WO2012058945A1 - 一种终端功率余量的评估和上报方法及装置 - Google Patents

一种终端功率余量的评估和上报方法及装置 Download PDF

Info

Publication number
WO2012058945A1
WO2012058945A1 PCT/CN2011/077384 CN2011077384W WO2012058945A1 WO 2012058945 A1 WO2012058945 A1 WO 2012058945A1 CN 2011077384 W CN2011077384 W CN 2011077384W WO 2012058945 A1 WO2012058945 A1 WO 2012058945A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission
carrier
terminal
enb
Prior art date
Application number
PCT/CN2011/077384
Other languages
English (en)
French (fr)
Inventor
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012058945A1 publication Critical patent/WO2012058945A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • the present invention relates to an evaluation and uplink technology for terminal power headroom, and more particularly to a method and apparatus for evaluating and reporting terminal power headroom in an advanced long term evolution system.
  • the Long Term Evolution (LTE) system is a new generation mobile communication system launched by the 3GPP (3GPP) 3th Generation Partner Plan in 2004.
  • the system is based on Orthogonal Frequency Division Multiplexing (OFDM).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the wireless access technology of the Orthgonal Frequency Division Multiplex can achieve a downlink downlink rate of 100 Mbit/s and an uplink 50 Mbit/s rate in a 20 M bandwidth.
  • LTE-A Long Term Evolution
  • LTE-Advance The Advanced Long Term Evolution (LTE-A, LTE-Advance) system is the latest generation mobile communication system launched by the 3GPP organization in 2008.
  • the system uses carrier aggregation wireless access technology to simultaneously operate multiple pairs of uplink and downlink carriers up to 20M.
  • the downlink rate can reach lGbit/s and the uplink rate can reach 500Mbit/s.
  • both LTE and LTE-Advance systems need to perform power control on the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the main processes of LTE uplink power control are:
  • the user equipment receives a power control command ( TPC , transmitting power control ) ;
  • the UE performs downlink radio channel pilot receiving power measurement, calculates path loss Pathloss, and the UE calculates transmission power P by using Pathloss, uplink shared channel bandwidth, transport block format, TPC and other parameters; if the user equipment triggers the power headroom report (PHR, power headroom report), and meet the transmission conditions, then the UE also needs to send the PHR on the uplink shared channel;
  • PHR power headroom report
  • the evolved base station After the evolved base station (eNB) receives the physical uplink shared channel and/or PHR, it passes the DCI.
  • the physical downlink control channel of Format 0/3/3A sends a TPC to the UE; and returns to step (1).
  • LTE UEs Different from mobile access systems such as Code Division Multiple Access (CDMA), LTE UEs use dynamic resource allocation and use adaptive modulation and coding (AMC). , LTE UE uplink transmit power and resources The source allocation and the coded modulation mode are related. Therefore, the separate power control mode is not sufficient to complete the power control task of the LTE UE.
  • the PHR transmitted by the UE to the eNB is used as the resource budget information of the PUSCH, and provides a basis for the eNB to perform uplink resource allocation. If the PHR reflects that the UE has a large power headroom, the eNB can allocate more radio resource blocks to the UE. If the PHR reflects that the UE has no power headroom or does not have more power headroom, the eNB can only Less radio resource blocks or low order modulation commands are allocated to the UE.
  • the PHR transmission frequency of the UE to the eNB is lower than the transmission frequency of the eNB to the TPC of the UE.
  • the sending of the PHR requires two steps: first, triggering, then reporting.
  • the UE triggers the PHR report when the periodic PHR timer expires or the path loss changes greatly or the PHR is configured/reconfigured. After the UE obtains sufficient PUSCH resources for the PHR, the UE reports the PHR to the eNB.
  • SEM Specific Emission Masking
  • ACLR Adjacent Channel Leakage Ratio
  • the transmit power the former will increase the cost of the UE, and the latter will reduce the uplink capability of the UE. Since the method of reducing the transmission power, also called power reduction (PR), is simple and effective, a large number of UEs use this method to achieve the requirement of out-of-band radiation. However, in order to ensure the uplink transmission capability of the UE, the UE is not allowed to reduce the power unrestricted, so that the basic uplink service cannot be performed.
  • the maximum power reduction (MPR) is allowed in the protocol, due to the out-of-band radiation. The size is related to the modulation and demodulation configuration of the transmitted data, and the occupied bandwidth.
  • PUSCH (i) 101og 10 ( PUSCH ()) + P 0 PUSCH ( + cc(t) - PL + ⁇ ⁇ () + ()
  • M PUSCH (i) is the transmission bandwidth of the PUSCH by the scheduled modulation coding format (MCS, Modulation and Coding Scheme) configuration decision
  • PUSCH (0 is the open loop power control adjustment value
  • (0 is the partial path loss compensation value
  • t is the semi-static variable
  • ⁇ ⁇ (0 is the transmission format compensation value
  • / () is the closed-loop power control adjustment value, that is, the transmission power of the PUSCH and the bandwidth of the occupied resources of the PUSCH, the path loss between the UE and the base station, and the configuration of the open-loop power control and the closed-loop power control.
  • the PHR is in dB and the power in the formula is in dBm.
  • the UE After the PHR is triggered, when the UE has an uplink scheduling resource that can accommodate the PHR, the UE will PHR. Send to the eNB.
  • the technical problem to be solved by the present invention is to provide a method and a device for evaluating the terminal power headroom to improve the efficiency of the LTE-A system eNB for uplink scheduling.
  • the present invention provides a method for evaluating a power headroom of a terminal, including: an evolved base station (eNB) obtains a power headroom of a carrier that is uplinked by a terminal in a first transmission feature and a second transmission feature, and Calculating a change amount of the power backoff value between the first transmission feature and the second transmission feature of the carrier;
  • eNB evolved base station
  • the eNB When the second transmission characteristic is transmitted, the eNB subtracts the calculated power backoff variation amount from the power headroom when the first transmission feature is >3 ⁇ 4 on the terminal, and obtains the second transmission feature transmission time.
  • the maximum modulation encodes the power that can be added, allocating resources to the terminal.
  • the above method has the following characteristics:
  • the eNB subtracts the modulation coding increase power from the difference between the power headroom of the carrier at the first transmission feature and the second transmission feature as a change amount of the power backoff value between the first transmission feature and the second transmission feature. And between the time corresponding to the first transmission feature for calculating the power backoff change amount and the time corresponding to the second transmission feature, the road loss change amount and the closed loop power control adjustment value change amount are both smaller than the specified value.
  • the method further includes:
  • the eNB limits the resources allocated to the terminal according to the power headroom and the power back-off value, or according to the absolute power headroom, so that the sum of the powers of the carriers under the power amplifier of the terminal is less than or equal to The maximum transmit power of the power amplifier.
  • the method further includes:
  • the eNB allocates resources to the terminal, the total transmission power of the terminal in each power amplifier is less than or equal to the maximum of the terminal. Large transmit power.
  • Another technical problem to be solved by the present invention is to provide a method and apparatus for reporting power headroom to improve the accuracy of the LTE-A system eNB for evaluating the terminal power headroom.
  • the present invention provides a method for reporting a power headroom, including: when a power headroom report (PHR) of a terminal trigger carrier is reported, the terminal sends a PHR to the eNB, where the specified one or more transmissions are carried.
  • PHR power headroom report
  • the foregoing method has the following features:
  • the terminal sends, to the eNB, a power headroom corresponding to one or more specified transmission characteristics calculated in the following manner:
  • the power headroom is calculated from the smallest, average, or average power backoff value.
  • the above method has the following characteristics:
  • the terminal When the terminal sends a PHR to the eNB, it also carries information about the power backoff value corresponding to the power headroom:
  • the information of the power backoff value is one of the following forms:
  • the present invention provides an apparatus for evaluating a power headroom of a terminal, comprising: a calculation module and an evaluation module, wherein
  • the calculating module is configured to: obtain a power headroom of the carrier that is uplinked by the terminal in the first transmission feature and the second transmission feature, and calculate a power back between the first transmission feature and the second transmission feature of the carrier The amount of change in the value of the refund;
  • the evaluation module is configured to: when the carrier transmits the second transmission feature, subtract the calculated power backoff change amount from the power headroom when the first transmission feature on the terminal is used.
  • the power that can be increased by the maximum modulation coding at the time of transmission of the second transmission feature allocates resources to the terminal.
  • the above device has the following features:
  • the calculating module is further configured to: subtract the difference between the power headroom of the carrier in the first transmission feature and the second transmission feature by the modulation coding increasing power as the power back between the first transmission feature and the second transmission feature
  • the amount of change in the value of the depreciation is limited between the time corresponding to the first transmission characteristic for calculating the amount of change in power backoff and the time corresponding to the second transmission characteristic, and the amount of change in the path loss and the closed-loop power control adjustment value are smaller than the specified value.
  • the device further includes a power limiting module, wherein
  • the power limiting module is configured to: when the terminal performs multi-carrier transmission, according to a power headroom and a power back-off value, or according to an absolute power headroom, limit resources allocated to the terminal, so that the terminal power amplifier The sum of the powers of the respective carriers is less than or equal to the maximum transmit power of the power amplifier.
  • the above device has the following features:
  • the power limiting module is further configured to: when the terminal uses multiple power amplifiers for multi-carrier transmission, making the total transmit power of the terminal at each power amplifier less than or equal to the maximum transmit power of the terminal.
  • the present invention provides a power headroom reporting apparatus, including: a triggering module and a transmitting module, where
  • the triggering module is configured to: trigger a PHR report of the carrier;
  • the reporting module is configured to: when the triggering module triggers the PHR reporting of the carrier, send a PHR to the eNB, where the power headroom corresponding to the specified one or more transmission features is carried.
  • the above device has the following features:
  • the upper module is further configured to: when the trigger module triggers a carrier? When 13 ⁇ 4 is up, the power headroom corresponding to the specified one or more transmission characteristics is calculated as follows:
  • the above device has the following features:
  • the reporting module is further configured to: when the triggering module triggers the PHR reporting of the carrier, carrying the information of the power backoff value corresponding to the power headroom,
  • the information of the power backoff value is one of the following forms: (1) an actual value of the power backoff value;
  • the invention discloses a method for evaluating a terminal power headroom, which comprises:
  • the evolved base station obtains a power headroom of the carrier transmitted by the terminal in the first transmission feature and the second transmission feature, and calculates, according to the obtained power margin, the carrier in the first transmission feature and the second transmission feature.
  • the amount of change in the power backoff value is a power headroom of the carrier transmitted by the terminal in the first transmission feature and the second transmission feature, and calculates, according to the obtained power margin, the carrier in the first transmission feature and the second transmission feature.
  • the eNB obtains the maximum modulation code when the second transmission feature is transmitted by subtracting the amount of power from the power margin of the first transmission feature on the terminal.
  • the power of the terminal is allocated resources.
  • the eNB obtains a power headroom of the carrier that is uplinked by the terminal in the first transmission feature and the second transmission feature, and calculates a power between the first transmission feature and the second transmission feature according to the obtained power margin.
  • the steps of the amount of change in the rollback value include:
  • the eNB subtracts the modulation coding increase power from the difference between the power headroom of the carrier at the first transmission feature and the second transmission feature as a change amount of the power backoff value between the first transmission feature and the second transmission feature. And between the time corresponding to the first transmission feature for calculating the power backoff change amount and the time corresponding to the second transmission feature, the road loss change amount and the closed loop power control adjustment value change amount are both smaller than the specified value.
  • the method further includes: when the terminal performs multi-carrier transmission, the eNB limits resources allocated to the terminal according to the power headroom and the amount of change, or according to an absolute power margin, so that the The sum of the powers of the carriers under the power amplifier of the terminal is less than or equal to the maximum transmit power of the power amplifier.
  • the method further includes: when the terminal uses multiple power amplifiers for multi-carrier transmission, When the eNB allocates resources to the terminal, the total transmit power of the terminal in each power amplifier is less than or equal to the maximum transmit power of the terminal.
  • the invention also discloses a method for reporting the power headroom, comprising:
  • the terminal When the terminal triggers the power headroom report (PHR) of the carrier, the terminal sends a PHR to the evolved base station (eNB), where the PHR carries a power headroom corresponding to the specified one or more transmission characteristics.
  • PHR power headroom report
  • eNB evolved base station
  • the power headroom is obtained by the following method:
  • the power headroom is calculated as the largest, smallest, average, or average closest power backoff value among the plurality of transmission characteristics.
  • the PHR further includes information about a power backoff value corresponding to the power headroom, where the information of the power backoff value is any one of the following forms:
  • the present invention also discloses an apparatus for evaluating a power headroom of a terminal, the evaluation apparatus comprising a calculation module and an evaluation module, wherein
  • the calculating module is configured to: obtain a power headroom of the carrier transmitted by the terminal uplink in the first transmission feature and the second transmission feature, and calculate, according to the obtained power headroom, the first transmission feature and the second transmission of the carrier The amount of change in the power backoff value between features;
  • the evaluation module is configured to: when the carrier is transmitted in the second transmission feature, by subtracting the amount of change from the power margin of the first transmission feature on the terminal, when the second transmission feature is transmitted.
