WO2012058986A1 - 一种通信***以及传输时钟信号的方法 - Google Patents

一种通信***以及传输时钟信号的方法 Download PDF

Info

Publication number
WO2012058986A1
WO2012058986A1 PCT/CN2011/079826 CN2011079826W WO2012058986A1 WO 2012058986 A1 WO2012058986 A1 WO 2012058986A1 CN 2011079826 W CN2011079826 W CN 2011079826W WO 2012058986 A1 WO2012058986 A1 WO 2012058986A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
clock
frame
optical
Prior art date
Application number
PCT/CN2011/079826
Other languages
English (en)
French (fr)
Inventor
胡志琥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012058986A1 publication Critical patent/WO2012058986A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication system and a method for transmitting a clock signal.
  • the Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network system is a system that requires precise time synchronization.
  • Base stations in the network can synchronize with multiple clock sources, for example, using a global positioning system ( Global Positioning System, GPS) Satellites, Beidou satellites, and clock sources such as 1PPS+TOD are synchronized.
  • GPS Global Positioning System
  • 1PPS+TOD clock sources
  • these clock sources for base station synchronization are different, in the end, two signals are generated, namely, Time Of Day (TOD) and 1 Pulse Per Second (IPPS), and the base station uses the two signals.
  • TOD Time Of Day
  • IPPS Pulse Per Second
  • Time synchronization for the baseline At present, various clock sources use a metal cable for clock signal transmission.
  • the clock source of the GPS satellite signal is typically used to mount the GPS antenna in an open outdoor environment to ensure signal reception.
  • the receiver is usually located in the indoor base station, and the antenna is connected to the receiver by a metal cable.
  • the attenuation of the electrical signal on the cable is proportional to the distance, if the metal cable is used for such long-distance signal transmission, the signal quality at the receiving end will be poor, which will seriously affect the time synchronization of the system; and the metal cable is expensive. In the case of long-distance transmission, it is not conducive to reducing the cost of the product, so that the product loses its competitiveness in price.
  • the present invention provides a communication system, including: a clock signal source, a base station, and a fiber link connected to the clock signal source and the base station; the clock signal source is configured to: generate a clock synchronization signal, After the clock synchronization signal is grouped, the optical signal is converted into an optical signal, and the optical signal is sent to the base station through the optical fiber link.
  • the base station is configured to: receive the optical signal, perform photoelectric conversion, and recover the electrical output signal, and the analysis includes the electrical Signal the packet and get the clock sync signal.
  • the base station is further configured to: calculate and obtain delay information, and correct the obtained clock synchronization signal according to the delay information.
  • the clock signal source includes: a signal generating module configured to: generate a clock synchronization signal, wherein the clock synchronization signal includes a second pulse signal (1PPS) and a time time signal (TOD); a conversion module, configured to: generate a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generate an application layer message frame (APP_Frame) according to the time time signal framing; and an electro-optical conversion module, which is set to: synchronize The message frame and the application layer message frame are converted into optical signals and transmitted to the base station through the optical fiber.
  • a signal generating module configured to: generate a clock synchronization signal, wherein the clock synchronization signal includes a second pulse signal (1PPS) and a time time signal (TOD)
  • a conversion module configured to: generate a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generate an application layer message frame (APP_Frame) according to the time time
  • the base station includes: a photoelectric conversion module, configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame and an application layer message frame; and the signal recovery module is configured to: according to the synchronization message frame ( PPS-SYN) recovers the 1PPS signal, and recovers the time-of-day signal according to the application layer message frame (APP-Frame); the delay measurement module is configured to: trigger the fiber delay measurement message and calculate the fiber transmission delay value; And a signal correction module, configured to: correct the second pulse signal according to the delay information.
  • the electro-optical conversion module is configured to convert the synchronization message frame and the application layer message frame into an optical signal and transmit the same to the base station through the optical fiber: after converting the second pulse signal into the synchronization message frame Immediately, one frame per second, the application layer message frame is transmitted 1 millisecond after the synchronization message frame is sent, and the transmission is completed within 500 milliseconds.
  • the delay information includes a conversion delay value of the synchronization message frame and a fiber transmission delay value.
  • the present invention also provides a method for transmitting a clock synchronization signal, wherein the method uses a fiber optic to transmit a clock synchronization signal, and the method includes: the clock signal source framing the clock synchronization signal into a signal frame, The signal frame is converted into an optical signal by an optical fiber, and transmitted to the base station through the optical fiber; and the base station receives the optical signal, performs photoelectric conversion to obtain a signal frame, and parses the signal frame to obtain a clock synchronization signal. The method further includes: performing, by the base station, a delay measurement, and correcting the clock synchronization signal according to the acquired delay information.
  • the clock synchronization signal includes a second pulse signal (1PPS) and a time of day signal (TOD);
  • the step of the clock signal source framing the clock synchronization signal into a signal frame comprises: the clock signal source according to the second The pulse signal framing generates a synchronization message frame (PPS_SYN), and generates an application layer message frame (APP_Frame) according to the time-time signal framing; and converts the signal frame into an optical signal and transmits the signal to the base station through the optical fiber.
  • PPS_SYN synchronization message frame
  • APP_Frame application layer message frame
  • the method includes: the clock signal source is sent immediately after converting the second pulse signal into a synchronization message frame, and one frame per second starts transmitting the application layer message frame after 1 millisecond after the synchronization message frame is sent, and the transmission is completed within 500 milliseconds.
  • the delay information includes a conversion delay value of the synchronization message frame and a fiber transmission delay value;
  • the conversion delay value of the frame is obtained by the base station from the received synchronization message frame;
  • the step of performing base station delay measurement by the base station includes: sending the fiber delay measurement to the clock signal source after receiving the second pulse signal The message requests a delay measurement to calculate the fiber transmission delay value.
  • the present invention also provides a clock signal source, wherein the clock signal source is configured to: generate a clock synchronization signal, and combine the clock synchronization signal to perform electro-optical conversion to generate an optical signal, and pass the optical signal through the optical fiber link. After being sent to the base station, the base station performs photoelectric conversion to recover the power-off signal, and then acquires a clock synchronization signal.
  • the clock signal source includes: a signal generating module configured to: generate a clock synchronization signal, wherein the clock synchronization signal includes a second pulse signal (1PPS) and a time of day signal (TOD); and a signal conversion module configured to: Generating a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generating an application layer message frame (APP_Frame) according to the time-time signal framing; and an electro-optical conversion module, which is configured to: synchronize the message frame and the application layer message frame Converted to an optical signal and sent to the base station via fiber optics.
  • a signal generating module configured to: generate a clock synchronization signal, wherein the clock synchronization signal includes a second pulse signal (1PPS) and a time of day signal (TOD); and a signal conversion module configured to: Generating a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generating an application layer message frame (
