム粉末の強度を高めつつ前記アルミニウム粉末と前記蓄光材料の粉末とを混合した後に、この混合粉末を焼結して成形することを特徴とする。
 これらのアルミニウム基蓄光性複合材料の製造方法においては、メカニカルグラインディング法により粉末に機械的エネルギーを付与することが好ましい。また、放電プラズマ焼結法により焼結を行うことが好ましい。
Furthermore, the method for producing an aluminum-based phosphorescent composite material according to another aspect of the present invention provides mechanical energy to the aluminum powder and the phosphorescent material powder to increase the strength of the aluminum powder and the aluminum powder. After mixing with the powder of the phosphorescent material, the mixed powder is sintered and molded.
In the manufacturing method of these aluminum group luminous composite materials, it is preferable to give mechanical energy to the powder by a mechanical grinding method. Moreover, it is preferable to sinter by a discharge plasma sintering method.
 本発明のアルミニウム基蓄光性複合材料は、蓄光材料の粉末と、強度が高められたアルミニウム粉末と、の混合粉末の焼結体であるので、蓄光性を有するとともに、安価且つ軽量であり室温及び高温で高い機械的強度を有する。
 また、本発明のアルミニウム基蓄光性複合材料の製造方法は、アルミニウム粉末に機械的エネルギーを付与してアルミニウム粉末の強度を高める工程を備えているので、蓄光性を有するとともに安価且つ軽量であり室温及び高温で高い機械的強度を有するアルミニウム基蓄光性複合材料を製造することができる。
Since the aluminum-based phosphorescent composite material of the present invention is a sintered body of a powder mixture of a phosphorescent material powder and an aluminum powder with enhanced strength, it has phosphorescence, is inexpensive and lightweight, has room temperature and High mechanical strength at high temperatures.
In addition, the method for producing an aluminum-based phosphorescent composite material according to the present invention includes a step of imparting mechanical energy to the aluminum powder to increase the strength of the aluminum powder. In addition, an aluminum-based phosphorescent composite material having high mechanical strength at high temperatures can be produced.
粉末にメカニカルグラインディングを施した時間と粉末のマイクロビッカース硬さとの関係を示すグラフである。It is a graph which shows the relationship between the time which performed mechanical grinding to powder, and the micro Vickers hardness of powder. 焼結温度と焼結体のビッカース硬さ及び相対密度との関係を示すグラフである。It is a graph which shows the relationship between sintering temperature, the Vickers hardness of a sintered compact, and a relative density. X線回折のチャートである。It is a chart of X-ray diffraction. 焼結体の組織を光学顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having observed the structure | tissue of the sintered compact with the optical microscope. 焼結体と光源と輝度計の配置図である。It is a layout view of a sintered body, a light source, and a luminance meter. 光の照射時間と焼結体の輝度との関係を示すグラフである。It is a graph which shows the relationship between the irradiation time of light, and the brightness | luminance of a sintered compact. 粉末にメカニカルグラインディングを施した時間と焼結体の輝度との関係を示すグラフである。It is a graph which shows the relationship between the time which gave powder mechanical grinding, and the brightness | luminance of a sintered compact.
  本発明に係るアルミニウム基蓄光性複合材料及びその製造方法の実施の形態を、以下に詳細に説明する。
 まず、アルミニウム粉末及び蓄光材料の粉末を混合装置に投入し、アルミニウム粉末及び蓄光材料の粉末を撹拌すると、アルミニウム粉末及び蓄光材料の粉末が均一に混合される。このとき、撹拌によりアルミニウム粉末に機械的エネルギーが付与されるようにすると、アルミニウム粉末にひずみが導入されて加工硬化がなされ、機械的強度及び硬さが高められる。なお、混合時における焼付きを防止するために、ステアリン酸等の滑剤をアルミニウム粉末及び蓄光材料の粉末に混合してもよい。
Embodiments of an aluminum-based phosphorescent composite material and a method for producing the same according to the present invention will be described in detail below.
First, when aluminum powder and phosphorescent material powder are put into a mixing device and the aluminum powder and phosphorescent material powder are stirred, the aluminum powder and phosphorescent material powder are uniformly mixed. At this time, when mechanical energy is imparted to the aluminum powder by stirring, strain is introduced into the aluminum powder, work hardening is performed, and mechanical strength and hardness are increased. In order to prevent seizure during mixing, a lubricant such as stearic acid may be mixed with the aluminum powder and the phosphorescent material powder.
 機械的エネルギーを付与しながら粉末を撹拌し混合する方法は、アルミニウム粉末の機械的強度及び硬さが十分に高められるならば特に限定されるものではないが、メカニカルグラインディング法が好ましい。メカニカルグラインディング法は、金属製の容器内に金属製ボールと粉末を装入し、容器を連続的に回転させることにより、金属製ボールを粉末に激しく衝突させて、金属製ボールから粉末に繰り返し衝撃(機械的エネルギー)を付与するという方法である。 The method of stirring and mixing the powder while applying mechanical energy is not particularly limited as long as the mechanical strength and hardness of the aluminum powder can be sufficiently increased, but the mechanical grinding method is preferable. In mechanical grinding, metal balls and powder are placed in a metal container, and the container is continuously rotated, causing the metal balls to collide violently with the powder and repeatedly from the metal balls to the powder. This is a method of applying an impact (mechanical energy).