  • the maximum modulation encodes the power that can be added to allocate resources to the terminal.
  • the computing module is further configured to: the carrier is in the first transmission feature and the second transmission The difference between the power headroom at the time of the feature minus the modulation code increasing power as the amount of change in the power backoff value between the first transmission feature and the second transmission feature, and defining the first transmission characteristic for calculating the power backoff variation Between the corresponding time and the time corresponding to the second transmission feature, the amount of change in the path loss and the change in the closed-loop power control adjustment value are both smaller than the specified value.
  • the apparatus also includes a power limiting module, wherein:
  • the power limiting module is configured to: when the terminal performs multi-carrier transmission, limit resources allocated to the terminal according to the power headroom and the amount of change, or according to an absolute power margin, so that the terminal The sum of the powers of the carriers under the power amplifier is less than or equal to the maximum transmit power of the power amplifier.
  • the power limiting module is further configured to: when the terminal uses multiple power amplifiers to perform multi-carrier transmission, the total transmit power of the terminal in each power amplifier is less than or equal to the maximum transmit power of the terminal.
  • the present invention also discloses a power headroom reporting apparatus, the reporting apparatus comprising: a triggering module and a transmitting module, wherein
  • the triggering module is configured to: report a power headroom report (PHR) of the triggering carrier; the upper module is configured to: when the triggering module triggers a PHR uplink of the carrier, send the PHR to the evolved base station (eNB), where The PHR carries a power headroom corresponding to the specified one or more transmission characteristics.
  • PHR power headroom report
  • the reporting module is further configured to: obtain the power headroom according to the following method: calculate a power headroom according to a transmission feature corresponding to the current time;
  • the power headroom is calculated as the largest, smallest, average, or average closest power backoff value among the plurality of transmission characteristics.
  • the reporting module is further configured to: when the triggering module triggers the PHR reporting of the carrier, the PHR further carries the information of the power backoff value corresponding to the power headroom, where the power back value is The information is in any of the following forms: (1) the actual value of the power backoff value;
  • FIG. 1 is a schematic diagram of resource allocation according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of multi-carrier transmission according to Embodiment 2 of the present invention.
  • FIG. 3 is a second schematic diagram of multi-carrier transmission according to Embodiment 2 of the present invention.
  • FIG. 4 is a third schematic diagram of multi-carrier transmission according to Embodiment 2 of the present invention.
  • FIG. 5 is a fourth schematic diagram of multi-carrier transmission according to Embodiment 2 of the present invention. Preferred embodiment of the invention
  • each component carrier uses independent power control. Therefore, it is also necessary to independently feedback the PR of each component carrier, which is different from the LTE REL-8/REL-9 UE. Since the UE transmits simultaneously on multiple uplink carriers in the LTE-Advanced system, the out-of-band radiation is greatly increased. Power, according to the current simulation results, it takes 0 ⁇ 6dB of MPR to meet the out-of-band radiation requirements. In addition, the newly introduced physical uplink control channel (PUCCH) and PUSCH simultaneous transmission mode will also increase the out-of-band radiation. Therefore, in the LTE-A system, the UE needs to adjust the power backoff to a larger extent according to the type of data transmission.
  • PUCCH physical uplink control channel
  • the maximum transmit power P CMAX of the UE varies with the transmission characteristics. Since the eNB is in actual scheduling, the transmission characteristics may change, and the power of the UE changes than the P CMAX when the PHR is reported previously. Therefore, the eNB may have an error when estimating the remaining available power available to the UE through the previous PHR. When the PR becomes larger, then the eNB may estimate The power headroom becomes larger, and there is a possibility of over-allocation, which eventually causes the UE to exceed P CMAX when transmitting, and needs to be ower scale down.
  • the estimated power headroom of the eNB becomes small, which may result in the allocation being too conservative, and the UE's P CMAX is not fully utilized.
  • the total power margin of the UE may not be estimated because the PR of each carrier may be different, and the absolute value is not known, so even if each carrier does not Exceeding the power headroom reported by the PHR may still exceed the total power of the entire UE, so power cutoff may occur.
  • a method for evaluating a terminal (UE) power headroom of the present invention is proposed.
  • the basic idea of the present invention is that when the eNB evaluates the power headroom of the terminal, it is necessary to consider the amount of change in the power backoff value. And, by using the PHR on the UE, the amount of change in power backoff is estimated.
  • the eNB obtains a power headroom of the carrier transmitted by the terminal in the first time (i); the eNB calculates the power that the carrier can increase from the time i to the second time (i,), according to the calculated The increased power is allocated to the terminal for the resource of the time i, wherein the eNB subtracts the power headroom of the time i of the carrier from the power backoff value of the carrier as the carrier from the time i to the time i , can increase the power.
  • the eNB can report the power margin of the carrier transmitted by the terminal at time i through the terminal reporting.
  • the eNB may use M ⁇ + A-MPR (the A-MPR is an additional MPR.
  • the network may further inform the UE that the additional may be based on the MPR.
  • the power backoff value allows the UE to perform power backoff to a greater extent to meet more stringent external radiated power requirements.
  • the eNB may further adjust the amount of change in the power backoff value more precisely, namely:
  • the eNB obtains a power backoff difference between the second transmission feature corresponding to the carrier at time i' and the first transmission feature corresponding to time i, and uses the power backoff difference as a change amount of the power backoff value of the carrier. .
  • the eNB When the second transmission characteristic is transmitted, the eNB subtracts the calculated power backoff variation amount from the power headroom when the first transmission feature is >3 ⁇ 4 on the terminal, and obtains the second transmission feature transmission time.
  • the maximum modulation encodes the power that can be added, allocating resources to the terminal.
  • the eNB When calculating the amount of change of the power backoff value between the first transmission feature and the second transmission feature, the eNB subtracts the difference between the power margin of the carrier at the first transmission feature and the second transmission feature by the modulation coding increasing power. And a change amount of the power backoff value between the first transmission feature and the second transmission feature, and between a time corresponding to the first transmission feature for calculating the power backoff change amount and a time corresponding to the second transmission feature, The amount of change in the path loss and the change in the closed-loop power control adjustment value are both smaller than the specified value.
  • the eNB when multi-carrier transmission, the eNB also needs to consider that the maximum transmit power cannot be exceeded. Specifically, the eNB includes:
  • the eNB limits the resources allocated to the terminal according to the power headroom and the amount of change of the power backoff value, or according to the absolute power headroom, so that the sum of the powers of the carriers in the power amplifier (referred to as power amplifier) of the terminal is Less than or equal to the maximum transmit power of the power amplifier.
  • the method for obtaining the absolute power headroom is the same as the method for obtaining the power headroom, and only the parameter selection is changed, and details are not described herein again.
  • the eNB allocates resources for the terminal, the total transmission power of the terminal at each power amplifier is less than or equal to the maximum transmission power of the terminal.
  • the terminal may need to report some auxiliary information, and the present invention proposes a method for reporting the power headroom, including:
  • the terminal When the terminal triggers the PHR reporting of the carrier, the terminal sends a PHR to the eNB, where the power headroom corresponding to the specified one or more transmission characteristics is carried.
  • the power headroom corresponding to the specified one or more transmission characteristics is calculated as follows: Calculating the power headroom according to the transmission characteristics corresponding to the current time, or calculating the power headroom according to a specified one of the transmission characteristics, or calculating the power headroom according to the specified multiple transmission characteristics, or by the largest of the plurality of transmission characteristics, The power headroom is calculated from the smallest, average, or average power backoff value.
  • the terminal when the terminal sends the PHR to the eNB, the terminal further carries information about the power backoff value corresponding to the power headroom, and the information of the power backoff value may be one of the following forms:
  • Embodiment 1 for single carrier transmission, and only PUSCH transmission
  • the eNB transmits the p-Max transmitted in the SIB2 through the system broadcast message), or because it meets the radio frequency performance requirements (such as SEM, ACLR) Both will cause the UE to control its maximum transmit power (UE-related capability, P- ASS ).
  • P- ASS maximum transmit power
  • the power backoff of the UE is PR ⁇ at a certain transmission time (TTI). It is known from the background art that the power backoff is determined by the maximum uplink transmit power and radio frequency performance requirements of the UE controlled by the eNB, regardless of the reason.
  • the actual maximum transmit power of the UE is subtracted from the maximum transmit power of the UE by a power backoff value, ie
  • the power amplifier of the UE and the relatively static characteristics of the filter are also related to the uplink transmission bandwidth at the time of transmission, the uplink transmission modulation mode, and the multi-carrier for uplink multi-carrier transmission.
  • the number of uplink transmission characteristics such as the number of uplink transmissions over the entire bandwidth. Therefore, for a UE, the power backoff in a cell may be a list, and each item of the list corresponds to one or several types. Line transfer feature, which corresponds to a
  • the bandwidth is occupied by the PUSCH, the modulation and coding configuration, the path loss (PL) between the UE and the base station, and the configuration of the open loop power control and the closed loop power control, wherein the open loop power control part p.
  • ⁇ PUSCH (0 is a semi-static parameter that can be considered to be basically unchanged during scheduling, then
  • PUSCH transmission power between i' and i 10 log 10 ( PUSCH (/ '))-10 log 10 ( PUSCH (/)) + ⁇ ⁇ (/ ') - ⁇ ⁇ (/) + a ⁇ t) ⁇ PL ⁇ i ') - a ⁇ t) ⁇ PL ⁇ i ') + /(/ ') - /(/)
  • P pusch ( Z ) - Pue'psch ( Z ) the bandwidth of the occupied resources of the PUSCH at the time i and i', the parameters of the modulation and coding configuration and the configuration of the open loop power control are notified by the eNB to the UE, so when the eNB When the MCS of the PUSCH at time i is used as a reference and the available MCS of i is estimated, the eNB can calculate the modulation coding increase power AP MCS of both . When i and i' are close to each other, it can be considered that the path loss of the UE does not change much, and the path loss variation ⁇ 3 ⁇ 4 « 0.
  • the eNB needs to estimate the specific value of (/')-, otherwise it cannot guarantee that (1) holds, that is, with the above APR ⁇ , the value is an estimated value.
  • the PR is associated with the transmission feature, assuming that the time i corresponds to the transmission feature 1, and the time j corresponds to the transmission feature 2, then:
  • APR ⁇ is the power backoff difference between the transmission characteristic m and the transmission characteristic n evaluated by the eNB.
  • AP Mra is the same as above, the eNB can calculate according to the actual MCS at the time of scheduling. So in the evaluation process is based on ⁇ ⁇ and ⁇ ⁇ equal to 0 or close to 0. After the eNB evaluates ⁇ ⁇ ⁇ multiple times, the error of m ⁇ APR ⁇ ) can be averaged to reduce its influence.
  • the eNB may repeat the foregoing process to calculate a power backoff difference between different transmission characteristics, which may be a reference value of the same transmission feature, that is, ⁇ , APR 4 , APR kl ; or may use different transmission characteristics as reference values.
  • ⁇ 2 , APR,,, ..., ⁇ the power backoff difference for different transmission characteristics is
  • the transmission characteristic at time 2 is n, the transmission characteristic at time is m, AP MC 2 ii is 2 and the power difference of PUSCH due to MCS.
  • the eNB can try to choose the PHR for the time when the time PHR is as close as possible, because the interval is separated.
  • the shorter the time the smaller the path loss may be, and the smaller the number of closed-loop power control commands may be lost, which reduces the error £rror (APR).
  • APR error £rror
  • APR mn APR ma + APR a , + APR bn (5)
  • ⁇ 7 ⁇ can be directly obtained through (4), or indirectly according to (5) the intermediate value, wherein the items in (5) can be further used (4) direct acquisition or (5) indirect acquisition by recursion.
  • the eNB can APR ⁇ between any two transmission characteristics is obtained by at least M times of PH.
  • the eNB can obtain APR ⁇ APR ⁇ . ' APR or APR ⁇ APR ⁇ . ⁇ APR through (4)(5), and reduce the data to be saved to M-1.
  • Embodiment 2 for a single power amplifier, multi-carrier transmission
  • the terminal can use more than one power amplifier to work, first discuss the single amplifier work.
  • the power back-off is affected by the transmission characteristics of the single carrier, and is also affected by the transmission characteristics of other carriers, that is, the out-of-band radiation is related to the distribution of the transmission resources on multiple carriers, as shown in Fig. 2. Shown.
  • multi-carrier transmission features such as the frequency interval between resources on multiple carriers, the interval between resources and band edges, the power difference of resources on multiple carriers, etc.
  • multi-carrier transmission features such as the frequency interval between resources on multiple carriers, the interval between resources and band edges, the power difference of resources on multiple carriers, etc.
  • two carriers can be transmitted simultaneously and three carriers can be transmitted simultaneously.
  • the maximum transmit power needs to be controlled on each carrier, and converted into the maximum power on each carrier for power backoff. Since the power between the carriers is shared under one power amplifier, the maximum transmit power for each carrier under the same power amplifier is the maximum transmit power supported by the UE. To .
  • each carrier needs to satisfy the following conditions, pusch, ca - Pp ch, ca ) - Pp ch,ca (0- ca (0 - , ⁇ ( ⁇ )
  • P p k uscKca (i) , /w ⁇ ) and ⁇ 3 ⁇ 4 ⁇ respectively represent the k-th carrier, PUSCH power increment for multi-carrier transmission at the time of transmission, PUSCH power, PHR reported value, and eNB
  • the ca subscript is used to indicate the power backoff of the kth carrier in the single carrier transmission scenario described in the first embodiment. (0 not only the transmission with the kth carrier. related resources, but also by the transmission characteristics of the other carriers, the carrier of the k-th power backoff eNB estimated difference AR ⁇ ⁇ influence is also subject to the transmission characteristics of the other carriers.
  • AR ⁇ MPR k + A-MPR k is a relatively conservative estimation, then the eNB can select ⁇ / ⁇ cron. The range will be less.
