WO2012060184A1 - Acoustic-instrument diaphragm - Google Patents

Acoustic-instrument diaphragm Download PDF

Info

Publication number
WO2012060184A1
WO2012060184A1 PCT/JP2011/073286 JP2011073286W WO2012060184A1 WO 2012060184 A1 WO2012060184 A1 WO 2012060184A1 JP 2011073286 W JP2011073286 W JP 2011073286W WO 2012060184 A1 WO2012060184 A1 WO 2012060184A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
acoustic
synthetic resin
polyetherimide
pei
Prior art date
Application number
PCT/JP2011/073286
Other languages
French (fr)
Japanese (ja)
Inventor
勝 田丸
光晴 矢島
Original Assignee
ナノファクトリージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノファクトリージャパン株式会社 filed Critical ナノファクトリージャパン株式会社
Publication of WO2012060184A1 publication Critical patent/WO2012060184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers
    • H04R7/125Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/029Diaphragms comprising fibres

Definitions

  • the present invention relates to a diaphragm for an acoustic device, and more particularly to a structure of a diaphragm used for an electroacoustic transducer used for a headphone, a speaker, or the like of an acoustic output device.
  • the speaker diaphragm has sufficient strength against bending stress applied at the time of large amplitude of the vibration system and peeling force applied to the joint between the diaphragm and other parts, In addition, it is required to be lightweight.
  • the material of the diaphragm is a double-layer fiber in which a thermoplastic polymer resin is applied to the surface of a polyester core fiber, and this fiber is used to make a woven or non-woven fabric.
  • a diaphragm in which a diaphragm is formed into a predetermined shape by heating and melting the woven or nonwoven fabric in a mold to bind the fibers and cooling and solidifying the woven or nonwoven fabric.
  • this acoustic diaphragm is excellent in rigidity, it is difficult to make the acoustic diaphragm extremely thin and lightweight, and all harmonic distortion, especially harmonic distortion in the high frequency range. Was not enough.
  • harmonics that appear as high-order frequency components that are integral multiples of a certain wave adversely affect clear sound quality when they appear in the high-frequency region, but in order to prevent this, a filter that reduces the high-frequency region is provided.
  • the high frequency sound region itself becomes a weakened sound and does not reproduce with high fidelity, and it is difficult to reduce this harmonic distortion in the high frequency region due to the characteristic that the reproduction output sound region is flat.
  • Patent Document 2 a speaker having a multilayer structure in which an elastomer layer 31 is provided on the front, back, or one side of a base material, and intended for low f0, low elastic modulus, and high internal loss.
  • a diaphragm 27 is proposed.
  • this diaphragm for acoustic equipment is not sufficient for total harmonic distortion, particularly harmonic distortion in a high frequency region.
  • Patent Document 3 an acoustic diaphragm having a three-layer composite sheet in which a viscoelastic film is bonded to a light metal foil and a nonwoven fabric is bonded is also proposed. was there.
  • Patent Document 4 an acoustic diaphragm using carbon nanofibers is disclosed in Patent Document 4, but there are also similar problems. .
  • the present invention has been made in view of the problems of the above-described conventional diaphragm for an acoustic device, and the object of the present invention is to maintain an output in a high frequency region at a high sound pressure in a diaphragm for an acoustic device such as a headphone or a speaker. It is to reduce the total harmonic distortion in the high frequency region. Another object is to provide a diaphragm for an acoustic device that has sufficient strength even if the thickness of the film is reduced and is lighter.
  • the invention of claim 1 is the diaphragm for acoustic equipment, wherein the upper layer and the lower layer are formed as a synthetic resin film, an intermediate layer is formed, and the intermediate layer is formed as a nonwoven fabric layer made of synthetic resin nanofibers. These are hot press-molded and adhered to each other to form a predetermined acoustic diaphragm.
  • the upper and lower synthetic resin films are polyetherimide (PEI)
  • the synthetic resin nanofibers of the intermediate layer are polyethersulfone. (PES).
  • the upper and lower synthetic resin films are polyetherimide (PEI), and the synthetic resin nanofibers of the intermediate layer are also polyetherimide ( PEI).
  • PEI polyetherimide
  • the acoustic diaphragm is a diaphragm for a headphone.
  • the acoustic diaphragm is a diaphragm for a speaker.
  • the synthetic resin film of the upper and lower layers is made sufficiently thin, and the nanofiber is used for the intermediate layer. It becomes a lightweight diaphragm for acoustic equipment, and the total harmonic distortion in the high frequency region can be reduced while maintaining the output in the high frequency region at a high sound pressure.
  • the diaphragm for acoustic equipment of claim 3 of the present invention in addition to the effect of claim 1, since the same polyetherimide (PEI) is used for the flume and the nanofiber, all the physical properties are the same, so the heating temperature The molding conditions such as the above are easy, and there is no boundary line between different substances, and the sound is not adversely affected.
  • PEI polyetherimide
  • a small, strong and lightweight headphone can be created.
  • the acoustic device diaphragm of claim 5 of the present invention in addition to the effects of claims 1 to 3, since the acoustic plate is sufficiently strong and lightweight, a relatively large surface can be formed. It can be used as a speaker such as a flat speaker.
  • FIG. 1 (a) is a front view of a headphone body portion to which a diaphragm for acoustic equipment according to an embodiment of the present invention is attached.
  • FIG. 1 (b) is a sectional view taken along line bb in FIG.
  • the expanded sectional view of the diaphragm for audio equipment of the present invention An enlarged cross-sectional view of a conventional diaphragm for an acoustic device, An enlarged cross-sectional view of a diaphragm for acoustic equipment of a comparative example, A graph of the frequency characteristics of the sound pressure of the headphones and the frequency characteristics of the harmonic distortion% in the conventional example and the example 1 using the diaphragm for acoustic equipment, Graph of sound pressure frequency characteristics and harmonic distortion% frequency characteristics of the headphone of Example 2 and Example 3 using a diaphragm for acoustic equipment, It is a comparative example using a diaphragm for sound equipment, and the graph of the frequency characteristic of the sound pressure of the headphones of Example 2, and the frequency characteristic of harmonic distortion%.
  • FIG. 1 shows a first embodiment of a diaphragm for an acoustic device according to the present invention used for a headphone of an acoustic device, and is a diagram of an acoustic main part 1 of one pair of left and right headphones.
  • FIG. 1B is a sectional view taken along line bb in FIG. As shown in FIGS.
  • the acoustic main portion 1 is provided with a circular pan-like frame 2 having a circular cavity portion 21 at the center so as to cover the acoustic main portion 1, and this circular cavity.
  • a circular flat bottom pan-shaped yoke 3 is fitted to the portion 21, and a columnar magnet (magnet) is fixed to a bottom portion 31 inside the yoke 3 so as to have a yoke inner wall 32 and a certain gap 6.
  • the acoustic diaphragm (diaphragm) 8 of the present embodiment is composed of a ball-shaped central portion 81 having a diameter of 10 mm and a peripheral portion 82 in a 10-donut shape having an outer diameter of 40 mm so as to surround the central portion 81.
  • the voice coil 7 is fixed to the bottom surface of the circular boundary 83 with 81.
  • the voice coil 7 has a cylindrical cylindrical portion 71 and a coil 72 wound thereon.
  • the coil 72 is connected to a lead wire 73 and is externally connected by a known appropriate method so as not to inhibit the vibration of the acoustic diaphragm 8. Connected with electrical signal output.
  • the coil 72 is fixed to the bottom surface of the circular boundary portion 83 of the acoustic diaphragm 8 so that the gap 6 between the yoke inner wall 32 and the outer wall 41 of the magnet 4 does not contact the yoke inner wall 32 and the outer wall 41. Then, according to the input signal of the coil 72, it vibrates in the left-right direction (arrow) in the diagram of FIG.
  • the acoustic diaphragm (diaphragm) 8 most characteristic of the present invention uses polyetherimide (PEI) as the synthetic resin film of the upper layer 84, and the synthetic resin film of the lower layer 85 is also polyetherimide (
  • the upper layer 84 and the lower layer 85 of these synthetic resin films were made of polyetherimide (PEI) having an average thickness of 10 ⁇ m.
  • the intermediate layer 86 sandwiched between the upper and lower layers 84 and 85 is made of a nonwoven fabric of polyethersulfone (PES) nanofibers 87 having an average fiber diameter of 500 nm. The thickness was 50 ⁇ m. Therefore, the overall average thickness of the acoustic diaphragm 8 is 70 ⁇ m.
  • the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a synthetic resin nanofiber nonwoven fabric is interposed in the intermediate layer. It is strong enough and lightweight.
  • FIG. 6 is a graph in which the characteristics of sound pressure (db) and total harmonic distortion (%) from the frequency 20 Hz to 30 kHz using the acoustic diaphragm 8 of Example 1 are measured by the JIS standard experimental method.
  • the total harmonic distortion (%) represents the degree (%) of the signal distortion with respect to the fundamental wave component.
  • the total harmonic distortion (%) should be small.
  • the sound felt by the ear does not feel as much noise / noise at 200 Hz or less, but often does not feel clear sound at a high frequency region of 2 kHz or more.
  • Example 2 changes the structure of the acoustic diaphragm 8 in Example 1, and the magnitude
  • polyetherimide (PEI) was used as the synthetic resin film for the upper layer 84 and polyetherimide (PEI) was also used for the synthetic resin film in the lower layer 85 as in Example 1.
  • the upper and lower layers 84 and 85 were made of synthetic resin films of polyetherimide (PEI) having an average thickness of 10 ⁇ m.
  • the difference from Example 1 was that a non-woven fabric of polyetherimide (PEI) nanofibers 87 having an average fiber diameter of 220 nm was used for the intermediate layer 86, and the average thickness of the intermediate layer 86 was 87 ⁇ m.
  • the overall average thickness of the acoustic diaphragm 8 is 107 ⁇ m.
  • This acoustic diaphragm 8 is also sufficiently strong because the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a non-woven fabric of synthetic resin nanofibers is interposed in the intermediate layer. And is lightweight.
  • the synthetic resin film and the nanofiber are made of the same polyetherimide (PEI), all the physical properties are the same, so the molding conditions such as the heating temperature are easy, and there is no boundary line between different substances. Will not be adversely affected.
  • FIG. 6 is a graph obtained by measuring the sound pressure (db) and the total harmonic distortion (%) from a frequency of 20 Hz to 30 kHz in the same manner as in Example 1. It can be seen from the graph of FIG. 6 of this experimental result that Example 2 also shows almost the same tendency as Example 1, and when compared with the conventional example of FIG. 5, both examples have substantially the same sound pressure-frequency relationship. In particular, while maintaining the output at a high sound pressure even in a high frequency region of 2 kHz to 30 kHz, the total harmonic distortion% of Example 2 is 4% at most, 28% of the conventional example of FIG. But it can be seen that it is very low compared to 10%. In this example, since the film and the nanofiber were made of the same polyetherimide (PEI), the physical properties were all the same, so the molding conditions such as the heating temperature were easy, there was no boundary between different substances, and the sound was not adversely affected. .
  • PEI polyetherimide
  • Example 3 In the third embodiment, the configuration of the acoustic diaphragm 8 in the second embodiment is changed, and the size and shape are the same.
  • polyetherimide (PEI) was used as the synthetic resin film of the upper layer 84
  • the synthetic resin film of the lower layer 85 was also the same as in Example 1 using polyetherimide (PEI).
  • the synthetic resin films for the upper and lower layers 84 and 85 were polyetherimide (PEI) having an average thickness of 10 ⁇ m.
  • Example 2 The difference from Example 2 was that a non-woven fabric of polyetherimide (PEI) nanofibers 87 having an average fiber diameter of 285 nm was used for the intermediate layer 86, and the average thickness of the intermediate layer 86 was 25 ⁇ m. Therefore, the average thickness of the entire acoustic diaphragm 8 is 457 ⁇ m.
  • This acoustic diaphragm 8 is also sufficiently strong because the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a non-woven fabric of synthetic resin nanofibers is interposed in the intermediate layer. And is lightweight.
  • PEI polyetherimide
  • FIG. 7 is a graph obtained by measuring the sound pressure (db) and the total harmonic distortion (%) from a frequency of 20 Hz to 30 kHz in the same manner as in Example 1. From the graph of FIG. 7 of the experimental results, it can be seen that the tendency is almost the same as that of Example 2 and Example 1. When compared with the conventional example of FIG. 5, both examples have almost the same sound pressure-frequency relationship. In particular, while maintaining the output at a high sound pressure even in a high frequency region of 2 kHz to 30 kHz, the total harmonic distortion% in Example 3 is 3% at most, which is 28% of the conventional example in FIG. However, it can be seen that the total harmonic distortion (%) is slightly reduced as compared with Example 2 of the acoustic diaphragm 8 made of the same material.
  • a technique called an ESD (Electro-Spray Deposition) method or an electro-spinning method has received the most attention, and the technology has been developed.
  • the nanofiber production by the ESD method the present applicant has proposed as Japanese Patent Application No. 2009-2845959. This production method uses a metal spinning nozzle to melt and pressurize a polymer material with a solvent.
  • a high-speed air jet nozzle that provides a spinning nozzle for spinning, applies a high voltage between the metal sphere and the spinning nozzle opening, and jets a high-speed air stream perpendicular to the path between the metal sphere and the spinning nozzle opening.
  • a nanofiber generator that scatters nanofibers spun from the spinning nozzle with a high-speed air-jet nozzle, and a nanofiber collector that collects nanofibers scattered from the nanofiber generator The nanofiber spun toward the metal sphere from the spinning nozzle opening of the nanofiber generator is changed by the high-speed airflow of the high-speed airflow injection nozzle to change the nanofiber. By scattered toward the Iba collecting part which collected as nonwoven collecting surface of the collecting portion.
  • the acoustic diaphragm sandwiched between the nanofiber nonwoven fabrics of Example 1 and Example 3 of the present invention with a thin film is an ordinary type of acoustic diaphragm, and the type of nanofibers in the intermediate layer Regardless of the thickness, the total harmonic distortion in the high frequency region can be reduced while maintaining the output in the high frequency region at a high sound pressure.
  • the synthetic resin films on the upper and lower layers are made sufficiently thin, and nanofibers are used for the intermediate layer, so that the diaphragm has a sufficient strength and a lighter weight for acoustic equipment. Suitable as a board.
  • the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.
  • the material of the synthetic resin film or nanofiber is polyetherimide (PEI) or polyethersulfone (PES), but other materials such as polyester or kepla (arimide fiber) may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

