WO2012062194A1 - Method of recycling and reusing waste magnesia-carbon brick - Google Patents

Method of recycling and reusing waste magnesia-carbon brick Download PDF

Info

Publication number
WO2012062194A1
WO2012062194A1 PCT/CN2011/081888 CN2011081888W WO2012062194A1 WO 2012062194 A1 WO2012062194 A1 WO 2012062194A1 CN 2011081888 W CN2011081888 W CN 2011081888W WO 2012062194 A1 WO2012062194 A1 WO 2012062194A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
slurry
selection
sweeping
enters
Prior art date
Application number
PCT/CN2011/081888
Other languages
French (fr)
Chinese (zh)
Inventor
冯婕
王明银
肖敢
王文杰
苑光国
陈学云
李祎
Original Assignee
山东乾舜矿冶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东乾舜矿冶科技股份有限公司 filed Critical 山东乾舜矿冶科技股份有限公司
Publication of WO2012062194A1 publication Critical patent/WO2012062194A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form

Definitions

  • sodium carbonate 500g/t and sodium silicate 800g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 500g/t and sodium silicate are added to the ore powder by weight ratio. 500g/t.

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method of recycling and reusing waste magnesia-carbon brick, comprising the following steps: ① Pulverizing the waste magnesia-carbon brick to obtain powdered-ore. ② Pouring the powdered-ore into an agitation trough, adding water, and then agitating to obtain ore slurry. ③ Roughing, then sending the resulting froth through a conduit to be subjected to a first cleaning process, and then subjecting the ore slurry to a first scavenging process. ④ Performing the first cleaning process: using a mechanical agitation floatation machine to carry out cleaning, and then subjecting the floatation-produced froth to a second cleaning process. ⑤ Performing the second cleaning process: using two air-suction/ore slurry-suction dual-function mechanical agitation flotation machines to carry out cleaning. ⑥ Subjecting the ore slurry resulting from roughing in step ③ to a first scavenging process, and then subjecting the flotated ore slurry to a second scavenging process. ⑦ Performing the second scavenging process, and then subjecting the flotated ore slurry to a third scavenging process. ⑧ Performing the third scavenging process, and then subjecting the flotated ore slurry to a fourth scavenging process. ⑨ Performing the fourth scavenging process, and then concentrating, pressure-filtering, dehydrating and drying the flotated ore slurry to obtain magnesite. After having been subjected to the processes in the present method, waste magnesia-carbon bricks can be reused, allowing for the recycling and reuse of materials and a reduction in production costs.