  • the actual PHR value reported by the UE can correct the ⁇ PR e k NB ca to be closer to the actual power backoff, so that it is not necessary to continue to use a more conservative strategy in the subsequent scheduling.
  • the specific evaluation can be performed at the time of i and j. The PHR value reported by the UE is subtracted.
  • the eNB can obtain an estimate of the power backoff difference of the kth carrier as
  • the transmission feature here is a multi-carrier transmission feature.
  • the carrier transmission characteristic is ⁇ , and the multi-carrier transmission characteristic at time is m.
  • APR k APR k + APR k + APR k then the UE has a multi-carrier scheduling mode for the current multi-carrier configuration, since the k-th carrier PR ⁇ (m )(t) is in a cell for some For a UE, it is relatively fixed.
  • the eNB can acquire ⁇ ⁇ between any two multi-carrier transmission features by at least N times of multi-carrier scheduling.
  • the eNB can obtain APR APR ., APR or (4)
  • the power constraint of the power amplifier is further considered, that is, the power of each carrier under one power amplifier and the maximum transmission power of the power amplifier cannot be exceeded. i's satisfied:
  • the UE When i is time, the UE reports PHR, and it can be seen that PH ca () - Ppowerclass ⁇ ⁇ ca (0 _ ⁇ ca ⁇ pusch (0 ⁇ PH ca (f) + PR ca (f) - P powerc i ass ⁇ P ca , pusch It can be seen from the above discussion that since the path loss value eNB is not well estimated, the eNB determines whether the PUSCH power at the i' time on the kth carrier is incremented relative to the power at the i time by the power difference formula (6). Exceed the maximum power of the carrier.
  • the eNB should consider the power increment for each carrier.
  • the right-hand PHJ k i is the PHR of the carrier k at the time i, and the multi-carrier transmission characteristic of the PR ⁇ -PR ⁇ ' ⁇ -PR ⁇ APR ⁇ i ' time is n 2 .
  • the multi-carrier transmission feature at time 1 is ni , APR" is obtained as described above.
  • the PHR for the carrier k on the UE at the time i, and PR ⁇ is the power backoff value of the UE on the k carrier at the time i, PR (0 can be estimated by the eNB or the UE
  • the eNB may select to obtain the information in 3.2 and the power headroom information of the carrier/W ⁇ to perform future scheduling according to the common scheduling policy, or obtain the total power margin of the UE reported by the UE according to the information not described in 3.3.
  • the adjusted carrier power headroom information is used to satisfy the scheduling of the eNB.
  • Embodiment 3 for multi-amplifier, multi-carrier transmission Each power amplifier serves one carrier or multiple carriers according to the algorithm of the UE or the configuration of the eNB.
  • the eNB estimates the power headroom by referring to the second embodiment.
  • the theoretical maximum transmit power of a power amplifier is the theoretical maximum transmit power of the terminal.
  • the constraint condition is that under the same power amplifier, the sum of the transmission power of each carrier is smaller than the theoretical maximum transmission power of the power amplifier, that is, (10) is modified to
  • the sum of the transmit powers of the carriers under each power amplifier cannot be greater than the theoretical maximum transmit power of the terminal.
  • the fourth embodiment in the scenario of the foregoing embodiment 1 to the third embodiment, the terminal reports the PHR in the discussion process of the first embodiment to the third embodiment, in order to enable the eNB to better estimate the power headroom of the UE.
  • Some additional information of the UE in addition to the existing carrier power headroom information is required.
  • the first embodiment to the third embodiment are only possible algorithms in the eNB, and may be implemented by other algorithms.
  • the reporting of the information about the terminal power headroom is not limited to the eNB algorithm of the foregoing embodiment-the third embodiment.
  • the carrier k after the PHR is triggered, the UE obtains the uplink scheduling at a certain moment. When the PHR can be reported, the power backoff needs to be considered because the value of the Pcmax needs to be considered.
  • the value of the power backoff takes into account the characteristics of the single carrier transmission, and the multi-carrier transmission. There are many characteristics of the multi-carrier transmission feature, such as dual-carrier transmission characteristics and three-carrier transmission characteristics, and the value of the power back-off can be various. Consider different scheduling conditions in the future until the available margin for power is different. For example, the UE configures the carrier CC1/CC2/CC3, taking the power headroom calculation of CC1 as an example.
  • the power backoff value on CC1 may be different, even if the transmission characteristics of CC1 have not changed, due to other The change of carrier transmission affects the calculation of the power headroom of CC1.
  • the UE calculates the PHR as a different power backoff situation considering multiple scheduling situations.
  • the PHR reports, it feeds back the power headroom in various scheduling situations.
  • the report may use different power backoffs to calculate different power headroom values, or report the power headroom in one case, and carry the difference information of the power headroom when other different schedulings are carried at the same time.
  • the corresponding power backoff to be considered in the calculation of the possible power headroom value of CC1 has PR; (individual CC1 transmission), PR ⁇ (CC1 and Another CC transmission) and ⁇ (CC1/2/3 transmission together) three (for different combinations of CC1/2 and CC1/3 when 2 carriers are transmitted, the power backoff may be different, then the last considered power
  • the rollback can also be greater than three.
  • three power backoffs are taken as an example.
  • the UE calculates three PHR values according to the PR, P and P, or only reports the PR; the calculated PHR information, but carries the power back.
  • the difference value information ( -/ ⁇ 1 and ⁇ -PRl ), or the difference information of the power headroom.
  • the PHR is calculated by the UE reporting the actual power backoff value when the PHR time actually occurs.
  • CC1 and CC2 are simultaneously transmitted, and the corresponding power backoff is performed on CC1, then the UE uses / ⁇ to calculate the PHR of CC1, etc.
  • the price is the maximum transmit power of the carrier minus the actual transmit power at that moment.
  • the UE selects one of a plurality of possible power backoff values according to the policy, and only reports the power.
  • the calculated PHR is rolled back.
  • This power backoff may be a pre-agreed value corresponding to a specific transmission characteristic, regardless of the actual transmission characteristics currently reported at the PHR time. For example, when the UE reports the PHR of CC1, it always selects the power back-off PR of the single-carrier transmission; the calculated PHR always uses the PHR of the power back-off calculation when all the active carrier multi-carrier transmissions are transmitted or always selects the specific power back-off.
  • the eNB may calculate the PHR according to the selection policy that affects the UE by using signaling, for example, the UE uses the power backoff of the single carrier transmission feature to calculate the PHR by default, and the eNB may indicate the UE to change the policy by using signaling, and use all activated carriers to transmit power during multi-carrier transmission. Calculate the PHR.
  • the above methods 2) and 3) can reduce the reporting amount of the UE, a certain evaluation error may occur when scheduling the eNB. Therefore, the UE may have an excessive error when the eNB scheduling occurs, such as when the power headroom is negative or positive but less than a threshold.
  • the information on the UE reflects the actual power return, such as the PHR calculated using the actual power return information, or the actual power backoff or the actual Pcmax is reported separately.
  • the eNB may determine that the UE uses the actual power backoff value according to the negative value of the PHR or is positive but less than a threshold or according to the identifier information carried by the UE, and the eNB saves the corresponding information to correct the internal evaluation error. .
  • the power back information PRU0 of each carrier is used on the UE, and more specifically, there are two ways:
  • the UE reports the content of the power backoff information (direct power backoff value or other derivative value that can be obtained by deriving the power backoff) to the eNB, and may: a. report PR (0 value;
  • the reporting time may be that the UE carries the information while reporting the PHR of the carrier k at the time of reporting i.
  • the UE may report all possible values and their corresponding transmission characteristics to the eNB before the scheduling occurs, such as by using capability information or reconfiguration response message. If the power backoff information under all the transmission characteristics reported by the UE is used, the eNB may obtain an accurate value without performing the estimation described in Embodiment 2.
  • the UE when the UE is carrying a report on the PHR, in the information described in, b and c, if the reported value eNB can be inferred by the known information, the UE may not report, and when the reported value is equal to the predefined default value,
  • the power backoff value as described in a is the maximum power backoff value
  • b is the minimum value or the difference of c is equal to zero.
  • the UE may not report, but when the reported value is equal to that reported before, for example, if the values of the two consecutive reports are the same, the continuous may be two consecutive consecutive reports, or two consecutive transmissions of the feature phase. Simultaneous reporting.
  • the eNB reports the power backoff information under all the transmission characteristics according to the PHR evaluation ⁇ (value of 0, decrease 1) reported by the UE.
  • the eNB may acquire ⁇ between any two multi-carrier transmission characteristics according to the PHR reported by the UE.
  • PRi w PR c k a( ) + ⁇ PRi can be obtained.
  • N multi-carrier transmission characteristics when the eNB can transmit the power backoff value PR ⁇ from one of the characteristics, and the power back The amount of degression is derived, and the power backoff value under other transmission characteristics is derived. In this way, the UE can only transmit the power backoff value of the partial transmission feature, thereby reducing the reported information.
  • the UE only needs to report the power backoff value of a transmission feature.
  • the eNB may directly evaluate the power backoff of the UE according to the maximum allowed power backoff information.
  • the eNB may perform the power back to the UE according to the method 2). Return information for estimation.
  • Embodiment 5 For the case where the PUCCH and the PUSCH are simultaneously transmitted, the terminal reports the PHR.
  • the PUCCH and the PUSCH can be simultaneously transmitted on the primary carrier.
  • the PUCCH and the PUSCH are simultaneously transmitted, it is apparent that when calculating the power headroom of the PUSCH, the power occupied by the PUCCH needs to be removed. Since the channel of the PUCCH is relatively fixed, and the eNB does not work on the PUCCH The AMC is adjusted, so the power headroom obtained by the eNB is mainly used as the AMC of the PUSCH.
  • the PHR at this time is called type2 PHR, and the original PHR considering only the PUSCH is called typel.
  • PHR the power of the PUCCH and the PUSCH
  • Type2 PHR has a variety of formula definitions, and there is currently no consensus.
  • Application example 1 This example uses the type2 PHR defined by the following formula as an example.
  • ie type2 PHR is defined as the carrier due to the power of the PUCCH
  • the change of the transmission format changes, and when the PUCCH and the PUSCH are simultaneously transmitted, the PR of the primary carrier and the PR when only the PUSCH are transmitted are different.
  • the UE always calculates and reports the type 2 PHR using the PUCCH format negotiated in advance with the eNB, so that the error control of the eNB for the power evaluation caused by the PUCCH format change is within an acceptable range.
  • the UE always uses the format of the maximum number of bits of the PUCCH to calculate the type2 PHR, so that any scheduling in the future is 101o gl . (l- 10 ⁇ 10 ⁇ )-101og 10 (l-10 10 ) ⁇ 0 can always be satisfied, then although the range of variation of U - U can be reduced according to (16), the scheduling of the eNB becomes conservative, but the scheduling Power can always be met.
  • the possible positive error may cause the eNB to evaluate the power headroom. Too optimistic, but due to the small probability of occurrence, a power evaluation error occurs, resulting in a lower probability that the UE will perform ower scale down when the allocated power is greater than the actual available power.
  • the device for evaluating the power headroom of the embodiment of the present invention is applicable to an eNB, and includes a calculation module and an evaluation module, where
  • the calculating module is configured to: obtain a power headroom of the carrier that is uplinked by the terminal in the first transmission feature and the second transmission feature, and calculate a power back between the first transmission feature and the second transmission feature of the carrier The amount of change in the value of the refund;
  • the evaluation module is configured to: when the carrier transmits the second transmission feature, subtract the calculated power backoff variation by the power margin of the first transmission feature on the terminal to obtain the second
  • the maximum modulation coding when transmitting a feature transmission can increase the power and allocate resources to the terminal.
  • the calculating module may be further configured to: subtract the difference between the power headroom of the carrier in the first transmission feature and the second transmission feature by the modulation coding increasing power as the first transmission feature and the second transmission feature.
  • the device may further include a power limiting module, where
  • the power limiting module is configured to: when the terminal performs multi-carrier transmission, according to a power headroom and a power back-off value, or according to an absolute power headroom, limit resources allocated to the terminal, so that the terminal power amplifier The sum of the powers of the respective carriers is less than or equal to the maximum transmit power of the power amplifier.
  • the power limiting module is further configured to: when the terminal uses multiple power amplifiers for multi-carrier transmission, making the total transmit power of the terminal in each power amplifier less than or equal to the maximum transmit power of the terminal .
  • the power headroom reporting apparatus of the embodiment of the present invention is applicable to a terminal, and includes: a triggering module and a sending module, where
  • the triggering module is configured to: trigger a PHR report of the carrier;
  • the reporting module is configured to: when the triggering module triggers the PHR reporting of the carrier, send a PHR to the eNB, where the power headroom corresponding to the specified one or more transmission features is carried.
  • the reporting module may be further configured to: when the triggering module triggers the PHR reporting of the carrier, calculate a power headroom corresponding to the specified one or more transmission features as follows: Calculating the power headroom, or calculating the power headroom according to a specified one of the transmission characteristics, or calculating the power headroom according to the specified multiple transmission characteristics, or by the largest, smallest, average or away from the plurality of transmission characteristics The average nearest power backoff value is calculated to obtain the power headroom.
  • the reporting module may be further configured to: when the triggering module triggers the PHR reporting of the carrier, further carrying the power backoff information corresponding to the power headroom,
  • the information of the power backoff value is one of the following forms:
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the efficiency of the LTE-A system eNB for uplink scheduling can be remarkably improved, and the industrial applicability is extremely strong.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种终端功率余量的评估方法和装置,该方法包括:演进型基站(eNB)获得终端上行传输的载波在第一传输特征和第二传输特征时的功率余量,并依据获得的功率余量计算所述载波在第一传输特征和第二传输特征之间的功率回退值的变化量;所述载波在第二传输特征传输时,所述eNB通过将所述终端上报的第一传输特征时的功率余量减去所述变化量得到在第二传输特征传输时的最大调制编码可增加的功率,为所述终端分配资源。本发明还公开了一种功率余量的上报方法和装置。通过本发明,可提高LTE-A***eNB进行上行调度时的效率。