 なお、粉末にメカニカルグラインディングを施す時間は、5分以上10時間以下が好ましい。メカニカルグラインディングを施す時間が長いほど、アルミニウム粉末に強いひずみが導入されて大きな機械的エネルギーが付与されるので、機械的強度及び硬さがより高められる。さらに、蓄光材料の粉末が微細に粉砕され、その粒子が均一にアルミニウム粉末中に分散するため、硬さがさらに高められる。ただし、蓄光材料の粉末が微細に粉砕されると、蓄光性が低下する傾向があるため、上記の作用とのバランスを考えて、メカニカルグラインディングを施す時間の長さを決定することが好ましい。 The time for applying mechanical grinding to the powder is preferably from 5 minutes to 10 hours. The longer the time for applying mechanical grinding, the more strain is introduced into the aluminum powder and the greater mechanical energy is applied, so the mechanical strength and hardness are further increased. Furthermore, since the powder of the phosphorescent material is finely pulverized and the particles are uniformly dispersed in the aluminum powder, the hardness is further increased. However, if the powder of the phosphorescent material is finely pulverized, the phosphorescent property tends to decrease. Therefore, it is preferable to determine the length of time for applying the mechanical grinding in consideration of the balance with the above-described action.
 このような処理により、機械的強度及び硬さが高められたアルミニウム粉末と、蓄光材料の粉末との混合粉末が得られるので、この混合粉末を型(型の素材は金属,セラミックス,炭素等があげられる)に充填し焼結して、所望の形状に成形する。これにより、蓄光性を有するアルミニウム基蓄光性複合材料が得られる。このアルミニウム基蓄光性複合材料は、金属成分がアルミニウムであるので、安価且つ軽量であり加工性が優れている。また、アルミニウム粉末の機械的強度及び硬さが高められているため、アルミニウム基蓄光性複合材料の室温及び高温における機械的強度(例えば比強度)と硬さは、純アルミニウム材料よりも優れている。 By such treatment, a mixed powder of the aluminum powder with increased mechanical strength and hardness and the phosphorescent material powder is obtained, so this mixed powder is made into a mold (the material of the mold is metal, ceramics, carbon, etc.) And then sintered into a desired shape. Thereby, the aluminum base luminous composite material which has luminous property is obtained. Since this aluminum-based luminous composite material is aluminum, the metal component is inexpensive, lightweight, and has excellent workability. Further, since the mechanical strength and hardness of the aluminum powder are increased, the mechanical strength (for example, specific strength) and hardness of the aluminum-based phosphorescent composite material at room temperature and high temperature are superior to those of pure aluminum materials. .
 焼結方法の種類は特に限定されるものではなく、一般的な焼結法を採用可能であるが、放電プラズマ焼結法により焼結を行うことが好ましい。放電プラズマ焼結法は短時間で焼結体を得ることができるので、従来の粉末冶金法(粉末を冷間加工した後に熱間押出しして焼結体を得る方法)などと比べて、焼結体の製造に要する時間や工程を大幅に削減することができる。よって、焼結体を安価に製造することができる。また、圧力,温度,時間等の焼結条件は特に限定されるものではなく、アルミニウム基蓄光性複合材料に要求される機械的強度,硬さ,密度等に応じて適宜設定すればよい。 The kind of the sintering method is not particularly limited, and a general sintering method can be adopted, but it is preferable to perform the sintering by the discharge plasma sintering method. Since the discharge plasma sintering method can obtain a sintered body in a short time, compared with the conventional powder metallurgy method (a method in which a powder is cold processed and then hot extruded to obtain a sintered body). It is possible to greatly reduce the time and process required for manufacturing the bonded body. Therefore, the sintered body can be manufactured at a low cost. In addition, the sintering conditions such as pressure, temperature, and time are not particularly limited, and may be set as appropriate according to mechanical strength, hardness, density, and the like required for the aluminum-based phosphorescent composite material.
 なお、上記のように、アルミニウム粉末と蓄光材料の粉末を共に混合装置に投入して撹拌すると、蓄光材料の粉末に対しても機械的エネルギーが付与されるため、蓄光材料の粉末が微細に粉砕された粒子がアルミニウム粉末中に均一に分散することによって硬さが上昇する一方で、蓄光材料の蓄光性が低下する場合がある。よって、まず、アルミニウム粉末のみに機械的エネルギーを付与して、アルミニウム粉末の機械的強度及び硬さを高めた後に、蓄光材料の粉末と混合する方法を採用してもよい。 As described above, when aluminum powder and phosphorescent material powder are both put into a mixing device and stirred, mechanical energy is also given to the phosphorescent material powder, so the phosphorescent material powder is finely pulverized. While the particles are uniformly dispersed in the aluminum powder, the hardness increases, while the phosphorescent property of the phosphorescent material may decrease. Therefore, first, mechanical energy may be applied only to the aluminum powder to increase the mechanical strength and hardness of the aluminum powder, and then mixed with the phosphorescent material powder.
