WO2012060320A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2012060320A1
WO2012060320A1 PCT/JP2011/075056 JP2011075056W WO2012060320A1 WO 2012060320 A1 WO2012060320 A1 WO 2012060320A1 JP 2011075056 W JP2011075056 W JP 2011075056W WO 2012060320 A1 WO2012060320 A1 WO 2012060320A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type region
semiconductor
substrate
layer
Prior art date
Application number
PCT/JP2011/075056
Other languages
English (en)
French (fr)
Inventor
裕之 貝川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/879,231 priority Critical patent/US20130207190A1/en
Publication of WO2012060320A1 publication Critical patent/WO2012060320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a semiconductor device including a thin film diode (TFD) and a manufacturing method thereof, and particularly to a display device including an optical sensor unit using TFD and a manufacturing method thereof.
  • TFD thin film diode
  • Patent Document 1 discloses a liquid crystal display device including an optical sensor unit having a TFD and a display unit having a thin film transistor (TFT) connected to a pixel electrode. According to the technique described in Patent Document 1, the semiconductor layers of TFD and TFT can be optimized according to the required device characteristics.
  • TFT thin film transistor
  • Patent Document 1 Although it is important to improve the device characteristics of TFT and TFD as in Patent Document 1, the pixel aperture ratio (the ratio of the area that can be used for display or image reading) is particularly high in display devices and image sensors. There is a need for improvement. For reference, the entire disclosure of Patent Document 1 is incorporated herein.
  • the present invention has been made in view of the above, and an object thereof is to reduce the occupation area ratio of the optical sensor unit in a semiconductor device including a thin film transistor and a thin film diode on the same substrate.
  • a semiconductor device includes a thin film diode including a substrate, a first semiconductor layer supported by the substrate and having a P-type region and an N-type region, and the first semiconductor layer of the thin-film diode.
  • a first wiring arranged and connected to the P-type region; a second wiring arranged to overlap the first semiconductor layer of the thin-film diode and connected to the N-type region; and supported by the substrate.
  • the thin film transistor includes a second semiconductor layer, a gate electrode, and a source electrode and a drain electrode, and the first and second wirings are formed of the same conductive film as the gate electrode.
  • the first and second semiconductor layers are formed of the same semiconductor film.
  • the gate electrode is formed on the second semiconductor layer. That is, in one embodiment, the thin film transistor is a stagger type (top gate type).
  • the method for manufacturing a semiconductor device of the present invention includes a step a for preparing a substrate, a step b for forming first and second semiconductor layers on the substrate, and an insulating layer covering the first and second semiconductor layers.
  • a step g of forming a source region and a drain region in the second semiconductor layer is
  • the first and second semiconductor layers are formed from the same semiconductor film.
  • the occupation area ratio of the photosensor portion can be reduced.
  • (A) is a typical top view of the liquid crystal display device 100 of embodiment by this invention
  • (b) is typical sectional drawing of TFT substrate 100A which the liquid crystal display device 100 has.
  • (A) to (e) are schematic cross-sectional views for explaining a manufacturing method (steps A1 to A5) of the liquid crystal display device 100 of the embodiment.
  • FIGS. 4A to 4D are schematic cross-sectional views for explaining a method for manufacturing the liquid crystal display device 100 of the embodiment (steps A6 to A9).
  • (A)-(d) is a schematic plan view for demonstrating the manufacturing method (process A1, A4, A6, and A9) of the liquid crystal display device 100 of embodiment.
  • FIGS. 9A to 9D are schematic cross-sectional views for explaining a method for manufacturing a semiconductor device 200 of the reference example (steps B1 to B4).
  • A)-(c) is typical sectional drawing for demonstrating the manufacturing method (process B5-B7) of the semiconductor device 200 of a reference example.
  • A)-(c) is a schematic plan view for demonstrating the manufacturing method (process B1-B3) of the semiconductor device 200 of a reference example.
  • FIG. 1 A) And (b) is a schematic plan view for demonstrating the manufacturing method (process B5 and B7) of the semiconductor device 200 of a reference example. 4 is a circuit diagram for explaining the configuration and operation of a photosensor unit of the liquid crystal display device 100.
  • FIG. 1 A schematic plan view for demonstrating the manufacturing method (process B5 and B7) of the semiconductor device 200 of a reference example. 4 is a circuit diagram for explaining the configuration and operation of a photosensor unit of the liquid crystal display device 100.
  • a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the illustrated embodiment.
  • a liquid crystal display device or a TFT substrate will be exemplified as the semiconductor device.
  • FIG. 1A is a schematic plan view of the liquid crystal display device 100
  • FIG. 1B is a schematic cross-sectional view of a TFT substrate 100 ⁇ / b> A included in the liquid crystal display device 100.
  • the cross section shown in FIG. 1 (b) is a cross section along the corresponding cut lines Y1 to Y10 in FIG. 1 (a), and along the Y1-Y2 line from the left side to the right side of FIG. 1 (b).
  • TFT substrate 100A has an N-channel TFT 10C and a P-channel TFT 10D for the drive circuit of the liquid crystal display device 100
  • FIG. 1B also shows a cross-sectional structure of the TFTs 10C and 10D.
  • the liquid crystal display device 100 typically includes a TFT substrate 100A and a counter substrate (not shown), and a liquid crystal layer (not shown) provided between the TFT substrate 100A and the counter substrate (not shown). ing.
  • the TFT substrate 100A has a pixel electrode (not shown) connected to the drain electrode of the TFT 10B, and the counter substrate has a counter electrode arranged to face the pixel electrode through a liquid crystal layer.
  • the IPS mode and the FFS mode there are known ones in which a pixel electrode and a counter electrode are formed on the TFT substrate 100A.
  • the liquid crystal display device according to the embodiment of the present invention can be applied to liquid crystal display devices of various modes, as will be readily understood by those skilled in the art. Therefore, description of the arrangement of the pixel electrode and the counter electrode, the liquid crystal layer, the alignment film, the color filter layer, and the like is omitted.
  • a TFT substrate 100A of the liquid crystal display device 100 includes a substrate 1, and a P-type region 13a (p) and an N-type region 13a (n) supported by the substrate 1.
  • a first semiconductor layer 13a having a first semiconductor layer 13a, a first wiring RST arranged to overlap the first semiconductor layer 13a of the TFD 10A and connected to the P-type region 13a (p), and a first semiconductor layer of the TFD 10A
  • a second wiring RWS disposed so as to overlap with 13a and connected to the N-type region 13a (n); a second semiconductor layer 13b supported by the substrate 1; a gate electrode; and a source electrode and a drain electrode.
  • TFT 10B having the same.
  • the first wiring RST and the second wiring RWS are formed of the same conductive film as the gate electrode (the gate metal layer 15 in FIG. 3A).
  • the TFTs 10C and 10D in FIG. 1B will be described later.
  • the first semiconductor layer 13a and the second semiconductor layer 13b are preferably formed of the same semiconductor film.
  • a crystalline semiconductor film is preferably used.
  • a low-temperature polysilicon film or a CG silicon film can be used.
  • the TFT 10B is a stagger type (top gate type) TFT, and the gate electrode of the TFT 10B is formed on the second semiconductor layer 13b.