Description

一种终端功率余量的评估和上报方法及装置
技术领域
本发明涉及终端功率余量的评估及上^艮技术, 尤其涉及高级长期演进系 统中一种终端功率余量的评估和上报方法及装置。
背景技术
长期演进(LTE, long term evolution ) ***是第三代伙伴计划 (3GPP, 3th Generation Partner Plan )组织在 2004年启动的新一代移动通信***, 该系 统釆用基于正交频分复用 (OFDM, Orthgonal Frequency Division Multiplex)的 无线接入技术,在 20M带宽下能够达到下行 100Mbit/s的速率和上行 50Mbit/s 的速率。
高级长期演进 ( LTE-A, LTE-Advance ) ***是 3GPP组织在 2008启动 的最新一代移动通信***, 该***釆用载波聚合的无线接入技术, 能够同时 运行多对最大为 20M的上下行载波, 下行速率能够达到 lGbit/s, 上行速率可 达到 500Mbit/s。 为了补偿无线信道的路径损耗, 抑制小区间干扰, LTE和 LTE-Advance***都需要对物理上行共享信道(PUSCH )进行功率控制。
LTE的上行功率控制的主要过程为:
( 1 ) 用户设备(UE )接收到功率控制命令 ( TPC , transmitting power control ) ;
( 2 )UE进行下行无线信道导频接收功率的测量,计算路径损耗 Pathloss, UE以 Pathloss, 上行共享信道带宽, 传输块格式, TPC等参数计算发射功率 P; 如果用户设备触发了功率上升空间报告 ( PHR, power headroom report ) , 并满足发送条件, 那么 UE还需要在上行共享信道上发送 PHR;
( 3 )演进型基站( eNB )收到物理上行共享信道和 /或 PHR后,通过 DCI
Format 0/3/3A的物理下行控制信道向 UE发送 TPC; 返回执行步骤( 1 ) 。
区别于码分多址接入( CDMA, Code Division Multiple Access )等移动接 入***, LTE UE釆用动态的资源分配方式, 并且釆用自适应的信道编码调 制方式( AMC, adaptive modulation and coding ) , LTE UE上行发射功率与资 源分配、编码调制方式相关, 因此单独的功率控制方式还不足以完成 LTE UE 的功率控制任务,通过 UE向 eNB发送的 PHR作为 PUSCH的资源预算信息, 为 eNB进行上行链路资源分配提供依据。如果 PHR反映出 UE有较大的功率 上升空间, 那么 eNB可以分配较多的无线资源块给 UE; 如果 PHR反映出 UE已经没有功率上升空间, 或者没有较多的功率上升空间, 那么 eNB只能 分配较少的无线资源块或者低阶调制命令给 UE。
LTE***中 UE向 eNB的 PHR发送频率低于 eNB向 UE的 TPC发送频 率。 PHR的发送需要有两个步骤: 首先是触发, 然后是上报。 UE在周期 PHR 定时器到期时或者路损变化较大或者 PHR配置 /重配置时触发 PHR上报, 当 UE获得了足够用于 PHR的 PUSCH资源后, UE向 eNB上报 PHR。
PHR 的计算为 (0 = CMAX-^^ , ^CMAX为 UE 配置最大发射功率 ( configured maximum output power ) , PCMAX— L PCMAX PCMAX— H, PCMAX的取 值范围主要有 2种受限因素: 1 ) 受限于 eNB的控制, 比如在微基站的小覆 盖场景, eNB会控制 UE的最大发射功率, 以减少 UE对邻区的干扰; 2)UE 的无用带夕卜 ί畐射 ( Out of band emission ) , 口为了满足 SEM ( Spectrum emission mask, 频谱发射屏蔽)和 ACLR ( Adjacent Channel Leakage Ratio, 邻带泄露 比)等要求, UE可以设计负责的滤波器, 用来减少带外辐射, 或者 UE降低 最大发射功率, 前者会增加 UE的成本, 后者降低了 UE的上行能力。 由于降 低发射功率, 也称为功率回退(PR, power reduce ) 的方法简单有效, 大量 UE在实现时会釆用该方法来达到带外辐射的要求。 不过为了保证 UE的上行 发送能力, 不允许 UE无限制的降低功率, 以至于不能进行基本的上行业务, 协议中定义允许的最大功率回退值 ( MPR, Maximum Power Reduction ) , 由 于带外辐射的大小跟发送数据的调制解调配置, 以及占用的带宽都有关系, 如 LTE在协议 36.101 中, 按不同的发送带宽和调制解调模式设置了不同的 MPR, 如下表所示。 各 UE可以按自身的实现设置实际的 PR值, 只要满足 PR < MPR即可。 Modulation Channel bandwidth 1 Transmission bandwidth MPR(dB) configuration (RB)
(调制方式)
(信道带宽 /传输带宽)
1.4 3.0 5 10 15 20
MHz MHz MHz MHz MHz MHz
QPSK > 5 >4 > 8 > 12 > 16 > 18 < 1
16 QAM <5 <4 <8 < 12 < 16 < 18 < 1
16 QAM > 5 >4 > 8 > 12 > 16 > 18 <2 所以考虑到功率回退后, UE在额定的发射功率 Ppwerclass^々基础上减去实 际的功率回退值, 并且还需要考虑上述的网络允许的最大发射功率后, 取两 者中的最小值为实际的 PCMAXe,te为 UE上行理论发射功率。 在 LTE中,
PHR中只考虑 PUSCH的发射功率, 所以 Pue,tx = PUe,pusch , Pue,pusch在 LTE中 为 PUSCH 的 发 射 功 率 , 定 义 为
= 101og10( PUSCH()) + P0 PUSCH( + cc(t) - PL + ΔΤΡ() + () , 其中的 MPUSCH(i) 为 PUSCH的发送带宽由调度的调制编码格式( MCS, Modulation and Coding Scheme)配置决定、 PUSCH(0为开环功控调整值、 "(0为部分路损补偿值、 t 为半静态变量、 为路损、 ΔΤΡ(0为传输格式补偿值、 /()为闭环功控调整 值, 即 PUSCH的发射功率跟 PUSCH的占用资源的带宽, UE和基站间的路 损以及开环功控和闭环功控的配置相关。 所以 PHR 计算公式为 PH (i)=pcMAx_{ 101og10 ( PUSCH()) +ΡΟ Κ]8αι(ή+α(ή - PL+A^+ }。
PHR的以 dB为单位, 公式中功率以 dBm为单位。
在 LTE中, PHR上报的触发(trigger)主要有以下三种情况:
1) PHR禁止定时器(prohibitPHR-Timer)超时, 并且路损相对于上一次
PHR上 ^艮的变化量大于 dl-PathlossChange dB时;
2) PHR周期定时器( periodicPHR-Timer )超时;
3) PHR功能实体的配置或重配置;
当 PHR被触发后, 当 UE有上行调度资源可以容纳 PHR时, UE将 PHR 发送给 eNB。
发明内容
本发明要解决的技术问题是,提出一种终端功率余量的评估方法及装置, 以提高 LTE-A*** eNB进行上行调度时的效率。
为了解决上述问题, 本发明提供一种终端功率余量的评估方法, 包括: 演进型基站 (eNB )获得终端上行传输的载波在第一传输特征和第二传 输特征时的功率余量, 并依此计算所述载波第一传输特征和第二传输特征之 间的功率回退值的变化量;
所述载波在第二传输特征传输时, eNB通过所述终端上>¾的第一传输特 征时的功率余量减去计算得到的所述功率回退变化量得到在第二传输特征传 输时的最大调制编码可增加的功率, 为终端分配资源。
优选地, 上述方法具有以下特点:
在 eNB获得终端上行传输的载波在第一传输特征和第二传输特征时的功 率余量, 并依此计算所述载波第一传输特征和第二传输特征之间的功率回退 值的变化量的步骤中,
所述 eNB将所述载波在第一传输特征和第二传输特征时的功率余量之差 减去调制编码增加功率作为第一传输特征和第二传输特征之间的功率回退值 的变化量, 且限定用于计算功率回退变化量的第一传输特征对应的时刻和第 二传输特征对应的时刻之间, 路损变化量和闭环功控调整值变化量均小于指 定值。
优选地, 所述方法还包括:
当所述终端进行多载波传输, eNB根据功率余量和功率回退值, 或者根 据绝对功率余量, 限制分配给终端的资源, 使所述终端的功率放大器下各载 波的功率之和小于等于所述功率放大器的最大发射功率。
优选地, 所述方法还包括:
当所述终端釆用多个功率放大器进行多载波传输时, 所述 eNB为终端分 配资源时, 使所述终端在各功率放大器的发射总功率小于等于所述终端的最 大发射功率。
本发明要解决的另一个技术问题是, 提出一种功率余量的上报方法及装 置, 以提高 LTE-A*** eNB进行终端功率余量的评估方法准确性。
为了解决上述问题, 本发明提供一种功率余量的上报方法, 包括: 终端触发载波的功率上升空间报告(PHR )上报时, 所述终端向 eNB发 送 PHR , 其中携带指定的一个或多个传输特征对应的功率余量。
优选地, 上述方法具有以下特点: 所述终端向 eNB发送按以下方式计算 得到指定的一个或多个传输特征对应的功率余量:
按当前时刻对应的传输特征计算得到功率余量, 或者按指定的一个传输 特征计算得到功率余量, 或者按指定的多个传输特征计算得到功率余量, 或 者按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的功率回退 值计算得到功率余量。
优选地, 上述方法具有以下特点:
所述终端向 eNB发送 PHR时, 还携带所述功率余量对应的功率回退值 的信息:
所述功率回退值的信息为以下形式中的一种:
( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
为了解决上述问题, 本发明提供一种终端功率余量的评估装置, 包括计 算模块和评估模块, 其中,
所述计算模块设置成: 获得终端上行传输的载波在第一传输特征和第二 传输特征时的功率余量, 并依此计算所述载波第一传输特征和第二传输特征 之间的功率回退值的变化量;
所述评估模块设置成: 在所述载波在第二传输特征传输时, 通过所述终 端上 的第一传输特征时的功率余量减去计算得到的所述功率回退变化量得 到在第二传输特征传输时的最大调制编码可增加的功率, 为终端分配资源。 优选地, 上述装置具有以下特点:
所述计算模块还设置成: 将所述载波在第一传输特征和第二传输特征时 的功率余量之差减去调制编码增加功率作为第一传输特征和第二传输特征之 间的功率回退值的变化量, 且限定用于计算功率回退变化量的第一传输特征 对应的时刻和第二传输特征对应的时刻之间, 路损变化量和闭环功控调整值 变化量均小于指定值。
优选地, 所述装置还包括功率限制模块, 其中,
所述功率限制模块设置成: 当所述终端进行多载波传输时, 根据功率余 量和功率回退值, 或者根据绝对功率余量, 限制分配给终端的资源, 使所述 终端的功率放大器下各载波的功率之和小于等于所述功率放大器的最大发射 功率。
优选地, 上述装置具有以下特点:
所述功率限制模块还设置成: 当所述终端釆用多个功率放大器进行多载 波传输时, 使所述终端在各功率放大器的发射总功率小于等于所述终端的最 大发射功率。
为了解决上述问题, 本发明提供一种功率余量的上报装置, 包括: 触发 模块和发送模块, 其中,
所述触发模块设置成: 触发载波的 PHR上报;
所述上报模块设置成: 当所述触发模块触发载波的 PHR上报时, 向 eNB 发送 PHR , 其中携带指定的一个或多个传输特征对应的功率余量。
优选地, 上述装置具有以下特点:
所述上 ^艮模块还设置成: 当所述触发模块触发载波的?1¾上^艮时, 按以 下方式计算得到指定的一个或多个传输特征对应的功率余量:
按当前时刻对应的传输特征计算得到功率余量, 或者按指定的一个传输 特征计算得到功率余量, 或者按指定的多个传输特征计算得到功率余量, 或 者按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的功率回退 值计算得到功率余量。 优选地, 上述装置具有以下特点:
所述上报模块还设置成: 当所述触发模块触发载波的 PHR上报时, 还携 带所述功率余量对应的功率回退值的信息,
所述功率回退值的信息为以下形式中的一种: ( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
本发明公开了一种终端功率余量的评估方法, 包括:
演进型基站 (eNB )获得终端上行传输的载波在第一传输特征和第二传 输特征时的功率余量, 并依据获得的功率余量计算所述载波在第一传输特征 和第二传输特征之间的功率回退值的变化量;
所述载波在第二传输特征传输时, 所述 eNB通过将所述终端上 的第一 传输特征时的功率余量减去所述变化量得到在第二传输特征传输时的最大调 制编码可增加的功率, 为所述终端分配资源。
其中: eNB获得终端上行传输的载波在第一传输特征和第二传输特征时 的功率余量, 并依据获得的功率余量计算所述载波在第一传输特征和第二传 输特征之间的功率回退值的变化量的所述步骤包括:
所述 eNB将所述载波在第一传输特征和第二传输特征时的功率余量之差 减去调制编码增加功率作为第一传输特征和第二传输特征之间的功率回退值 的变化量, 且限定用于计算功率回退变化量的第一传输特征对应的时刻和第 二传输特征对应的时刻之间, 路损变化量和闭环功控调整值变化量均小于指 定值。