 すなわち、まずアルミニウム粉末を混合装置に投入し撹拌して、アルミニウム粉末に機械的エネルギーを付与し、アルミニウム粉末の機械的強度及び硬さを高める(高強度化工程)。次に、蓄光材料の粉末と、機械的強度及び硬さが高められたアルミニウム粉末と、を混合して混合粉末とする(混合工程)。このとき、機械的強度及び硬さが高められたアルミニウム粉末と蓄光材料の粉末との混合方法は、前述のような機械的エネルギーが付与される混合方法(メカニカルグラインディング法等)でもよいし、機械的エネルギーは付与されない一般的な混合方法でもよい。そして、この混合粉末を焼結して成形する(焼結工程)。このような方法によりアルミニウム基蓄光性複合材料を製造すれば、より優れた蓄光性を有するアルミニウム基蓄光性複合材料を得ることができる。 That is, first, aluminum powder is put into a mixing device and stirred to impart mechanical energy to the aluminum powder to increase the mechanical strength and hardness of the aluminum powder (strengthening step). Next, the powder of the phosphorescent material and the aluminum powder with increased mechanical strength and hardness are mixed to obtain a mixed powder (mixing step). At this time, the mixing method of the aluminum powder having enhanced mechanical strength and hardness and the powder of the phosphorescent material may be a mixing method (mechanical grinding method or the like) to which mechanical energy as described above is applied, A general mixing method in which no mechanical energy is applied may be used. And this mixed powder is sintered and shape | molded (sintering process). If an aluminum-based phosphorescent composite material is produced by such a method, an aluminum-based phosphorescent composite material having better phosphorescent properties can be obtained.
 また、焼結温度が高いと、蓄光材料が固相で分解しアルミニウムと固相反応するおそれがあるので、アルミニウムと蓄光材料が反応しない程度の低温で焼結を行うことが好ましい。アルミニウムと蓄光材料が反応すると、機械的強度及び硬さは向上するものの蓄光性が低下する場合があるため好ましくない。また、高強度化工程と混合工程を別々に行う前述の方法を採用すれば、焼結における蓄光材料の固相分解や固相反応が抑制されるため、機械的強度及び硬さを維持しながら、優れた蓄光性を発揮することができる。 Also, if the sintering temperature is high, the phosphorescent material may decompose in the solid phase and react with the solid phase with aluminum. Therefore, it is preferable to perform the sintering at a low temperature that does not cause the aluminum and phosphorescent material to react. When aluminum and a phosphorescent material react, although mechanical strength and hardness improve, luminous property may fall, and it is unpreferable. In addition, if the above-described method for separately performing the strengthening step and the mixing step is employed, solid-phase decomposition and solid-phase reaction of the phosphorescent material in sintering are suppressed, so that the mechanical strength and hardness are maintained. , Can exhibit excellent luminous properties.
 ただし、アルミニウム粉末と蓄光材料の粉末を高温で反応させて、機械的強度及び硬さを向上させ、この機械的強度及び硬さを向上させた粉末と、別途用意した高温に曝されていない蓄光材料の粉末を混合して焼結すれば、優れた機械的強度及び硬さと優れた蓄光性とを兼ね備えるアルミニウム基蓄光性複合材料を得ることができる。 However, the aluminum powder and the phosphorescent material powder are reacted at a high temperature to improve the mechanical strength and hardness, the powder with improved mechanical strength and hardness, and the phosphorescence that is not exposed to a separately prepared high temperature. If the powders of the materials are mixed and sintered, an aluminum-based phosphorescent composite material having both excellent mechanical strength and hardness and excellent phosphorescence can be obtained.
 このような本実施形態のアルミニウム基蓄光性複合材料は、優れた機械的強度及び硬さと優れた蓄光性とを備えているので、建築材料や建築構造材等として好適に使用可能である。例えば、駅,空港,病院,学校,商用ビルディング,映画館等の公共施設において使用されている手摺,ドアノブ等は、一般的に木材やステンレス鋼で製造されている。防犯性や緊急避難時の安全性等の観点から、暗所,暗時において手摺やドアノブが光を発して目印となることが好ましいので、現在は手摺やドアノブに蛍光テープを貼付したり蛍光塗料を塗布したりしている。 Such an aluminum-based phosphorescent composite material according to this embodiment has excellent mechanical strength and hardness and excellent phosphorescence, and can be suitably used as a building material or a building structure material. For example, handrails, door knobs, and the like used in public facilities such as stations, airports, hospitals, schools, commercial buildings, and movie theaters are generally made of wood or stainless steel. From the viewpoint of crime prevention and safety during emergency evacuation, it is preferable that handrails and door knobs emit light in dark places and dark places, so now fluorescent tapes are attached to handrails and door knobs or fluorescent paints. Or is applied.
 しかしながら、蛍光テープや蛍光塗料は、耐候性の点で屋外での使用が制限される。また、蛍光テープや蛍光塗料が剥離したり、耐用年数を過ぎて蛍光能力が低下したりするおそれがあるので、蛍光テープの貼り替えや蛍光塗料の再塗布を定期的に行う必要がある。これに対して、本実施形態のアルミニウム基蓄光性複合材料で手摺,ドアノブ等を製造すれば、蛍光テープを貼付したり蛍光塗料を塗布したりする作業を行う必要がない。また、アルミニウム基蓄光性複合材料から蓄光材料が脱落することはないので、手摺,ドアノブ等を定期的に取り替える必要性はほとんどない。 However, the use of fluorescent tape and fluorescent paint is limited in terms of weather resistance. Moreover, since there is a possibility that the fluorescent tape or the fluorescent paint may be peeled off or the fluorescent ability may be lowered after the service life, it is necessary to periodically reapply the fluorescent tape or reapply the fluorescent paint. On the other hand, if a handrail, a door knob, etc. are manufactured with the aluminum group luminous composite material of this embodiment, it is not necessary to perform the operation | work which sticks a fluorescent tape or apply | coats a fluorescent paint. Moreover, since the phosphorescent material does not fall off from the aluminum-based phosphorescent composite material, there is almost no need to periodically replace the handrail, door knob, and the like.