  • the liquid crystal display device 100 is configured so that the first wiring RST and the second wiring RWS overlap the first semiconductor layer 13a as described above, the liquid crystal display of the reference example described with reference to FIG.
  • the occupation area ratio of the photosensor portion in the pixel P is small and the pixel aperture ratio is high.
  • one pixel is 120 ⁇ m ⁇ 40 ⁇ m.
  • the pixel aperture ratio of the liquid crystal display device 100 is about 4% higher than the pixel aperture ratio of the liquid crystal display device 200.
  • Light The sensor unit is a region surrounded by the first wiring RST and the second wiring RWS and the two source bus lines S.
  • a PIN diode is illustrated as the TFD 10A. That is, the TFD 10A has an intrinsic region (i region) 13a (i) between the P-type region 13a (p) and the N-type region 13a (n).
  • a PN diode may be used instead of the PIN diode.
  • the PIN diode and the PN diode detect light applied to the PN junction of the semiconductor layer to which a reverse bias voltage is applied, by the flow of electron or hole carriers excited in the depletion layer.
  • the PIN diode Since the PIN diode has an intrinsic region having a large electric resistance between the P-type region and the N-type region, the width of the depletion layer formed when a reverse bias voltage is applied becomes large, and a high electric field generated in the depletion layer causes a carrier electric field. Flow is promoted. Therefore, the PIN diode has the advantage that the light receiving sensitivity can be made higher than that of the PN diode and the response speed can be increased. Furthermore, it is also possible to use a so-called gate-controlled PIN diode that reduces the reverse dark current flowing in the intrinsic region by forming a gate electrode on the intrinsic region of the PIN diode and applying a gate voltage.
  • FIGS. 2 and 3 are schematic cross-sectional views
  • FIG. 4 is a schematic plan view.
  • Each of the cross sections shown in FIGS. 2 and 3 is a cross section along the corresponding cut lines Y1 to Y10 in FIG. 4, and the cross section along the Y1-Y2 line from the left side to the right side of each cross sectional view is Y3.
  • a cross section taken along line -Y4, a cross section taken along line Y5-Y6, a cross section taken along line Y7-Y8, and a cross section taken along line Y9-Y10 are shown in this order.
  • the TFT substrate 100A has an N-channel TFT 10C and a P-channel TFT 10D for the driving circuit of the liquid crystal display device 100.
  • FIGS. 2 and 3 also show the manufacturing steps of the TFTs 10C and 10D.
  • the TFD 10A and the TFT 10B are formed in a display area composed of pixels arranged in a matrix, whereas the TFTs 10C and 10D are formed in a peripheral area (also referred to as a frame area) outside the display area. .
  • a substrate for example, a glass substrate
  • a light shielding layer 11 is formed on the substrate 1 (step A1).
  • the light shielding layer 11 is formed of, for example, a metal film such as molybdenum having a thickness of 50 nm to 150 nm.
  • the insulating film 12 is formed on almost the entire surface of the substrate 1, the semiconductor layer 13 is formed on the insulating film 12, and then the gate insulating film 14 so as to cover the semiconductor layer 13. Is formed (step A2).
  • the semiconductor layer 13 is formed, for example, by patterning a polysilicon film (for example, a thickness of 30 nm to 70 nm) formed so as to cover almost the entire surface of the insulating film 12.
  • the semiconductor layer 13 includes a semiconductor layer 13a serving as an active layer of the TFD 10A, a semiconductor layer 13b serving as an active layer of the TFT 10B, a semiconductor layer 13c serving as a lower electrode of the auxiliary capacitor of the pixel P, and a semiconductor serving as an active layer of the TFTs 10C and 10D. Layers 13d and 13e.
  • the insulating film 12 is formed of, for example, a silicon oxide film having a thickness of 50 nm to 100 nm.
  • a resist mask 22 that covers the gate insulating film 14 and has an opening 22a that selectively exposes only the portion that becomes the N-type region 13a (n) of the semiconductor layer 13a.
  • An N-type impurity for example, phosphorus
  • step A3 an N-type impurity is ion-implanted.
  • an N-type region 13a (n) is formed in the semiconductor layer 13a.
  • step A4 a P-type impurity (for example, boron) is ion-implanted.
  • a P-type region 13a (p) and an intrinsic region 13a (i) are formed in the semiconductor layer 13a.
  • contact holes 14a, 14b and 14c are formed in the gate insulating film 14 (step A5).
  • the contact holes 14a and 14b are contact holes for connecting the second wiring RWS to the N-type region 13a (n) of the TFD 10A and connecting the first wiring RST to the P-type region 13a (p), respectively.
  • the contact hole 14 c is a contact hole for connecting the wiring SE to the light shielding layer 11.
  • the gate metal layer 15 includes an electrode 15a1 (second wiring RWS) connected to the N-type region 13a (n), an electrode 15a2 (first wiring RST) connected to the P-type region 13a (p), and an auxiliary capacitance. It includes an upper electrode 15c and a storage capacitor line CS, and further includes a gate electrode 15d of the TFT 10C and a gate electrode 15e of the TFT 10D. Each gate electrode is formed integrally with the corresponding gate bus line. Further, the gate metal layer 15 includes an electrode 15s for connecting the wiring SE to the light shielding layer 11 in the contact hole 14c.
  • the gate metal layer 15 is formed of a metal film such as aluminum, molybdenum, or tungsten having a thickness of 200 nm to 400 nm, for example.
  • a resist mask 26 having an opening 26a that selectively exposes only the semiconductor layer 13b and an opening 26b that selectively exposes only the semiconductor layer 13d is formed.
  • a type impurity for example, phosphorus
  • the drain region 13b (d), the source region 13b (s), and the channel region 13b (c) are formed in the semiconductor layer 13b in a self-aligned manner with respect to the gate electrode 15b, and the gate electrode A drain region 13d (d), a source region 13d (s), and a channel region 13d (c) are formed in a self-aligned manner with respect to 15d.
  • a resist mask 28 having an opening 28a that selectively exposes only the semiconductor layer 13e is formed, and a P-type impurity (for example, boron) is formed.
  • a P-type impurity for example, boron
  • the drain region 13e (d), the source region 13e (s), and the channel region 13e (c) are formed in the semiconductor layer 13e in a self-aligned manner with respect to the gate electrode 15e.
  • an insulating film 16 covering almost the entire surface of the substrate 1 is formed, and contact holes 16a, 16c, 16d1, and 16d2 are formed. , 16d3, 16e1, 16e2, and 16e3 are formed (step A9).
  • the insulating film 16 is formed of, for example, a silicon oxide film or a silicon nitride film having a thickness of 200 nm to 600 nm.
  • the metal layer 17a becomes a wiring SE connected to the electrode 15s in the contact hole 16a.
  • the metal layer 17f becomes the source bus line S connected to the source electrode of the TFT 10B of the adjacent pixel.
  • the metal layer 17c becomes a source electrode of the TFT 10B.
  • the metal layers 17d1, d2, and d3 become the gate electrode, the drain electrode, and the source electrode of the TFT 10C, respectively, and the metal layers 17e1, e2, and e3 become the gate electrode, the drain electrode, and the source electrode of the TFT 10D, respectively.