  • the electro-optical conversion module is configured to convert the synchronization message frame and the application layer message frame into an optical signal and transmit the same to the base station through the optical fiber: converting the second pulse signal into a synchronization message frame Immediately after the issuance, one frame per second, the application layer message frame is transmitted after 1 millisecond after the synchronization message frame is sent, and the transmission is completed within 500 milliseconds.
  • the present invention further provides a base station, where the base station is configured to: receive, by an optical fiber line, an optical signal sent by the clock signal source to the base station through the optical fiber link, where the optical signal is An optical signal generated by electro-optical conversion of a clock signal source group after the generated clock synchronization signal is grouped; Performing photoelectric conversion to recover the outgoing signal, parsing the data packet including the electrical signal, and acquiring the clock synchronization signal.
  • the base station is further configured to: calculate and obtain delay information, and correct the obtained clock synchronization signal according to the delay information.
  • the base station includes: a photoelectric conversion module configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame and an application layer message frame; and the signal recovery module is configured to: obtain a 1PPS according to the synchronization message frame (PPS_SYN) recovery Signal, and recovering the time-of-day signal according to the application layer message frame (APP-Frame); the delay measurement module is configured to: trigger the fiber delay measurement message and calculate the obtained fiber transmission delay value; and the signal correction module, the setting And: correcting the second pulse signal according to the delay information.
  • a photoelectric conversion module configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame and an application layer message frame
  • the signal recovery module is configured to: obtain a 1PPS according to the synchronization message frame (PPS_SYN) recovery Signal, and recovering the time-of-day signal according to the application layer message frame (APP-Frame)
  • the delay measurement module is configured to: trigger the fiber delay measurement message and calculate the obtained
  • the technical solution of the transmission clock signal of the present invention realizes the transmission of a clock signal by using an optical fiber, wherein the clock signal source converts a time of day (TOD) and a second pulse (1PPS) synchronization signal into an optical signal, which is transmitted to the base station through the optical fiber.
  • the invention Compared with the scheme of transmitting a clock signal by using a metal cable, the invention has small signal attenuation during signal transmission, strong anti-interference ability, and the transmission distance can be greatly increased.
  • the invention also adopts the optical fiber delay measurement technology, and uses the time delay information obtained by the measurement calculation to correct the clock synchronization signal, thereby ensuring the accuracy of the clock signal; and the optical fiber is cheap, and the long-distance optical fiber price is much lower than Coaxial cable helps reduce transmission costs.
  • FIG. 1 is a block diagram of a communication system of an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a PPS-SYN message frame format according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an APP-Frame message frame format according to an embodiment of the present invention
  • 4 is a schematic diagram of an IDLE_SYN message frame format according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a transmission sequence of a message frame according to an embodiment of the present invention
  • FIG. 6 is a flow chart of optical fiber delay measurement according to an embodiment of the present invention.
  • the communication system of the embodiment of the present invention includes: a clock signal source, a base station, and a fiber link connected to the clock signal source and the base station; wherein the clock signal source is set to: generate a clock synchronization signal, After the clock synchronization signal is grouped, the optical signal is converted into an optical signal, and the optical signal is sent to the base station through the optical fiber link.
  • the base station is configured to: receive the optical signal, perform photoelectric conversion to recover the electrical output signal, and parse the electrical signal.
  • the packet acquires a clock synchronization signal.
  • the base station is further configured to: measure the calculated delay information, and correct the obtained clock synchronization signal according to the delay information.
  • the clock signal source includes: a signal generating module, configured to: generate a clock synchronization signal, where the clock synchronization signal includes a second pulse signal (1PPS) and a time time signal (TOD); a signal conversion module, Set to: Generate synchronous message frames based on the second pulse signal framing
  • the signal generating module may be a GPS receiver or a Beidou receiver, or may be a base station.
  • the clock synchronization scheme of the embodiment of the present invention may be applied to a clock signal transmission between a GPS or a Beidou receiver and an indoor base station; Point-to-point 1PPS+TOD clock signal transmission between base stations.
  • the GPS receiver calculates the time of day by using a plurality of satellite signals, and then outputs a TOD signal, so that a clock synchronization signal can be generated.
  • the signal generation module generates a TOD and a 1PPS signal by receiving an external signal, and transmits the clock synchronization signal as an electrical signal through a metal cable.
  • a signal conversion module and an electro-optical conversion module are added. The electrical signal is converted into an optical signal transmission, thereby improving signal quality, reducing delay and signal loss, and ensuring clock signal quality.
  • the base station includes: a photoelectric conversion module configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame and an application layer message frame; and the signal recovery module is configured to: obtain a 1PPS according to the synchronization message frame (PPS_SYN) recovery Signal, and recovering the time-of-day signal according to the application layer message frame (APP-Frame); the delay measurement module is configured to: trigger the fiber delay measurement message and calculate the obtained delay information; the delay information includes the conversion of the synchronization message frame The delay value and the optical fiber transmission delay value; wherein the delay measurement module is configured to calculate the delay information as follows: when performing the delay measurement, after receiving the second pulse signal, sending the optical fiber delay to the clock signal source Measuring a message requesting a delay measurement, thereby calculating a fiber transmission delay value; obtaining a conversion delay of the synchronization message frame from the received synchronization message frame; and a signal correction module, configured to: according to the delay information pair The second pulse signal is corrected.
  • This embodiment further provides a clock signal source, where the clock signal source is set to: A clock synchronization signal is generated, and the clock synchronization signal is grouped and then subjected to electro-optical conversion to generate an optical signal, and the optical signal is transmitted to the base station through the optical fiber link, so that the base station performs photoelectric conversion to recover the electrical output signal, and then acquires a clock synchronization signal.
  • the clock signal source includes: a signal generating module, configured to: generate a clock synchronization signal, where the clock synchronization signal includes a second pulse signal (1PPS) and a time time signal (TOD); the signal conversion module , the setting is: generating a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generating an application layer message frame (APP_Frame) according to the time-time signal framing; and an electro-optical conversion module, which is configured to: synchronize the message frame And the application layer message frame is converted into an optical signal and transmitted to the base station through the optical fiber.
  • a signal generating module configured to: generate a clock synchronization signal, where the clock synchronization signal includes a second pulse signal (1PPS) and a time time signal (TOD);
  • the signal conversion module the setting is: generating a synchronization message frame (PPS_SYN) according to the second pulse signal framing, and generating an application layer message frame (APP_F