 本実施形態のアルミニウム基蓄光性複合材料の用途としては、手摺,ドアノブの他には、階段滑り止め,床面標示,壁面標示,スイッチ,コンセント,道路標識,誘導標識,緊急用懐中電灯,避難用具,非常持出用具,消化器,消火栓,火災報知機,救命器具,階段階数標示,その他の安全標識等があげられる。また、インテリア用品,レジャー用品,玩具,文房具,自動車用品,暗室用品,釣具,漁具等にも適用可能である。 In addition to handrails and doorknobs, the aluminum-based phosphorescent composite material of this embodiment includes anti-slip stairs, floor markings, wall markings, switches, outlets, road signs, guidance signs, emergency flashlights, evacuation Tools, emergency equipment, digestive organs, fire hydrants, fire alarms, life-saving equipment, floor level markings, and other safety signs. It can also be applied to interior goods, leisure goods, toys, stationery, automobile goods, darkroom goods, fishing equipment, fishing equipment, and the like.
 本発明に使用可能な蓄光材料の種類は特に限定されるものではないが、アルミン酸カルシウム,アルミン酸ストロンチウム,アルミン酸バリウム等のアルミン酸塩や、酸化カルシウム,酸化ストロンチウム,酸化バリウム,酸化アルミニウム,酸化セリウム等の金属酸化物や、硫化亜鉛,硫化カルシウム,硫化ゲルマニウム,硫化ストロンチウム,硫化イットリウム等の金属硫化物が好ましい。 The type of phosphorescent material that can be used in the present invention is not particularly limited, but aluminates such as calcium aluminate, strontium aluminate, barium aluminate, calcium oxide, strontium oxide, barium oxide, aluminum oxide, Metal oxides such as cerium oxide and metal sulfides such as zinc sulfide, calcium sulfide, germanium sulfide, strontium sulfide, and yttrium sulfide are preferable.
 また、アルミニウム粉末と蓄光材料の粉末との混合比率は特に限定されるものではないが、アルミニウム粉末と蓄光材料の粉末の合計の体積における蓄光材料の粉末の体積の割合は、10%以上50%以下であることが好ましい。10%未満であると、アルミニウム基蓄光性複合材料の蓄光性が不十分となるおそれがあり、50%超過であると、アルミニウム基蓄光性複合材料の機械的強度が不十分となるおそれがある。 The mixing ratio of the aluminum powder and the phosphorescent material powder is not particularly limited, but the ratio of the volume of the phosphorescent material powder to the total volume of the aluminum powder and the phosphorescent material powder is 10% or more and 50%. The following is preferable. If it is less than 10%, the luminous property of the aluminum-based luminous composite material may be insufficient, and if it is more than 50%, the mechanical strength of the aluminum-based luminous composite material may be insufficient. .
  〔実施例〕
 以下に実施例を示して、本発明をさらに具体的に説明する。まず、出発原料として用いたアルミニウム粉末は、純度99.9%,平均粒子径25μmの純アルミニウムの粉末である。また、蓄光材料の粉末は、株式会社テールナビ製の商品名G201-60(以降は「LG」と記す)である。このLG粉末は、SrAl2 O4 を主成分とする複合酸化物である。
〔Example〕
The present invention will be described more specifically with reference to the following examples. First, the aluminum powder used as a starting material is a pure aluminum powder having a purity of 99.9% and an average particle diameter of 25 μm. The powder of the phosphorescent material is trade name G201-60 (hereinafter referred to as “LG”) manufactured by Tail Navi Co., Ltd. This LG powder is a composite oxide mainly composed of SrAl2O4.
 メカニカルグラインディングには、800min-1で回転するモータによってミル容器に上下左右の複雑な振動を与えることができる振動型ボールミルを用いた。直径51mm,長さ64mmの工具鋼製ミル容器に、直径6mmの工具鋼製ボール70個(約70g)と、アルミニウム粉末及びLG粉末を合計で10gと、焼き付き防止剤としてステアリン酸0.25gと、を装入した。 For mechanical grinding, a vibration type ball mill capable of giving a complex vibration in the vertical and horizontal directions to the mill container by a motor rotating at 800 min −1 was used. In a tool steel mill container having a diameter of 51 mm and a length of 64 mm, 70 tool steel balls having a diameter of 6 mm (about 70 g), a total of 10 g of aluminum powder and LG powder, and 0.25 g of stearic acid as an anti-seizure agent , Was charged.
 アルミニウム粉末及びLG粉末の配合組成については、3種類検討した。すなわち、アルミニウム粉末:LG粉末が90体積%:10体積%のもの(以降は「Al-10LG」と記す)、70体積%:30体積%のもの(以降は「Al-30LG」と記す)、50体積%:50体積%のもの(以降は「Al-50LG」と記す)についてメカニカルグラインディングを行った。 Three types of composition of aluminum powder and LG powder were examined. That is, aluminum powder: LG powder 90% by volume: 10% by volume (hereinafter referred to as “Al-10LG”), 70% by volume: 30% by volume (hereinafter referred to as “Al-30LG”), 50% by volume: 50% by volume (hereinafter referred to as “Al-50LG”) was subjected to mechanical grinding.