  • the metal film is formed of a metal film such as aluminum, molybdenum, or tungsten having a thickness of 200 nm to 400 nm, for example.
  • the TFT substrate 100A is obtained by appropriately forming an interlayer insulating film, a pixel electrode, and an alignment film as necessary. Since these forming methods are well known, description thereof will be omitted.
  • a voltage eg, ⁇ 2 V
  • a voltage for keeping the potential of the light shielding layer 11 constant is supplied to the wiring SE in order to stabilize the characteristics of the TFD 10A.
  • an ITO layer (for example, formed from the same ITO film as the pixel electrode) is provided on the insulating layer and the interlayer insulating film covering the semiconductor layer 13a, and the voltage of the ITO layer is kept constant (for example, -2V).
  • FIG. 5A is a schematic plan view of the liquid crystal display device 200
  • FIG. 5B is a schematic cross-sectional view of a TFT substrate 200A included in the liquid crystal display device 200.
  • the TFT substrate 200A has an N-channel TFT 20C and a P-channel TFT 20D for a driving circuit of the liquid crystal display device 200
  • FIG. 5B also shows a cross-sectional structure of the TFTs 20C and 20D.
  • FIG. 5 is a diagram corresponding to FIG. 1, and similar components are denoted by common reference numerals, and description thereof may be omitted.
  • the TFT substrate 200A of the liquid crystal display device 200 includes a substrate 1, and a P-type region 13a (p) and an N-type region 13a (n) supported by the substrate 1.
  • the TFD 20A including the first semiconductor layer 13a including the second semiconductor layer 13b supported by the substrate 1, the gate electrode, and the thin film transistor 20B including the source electrode and the drain electrode.
  • the TFT substrate 200A is different from the TFT substrate 100A in that the first wiring RST and the second wiring RWS are not arranged so as to overlap the first semiconductor layer 13a.
  • the first wiring RST is connected to the P-type region 13a (p) by the electrode 17p
  • the second wiring RWS is connected to the N-type region 13a (n) by the electrode 17n.
  • the electrodes 17p and 17n are formed from the same conductive film (source metal layer 17 in FIG. 5B) as the source and drain electrodes.
  • the first wiring RST and the second wiring RWS are the first semiconductor. Since it is configured to overlap with the layer 13a, the area occupied by the photosensor portion in the pixel P is small and the pixel aperture ratio is high compared to the liquid crystal display device 200 of the reference example shown in FIG.
  • FIGS. 6 and 7 are schematic cross-sectional views
  • FIGS. 8 and 9 are schematic plan views.
  • Each of the cross sections shown in FIGS. 6 and 7 is a cross section taken along the cut line Y1 to Y10 in the corresponding FIG. 8 or FIG. 9, and along the Y1-Y2 line from the left side to the right side of each cross sectional view.
  • the cross section, the cross section along the Y3-Y4 line, the cross section along the Y5-Y6 line, the cross section along the Y7-Y8 line, and the Y9-Y10 line are shown in this order.
  • the TFT substrate 200A has an N-channel TFT 20C and a P-channel TFT 20D for a drive circuit of the liquid crystal display device 200.
  • FIGS. 6 and 7 also show the manufacturing steps of the TFTs 20C and 20D.
  • the TFD 20A and the TFT 20B are formed in a display area composed of pixels arranged in a matrix, whereas the TFTs 20C and 20D are formed in a peripheral area (also referred to as a frame area) outside the display area. .
  • a substrate for example, a glass substrate
  • a light shielding layer 11 is formed on the substrate 1 (step B1).
  • 5B and the following cross-sectional views illustrate an example in which the light shielding layer 11 finally overlaps the first wiring RST (15a2) and the second wiring RWS (15a1), but FIG. ),
  • the light shielding layer 11 may not overlap the first wiring RST (15a2) and the second wiring RWS (15a1).
  • the insulating film 12 is formed on almost the entire surface of the substrate 1, the semiconductor layer 13 is formed on the insulating film 12, and then the semiconductor layer 13 is covered.
  • the gate insulating film 14 is formed (step B2).
  • the semiconductor layer 13 includes a semiconductor layer 13a serving as an active layer of the TFD 20A, a semiconductor layer 13b serving as an active layer of the TFT 20B, a semiconductor layer 13c serving as a lower electrode of the auxiliary capacitor of the pixel P, and a semiconductor serving as an active layer of the TFTs 20C and 20D. Layers 13d and 13e.
  • the gate metal layer 15 including the gate electrode 15b of the TFT 20B is formed (step B3).
  • the gate metal layer 15 includes an electrode 15a1 (second wiring RWS), an electrode 15a2 (first wiring RST), an auxiliary capacitance upper electrode 15c, and an auxiliary capacitance wiring CS, and further includes a gate electrode 15d of the TFT 20C and a gate electrode of the TFT 20D. 15e is included.
  • Each gate electrode is formed integrally with the corresponding gate bus line.
  • the electrode 15a1 (second wiring RWS) and the electrode 15a2 (first wiring RST) are arranged so as not to overlap the semiconductor layer 13a.
  • a resist mask 23 having a portion 23b and an opening 23c that selectively exposes only the semiconductor layer 13d is formed, and N-type impurities (for example, phosphorus) are ion-implanted (step B4).
  • N-type impurities for example, phosphorus
  • a drain region 13b (d), a source region 13b (s), and a channel region 13b (c) are formed in the semiconductor layer 13b in a self-aligned manner with respect to the gate electrode 15b, and the gate electrode 15d is formed in the semiconductor layer 13d.
  • the drain region 13d (d), the source region 13d (s), and the channel region 13d (c) are formed in a self-aligned manner.
  • an opening that selectively exposes only a portion that becomes the P-type region 13a (p) of the semiconductor layer 13a is formed, and a P-type impurity (for example, boron) is ion-implanted (step B5).
  • a P-type region 13a (p) and an intrinsic region 13a (i) are formed in the semiconductor layer 13a.
  • a drain region 13e (d), a source region 13e (s), and a channel region 13e (c) are formed in the semiconductor layer 13e in a self-aligned manner with respect to the gate electrode 15e.
  • a contact hole 14e exposing the light shielding layer 11 is formed in the gate insulating film 14 and the insulating film 12 (step B6).
  • an insulating film 16 that covers substantially the entire surface of the substrate 1 is formed, and contact holes 16a, 16n1, 16n2, 16p1, 16p2, 16c, 16d1, and 16d2 are formed. , 16d3, 16e1, 16e2, and 16e3 are formed (step B7).
  • the metal layer 17a becomes a wiring SE connected to the electrode 15s in the contact hole 16a.
  • the metal layer 17f becomes the source bus line S connected to the source electrode of the TFT 20B of the adjacent pixel.
  • the metal layer 17n connects the second wiring RWS and the N-type region 13a (n) to each other, and the metal layer 17p connects the first wiring RST and the P-type region 13a (p) to each other.
  • the metal layer 17c becomes a source electrode of the TFT 20B.
  • the metal layers 17d1, d2, and d3 become the gate electrode, drain electrode, and source electrode of the TFT 20C, respectively, and the metal layers 17e1, e2, and e3 become the gate electrode, drain electrode, and source electrode of the TFT 20D, respectively.