所述方法还包括: 当所述终端进行多载波传输时, 所述 eNB根据所述功 率余量和所述变化量, 或者根据绝对功率余量, 限制分配给所述终端的资源, 使所述终端的功率放大器下各载波的功率之和小于等于所述功率放大器的最 大发射功率。
所述方法还包括: 当所述终端釆用多个功率放大器进行多载波传输时, 所述 eNB为终端分配资源时, 使所述终端在各功率放大器的发射总功率小于 等于所述终端的最大发射功率。
本发明还公开了一种功率余量的上报方法, 包括:
终端触发载波的功率上升空间报告(PHR )上报时, 所述终端向演进型 基站(eNB )发送 PHR, 所述 PHR中携带指定的一个或多个传输特征对应的 功率余量。
其中, 所述功率余量是通过以下方法得到的:
按当前时刻对应的传输特征计算得到所述功率余量;
或者, 按指定的一个传输特征计算得到所述功率余量;
或者, 按指定的多个传输特征计算得到功率余量;
或者, 按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的 功率回退值计算得到所述功率余量。
其中, 所述 PHR中还携带有所述功率余量对应的功率回退值的信息, 其 中, 所述功率回退值的信息为以下形式中的任意一种:
( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
本发明还公开了一种终端功率余量的评估装置, 该评估装置包括计算模 块和评估模块, 其中,
所述计算模块设置成: 获得终端上行传输的载波在第一传输特征和第二 传输特征时的功率余量, 并依据所获得的功率余量计算所述载波在第一传输 特征和第二传输特征之间的功率回退值的变化量;
所述评估模块设置成: 当所述载波在第二传输特征传输时, 通过将所述 终端上 的第一传输特征时的功率余量减去所述变化量得到在第二传输特征 传输时的最大调制编码可增加的功率, 为所述终端分配资源。
其中, 所述计算模块还设置成: 将所述载波在第一传输特征和第二传输 特征时的功率余量之差减去调制编码增加功率作为第一传输特征和第二传输 特征之间的功率回退值的变化量, 且限定用于计算功率回退变化量的第一传 输特征对应的时刻和第二传输特征对应的时刻之间, 路损变化量和闭环功控 调整值变化量均小于指定值。
所述装置还包括功率限制模块, 其中:
所述功率限制模块设置成: 当所述终端进行多载波传输时, 根据所述功 率余量和所述变化量, 或者根据绝对功率余量, 限制分配给所述终端的资源, 使所述终端的功率放大器下各载波的功率之和小于等于所述功率放大器的最 大发射功率。
其中, 所述功率限制模块还设置成: 当所述终端釆用多个功率放大器进 行多载波传输时, 使所述终端在各功率放大器的发射总功率小于等于所述终 端的最大发射功率。
本发明还公开了一种功率余量的上报装置, 该上报装置包括: 触发模块 和发送模块, 其中,
所述触发模块设置成: 触发载波的功率上升空间报告 ( PHR )上报; 所述上 模块设置成: 当所述触发模块触发载波的 PHR上艮时, 向演进 型基站( eNB )发送 PHR, 所述 PHR中携带指定的一个或多个传输特征对应 的功率余量。
其中, 所述上报模块还设置成: 按照以下方法得到所述功率余量: 按当前时刻对应的传输特征计算得到功率余量;
或者, 按指定的一个传输特征计算得到功率余量;
或者, 按指定的多个传输特征计算得到功率余量;
或者, 按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的 功率回退值计算得到功率余量。
其中,所述上报模块还设置成: 当所述触发模块触发载波的 PHR上报时, 还在所述 PHR中携带所述功率余量对应的功率回退值的信息,所述功率回退 值的信息为以下形式中的任意一种: ( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
通过本发明, 可提高 LTE-A*** eNB进行上行调度时的效率。 附图概述
图 1 是本发明实施例一的资源分配示意图;
图 2是本发明实施例二的多载波传输的示意图之一;
图 3是本发明实施例二的多载波传输的示意图之二;
图 4是本发明实施例二的多载波传输的示意图之三;
图 5是本发明实施例二的多载波传输的示意图之四。 本发明的较佳实施方式
针对 LTE-Advance***, 上行可以有多个分量载波, eNB如何进行功率 余量的评估, 终端如何进行 PHR上报, 是亟需解决的问题。
LTE-Advanced***中上行可以有多个分量载波,各分量载波釆用独立的 功率控制。 因此也需要独立的反馈各分量载波的 PR,和 LTE REL-8/REL-9UE 不同的是, 由于在 LTE-Advanced***中 UE在上行多个载波上同时进行发射 时, 会大大增加带外辐射功率, 根据目前的仿真结果, 需要 0~6dB 的 MPR 才能满足带外辐射要求;另外新引入的物理上行控制信道( PUCCH )和 PUSCH 同时发送方式, 也一样会造成带外辐射增加。 所以在 LTE-A***中, UE需 要根据数据发射的类型在更大范围内调整功率回退。
由于 UE的功率回退变化加大,导致 UE的最大发射功率 PCMAX随着发射 特性的不同而变化。 由于 eNB在实际调度时, 可能由于发射特性发生变化, 导致 UE的功率比之前上报 PHR时 PCMAX发生变化,从而 eNB通过之前 PHR 估计 UE可用的剩余可用功率时会有误差。 当 PR变大时, 那么 eNB可能估 计功率余量变大, 有过分配的可能, 最终导致 UE发射时超过 PCMAX, 需要被 功率截止( ower scale down ) 。 当 PR变小时, eNB估计的功率余量变小, 那么可能导致分配过于保守, UE的 PCMAX没有被充分利用。另外在多载波中, 由于 PHR是按载波上报, 那么对于 UE的总功率余量, 由于各个载波的 PR 可能不同, 并且绝对值也无法获知, 所以 eNB现在无法估计, 所以即使每个 载波都不超过 PHR上报的功率余量, 对于整个 UE的总功率来说还是有可能 超过, 所以可能发生功率截止。
为了解决上述问题, 提出本发明的终端 (UE )功率余量的评估方法。 本发明的基本思想是, eNB评估终端的功率余量时, 需要考虑功率回退 值的变化量。 以及, 通过 UE上 ^艮的 PHR, 估计出功率回退的变化量。
在本发明中, eNB获得终端上行传输的载波在第一时刻( i )的功率余量; eNB计算所述载波从时刻 i到第二时刻(i,)可增加的功率, 根据计算得到的 可增加的功率, 为终端分配时刻 i,的资源; 其中, 所述 eNB将该载波的时刻 i的功率余量减去该载波的功率回退值的变化量, 作为该载波从时刻 i到时刻 i,可增加的功率。
其中, eNB可通过终端上报, 获得终端上行传输的载波在时刻 i的功率 余量。
在第一次调度时, eNB可将 M ^ + A-MPR ( A-MPR为附加( additional ) MPR, 当为了进一步减少对邻频小区的干扰, 网络可以在 MPR 的基础上进 一步通知 UE可以额外功率回退值,允许 UE更大程度的进行功率回退, 以满 足更为严格的外辐射功率要求。 当网络没有特别要求时可以认为 A-MPR=Q ) 作为该载波的功率回退值的变化量, 这是最保守的估计。
在后续的调度过程中, eNB可进一步更精确地调整功率回退值的变化量, 即:
eNB获取该载波在时刻 i'对应的第二传输特征和在时刻 i对应的第一传输 特征之间的功率回退差, 将所述功率回退差作为该载波的功率回退值的变化 量。
也即: eNB获得终端上行传输的载波在第一传输特征和第二传输特征时的功率 余量, 并依此计算所述载波第一传输特征和第二传输特征之间的功率回退值 的变化量;
所述载波在第二传输特征传输时, eNB通过所述终端上>¾的第一传输特 征时的功率余量减去计算得到的所述功率回退变化量得到在第二传输特征传 输时的最大调制编码可增加的功率, 为终端分配资源。
计算第一传输特征和第二传输特征之间的功率回退值的变化量时, eNB 将所述载波在第一传输特征和第二传输特征时的功率余量之差减去调制编码 增加功率作为第一传输特征和第二传输特征之间的功率回退值的变化量, 且 限定用于计算功率回退变化量的第一传输特征对应的时刻和第二传输特征对 应的时刻之间, 路损变化量和闭环功控调整值变化量均小于指定值。
另外, 当多载波传输时, eNB还需要考虑最大发射功率不能超限, 具体 地, 包括:
eNB根据所述功率余量和所述功率回退值的变化量, 或者根据绝对功率 余量, 限制分配给终端的资源, 使所述终端的功率放大器(简称功放) 下各 载波的功率之和小于等于所述功率放大器的最大发射功率。
其中, 绝对功率余量的获得方法和功率余量的获得方法一样, 仅是在参 数的选择上有所变化, 在此不再赘述。
当所述终端釆用多个功率放大器进行多载波传输时, 所述 eNB为终端分 配资源时, 使所述终端在各功率放大器的发射总功率小于等于所述终端的最 大发射功率。
针对 eNB评估终端的功率余量, 终端可能需要上报一些辅助信息, 本发 明提出功率余量的上报方法, 包括:
终端触发载波的 PHR上报时, 所述终端向 eNB发送 PHR, 其中携带指 定的一个或多个传输特征对应的功率余量。
具体地, 所述终端向 eNB发送 PHR之前, 按以下方式计算得到指定的 一个或多个传输特征对应的功率余量: 按当前时刻对应的传输特征计算得到功率余量, 或者按指定的一个传输 特征计算得到功率余量, 或者按指定的多个传输特征计算得到功率余量, 或 者按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的功率回退 值计算得到功率余量。
另外, 优选地, 所述终端向 eNB发送 PHR时, 还携带所述功率余量对 应的功率回退值的信息, 所述功率回退值的信息可以是以下形式中的一种:
( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一, 对于单载波传输, 并且只有 PUSCH传输的情况
由背景技术可知,不管是由于 eNB控制的 UE最大上行发射功率(在 LTE ***中, eNB通过***广播消息二 SIB2中发送的 p-Max ) , 还是由于为了满 足射频性能要求(如 SEM, ACLR ) ,都将导致的 UE对其的最大发射功率( UE 的能力相关, P—ASS )进行控制。 假设在某发送时刻 (TTI ) UE的功率回退 为 PR^ , 由背景技术讨论可知功率回退是取决于 eNB控制的 UE最大上行发 射功率和射频性能要求, 在这里不管是哪个原因, 都将导致 UE的实际最大 发射功率为 UE 的最大发射功率上减去一个功率回退值, 即
Figure imgf000015_0001
其中除了射频性能要求考虑的功率回退和 UE 的功放 ( power amplifier ) 以及滤波器等相对静态的特性相关外, 还受发送时刻的上 行传输带宽, 上行传输调制模式, 上行多载波传输的多载波个数, 以及上行 传输在整个带宽上频带的位置等上行传输特征因素的影响。所以对于某个 UE 在一个小区内功率回退可能是一个列表, 列表的每一项对应了一种或几种上 行传输特征, 其对应了一个
由 图 1 可知, 如果 eNB 根据 i 时刻 ( TTI ) 的 PHR 值 (0 = Λ。 - (0来估算 1'时刻的 UE发送可用功率时, 可用功 率为 时刻功率余量大于 0, PHe (i') = P—s— (i')—Puepusch(i')≥0, 可得: ^ue.pusch = Pue,pusch 0' ')― Pue,pusch (0≤ PH () - ^ (1)
其中 是跟 PUSCH的占用资源的带宽, 调制编码配置、 UE和基 站间的路损 (PL) 以及开环功控和闭环功控的配置相关, 其中开环功控部分 p。― PUSCH(0是半静态参数可以在调度期间认为基本不变, 那么
Pue,pusch ) - Pue,pusch (0
= 10 log10 ( PUSCH (/ '))-10 log10 ( PUSCH (/)) + ΔΤΡ (/ ') - ΔΤΡ (/) + a{t) · PL{i ') - a{t) · PL{i ') + /(/ ') - /(/) i' 和 i 时 刻 的 PUSCH 发射 功 率 差 可 以 分 为 3 部 分 ,
Figure imgf000016_0001
, APPL = a(t) - PL(i ') - a(t) - PL(i) 其中" (t)是半静态参数, 和 Δ^ =/(')-/()。 所 以 i, 和 i 时 刻 的 PUSCH 发射 功 率 差 可 以 表示 为
P pusch (Z ) - Pue'psch (Z) = 其中 i和 i'时刻的 PUSCH的占用资源的带宽, 调制编码配置和开环功控 的配置等参数是 eNB通知给 UE的, 所以当 eNB以 i时刻的 PUSCH的 MCS 作为基准,估算 i,的可用的 MCS时, eNB可以计算出两者的调制编码增加功 率 APMCS。 当 i和 i'时刻接近时, 可以认为 UE的路损变化不大, 路损变化量 ΔΡ¾ « 0。 并且如果 i和 i'之间 UE和 eNB之间没有丟失闭环功控命令, 那么 闭环功控调整值变化量 也是 eNB可以获知的。 所以根据 (1), 当 eNB已 知 APR^ (即 和 的差) 的话, 那么 eNB就可以准确根据 (1)式, 估计 (0 = Δ^+Δ^ρ<的最大可变化范围, 而 ¾s(0和 1时刻的传 输特征以及 UE的射频结构有非常大的关系,一般认为如果 i和 i,时刻的传输 特征相同, 那么 (')-ΡΚΟ = Ο, 则在调度时不需要考虑功率回退的变化 因素, 否则的话如果传输特征发生变化, 两次调度的传输特征发生变化导致
Ί PR^ -PKi O,那么 eNB需要估算 (/')- 的具体值,否则不能 保证 (1)式成立, 即有了上述 APR^, 该值是一个估算值。 初次调度时, 因为 PR^ (/' ') < MPR + A-MPR , 所以 APReNB = MPR + A-MPR是比 较保守的估计, 那么 eNB可选择的 Δ^ = ^^( - (0增加量将变少。 当调度后如果 eNB可以获得 UE上报的实际 PHR值, 就可以修正 PReNB以更 策略。 具体评估时将 i和 j时刻的 UE上报的 PHR值相减可得:
Δ¾ ' = PHii) - PH(j) - Ρ (j) - P— ( )]
= PH(i) - PH(j) - [APMCS + APPL + APCL.PC ] 如上所述 PR与传输特征相关联, 假设 i时刻对应传输特征 1 , j时刻对应 传输特征 2, 那么:
APR^^APR,, (3)
其中 APR^为 eNB评估的传输特征 m和传输特征 n之间的功率回退差。 其 中 评估后 的 APR 和 UE 实 际的 APR^可能是有误差的 , ErroriAPR,, ) = APPL+ APCL_PC, 因为 APMra同上所述, eNB可以根据实际的调度时 的 MCS进行计算。 所以在评估过程中是基于 Δ ^和 Δ^ 等于 0或者接近于 0的 £设。 eNB通过多次 Δ Λ^ 的评估后, 可以平均化 m^APR^)的误差, 以减少其影响。
eNB可以重复上述过程, 计算不同传输特征之间的功率回退差值, 可以 是以同一个传输特征为参考值, 即 ΔΡΤ^, APR4 , APRkl; 也可以以不同 的传输特征为参考值 Δ 2, APR,,, ..., ΑΡ^, 不同传输特征的功率回退差 值为
= PH(i2)-PH(i,)-APMCSi2h (4)
其中 2时刻的传输特征为 n, 时刻的传输特征为 m, APMC 2 ii2和 ,由 于 MCS导致的 PUSCH的功率差。
eNB可以尽量选择对于 /·,时刻 PHR尽可能近的 时刻的 PHR, 因为相隔 时间越短那么路损的变化可能就越小, 而且闭环功控命令可能丟失个数也越 小, 这样可以减少误差 £rror(APR)。 并且 2时刻尽量不要选择由于路损变化触 发的 PHR, 因为这样会导致 较大, 从而增加了误差。
由于 APRm tl = m - " , 进一步推得
APRm n = APRm a + APRa , + APRb n (5)
即 ΔΡ7 ^可以通过 (4)来直接获取, 或者根据 (5)中间值来间接获取, 其中 (5)中的各项可以进一步釆用 (4)直接获取或者 (5)进行递归的间接获取。
由于 ^ 在一个小区里对于某个 UE来说是相对固定的, 并且传输特征 (或者传输特征组, 即 PR相同或接近的传输特征) 的个数是有限的, 如 M 个, 理论上 eNB可以最少通过 M次 PH上 ^艮获取任意两个传输特征之间的 APR^ 。 eNB 可 以 通 过 (4)(5) 获 取 APR^ APR^. ' APR 或 者 APR^ APR^ .^ APR ,将需要保存的数据缩减为 M-1个。
实施例二, 对于单功放, 多载波传输的情况
由于多载波传输时, 终端可以使用一个以上的功放进行工作, 先进行单 功放工作时的讨论。 对于同一个功放服务的多载波传输, 功率回退除了受单 个载波的传输特征影响, 还受其它载波的传输特征影响, 即带外辐射与传输 资源在多个载波上的分布相关, 如图 2所示。
如图 3和图 4所示, CC1 (载波 1 )上的传输特征相同的情况下, 当如图 3中的, 当 CC2 (载波 2 )上也进行传输时, CC1产生的带外辐射要远远高于 图 4所示的仅仅在 CC1上进行传输的场景, 为了控制带外辐射, 对于 CC1 而言, UE能发射的最大功率在图 3场景要远远小于图 4的场景, 即图 3的 PR要远远大于图 4。 再如图 3和图 5所示, 图 3的分布产生的带外辐射要远 远大于图 5, 当 UE按照图 3这种方式发射时, 最大发射功率的受限制相比图 5表示的场景大。
与单载波不同的, 在多载波传输时, 各个载波上的功率回退, 不仅需要 考虑实施例一中所述的单载波因素 (如单个载波上资源的所占带宽, 调制方 式等) , 还需要考虑到多载波因素 (如多个载波上资源之间的频率间隔, 资 源和频带边缘的间隔, 多个载波上资源的功率差等因素) , 以上统称为多载 波传输特征。 根据其原理可得, 2个载波同时传输和 3个载波同时传输都可 能是不同的多载波传输特征。对于一种多载波传输特征, 为了达到射频要求, 需要在各个载波上控制最大发射功率, 转化为各个载波上的最大功率进行功 率回退。 由于各个载波之间功率在一个功放下时共享的, 所以对于同一个功 放下的各个载波的最大发射功率就是该 UE支持的最大发射功率 。 to
对于单个载波, 类似实施例一中所述的 (1)有, 对于载波调度, 每个载波 需要满足以下条件 ,pusch,ca - Pp ch,ca ) - Pp ch,ca (0― ca (0 - ,οα (^)
其中^„ 、 Pp k uscKca(i) , /w^)和 Δ¾ ^分别表示, 第 k个载波, 在 传输时刻的进行多载波传输的 PUSCH功率增量, PUSCH功率, PHR上报值, 和 eNB估计的功率回退差。这里面用 ca下标表示与实施例一中所述的单载波 发送场景相区另' 其中第 k个载波的功率回退 Ρ (0不但与第 k个载波的传输 资源相关, 而且还受其它载波的的传输特征的影响, 所以第 k个载波的 eNB 估计的功率回退差 A R^同样受其它载波的传输特征的影响。
类似实施例一中所述, 初次调度时, A R =MPRk + A-MPRk是比较保 守的估计, 那么 eNB可选择的 Δ/^„ 。范围将变少。 当调度后如果 eNB可以 获得 UE上报的实际 PHR值, 就可以修正 ^PRe k NB ca以更接近实际的功率回退, 从而可以在之后的调度中不用继续釆用更保守策略。 具体评估时可将 i和 j 时刻的 UE上报的 PHR值相减。
eNB可以获取第 k个载波的功率回退差的估计为
Figure imgf000019_0001
PRca - PRca = PRca U) - PRca (0
= PHk ( ) - PHk {j) - cs - [APP k L + APc k L_PC ] 与实施例一中的单载波相区别的是这里的传输特征是一个多载波传输特 征, 当 K个载波进行载波聚合时, 对于一个多载波传输模式 m, 对应各个载 波的 P (m k=l..K。 所以对于多载波传输模式 m和 n之间, 各个载波的功率 回退差为:
APR (→ = PRc k a{m)-PRc k a{n) = PH k (/2 )-PHk ( )- AP^h,k = ί. X (9) 其中 i2时刻的多载波传输特征为 η, ί时刻的多载波传输特征为 m。
其 中 类 似 的 也 可 以 通 过 间 接 获 取 APRk = APRk + APRk + APRk 那么 4叚设 UE对于当前的多载波配置, 有 Ν种多载波调度模式, 由于第 k个载波 PR∞(m)(t)在一个小区里对于某个 UE来说是相对固定的, 理论上 eNB 可以最少通过 N次多载波调度获取任意两个多载波传输特征之间的 ΐ α 。 eNB 可 以 通 过 (4)(5) 获 取 APR APR ., APR 或 者
^ 2 ),^¾3,2),...,^ — D将一个载波需要保存的数据缩减为 N-1个。
多载波传输另一个需要考虑的因素除了实施例一中所述的各个载波的功 率约束, 进一步考虑功放的功率约束, 即一个功放下各个载波的功率和不能 超过功放的最大发射功率, 对于传输时刻 i'满足:
(0
∑ιο^^≤ιο 其中 和 。 to的单位为 dB, 进一步化简可 k=\
付 lo ϊο ≤ l (10)
k=\
当 i时刻, UE上报 PHR, 可知 PH ca()― Ppowerclass ~ ^^ca (0 _ ^ca^pusch (0 ^ PH ca(f) + PRca(f)― Ppowerciass ~ Pca,pusch ) 由上述讨论可知, 由于路损值 eNB不好估计,所以 eNB通过功率差公式 (6)来判断在第 k个载波上的 i'时刻的 PUSCH功率相对于 i时刻功率进行增量 后, 是否超过该载波的最大功率。
-PHc K a{i)-PRc K a{i)
∑10 10 =∑10 10 < 1 (12)
k=\ k=\ 所以在多载波调度时, eNB 对于每个载波, 要考虑功率增量
Δ¾ 。 =Λυ')_Λυ)满足 (6)的最大值限制,同时还需要考虑各个载波的 功率增量之间需要满足 ( 12 )的约束条件。
其中(6) 右式 PHJk i、为 i 时刻 UE 上 ^艮载波 k 的 PHR, 而 PR^ -PR^' ^^-PR^^APR ^^ i '时刻的多载波传输特征为 n2, 1 时刻的多载波传输特征为 ni , APR" 的获取上文中的描述。 而(12)中 与上式一样为 i时刻 UE上 ^艮对于载波 k的 PHR,而 PR^ 为 i时刻 UE在 k载波上的功率回退值, PR (0可以通过 eNB估计的或者是 UE 上报得到 , 或者通过 UE 上报绝对功 率余量值 , 即 PFfk (i、 + PR_k (i、 = p —pk ,\
Ca ' Ca , pUSCh、,。 上述的需要 PR ( )信息的方法,其需要 UE上报的信息或者需要进行评估 的参数也比较多, 相对比较复杂。 如果 eNB对未来的调度有所预期, 那么可 以减少 eNB需要额外知道的信息,并可以通过以下方法保证总功率约束条件: 如果 eNB总是能保证载波功率变化量 Δ ¾∞一致的情况下, 那么 UE上 报总的功率余量即可, 即 UE总功率减去各个载波的发射功率, PHUE = Ppowerdass -lO\ogw∑\ 1。 或者
PHm = - 101ο¾ο Σ10 10 反映了 eNB可以调节的各个载波功率变化量范围为 usc ca≤ PHm , 即所 有载波功率变化量不能同时超过 ^^。
另一种可能的调度场景时, eNB如果通常只修改一个载波的调度, 其它 载波保持功率不变, 那么 UE在对于每个载波的 PHR上报时, 上报一个载波 功率余量的调整信息, Wfr = min{/W ,^¾代替之前的^ 即可, 其中
Pal (0 = i o iogl0(i -∑ l o^^) - pp k uscKca
Pal (0 = i o iogl0(i -∑ l o ^ ) - Pp ca
eNB可以根据其常见的调度策略,选择获取 3.2中 信息以及载波的 功率余量信息 /W^进行未来的调度,或者根据 3.3所述的,不获取 信息, 通过 UE上报的 UE总功率余量 或者调整后的载波功率余量 信息, 用于满足 eNB的调度。 实施例三, 对于多功放, 多载波传输的情况 每个功放根据 UE的算法, 或者 eNB的配置, 服务于一个载波, 或者多 个载波。 eNB对于功率余量的估计, 可参照实施例二所述进行估算。
对于终端来说, 由于为了人体辐射安全等考虑需要满足电磁波吸收比值 或比吸收率 (SAR ) 的限制, 所以对整个终端的总的最大发射功率有限制条 件, 即前面所使用的 。 to , 在单功放终端来说, 一个功放的理论最大发射 功率即终端的理论最大发射功率 。 to。 而对于多个功放的场景, 就需要多 个功放同时工作时, 实际发射总功率最大不能超过终端的理论最大发射功率 Ppowerclass , 并且一个功放的实际发射功率不能超过功放的最大发射功率 PpAmax (^), ^ = 1 · numPA , numPA为功放个数。
满足的约束条件有, 同一个功放下, 各个载波的发射功率总和小于该功 放的理论最大发射功率, 即 (10)修改为
(
1 0 ϊο ≤ 1 (13) 对于约束条件 (13), UE需要上报 ^3)^)^ = 1..1画1^给 eNB, UE可以选 择在第 k个载波 PHR上报时携带该载波对应的 ΡΡΑΠΜΧ(^)信息, 也可以提前在 载波传输前上报给 eNB,如在 UE能力信息或者 RRC重配置完成响应时上报 给 eNB。
同时各个功放下的载波的发射功率总和不能大于终端的理论最大发射功 率
numPA numPA
^ ιο 10 <io 10 ^> ^ιο o < i (14) 根据实施例二中的方法, eNB获得各个载波的功率回退信息后, 即可保 证新增的功率分配增量满足 (14)。
实施例四, 针对上述实施例一〜实施例三的场景, 终端上报 PHR 在实施例一〜实施例三的讨论过程中, 为了使得 eNB更好的对 UE的功 率余量进行合理的估计, 还需要 UE除了现有的载波功率余量信息外的一些 额外信息。 由于实施例一〜实施例三只是 eNB内可能的算法, 还有可能其他 的算法实现, 在这里提供终端功率余量相关的信息的上报, 不仅限于上述实 施例——实施例三的 eNB算法。 对于载波 k, 在 PHR被触发后, 某个时刻 UE获得上行调度, 可以上报 PHR时, 由于 Pcmax取值需要考虑功率回退, 而功率回退的取值考虑到单载 波传输特征, 多载波传输特征(其中多载波传输特征还可能有多种, 如双载 波传输特征, 三载波传输特征)有多种, 导致功率回退的取值可以有多种。 考虑未来不同的调度情况到对于功率的可用余量都是不同的, 如 UE配置载 波 CC1/CC2/CC3 , 以 CC1的功率余量计算为例, 在不同时刻当 CC1进行相 同传输特征传输时, 当仅有 CC1传输, 有 CC1和 CC2—起传输, 和 CC1/2/3 一起传输三种情况,在 CC1上的功率回退值是可能不同的, 即使 CC1的传输 特征没有发生变化,由于其它载波传输的变化,影响到 CC1的功率余量计算。
可以有以下几种选择:
1) UE在计算 PHR是考虑多种调度情况的不同功率回退情况,在 PHR上 报时, 反馈多种调度情况下的功率余量。 具体的可以是上报使用不同功率回 退计算不同的多个功率余量值, 或者上报一种情况下的功率余量, 并同时携 带其它几种不同调度时, 功率余量的差值信息。 如上述例子中对于一种传输 特征, 由于其它载波的传输变化, 导致 CC1可能的功率余量取值的计算时需 要考虑的对应功率回退有 PR; (单独 CC1传输), PR^ ( CC1与另一 CC传输) 和 ^ ( CC1/2/3一起传输 )三种(对于 2个载波传输时不同的组合 CC1/2和 CC1/3时, 功率回退可能是不同时, 那么最后考虑的功率回退也可以大于三, 本例中以三种功率回退为例) 。 为了支持 eNB在收到 PHR后, 调度的灵活 性, UE在上报 PHR时, 分别根据 PR; , P 和 P 计算三个 PHR值, 或者只 上报以 PR;计算的 PHR信息, 但同时携带功率回退差值信息 ( -/^1和 ΡΙ -PRl ) , 或者功率余量的差值信息。
2) UE以上报 PHR时刻实际发生时的实际功率回退值计算 PHR, 如上报 PHR时是 CC1和 CC2同时传输, 并且 CC1上对应功率回退 ΡΤζ , 那么 UE使 用/^计算 CC1的 PHR, 等价于该时刻该载波最大发射功率减去实际的发射 功率。 eNB收到后,对于后续 CC1上相同传输特征的调度(即功率回退为/^ 不变时) , 可以根据 UE上报 PHR后做出较为准确的估计, 而对于发生功率 回退变化的调度, 则估计有一定的误差。
3) UE根据策略,在多种可能的功率回退值中选择一个,只上报这种功率 回退计算的 PHR,这种功率回退可能是预先商定的特定传输特征相对应的值, 与当前上报 PHR时刻实际的传输特征无关。 如 UE在上报 CC1的 PHR时, 总是选择单载波传输的功率回退 PR;计算的 PHR、 总是使用所有激活载波多 载波传输传输时功率回退 计算的 PHR或者总是选择特定功率回退值, 如 多个可能的功率回退值中最大 max ( ΡΚΐ , ΡΙ Ρΐ ) , 最小 min ( ΡΚΐ , ΡΙ Ρΐ ) , 平均功率回退值 avg ( ^,/^ )或者最接***均值的功率回退值, 而不管 当时实际的功率回退值。进一步 eNB可以根据通过信令影响 UE的选择策略, 如 UE默认使用单载波传输特征的功率回退计算 PHR, eNB可以通过信令指 示 UE改变策略, 使用所有激活载波多载波传输传输时功率回退计算 PHR。 4) 上述的 2 )和 3 )方法虽然可以减少 UE的上报量, 但是对 eNB调度 时可能产生一定的评估误差。 所以 UE可以在 eNB调度发生误差过大时, 如 功率余量为负或者为正但是小于一个门限时。 UE上 ^艮反映实际功率退回的信 息, 如使用实际功率退回信息计算的 PHR, 或者单独上报实际的功率回退或 者实际的 Pcmax。 eNB可以根据 PHR为负值或者为正但是小于一个门限时或 者根据 UE携带的标识信息判断 UE此时使用的是其实际的功率回退值, eNB 保存相应的信息, 用以修正内部评估的错误。
另外, 可选地, UE上 ^艮各个载波的功率回退信息 PRU0 , 更具体可以有 2种方式:
1) UE将可以功率回退信息的内容(直接的功率回退值或者其它可以通过 推导获得功率回退的衍生值)上报给 eNB , 可能的有: a.上报 PR (0值;
b.上报该载波对应的 I (0值; c.上 ^ 。(0和最大允许功率回退(UE的射频要求, 预定义在协议中, eNB可以预先获知)之间的差值;
d. 或者通过反映功率回退信息对应的索引值, 通过索引查找预定 a/b/c 所述的值。
上报时间可以是 UE在上报 i时刻对于载波 k的 PHR的同时携带该信息, 或者是 UE在调度发生前将所有可能的取值和其对应的传输特征预先上报给 eNB,如通过能力信息或者重配置响应消息。如果 UE上报的所有传输特征下 的功率回退信息, 那么 eNB可以不做实施例二中所述的估计即可以获取准确 的值。
进一步对于 UE在 PHR是携带上报时, 在 、 b和 c所述的信息中, 如果 上报值 eNB可以通过已知信息推断时, UE可以不做上报, 可以是当上报值 等于预定义默认值,如 a所述的功率回退值为最大功率回退值, b是最小 值或者 c的差值等于 0。 UE可以不做上报, 可以是当上报值等于在之前已经 上报过, 如 2次连续上报的值相同时, 所述的连续可以是时间上两次连续的 上报, 或者是连续两次传输特征相同时的上报。
2) eNB根据 UE上报的 PHR评估 Ρ (0的值, 减少 1 ) 中所述的上报所 有传输特征下的功率回退信息。 由实施例二中描述, eNB可以根据 UE上报 的 PHR, 获取任意两个多载波传输特征之间的 Δ 。 ), 根据公式 (9)可得 PRiw = PRc k a( ) + ^PRi 对于 N个多载波传输特征中, 当 eNB可以从其中的 一个传输特征的功率回退值 PR ^ , 以及功率回退变化量, 推导获得其它传 输特征下的功率回退值。 这样 UE可以只上 4艮部分传输特征的功率回退值, 从而减少上报的信息, 极端情况下 UE只需要上报一个传输特征的功率回退 值即可。 或者 eNB可以直接根据最大允许功率回退信息, 对 UE的功率回退 进行评估, 当最大允许功率回退值较小时, 如 MPR + -MPR - 0时, eNB 的估 计误差较小, 此时 eNB可以估计 Ρ („。) = 0 , UE可以不用上报任何功率回退 相关信息。
上述两种方法可以独立使用, 也可以结合使用, 如在 UE没有上报功率 回退信息前或 UE只上报了部分功率回退信息时, eNB可以按方法 2 )中所述, 对 UE的功率回退信息进行估算。
实施例五, 对于 PUCCH和 PUSCH同时传输的情况, 终端上报 PHR 在 LTE-A ***中, 在主载波上 PUCCH和 PUSCH可以同时发送。 当 PUCCH和 PUSCH同时发送时, 显然在计算 PUSCH的功率余量时, 需要去 除 PUCCH所占的功率。由于 PUCCH的信道相对固定,并且 eNB不对 PUCCH 进行 AMC调整, 所以 eNB获取的功率余量主要还是用作 PUSCH的 AMC 当 PUCCH和 PUSCH的功率同时考虑时, 此时的 PHR被称为 type2 PHR, 而 原来的只考虑 PUSCH的 PHR被称为 typel PHR
type2 PHR的有多种公式定义, 目前还没有统一的共识。
应用示例一: 本示例以下面公式定义的 type2 PHR 为例,
= ioi。g10(ioi - ιοτ)0 ·) 或 P t i) = \0 ogl0(\0^ -10 10 )-Pp k uschii), 即 type2 PHR定义为载波的 由于 PUCCH的功率也会随着发送格式的变化发生变化, 并且在 PUCCH 和 PUSCH同时发送时, 主载波的 PR和只发送 PUSCH时的 PR是不相同的,
PUSCH 同 时 发 送 时 ,
Figure imgf000026_0001
-Pp k usch(i)
其中 PUSCH发送与 PUSCH+PUCCH发送时的 A R 2( )以及 Ρ δ2()的估 计过程和实施例一和实施例二中描述过程一致,其中用于推导的两个 PHR之 间的 ΔΡ¾ - 0夕卜,还需要保证 PUCCH的格式( format )基本不变或者变动很小, 使 得 PUCCH 传 输 的 功 率 保 持 不 变 , 即
101og ?1100 V(lA-1 J0 ^ 1100 ^ ))--110011oogg1100((l-10 10 )-0 并且当 ΔΡ¾ -0和 101o 。(l— 10 10 )-101og10(l-10 10 )-0时, eNB根据上述获取的 Δ δ2(), 以及获取 PH 2(0, 根据下面的公式 (15)估计 后续可调度的 PUSCH的功率增量
(J ') - P (0≤ PH e (0 - [PKPe2 ') - ^2 (0] (15)
当 PUCCH的格式发生变更, 使得 PUCCH传输的功率发生变更时, 即
10 log10(l - 10 10 ) - 10 logl。 (1 - 10 10 )≠ 0时,继续按照( 15)的方式评估 PUSCH 的功率变化量, 将会有一个误差, 为了减少误差 eNB 需要对评估
101og10(l-10 10 )-101og10(l-10 10 )大小 有 2种方法: 第一种方法, UE上报在上报 type2 PHR时同时上报 ∞¾()- 也可 以是其它的等价表达形式 P^W- (0, 即 PUCCH和该载波 Pcmax的比 值),由尸 ()计算按照 LTE
Figure imgf000027_0001
, 其中^ UCCH是开环功控部分, PJ是路损, /^^,^^ + Δ— PUCCH( 和 PUCCH 的格式有关, 是闭环功控部分。 所以和 PUSCH的功率类似的有, eNB根 据 PUCCH的格式差别, 基于 和闭环功控命令丟失较少的假设, 可以 计算 = " H( + 。 由于根据已知的 ρ (ί)
Figure imgf000027_0002
,估计的 Δ/^δ以及计算的 , ρ ( -ρ (η 以被 eNB 计算, 从而计算出 101ogl。(l- 10 10 )-101og10(l-10 10 )的大 小, 最后在 (15)的基础上进一步修正误差后为:
p pkusch a - p pkusch a)
(? ')
2 (0 - [PKPe2 ' ') - (0] - [i o i。g10 (l-io 10 、 )—- 11Π
≤ P e o110&。 (1 - 10 (16)
第二种方法, UE总是使用预先和 eNB协商好的 PUCCH格式, 计算并 上报 type2 PHR, 使得 eNB对于 PUCCH格式变化导致的功率评估上的误差 控制在可接受范围。如 UE总使用 PUCCH的最大 bit数的格式计算 type2 PHR, 使得于未来任何调度 101ogl。(l- 10 ^ 10 ^ )-101og10(l-10 10 )< 0总能满足,那 么虽然按 (16)可知 U - U)的变化范围将变小, eNB的调度变为保守, 但调度功率总能被满足。 也可以是 UE最常用的 PUCCH格式, 如 A/N 的 formatlb, 保证最常见的 PUCCH格式下, eNB对功率的评估没有误差, 对于 其它 PUCCH格式, 可能的正误差会导致 eNB评估功率余量时过于乐观, 但 是由于出现概率不大, 发生功率评估错误, 导致分配功率大于实际可用功率 时 , UE会进行 ower scale down的概率较低。
应用示例二: 将 type2PHR定义为最大发射功率和 PUCCH和 PUSCH的 功率和的比值, 即 /^ 2() = /¾^()— 101。&。(10 + 10 ) , 此时 UE 上报 type 1 PHR使用和 type2 PHR相同的功率回退值, 即 (i)相同, 并在 type 1 和 type2 PHR在总是同一时刻上报。 本发明实施例的终端功率余量的评估装置, 可应用于 eNB, 包括计算模 块和评估模块, 其中,
所述计算模块设置成: 获得终端上行传输的载波在第一传输特征和第二 传输特征时的功率余量, 并依此计算所述载波第一传输特征和第二传输特征 之间的功率回退值的变化量;
所述评估模块设置成: 在所述载波在第二传输特征传输时, 通过所述终 端上 的第一传输特征时的功率余量减去计算得到的所述功率回退变化量得 到在第二传输特征传输时的最大调制编码可增加的功率, 为终端分配资源。
优选地, 所述计算模块还可设置成: 将所述载波在第一传输特征和第二 传输特征时的功率余量之差减去调制编码增加功率作为第一传输特征和第二 传输特征之间的功率回退值的变化量, 且限定用于计算功率回退变化量的第 一传输特征对应的时刻和第二传输特征对应的时刻之间 , 路损变化量和闭环 功控调整值变化量均小于指定值。
优选地, 所述装置还可包括功率限制模块, 其中,
所述功率限制模块设置成: 当所述终端进行多载波传输时, 根据功率余 量和功率回退值, 或者根据绝对功率余量, 限制分配给终端的资源, 使所述 终端的功率放大器下各载波的功率之和小于等于所述功率放大器的最大发射 功率。
优选地, 所述功率限制模块还可设置成: 当所述终端釆用多个功率放大 器进行多载波传输时, 使所述终端在各功率放大器的发射总功率小于等于所 述终端的最大发射功率。
本发明实施例的功率余量的上报装置, 可应用于终端, 包括: 触发模块 和发送模块, 其中,
所述触发模块设置成: 触发载波的 PHR上报;
所述上报模块设置成: 当所述触发模块触发载波的 PHR上报时, 向 eNB 发送 PHR , 其中携带指定的一个或多个传输特征对应的功率余量。 优选地, 所述上报模块还可设置成: 当所述触发模块触发载波的 PHR上 报时, 按以下方式计算得到指定的一个或多个传输特征对应的功率余量: 按当前时刻对应的传输特征计算得到功率余量, 或者按指定的一个传输 特征计算得到功率余量, 或者按指定的多个传输特征计算得到功率余量, 或 者按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的功率回退 值计算得到功率余量。
优选地, 所述上报模块还可设置成: 当所述触发模块触发载波的 PHR上 报时, 还携带所述功率余量对应的功率回退信息,
所述功率回退值的信息为以下形式中的一种:
( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
通过本发明,可显著地提高 LTE-A*** eNB进行上行调度时的效率,具 有极强的工业实用性。

Claims

权 利 要 求 书
1、 一种终端功率余量的评估方法, 包括:
演进型基站 (eNB )获得终端上行传输的载波在第一传输特征和第二传 输特征时的功率余量, 并依据获得的功率余量计算所述载波在第一传输特征 和第二传输特征之间的功率回退值的变化量;
所述载波在第二传输特征传输时, 所述 eNB通过将所述终端上 的第一 传输特征时的功率余量减去所述变化量得到在第二传输特征传输时的最大调 制编码可增加的功率, 为所述终端分配资源。
2、 如权利要求 1所述的评估方法, 其中: eNB获得终端上行传输的载波 在第一传输特征和第二传输特征时的功率余量, 并依据获得的功率余量计算 所述载波在第一传输特征和第二传输特征之间的功率回退值的变化量的所述 步骤包括:
所述 eNB将所述载波在第一传输特征和第二传输特征时的功率余量之差 减去调制编码增加功率作为第一传输特征和第二传输特征之间的功率回退值 的变化量, 且限定用于计算功率回退变化量的第一传输特征对应的时刻和第 二传输特征对应的时刻之间, 路损变化量和闭环功控调整值变化量均小于指 定值。
3、 如权利要求 1所述的评估方法, 所述方法还包括: 当所述终端进行多 载波传输时, 所述 eNB根据所述功率余量和所述变化量, 或者根据绝对功率 余量, 限制分配给所述终端的资源, 使所述终端的功率放大器下各载波的功 率之和小于等于所述功率放大器的最大发射功率。
4、 如权利要求 3所述的评估方法, 所述方法还包括: 当所述终端釆用多 个功率放大器进行多载波传输时, 所述 eNB为终端分配资源时, 使所述终端 在各功率放大器的发射总功率小于等于所述终端的最大发射功率。
5、 一种功率余量的上报方法, 包括:
终端触发载波的功率上升空间报告(PHR )上报时, 所述终端向演进型 基站(eNB )发送 PHR, 所述 PHR中携带指定的一个或多个传输特征对应的 功率余量。
6、 如权利要求 5所述的上报方法, 其中, 所述功率余量是通过以下方法 得到的:
按当前时刻对应的传输特征计算得到所述功率余量;
或者, 按指定的一个传输特征计算得到所述功率余量;
或者, 按指定的多个传输特征计算得到功率余量;
或者, 按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的 功率回退值计算得到所述功率余量。
7、 如权利要求 6所述的上报方法, 其中, 所述 PHR中还携带有所述功 率余量对应的功率回退值的信息, 其中, 所述功率回退值的信息为以下形式 中的任意一种:
( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
8、一种终端功率余量的评估装置,该评估装置包括计算模块和评估模块, 其中,
所述计算模块设置成: 获得终端上行传输的载波在第一传输特征和第二 传输特征时的功率余量, 并依据所获得的功率余量计算所述载波在第一传输 特征和第二传输特征之间的功率回退值的变化量;
所述评估模块设置成: 当所述载波在第二传输特征传输时, 通过将所述 终端上 的第一传输特征时的功率余量减去所述变化量得到在第二传输特征 传输时的最大调制编码可增加的功率, 为所述终端分配资源。
9、 如权利要求 8所述的评估装置, 其中, 所述计算模块还设置成: 将所 述载波在第一传输特征和第二传输特征时的功率余量之差减去调制编码增加 功率作为第一传输特征和第二传输特征之间的功率回退值的变化量, 且限定 用于计算功率回退变化量的第一传输特征对应的时刻和第二传输特征对应的 时刻之间, 路损变化量和闭环功控调整值变化量均小于指定值。
10、 如权利要求 8所述的评估装置, 所述装置还包括功率限制模块, 其 中:
所述功率限制模块设置成: 当所述终端进行多载波传输时, 根据所述功 率余量和所述变化量, 或者根据绝对功率余量, 限制分配给所述终端的资源, 使所述终端的功率放大器下各载波的功率之和小于等于所述功率放大器的最 大发射功率。
11、如权利要求 10所述的评估装置,其中,所述功率限制模块还设置成: 当所述终端釆用多个功率放大器进行多载波传输时, 使所述终端在各功率放 大器的发射总功率小于等于所述终端的最大发射功率。
12、 一种功率余量的上报装置, 该上报装置包括: 触发模块和发送模块, 其中,
所述触发模块设置成: 触发载波的功率上升空间报告 ( PHR )上报; 所述上 模块设置成: 当所述触发模块触发载波的 PHR上艮时, 向演进 型基站( eNB )发送 PHR, 所述 PHR中携带指定的一个或多个传输特征对应 的功率余量。
13、 如权利要求 12所述的上报装置, 其中, 所述上报模块还设置成: 按 照以下方法得到所述功率余量:
按当前时刻对应的传输特征计算得到功率余量;
或者, 按指定的一个传输特征计算得到功率余量;
或者, 按指定的多个传输特征计算得到功率余量;
或者, 按多个传输特征中最大的、 最小的、 平均的或者离平均最接近的 功率回退值计算得到功率余量。
14、 如权利要求 12所述上报装置, 其中, 所述上报模块还设置成: 当所 述触发模块触发载波的 PHR上报时, 还在所述 PHR中携带所述功率余量对 应的功率回退值的信息, 所述功率回退值的信息为以下形式中的任意一种: ( 1 )功率回退值的实际值;
( 2 )该载波对应的最大发射功率;
( 3 )功率回退值的实际值和最大允许功率回退之间的差值;
( 4 )上述(1 ) 、 (2 )或 (3 ) 中信息对应的索引值。
PCT/CN2011/077384 2010-11-05 2011-07-20 一种终端功率余量的评估和上报方法及装置 WO2012058945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010534733.5 2010-11-05
CN201010534733.5A CN102469495B (zh) 2010-11-05 2010-11-05 一种终端功率余量的评估和上报方法及装置

Publications (1)

Publication Number Publication Date
WO2012058945A1 true WO2012058945A1 (zh) 2012-05-10

Family

ID=46023977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077384 WO2012058945A1 (zh) 2010-11-05 2011-07-20 一种终端功率余量的评估和上报方法及装置

Country Status (2)

Country Link
CN (1) CN102469495B (zh)
WO (1) WO2012058945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001177A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种上行功率控制方法、终端及芯片

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063303A1 (zh) * 2012-10-23 2014-05-01 华为技术有限公司 额外功率回退方法、基站和用户设备
CN108811070B (zh) * 2017-05-05 2023-10-20 华为技术有限公司 一种功率余量的传输方法及设备
US11438881B2 (en) * 2017-10-23 2022-09-06 Qualcomm Incorporated Techniques and apparatuses for modulation order control for an uplink channel
CN110830155B (zh) * 2018-08-08 2021-01-29 华为技术有限公司 数据传输方法及设备
CN111436111B (zh) * 2019-01-11 2022-04-22 中国信息通信研究院 一种确定功率余量的方法
CN111436070B (zh) * 2019-01-11 2022-05-24 中国信息通信研究院 一种功率余量上报的方法
CN111278001B (zh) * 2019-01-18 2022-04-12 维沃移动通信有限公司 一种终端能力协商方法、终端设备和网络侧设备
CN113748720A (zh) * 2019-08-14 2021-12-03 Oppo广东移动通信有限公司 一种信息上报方法及装置和用户设备
CN115835359A (zh) * 2021-09-16 2023-03-21 华为技术有限公司 一种通信方法、装置及***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778416A (zh) * 2010-02-10 2010-07-14 中兴通讯股份有限公司 功率上升空间的测量和报告方法及终端
CN101860943A (zh) * 2009-04-10 2010-10-13 大唐移动通信设备有限公司 一种终端功率余量配置使用的方法和***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860943A (zh) * 2009-04-10 2010-10-13 大唐移动通信设备有限公司 一种终端功率余量配置使用的方法和***
CN101778416A (zh) * 2010-02-10 2010-07-14 中兴通讯股份有限公司 功率上升空间的测量和报告方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on PHR report, R2-105345", 3GPP TSG-RAN WG2 MEETING #71BIS, 11 October 2010 (2010-10-11), XI'AN, CHINA, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgran/WG2RL2/TSGR27lbis/Docs/R2-105345.zip> [retrieved on 20111002] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001177A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种上行功率控制方法、终端及芯片

Also Published As

Publication number Publication date
CN102469495B (zh) 2015-08-12
CN102469495A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP7022948B2 (ja) ユーザ機器および方法
WO2012058945A1 (zh) 一种终端功率余量的评估和上报方法及装置
RU2565030C2 (ru) Устройство и способ управления мощностью восходящей линии связи для беспроводного приемопередатчика, использующего множество несущих
US8737330B2 (en) Multi-cluster uplink transmission in wireless communication network
JP5603428B2 (ja) パワーヘッドルームの処理方法及び端末
CN113055992B (zh) 用于功率控制处理的方法和装置
CN102300305B (zh) 一种上行功率控制的方法及装置
TWI455630B (zh) 載波聚合上鏈功率餘裕報告
CN102348269B (zh) 一种上行功率控制的方法和设备
CN102932892B (zh) 一种功率控制方法及装置
KR20120095811A (ko) 단말 송신 전력량을 효율적으로 보고하는 방법 및 장치
CN106465300A (zh) 在终端和基站之间的双连接中发送功率余量报告的方法及其终端
CN104254121B (zh) 一种pusch功率控制方法及装置
WO2011158737A1 (en) Controlling power for contention based uplink transmissions
CN103813430A (zh) 一种载波聚合***中的功率上报方法及装置
WO2013135195A1 (zh) 功率控制方法及装置
CN102761900B (zh) 功率余量报告触发方法及装置
WO2012130040A1 (zh) 功率余量报告触发方法及装置
WO2015068039A2 (en) Method and apparatus for transmitting and obtaining power headroom report
JP2016005218A (ja) 端末装置
WO2015194430A1 (ja) 端末装置
WO2011160284A1 (zh) 一种功率余量报告方法及***
CN101945424B (zh) 一种功率裕量的报告方法及用户设备
WO2024095182A1 (en) Ue power allocation across ul carriers with dynamic waveform switching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837472

Country of ref document: EP

Kind code of ref document: A1