 メカニカルグラインディングの処理時間については、5分,30分,60分とした。なお、ミル容器への粉末の装入と取り出しはアルゴン雰囲気中で行なった。そして、メカニカルグラインディングを施した混合粉末について、マイクロビッカース硬さHV0.01を測定した。メカニカルグラインディングの処理時間と得られた混合粉末のマイクロビッカース硬さHV0.01との関係を、図1のグラフに示す。 The processing time for mechanical grinding was 5 minutes, 30 minutes, and 60 minutes. The powder was charged into and taken out from the mill container in an argon atmosphere. And about the mixed powder which gave mechanical grinding, micro Vickers hardness HV0.01 was measured. The relationship between the processing time of mechanical grinding and the micro Vickers hardness HV0.01 of the obtained mixed powder is shown in the graph of FIG.
 次に、メカニカルグラインディングの処理時間が5分の各混合粉末を、放電プラズマ焼結装置で固化成形した。成形には黒鉛ダイス(外径50mm,内径20.1mm,高さ40mm)と黒鉛パンチを用い、これに5gの混合粉末を充填した。チャンバー内を真空に保ち、焼結温度が673K,773K,又は873K、焼結圧力が49MPa、保持時間が15分という条件で焼結した。焼結温度と焼結体のビッカース硬さHV1及び相対密度との関係を、図2のグラフに示す。 Next, each mixed powder having a mechanical grinding processing time of 5 minutes was solidified and formed with a discharge plasma sintering apparatus. For molding, a graphite die (outer diameter 50 mm, inner diameter 20.1 mm, height 40 mm) and a graphite punch were used, and this was filled with 5 g of mixed powder. The inside of the chamber was kept under vacuum, and sintering was performed under the conditions of a sintering temperature of 673K, 773K, or 873K, a sintering pressure of 49 MPa, and a holding time of 15 minutes. The relationship between the sintering temperature and the Vickers hardness HV1 and relative density of the sintered body is shown in the graph of FIG.
 なお、混合粉末のマイクロビッカース硬さHV0.01と焼結体のビッカース硬さHV1は、測定面をエメリー紙で研磨後、研磨用アルミナ粒子でバフ研磨し、それぞれマイクロビッカース硬度計又はビッカース硬度計で測定した。また、焼結体の相対密度は、アルキメデス法に基づいて測定した。水中での焼結体の質量は、焼結体の表面をパラフィン処理して測定した。さらに、焼結体の構造解析はX線回折(XRD:X-Ray Diffractometer)で行った(図3のX線回折のチャートを参照)。X線回折は、強度40kV,60mAのCuKα線を用いて、回折速度1.66×10-2deg/s及び回折角度20~80°の条件で測定した。 Note that the micro Vickers hardness HV 0.01 of the mixed powder and the Vickers hardness HV 1 of the sintered body were polished with emery paper and then buffed with abrasive alumina particles, respectively, and the micro Vickers hardness meter or Vickers hardness meter, respectively. Measured with The relative density of the sintered body was measured based on the Archimedes method. The mass of the sintered body in water was measured by treating the surface of the sintered body with paraffin. Furthermore, the structural analysis of the sintered body was performed by X-ray diffraction (XRD) (see the X-ray diffraction chart in FIG. 3). X-ray diffraction was measured using CuKα rays with an intensity of 40 kV and 60 mA under conditions of a diffraction rate of 1.66 × 10 −2 deg / s and a diffraction angle of 20 to 80 °.
 ここで、メカニカルグラインディングの処理時間について考察する。純アルミニウム粉末のみにメカニカルグラインディングを施した場合の結果(図1では「純Al」と表示してある)と比較すると、各処理時間において、純Alは各混合粉末よりも硬さが低かった。特に、Al-50LGの60分処理した混合粉末と比較すると、70HV低かった。また、メカニカルグラインディングの処理時間が5分の場合は、LG粉末の添加量が増加しても各混合粉末の硬さに大きな差は認められず、50HVを示した。さらに、メカニカルグラインディングの処理時間が30分の場合は、Al-30LGとAl-50LGの硬さは、処理時間が5分の場合よりもわずかに高かった。 Here, consider the processing time of mechanical grinding. Compared with the result obtained when mechanical grinding was applied only to pure aluminum powder (indicated as “pure Al” in FIG. 1), pure Al was lower in hardness than each mixed powder at each treatment time. . In particular, it was 70 HV lower than the mixed powder treated with Al-50LG for 60 minutes. Moreover, when the processing time of mechanical grinding was 5 minutes, even if the addition amount of LG powder increased, the big difference in the hardness of each mixed powder was not recognized, but 50HV was shown. Further, when the processing time of mechanical grinding was 30 minutes, the hardness of Al-30LG and Al-50LG was slightly higher than that when the processing time was 5 minutes.
 一方、メカニカルグラインディングの処理時間が60分の場合は、全ての混合粉末の硬さが急激に上昇し100HVを超えた。これは、メカニカルグラインディングによってLG粉末が微細に分散したことと、アルミニウム粉末の加工硬化が要因であると考えられる。また、メカニカルグラインディングの処理時間が60分の場合は、LG粉末の添加量の増加に伴って、混合粉末の硬さも上昇した。 On the other hand, when the processing time of mechanical grinding was 60 minutes, the hardness of all the mixed powders rapidly increased and exceeded 100 HV. This is thought to be due to the fact that LG powder was finely dispersed by mechanical grinding and the work hardening of aluminum powder. Moreover, when the processing time of mechanical grinding was 60 minutes, the hardness of the mixed powder increased with the increase in the amount of LG powder added.