  • the TFT substrate 200A of the liquid crystal display device 200 of the reference example can be manufactured with fewer steps than the TFT substrate 100A. Therefore, when the manufacturing cost is more important than the pixel aperture ratio, the configuration and manufacturing method of the reference example may be adopted.
  • the optical sensor unit includes a TFD 701, a signal holding capacitor 702, and a thin film transistor 703 for signal extraction.
  • the TFD 701 has, for example, the same configuration as the above TFD 10A.
  • a signal holding capacitor 702 (not shown in FIG. 1) is configured using a gate electrode layer and a semiconductor layer as electrodes, and the capacitance thereof can be formed by a gate insulating film.
  • the p-type region of the TFD 701 is connected to the RST signal line, and the n-type region is connected to the lower electrode (Si layer) of the signal holding capacitor, and is connected to the RWS signal line through this capacitor. Further, the n-type region is connected to the gate electrode layer of the thin film transistor 703 for signal extraction.
  • the source region of the signal extraction thin film transistor 703 is connected to the VDD signal line, and the drain region is connected to the output signal line. These signal lines are also used as source bus lines.
  • an RST signal is input through the RST signal line.
  • a positive voltage is applied to the p-type region side of the optical sensor TFD 701
  • the TFD 701 enters a forward bias state
  • the charge of the capacitor 702 is discharged.
  • the RST signal is turned off, the TFD 701 enters a reverse bias state.
  • a VDD signal is applied from the VDD signal line to the source side of the thin film transistor 703 for signal extraction.
  • the gate voltage fluctuates as described above, the value of the current flowing to the output signal line connected to the drain side changes, so that the electrical signal can be extracted from the output signal line.
  • Optical sensing is possible by repeating the operations (1) to (4) while scanning.
  • the configuration of the TFT is not limited to the above example, and the N channel type and the P channel type may be reversed.
  • the structure of the TFT may be a single gate structure.
  • an LDD structure or a GOLD structure may be applied.
  • the semiconductor layer is not limited to a polysilicon layer or a CG silicon layer, and an oxide semiconductor layer can also be used.
  • each layer constituting the TFD or the TFT is not limited to the illustrated single layer structure, and may be a laminated structure.
  • the present invention can be widely applied to a semiconductor device provided with an optical sensor unit using TFD or electronic devices in various fields having such a semiconductor device.
  • the present invention may be applied to an active matrix liquid crystal display device or an organic EL display device.
  • Such a display device can be used for a display screen of a mobile phone or a portable game machine, a monitor of a digital camera, or the like. Therefore, the present invention can be applied to all electronic devices in which a liquid crystal display device or an organic EL display device is incorporated.
  • the present invention can be suitably used particularly for display devices such as active matrix liquid crystal display devices and organic EL display devices, image sensors, photosensors, or electronic devices that combine them.
  • display devices such as active matrix liquid crystal display devices and organic EL display devices, image sensors, photosensors, or electronic devices that combine them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明による半導体装置(100)は、基板(1)と、基板(1)に支持された、P型領域(13a(p))とN型領域(13a(n))とを有する第1半導体層(13a)を備える薄膜ダイオード(10A)と、薄膜ダイオード(10A)の第1半導体層(13a)に重なるように配置され、P型領域(13a(p))に接続された第1配線(RST)と、薄膜ダイオード(10A)の第1半導体層(13a)に重なるように配置され、N型領域(13a(n))に接続された第2配線(RWS)と、基板(1)に支持された、第2半導体層(13b)と、ゲート電極と、ソース電極およびドレイン電極とを有する薄膜トランジスタ(10B)とを有している。第1配線(RST)および第2配線(RWS)は、ゲート電極と同じ導電膜(15)から形成されている。