  • the electro-optical conversion module is configured to convert the synchronization message frame and the application layer message frame into an optical signal and transmit the same to the base station through the optical fiber: immediately after converting the second pulse signal into the synchronization message frame , one frame per second, starts transmitting the application layer message frame 1 millisecond after the synchronization message frame is sent, and the transmission is completed within 500 milliseconds.
  • the embodiment further provides a base station, where the base station is configured to: receive, by using an optical fiber line, an optical signal sent by the clock signal source to the base station by using the optical fiber link, where the optical signal is the clock signal source pair And generating an optical signal generated by electro-optical conversion after the clock synchronization signal is grouped; and performing photoelectric conversion to recover the electrical output signal, parsing the data packet including the electrical signal, and acquiring the clock synchronization signal.
  • the base station is further configured to: calculate and obtain delay information, and correct the obtained clock synchronization signal according to the delay information.
  • the base station includes: a photoelectric conversion module configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame And an application layer message frame; the signal recovery module is configured to: obtain a 1PPS signal according to the synchronization message frame (PPS_SYN) recovery, and recover the time time signal according to the application layer message frame (APP-Frame); the delay measurement module, The setting is: triggering the fiber delay measurement message and calculating the obtained fiber transmission delay value; and the signal correction module is configured to: correct the second pulse signal according to the delay information.
  • a photoelectric conversion module configured to: receive an optical signal, perform photoelectric conversion to obtain a synchronization message frame And an application layer message frame
  • the signal recovery module is configured to: obtain a 1PPS signal according to the synchronization message frame (PPS_SYN) recovery, and recover the time time signal according to the application layer message frame (APP-Frame)
  • the delay measurement module The setting is: triggering the fiber delay measurement message and calculating the obtained fiber transmission delay value
  • a method for transmitting a clock synchronization signal is to transmit a clock synchronization signal by using an optical fiber, and the method includes the following steps: Step 1: The clock signal source separately forms a 1PPS signal and a TOD signal into a signal frame of a specific format; Step 2 : The electro-optical conversion module converts the TOD and 1PPS signal frames into optical signals and outputs them to the base station (for example, TD-SCDMA base stations) through the optical fibers. Step 3: After the base station receives the 1PPS frame signal, the delay measurement module sends the optical fibers to the clock signal source. The delay measurement signal requests the fiber delay measurement. If the delay measurement signal response is received, the fiber transmission delay value is calculated and the measurement is ended.
  • the photoelectric conversion module restores the TOD signal and the 1PPS signal into an electrical signal, and then uses the signal correction module to delay the input 1PPS signal according to the fiber delay measurement value and the conversion delay value of the 1PPS signal. , restored to the original accurate 1PPS signal. Since a plurality of signals need to be transmitted in the same optical fiber, different signals are transmitted in different frame formats, so that the receiving end can correctly separate the original signals.
  • the signal conversion module framing the 1PPS clock signal and the TOD clock signal the following three types of message frames can be defined as the message frame format transmitted on the optical fiber. First, PPS-SYN synchronization message frame
  • the PPS_SY synchronization message frame is used to mark the 1PPS signal, which is composed of K28.5+D21.5+ delay (DelayTime) in 8B/10B coding, where DelayTime indicates the frame header K28.5.
  • the delay value between the first bit transmission time and the rising edge of the original 1PPS signal, that is, the conversion delay value, is composed of 4 bytes (Bytes), and the unit is ns.
  • the specific frame format is shown in Figure 2. Second, APP-Frame message frame
  • An APP frame is defined as an application layer message frame, and is used to carry various interactive messages between the sender and the receiver.
  • the frame format is shown in Figure 3. It consists of: frame header (K27.7), payload (Payload) and end of frame (K29.7).
  • the payload segment can be filled with the original TOD message, or it can be agreed between the sender and the receiver. Any other message.
  • the IDLE-SYN idle frame needs to periodically transmit the IDLE-SYN idle message frame when there is no need to transmit a message on the optical line to ensure the byte synchronization of both the sender and the receiver.
  • the idle frame is composed of K28.1+D10.2 in the 8B/10B encoding, and the frame format is as shown in FIG. 4.
  • the clock signal source is sent immediately after converting the original 1PPS signal into a PPS_SYN message frame, one frame per second.
  • the APP-Frame message frame from the clock signal source to the base station should start transmission 1 ms after the PPS-SY transmission, and the transmission is completed within 500 ms.
  • the transmission timing is shown in Figure 5. There is no timing requirement for the APP-Frame message frame from the base station to the clock source. Due to the long transmission distance, the clock signal has a fiber transmission delay on the fiber line, so fiber delay measurement is required.
  • the delay measurement message (delay_ meas_bd) sent by the source to the base station, and its frame format is K28.5+D2.2+DelayTime, where DelayTime indicates that the clock signal source receives K28.5 in the Delay_ meas_bs message.
  • DelayTime indicates that the clock signal source receives K28.5 in the Delay_ meas_bs message.
  • the time difference between the first bit of the delayed-meas-bd message K28.5.
  • the base station sends a Delay_meas_bs message to the clock signal source, and records the transmission time time Ta; the clock signal source is received. Delay_ meas_bs message, and record the received time Tb; the clock source sends a delay_meas_bd message to the base station, records the transmission time Tc, and fills the time interval of Tc-Tb to delay_meas_bd DelayTime domain; The base station then receives the delay_meas_bd message sent by the clock source and records the time of receipt Td.
  • the timing frequency used to record time in the delay measurement should be better than 50 ppm, or ⁇ 50 ppm.
  • the delay value of Tc-Tb should be less than lOOus. If the delay value of Tc-Tb is not less than lOOus, the base station considers DelayTime as an invalid value.
  • the DelayTime accuracy should be less than 20ns.
  • the base station generates a 1PPS signal locally after receiving the PPS_SYN message frame, but the
  • the delay includes two parts: one part is the conversion delay between the original 1PPS signal and the PPS-SYN message frame sent on the optical fiber, that is, the DelayTime value in the PPS_SYN message; The other part is the fiber transmission delay, which can be measured by fiber delay measurement.
  • the signal correction module of the base station calculates the delay difference between the local 1PPS signal and the original 1PPS signal by adding the value of DelayTime in the PPS_SYN message frame to the measured fiber delay value, and can accurately use the lead compensation circuit.
  • the original 1PPS signal is recovered.
  • the invention can be applied to a plurality of clock source synchronization modes: it can be applied to signal transmission between GPS or Beidou receiver and indoor base station; it can also be used for point-to-point 1PPS+TOD clock signal transmission between two base stations.
  • a clock signal source In the technical solution of transmitting a clock signal by using an optical fiber, a clock signal source will be used in a daily time.
  • the invention Compared with the scheme of transmitting a clock signal by a metal cable, the invention has a reduced signal attenuation during signal transmission, strong anti-interference ability, and the transmission distance can be greatly increased.
  • the invention also adopts the fiber delay measurement technology, and uses the delay information obtained by the measurement calculation to correct the clock synchronization signal, thereby ensuring the accuracy of the clock signal; and the optical fiber is cheap, and the price of the long-distance fiber is much lower than Coaxial cable helps reduce transmission costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信***,该***包括:时钟信号源、基站、以及连接于时钟信号源和基站的光纤链路;所述时钟信号源设置为:产生时钟同步信号,将时钟同步信号组帧后进行电光转换生成光信号,将光信号通过光纤链路发送给基站;所述基站设置为:接收所述光信号,进行光电转换恢复出电信号,解析包括所述电信号的数据包,并获取时钟同步信号。本发明还公开了一种传输时钟同步信号的方法,一种时钟信号源以及一种基站。本发明的在信号传输过程中信号衰减小,抗干扰能力强,且使得传输距离可大大增加。

Description

一种通信***以及传输时钟信号的方法
技术领域 本发明涉及通信技术领域, 尤其涉及一种通信***以及传输时钟信号的 方法。
背景技术
时分同步码分多址 ( Time Division- Synchronous Code Division Multiple Access, TD-SCDMA ) 网络***是一个需要精确时间同步的***, 网络中的 基站可利用多种时钟源进行同步,例如利用全球定位***( Global Positioning System, GPS )卫星、 北斗卫星、 以及 1PPS+TOD等时钟源进行同步。 虽然 用于基站同步的这些时钟源各不相同, 但最终都会生成两路信号, 即日时间 信号 ( Time Of Day, TOD )和秒脉冲信号 ( 1 Pulse Per Second, IPPS ) , 基 站以该两路信号为基准进行时间同步。 目前各种时钟源均釆用金属电缆进行时钟信号的传输。例如釆用 GPS卫 星信号的时钟源, 典型情况是将 GPS 天线架设在开阔的室外环境以保证信 号接收, 而接收机一般位于室内基站内, 天线与接收机之间釆用金属电缆相 连。 在实际 TD-SCDMA网络基站中, 因为环境或建筑等因素, 有时需要将 GPS天线架设在距离基站几百米甚至几公里之外的地方。 由于电信号在线缆 上的衰减与距离成正比, 如果釆用金属电缆进行这种远距离的信号传输, 将 造成接收端信号质量差,将严重影响***的时间同步;且金属电缆价格较高, 在远距离传输的情形下不利于降低产品的成本,使产品在价格上失去竟争力。
发明内容
本发明的目的是提供一种通信***以及传输时钟同步信号的方法, 以克 月良目前 TD-SCDMA基站中利用金属电缆远距离传输时钟信号而造成信号质 量差、 且传输成本高的问题。 为了解决上述问题, 本发明提出了一种通信***, 该***包括: 时钟信 号源、 基站、 以及连接于时钟信号源和基站的光纤链路; 所述时钟信号源设置为: 产生时钟同步信号, 将时钟同步信号组帧后进 行电光转换生成光信号, 将光信号通过光纤链路发送给基站; 所述基站设置为: 接收所述光信号, 进行光电转换恢复出电信号, 解析 包括所述电信号的数据包, 并获取时钟同步信号。 本发明的通信***中, 所述基站还设置为: 测量计算获得时延信息, 根据所述时延信息对所获 得的时钟同步信号进行校正。 本发明的通信***中, 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 其中, 所述时钟同步信 号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧 ( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。 本发明的通信***中, 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块, 其设置为: 触发光纤时延测量消息并计算获得光纤传输 时延值; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。 本发明的通信***中, 所述电光转换模块是设置为按如下方式将同步消息帧和应用层消息帧转 换为光信号, 并通过光纤发送到基站: 在将秒脉冲信号转换为同步消息帧后 立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消 息帧, 并在 500毫秒内传输完毕。 本发明的通信***中, 所述时延信息包括同步消息帧的转换时延值和光纤传输时延值。 为了解决上述问题, 本发明还提出了一种传输时钟同步信号的方法, 所 述方法利用光纤传输时钟同步信号, 该方法包括: 时钟信号源对时钟同步信号进行组帧为信号帧, 将所述信号帧进行电光 转换为光信号, 通过光纤传输给基站; 以及 基站接收光信号, 进行光电转换得到信号帧, 解析信号帧获得时钟同步 信号。 所述方法还包括: 基站进行时延测量, 根据获取的时延信息对时钟同步信号进行校正。 本发明的方法中, 所述时钟同步信号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 时钟信号源对时钟同步信号进行组帧为信号帧的步骤包括: 所述时钟信 号源根据秒脉冲信号组帧生成同步消息帧(PPS— SYN ) , 根据日时间信号组 帧生成应用层消息帧 (APP— Frame ) ; 将所述信号帧进行电光转换为光信号,通过光纤传输给基站的步骤包括: 所述时钟信号源在将秒脉冲信号转换为同步消息帧后立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消息帧, 并在 500毫秒内 传输完毕。 本发明的方法中, 所述时延信息包括同步消息帧的转换时延值和光纤传输时延值; 同步消 息帧的转换时延值是所述基站从所接收的同步消息帧中获得的; 基站进行时延测量的步骤包括: 所述在接收到秒脉冲信号后, 向时钟信 号源发送光纤时延测量消息请求进行时延测量, 从而计算获得光纤传输时延 值。 为了解决上述问题, 本发明还提出了一种时钟信号源, 所述时钟信号源 设置为: 产生时钟同步信号, 将时钟同步信号组帧后进行电光转换生成光信号, 将光信号通过光纤链路发送给基站, 以使所述基站进行光电转换恢复出电信 号后, 获取时钟同步信号。 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 其中, 所述时钟同步信 号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧 ( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。 本发明的时钟信号源中, 所述电光转换模块是设置为按如下方式将同步消息帧和应用层消息帧转 换为光信号, 并通过光纤发送到基站: 在将秒脉冲信号转换为同步消息帧后 立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消 息帧, 并在 500毫秒内传输完毕。 为了解决上述问题, 本发明还提出了一种基站, 所述基站设置为: 通过光纤线路接收时钟信号源通过所述光纤链路向所述基站发送的光信 号, 其中所述光信号为所述时钟信号源对产生的时钟同步信号组帧后进行电 光转换生成的光信号; 以及 进行光电转换恢复出电信号, 解析包括所述电信号的数据包, 并获取时 钟同步信号。 所述基站还设置为: 测量计算获得时延信息, 根据所述时延信息对所获 得的时钟同步信号进行校正。 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块, 其设置为: 触发光纤时延测量消息并计算获得光纤传输 时延值; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。
本发明的传输时钟信号的技术方案实现了利用光纤传输时钟信号,其中, 时钟信号源将日时间 (TOD )和秒脉冲(1PPS ) 同步信号转换成光信号, 通 过光纤传输给基站。 与釆用金属电缆传输时钟信号的方案相比, 本发明在信 号传输过程中信号衰减小, 抗干扰能力强, 且使得传输距离可大大增加。 同 时, 本发明还釆用了光纤时延测量技术, 利用测量计算获得的时延信息对时 钟同步信号进行校正, 保证了时钟信号的精准性; 并且光纤价格便宜, 长距 离的光纤价格远低于同轴线缆, 有利于降低传输成本。
附图概述 图 1是本发明实施例的通信***的结构框图; 图 2是本发明实施例的 PPS— SYN消息帧格式示意图; 图 3是本发明实施例的 APP— Frame消息帧格式示意图; 图 4是本发明实施例的 IDLE— SYN消息帧格式示意图; 图 5是本发明实施例的消息帧的发送时序示意图; 以及 图 6是本发明实施例的光纤时延测量流程图。
本发明的较佳实施方式 为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 的实施例作进一步地详细说明。 需要说明的是, 在不冲突的情况下, 本申请 中的实施例及实施例中的特征可以相互任意组合。 为了在精确时间同步***中实现远距离传输时钟同步信号, 特别是在 TD-SCDMA***中实现室外 GPS接收机到基站之间时钟信号的传输。 本发 明实施例的通信***以及利用光纤传输时钟同步信号的方法中, 釆用光纤实 现时钟信号的传输, 并在接收端恢复出原始精准的时钟信号, 以用于时间同 步。
如图 1所示, 本发明实施例的通信***包括: 时钟信号源、 基站、 以及 连接于时钟信号源和基站的光纤链路; 其中, 所述时钟信号源设置为: 产生时钟同步信号, 将时钟同步信号组帧后进 行电光转换生成光信号, 将光信号通过光纤链路发送给基站; 所述基站设置为: 接收所述光信号, 进行光电转换恢复出电信号, 解析 所述电信号的数据包获取时钟同步信号。 所述基站还设置为: 测量计算获得的时延信息, 根据所述时延信息对所 获得的时钟同步信号进行校正。 本实施例中, 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 所述时钟同步信号包括 秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧
( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。 所述信号生成模块可以是 GPS接收机或北斗接收机, 也可以是基站, 本 发明实施例的时钟同步方案可应用在 GPS 或北斗接收机与室内基站之间的 时钟信号传输;也可用在两个基站之间进行点对点的 1PPS+TOD时钟信号传 输。例如 GPS接收机通过多个卫星信号解算出日时间, 然后输出 TOD信号, 从而可以产生时钟同步信号。 传统做法是信号生成模块通过接收外部信号, 产生 TOD和 1PPS信号, 将时钟同步信号作为电信号, 通过金属线缆进行传 输; 本发明实施例中, 则增加了信号转换模块和电光转换模块, 将电信号转 换为光信号传输, 从而可以提高信号质量, 减小时延及信号损耗, 并可以保 证时钟信号质量。 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块,其设置为:触发光纤时延测量消息并计算获得时延信息; 时延信息包括同步消息帧的转换时延值和光纤传输时延值; 其中, 时延测量 模块是设置为按如下方式计算获得时延信息: 进行时延测量时, 在接收到秒 脉冲信号后, 向时钟信号源发送光纤时延测量消息请求进行时延测量, 从而 计算获得光纤传输时延值; 从所接收的同步消息帧中获得同步消息帧的转换 时延; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。
本实施例还提供了一种时钟信号源, 所述时钟信号源设置为: 产生时钟同步信号, 将时钟同步信号组帧后进行电光转换生成光信号, 将光信号通过光纤链路发送给基站, 以使所述基站进行光电转换恢复出电信 号后, 获取时钟同步信号。 本实施例中, 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 其中, 所述时钟同步信 号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧 ( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。 本实施例中, 所述电光转换模块是设置为按如下方式将同步消息帧和应 用层消息帧转换为光信号, 并通过光纤发送到基站: 在将秒脉冲信号转换为 同步消息帧后立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始 传输应用层消息帧, 并在 500毫秒内传输完毕。
本实施例还提供了一种基站, 所述基站设置为: 通过光纤线路接收时钟信号源通过所述光纤链路向所述基站发送的光信 号, 其中所述光信号为所述时钟信号源对产生的时钟同步信号组帧后进行电 光转换生成的光信号; 以及 进行光电转换恢复出电信号, 解析包括所述电信号的数据包, 并获取时 钟同步信号。 所述基站还设置为: 测量计算获得时延信息, 根据所述时延信息对所获 得的时钟同步信号进行校正。 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块, 其设置为: 触发光纤时延测量消息并计算获得光纤传输 时延值; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。 本发明实施例的一种传输时钟同步信号的方法为釆用光纤传输时钟同步 信号, 该方法包括如下步骤: 步骤 1 : 时钟信号源将 1PPS信号和 TOD信号分别组成特定格式的信号 帧; 步骤 2: 电光转换模块将 TOD和 1PPS信号帧转换成光信号, 通过光纤 输出到基站(例如 TD-SCDMA基站) ; 步骤 3:基站接收到 1PPS帧信号后, 由时延测量模块向时钟信号源发送 光纤时延测量信号请求进行光纤时延测量, 如果收到时延测量信号应答, 则 计算光纤传输时延值并结束测量, 如果没有收到时延测量信号应答, 周期性 发送时延测量信号; 步骤 4: 时延测量成功后, 光电转换模块将 TOD信号和 1PPS信号恢复 成电信号, 再利用信号校正模块根据光纤时延测量值和 1PPS信号的转换时 延值对输入的 1PPS信号进行时延补偿, 恢复成原始精准的 1PPS信号。 由于在同一路光纤中需要传输多种信号, 因此对不同信号釆用不同的帧 格式进行发送, 以使得接收端能够正确分离出原始信号。所述信号转换模块, 将 1PPS时钟信号和 TOD时钟信号进行组帧时, 可定义如下三类消息帧, 作 为在光纤上传输的消息帧格式。 第一种, PPS— S YN同步消息帧
PPS_SY 同步消息帧用来标记 1PPS 信号, 由 8B/10B 编码中的 K28.5+D21.5+时延 ( DelayTime )构成, 其中 DelayTime表示帧头 K28.5的 第一个比特发出时刻与原始 1PPS信号上升沿之间的时延值, 即转换时延值, 由 4字节 (Bytes )构成, 单位为 ns。 具体帧格式如图 2所示。 第二种 , APP— Frame消息帧
APP Frame帧定义为应用层消息帧, 用于承载收发双方之间的各种交互 消息。 帧格式如图 3 所示, 包括: 帧头 (K27.7 ) 、 载荷(Payload )和帧尾 ( K29.7 ) 三部分, 其中载荷段可填充原始的 TOD消息, 也可为收发双方协 定的任意其他消息。 第三种, IDLE— SYN空闲帧 当光纤线路上无需传输消息时, 需周期性传递 IDLE— SYN空闲消息帧, 以保证收发双方的字节同步。 空闲帧由 8B/10B编码中的 K28.1+D10.2构成, 帧格式如图 4所示。 所述时钟信号源在将原始 1PPS信号转换成 PPS— SYN消息帧后立即发 出, 每秒一帧。 时钟信号源到基站方向的 APP— Frame消息帧应在 PPS— SY 发送后 1ms后开始传输, 并在 500ms内传输完毕, 发送时序如图 5所示。 对 于基站至时钟信号源方向的 APP— Frame消息帧则无时序要求。 由于传输距离较远, 时钟信号在光纤线路上存在光纤传输时延, 因此需 要进行光纤时延测量。 光纤时延测量消息分为两种, 一种是基站发给时钟信 号源的时延测量消息 (Delay— meas—bs), 其帧格式为 K28.5+D2.2; 另一种是时 钟信号源发给基站的时延测量消息(delay— meas—bd) , 其帧格式为 K28.5+D2.2+DelayTime ,其中 DelayTime表示时钟信号源收到 Delay— meas—bs 消息中的 K28.5的第一个比特与发出 delay— meas—bd消息 K28.5的第一个比 特之间的时间差。 基站的时延测量模块, 进行时延测量的流程如图 6所示, 包括: 首先, 基站向时钟信号源发送 Delay— meas—bs消息, 并记录发送时刻时 间 Ta; 所述时钟信号源收到 Delay— meas—bs消息, 并记录收到时刻 Tb; 所述时钟信号源再向基站发送 delay— meas—bd消息, 记录发送时刻 Tc, 同时将 Tc-Tb的时间间隔填到 delay— meas—bd的 DelayTime域中; 基站接着收到时钟信号源发送的 delay— meas—bd消息, 并记录收到时刻 时间 Td。 基站的时延测量模块可以通过公式 Delay= ( Tb-Ta+Td-Tc ) /2=( ( Td-Ta ) - (Tc-Tb ) )/2, 计算出光纤传输时延值(双向的光纤需要等长, 如果不等长, 会引入测量误差) 。 在时延测量中用来记录时间所用的计时频率应当优于 50ppm , 即 <50ppm。 时钟信号源侧, Tc-Tb的时延值 DelayTime应当小于 lOOus, 如果 Tc-Tb 的时延值 DelayTime 不小于 lOOus, 基站视 DelayTime 为无效值。 DelayTime准确度应当小于 20ns。 基站在收到 PPS— SYN消息帧后立即在本地产生一个 1PPS信号, 但该
1PPS信号与原始的 1PPS信号存在时延, 该时延包括两个部分: 一部分是原 始 1PPS信号与光纤上发出 PPS— SYN消息帧之间的转换时延, 即 PPS— SYN 消息中的 DelayTime值; 另一部分是光纤传输时延, 该时延值可通过光纤时 延测量得出。 基站的信号校正模块将 PPS— SYN消息帧中的 DelayTime的值, 加上测 量出的光纤时延值,即可计算出本地 1PPS信号与原始的 1PPS信号的时延差, 利用超前补偿电路可精确地恢复出原始的 1PPS信号。 本发明可应用于多种时钟源同步方式之中:可应用于 GPS或北斗接收机 与室内基站之间信号传输; 也可用在两个基站之间进行点对点的 1PPS+TOD 时钟信号传输。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性 本发明的利用光纤传输时钟信号的技术方案中, 时钟信号源将日时间
( TOD )和秒脉冲 (1PPS ) 同步信号转换成光信号, 通过光纤传输给基站。 与釆用金属电缆传输时钟信号的方案相比, 本发明在信号传输过程中信号衰 减小, 抗干扰能力强, 且使得传输距离可大大增加。 同时, 本发明还釆用了 光纤时延测量技术,利用测量计算获得的时延信息对时钟同步信号进行校正, 保证了时钟信号的精准性; 并且光纤价格便宜, 长距离的光纤价格远低于同 轴线缆, 有利于降低传输成本。

Claims

权 利 要 求 书
1、 一种通信***, 该***包括: 时钟信号源、 基站、 以及连接于时钟信 号源和基站的光纤链路; 所述时钟信号源设置为: 产生时钟同步信号, 将时钟同步信号组帧后进 行电光转换生成光信号, 将光信号通过光纤链路发送给基站; 所述基站设置为: 接收所述光信号, 进行光电转换恢复出电信号, 解析 包括所述电信号的数据包, 并获取时钟同步信号。
2、 如权利要求 1所述的通信***, 其中, 所述基站还设置为: 测量计算获得时延信息, 根据所述时延信息对所获 得的时钟同步信号进行校正。
3、 如权利要求 1所述的通信***, 其中, 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 其中, 所述时钟同步信 号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧 ( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。
4、 如权利要求 3所述的通信***, 其中, 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块, 其设置为: 触发光纤时延测量消息并计算获得光纤传输 时延值; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。
5、 如权利要求 3所述的通信***, 其中, 所述电光转换模块是设置为按如下方式将同步消息帧和应用层消息帧转 换为光信号, 并通过光纤发送到基站: 在将秒脉冲信号转换为同步消息帧后 立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消 息帧, 并在 500毫秒内传输完毕。
6、 如权利要求 2或 4所述的通信***, 其中, 所述时延信息包括同步消息帧的转换时延值和光纤传输时延值。
7、一种传输时钟同步信号的方法, 其特征在于, 所述方法利用光纤传输 时钟同步信号, 该方法包括: 时钟信号源对时钟同步信号进行组帧为信号帧, 将所述信号帧进行电光 转换为光信号, 通过光纤传输给基站; 以及 基站接收光信号, 进行光电转换得到信号帧, 解析信号帧获得时钟同步 信号。
8、 如权利要求 7所述的方法, 所述方法还包括: 基站进行时延测量, 根据获取的时延信息对时钟同步信号进行校正。
9、 如权利要求 7或 8所述的方法, 其中, 所述时钟同步信号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 时钟信号源对时钟同步信号进行组帧为信号帧的步骤包括: 所述时钟信 号源根据秒脉冲信号组帧生成同步消息帧(PPS— SYN ) , 根据日时间信号组 帧生成应用层消息帧 (APP— Frame ) ; 将所述信号帧进行电光转换为光信号,通过光纤传输给基站的步骤包括: 所述时钟信号源在将秒脉冲信号转换为同步消息帧后立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消息帧, 并在 500毫秒内 传输完毕。
10、 如权利要求 8所述的方法, 其中, 所述时延信息包括同步消息帧的转换时延值和光纤传输时延值; 同步消 息帧的转换时延值是所述基站从所接收的同步消息帧中获得的; 基站进行时延测量的步骤包括: 所述在接收到秒脉冲信号后, 向时钟信 号源发送光纤时延测量消息请求进行时延测量, 从而计算获得光纤传输时延 值。
11、 一种时钟信号源, 所述时钟信号源设置为: 产生时钟同步信号, 将时钟同步信号组帧后进行电光转换生成光信号, 将光信号通过光纤链路发送给基站, 以使所述基站进行光电转换恢复出电信 号后, 获取时钟同步信号。
12、 如权利要求 11所述的时钟信号源, 所述时钟信号源包括: 信号生成模块, 其设置为: 产生时钟同步信号, 其中, 所述时钟同步信 号包括秒脉冲信号 (1PPS )和日时间信号 (TOD ) ; 信号转换模块, 其设置为: 根据秒脉冲信号组帧生成同步消息帧 ( PPS_SYN ) , 以及根据日时间信号组帧生成应用层消息帧(APP— Frame ); 以及 电光转换模块,其设置为:将同步消息帧和应用层消息帧转换为光信号, 并通过光纤发送到基站。
13、 如权利要求 12所述的时钟信号源, 其中, 所述电光转换模块是设置为按如下方式将同步消息帧和应用层消息帧转 换为光信号, 并通过光纤发送到基站: 在将秒脉冲信号转换为同步消息帧后 立即发出, 每秒一帧, 在发出同步消息帧后的 1毫秒之后开始传输应用层消 息帧, 并在 500毫秒内传输完毕。
14、 一种基站, 所述基站设置为: 通过光纤线路接收时钟信号源通过所述光纤链路向所述基站发送的光信 号, 其中所述光信号为所述时钟信号源对产生的时钟同步信号组帧后进行电 光转换生成的光信号; 以及 进行光电转换恢复出电信号, 解析包括所述电信号的数据包, 并获取时 钟同步信号。
15、如权利要求 14所述的基站, 所述基站还设置为: 测量计算获得时延 信息, 根据所述时延信息对所获得的时钟同步信号进行校正。
16、 如权利要求 15所述的基站, 所述基站包括: 光电转换模块, 其设置为: 接收光信号, 进行光电转换获取同步消息帧 和应用层消息帧; 信号恢复模块, 其设置为: 根据同步消息帧(PPS— SYN )恢复获得 1PPS 信号, 以及根据应用层消息帧 ( APP— Frame ) 恢复获得日时间信号; 时延测量模块, 其设置为: 触发光纤时延测量消息并计算获得光纤传输 时延值; 以及 信号校正模块, 其设置为: 根据所述时延信息对所述秒脉冲信号进行校 正。
PCT/CN2011/079826 2010-11-02 2011-09-19 一种通信***以及传输时钟信号的方法 WO2012058986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010530218.XA CN102457372B (zh) 2010-11-02 2010-11-02 一种通信***以及利用光纤传输时钟信号的方法
CN201010530218.X 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012058986A1 true WO2012058986A1 (zh) 2012-05-10

Family

ID=46023999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079826 WO2012058986A1 (zh) 2010-11-02 2011-09-19 一种通信***以及传输时钟信号的方法

Country Status (2)

Country Link
CN (1) CN102457372B (zh)
WO (1) WO2012058986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516423B (zh) * 2012-06-20 2017-03-29 中兴通讯股份有限公司 一种用于光纤时钟拉远的方法和装置
CN103346873B (zh) * 2013-06-27 2016-08-10 华为技术有限公司 一种时间同步的方法和设备
CN103401672B (zh) * 2013-07-24 2016-08-24 福建星网锐捷网络有限公司 时间同步装置、设备及***
CN108347282A (zh) * 2018-04-24 2018-07-31 安徽万泰地球物理技术有限公司 基于单根光纤的gps信号长距离传输装置以及传输方法
CN109450545A (zh) * 2018-12-29 2019-03-08 苏州瑞派宁科技有限公司 多路时钟信号分发方法、装置和辐射探测设备
CN112104413B (zh) 2019-06-17 2021-07-16 上海华为技术有限公司 一种测量时延的无线中心设备、无线设备及无线通信***
CN112702134B (zh) * 2020-12-16 2021-12-14 北京邮电大学 一种双向时间同步装置、***与方法
CN113078978A (zh) * 2021-03-26 2021-07-06 杭州加速科技有限公司 远距离多ate半导体测试设备同步方法、***及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037565A1 (en) * 2002-08-22 2004-02-26 Robin Young Transport of signals over an optical fiber using analog RF multiplexing
CN101488803A (zh) * 2009-02-18 2009-07-22 华为技术有限公司 卫星时钟同步方法、***和基站
CN101615949A (zh) * 2008-06-27 2009-12-30 ***通信集团上海有限公司 实现毫微微蜂窝基站时钟同步的方法、***及设备
CN101764665A (zh) * 2008-12-23 2010-06-30 华为技术有限公司 时钟信号发送、接收方法、光发射机、光接收机及***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824539B2 (ja) * 2000-04-19 2006-09-20 富士通株式会社 Wdmネットワークの光クロック信号分配システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037565A1 (en) * 2002-08-22 2004-02-26 Robin Young Transport of signals over an optical fiber using analog RF multiplexing
CN101615949A (zh) * 2008-06-27 2009-12-30 ***通信集团上海有限公司 实现毫微微蜂窝基站时钟同步的方法、***及设备
CN101764665A (zh) * 2008-12-23 2010-06-30 华为技术有限公司 时钟信号发送、接收方法、光发射机、光接收机及***
CN101488803A (zh) * 2009-02-18 2009-07-22 华为技术有限公司 卫星时钟同步方法、***和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station
US11683771B2 (en) * 2020-11-30 2023-06-20 Viettel Group Method and apparatus for data frame synchronization of 5G base station

Also Published As

Publication number Publication date
CN102457372A (zh) 2012-05-16
CN102457372B (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2012058986A1 (zh) 一种通信***以及传输时钟信号的方法
US20170064661A1 (en) Base station system, radio device and method
ES2604477T3 (es) Método y dispositivo para sincronización de tiempo
CN101540500B (zh) 数字化光纤差动保护时钟接力法数据同步方法
CN101425865B (zh) 传输网中的时钟同步方法、***和从时钟侧实体
CN102244603B (zh) 传输承载时间的报文的方法、设备及***
CN102833025B (zh) E1/Ethernet协议转换精确时延计算方法、模块及转换器
CN112616181B (zh) 一种适配于5g通信的电流差动保护数据同步方法及***
WO2017219881A1 (zh) 一种基于1588的时间同步方法及装置
WO2010000190A1 (zh) 无源光网络同步时间的计算方法、***及光网络设备
JP2013501433A (ja) 光伝送網が時刻同期プロトコルをキャリングする方法及びシステム
CN103188066A (zh) 基准时钟信号处理方法及装置
WO2011009386A1 (zh) 实现时间同步的方法、装置及***
WO2012058992A1 (zh) 一种基准时钟信号的获取方法和***
WO2012095043A2 (zh) 时间路径补偿方法和装置
CN101854240A (zh) 一种提高无线授时精度的方法
CN108551378B (zh) 一种射频信号远距离传输方法
WO2013155944A1 (zh) 一种时钟传输方法、边界时钟及透传时钟
CN114142957A (zh) 一种远距离时频设备测试方法
CN112272360B (zh) 基于5g网络对时的电流差动保护数据同步方法及***
CN102201906A (zh) 一种时钟信号处理方法及其设备
CN103199950B (zh) 一种采用e1专线进行高精度时间传递的方法
CN102201851B (zh) 时钟拉远***、设备及信息传输方法
WO2016115922A1 (zh) 空口同步***及其方法
CN102546144A (zh) 用于同步信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837512

Country of ref document: EP

Kind code of ref document: A1