 次に、焼結温度について考察する。焼結温度673K及び773Kでは、各焼結体の硬さは20~30HVを示し、焼結前の混合粉末や純アルミニウムよりも低い値を示した。これは、相対密度が低いことが主な原因と考えられる。一方、873Kで焼結した焼結体の硬さは、673Kや773Kで焼結した焼結体よりも高い値を示した。また、相対密度も増加していることから、焼結温度が高いことにより緻密化し、それに伴って硬さが高くなったと考えられる。 Next, consider the sintering temperature. At the sintering temperatures of 673K and 773K, the hardness of each sintered body was 20-30 HV, which was lower than the mixed powder before sintering and pure aluminum. This is probably due to the low relative density. On the other hand, the hardness of the sintered body sintered at 873K was higher than that of the sintered body sintered at 673K or 773K. Moreover, since the relative density is also increasing, it is thought that it densified by the high sintering temperature, and the hardness increased accordingly.
 ここで、メカニカルグラインディングの処理時間が60分である混合粉末を焼結温度873Kで焼結した各焼結体のX線回折結果を、図3に示す。比較のためにLG粉末のX線回折結果を併せて示す。LGの回折ピークのほとんどは、SrAl2 O4 と同定された。また、各焼結体は、アルミニウムとSrAl2 O4 からの回折ピークで構成されており、メカニカルグラインディング処理中や焼結中の固相反応による化合物の生成は認められなかった。このことから、SrAl2 O4 は熱力学的に安定で、アルミニウムに分散させる物質として適していると考えられる。 Here, FIG. 3 shows the X-ray diffraction result of each sintered body obtained by sintering the mixed powder whose mechanical grinding time is 60 minutes at a sintering temperature of 873K. For comparison, the X-ray diffraction results of LG powder are also shown. Most of the LG diffraction peaks were identified as SrAl2 O4. Each sintered body was composed of diffraction peaks from aluminum and SrAl 2 O 4 、, and formation of a compound due to a solid phase reaction during mechanical grinding treatment or sintering was not observed. From this, it is considered that SrAl2 熱 O4 is thermodynamically stable and suitable as a material to be dispersed in aluminum.
 次に、メカニカルグラインディングの処理時間が5分である混合粉末を焼結温度873Kで焼結した各焼結体の組織を観察した結果を、図4に示す。組織観察は、焼結体をケラー氏液で腐食した後に光学顕微鏡で観察することにより行った。灰色の部分が添加したLG粉末の粒子に対応しており、白い部分がマトリックスであるアルミニウムに対応している。図4(a)に示すAl-10LGでは、分散している粒子の量が少なく、図4(b)に示すAl-30LG及び図4(c)に示すAl-50LGでは、Al-10LGよりも粗大な粒子が多く観察された。 Next, FIG. 4 shows the result of observing the structure of each sintered body obtained by sintering the mixed powder having a mechanical grinding time of 5 minutes at a sintering temperature of 873K. The structure was observed by observing the sintered body with an optical microscope after corroding the sintered body with the Keller solution. The gray part corresponds to the particles of LG powder added, and the white part corresponds to aluminum as a matrix. In Al-10LG shown in FIG. 4 (a), the amount of dispersed particles is small, and in Al-30LG shown in FIG. 4 (b) and Al-50LG shown in FIG. 4 (c), compared to Al-10LG. Many coarse particles were observed.
 これは、メカニカルグラインディングの処理時間が短く且つLG粉末の添加量が多いことにより、LG粉末の微細化が抑制されたためと考えられる。各焼結体では、LG粉末の粒子が均一に分散した組織を呈したが、Al-50LGでは、気孔に対応する黒い部分が多く観察され、これらの気孔はLG粉末の添加量が多くなるに従って増加した。一方、これらの気孔は、LG粉末を含有しないアルミニウム粉末のみの焼結体(図4(d)を参照)では認められなかった。このことから、LG粉末の粒子は焼結体の緻密化の妨げになっていると推察される。 This is considered to be because the refinement of the LG powder was suppressed by the short processing time of mechanical grinding and the large amount of LG powder added. Each sintered body exhibited a structure in which the particles of LG powder were uniformly dispersed, but in Al-50LG, many black portions corresponding to the pores were observed, and these pores increased as the amount of LG powder added increased. Increased. On the other hand, these pores were not observed in the sintered body containing only the aluminum powder not containing the LG powder (see FIG. 4D). From this, it is guessed that the particles of LG powder hinder densification of the sintered body.
 次に、製造した各焼結体の蓄光性を評価した。光の明るさの指標には輝度と照度があり、特に輝度は光源などが輝いている程度を表すのに多く用いられているので、ここでは焼結体の輝度を測定して蓄光性を評価した。蓄光性の評価の具体的方法は、以下の通りである。 Next, the phosphorescent property of each manufactured sintered body was evaluated. There are brightness and illuminance as indicators of light brightness. In particular, brightness is used to express the degree to which a light source is shining. Therefore, here, the brightness of the sintered body is measured to evaluate the phosphorescence. did. The specific method of evaluation of luminous properties is as follows.
 まず、暗室内に焼結体と光源と輝度計を、図5に示すように配置した。すなわち、焼結体1から50cm離れた位置に光源2を配するとともに、焼結体1から1m離れた位置に輝度計3を配した。光源2としては、ブラックライト(東芝ライテック株式会社製の商品名ネオボール5ブラックライト 15W)を用い、輝度計3としては、コニカミノルタ社製の商品名CS-100A(輝度の測定範囲0.01~49900cd/m2 )を用いた。 First, a sintered body, a light source, and a luminance meter were arranged in a dark room as shown in FIG. That is, the light source 2 was disposed at a position 50 cm away from the sintered body 1 and the luminance meter 3 was disposed at a position 1 m away from the sintered body 1. As the light source 2, a black light (trade name Neo Ball 5 Black Light 15W manufactured by Toshiba Lighting & Technology Co., Ltd.) is used. As the luminance meter 3, a product name CS-100A manufactured by Konica Minolta (brightness measurement range 0.01 to 49900 cd / m 2 ) was used.