Description

半導体装置およびその製造方法
 本発明は、薄膜ダイオード(Thin Film Diode:TFD)を備える半導体装置およびその製造方法に関し、特に、TFDを利用した光センサー部を備える表示装置およびその製造方法に関する。
 近年、TFDを有する光センサー部を備えた表示装置やイメージセンサーなどの半導体装置の開発が進められている。例えば、特許文献1には、TFDを有する光センサー部と、画素電極に接続された薄膜トランジスタ(Thin Film Transistor:TFT)を有する表示部とを備える液晶表示装置が開示されている。特許文献1に記載の技術によると、TFDおよびTFTの半導体層をそれぞれに要求されるデバイス特性に応じて最適化し得る。
 特許文献1のように、TFTやTFDのデバイス特性を向上させることも重要ではあるものの、特に、表示装置やイメージセンサーにおいては画素開口率(表示またはイメージ読み取りのために利用できる面積の比率)の向上が求められている。参考のために、特許文献1の開示内容の全てを本明細書に援用する。
国際公開第2009/144915号
 本発明は、上記に鑑みてなされたものであり、その目的は、薄膜トランジスタおよび薄膜ダイオードを同一基板上に備えた半導体装置において、光センサー部の占有面積率を小さくすることにある。
 本発明の半導体装置は、基板と、前記基板に支持された、P型領域とN型領域とを有する第1半導体層を備える薄膜ダイオードと、前記薄膜ダイオードの前記第1半導体層に重なるように配置され、前記P型領域に接続された第1配線と、前記薄膜ダイオードの前記第1半導体層に重なるように配置され、前記N型領域に接続された第2配線と、前記基板に支持された、第2半導体層と、ゲート電極と、ソース電極およびドレイン電極とを有する薄膜トランジスタと、を有し、前記第1および第2配線は、前記ゲート電極と同じ導電膜から形成されている。
 ある実施形態において、前記第1および第2半導体層は同じ半導体膜から形成されている。
 ある実施形態において、前記ゲート電極は、前記第2半導体層の上に形成されている。すなわち、ある実施形態において、前記薄膜トランジスタはスタガー型(トップゲート型)である。
 本発明の半導体装置の製造方法は、基板を用意する工程aと、前記基板上に、第1および第2半導体層を形成する工程bと、前記第1および第2半導体層を覆う絶縁層を形成する工程cと、前記第1半導体層に不純物を注入することによってP型領域およびN型領域を形成する工程dと、前記絶縁層にコンタクトホールを形成する工程eと、前記工程eの後に、前記絶縁層上に、前記P型領域に接続された第1配線と、前記N型領域に接続された第2配線と、ゲート電極とを含む導電層を形成する工程fと、前記工程fの後に前記第2半導体層にソース領域およびドレイン領域を形成する工程gとを包含する。
 ある実施形態において、前記製造方法は、前記工程bにおいて、前記第1および第2半導体層を同じ半導体膜から形成する。
 本発明によると、薄膜トランジスタおよび薄膜ダイオードを同一基板上に備えた半導体装置において、光センサー部の占有面積率を小さくすることができる。
(a)は本発明による実施形態の液晶表示装置100の模式的な平面図であり、(b)は液晶表示装置100が有するTFT基板100Aの模式的な断面図である。 (a)~(e)は、実施形態の液晶表示装置100の製造方法(工程A1~A5)を説明するための模式的な断面図である。 (a)~(d)は、実施形態の液晶表示装置100の製造方法(工程A6~A9)を説明するための模式的な断面図である。 (a)~(d)は、実施形態の液晶表示装置100の製造方法(工程A1、A4、A6およびA9)を説明するための模式的な平面図である。 参考例の半導体装置200の構造を示す図であり、(a)は平面図を示し、(b)はTFT基板200Aの断面図を示す。 (a)~(d)は、参考例の半導体装置200の製造方法(工程B1~B4)を説明するための模式的な断面図である。 (a)~(c)は、参考例の半導体装置200の製造方法(工程B5~B7)を説明するための模式的な断面図である。 (a)~(c)は、参考例の半導体装置200の製造方法(工程B1~B3)を説明するための模式的な平面図である。 (a)および(b)は、参考例の半導体装置200の製造方法(工程B5およびB7)を説明するための模式的な平面図である。 液晶表示装置100の光センサー部の構成および動作を説明するための回路図である。
 以下、図面を参照して本発明による実施形態の半導体装置を説明するが、本発明は例示する実施形態に限定されない。以下では、半導体装置として液晶表示装置またはTFT基板を例示する。
 まず、図1(a)および(b)を参照して、本発明による実施形態のタッチパネルの機能を備える液晶表示装置100の構造を説明する。図1(a)は、液晶表示装置100の模式的な平面図であり、図1(b)は、液晶表示装置100が有するTFT基板100Aの模式的な断面図である。図1(b)に示した断面は、対応する図1(a)における切り取り線Y1~Y10に沿った断面であり、図1(b)の左側から右側に向けて、Y1-Y2線に沿った断面、Y3-Y4線に沿った断面、Y5-Y6線に沿った断面、Y7-Y8線に沿った断面およびY9-Y10線に沿った断面を順に示している。なお、TFT基板100Aは、液晶表示装置100の駆動回路用のNチャネルTFT10CおよびPチャネルTFT10Dを有しており、図1(b)においては、TFT10Cおよび10Dの断面構造を併せて示す。
 なお、図1(a)には、マトリクス状に配列された複数の画素Pの内で、行方向(ゲートバスラインGの延びる方向、典型的には水平方向)に隣接する2つの画素Pの構造を示している。液晶表示装置100は、典型的には、TFT基板100Aと対向基板(不図示)と、TFT基板100Aと対向基板(不図示)との間に設けられた液晶層(不図示)とを有している。TFT基板100AはTFT10Bのドレイン電極に接続された画素電極(不図示)を有し、対向基板は液晶層を介して画素電極に対向するように配置された対向電極を有する。IPSモードやFFSモードのように、TFT基板100Aに画素電極と対向電極とが形成されるものも知られている。本発明による実施形態の液晶表示装置は、当業者に容易に理解されるように、種々のモードの液晶表示装置に適用できる。従って、画素電極や対向電極の配置や、液晶層、配向膜、カラーフィルタ層などの説明は省略する。
 図1(a)および(b)に示すように、液晶表示装置100のTFT基板100Aは、基板1と、基板1に支持された、P型領域13a(p)とN型領域13a(n)とを有する第1半導体層13aを備えるTFD10Aと、TFD10Aの第1半導体層13aに重なるように配置され、P型領域13a(p)に接続された第1配線RSTと、TFD10Aの第1半導体層13aに重なるように配置され、N型領域13a(n)に接続された第2配線RWSと、基板1に支持された、第2半導体層13bと、ゲート電極と、ソース電極およびドレイン電極とを有するTFT10Bとを有している。第1配線RSTおよび第2配線RWSは、ゲート電極と同じ導電膜(図3(a)中のゲートメタル層15)から形成されている。なお、図1(b)のTFT10Cおよび10Dについては後述する。
 ここで、第1半導体層13aおよび第2半導体層13bは、例示するように、同じ半導体膜から形成されていることが好ましい。TFT特性の観点からは、結晶質半導体膜を用いることが好ましく、例えば低温ポリシリコン膜やCGシリコン膜を用いることができる。なお、TFT10Bは、スタガー型(トップゲート型)のTFTであり、TFT10Bのゲート電極は、第2半導体層13bの上に形成されている。
 液晶表示装置100は、上述したように、第1配線RSTおよび第2配線RWSが第1半導体層13aと重なるように構成されているので、図5等を参照して説明する参考例の液晶表示装置200に比べて、画素Pにおける光センサー部の占有面積率が小さく、画素開口率が高い。例えば、3.5型のWVGA(800×480(R画素、G画素およびB画素の3つの画素で構成される1つのカラー表示画素を1単位とする)の場合、1画素が120μm×40μmで、第1および第2配線(RSTおよびRWS)の幅がそれぞれ約5μmとすると、液晶表示装置100の画素開口率は、液晶表示装置200の画素開口率よりも約4%高くなる。なお、光センサー部は、第1配線RSTおよび第2配線RWSと2本のソースバスラインSに囲まれる領域である。
 ここでは、TFD10Aとして、PINダイオードを例示している。すなわち、TFD10Aは、P型領域13a(p)とN型領域13a(n)との間に真性領域(i領域)13a(i)を有している。PINダイオードに代えてPNダイオードを用いることもできる。PINダイオードおよびPNダイオードは、逆バイアス電圧を印加した半導体層のPN接合に照射された光を、空乏層内で励起された電子または正孔のキャリアの流れによって検出する。PINダイオードは、P型領域およびN型領域の間に電気抵抗の大きな真性領域を有するので、逆バイアス電圧印加時に形成される空乏層の幅が大きくなり、空乏層内に生じる高い電界によりキャリアの流れが促進される。従って、PINダイオードは、PNダイオードよりも受光感度を高くでき、また、応答速度を高めることが可能であるという利点を有している。さらに、PINダイオードの真性領域上にゲート電極を形成し、ゲート電圧を印加することによって、真性領域を流れる逆方向暗電流を減少させる、いわゆるゲート制御型PINダイオードを用いることもできる。