Description

一种废镁碳砖的回收利用方法  Method for recycling waste magnesia carbon brick 技术领域Technical field
本发明涉及耐火材料的回收利用,是一种废镁碳砖的回收利用方法。  The invention relates to recycling and utilization of refractory materials, and is a recycling method of waste magnesia carbon bricks.
背景技术Background technique
钢铁企业炼钢炉内使用的镁碳砖属于炼钢耗材,每年有 几十万吨 镁碳砖报废。这些废砖一般是全部弃掉,它严重污染环境,并占用较大的储存面积,对这种废砖的处理钢铁企业每年需支付较高费用。为此,近几年,本领域技术人员致力于提供回收利用的方法,以解决废弃砖带来的上述不足。虽然有些方法可以使废镁砖经过处理再利用,但它不能做到在处理过程中零排放,仍然存在对环境的污染,并且工艺复杂,成本相对较高,收益率低。国外对废镁砖的回收利用方法其造价极高,不适用于我国钢业。  Magnesia carbon bricks used in iron and steel enterprises' steelmaking furnaces are steel-making consumables, with several hundred thousand tons per year. Magnesia carbon bricks are scrapped. These waste bricks are generally discarded. It seriously pollutes the environment and occupies a large storage area. The steel companies that handle such waste bricks pay higher fees each year. To this end, in recent years, those skilled in the art have been working to provide a method of recycling to solve the above-mentioned deficiencies caused by waste bricks. Although some methods can make the waste magnesia bricks be treated and reused, it can not achieve zero discharge during the treatment process, and there is still environmental pollution, and the process is complicated, the cost is relatively high, and the yield is low. The recycling method of waste magnesia bricks abroad is extremely expensive and is not suitable for China's steel industry.
技术解决方案Technical solution
本发明的目的是提供一种废镁碳砖的回收利用方法,它全部采用废镁碳砖为原料,经过处理后的废料能够全部重新利用,以解决现有技术存在的不足。 The object of the present invention is to provide a method for recycling and utilizing waste magnesia carbon bricks, which all use waste magnesia carbon bricks as raw materials, and the treated waste materials can be completely reused to solve the deficiencies of the prior art.
本发明为实现上述目的,通过以下技术方案实现:包括以下步骤: To achieve the above object, the present invention is achieved by the following technical solutions: the following steps are included:
①将废镁碳砖粉碎至1毫米以下,得到矿粉; 1 crushing the waste magnesia carbon brick to less than 1 mm to obtain mineral powder;
②将矿粉置入搅拌槽内加入水搅拌成矿浆,矿浆浓度为 23-27% ,在矿粉中按重量比加入硅酸钠、煤油和松醇油搅拌均匀,每吨 矿粉 加入950-1050克浓度为 5% 的硅酸钠、480-500克煤油和70-90克松醇油; 2 Put the ore powder into the stirred tank and add water to stir the slurry into a slurry. The concentration of the slurry is 23-27%. Add silicic acid, kerosene and pine oil in the ore powder by weight, and mix evenly. Add 950-1050g per ton of mineral powder to 5%. Sodium silicate, 480-500 grams of kerosene and 70-90 grams of pine oil;
③粗选: 将步骤②的矿浆置入一台充气自吸机械搅拌式浮选机和两台与充气自吸机械搅拌式浮选机平行连接使用的充气机械搅拌式浮选机内进行浮选,浮选出的泡沫通过管道进入一次精选,浮选后的矿浆通过管道与步骤②的矿浆一起进入充气自吸机械搅拌式浮选机进行再浮选, 粗选出的泡沫通过管道进入一次精选,矿浆进入一次扫选; 3 rough selection: The slurry of step 2 is placed in an aerated self-priming mechanical agitation flotation machine and two pneumatic mechanical agitating flotation machines connected in parallel with the aerated self-priming mechanical agitation flotation machine for flotation, flotation The foam enters a selection through the pipeline, and the flotation after the flotation enters the aerated self-priming mechanical agitation flotation machine through the pipeline together with the slurry of step 2 for re-flotation. The coarsely selected foam enters a selection through the pipeline, and the slurry enters a sweeping election;
④一次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,步骤③中的泡沫进入本次精选浮选机后浮选出的泡沫进入二次精选,浮选后的矿浆返回粗选; 4 one-time selection: two Self-priming air and self-priming slurry dual-function mechanical agitating flotation machine for selection, the foam in step 3 enters the flotation machine after the selected flotation machine enters the second selection, the pulp after flotation Return to rough selection;