 焼結体1の輝度の測定方法は、以下の通りである。光源2から焼結体1に光を所定時間照射し、照射を終了してから1分以内に、焼結体1から発せられる光の輝度を輝度計3により測定した。光の照射時間は、1分、5分、又は10分である。
 Al-50LGの焼結体において、光の照射時間と輝度の関係を図6のグラフに示す。焼結温度が673Kの焼結体と773Kの焼結体については、光の照射時間が1分の場合と5分の場合とで輝度に差はなかったが、光の照射時間を10分にすると、1分の場合及び5分の場合に比べて輝度が0.01cd/m2 向上した。これに対して、焼結温度が873Kの焼結体については、光の照射時間にかかわらず輝度は0.05cd/m2 であり、Al-50LGの焼結体の中で最も高い輝度を示した。よって、放電プラズマ焼結法で焼結する場合は、高い輝度を得るためには焼結温度を873Kとすることが好ましいことが分かる。
The method for measuring the luminance of the sintered body 1 is as follows. The sintered body 1 was irradiated with light from the light source 2 for a predetermined time, and the luminance of the light emitted from the sintered body 1 was measured with the luminance meter 3 within 1 minute after the irradiation was completed. The light irradiation time is 1 minute, 5 minutes, or 10 minutes.
The graph of FIG. 6 shows the relationship between the light irradiation time and the luminance in the sintered body of Al-50LG. For the sintered body having a sintering temperature of 673K and the sintered body having a temperature of 773K, there was no difference in luminance between the case where the light irradiation time was 1 minute and the case where the light irradiation time was 5 minutes, but the light irradiation time was reduced to 10 minutes. Then, the luminance was improved by 0.01 cd / m 2 compared to the case of 1 minute and the case of 5 minutes. On the other hand, the sintered body with a sintering temperature of 873 K has a luminance of 0.05 cd / m 2 regardless of the irradiation time of light, showing the highest luminance among the sintered bodies of Al-50LG. It was. Therefore, when sintering by the discharge plasma sintering method, in order to obtain high brightness | luminance, it turns out that it is preferable to set sintering temperature to 873K.
 次に、メカニカルグラインディングの処理時間と焼結体の輝度との関係を、図7のグラフに示す。メカニカルグラインディング時間が5分である場合は、Al-50LGの焼結体の輝度は0.05cd/m2 であり、Al-30LGの焼結体の輝度は0.03cd/m2 であった。一方、メカニカルグラインディング時間を30分,60分と長くすると、焼結体の輝度は低下し、ほとんど発光しなかった。
 蓄光材料の粉末が安定した輝度を発するためには、好適な粒子サイズが存在すると考えられるが、メカニカルグラインディングによってLG粉末の粒子が微細化し、蓄光の機能が低下したと考えられる。
Next, the graph of FIG. 7 shows the relationship between the processing time of mechanical grinding and the brightness of the sintered body. If mechanical grinding time is 5 minutes, the brightness of the sintered body of Al-50LG is 0.05cd / m 2, the luminance of the sintered body of Al-30LG was 0.03cd / m 2 . On the other hand, when the mechanical grinding time was increased to 30 minutes and 60 minutes, the brightness of the sintered body was lowered and almost no light was emitted.
In order that the powder of the phosphorescent material emits stable luminance, it is considered that a suitable particle size exists. However, it is considered that the particles of the LG powder are refined by mechanical grinding, and the function of phosphorescence is reduced.

Claims (7)

  1.  蓄光材料の粉末と、機械的エネルギーを付与することにより強度が高められたアルミニウム粉末と、の混合粉末の焼結体であることを特徴とするアルミニウム基蓄光性複合材料。 An aluminum-based phosphorescent composite material, which is a sintered body of a powder mixture of phosphorescent material powder and aluminum powder whose strength is increased by applying mechanical energy.
  2.  前記アルミニウム粉末は、メカニカルグラインディングを施すことにより強度が高められたものであることを特徴とする請求項1に記載のアルミニウム基蓄光性複合材料。 2. The aluminum-based photoluminescent composite material according to claim 1, wherein the aluminum powder has a strength increased by applying mechanical grinding.
  3.  放電プラズマ焼結法による焼結体であることを特徴とする請求項1又は請求項2に記載のアルミニウム基蓄光性複合材料。 The aluminum-based phosphorescent composite material according to claim 1 or 2, which is a sintered body by a discharge plasma sintering method.