[Objective] To provide an acoustic-instrument diaphragm wherein all the higher harmonics distortions are reduced in the high-frequency range, while maintaining output in the high-frequency range to be a high sound-pressure. [Solution] The acoustic-instrument diaphragm has an upper layer and a lower layer, made of synthetic resin film, forming an intermediate layer, has the intermediate layer made of a nonwoven-fabric layer comprising synthetic resin nanofibers, and has these layers heating press-molded to adhere them with each other, to form an acoustic diaphragm with a prescribed shape. The synthetic resin film of the upper and lower layers is made of polyetherimide (PEI), and the synthetic resin nanofibers of the intermediate layer are made of polyetherimide (PEI) or polyethersulfone (PES).

Description

音響機器用振動板Diaphragm for audio equipment
 本発明は、音響機器用振動板に関し、特に、音響出力機器等のヘッドホーンやスピーカー等に用いる電気音響変換機器に用いる振動板の構造に関する。 The present invention relates to a diaphragm for an acoustic device, and more particularly to a structure of a diaphragm used for an electroacoustic transducer used for a headphone, a speaker, or the like of an acoustic output device.
 近年、オーディオ関連分野においては、再生音楽ソースのデジタル化に伴い、音響出力機器としてのヘッドホーンやスピーカには、従来よりも更に高出力の音圧、低歪み率、平坦性の特性が要求される。又、再生音の高音質化が望まれており、音響特性を左右するこれら音響機器用振動板はますます重要視されている。
 ヘッドホーンやスピーカの音響特性面から見ると、これら音響機器用振動板は使用する周波数帯域にわたってピストン運動することが理想とされるが、振動中に振動板が変形したり分割振動が生ずると、音圧-周波数特性、歪み率、位相特性等が劣化し、高忠実再生の妨げとなる。又、耐入力性の面から見ると、スピーカ振動板は振動系の大振幅時に加わる曲げ応力や、振動板と他の部品との接合部に加わる剥離力に対して十分な強度を有し、且つ軽量であることが要求されている。
In recent years, in the audio-related field, along with the digitization of playback music sources, headphones and speakers as sound output devices are required to have higher output sound pressure, lower distortion rate, and flatness than ever before. The In addition, there is a demand for higher sound quality of reproduced sound, and these diaphragms for acoustic equipment that influence the acoustic characteristics are increasingly regarded as important.
From the viewpoint of the acoustic characteristics of headphones and speakers, it is ideal that these diaphragms for acoustic equipment perform piston movement over the frequency band to be used, but when the diaphragm is deformed or divided vibration occurs during vibration, Sound pressure-frequency characteristics, distortion rate, phase characteristics, etc. are deteriorated, which hinders high fidelity reproduction. Also, from the viewpoint of input resistance, the speaker diaphragm has sufficient strength against bending stress applied at the time of large amplitude of the vibration system and peeling force applied to the joint between the diaphragm and other parts, In addition, it is required to be lightweight.
 この振動板の材質は、特許文献1に開示されているように、ポリエステルのコア繊維の表面に熱可塑性高分子樹脂を塗布した二重層の繊維を作り、この繊維を用いて織布又は不織布にし、この織布又は不織布を金型内で加熱溶融して繊維間を結着させ、そして織布又は不織布を冷却固化することにより所定の形状に振動板を成形した振動板が提案されている。この音響用振動板は剛性に優れてはいるが、音響用振動板の厚さを極度に薄くし軽量にすることが困難で、全高調波の歪み、特に、高周波数領域での高調波歪みに対しては充分ではなかった。
 特に、ある波動の整数倍の高次の周波数成分は出現する高調波は、高周波領域で出現するとクリアな音質に悪影響を及ぼすが、これを阻止するために、高周波領域を削減するフィルターを設けると、高周波音域自体が弱まりこもった音となり高忠実再生にはならず、再生出力音域が平坦性のある特性上で高周波領域この高調波歪はを低減することは困難であった。
As disclosed in Patent Document 1, the material of the diaphragm is a double-layer fiber in which a thermoplastic polymer resin is applied to the surface of a polyester core fiber, and this fiber is used to make a woven or non-woven fabric. There has been proposed a diaphragm in which a diaphragm is formed into a predetermined shape by heating and melting the woven or nonwoven fabric in a mold to bind the fibers and cooling and solidifying the woven or nonwoven fabric. Although this acoustic diaphragm is excellent in rigidity, it is difficult to make the acoustic diaphragm extremely thin and lightweight, and all harmonic distortion, especially harmonic distortion in the high frequency range. Was not enough.
In particular, harmonics that appear as high-order frequency components that are integral multiples of a certain wave adversely affect clear sound quality when they appear in the high-frequency region, but in order to prevent this, a filter that reduces the high-frequency region is provided. The high frequency sound region itself becomes a weakened sound and does not reproduce with high fidelity, and it is difficult to reduce this harmonic distortion in the high frequency region due to the characteristic that the reproduction output sound region is flat.
 また、特許文献2に開示されているように、基材の表、裏または片面にエラストマー層31を設けた複層構造とし、低f0化、低弾性率化、高内部損失化を志向したスピーカ用振動板27が提案している。しかし、この音響機器用振動板も、全高調波の歪み、特に、高周波数領域での高調波歪みに対しては充分ではなかった。
 さらに、特許文献3に開示されているように、軽金属箔体に粘弾性フィルムを貼り合わせさらに不織布を貼り合わせた3層の複合シートにした音響用振動板も提案されているが、同様の問題があった。
 なお、弾性率、内部損失、強度に優れて音響用振動板を作るために、炭素ナノファイバーを使用した音響用振動板は、特許文献4に開示されているが、やはり同様の問題があった。
Further, as disclosed in Patent Document 2, a speaker having a multilayer structure in which an elastomer layer 31 is provided on the front, back, or one side of a base material, and intended for low f0, low elastic modulus, and high internal loss. A diaphragm 27 is proposed. However, this diaphragm for acoustic equipment is not sufficient for total harmonic distortion, particularly harmonic distortion in a high frequency region.
Furthermore, as disclosed in Patent Document 3, an acoustic diaphragm having a three-layer composite sheet in which a viscoelastic film is bonded to a light metal foil and a nonwoven fabric is bonded is also proposed. was there.
In addition, in order to make an acoustic diaphragm excellent in elastic modulus, internal loss, and strength, an acoustic diaphragm using carbon nanofibers is disclosed in Patent Document 4, but there are also similar problems. .
特開平7-135698号公報JP-A-7-135698 特開2004-88297号公報JP 2004-88297 A 公開実用新案昭61-57798号公報Published Utility Model No. 61-57798 特表2009-514481号公報JP-T 2009-54481
 前述した従来の音響機器用振動板の問題点に鑑みなされたもので、本発明の課題は、ヘッドホーンやスピーカの音響機器用振動板において、高周波数領域での出力を高音圧に維持しながら、高周波領域での全高調波歪を低減することにある。
 また、他の課題として、フィルムの厚さを薄くしても強度が充分にあり、且つ、より軽量な音響機器用振動板を提供することにもある。