⑤二次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,将步骤④中的泡沫进入本次精选浮选机后浮选出的泡沫即为石墨精矿,经过浓缩、压滤脱水烘干得到石墨产品,经过本次浮选后的矿浆返回一次精选浮选机内; 5 second selection: using two The self-priming air and self-priming slurry double-function mechanical agitating flotation machine is selected. The foam in step 4 is floated into the selected flotation machine and the foam is flocculated, which is concentrated and pressed. Filtration dehydration and drying to obtain graphite products, after the flotation, the slurry is returned to a selected flotation machine;
⑥步骤③中经过粗选后的矿浆进入一次扫选,一次扫选采用两台浮选机平行连接使用,浮选出的泡沫返回粗选,浮选后的矿浆进入二次扫选; In the 6th step, the coarsely selected slurry enters a sweeping selection, and one sweeping selection uses two flotation machines to be connected in parallel. The flotation of the flotation is returned to the rough selection, and the slurry after the flotation enters the secondary sweeping;
⑦二次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入三次扫选; 7 secondary sweeping: using two flotation machines in parallel connection, the flotation of the flotation returns to the sweeping, and the slurry after flotation enters three sweeps;
⑧三次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入四次扫选; 8 three sweeps: use two flotation machines in parallel connection, the flotation of the foam returns to a sweep, the slurry after flotation enters four sweeps;
⑨四次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆经过浓缩、压滤脱水后烘干得到 镁砂 产品; 9 sweeping selection: using two flotation machines in parallel connection, the flotation of the flotation is returned to the sweeping, and the slurry after flotation is concentrated, filtered and dehydrated, and then dried to obtain magnesia products;
粗选步骤③中按重量比在矿粉中添加碳酸钠400-600g/t和硅酸钠700-850g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠400-600g/t和 硅酸钠 400-600g/t。 In the rough selection step 3, sodium carbonate 400-600 g/t and sodium silicate 700-850 g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 400-600 g/weight is added to the ore powder according to the weight ratio. t and Sodium silicate 400-600g/t.
步骤⑥、⑦、⑧、⑨所述的扫选,均采用充气自吸式机械搅拌式浮选机和充气机械搅拌式浮选机平行连接使用;一次扫选步骤⑥中每吨矿粉按重量比在矿浆中添加煤油375g/t和松醇油80g/t;二次扫选步骤⑦中每吨矿粉按重量比在矿浆中添加煤油250g/t和松醇油80g/t;三次扫选步骤⑧中每吨矿粉按重量比在矿浆中添加煤油185g/t和松醇油80g/t;四次扫选步骤⑨中每吨矿粉按重量比在矿浆中添加煤油125g/t和松醇油40g/t。 The sweeping according to steps 6, 7, 8, and 9 are all connected in parallel by using a pneumatic self-priming mechanical stirring flotation machine and an aerated mechanical stirring flotation machine; one sweep per step of the ore powder per weight Add 375g/t of kerosene and 80g/t of pine oil in the slurry; add kerosene 250g/t and 80g/t of pine oil in the slurry according to the weight ratio in the second sweeping step 7; In step 8, each ton of ore powder is added with kerosene 185g/t and pine oil 80g/t according to the weight ratio; in the four sweeping step 9, each ton of ore powder is added with kerosene 125g/t and pine in the weight ratio. Alcohol oil 40g / t.
粗选步骤③中按重量比在矿粉中添加碳酸钠500g/t和硅酸钠800g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠500g/t和 硅酸钠 500g/t。 In the rough selection step 3, sodium carbonate 500g/t and sodium silicate 800g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 500g/t and sodium silicate are added to the ore powder by weight ratio. 500g/t.
有益效果Beneficial effect
本发明的优点在于:使废镁碳砖处理后全部重新利用,利用率达到95%以上,实现资源的循环利用,废镁碳砖的处理过程达到零 排放 ,石墨产率达到33%,品位大于55%,镁砂产率达到67%,镁砂品位达到92%,彻底解决了废镁碳砖对环境的污染,并为企业带来了较高的收益,使生产成本大幅度降低。年处理量为4000t的年收益可达300万元左右。 The invention has the advantages that: the waste magnesia carbon brick is completely reused after being treated, the utilization rate is over 95%, the resource recycling is realized, and the treatment process of the waste magnesia carbon brick reaches zero emission. The graphite yield reaches 33%, the grade is more than 55%, the magnesia yield reaches 67%, and the magnesia grade reaches 92%, which completely solves the environmental pollution of the waste magnesia carbon brick and brings high profits to the enterprise. , so that the production costs are greatly reduced. The annual processing capacity of 4000t can reach about 3 million yuan.
附图说明DRAWINGS
附图1为本发明回收利用方法流程简图。  1 is a schematic flow chart of a recycling method of the present invention.
本发明的实施方式Embodiments of the invention
本发明的一种废镁碳砖的回收利用方法包括如下步骤: The recycling method of a waste magnesia carbon brick of the present invention comprises the following steps:
①将废镁碳砖粉碎至1毫米以下,得到矿粉; 1 crushing the waste magnesia carbon brick to less than 1 mm to obtain mineral powder;
②将矿粉置入搅拌槽内加入水搅拌成矿浆,矿浆浓度为 23-27% ,在矿粉中按重量比加入硅酸钠、煤油和松醇油搅拌均匀,每吨 矿粉 加入950-1050克浓度为 5% 的硅酸钠、480-500克煤油和70-90克松醇油; 2 Put the ore powder into the stirred tank and add water to stir the slurry into a slurry. The concentration of the slurry is 23-27%. Add silicic acid, kerosene and pine oil in the ore powder by weight, and mix evenly. Add 950-1050g per ton of mineral powder to 5%. Sodium silicate, 480-500 grams of kerosene and 70-90 grams of pine oil;
③粗选: 将步骤②的矿浆置入一台充气自吸机械搅拌式浮选机和两台与充气自吸机械搅拌式浮选机平行连接使用的充气机械搅拌式浮选机内进行浮选,浮选出的泡沫通过管道进入一次精选,浮选后的矿浆通过管道与步骤②的矿浆一起进入充气自吸机械搅拌式浮选机进行再浮选, 粗选出的泡沫通过管道进入一次精选,矿浆进入一次扫选; 3 rough selection: The slurry of step 2 is placed in an aerated self-priming mechanical agitation flotation machine and two pneumatic mechanical agitating flotation machines connected in parallel with the aerated self-priming mechanical agitation flotation machine for flotation, flotation The foam enters a selection through the pipeline, and the flotation after the flotation enters the aerated self-priming mechanical agitation flotation machine through the pipeline together with the slurry of step 2 for re-flotation. The coarsely selected foam enters a selection through the pipeline, and the slurry enters a sweeping election;
④一次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,步骤③中的泡沫进入本次精选浮选机后浮选出的泡沫进入二次精选,浮选后 的矿浆返回粗选; 4 one-time selection: two Self-priming air and self-priming slurry dual-function mechanical agitating flotation machine for selection, the foam in step 3 enters the flotation machine after the selected flotation machine enters the second selection, the pulp after flotation Return to rough selection;
⑤二次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,将步骤④中的泡沫进入本次精选浮选机后浮选出的泡沫即为石墨精矿,经过浓缩、压滤脱水烘干得到石墨产品,经过本次浮选后的矿浆返回一次精选浮选机内; 5 second selection: using two The self-priming air and self-priming slurry double-function mechanical agitating flotation machine is selected. The foam in step 4 is floated into the selected flotation machine and the foam is flocculated, which is concentrated and pressed. Filtration dehydration and drying to obtain graphite products, after the flotation, the slurry is returned to a selected flotation machine;
⑥步骤③中经过粗选后的矿浆进入一次扫选,一次扫选采用两台浮选机平行连接使用,浮选出的泡沫返回粗选,浮选后的矿浆进入二次扫选; In the 6th step, the coarsely selected slurry enters a sweeping selection, and one sweeping selection uses two flotation machines to be connected in parallel. The flotation of the flotation is returned to the rough selection, and the slurry after the flotation enters the secondary sweeping;
⑦二次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入三次扫选; 7 secondary sweeping: using two flotation machines in parallel connection, the flotation of the flotation returns to the sweeping, and the slurry after flotation enters three sweeps;
⑧三次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入四次扫选; 8 three sweeps: use two flotation machines in parallel connection, the flotation of the foam returns to a sweep, the slurry after flotation enters four sweeps;
⑨四次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆经过浓缩、压滤脱水后烘干得到 镁砂 产品; 9 sweeping selection: using two flotation machines in parallel connection, the flotation of the flotation is returned to the sweeping, and the slurry after flotation is concentrated, filtered and dehydrated, and then dried to obtain magnesia products;
粗选步骤③中按重量比在矿粉中添加碳酸钠400-600g/t和硅酸钠700-850g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠400-600g/t和 硅酸钠 400-600g/t。 In the rough selection step 3, sodium carbonate 400-600 g/t and sodium silicate 700-850 g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 400-600 g/weight is added to the ore powder according to the weight ratio. t and Sodium silicate 400-600g/t.
步骤⑥、⑦、⑧、⑨所述的扫选,均采用充气自吸式机械搅拌式浮选机和充气机械搅拌式浮选机平行连接使用;一次扫选步骤⑥中每吨矿粉按重量比在矿浆中添加煤油375g/t和松醇油80g/t;二次扫选步骤⑦中每吨矿粉按重量比在矿浆中添加煤油250g/t和松醇油80g/t;三次扫选步骤⑧中每吨矿粉按重量比在矿浆中添加煤油185g/t和松醇油80g/t;四次扫选步骤⑨中每吨矿粉按重量比在矿浆中添加煤油125g/t和松醇油40g/t。 The sweeping according to steps 6, 7, 8, and 9 are all connected in parallel by using a pneumatic self-priming mechanical stirring flotation machine and an aerated mechanical stirring flotation machine; one sweep per step of the ore powder per weight Add 375g/t of kerosene and 80g/t of pine oil in the slurry; add kerosene 250g/t and 80g/t of pine oil in the slurry according to the weight ratio in the second sweeping step 7; In step 8, each ton of ore powder is added with kerosene 185g/t and pine oil 80g/t according to the weight ratio; in the four sweeping step 9, each ton of ore powder is added with kerosene 125g/t and pine in the weight ratio. Alcohol oil 40g / t.
粗选步骤③中按重量比在矿粉中添加碳酸钠500g/t和硅酸钠800g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠500g/t和 硅酸钠 500g/t。 In the rough selection step 3, sodium carbonate 500g/t and sodium silicate 800g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 500g/t and sodium silicate are added to the ore powder by weight ratio. 500g/t.
本发明的方法中使用的添加 浮选 剂碳酸钠为调整剂,其浓度为10%,硅酸钠为分 散剂,浓度为5%,煤油为捕收剂,在原浓度下使用 , 松醇油为起泡剂,在原浓度下使用,使用 浮选 剂的目的在于 提高碳的可浮性抑制镁砂的上浮 ,使碳和 镁砂 更进一步的被分离,进一步提高石墨的品位。本发明方法中的添加剂也可采用矿浆浓度计量,例如:当矿浆重量浓度为 23-27%, 每天处理25吨原料,每小时处理1.042吨原料,按25%浓度计算,矿浆流量为3.4m 3 /h。 The addition of the flotation agent sodium carbonate used in the method of the present invention is a regulator having a concentration of 10% and sodium silicate as a fraction. Powder, concentration 5%, kerosene is a collector, used at the original concentration, pine oil is a foaming agent, used at the original concentration, the purpose of using flotation agent is to improve the floatability of carbon to inhibit the floating of magnesia. Make carbon and magnesia Further separation is carried out to further improve the grade of graphite. The additive in the method of the invention may also be measured by the concentration of the slurry, for example, when the concentration of the slurry is 23-27%, 25 tons of raw materials are processed every day, 1.042 tons of raw materials are processed per hour, and the slurry flow rate is 3.4 m 3 /h according to the concentration of 25%.
搅拌槽加入硅酸钠20833ml/h、煤油569 ml/h和松醇油108 ml/h。 Stirring tank was added with 20833 ml/h of sodium silicate, 569 ml/h of kerosene and 108 ml/h of pine oil.
粗选:在粗选浮选槽内添加碳酸钠5208 ml/h及硅酸钠16667 ml/h。 Rough selection: Add 5208 ml/h of sodium carbonate and 16667 ml/h of sodium silicate in the rough flotation cell.
一次精选:在浮选槽内添加碳酸钠5208 ml/h及硅酸钠10417 ml/h。 One selection: Add 5208 ml/h of sodium carbonate and 10,417 ml/h of sodium silicate in the flotation cell.
一次扫选:在浮选槽内添加煤油427ml/h与松醇油108 ml/h。 One sweep: add 427ml/h of kerosene and 108 ml/h of pine oil in the flotation cell.
二次扫选:在浮选槽内添加煤油285ml/h与松醇油108 ml/h。 Secondary sweep: Add 285ml/h of kerosene and 108 ml/h of pine oil in the flotation cell.
三次扫选:在浮选槽内添加煤油211ml/h与松醇油108 ml/h。 Three sweeps: Add 211ml/h of kerosene and 108 ml/h of pine oil in the flotation cell.
四次扫选:在浮选槽内添加煤油142ml/h与松醇油54 ml/h。 Four sweeps: Add 142ml/h of kerosene and 54 ml/h of pine oil in the flotation cell.
本发明方法中选出的泡沫主要为石墨精矿。 The foam selected in the process of the invention is primarily a graphite concentrate.

Claims (3)

  1. 一种废镁碳砖的回收利用方法,其特征在于:包括以下步骤:A method for recycling waste magnesia carbon bricks, comprising: the following steps:
    ①将废镁碳砖粉碎至1毫米以下,得到矿粉;1 crushing the waste magnesia carbon brick to less than 1 mm to obtain mineral powder;
    ②将矿粉置入搅拌槽内加入水搅拌成矿浆,矿浆浓度为 23-27% ,在矿粉中按重量比加入硅酸钠、煤油和松醇油搅拌均匀,每吨 矿粉 加入950-1050克浓度为 5% 的硅酸钠、480-500克煤油和70-90克松醇油;2 Put the ore powder into the stirred tank and add water to stir the slurry into a slurry. The concentration of the slurry is 23-27%. Add the sodium silicate, kerosene and pine oil in the ore powder according to the weight ratio and mix evenly. Mineral powder Add 950-1050 grams of 5% sodium silicate, 480-500 grams of kerosene and 70-90 grams of pine oil;
    ③粗选: 将步骤②的矿浆置入一台充气自吸机械搅拌式浮选机和两台与充气自吸机械搅拌式浮选机平行连接使用的充气机械搅拌式浮选机内进行浮选,浮选出的泡沫通过管道进入一次精选,浮选后的矿浆通过管道与步骤②的矿浆一起进入充气自吸机械搅拌式浮选机进行再浮选, 粗选出的泡沫通过管道进入一次精选,矿浆进入一次扫选;3 rough selection: The slurry of step 2 is placed in an aerated self-priming mechanical agitation flotation machine and two pneumatic mechanical agitating flotation machines connected in parallel with the aerated self-priming mechanical agitation flotation machine for flotation, flotation The foam enters a selection through the pipeline, and the flotation after the flotation enters the aerated self-priming mechanical agitation flotation machine through the pipeline together with the slurry of step 2 for re-flotation. The coarsely selected foam enters a selection through the pipeline, and the slurry enters a sweeping election;
    ④一次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,步骤③中的泡沫进入本次精选浮选机后浮选出的泡沫进入二次精选,浮选后的矿浆返回粗选;4 one-time selection: two Self-priming air and self-priming slurry dual-function mechanical agitating flotation machine for selection, the foam in step 3 enters the flotation machine after the selected flotation machine enters the second selection, the pulp after flotation Return to rough selection;
    ⑤二次精选:采用 两台 自吸空气和自吸矿浆双重功能的机械搅拌式浮选机进行精选,将步骤④中的泡沫进入本次精选浮选机后浮选出的泡沫即为石墨精矿,经过浓缩、压滤脱水烘干得到石墨产品,经过本次浮选后的矿浆返回一次精选浮选机内;5 second selection: using two The self-priming air and self-priming slurry double-function mechanical agitating flotation machine is selected. The foam in step 4 is floated into the selected flotation machine and the foam is flocculated, which is concentrated and pressed. Filtration dehydration and drying to obtain graphite products, after the flotation, the slurry is returned to a selected flotation machine;
    ⑥步骤③中经过粗选后的矿浆进入一次扫选,一次扫选采用两台浮选机平行连接使用,浮选出的泡沫返回粗选,浮选后的矿浆进入二次扫选;In the 6th step, the coarsely selected slurry enters a sweeping selection, and one sweeping selection uses two flotation machines to be connected in parallel. The flotation of the flotation is returned to the rough selection, and the slurry after the flotation enters the secondary sweeping;
    ⑦二次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入三次扫选;7 secondary sweeping: using two flotation machines in parallel connection, the flotation of the flotation returns to the sweeping, and the slurry after flotation enters three sweeps;
    ⑧三次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆进入四次扫选;8 three sweeps: use two flotation machines in parallel connection, the flotation of the foam returns to a sweep, the slurry after flotation enters four sweeps;
    ⑨四次扫选:采用两台浮选机平行连接使用,浮选出的泡沫返回一次扫选,浮选后的矿浆经过浓缩、压滤脱水后烘干得到 镁砂 产品;9 four sweeps: use two flotation machines in parallel connection, the flotation of the foam returns to a sweep, the pulp after flotation is concentrated, filtered and dehydrated to obtain magnesia. Product
    粗选步骤③中按重量比在矿粉中添加碳酸钠400-600g/t和硅酸钠700-850g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠400-600g/t和 硅酸钠 400-600g/t。In the rough selection step 3, sodium carbonate 400-600 g/t and sodium silicate 700-850 g/t are added to the ore powder according to the weight ratio; in the first selection step 4, sodium carbonate 400-600 g/weight is added to the ore powder according to the weight ratio. t and Sodium silicate 400-600g/t.
  2. 根据权利要求1所述的一种废镁碳砖的回收利用方法,其特征在于:步骤⑥、⑦、⑧、⑨所述的扫选,均采用充气自吸式机械搅拌式浮选机和充气机械搅拌式浮选机平行连接使用;一次扫选步骤⑥中每吨矿粉按重量比在矿浆中添加煤油375g/t和松醇油80g/t;二次扫选步骤⑦中每吨矿粉按重量比在矿浆中添加煤油250g/t和松醇油80g/t;三次扫选步骤⑧中每吨矿粉按重量比在矿浆中添加煤油185g/t和松醇油80g/t;四次扫选步骤⑨中每吨矿粉按重量比在矿浆中添加煤油125g/t和松醇油40g/t。 The method for recycling waste magnesia carbon brick according to claim 1, wherein the sweeping and selecting according to steps 6, 7, 8, and 9 are performed by using a pneumatic self-priming mechanical stirring flotation machine and inflating. The mechanical agitation flotation machine is used in parallel connection; in the first sweeping step, the pulverized oil is added with 375g/t of kerosene and 80g/t of pine oil by weight ratio; and the second sweeping step 7 is per ton of mineral powder. Add kerosene 250g/t and pine oil 80g/t to the slurry by weight ratio; add 185g/t kerosene and 80g/t of pine oil in the slurry according to the weight ratio in the third sweeping step 8; In the sweeping step 9, each ton of ore fines is added with kerosene 125g/t and pine oil 40g/t in the slurry.
  3. 根据权利要求1所述的一种废镁碳砖的回收利用方法,其特征在于:粗选步骤③中按重量比在矿粉中添加碳酸钠500g/t和硅酸钠800g/t;一次精选步骤④中按重量比在矿粉中添加碳酸钠500g/t和硅酸钠500g/t。The method for recycling waste magnesia carbon brick according to claim 1, characterized in that: in the rough selection step 3, sodium carbonate 500 g/t and sodium silicate 800 g/t are added to the ore powder according to the weight ratio; In step 4, sodium carbonate 500 g/t and sodium silicate 500 g/t are added to the ore powder by weight ratio.
PCT/CN2011/081888 2010-11-12 2011-11-08 Method of recycling and reusing waste magnesia-carbon brick WO2012062194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010541525A CN102069036B (en) 2010-11-12 2010-11-12 Method for recycling waste magnesia carbon brick
CN201010541525.8 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012062194A1 true WO2012062194A1 (en) 2012-05-18

Family

ID=44027914

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/077534 WO2012062131A1 (en) 2010-11-12 2011-07-25 Method of recovering and exploiting blast furnace dust from iron-smelting
PCT/CN2011/081888 WO2012062194A1 (en) 2010-11-12 2011-11-08 Method of recycling and reusing waste magnesia-carbon brick

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077534 WO2012062131A1 (en) 2010-11-12 2011-07-25 Method of recovering and exploiting blast furnace dust from iron-smelting

Country Status (2)

Country Link
CN (1) CN102069036B (en)
WO (2) WO2012062131A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069036B (en) * 2010-11-12 2012-10-03 山东乾舜矿冶科技股份有限公司 Method for recycling waste magnesia carbon brick
CN102505069A (en) * 2011-10-19 2012-06-20 昆明理工大学 Method for recovering lost gold-loaded carbon from tailings obtained in carbon leaching gold extraction process
CN102886300B (en) * 2012-10-19 2013-12-18 内蒙古科技大学 Ore separation method for recycling scandium from bayan obo tailings
CN104607296B (en) * 2015-02-03 2017-02-22 沈阳隆基电磁科技股份有限公司 Ilmenite beneficiation method and equipment
JP2017074604A (en) * 2015-10-15 2017-04-20 新東工業株式会社 Method for regeneration of casting mold sand and regeneration system
CN105268541B (en) * 2015-11-23 2018-04-24 郴州市金贵银业股份有限公司 The method that metal is recycled from stove waste lining brick
CN106311456A (en) * 2016-08-31 2017-01-11 蒋朋钢 Method for recovering iron concentrates and non-ferrous metals by virtue of head ash of sintering machine
CN106179769A (en) * 2016-09-19 2016-12-07 中南大学 The method of metallic copper in copper metallurgy waste refractory materials is reclaimed in a kind of flotation
CN107697934A (en) * 2017-11-06 2018-02-16 中民驰远实业有限公司 A kind of efficient reuse method of discarded magnesia carbon refractory
CN109158221B (en) * 2018-08-23 2024-07-16 广东省大宝山矿业有限公司 Copper-sulfur ore dressing system with improved foam pump installation mode
CN111530626B (en) * 2020-04-24 2022-06-28 核工业北京化工冶金研究院 Beneficiation method for recovering monazite from gravity concentrate of titanium-dressing tailings
CN113262881A (en) * 2020-10-27 2021-08-17 水口山有色金属有限责任公司 Zinc-selecting agent composition for lead-zinc sulfide ore and ore-selecting method for separating zinc and sulfur
CN112588431A (en) * 2020-12-08 2021-04-02 鞍钢集团矿业有限公司 Ore grinding-weak magnetic strong magnetic-gravity separation-reverse flotation process for magnetic hematite
CN113732007B (en) * 2021-07-30 2023-01-31 华东理工大学 Recycling method of coal gasification fine slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319154A (en) * 1995-05-24 1996-12-03 Daido Steel Co Ltd Magnesia-carbon regenerated refractory brick
CN1772681A (en) * 2005-09-22 2006-05-17 郑州振东耐磨材料有限公司 Waste magnesia carbon brick regenerating and utilizing process
CN101880169A (en) * 2010-05-26 2010-11-10 上海大学 Comprehensive treatment method for recycling used MgO-C bricks from converter ladles
CN102069036A (en) * 2010-11-12 2011-05-25 山东乾舜矿冶科技股份有限公司 Method for recycling waste magnesia carbon brick

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147085A (en) * 1997-09-11 1999-06-02 Ebara Corp Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources
JP4351352B2 (en) * 2000-02-24 2009-10-28 新日鉄エンジニアリング株式会社 Method for recovering nonferrous metal resources in waste
CN1301806C (en) * 2003-06-17 2007-02-28 唐山钢铁股份有限公司 Technique for separating iron from blast furnace gas mire and specified magnetic separator
BR0302809A (en) * 2003-08-14 2005-03-29 Mauro Fumio Yamamoto Recycling process of blast furnace sludge or steelmaking sludge and industrial or metallurgical tailings by combining the following processes: conditioning, gravimetric concentration, cycloning, magnetic separation and flotation
US20050217423A1 (en) * 2004-03-31 2005-10-06 Chih-Chiang Cheng Furnace residue cleaning method
CN1321746C (en) * 2005-09-02 2007-06-20 青海金瑞矿业发展股份有限公司 Deslim-floatation celestite inished ore process
CN1765527A (en) * 2005-10-17 2006-05-03 李学曾 Separation technique of blast furnace ferrous fines
CN101654717B (en) * 2009-09-15 2011-08-03 莱芜市泰山焦化有限公司 Comprehensive treatment method of blast furnace dedusting ash
CN101824502B (en) * 2010-04-30 2013-03-13 重庆钢铁(集团)有限责任公司 Reduction roasting magnetic separation process of low-grade raw iron ores
CN102085526B (en) * 2010-11-16 2012-10-03 山东乾舜矿冶科技股份有限公司 Recycling method of blast furnace dust generated in steel making industry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319154A (en) * 1995-05-24 1996-12-03 Daido Steel Co Ltd Magnesia-carbon regenerated refractory brick
CN1772681A (en) * 2005-09-22 2006-05-17 郑州振东耐磨材料有限公司 Waste magnesia carbon brick regenerating and utilizing process
CN101880169A (en) * 2010-05-26 2010-11-10 上海大学 Comprehensive treatment method for recycling used MgO-C bricks from converter ladles
CN102069036A (en) * 2010-11-12 2011-05-25 山东乾舜矿冶科技股份有限公司 Method for recycling waste magnesia carbon brick

Also Published As

Publication number Publication date
CN102069036A (en) 2011-05-25
WO2012062131A1 (en) 2012-05-18
CN102069036B (en) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2012062194A1 (en) Method of recycling and reusing waste magnesia-carbon brick
CN102744146B (en) Ore-dressing method for low-grade bauxite
WO2012065458A1 (en) Recycling method for iron-making blast furnace gas ash
CN102728479B (en) Treatment method for direct flotation water of bauxite
CN102658242A (en) Mineral separation process of complex fluorite difficult to separate
CN201482914U (en) Water glass waste sand regeneration system
CN104801427B (en) A kind of high magnesium low-grade phosphorus ore coarse grain direct reverse flotation technique
CN111672636A (en) Spodumene ore flotation collector and preparation method and application method thereof
CN112058503A (en) Silico-calcium collophanite double-reverse flotation process
CN104984835A (en) Selective flocculation-column flotation recovery method and system of micro-fine particle molybdenum cleaner tailings
CN105750089B (en) A kind of magnesia collophane method for separating
CN109569891A (en) One kind is for compound flotation collector of magnesite Counterfloatating desiliconization and preparation method thereof
CN114308398A (en) Flotation washing, decoloring and purifying method for phosphogypsum
CN204685646U (en) The treating apparatus of aluminium electroloysis waste lining
CN205796736U (en) Ball milling mine tailing directly sieves dewatering system
CN102168174B (en) Method for dephosphorizing high-phosphorus hematite
CN204685645U (en) The treating apparatus of waste cathode carbon block
CN102580858A (en) Composite collector for recovering manganese carbonate from carbonaceous rhodochrosite and flotation method for composite collector
CN102161050B (en) Method for treating waste sliding plates to recycle by biological method
CN101928056A (en) Device and method for treating printing ink wastewater
CN1052924C (en) Wet asbestos floating and modifying process
CN103706488A (en) Reverse flotation technology of phosphate ore in alkaline medium
CN104176854A (en) Method for utilizing mineral separation backwater in magnesite reverse flotation desilicification
CN117358397A (en) Combined grinding aid for strengthening flotation separation of magnesite and dolomite and application thereof
CN103706483A (en) Method for judging selectivity of diasporic bauxite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840000

Country of ref document: EP

Kind code of ref document: A1