 次に、図2~図4を参照して、実施形態のTFT基板100Aの製造方法を説明する。図2および図3は、模式的な断面図であり、図4は模式的な平面図である。図2および図3に示した各断面は、対応する図4における切り取り線Y1~Y10に沿った断面であり、各断面図の左側から右側に向けて、Y1-Y2線に沿った断面、Y3-Y4線に沿った断面、Y5-Y6線に沿った断面、Y7-Y8線に沿った断面および、Y9-Y10線に沿った断面を順に示している。なお、TFT基板100Aは、液晶表示装置100の駆動回路用のNチャネルTFT10CおよびPチャネルTFT10Dを有しており、図2および図3においては、TFT10Cおよび10Dの製造工程も併せて示す。TFD10AおよびTFT10Bが、マトリクス状に配列された画素で構成される表示領域内に形成されるのに対し、TFT10Cおよび10Dは、表示領域の外側の周辺領域(額縁領域ともいわれる)に形成されている。
 まず、図2(a)および図4(a)に示すように、基板(例えばガラス基板)1を用意し、基板1上に遮光層11を形成する(工程A1)。遮光層11は、例えば、厚さが50nm~150nmのモリブデン等の金属膜で形成される。
 次に、図2(b)に示すように、基板1のほぼ全面に絶縁膜12を形成し、絶縁膜12上に半導体層13を形成した後、半導体層13を覆うようにゲート絶縁膜14を形成する(工程A2)。半導体層13は、例えば、絶縁膜12のほぼ全面を覆うように形成されたポリシリコン膜(例えば厚さ30nm~70nm)をパターニングすることによって形成される。半導体層13は、TFD10Aの活性層となる半導体層13aと、TFT10Bの活性層となる半導体層13bおよび画素Pの補助容量の下部電極となる半導体層13cと、TFT10Cおよび10Dの活性層となる半導体層13d、13eとを有している。絶縁膜12は、例えば、厚さが50nm~100nmのシリコン酸化膜で形成される。
 次に、図2(c)に示すように、ゲート絶縁膜14を覆い、半導体層13aのN型領域13a(n)となる部分だけを選択的に露出する開口部22aを有するレジストマスク22を形成し、N型不純物(例えばリン)をイオン注入する(工程A3)。その結果、半導体層13aに、N型領域13a(n)が形成される。
 レジストマスク22を除去した後、続いて、図2(d)および図4(b)に示すように、ゲート絶縁膜14を覆い、半導体層13aのP型領域13a(p)となる部分だけを選択的に露出する開口部24aを有するレジストマスク22を形成し、P型不純物(例えばボロン)をイオン注入する(工程A4)。その結果、半導体層13aに、P型領域13a(p)および真性領域13a(i)が形成される。
 次に、図2(e)に示すように、ゲート絶縁膜14にコンタクトホール14a、14bおよび14cを形成する(工程A5)。コンタクトホール14aおよび14bは、それぞれ、TFD10AのN型領域13a(n)に第2配線RWSを接続し、P型領域13a(p)に第1配線RSTを接続するためのコンタクトホールである。コンタクトホール14cは、配線SEを遮光層11に接続するためのコンタクトホールである。
 次に、図3(a)および図4(c)に示すように、TFT10Bのゲート電極15bを含むゲートメタル層15を形成する。ゲートメタル層15は、N型領域13a(n)に接続された電極15a1(第2配線RWS)と、P型領域13a(p)に接続された電極15a2(第1配線RST)、補助容量の上部電極15cおよび補助容量配線CSを含み、さらに、TFT10Cのゲート電極15dおよびTFT10Dのゲート電極15eを含む。なお、各ゲート電極は、対応するゲートバスラインと一体に形成される。さらに、ゲートメタル層15は、コンタクトホール14c内で遮光層11に配線SEを接続するための電極15sを含んでいる。ゲートメタル層15は、例えば、厚さが200nm~400nmのアルミニウム、モリブデン、もしくはタングステン等の金属膜で形成される。
 次に、図3(b)に示すように、半導体層13bだけを選択的に露出する開口部26aおよび半導体層13dだけを選択的に露出する開口部26bを有するレジストマスク26を形成し、N型不純物(例えばリン)をイオン注入する(工程A7)。その結果、半導体層13bに、ゲート電極15bに対して自己整合的に、ドレイン領域13b(d)、ソース領域13b(s)およびチャネル領域13b(c)が形成され、半導体層13dに、ゲート電極15dに対して自己整合的に、ドレイン領域13d(d)、ソース領域13d(s)およびチャネル領域13d(c)が形成される。
 レジストマスク26を除去した後、続いて、図3(c)に示すように、半導体層13eだけを選択的に露出する開口部28aを有するレジストマスク28を形成し、P型不純物(例えばボロン)をイオン注入する(工程A8)。その結果、半導体層13eに、ゲート電極15eに対して自己整合的に、ドレイン領域13e(d)、ソース領域13e(s)およびチャネル領域13e(c)が形成される。
 次に、レジストマスク28を除去した後、図3(d)および図4(d)に示すように、基板1のほぼ全面を覆う絶縁膜16を形成し、コンタクトホール16a、16c、16d1、16d2、16d3、16e1、16e2および16e3を形成する(工程A9)。絶縁膜16は、例えば、厚さが200nm~600nmのシリコン酸化膜、あるいはシリコン窒化膜で形成される。
 この後、基板1のほぼ全面に金属膜を形成し、それをパターニングすることによって、図1(a)および(b)に示すように、TFT基板100AにTFD10A、TFT10B、TFT10CおよびTFT10Dが形成される。金属層17aはコンタクトホール16a内で電極15sに接続される配線SEとなる。金属層17fは、隣接する画素のTFT10Bのソース電極に接続されるソースバスラインSとなる。金属層17cは、TFT10Bのソース電極となる。金属層17d1、d2、d3は、それぞれTFT10Cのゲート電極、ドレイン電極およびソース電極となり、金属層17e1、e2、e3は、それぞれTFT10Dのゲート電極、ドレイン電極およびソース電極となる。金属膜は、例えば、厚さが200nm~400nmのアルミニウム、モリブデン、もしくはタングステン等の金属膜で形成される。
 この後、層間絶縁膜、画素電極や配向膜を必要に応じて適宜形成することによってTFT基板100Aが得られる。これらの形成方法はよく知られているので、説明を省略する。なお、配線SEには、TFD10Aの特性を安定させるために、遮光層11の電位を一定に保つための電圧(例えば-2V)が供給される。また、同様の目的で、半導体層13aを覆う絶縁層および層間絶縁膜の上にITO層(例えば、画素電極と同じITO膜から形成される)を設け、ITO層の電圧を一定に保つ(例えば-2V)ことが好ましい。
 次に、図5(a)および(b)を参照して、参考例のタッチパネルの機能を備える液晶表示装置200の構造を説明する。図5(a)は、液晶表示装置200の模式的な平面図であり、図5(b)は、液晶表示装置200が有するTFT基板200Aの模式的な断面図である。なお、TFT基板200Aは、液晶表示装置200の駆動回路用のNチャネルTFT20CおよびPチャネルTFT20Dを有しており、図5(b)においては、TFT20Cおよび20Dの断面構造を併せて示す。図5は、図1に対応する図であり、同様の構成要素は共通の参照符号で示し、説明を省略することがある。
 図5(a)および(b)に示すように、液晶表示装置200のTFT基板200Aは、基板1と、基板1に支持された、P型領域13a(p)とN型領域13a(n)とを有する第1半導体層13aを備えるTFD20Aと、基板1に支持された、第2半導体層13bと、ゲート電極と、ソース電極およびドレイン電極とを有する薄膜トランジスタ20Bとを有している。
 TFT基板200Aは、第1配線RSTおよび第2配線RWSが、第1半導体層13aに重なるように配置されていない点において、TFT基板100Aと異なる。第1配線RSTは電極17pによってP型領域13a(p)に接続されており、第2配線RWSは電極17nによってN型領域13a(n)に接続されている。電極17pおよび17nは、ソース電極およびドレイン電極と同じ導電膜(図5(b)中のソースメタル層17)から形成されている。
 図1(a)と図5(a)とを比較すると明らかなように、図1(a)に示した実施形態の液晶表示装置100は、第1配線RSTおよび第2配線RWSが第1半導体層13aと重なるように構成されているので、図5(a)に示した参考例の液晶表示装置200に比べて、画素Pにおける光センサー部の占有面積率が小さく、画素開口率が高い。