The present invention has been made in view of the problems of the above-described conventional diaphragm for an acoustic device, and the object of the present invention is to maintain an output in a high frequency region at a high sound pressure in a diaphragm for an acoustic device such as a headphone or a speaker. It is to reduce the total harmonic distortion in the high frequency region.
Another object is to provide a diaphragm for an acoustic device that has sufficient strength even if the thickness of the film is reduced and is lighter.
 上記課題を解決するために、請求項1の発明は、音響機器用振動板において、上層と下層を合成樹脂フィルムとして中間層を形成し、該中間層を合成樹脂のナノファイバーからなる不織布層として、これらを加熱プレス成形して、相互に接着させて所定の音響用振動板の形状したことを特徴とする。
 請求項2の発明は、請求項1に記載の音響機器用振動板において、前記上下層の合成樹脂フィルムをポリエーテルイミド(PEI)とし、前記中間層の合成樹脂のナノファイバーをポリエーテルサルホン(PES)であることを特徴とする。
 請求項3の発明は、請求項1に記載の音響機器用振動板において、前記上下層の合成樹脂フィルムをポリエーテルイミド(PEI)とし、前記中間層の合成樹脂のナノファイバーもポリエーテルイミド(PEI)であることを特徴とする。
 請求項4の発明は、請求項1又は2又は3に記載の音響機器用振動板において、前記音響用振動板は、ヘッドホーン用のダイヤフラムであることを特徴とする。
 請求項5の発明は、請求項1又は2又は3に記載の音響機器用振動板において、前記音響用振動板は、スピーカー用の振動板であることを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 is the diaphragm for acoustic equipment, wherein the upper layer and the lower layer are formed as a synthetic resin film, an intermediate layer is formed, and the intermediate layer is formed as a nonwoven fabric layer made of synthetic resin nanofibers. These are hot press-molded and adhered to each other to form a predetermined acoustic diaphragm.
According to a second aspect of the present invention, in the diaphragm for an acoustic device according to the first aspect, the upper and lower synthetic resin films are polyetherimide (PEI), and the synthetic resin nanofibers of the intermediate layer are polyethersulfone. (PES).
According to a third aspect of the invention, in the acoustic device diaphragm according to the first aspect, the upper and lower synthetic resin films are polyetherimide (PEI), and the synthetic resin nanofibers of the intermediate layer are also polyetherimide ( PEI).
According to a fourth aspect of the present invention, in the acoustic device diaphragm according to the first, second, or third aspect, the acoustic diaphragm is a diaphragm for a headphone.
According to a fifth aspect of the present invention, in the acoustic device diaphragm according to the first, second, or third aspect, the acoustic diaphragm is a diaphragm for a speaker.
 本発明の請求項1及び2の音響機器用振動板によれば、上下層の合成樹脂フィルムを充分に薄くして、中間層にナノファイバーを使用したことにより強度が充分にあり、且つ、より軽量な音響機器用振動板となり、また、高周波数領域での出力を高音圧に維持しながら、高周波領域での全高調波歪を低減することができる。
 また、本発明の請求項3の音響機器用振動板によれば、請求項1の効果に加えて、フルムとナノファイバーを同じポリエーテルイミド(PEI)にしたので、物性が全て同じなので加熱温度等の成形条件が容易であり、異なった物質の境界線がなく音響に悪影響を与えない。
 更に、本発明の請求項4の音響機器用振動板によれば、請求項1乃至3の効果に加えて、小型で強靱であり且つ軽量なヘッドホーンを作成できる。
 また、本発明の請求項5の音響機器用振動板によれば、請求項1乃至3の効果に加えて、充分に強度があり且つ軽量な音響板であるので、比較的大きな面を形成可能であり、平面スピーカー等のスピーカーとして使用できる。
According to the diaphragm for acoustic equipment of claims 1 and 2 of the present invention, the synthetic resin film of the upper and lower layers is made sufficiently thin, and the nanofiber is used for the intermediate layer. It becomes a lightweight diaphragm for acoustic equipment, and the total harmonic distortion in the high frequency region can be reduced while maintaining the output in the high frequency region at a high sound pressure.
According to the diaphragm for acoustic equipment of claim 3 of the present invention, in addition to the effect of claim 1, since the same polyetherimide (PEI) is used for the flume and the nanofiber, all the physical properties are the same, so the heating temperature The molding conditions such as the above are easy, and there is no boundary line between different substances, and the sound is not adversely affected.
Furthermore, according to the diaphragm for acoustic equipment of the fourth aspect of the present invention, in addition to the effects of the first to third aspects, a small, strong and lightweight headphone can be created.
According to the acoustic device diaphragm of claim 5 of the present invention, in addition to the effects of claims 1 to 3, since the acoustic plate is sufficiently strong and lightweight, a relatively large surface can be formed. It can be used as a speaker such as a flat speaker.
図1(a)は、本発明の実施例の音響機器用振動板を取り付けたヘッドホーン本体部の正面図、図1(b)は(a)のb-b線での断面図、FIG. 1 (a) is a front view of a headphone body portion to which a diaphragm for acoustic equipment according to an embodiment of the present invention is attached. FIG. 1 (b) is a sectional view taken along line bb in FIG. 本発明の音響機器用振動板の拡大断面図、The expanded sectional view of the diaphragm for audio equipment of the present invention, 従来例の音響機器用振動板の拡大断面図、An enlarged cross-sectional view of a conventional diaphragm for an acoustic device, 比較例の音響機器用振動板の拡大断面図、An enlarged cross-sectional view of a diaphragm for acoustic equipment of a comparative example, 音響機器用振動板を使用した従来例と実施例1とのヘッドホーンの音圧の周波数特性と高調波歪%の周波数特性のグラフ、A graph of the frequency characteristics of the sound pressure of the headphones and the frequency characteristics of the harmonic distortion% in the conventional example and the example 1 using the diaphragm for acoustic equipment, 音響機器用振動板を使用した実施例2、実施例3とのヘッドホーンの音圧の周波数特性と高調波歪%の周波数特性のグラフ、Graph of sound pressure frequency characteristics and harmonic distortion% frequency characteristics of the headphone of Example 2 and Example 3 using a diaphragm for acoustic equipment, 音響機器用振動板を使用した比較例、実施例2とのヘッドホーンの音圧の周波数特性と高調波歪%の周波数特性のグラフである。It is a comparative example using a diaphragm for sound equipment, and the graph of the frequency characteristic of the sound pressure of the headphones of Example 2, and the frequency characteristic of harmonic distortion%.
1・・音響主要部、
2・・枠体、21・・円形空洞部、22・・音響板固定部
3・・ヨーク、31・・底部、32・・ヨーク内壁、
4・・磁石(マグネット)、41・・外壁
5・・プレート
6・・隙間
7・・ボイスコイル、71・・筒体、72・・コイル、73・・リード線
8・・音響振動板(ダイヤフラム)、81・・中心部、82・・周辺部、
83・・円形境界部、84・・上層(合成樹脂フィルム)、
85・・下層(合成樹脂フィルム)、86・・中間層、
87,92・・ナノファイバー
9・・従来.比較例の音響振動板(ダイヤフラム)、91・・比較例の合成樹脂フィルム
1. The main part of sound,
2 .. Frame body 21.. Circular cavity portion 22.. Sound plate fixing portion 3.. Yoke 31.. Bottom portion 32.
··· Magnet (magnet) 41 · · Outer wall 5 · Plate 6 · · Clearance 7 · · Voice coil 71 · · Cylindrical body · 72 · · Coil 73 · · Lead wire 8 · · Acoustic diaphragm (diaphragm) ), 81 .. Central part, 82 .. Peripheral part,
83 ... Circular border, 84 ... Upper layer (synthetic resin film),
85..Lower layer (synthetic resin film), 86..Intermediate layer,
87,92 ... Nanofiber 9 ... Conventional. Acoustic diaphragm (diaphragm) of comparative example, 91 .. Synthetic resin film of comparative example
 本発明の音響機器用振動板の好適な実施例を図面を参照して説明する。
 [実施例1]
 図1は、本発明の音響機器用振動板の実施例1を、音響機器のヘッドホーンに用いたもので、左右に1対ある一方のヘッドホーンの音響主要部1の図で、図1(a)その正面図、図1(b)は図1(a)でのb-b線での断面図である。
 音響主要部1は、図1(a)(b)に示すように、音響主要部1を覆うように、中央に円形空洞部21のある円形鍋状の枠体2が設けられ、この円形空洞部21には円形平底鍋状のヨーク3が嵌合され、このヨーク3の内側の底部31にヨーク内壁32と一定の隙間6を有するように円柱状の磁石(マグネット)が固着されている。
A preferred embodiment of a diaphragm for acoustic equipment according to the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 shows a first embodiment of a diaphragm for an acoustic device according to the present invention used for a headphone of an acoustic device, and is a diagram of an acoustic main part 1 of one pair of left and right headphones. a) A front view thereof, FIG. 1B is a sectional view taken along line bb in FIG.
As shown in FIGS. 1 (a) and 1 (b), the acoustic main portion 1 is provided with a circular pan-like frame 2 having a circular cavity portion 21 at the center so as to cover the acoustic main portion 1, and this circular cavity. A circular flat bottom pan-shaped yoke 3 is fitted to the portion 21, and a columnar magnet (magnet) is fixed to a bottom portion 31 inside the yoke 3 so as to have a yoke inner wall 32 and a certain gap 6.
本実施例の音響振動板(ダイヤフラム)8は、直径10mmのボール状の中心部81とこれを囲むように外径直径40mmの10ドーナツ状に周辺部82にからなり、中心部81と周辺部81との円形境界部83の底面にはボイスコイル7が固着されている。
 このボイスコイル7は円柱状の筒状部71でコイル72が巻いてあり、このコイルに72はリード線73に接続され、音響振動板8の振動を阻害しないような公知適宜の方法で外部の電気信号出力と接続される。また、筒状部71でコイル72はヨーク内壁32と磁石4の外壁41の隙間6にヨーク内壁32と外壁41とに接触しないようように、音響振動板8の円形境界部83の底面に固着され、コイル72の入力信号にしたがって、図1(b)の図で左右方向(矢印)に振動する。
The acoustic diaphragm (diaphragm) 8 of the present embodiment is composed of a ball-shaped central portion 81 having a diameter of 10 mm and a peripheral portion 82 in a 10-donut shape having an outer diameter of 40 mm so as to surround the central portion 81. The voice coil 7 is fixed to the bottom surface of the circular boundary 83 with 81.
The voice coil 7 has a cylindrical cylindrical portion 71 and a coil 72 wound thereon. The coil 72 is connected to a lead wire 73 and is externally connected by a known appropriate method so as not to inhibit the vibration of the acoustic diaphragm 8. Connected with electrical signal output. Further, in the cylindrical portion 71, the coil 72 is fixed to the bottom surface of the circular boundary portion 83 of the acoustic diaphragm 8 so that the gap 6 between the yoke inner wall 32 and the outer wall 41 of the magnet 4 does not contact the yoke inner wall 32 and the outer wall 41. Then, according to the input signal of the coil 72, it vibrates in the left-right direction (arrow) in the diagram of FIG.
 本発明の最も特徴とする音響振動板(ダイヤフラム)8は、図2に示すように、上層84の合成樹脂フィルムとしてポリエーテルイミド(PEI)を用い、下層85の合成樹脂フィルムもポリエーテルイミド(PEI)を用い、これら合成樹脂フィルムの上層84、下層85は平均厚さ10μmのポリエーテルイミド(PEI)を使用した。
 また、上下層84、85の合成樹脂フィルムに挟まれた中間層86には、平均繊維径500nmのポリエーテルサルホン(PES)のナノファイバー87の不織布を使用し、その中間層86の平均厚さを50μmにした。 したがって、音響振動板8の全体の平均厚さは70μmである。この音響振動板(ダイヤフラム)8は、上層84の合成樹脂フィルム、及び、下層85の合成樹脂フィルムは充分に薄く強度はないが、中間層に合成樹脂のナノファイバーの不織布を介在させたので、充分に強度があり、且つ、軽量である。
As shown in FIG. 2, the acoustic diaphragm (diaphragm) 8 most characteristic of the present invention uses polyetherimide (PEI) as the synthetic resin film of the upper layer 84, and the synthetic resin film of the lower layer 85 is also polyetherimide ( The upper layer 84 and the lower layer 85 of these synthetic resin films were made of polyetherimide (PEI) having an average thickness of 10 μm.
The intermediate layer 86 sandwiched between the upper and lower layers 84 and 85 is made of a nonwoven fabric of polyethersulfone (PES) nanofibers 87 having an average fiber diameter of 500 nm. The thickness was 50 μm. Therefore, the overall average thickness of the acoustic diaphragm 8 is 70 μm. In this acoustic diaphragm (diaphragm) 8, the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a synthetic resin nanofiber nonwoven fabric is interposed in the intermediate layer. It is strong enough and lightweight.
 この実施例1の音響振動板8を用いた周波数20Hzから30kHzまでの、音圧(db)及び全高調波歪(%)の特性をJIS規格の実験方法にて計測したグラフが図6である。ここで、全高調波歪(%)とは、基本波成分に対する信号の歪みの程度(%)を表すもので、理想的には全高調波歪(%)は少ないほうがよく、特に、人の耳で感じる音も全高調波歪(%)については、200Hz以下ではあまり雑音・騒音と感じないが、2kHz以上の高周波数領域ではクリヤーな音とは感じない場合が多い。
 このため、2kHz以上の高周波数領域での全高調波歪(%)を感じなくするために、従来は高周波数領域の音力を低くする手段も取られているが、これでは音が高忠実再生とはいえず、こもった音となり高周波数領域ではクリヤーな音とは感じられない。
FIG. 6 is a graph in which the characteristics of sound pressure (db) and total harmonic distortion (%) from the frequency 20 Hz to 30 kHz using the acoustic diaphragm 8 of Example 1 are measured by the JIS standard experimental method. . Here, the total harmonic distortion (%) represents the degree (%) of the signal distortion with respect to the fundamental wave component. Ideally, the total harmonic distortion (%) should be small. Regarding the total harmonic distortion (%), the sound felt by the ear does not feel as much noise / noise at 200 Hz or less, but often does not feel clear sound at a high frequency region of 2 kHz or more.
For this reason, in order to avoid feeling the total harmonic distortion (%) in the high frequency region of 2 kHz or higher, conventionally, a means for lowering the sound power in the high frequency region has been taken, but this makes the sound highly faithful. It cannot be said to be replayed, but it becomes a muffled sound and does not feel clear in the high frequency range.
 本実施例1の効果を確認するために、周波数20Hzから30kHzまでの、音圧(db)及び全高調波歪(%)を測定したが、図3に示すような、効果を比較するために、従来例として、平均厚さが50μmの1層のポリエーテルイミド(PEI)の合成樹脂フィルム9を用いて、これら2例を同じスケールで図6に共にグラフにしてある。
 この実験結果のグラフから判ることは、実施例1と従来例とを比較すると、両例は音圧-周波数の関係をほぼ同じに保ち、特に、2kHzから30kHzの高周波数領域でも出力を高音圧に維持しながら、本実施例1の全高調波歪%は多くても2~3%で、従来例の28%、平均でも10%と比べて極めて低いことが判る。
In order to confirm the effect of the first embodiment, sound pressure (db) and total harmonic distortion (%) from a frequency of 20 Hz to 30 kHz were measured. In order to compare the effects as shown in FIG. As a conventional example, a two-layer polyetherimide (PEI) synthetic resin film 9 having an average thickness of 50 μm is used, and these two examples are graphed on the same scale in FIG.
From the graph of this experimental result, comparing Example 1 and the conventional example, both examples maintain the same sound pressure-frequency relationship, and in particular, the output is high even in the high frequency region from 2 kHz to 30 kHz. It can be seen that the total harmonic distortion% of Example 1 is at most 2 to 3%, which is very low compared with 28% of the conventional example and 10% on average.
 [実施例2]
 実施例2は、実施例1での音響振動板8の構成を変えたもので大きさ形状は同じである。図2において、実施例2では、上層84の合成樹脂フィルムとしてポリエーテルイミド(PEI)を用い、下層85の合成樹脂フィルムもポリエーテルイミド(PEI)を用いたのは実施例1と同じであり、これら上下層84,85の合成樹脂フィルムは平均厚さ10μmのポリエーテルイミド(PEI)を使用した。
 実施例1と異なるのは、中間層86に平均繊維径220nmのポリエーテルイミド(PEI)のナノファイバー87の不織布を使用し、その中間層86の平均厚さを87μmにした。したがって、音響振動板8の全体の平均厚さは107μmである。この音響振動板8も、上層84の合成樹脂フィルム、及び、下層85の合成樹脂フィルムは充分に薄く強度はないが、中間層に合成樹脂のナノファイバーの不織布を介在させたので、充分に強度があり、且つ、軽量である。
 なお、実施例2では、合成樹脂フィルムとナノファイバーを同じポリエーテルイミド(PEI)にしたので、物性が全て同じなので加熱温度等の成形条件が容易であり、異なった物質の境界線がなく音響に悪影響を与えない。
[Example 2]
Example 2 changes the structure of the acoustic diaphragm 8 in Example 1, and the magnitude | size shape is the same. In FIG. 2, in Example 2, polyetherimide (PEI) was used as the synthetic resin film for the upper layer 84 and polyetherimide (PEI) was also used for the synthetic resin film in the lower layer 85 as in Example 1. The upper and lower layers 84 and 85 were made of synthetic resin films of polyetherimide (PEI) having an average thickness of 10 μm.
The difference from Example 1 was that a non-woven fabric of polyetherimide (PEI) nanofibers 87 having an average fiber diameter of 220 nm was used for the intermediate layer 86, and the average thickness of the intermediate layer 86 was 87 μm. Therefore, the overall average thickness of the acoustic diaphragm 8 is 107 μm. This acoustic diaphragm 8 is also sufficiently strong because the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a non-woven fabric of synthetic resin nanofibers is interposed in the intermediate layer. And is lightweight.
In Example 2, since the synthetic resin film and the nanofiber are made of the same polyetherimide (PEI), all the physical properties are the same, so the molding conditions such as the heating temperature are easy, and there is no boundary line between different substances. Will not be adversely affected.
 これを、実施例1と同様に、周波数20Hzから30kHzまでの音圧(db)及び全高調波歪(%)を測定してグラフにしたのが図6である。
 この実験結果の図6のグラフから判ることは、実施例2も実施例1とほぼ同様の傾向を示し、図5の従来例とを比較すると、両例は音圧-周波数の関係をほぼ同じに保ち、特に、2kHzから30kHzの高周波数領域でも出力を高音圧に維持しながら、本実施例2の全高調波歪%は多くても4%で、図5の従来例の28%、平均でも10%と比べて極めて低いことが判る。本実施例ではフィルムとナノファイバーを同じポリエーテルイミド(PEI)としたので、物性が全て同じなので加熱温度等の成形条件が容易であり、異なった物質の境界線がなく音響に悪影響を与えない。
FIG. 6 is a graph obtained by measuring the sound pressure (db) and the total harmonic distortion (%) from a frequency of 20 Hz to 30 kHz in the same manner as in Example 1.
It can be seen from the graph of FIG. 6 of this experimental result that Example 2 also shows almost the same tendency as Example 1, and when compared with the conventional example of FIG. 5, both examples have substantially the same sound pressure-frequency relationship. In particular, while maintaining the output at a high sound pressure even in a high frequency region of 2 kHz to 30 kHz, the total harmonic distortion% of Example 2 is 4% at most, 28% of the conventional example of FIG. But it can be seen that it is very low compared to 10%. In this example, since the film and the nanofiber were made of the same polyetherimide (PEI), the physical properties were all the same, so the molding conditions such as the heating temperature were easy, there was no boundary between different substances, and the sound was not adversely affected. .
 さらに、図6のグラフでは、本実施例1の効果を比較するために比較例を作成して実験した。これは、実施例1の下層を除いたもので、図4に示すような、上層84と同じ合成樹脂フィルム91として平均厚さ10μmのポリエーテルイミド(PEI)を用い、その合成樹脂フィルム91下面に、平均繊維径500nmのポリエーテルサルホン(PES)のナノファイバー87の不織布を接着して固定したもので、それを覆うフィルムはない。
 この実験結果のグラフから判ることは、比較例は音圧-周波数の関係をほぼ同じに保って、2kHzから30kHzの高周波数領域でも出力を高音圧に維持しているが、比較例の全高調波歪%は4%以上の高い全高調波歪率あることが判り、ナノファイバー不織布の両面をサンドイッチ状に覆わないと全高調波歪が低減しないことが判る。
Furthermore, in the graph of FIG. 6, in order to compare the effect of the present Example 1, it experimented by making a comparative example. This is obtained by removing the lower layer of Example 1, and using polyetherimide (PEI) having an average thickness of 10 μm as the same synthetic resin film 91 as the upper layer 84 as shown in FIG. In addition, a non-woven fabric of polyethersulfone (PES) nanofibers 87 having an average fiber diameter of 500 nm is bonded and fixed, and there is no film to cover it.
It can be seen from the graph of this experimental result that the comparative example maintains the same relationship between the sound pressure and the frequency, and the output is maintained at a high sound pressure even in a high frequency region from 2 kHz to 30 kHz. It can be seen that the wave distortion% is a high total harmonic distortion ratio of 4% or more, and that the total harmonic distortion cannot be reduced unless both surfaces of the nanofiber nonwoven fabric are covered in a sandwich shape.
 [実施例3]
 実施例3も、実施例2での音響振動板8の構成を変えたもので大きさ形状は同じである。図2において実施例2では、上層84の合成樹脂フィルムとしてポリエーテルイミド(PEI)を用い、下層85の合成樹脂フィルムもポリエーテルイミド(PEI)を用いたのは実施例1と同じであり、これら上下層84,85の合成樹脂フィルムは平均厚さ10μmのポリエーテルイミド(PEI)を使用した。
 実施例2と異なるのは、中間層86に平均繊維径285nmのポリエーテルイミド(PEI)のナノファイバー87の不織布を使用し、その中間層86の平均厚さを25μmにした。したがって、音響振動板8の全体の平均厚さは457μmである。この音響振動板8も、上層84の合成樹脂フィルム、及び、下層85の合成樹脂フィルムは充分に薄く強度はないが、中間層に合成樹脂のナノファイバーの不織布を介在させたので、充分に強度があり、且つ、軽量である。
[Example 3]
In the third embodiment, the configuration of the acoustic diaphragm 8 in the second embodiment is changed, and the size and shape are the same. In FIG. 2, in Example 2, polyetherimide (PEI) was used as the synthetic resin film of the upper layer 84, and the synthetic resin film of the lower layer 85 was also the same as in Example 1 using polyetherimide (PEI). The synthetic resin films for the upper and lower layers 84 and 85 were polyetherimide (PEI) having an average thickness of 10 μm.
The difference from Example 2 was that a non-woven fabric of polyetherimide (PEI) nanofibers 87 having an average fiber diameter of 285 nm was used for the intermediate layer 86, and the average thickness of the intermediate layer 86 was 25 μm. Therefore, the average thickness of the entire acoustic diaphragm 8 is 457 μm. This acoustic diaphragm 8 is also sufficiently strong because the synthetic resin film of the upper layer 84 and the synthetic resin film of the lower layer 85 are sufficiently thin and not strong, but a non-woven fabric of synthetic resin nanofibers is interposed in the intermediate layer. And is lightweight.
 これを、実施例1と同様に、周波数20Hzから30kHzまでの音圧(db)及び全高調波歪(%)を測定してグラフにしたのが図7である。
 この実験結果の図7のグラフから判ることは、実施例2や実施例1とほぼ同様の傾向を示し、図5の従来例とを比較すると、両例は音圧-周波数の関係をほぼ同じに保ち、特に、2kHzから30kHzの高周波数領域でも出力を高音圧に維持しながら、本実施例3の全高調波歪%は多くても3%で、図5の従来例の28%、平均でも10%と比べて極めて低いことが判り、更に、同じ素材の音響振動板8の実施例2と比べても若干全高調波歪(%)が低減していることが判る。
FIG. 7 is a graph obtained by measuring the sound pressure (db) and the total harmonic distortion (%) from a frequency of 20 Hz to 30 kHz in the same manner as in Example 1.
From the graph of FIG. 7 of the experimental results, it can be seen that the tendency is almost the same as that of Example 2 and Example 1. When compared with the conventional example of FIG. 5, both examples have almost the same sound pressure-frequency relationship. In particular, while maintaining the output at a high sound pressure even in a high frequency region of 2 kHz to 30 kHz, the total harmonic distortion% in Example 3 is 3% at most, which is 28% of the conventional example in FIG. However, it can be seen that the total harmonic distortion (%) is slightly reduced as compared with Example 2 of the acoustic diaphragm 8 made of the same material.
 なお、実施例1乃至3に使用するナノファイバーは、一般的に直径が1ミクロン(=1,000nm)以下の太さの繊維であると定義されるナノファイバーで、ナノファイバーの製造法としては、ESD(Electro-Spray Deposition)法、或いは、エレクトロ・スピンニング法と呼ばれる技法が最も注目され、その技術が開発されている。
 このESD法によるナノファイバーの製造として、本出願人により特願2009-2845959号として提案されているが、この製造法は、高分子材料を溶媒により溶融し加圧して金属製の紡出ノズルから紡出する紡出ノズルを設け、金属球と紡出ノズル開口との間に高電圧を印加し、金属球と紡出ノズル開口との経路に直交するように高速気流を噴出する高速気流噴射ノズルを設け、紡出ノズルから紡出するナノファイバーを高速気流噴射ノズルにより飛散させるナノファイバー生成部を構成し、ナノファイバー生成部からの飛散するナノファイバーを捕集するナノファイバー捕集部を構成し、ナノファイバー生成部の紡出ノズル開口からの金属球に向かって紡出されるナノファイバーを、高速気流噴射ノズルの高速気流によって進路を変更してナノファイバー捕集部に向けて飛散させて、捕集部の捕集面で不織布として捕集するものである。
In addition, the nanofiber used in Examples 1 to 3 is a nanofiber that is generally defined as a fiber having a diameter of 1 micron (= 1,000 nm) or less. A technique called an ESD (Electro-Spray Deposition) method or an electro-spinning method has received the most attention, and the technology has been developed.
As the nanofiber production by the ESD method, the present applicant has proposed as Japanese Patent Application No. 2009-2845959. This production method uses a metal spinning nozzle to melt and pressurize a polymer material with a solvent. A high-speed air jet nozzle that provides a spinning nozzle for spinning, applies a high voltage between the metal sphere and the spinning nozzle opening, and jets a high-speed air stream perpendicular to the path between the metal sphere and the spinning nozzle opening. A nanofiber generator that scatters nanofibers spun from the spinning nozzle with a high-speed air-jet nozzle, and a nanofiber collector that collects nanofibers scattered from the nanofiber generator The nanofiber spun toward the metal sphere from the spinning nozzle opening of the nanofiber generator is changed by the high-speed airflow of the high-speed airflow injection nozzle to change the nanofiber. By scattered toward the Iba collecting part which collected as nonwoven collecting surface of the collecting portion.
 以上説明したように、本発明の実施例1及び実施例3のナノファイバー不織布で薄いフィルムで挟んだ音響振動板は、通常の厚さの音響振動板であれば、中間層のナノファイバーの種類や厚さに関わらず、高周波数領域での出力を高音圧に維持しながら、高周波領域での全高調波歪を低減することができる。
 また、上下層の合成樹脂フィルムを充分に薄くして、中間層にナノファイバーを使用したことにより強度が充分にあり、且つ、より軽量な音響機器用振動板となり、特に、ヘッドホーンの音響振動板としては適している。勿論、ヘッドホーン以外にも携帯電話のスピーカや、強度があることからのテレビの平面スピーカーの音響振動板にも適している。
 なお、本発明の特徴を損うものでなければ、上記の実施例に限定されるものでないことは勿論である。例えば、合成樹脂フィルムやナノファイバーの素材をポリエーテルイミド(PEI)や、ポリエーテルサルホン(PES)としたが、他にポリエステルやケプラ(アリミド繊維)等でも良い。
As described above, the acoustic diaphragm sandwiched between the nanofiber nonwoven fabrics of Example 1 and Example 3 of the present invention with a thin film is an ordinary type of acoustic diaphragm, and the type of nanofibers in the intermediate layer Regardless of the thickness, the total harmonic distortion in the high frequency region can be reduced while maintaining the output in the high frequency region at a high sound pressure.
In addition, the synthetic resin films on the upper and lower layers are made sufficiently thin, and nanofibers are used for the intermediate layer, so that the diaphragm has a sufficient strength and a lighter weight for acoustic equipment. Suitable as a board. Of course, in addition to the headphones, it is also suitable for speakers of mobile phones and acoustic diaphragms of flat speakers of televisions because of their strength.
Needless to say, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired. For example, the material of the synthetic resin film or nanofiber is polyetherimide (PEI) or polyethersulfone (PES), but other materials such as polyester or kepla (arimide fiber) may be used.

Claims (5)

  1.  上層と下層を合成樹脂フィルムとして中間層を形成し、該中間層を合成樹脂のナノファイバーからなる不織布層として、これらを加熱プレス成形して、相互に接着させて所定の音響用振動板の形状したことを特徴とする音響機器用振動板。 Forming an intermediate layer with the upper and lower layers as synthetic resin films, forming the intermediate layer as a non-woven fabric layer made of synthetic resin nanofibers, heat-pressing them, and bonding them together to form a predetermined acoustic diaphragm A diaphragm for acoustic equipment, characterized by
  2.  前記上下層の合成樹脂フィルムをポリエーテルイミド(PEI)とし、前記中間層の合成樹脂のナノファイバーをポリエーテルサルホン(PES)であることを特徴とする請求項1に記載の音響機器用振動板。 2. The vibration for acoustic equipment according to claim 1, wherein the synthetic resin film of the upper and lower layers is polyetherimide (PEI), and the nanofiber of the synthetic resin of the intermediate layer is polyethersulfone (PES). Board.
  3.  前記上下層の合成樹脂フィルムをポリエーテルイミド(PEI)とし、前記中間層の合成樹脂のナノファイバーもポリエーテルイミド(PEI)であることを特徴とする請求項1に記載の音響機器用振動板。 The diaphragm for acoustic equipment according to claim 1, wherein the synthetic resin film of the upper and lower layers is polyetherimide (PEI), and the nanofiber of the synthetic resin of the intermediate layer is also polyetherimide (PEI). .
  4.  前記音響用振動板は、ヘッドホーン用のダイヤフラムであることを特徴とする請求項1又は2又は3に記載の音響機器用振動板。 4. The acoustic device diaphragm according to claim 1, wherein the acoustic diaphragm is a diaphragm for a headphone.
  5.  前記音響用振動板は、スピーカー用の振動板であることを特徴とする請求項1又は2又は3に記載の音響機器用振動板。 The acoustic diaphragm according to claim 1, 2 or 3, wherein the acoustic diaphragm is a diaphragm for a speaker.
PCT/JP2011/073286 2010-11-02 2011-10-11 Acoustic-instrument diaphragm WO2012060184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245801A JP5352566B2 (en) 2010-11-02 2010-11-02 Diaphragm for audio equipment
JP2010-245801 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060184A1 true WO2012060184A1 (en) 2012-05-10

Family

ID=46024303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073286 WO2012060184A1 (en) 2010-11-02 2011-10-11 Acoustic-instrument diaphragm

Country Status (2)

Country Link
JP (1) JP5352566B2 (en)
WO (1) WO2012060184A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944271A (en) * 2019-11-29 2020-03-31 歌尔股份有限公司 Reinforcing part for sound generating device, vibration plate and sound generating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270491A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Manufacture of diaphragm for heat resisting speaker
JP2005101889A (en) * 2003-09-25 2005-04-14 Onkyo Corp Diaphragm for speaker and its manufacturing method
JP2006295245A (en) * 2005-04-05 2006-10-26 Sony Corp Acoustic diaphragm
JP2010016455A (en) * 2008-07-01 2010-01-21 Foster Electric Co Ltd Method of manufacturing vibration system components for electro-acoustic converter and vibration system components manufactured by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270491A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Manufacture of diaphragm for heat resisting speaker
JP2005101889A (en) * 2003-09-25 2005-04-14 Onkyo Corp Diaphragm for speaker and its manufacturing method
JP2006295245A (en) * 2005-04-05 2006-10-26 Sony Corp Acoustic diaphragm
JP2010016455A (en) * 2008-07-01 2010-01-21 Foster Electric Co Ltd Method of manufacturing vibration system components for electro-acoustic converter and vibration system components manufactured by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944271A (en) * 2019-11-29 2020-03-31 歌尔股份有限公司 Reinforcing part for sound generating device, vibration plate and sound generating device
CN110944271B (en) * 2019-11-29 2021-08-31 歌尔股份有限公司 Reinforcing part for sound generating device, vibration plate and sound generating device

Also Published As

Publication number Publication date
JP2012100060A (en) 2012-05-24
JP5352566B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US9668058B2 (en) Speaker diaphragm, speaker, device, and method for manufacturing speaker diaphragm
TWI410145B (en) A dome-type vibrating plate and a speaker using the dome-type vibrating plate
JP2007251516A (en) Speaker
JP4790452B2 (en) Voice coil bobbin and speaker device
US10291978B2 (en) Frame, speaker unit using the same, and headphone/earphone
KR101184537B1 (en) Speaker
KR20130029850A (en) Eco-friendly high power micro speaker with piezo-paper
KR100638057B1 (en) Double Diaphragm Micro speaker
JPH1013988A (en) Speaker unit
KR100477261B1 (en) Speaker and Speaker Manufacturing Method
JP5352566B2 (en) Diaphragm for audio equipment
JP4735376B2 (en) Speaker damper and speaker using the same
JP3992876B2 (en) Speaker
JP2013236371A (en) Diaphragm for speaker integrally formed with different degrees of rigidity in one polymeric film
KR20140127586A (en) Acoustic diaphragm
JP2013198069A (en) Diaphragm of electroacoustic conversion device and method for manufacturing the same
WO2013099790A1 (en) Headphones and headphone driver
CN202565461U (en) Circumaural headset having electret loudspeakers
CN214315597U (en) High pitch loudspeaker
CN111182420B (en) Planar diaphragm loudspeaker with magnetic reflux structure based on annular magnet
JP3387370B2 (en) Speaker diaphragm
JP2008113275A (en) Speaker diaphragm and speaker using the same
KR100675507B1 (en) Micro speaker of having seperated diaphram
JP4372365B2 (en) Speaker
KR101549956B1 (en) Diaphragm for sound element coated magnetic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837835

Country of ref document: EP

Kind code of ref document: A1