  4.  アルミニウム粉末に機械的エネルギーを付与して前記アルミニウム粉末の強度を高める高強度化工程と、
     蓄光材料の粉末と、前記強度が高められたアルミニウム粉末と、を混合して混合粉末とする混合工程と、
     前記混合粉末を焼結して成形する焼結工程と、
    を備えることを特徴とするアルミニウム基蓄光性複合材料の製造方法。
    A strengthening process for imparting mechanical energy to the aluminum powder to increase the strength of the aluminum powder;
    A mixing step of mixing a powder of a phosphorescent material and an aluminum powder with increased strength to obtain a mixed powder;
    A sintering step of sintering and molding the mixed powder;
    A method for producing an aluminum-based phosphorescent composite material comprising:
  5.  アルミニウム粉末及び蓄光材料の粉末に機械的エネルギーを付与して、前記アルミニウム粉末の強度を高めつつ前記アルミニウム粉末と前記蓄光材料の粉末とを混合した後に、この混合粉末を焼結して成形することを特徴とするアルミニウム基蓄光性複合材料の製造方法。 Applying mechanical energy to the aluminum powder and the phosphorescent material powder to increase the strength of the aluminum powder and mixing the aluminum powder and the phosphorescent material powder, then sintering and molding the mixed powder A method for producing an aluminum-based phosphorescent composite material characterized by the above.
  6.  メカニカルグラインディング法により粉末に機械的エネルギーを付与することを特徴とする請求項4又は請求項5に記載のアルミニウム基蓄光性複合材料の製造方法。 The method for producing an aluminum-based phosphorescent composite material according to claim 4 or 5, wherein mechanical energy is imparted to the powder by a mechanical grinding method.
  7.  放電プラズマ焼結法により焼結を行うことを特徴とする請求項4~6のいずれか一項に記載のアルミニウム基蓄光性複合材料の製造方法。 The method for producing an aluminum-based phosphorescent composite material according to any one of claims 4 to 6, wherein sintering is performed by a discharge plasma sintering method.
PCT/JP2011/005795 2010-11-09 2011-10-17 Aluminum-based phosphorescent composite material and method for producing same WO2012063408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010250882A JP2012102356A (en) 2010-11-09 2010-11-09 Aluminum-based phosphorescent composite material, and method for producing the same
JP2010-250882 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063408A1 true WO2012063408A1 (en) 2012-05-18

Family

ID=46050580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005795 WO2012063408A1 (en) 2010-11-09 2011-10-17 Aluminum-based phosphorescent composite material and method for producing same

Country Status (2)

Country Link
JP (1) JP2012102356A (en)
WO (1) WO2012063408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043830A (en) * 2014-06-30 2014-09-17 湖南华曙高科技有限责任公司 Additive manufacturing device composite powder compacting and spreading device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026902A (en) * 1998-07-08 2000-01-25 Daido Steel Co Ltd Metallic sintered compact and its manufacture
JP2006225754A (en) * 2005-01-19 2006-08-31 Shin Nikkei Co Ltd Phosphorescent pigment/aluminum based composite material
JP2009041087A (en) * 2007-08-10 2009-02-26 Univ Nihon Aluminum sintered compact, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026902A (en) * 1998-07-08 2000-01-25 Daido Steel Co Ltd Metallic sintered compact and its manufacture
JP2006225754A (en) * 2005-01-19 2006-08-31 Shin Nikkei Co Ltd Phosphorescent pigment/aluminum based composite material
JP2009041087A (en) * 2007-08-10 2009-02-26 Univ Nihon Aluminum sintered compact, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043830A (en) * 2014-06-30 2014-09-17 湖南华曙高科技有限责任公司 Additive manufacturing device composite powder compacting and spreading device and method
CN104043830B (en) * 2014-06-30 2016-02-24 湖南华曙高科技有限责任公司 Increase material manufacturing equipment and compound rolling power spreading device, method

Also Published As

Publication number Publication date
JP2012102356A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
TWI399422B (en) Fluorescence material and manufacture thereof and luminaire
JP5124101B2 (en) Alpha-type sialon phosphor, method for producing the same, and lighting apparatus
WO2016117623A1 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
TWI384053B (en) Fluorescence material and manufacture thereof and luminaire
JP5551079B2 (en) Porous phosphorescent phosphor ceramics
JP3914987B2 (en) Sialon phosphor and method for producing the same
TW200948983A (en) Al2Ca-containing magnesium based composite material
US8858834B2 (en) Co-doped 1-1-2 nitrides
EP3135746B1 (en) Method for producing nitride fluorescent material
KR102059425B1 (en) Oxide Ceramic Fluorescent Material Having Rare Earth Diffused Therein
JP2007031201A (en) METHOD FOR MANUFACTURING alpha-SIALON POWDER AND PHOSPHOR
JP2006321921A (en) alpha-TYPE SIALON PHOSPHOR AND LIGHTING EQUIPMENT USING THE SAME
WO2008041760A1 (en) Luminous phosphor, fluorescent lamp, luminous display, and luminous molded product
JP2006052337A (en) Sialon phosphor and method for producing the same
WO2012063408A1 (en) Aluminum-based phosphorescent composite material and method for producing same
CN110139914A (en) Light storing phosphor and its manufacturing method and light storage product
JP5479335B2 (en) Light reflecting material for light emitting element
JP2010265447A (en) Red phosphor, method for producing the same, and light-emitting element
JP2007039591A (en) Phosphor and method for producing the same and light emitting device using the same
JP2004323656A (en) Manufacturing process of spherical phosphorescent material and spherical phosphorescent material
JP4961557B2 (en) Method for producing light metal composite material and light metal composite material obtained by this method
JP4536574B2 (en) Luminescent pigment / aluminum-based composite material and method for producing the same
JP2000026902A (en) Metallic sintered compact and its manufacture
WO1998006793A1 (en) Process for the preparaiton of aluminate-base phosphor
JP7345949B1 (en) Method for manufacturing phosphorescent particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840342

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840342

Country of ref document: EP

Kind code of ref document: A1