 次に、図6~図9を参照して、参考例のTFT基板200Aの製造方法を説明する。図6および図7は、模式的な断面図であり、図8および図9は模式的な平面図である。図6および図7に示した各断面は、対応する図8または図9における切り取り線Y1~Y10に沿った断面であり、各断面図の左側から右側に向けて、Y1-Y2線に沿った断面、Y3-Y4線に沿った断面、Y5-Y6線に沿った断面、Y7-Y8線およびY9-Y10線に沿った断面を順に示している。
 なお、TFT基板200Aは、液晶表示装置200の駆動回路用のNチャネルTFT20CおよびPチャネルTFT20Dを有しており、図6および図7においては、TFT20Cおよび20Dの製造工程も併せて示す。TFD20AおよびTFT20Bが、マトリクス状に配列された画素で構成される表示領域内に形成されるのに対し、TFT20Cおよび20Dは、表示領域の外側の周辺領域(額縁領域ともいわれる)に形成されている。
 まず、図6(a)および図8(a)に示すように、基板(例えばガラス基板)1を用意し、基板1上に遮光層11を形成する(工程B1)。なお、図5(b)および以下の断面図においては、最終的に、遮光層11が第1配線RST(15a2)および第2配線RWS(15a1)と重なる例を図示するが、図5(a)に示したように、遮光層11は、第1配線RST(15a2)および第2配線RWS(15a1)と重ならなくてもよい。
 次に、図6(b)および図8(b)に示すように、基板1のほぼ全面に絶縁膜12を形成し、絶縁膜12上に半導体層13を形成した後、半導体層13を覆うようにゲート絶縁膜14を形成する(工程B2)。半導体層13は、TFD20Aの活性層となる半導体層13aと、TFT20Bの活性層となる半導体層13bおよび画素Pの補助容量の下部電極となる半導体層13cと、TFT20Cおよび20Dの活性層となる半導体層13d、13eとを有している。
 次に、図6(c)および図8(c)に示すように、TFT20Bのゲート電極15bを含むゲートメタル層15を形成する(工程B3)。ゲートメタル層15は、電極15a1(第2配線RWS)、電極15a2(第1配線RST)、補助容量の上部電極15cおよび補助容量配線CSを含み、さらに、TFT20Cのゲート電極15dおよびTFT20Dのゲート電極15eを含む。なお、各ゲート電極は、対応するゲートバスラインと一体に形成される。ここで、電極15a1(第2配線RWS)および電極15a2(第1配線RST)は、半導体層13aと重ならないように配置される。
 次に、図6(d)に示すように、半導体層13aのN型領域13a(n)となる部分だけを選択的に露出する開口部23aと、半導体層13bだけを選択的に露出する開口部23bと、半導体層13dだけを選択的に露出する開口部23cとを有するレジストマスク23を形成し、N型不純物(例えばリン)をイオン注入する(工程B4)。その結果、半導体層13aに、N型領域13a(n)が形成される。また、半導体層13bに、ゲート電極15bに対して自己整合的に、ドレイン領域13b(d)、ソース領域13b(s)およびチャネル領域13b(c)が形成され、半導体層13dに、ゲート電極15dに対して自己整合的に、ドレイン領域13d(d)、ソース領域13d(s)およびチャネル領域13d(c)が形成される。
 レジストマスク23を除去した後、続いて、図7(a)および図9(a)に示すように、半導体層13aのP型領域13a(p)となる部分だけを選択的に露出する開口部25aと、半導体層13eだけを選択的に露出する開口部25bとを有するレジストマスク25を形成し、P型不純物(例えばボロン)をイオン注入する(工程B5)。その結果、半導体層13aに、P型領域13a(p)および真性領域13a(i)が形成される。また、半導体層13eに、ゲート電極15eに対して自己整合的に、ドレイン領域13e(d)、ソース領域13e(s)およびチャネル領域13e(c)が形成される。
 次に、レジストマスク25を除去した後、図7(b)に示すように、ゲート絶縁膜14および絶縁膜12に、遮光層11を露出するコンタクトホール14eを形成する(工程B6)。
 次に、図7(c)および図9(b)に示すように、基板1のほぼ全面を覆う絶縁膜16を形成し、コンタクトホール16a、16n1、16n2、16p1、16p2、16c、16d1、16d2、16d3、16e1、16e2および16e3を形成する(工程B7)。
 この後、基板1のほぼ全面に金属膜を形成し、それをパターニングすることによって、図5(a)および(b)に示すように、TFT基板200AにTFD20A、TFT20B、TFT20CおよびTFT20Dが形成される。金属層17aはコンタクトホール16a内で電極15sに接続される配線SEとなる。金属層17fは、隣接する画素のTFT20Bのソース電極に接続されるソースバスラインSとなる。金属層17nは、第2配線RWSとN型領域13a(n)とを互いに接続し、金属層17pは、第1配線RSTとP型領域13a(p)とを互いに接続する。金属層17cは、TFT20Bのソース電極となる。金属層17d1、d2、d3は、それぞれTFT20Cのゲート電極、ドレイン電極およびソース電極となり、金属層17e1、e2、e3は、それぞれTFT20Dのゲート電極、ドレイン電極およびソース電極となる。
 上記の説明から理解されるように、参考例の液晶表示装置200のTFT基板200Aは、TFT基板100Aよりも少ない工程で製造することができる。従って、画素開口率よりも製造コストが重要な場合には、参考例の構成および製造方法を採用してもよい。
 次に、図10を参照して、液晶表示装置100の光センサー部の構成および動作を説明する。
 図10に示すように、光センサー部は、TFD701、信号保持用コンデンサー702、および信号取出用の薄膜トランジスタ703を有している。TFD701は、例えば上記のTFD10Aと同様の構成を有している。信号保持用のコンデンサー702(図1中不図示)は、ゲート電極層と半導体層とを電極として構成され、その容量はゲート絶縁膜によって形成され得る。
 TFD701のp型領域は、RST信号ラインに接続され、n型領域は、信号保持用のコンデンサーの下部電極(Si層)に接続され、このコンデンサーを経てRWS信号ラインに接続されている。さらに、n型領域は、信号取出用の薄膜トランジスタ703のゲート電極層に接続されている。信号取出用の薄膜トランジスタ703のソース領域は、VDD信号ラインに接続され、ドレイン領域は、出力信号ラインに接続されている。これらの信号ラインはソースバスラインと兼用である。
 次に、光センサー部による光センシング時の動作を説明する。
 (1)まず、RST信号ラインにより、RST信号が入力される。これにより、光センサーTFD701におけるp型領域の側にプラスの電圧が印加され、TFD701が順バイアス状態となり、コンデンサー702の電荷が放電される。その後、RST信号をオフにすると、TFD701に関して逆バイアス状態となる。
 (2)TFD701に光電流が生じると、TFD701を介して、信号保持用のコンデンサー702が充電される。
 (3)これにより、TFD701のn型領域の側の電位が低下し、その電位変化により信号取出用の薄膜トランジスタ703に印加されているゲート電圧が変化する。
 (4)信号取出用の薄膜トランジスタ703のソース側にはVDD信号ラインよりVDD信号が印加されている。上記のようにゲート電圧が変動すると、ドレイン側に接続された出力信号ラインへ流れる電流値が変化するため、その電気信号を出力信号ラインから取り出すことができる。
 上記(1)~(4)の動作をスキャンしながら繰り返すことにより、光センシングが可能になる。
 なお、TFTの構成は、上記の例に限られず、Nチャネル型とPチャネル型とを逆にしてもよい。さらに、上記ではダブルゲート構造を例示したが、TFTの構成はシングルゲート構造でもよい。また、LDD構造やGOLD構造を適用してもよい。また、半導体層は、ポリシリコン層やCGシリコン層に限られず、酸化物半導体層を用いることもできる。また、TFDやTFTを構成する各層は例示した単層構造に限られず積層構造としてもよい。
 本発明は、TFDを利用した光センサー部を備えた半導体装置、あるいは、そのような半導体装置を有するあらゆる分野の電子機器に広く適用できる。例えば、本発明を、アクティブマトリクス型液晶表示装置や有機EL表示装置に適用してもよい。このような表示装置は、例えば携帯電話や携帯ゲーム機の表示画面や、デジタルカメラのモニター等に利用され得る。従って、本発明は、液晶表示装置や有機EL表示装置が組み込まれた電子機器の全てに適用され得る。
 本発明は、特に、アクティブマトリクス型の液晶表示装置および有機EL表示装置などの表示装置、イメージセンサー、光センサー、またはそれらを組み合わせた電子機器に好適に利用できる。特に、TFDを利用した光センサー機能付きの表示装置、例えばタッチパネル機能およびスキャナー機能を併せ持つ表示装置に本発明を適用すると有利である。
 1 基板
 10A 薄膜ダイオード
 10B 薄膜トランジスタ
 11 遮光層
 12 絶縁膜
 13a、13b 半導体層
 13a(p) P型領域
 13a(n) N型領域
 13a(i) 真性領域
 14 ゲート絶縁膜
 15 導電層(ゲートメタル層)
 16 絶縁膜
 17 金属層(ソースメタル層)
 RST 第1配線
 RWS 第2配線
 100 半導体装置(液晶表示装置)
 100A TFT基板

Claims (5)

  1.  基板と、
     前記基板に支持された、P型領域とN型領域とを有する第1半導体層を備える薄膜ダイオードと、
     前記薄膜ダイオードの前記第1半導体層に重なるように配置され、前記P型領域に接続された第1配線と、
     前記薄膜ダイオードの前記第1半導体層に重なるように配置され、前記N型領域に接続された第2配線と、
     前記基板に支持された、第2半導体層と、ゲート電極と、ソース電極およびドレイン電極とを有する薄膜トランジスタと、
    を有し、
     前記第1および第2配線は、前記ゲート電極と同じ導電膜から形成されている、半導体装置。
  2.  前記第1および第2半導体層は同じ半導体膜から形成されている、請求項1に記載の半導体装置。
  3.  前記ゲート電極は、前記第2半導体層の上に形成されている、請求項1または2に記載の半導体装置。
  4.  基板を用意する工程aと、
     前記基板上に、第1および第2半導体層を形成する工程bと、
     前記第1および第2半導体層を覆う絶縁層を形成する工程cと、
     前記第1半導体層に不純物を注入することによってP型領域およびN型領域を形成する工程dと、
     前記絶縁層にコンタクトホールを形成する工程eと、
     前記工程eの後に、前記絶縁層上に、前記P型領域に接続された第1配線と、前記N型領域に接続された第2配線と、ゲート電極とを含む導電層を形成する工程fと
     前記工程fの後に前記第2半導体層にソース領域およびドレイン領域を形成する工程gと
    を包含する、半導体装置の製造方法。
  5.  前記工程bにおいて、前記第1および第2半導体層を同じ半導体膜から形成する、請求項4に記載の半導体装置の製造方法。
PCT/JP2011/075056 2010-11-04 2011-10-31 半導体装置およびその製造方法 WO2012060320A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/879,231 US20130207190A1 (en) 2010-11-04 2011-10-31 Semiconductor device, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010247037 2010-11-04
JP2010-247037 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060320A1 true WO2012060320A1 (ja) 2012-05-10

Family

ID=46024433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075056 WO2012060320A1 (ja) 2010-11-04 2011-10-31 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US20130207190A1 (ja)
WO (1) WO2012060320A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657231B (zh) * 2017-09-27 2020-08-11 京东方科技集团股份有限公司 指纹识别传感器及其制作方法和显示装置
TWI744072B (zh) * 2020-11-05 2021-10-21 睿生光電股份有限公司 光偵測裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206969A (ja) * 1990-11-30 1992-07-28 Semiconductor Energy Lab Co Ltd 感光装置及びその作製方法
JP2000294798A (ja) * 1993-03-22 2000-10-20 Semiconductor Energy Lab Co Ltd 薄膜トランジスタおよび半導体回路
WO2008132862A1 (ja) * 2007-04-25 2008-11-06 Sharp Kabushiki Kaisha 半導体装置およびその製造方法
WO2009144915A1 (ja) * 2008-05-29 2009-12-03 シャープ株式会社 半導体装置およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103802A1 (ja) * 2009-03-13 2010-09-16 シャープ株式会社 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206969A (ja) * 1990-11-30 1992-07-28 Semiconductor Energy Lab Co Ltd 感光装置及びその作製方法
JP2000294798A (ja) * 1993-03-22 2000-10-20 Semiconductor Energy Lab Co Ltd 薄膜トランジスタおよび半導体回路
WO2008132862A1 (ja) * 2007-04-25 2008-11-06 Sharp Kabushiki Kaisha 半導体装置およびその製造方法
WO2009144915A1 (ja) * 2008-05-29 2009-12-03 シャープ株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20130207190A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP4737956B2 (ja) 表示装置および光電変換素子
KR101280743B1 (ko) 회로 기판 및 표시 장치
US9111810B2 (en) Circuit board and display device including first and second channel layers made of different semiconductor materials
JP4678933B2 (ja) 半導体装置の作製方法
US20120241769A1 (en) Photodiode and manufacturing method for same, substrate for display panel, and display device
US20120320307A1 (en) Active matrix substrate, glass substrate, liquid crystal panel and liquid crystal display device
US20130037815A1 (en) Semiconductor device
EP2154731B1 (en) Photodetector and display device provided with same
KR20050022358A (ko) 표시 장치 및 광전 변환 소자
JPH11121731A (ja) イメージセンサ
US20120032582A1 (en) Organic electroluminescent display unit and method for fabricating the same
JP5338032B2 (ja) 電気光学装置および電子機器
WO2010100824A1 (ja) フォトダイオード、フォトダイオードを備えた表示装置及びその製造方法
US8810762B2 (en) Display device equipped with touch sensor
US8063464B2 (en) Photo detector and method for forming thereof
KR101113421B1 (ko) 액정 표시 장치
JPWO2010038511A1 (ja) 表示パネル及びこれを用いた表示装置
WO2018155284A1 (ja) 駆動回路、tft基板、表示装置
JP2008270840A (ja) 半導体装置
WO2012060320A1 (ja) 半導体装置およびその製造方法
US7388625B2 (en) Thin-film transistor array substrate and liquid crystal display device
WO2010050160A1 (ja) 半導体装置及びその製造方法
JP5312442B2 (ja) 半導体装置、イメージセンサ及び撮影機器
JP5329938B2 (ja) センサ部内蔵画像表示装置
JP2005235810A (ja) ドライバ回路及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13879231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP