WO2012060561A2 - 케이블형 이차전지 및 그의 제조방법 - Google Patents

케이블형 이차전지 및 그의 제조방법 Download PDF

Info

Publication number
WO2012060561A2
WO2012060561A2 PCT/KR2011/007756 KR2011007756W WO2012060561A2 WO 2012060561 A2 WO2012060561 A2 WO 2012060561A2 KR 2011007756 W KR2011007756 W KR 2011007756W WO 2012060561 A2 WO2012060561 A2 WO 2012060561A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
current collector
material layer
secondary battery
manufacturing
Prior art date
Application number
PCT/KR2011/007756
Other languages
English (en)
French (fr)
Other versions
WO2012060561A3 (ko
Inventor
권요한
김제영
안형주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP11838166.4A priority Critical patent/EP2637244B1/en
Priority to CN201180053467.7A priority patent/CN103348524B/zh
Priority to JP2013537598A priority patent/JP5705994B2/ja
Priority to US13/404,119 priority patent/US8617258B2/en
Publication of WO2012060561A2 publication Critical patent/WO2012060561A2/ko
Publication of WO2012060561A3 publication Critical patent/WO2012060561A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method of manufacturing a cable-type secondary battery free of deformation, and more particularly, to a method of forming a protective coating of a cable-type secondary battery.
  • a secondary battery is a device that converts external electrical energy into chemical energy, stores it, and generates electricity when needed.
  • the term “rechargeable battery” is also used to mean that it can be charged multiple times.
  • Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of prevention of environmental pollution, and these next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and increase lifespan.
  • secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices.
  • Korean Patent No. 0444911 discloses a linear battery composed of a plurality of negative electrodes and a positive electrode having a separator interposed between a negative electrode and a positive electrode
  • Korean Patent No. 0742739 is a variable battery consisting of a positive electrode chamber and a negative electrode chamber in a thread form. It is starting. However, they do not disclose a specific method for producing a protective coating suitable for linear batteries.
  • an object of the present invention is to provide a method of forming a protective coating suitable for the manufacture of a cable type secondary battery having a linear structure extending in the longitudinal direction.
  • an internal current collector a negative electrode active material layer and a positive electrode active material layer, and an electrolyte layer interposed between the negative electrode active material layer and the positive electrode active material layer, having a horizontal cross section of a predetermined shape extending in the longitudinal direction
  • Preparing a prepared electrode assembly Preparing a heat shrink protective coating by forming an outer current collector thin film on an inner surface of the heat shrink tube; And inserting the electrode assembly into the thermal contraction protective coating and heating it to shrink to closely contact the thermally contracted protective coating to the outer surface of the electrode assembly.
  • the external current collector thin film may be used in the form of a half pipe or a mesh.
  • the external current collector thin film may be a metal paste layer, and the metal paste layer may include aluminum, nickel, titanium, copper, or silver.
  • the current collector may be stainless steel, aluminum, nickel, titanium, calcined carbon, copper or carbon, nickel, titanium or silver surface treated with stainless steel, aluminum-cadmium alloy, non-conductive polymer surface treated with a conductive material, or It is preferred to be prepared using a conductive polymer.
  • conductive materials may be polyacetylene, polyaniline, polypyrrole, polythiophene and polysulfuride, ITO (Indum Thin Oxide), copper, silver, palladium and nickel, and the conductive polymer may be polyacetylene, polyaniline, polypyrrole, Polythiophene, polysulfurite, and the like can be used.
  • the active material layer is a negative electrode active material pattern layer; natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And composites of the metals (Me) and carbon, and the like.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1-xyz Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni) , Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo, and x, y and z independently of each other as the atomic fraction of the elements of the oxide composition 0 ⁇ x ⁇ 0.5 , 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and x + y + z ⁇ 1.
  • the electrolyte layer may be a gel polymer electrolyte using PEO, PVdF, PMMA, PAN, or PVAC, or a solid polymer electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylen sulphide (PES), or polyvinyl acetate (PVAc).
  • PEO polypropylene oxide
  • PEI polyethylene imine
  • PES polyethylen sulphide
  • PVAc polyvinyl acetate
  • the electrolyte layer may further include a lithium salt.
  • Lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenylborate, and the like can be used.
  • the cable-type secondary battery according to the manufacturing method includes an internal current collector, a negative electrode active material layer and a positive electrode active material layer, and an electrolyte layer interposed between the negative electrode active material layer and the positive electrode active material layer, the horizontal cross section of a predetermined shape
  • An electrode assembly extending in the longitudinal direction;
  • a heat-shrinkable protective coating covering the electrode assembly and being in close contact with each other and having an outer current collector thin film formed on an inner surface thereof.
  • the method of the present invention for forming a protective coating of a cable type secondary battery using a heat shrink tube does not require a post-treatment process such as a drying process, so that the manufacturing method can be simplified and a continuous process is possible.
  • a manufacturing method can prevent the deterioration of battery performance by attaching an external current collector inside the heat shrink tube to increase adhesion between the active material layer and the external current collector.
  • FIG. 1 is a cross-sectional view of a cable-type secondary battery according to an embodiment.
  • the manufacturing method of the present invention comprises (S1) an internal current collector, a negative electrode active material layer and a positive electrode active material layer, and an electrolyte layer interposed between the negative electrode active material layer and the positive electrode active material layer, having a horizontal cross section having a predetermined shape and having a length. Preparing an electrode assembly extending in a direction; (S2) preparing a heat shrink protective coating by forming an outer current collector thin film on an inner surface of the heat shrink tube; And (S3) inserting the electrode assembly into the thermal contraction protective coating and heating the contraction to contract the thermally protective protective coating on the outer surface of the electrode assembly.
  • step (S2) may be performed before step (S1).
  • predetermined shape herein means that the shape is not particularly limited, and any shape that does not impair the nature of the present invention is possible.
  • the cable-type secondary battery of the present invention has a horizontal cross section of a predetermined shape, has a linear structure elongated in the longitudinal direction with respect to the horizontal cross section, and has flexibility so that deformation is free.
  • the electrode assembly of the present invention is not particularly limited in form, and means an electrode and an electrolyte layer which serves as a passage of ions between the electrodes of the anode and the cathode so as to enable general electrochemical action, and the internal current collector is an anode.
  • the internal electrode is combined with the active material layer or the negative electrode active material layer.
  • the outermost surface of the electrode assembly in contact with the external current collector should be made of an active material layer.
  • An internal current collector, a negative electrode active material layer and a positive electrode active material layer, and an electrolyte layer interposed between the negative electrode active material layer and the positive electrode active material layer are prepared, and the electrode assembly extending in the longitudinal direction with a horizontal cross section of a predetermined shape is prepared ( Step S1).
  • the electrode assembly may be manufactured by a general battery manufacturing method, for example, coating an active material layer using a method such as extrusion coating on an internal current collector, drying it to form an internal electrode, and wrapping the internal electrode. It is formed by coating the electrolyte layer.
  • the electrolyte layer mainly uses a gel polymer electrolyte or a solid polymer electrolyte, and may prepare an electrode assembly by coating an active material layer on the outer surface of the electrolyte layer. Melt plating, sputtering, chemical vapor deposition, or the like may be used as a coating method of the electrode and the electrolyte, and an extrusion coating method may be preferably used.
  • step S2 Preparing a heat shrink protective coating by forming an external current collector thin film on the inner surface of the heat shrink tube (step S2).
  • Heat-shrinkable tubing is a tube that shrinks when heated and tightly wraps a terminal or other material of different shape or size. It is usually made of polymer resin and used for insulation or other purposes. Since the heat shrink tube has a commercially available heat shrink tube having a variety of materials and forms, it can be easily obtained and used for the purpose of the present invention.
  • a heat shrink protective coating by forming a metal outer current collector thin film on the inner surface of the heat shrink tube.
  • the shape of the external current collector thin film at this time is not particularly limited.
  • two or three may be attached to the heat-shrinkable tube so as to completely cover the outer surface of the electrode assembly.
  • the tube is arranged to maintain a constant interval in consideration of the heat shrinkage.
  • the heat shrink tube inserts the heat shrink tube into the lithium ion battery using an automatic coating machine and thermally contracts the heat shrink tube, it is necessary that the heat shrink tube has rigidity enough to support itself with the inlet open. Do. In addition, in order not to cause thermal damage to a lithium battery, it is necessary to make the temperature of shrinkage processing low, and it is generally required to complete shrinkage at the temperature of 120 degrees C or less.
  • the electrode assembly After inserting the electrode assembly into the thermal contraction protective coating, the electrode assembly is heated to shrink and closely adheres the thermally contracted protective coating to the outer surface of the electrode assembly to manufacture a cable type secondary battery (step S3).
  • the method of the present invention for forming a protective coating of a cable type secondary battery using a heat shrink tube does not require a post-treatment process such as a drying process, so that the manufacturing method can be simplified and a continuous process is possible.
  • a post-treatment process such as a drying process
  • the external current collector of the cable-type secondary battery mainly uses a metal material
  • the adhesion with the active material layer is degraded, which may cause a decrease in secondary battery performance. have.
  • a margin is generated and the adhesion to the active material layer is reduced.
  • the external current collector thin film is formed in the heat shrink tube, close coupling between the active material layer and the external current collector during heat shrinkage can prevent battery performance deterioration.
  • the heat shrink tube contracts by heating to closely adhere to the electrode assembly, and the external current collector thin film formed on the inner surface of the heat shrink tube surrounds the active material layer of the electrode assembly to form an external electrode. It is preferable that the heating temperature at this time does not exceed 120 degreeC so that thermal damage may not be caused to a lithium battery.
  • FIG. 1 schematically shows an embodiment of a cable type secondary battery 10 according to the manufacturing method of the present invention.
  • the configuration described in the embodiments and drawings described below are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
  • the cable type secondary battery 10 includes an internal current collector 11, an anode active material layer 12, and an anode active material layer 14, and the anode active material layer and the cathode active material layer.
  • An electrode assembly having an electrolyte layer 13 interposed therebetween and having a horizontal cross section of a predetermined shape and extending in a longitudinal direction; And a heat-shrinked protective coating 16 covering the electrode assembly and being in close contact with each other and having an outer current collector thin film 15 formed on an inner surface thereof.
  • a half pipe current collector, a mesh current collector, or a metal paste coating layer may be used as the external current collector thin film 15.
  • two or three may be attached to the heat-shrinkable tube so as to completely cover the outer surface of the electrode assembly.
  • the tube is arranged to maintain a constant interval in consideration of the heat shrinkage.
  • the current collector may be stainless steel, aluminum, nickel, titanium, calcined carbon, copper or carbon, nickel, titanium or silver surface treated with stainless steel, aluminum-cadmium alloy, non-conductive polymer surface treated with a conductive material, or It is preferred to be prepared using a conductive polymer.
  • conductive materials may be polyacetylene, polyaniline, polypyrrole, polythiophene and polysulfuride, ITO (Indum Thin Oxide), copper, silver, palladium and nickel, and the conductive polymer may be polyacetylene, polyaniline, polypyrrole, Polythiophene, polysulfurite, and the like can be used.
  • the active material layer is a negative electrode active material pattern layer; natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And composites of the metals (Me) and carbon, and the like.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1-xyz Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni) , Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo, and x, y and z independently of each other as the atomic fraction of the elements of the oxide composition 0 ⁇ x ⁇ 0.5 , 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and x + y + z ⁇ 1.
  • the electrolyte layer may be a gel polymer electrolyte using PEO, PVdF, PMMA, PAN, or PVAC, or a solid polymer electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylen sulphide (PES), or polyvinyl acetate (PVAc).
  • PEO polypropylene oxide
  • PEI polyethylene imine
  • PES polyethylen sulphide
  • PVAc polyvinyl acetate
  • the electrolyte layer may further include a lithium salt.
  • Lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenylborate, and the like can be used.
  • An electrode assembly including an internal current collector, an anode active material layer, an electrolyte layer, and an anode active material layer, having a horizontal cross section of a predetermined shape, and extending in a length direction was manufactured.
  • PET-based heat shrink tube was prepared.
  • An outer current collector in the form of two aluminum half pipes was attached to the inner surface of the heat shrink tube using an adhesive.
  • the electrode assembly After inserting the electrode assembly into the heat-shrinkable protective coating, it was heated at a temperature of 80 ° C. for 3 minutes to form a protective coating on the outer surface of the electrode assembly, thereby manufacturing a cable type secondary battery.

Abstract

본 발명은 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계; 열수축 튜브의 내면에 외부집전체 박막을 형성하여 열수축 보호피복을 준비하는 단계; 및 상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 수축하도록 가열하여 전극조립체의 외면에 열수축된 보호피복을 밀착하는 단계를 포함하는 케이블형 이차전지의 제조방법 및 그 제조방법에 의한 케이블형 이차전지에 관한 것이다. 이러한 본 발명의 제조방법은 건조과정과 같은 후처리 공정이 필요 없으므로 제조방법의 단순화가 가능하며, 연속적인 공정이 가능하다. 또한, 열수축 튜브 내부에 외부집전체를 부착하여 활물질층과 외부집전체와의 밀착성을 높여서 전지 성능의 저하를 방지할 수 있다.

Description

케이블형 이차전지 및 그의 제조방법
본 발명은 변형이 자유로운 케이블형 이차전지의 제조방법에 관한 것으로, 더 자세하게는 케이블형 이차전지의 보호피복의 형성 방법에 대한 것이다.
본 출원은 2010년 11월 04일에 출원된 한국특허출원 제10-2010-0109196호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
이차 전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차 전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지는 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다.
이러한 요구에 대하여, 단면적 직경에 대하여 길이의 비가 매우 큰 전지인 선형전지가 제안되었다. 대한민국 등록특허 제0804411호는 음극과 양극 사이에 분리막이 개재된 다수의 음극과 양극으로 구성되어 있는 선형 전지가 개시되어 있고, 대한민국 등록특허 제0742739호는 실형태의 양극실과 음극실로 구성되는 가변형 전지를 개시하고 있다. 다만, 이들은 선형 전지에 적합한 보호피복의 구체적인 제조방법을 개시하고 있지 아니하다.
따라서 본 발명이 해결하고자 하는 과제는, 길이방향으로 연장되는 선형의 구조를 갖고 있는 케이블형 이차전지의 제조에 적합한 보호피복의 형성방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계; 열수축 튜브의 내면에 외부집전체 박막을 형성하여 열수축 보호피복을 준비하는 단계; 및 상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 수축하도록 가열하여 전극조립체의 외면에 열수축된 보호피복을 밀착하는 단계를 포함하는 케이블형 이차전지의 제조방법을 제공한다.
이러한 외부집전체 박막은 하프 파이프 형태 또는 메쉬(mesh) 형태인 것을 사용할 수 있다. 또한, 상기 외부집전체 박막은 금속 페이스트(paste)층인 것을 사용할 수 있으며, 이러한 금속 페이스트(paste)층은 알루미늄, 니켈, 티탄, 구리 또는 은 등을 포함할 수 있다.
이때, 집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리 또는 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸, 알루미늄-카드뮴합금, 도전재로 표면처리된 비전도성 고분자, 또는 전도성 고분자를 사용하여 제조된 것이 바람직하다. 이러한 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드, ITO(Indum Thin Oxide), 구리, 은, 팔라듐 및 니켈 등이 가능하며, 전도성 고분자는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 등이 사용가능하다.
활물질층은, 음극활물질 패턴층으로 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체 등으로 이루어진 것이 사용 가능하다. 또한, 양극활물질 패턴층으로 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)을 사용 가능하다.
전해질층은 PEO, PVdF, PMMA, PAN 또는 PVAC를 사용한 겔형 고분자 전해질 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethyle sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 고분자 전해질 등이 사용 가능하다.
본 발명의 케이블형 이차전지의 제조방법에 있어서, 전해질층은 리튬염을 더 포함할 수 있다. 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 4페닐붕산리튬 등을 사용할 수 있다.
또한, 상기 제조방법에 의한 케이블형 이차전지는, 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체; 및 상기 전극조립체를 감싸며 밀착되어 있으며, 그 내면에 외부집전체 박막이 형성되는 열수축된 보호피복을 구비한다.
열수축 튜브를 사용하여 케이블형 이차전지의 보호피복을 형성하는 본 발명의 제조방법은 건조과정과 같은 후처리 공정이 필요 없으므로 제조방법의 단순화가 가능하며, 연속적인 공정이 가능하다. 또한, 이러한 제조방법은 열수축 튜브 내부에 외부집전체를 부착하여 활물질층과 외부집전체의 밀착성을 높여서 전지 성능의 저하를 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 일 실시예에 따른 케이블형 이차전지의 단면도이다.
[부호의 설명]
10 : 케이블형 이차전지 11 : 내부 집전체
12 : 음극활물질층 13 : 전해질층
14 : 양극활물질층 15 : 외부 집전체 박막
16 : 열수축된 보호피복
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 이하 본 명세서에 기재된 실시예는 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 제조방법은, (S1) 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계; (S2) 열수축 튜브의 내면에 외부집전체 박막을 형성하여 열수축 보호피복을 준비하는 단계; 및 (S3) 상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 수축하도록 가열하여 전극조립체의 외면에 열수축된 보호피복을 밀착하는 단계를 포함한다.
여기서, (S1) 단계 및 (S2) 단계의 순서는 중요치 아니하므로, (S2) 단계를 (S1) 단계에 앞서 수행할 수 있다. 그리고, 여기서 소정의 형상이라 함은 특별히 형상을 제한하지 않는다는 것으로, 본 발명의 본질을 훼손하지 않는 어떠한 형상도 가능하다는 의미이다. 본 발명의 케이블형 이차전지는 소정 형상의 수평 단면을 가지며, 수평 단면에 대한 길이방향으로 길게 늘어진 선형구조를 갖고, 가요성을 가지므로 변형이 자유롭다.
본 발명의 전극조립체는 특별히 그 형태를 한정하는 것은 아니고 일반적인 전기화학작용이 가능하도록 전극 및 상기 양극과 음극의 전극간에 이온의 통로가 되는 전해질층을 구비하는 경우를 의미하며, 내부집전체는 양극활물질층 또는 음극활물질층과 결합하여 내부전극을 구성한다. 다만, 외부전극을 구성하기 위해서 외부집전체과 접촉하는 전극조립체의 최외면은 활물질층으로 이루어져야 한다.
내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비한다(S1 단계).
이러한 전극조립체는 일반적인 전지의 제조방법으로 제조될 수 있으며 예를 들면, 내부집전체에 압출코팅 등과 같은 방법을 사용하여 활물질층을 코팅하고, 이를 건조하여 내부전극을 형성하고, 이러한 내부전극을 감싸는 전해질층을 코팅하여 형성한다. 전해질층은 주로 겔형 고분자 전해질 또는 고체 고분자 전해질을 사용하게 되며, 상기 전해질층 외면에 활물질층을 코팅하여 전극조립체를 준비할 수 있다. 상기 전극 및 전해질의 코팅방법으로 용융도금, 스퍼터링 및 화학적 기상증착법 등을 사용할 수 있으며, 바람직하게는 압출코팅 방법을 사용할 수 있다.
열수축 튜브의 내면에 외부집전체 박막을 형성하여 열수축 보호피복을 준비한다(S2 단계).
열수축 튜브는 가열하면 수축하는 튜브로, 단자(端子) 또는 형태나 크기가 다른 물질을 빈틈없이 꽉 싸는데, 대개는 고분자 수지로 만들어지며 절연(絶緣)이나 그 밖의 용도로 사용된다. 이러한 열수축 튜브는 다양한 재질 및 형태를 갖는 열수축 튜브가 상용화 되어 있으므로, 본 발명의 목적에 적합한 것을 용이하게 입수하여 사용할 수 있다.
이러한 열수축 튜브의 내면에 금속재질의 외부집전체 박막을 형성하여 열수축 보호피복을 준비한다. 이때의 외부집전체 박막의 형태를 특별히 제한하는 것은 아니다.
하프 파이프 형태의 집전체를 사용하는 경우에는 상기 전극조립체의 외면을 완전히 감쌀 수 있도록 2개 또는 3개를 상기 열수축 튜브에 접착하여 사용할 수 있다. 다만, 이때 튜브가 열수축하였을 경우를 감안하여 일정한 간격을 유지하도록 배치한다.
메쉬 형태의 집전체를 사용하는 경우에는 어느 정도의 신축성이 보장되므로 상기 전극조립체의 외면을 완전히 감쌀 수 있도록 재단하여 사용할 수 있다.
또한, 금속 페이스트를 사용하는 경우에는 열수축 튜브의 내면에 코팅하여 사용할 수 있다.
열수축 튜브는, 자동 피복 가공기를 이용해서 리튬 이온 전지에 열수축 튜브를 삽입하여, 열수축시키는 작업을 행하기 때문에, 열수축 튜브가 입구가 열린 상태로 자립(supporting itself)할 만큼의 강성을 가지고 있는 것이 필요하다. 또한, 리튬 전지에 열적 손상을 주지 않도록, 수축 가공의 온도를 저온으로 하는 것이 필요하며, 일반적으로는 120℃ 이하의 온도로 수축이 완료되는 것이 요구된다.
상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 수축하도록 가열하여 전극조립체의 외면에 열수축된 보호피복을 밀착하여 케이블형 이차전지를 제조한다(S3 단계).
열수축 튜브를 사용하여 케이블형 이차전지의 보호피복을 형성하는 본 발명의 제조방법은 건조과정과 같은 후처리 공정이 필요 없으므로 제조방법의 단순화가 가능하며, 연속적인 공정이 가능하다. 또한, 간단히 삽입에 의한 보호피복의 형성이 가능하므로 제조가 용이하다.
케이블형 이차전지의 외부집전체는 주로 금속재질을 사용하게 되므로, 활물질층을 코팅한 후에 그 외면에 외부집전체를 형성하는 경우에는 활물질층과의 접합성이 떨어지게 되므로 이차전지 성능의 저하가 발생할 수 있다. 또한, 금속재질의 파이프에 전극조립체를 삽입하는 경우에도 여백이 발생하게 되어 활물질층과의 접합성이 떨어지게 된다. 그러나, 본 발명은 열수축 튜브 내에 외부집전체 박막이 형성되어 열수축시에 활물질층과 외부집전체와의 밀착된 결합이 가능하므로 전지 성능의 저하를 방지할 수 있다.
가열에 의하여 열수축 튜브가 수축되어 상기 전극 조립체에 밀착하게 되며, 열수축 튜브의 내면에 형성되어 있는 외부 집전체 박막은 전극 조립체의 활물질층을 감싸면서 밀착되어 외부전극을 구성한다. 이때의 가열온도는 리튬 전지에 열적 손상을 주지 않도록 120℃의 온도를 넘지 않는 것이 바람직하다.
도 1에는 본 발명의 제조방법에 따른 케이블형 이차전지(10)의 일 실시예가 개략적으로 도시되어 있다. 하지만, 이하 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1을 참조하면, 이러한 제조방법에 의한 케이블형 이차전지(10)는 내부집전체(11), 음극활물질층(12) 및 양극활물질층(14), 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층(13)을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체; 및 상기 전극조립체를 감싸며 밀착되어 있으며, 그 내면에 외부집전체 박막(15)이 형성되는 열수축된 보호피복(16)을 구비한다.
외부집전체 박막(15)으로는 하프 파이프 형태의 집전체, 메쉬 형태의 집전체 또는 금속 페이스트 코팅층을 사용할 수 있다.
하프 파이프 형태의 집전체를 사용하는 경우에는 상기 전극조립체의 외면을 완전히 감쌀 수 있도록 2개 또는 3개를 상기 열수축 튜브에 접착하여 사용할 수 있다. 다만, 이때 튜브가 열수축하였을 경우를 감안하여 일정한 간격을 유지하도록 배치한다.
메쉬 형태의 집전체를 사용하는 경우에는 어느 정도의 신축성이 보장되므로 상기 전극조립체의 외면을 완전히 감쌀 수 있도록 재단하여 사용할 수 있다.
또한, 금속 페이스트를 사용하는 경우에는 열수축 튜브의 내면에 코팅하여 사용할 수 있다.
이때, 집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리 또는 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸, 알루미늄-카드뮴합금, 도전재로 표면처리된 비전도성 고분자, 또는 전도성 고분자를 사용하여 제조된 것이 바람직하다. 이러한 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드, ITO(Indum Thin Oxide), 구리, 은, 팔라듐 및 니켈 등이 가능하며, 전도성 고분자는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 등이 사용가능하다.
활물질층은, 음극활물질 패턴층으로 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체 등으로 이루어진 것이 사용 가능하다. 또한, 양극활물질 패턴층으로 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)을 사용 가능하다.
전해질층은 PEO, PVdF, PMMA, PAN 또는 PVAC를 사용한 겔형 고분자 전해질 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethyle sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 고분자 전해질 등이 사용 가능하다.
본 발명의 케이블형 이차전지의 제조방법에 있어서, 전해질층은 리튬염을 더 포함할 수 있다. 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 4페닐붕산리튬 등을 사용할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
내부집전체, 음극활물질층, 전해질층 및 양극활물질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 제조하였다.
PET 계열의 열수축 튜브를 준비하였다.
열수축 튜브의 내면에 2개의 알루미늄 하프 파이프 형태의 외부집전체를 접착제를 사용하여 부착하였다.
상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 80℃의 온도로 3분간 가열하여 전극조립체의 외면에 보호피복을 형성하여 케이블형 이차전지를 제조하였다.

Claims (19)

  1. 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체를 준비하는 단계;
    열수축 튜브의 내면에 외부집전체 박막을 형성하여 열수축 보호피복을 준비하는 단계; 및
    상기 열수축 보호피복에 상기 전극조립체를 삽입한 후에 수축하도록 가열하여 전극조립체의 외면에 열수축된 보호피복을 밀착하는 단계를 포함하는 케이블형 이차전지의 제조방법.
  2. 제1항에 있어서,
    상기 외부집전체 박막은 하프 파이프 형태인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  3. 제1항에 있어서,
    상기 외부집전체 박막은 메쉬(mesh) 형태인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  4. 제1항에 있어서,
    상기 외부집전체 박막은 금속 페이스트(paste)층인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  5. 제4항에 있어서,
    상기 금속 페이스트(paste)층은 알루미늄, 니켈, 티탄, 구리 또는 은을 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  6. 제1항에 있어서,
    상기 내부집전체는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  7. 제1항에 있어서,
    상기 외부집전체는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  8. 제6항 또는 제7항에 있어서,
    상기 도전재는 서로 독립적으로 각각 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드, ITO(Indum Thin Oxide), 구리, 은, 팔라듐 및 니켈 중에서 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  9. 제6항 또는 제7항에 있어서,
    상기 전도성 고분자는 서로 독립적으로 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 고분자인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  10. 제1항에 있어서,
    상기 음극 활물질층은 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물로 이루어진 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  11. 제1항에 있어서,
    상기 양극 활물질층은 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물로 이루어진 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  12. 제1항에 있어서,
    상기 전해질층은 PEO, PVdF, PMMA, PAN 또는 PVAC를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethyle sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질로 이루어진 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  13. 제1항에 있어서,
    상기 전해질층은 리튬염을 더 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  14. 제13항에 있어서,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 4페닐붕산리튬 중에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
  15. 내부집전체, 음극활물질층 및 양극활물질층, 그리고 상기 음극활물질층과 상기 양극활물질층 사이에 개재된 전해질층을 구비하며, 소정 형상의 수평 단면을 가지고 길이 방향으로 연장된 전극조립체; 및 상기 전극조립체를 감싸며 밀착되어 있으며, 그 내면에 외부집전체 박막이 형성되는 열수축된 보호피복을 구비하는 케이블형 이차전지.
  16. 제15항에 있어서,
    상기 외부집전체 박막은 하프 파이프 형태인 것을 특징으로 하는 케이블형 이차전지.
  17. 제15항에 있어서,
    상기 외부집전체 박막은 메쉬(mesh) 형태인 것을 특징으로 하는 케이블형 이차전지.
  18. 제15항에 있어서,
    상기 외부집전체 박막은 금속 페이스트(paste)층인 것을 특징으로 하는 케이블형 이차전지.
  19. 제18항에 있어서,
    상기 금속 페이스트(paste)층은 알루미늄, 니켈, 티탄, 구리 또는 은을 포함하는 것을 특징으로 하는 케이블형 이차전지.
PCT/KR2011/007756 2010-11-04 2011-10-18 케이블형 이차전지 및 그의 제조방법 WO2012060561A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11838166.4A EP2637244B1 (en) 2010-11-04 2011-10-18 Cable type rechargeable battery and manufacturing method thereof
CN201180053467.7A CN103348524B (zh) 2010-11-04 2011-10-18 线缆型可充电电池及其制造方法
JP2013537598A JP5705994B2 (ja) 2010-11-04 2011-10-18 ケーブル型二次電池及びその製造方法
US13/404,119 US8617258B2 (en) 2010-11-04 2012-02-24 Cable-type secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0109196 2010-11-04
KR1020100109196A KR101423688B1 (ko) 2010-11-04 2010-11-04 케이블형 이차전지 및 그의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/404,119 Continuation US8617258B2 (en) 2010-11-04 2012-02-24 Cable-type secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2012060561A2 true WO2012060561A2 (ko) 2012-05-10
WO2012060561A3 WO2012060561A3 (ko) 2012-06-28

Family

ID=46024906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007756 WO2012060561A2 (ko) 2010-11-04 2011-10-18 케이블형 이차전지 및 그의 제조방법

Country Status (6)

Country Link
US (1) US8617258B2 (ko)
EP (1) EP2637244B1 (ko)
JP (1) JP5705994B2 (ko)
KR (1) KR101423688B1 (ko)
CN (1) CN103348524B (ko)
WO (1) WO2012060561A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521363A (ja) * 2013-04-29 2015-07-27 エルジー・ケム・リミテッド ケーブル型二次電池用パッケージ及びそれを含むケーブル型二次電池
KR20160036477A (ko) * 2014-09-25 2016-04-04 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장 필름

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351902B1 (ko) 2011-06-02 2014-01-22 주식회사 엘지화학 이차전지용 음극 및 이를 구비하는 이차전지
CN103891025B (zh) 2011-10-13 2016-06-22 株式会社Lg化学 线缆型二次电池
WO2013055187A1 (ko) 2011-10-13 2013-04-18 주식회사 엘지화학 케이블형 이차전지
JP5961271B2 (ja) 2011-10-13 2016-08-02 エルジー・ケム・リミテッド ケーブル型二次電池
DE202012013285U1 (de) 2011-10-13 2015-12-14 Lg Chem. Ltd. Sekundärbatterie des Kabeltyps
EP2772980B1 (en) * 2011-10-25 2018-01-10 LG Chem, Ltd. Cable-type secondary battery
US8993172B2 (en) 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
KR101483239B1 (ko) 2012-08-30 2015-01-16 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
KR101654680B1 (ko) * 2012-12-12 2016-09-06 주식회사 엘지화학 이차전지용 전극 및 그를 포함하는 케이블형 이차전지
KR101548789B1 (ko) * 2012-12-21 2015-09-01 주식회사 엘지화학 케이블형 이차전지 및 이의 제조 방법
KR101465168B1 (ko) * 2013-01-03 2014-11-25 주식회사 엘지화학 케이블형 이차전지
JP6495443B2 (ja) 2014-10-31 2019-04-03 エルジー・ケム・リミテッド 多層のケーブル型二次電池
JP6549227B2 (ja) * 2014-10-31 2019-07-24 エルジー・ケム・リミテッド 多層のケーブル型二次電池
JP6620943B2 (ja) * 2016-10-25 2019-12-18 トヨタ自動車株式会社 積層型電極体の製造方法
JP7087422B2 (ja) * 2018-02-05 2022-06-21 トヨタ自動車株式会社 二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742739B1 (ko) 2005-07-15 2007-07-25 경상대학교산학협력단 직조가 쉬운 실 형태의 가변형 전지
KR100804411B1 (ko) 2006-01-17 2008-02-20 주식회사 엘지화학 신규한 구조의 전극조립체 및 이를 포함하는 것으로 구성된이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607401A (en) * 1968-05-15 1971-09-21 Nasa Frangible electrochemical cell
US4048389A (en) * 1976-02-18 1977-09-13 Union Carbide Corporation Cathode or cathode collector arcuate bodies for use in various cell systems
JP2643019B2 (ja) * 1990-10-31 1997-08-20 新神戸電機株式会社 電池及び集合電池
US6040085A (en) * 1994-03-31 2000-03-21 Valence Technology, Inc. Battery packaging
JPH0888019A (ja) * 1994-09-20 1996-04-02 Sony Corp 密閉型蓄電池
JP3047778B2 (ja) * 1995-06-14 2000-06-05 三菱マテリアル株式会社 チューブ状電池
JPH10112323A (ja) * 1996-10-07 1998-04-28 Japan Storage Battery Co Ltd 電 池
JP2001110445A (ja) * 1999-10-12 2001-04-20 Sony Corp コード型バッテリ
JP4649698B2 (ja) * 2000-02-15 2011-03-16 パナソニック株式会社 二次電池
JP4135473B2 (ja) * 2002-11-07 2008-08-20 日産自動車株式会社 バイポーラ電池
KR100625892B1 (ko) * 2004-04-12 2006-09-20 경상대학교산학협력단 실형태의 가변형 전지
CN101127389B (zh) * 2006-08-16 2011-12-07 深圳市比克电池有限公司 一种圆柱形锂离子电芯、电池及其制作方法
JP2010129412A (ja) * 2008-11-28 2010-06-10 Seiko Epson Corp 電気化学装置
KR101322693B1 (ko) * 2010-08-27 2013-10-25 주식회사 엘지화학 케이블형 이차전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742739B1 (ko) 2005-07-15 2007-07-25 경상대학교산학협력단 직조가 쉬운 실 형태의 가변형 전지
KR100804411B1 (ko) 2006-01-17 2008-02-20 주식회사 엘지화학 신규한 구조의 전극조립체 및 이를 포함하는 것으로 구성된이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521363A (ja) * 2013-04-29 2015-07-27 エルジー・ケム・リミテッド ケーブル型二次電池用パッケージ及びそれを含むケーブル型二次電池
KR20160036477A (ko) * 2014-09-25 2016-04-04 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 외장 필름
KR102359199B1 (ko) * 2014-09-25 2022-02-04 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스용 튜브형 외장체

Also Published As

Publication number Publication date
JP2013545240A (ja) 2013-12-19
JP5705994B2 (ja) 2015-04-22
EP2637244B1 (en) 2014-12-03
KR101423688B1 (ko) 2014-07-25
US20120156554A1 (en) 2012-06-21
CN103348524B (zh) 2015-09-09
EP2637244A4 (en) 2014-01-22
CN103348524A (zh) 2013-10-09
EP2637244A2 (en) 2013-09-11
WO2012060561A3 (ko) 2012-06-28
KR20120047555A (ko) 2012-05-14
US8617258B2 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
WO2012060561A2 (ko) 케이블형 이차전지 및 그의 제조방법
WO2011096655A2 (ko) 케이블형 이차전지의 제조방법
WO2013062334A1 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
WO2012026669A2 (ko) 케이블형 이차전지
WO2014035189A1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2011093661A2 (ko) 케이블형 이차전지
WO2011093660A2 (ko) 케이블형 이차전지
WO2011093659A2 (ko) 케이블형 이차전지
WO2012026670A2 (ko) 케이블형 이차전지
WO2013055186A1 (ko) 케이블형 이차전지
WO2013055188A1 (ko) 케이블형 이차전지
WO2011145882A2 (ko) 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
WO2012053772A2 (ko) 케이블형 이차전지
WO2013055185A2 (ko) 케이블형 이차전지
WO2014035192A1 (ko) 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
WO2012002646A2 (ko) 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지
WO2013055190A1 (ko) 케이블형 이차전지
WO2013062335A1 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
KR101483686B1 (ko) 케이블형 이차전지
WO2013062336A1 (ko) 케이블형 이차전지
WO2014077635A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2013055187A1 (ko) 케이블형 이차전지
WO2012165913A2 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
WO2013042939A2 (ko) 케이블형 이차전지
WO2014077633A1 (ko) 무선 충전이 가능한 케이블형 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838166

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011838166

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013537598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE