WO2012057392A1 - 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법 - Google Patents

복수개의 카메라를 이용한 거리측정 시스템 및 그 방법 Download PDF

Info

Publication number
WO2012057392A1
WO2012057392A1 PCT/KR2010/008083 KR2010008083W WO2012057392A1 WO 2012057392 A1 WO2012057392 A1 WO 2012057392A1 KR 2010008083 W KR2010008083 W KR 2010008083W WO 2012057392 A1 WO2012057392 A1 WO 2012057392A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
cameras
distance measuring
target
image processing
Prior art date
Application number
PCT/KR2010/008083
Other languages
English (en)
French (fr)
Inventor
김두현
전동운
조기호
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of WO2012057392A1 publication Critical patent/WO2012057392A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • G01C3/18Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument with one observation point at each end of the base

Definitions

  • the present invention relates to a distance measuring system and a method using a plurality of cameras, and more particularly, to a user who needs to pay attention to a plurality of targets at the same time using two different cameras, that is, a part of different images acquired from a plurality of cameras.
  • the present invention relates to a system and a method for measuring a distance between an unmanned aerial vehicle and a target installed with a camera.
  • unmanned aerial vehicles are equipped with various kinds of cameras to perform missions.
  • Most drones are usually equipped with one camera. In this case, it is difficult to detect and track a plurality of targets or targets, and there is a difficulty in taking off and landing using an image acquired from a camera.
  • GPS Globalstar, ultrasonic waves, infrared sensors (IR), etc. are used as equipment for measuring position and altitude in an unmanned aerial vehicle, but types of sensors that can be used for each height are determined. It takes That is, the prior art as described above requires a costly budget for accurate measurement, and has a disadvantage in that it is difficult to use at a wide range of heights. In addition, there is a problem in that it is difficult to acquire a plurality of ROIs with one camera, so that image-based location is difficult.
  • the present invention has been made in view of the above problems, and provides a distance measuring system and method using a plurality of cameras that can measure the distance between the unmanned aerial vehicle and the target by matching images acquired through a plurality of cameras. There is a purpose.
  • the present invention for achieving the technical problem relates to a distance measuring system using a plurality of cameras, a plurality of camera devices installed at a specific position of the unmanned aerial vehicle, each camera device for obtaining an image for the target; And an image processing apparatus for matching the images acquired through the camera apparatus and measuring a distance between the unmanned aerial vehicle and a target. Characterized in that it comprises a.
  • the present invention relates to a distance measuring method using a plurality of cameras, (a) a plurality of camera devices installed at a specific position of the unmanned aerial vehicle to obtain an image for a specific target at the same angle of view, respectively; And (b) extracting a region of interest in each image acquired by the image processing apparatus through a plurality of camera apparatuses, and comparing the positions of the target and the plurality of regions of interest to measure a distance between the unmanned aerial vehicle and the target. ; Characterized in that it comprises a.
  • the present invention as described above, it is possible to automatically take off and land of the unmanned aerial vehicle by providing the relative height information to the user using a plurality of, preferably two cameras. That is, the present invention can effectively monitor and process the two camera images as described above, has the following specific effects.
  • GPS information can be supplemented.
  • the user can easily operate equipment such as driverless cars or unmanned aerial vehicles, and can quickly understand the surroundings.
  • FIG. 1 is an overall configuration diagram conceptually showing a distance measuring system using a plurality of cameras according to an embodiment of the present invention.
  • FIG. 2 is an exemplary diagram illustrating a region of interest in each image acquired through two camera apparatuses according to an embodiment of the present invention, and showing an interval from each region of interest to a target.
  • FIG 3 is an exemplary view showing a state in which each image obtained through two camera apparatuses is divided into block areas according to an embodiment of the present invention.
  • FIG 4 is an exemplary view illustrating a region in which each of the first image and the second image and the first image and the second image overlap each other according to an embodiment of the present invention.
  • FIG. 5 is an exemplary view illustrating a distance from a target for each number of overlapping blocks after dividing each image into a block area using two images acquired through two camera apparatuses according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a distance measuring method using a plurality of cameras according to an embodiment of the present invention.
  • first distance measuring unit 220 second distance measuring unit
  • a distance measuring system using a plurality of cameras according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is an overall configuration diagram conceptually showing a distance measuring system S using a plurality of cameras according to an embodiment of the present invention, as shown in the camera device 100, the image processing device 200 and monitoring Device 300.
  • the camera apparatus 100 is a plurality of camera apparatuses installed at a predetermined distance on the same horizontal line of the unmanned aerial vehicle, and acquires images of targets (landing destinations) at the same angle of view, respectively.
  • the number of the camera device 100 is set to two, but the present invention is not limited thereto.
  • the image processing apparatus 200 performs a function of measuring a distance between the unmanned aerial vehicle and a target by matching images acquired through the plurality of camera apparatuses 100, as shown in FIG. 1. , A first distance measuring unit 210 and a second distance measuring unit 220.
  • FIG. 2 extracts regions of interest a and A from each image (first image and second image) acquired through two camera apparatuses 100 according to an embodiment of the present invention, respectively.
  • the first distance measuring unit 210 extracts the ROIs A and A in each image acquired through the plurality of camera apparatuses 100, and extracts the target region and the plurality of target objects.
  • the distance between the unmanned aerial vehicle and the target is measured by comparing the positions of the ROIs.
  • the interval of the ROI may vary depending on the distance between the unmanned aerial vehicle and the target (landing destination). Therefore, the first distance measuring unit 210 measures the distance (altitude) to the target based on the distance from each region of interest to the target.
  • the ROI is an area existing in the image acquired through the camera apparatus 100 and may exist at a distance adjacent to the target.
  • the second distance measuring unit 220 divides the plurality of (two) images acquired through the plurality of (two) camera apparatus 100 into the block area, and then determines the similarity of the blocks between the images divided into the blocks. , Measure the distance to the target (altitude).
  • FIG. 3 is an exemplary view illustrating the division of each image (first image and second image) acquired through two camera apparatuses 100 according to an embodiment of the present invention into block regions.
  • FIG. 1 is a view illustrating each of the first image and the second image and a region where the first image and the second image overlap each other according to an exemplary embodiment of the present invention.
  • the second distance measuring unit 220 divides a plurality of (two) images acquired through the plurality of camera apparatuses 100 into block regions, respectively.
  • the number of overlapping blocks between the plurality of divided images (two) is determined, and a distance (altitude) from a preset target is set according to the number of overlapping blocks.
  • 5 is a distance (altitude) from the target for each number of overlapping blocks after dividing each image into block regions using two images acquired through two camera apparatuses 100 according to an embodiment of the present invention.
  • the number of overlapping blocks as shown in the figure 7 is 100m, 6 is 75m, 5 is 50m, 4 is 4m, 2 is set to 15m.
  • the image processing apparatus 200 may encode various processing information for calculation for distance measurement or transmission to an external device.
  • one of the first distance measuring unit 210 or the second distance measuring unit 220 may be selectively used, and the first distance measuring unit 210 and the second distance measuring unit ( 220 may be used at the same time, and then optionally referred to the measured information.
  • the monitoring apparatus 300 controls the image processing apparatus 200 according to the user's input information, and thus, various status information regarding the unmanned aerial vehicle including various control information of the user for distance measurement and distance information to a target.
  • Monitor controls the image processing apparatus 200 according to the user's input information, and thus, various status information regarding the unmanned aerial vehicle including various control information of the user for distance measurement and distance information to a target.
  • the monitoring device 300 is connected to the image processing apparatus 200 by wire or wireless so as to be connected in a near or remote position.
  • FIG. 6 is a flowchart illustrating a distance measuring method using a plurality of cameras according to an embodiment of the present invention. As shown in FIG. 6, a plurality of camera apparatuses 100 installed on an unmanned aerial vehicle at a predetermined distance on the same horizontal line are provided. Each image of the target is acquired at the same angle of view (S10).
  • the image processing apparatus 200 matches the images acquired through the plurality of camera apparatuses 100, and measures a distance between the unmanned aerial vehicle and the target object (S20).
  • the first distance measuring unit 210 of the image processing apparatus 200 extracts the regions of interest a and A in each image acquired through the plurality of camera apparatuses 100 (S22). ), The distance between the target and the plurality of (two) areas of interest (a, A) is compared (S24), and the distance between the unmanned aerial vehicle and the target is measured (S26).
  • the image processing apparatus 200 encodes various types of processing information for transmission to an external device (S30).
  • the monitoring apparatus 300 controls the image processing apparatus 200 according to the user's input information, and thus, various status information regarding the unmanned aerial vehicle including various control information of the user for distance measurement and distance information to a target.
  • Monitor (S40) various status information regarding the unmanned aerial vehicle including various control information of the user for distance measurement and distance information to a target.
  • step S20 ' the second distance measuring unit 220 divides a plurality of images obtained through the plurality of camera apparatuses 100 into block regions (S22'), and then divides the plurality of divided images.
  • the number of overlapping blocks between the two images is determined (S24 ′), and a distance (altitude) from a predetermined target is set according to the number of overlapping blocks (S26 ′).
  • At least one of the above-described process S20 and process S20 ' may be set to be executed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)

Abstract

본 발명은 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법에 관한 것으로서, 복수개의 카메라를 통해 취득한 이미지를 정합함으로써 무인 비행체와 목표물까지의 거리를 측정할 수 있는 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법을 제공함에 목적이 있다. 이러한 목적을 달성하기 위한 본 발명은, 무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치로서, 목표물에 대한 이미지를 각각 취득하는 카메라 장치; 및 상기 카메라 장치를 통해 취득한 이미지를 정합하여, 상기 무인 비행체와 목표물까지의 거리를 측정하는 이미지 처리장치; 를 포함하는 것을 특징으로 한다.

Description

복수개의 카메라를 이용한 거리측정 시스템 및 그 방법
본 발명은 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법에 관한 것으로서, 더욱 상세하게는 복수의 목표물에 대하여 동시에 관심을 가져야하는 사용자에게 두 개의 카메라 즉, 복수개의 카메라로부터 취득한 일정부분 상이한 이미지를 이용하여 카메라가 설치된 무인 비행체와 목표물 사이의 거리를 측정하는 시스템 및 그 방법에 관한 것이다.
최근의 무인 비행체에는 다양한 종류의 카메라가 탑재되어 임무를 수행하는 것이 일반적이다. 대부분의 무인 비행체에는 1개의 카메라가 탑재되는 것이 일반적이다. 이러한 경우 복수의 표적지나 목표물을 탐지 및 추적하기 어려우며, 카메라로부터 습득한 이미지를 이용한 이착륙에 어려움이 있다.
한편, 무인비행체에서 위치 및 고도를 측정하기 위한 장비로 GPS, 초음파, 적외선센서(IR) 등이 사용되나, 높이별로 사용할 수 있는 센서의 종류가 정해져있고, GPS의 경우 정확성을 위해 고가의 비용이 소요된다. 즉, 상기와 같은 종래 기술은 정확한 측정값을 위해 고비용의 예산이 소요되며, 넓은 영역의 높이에서 사용하기 어려운 단점이 있다. 또한, 하나의 카메라로는 다수의 관심영역의 습득이 어려워 이미지 기반의 위치 파악에 어려움이 있는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 복수개의 카메라를 통해 취득한 이미지를 정합함으로써 무인 비행체와 목표물까지의 거리를 측정할 수 있는 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법을 제공함에 목적이 있다.
이러한 기술적 과제를 달성하기 위한 본 발명은 복수개의 카메라를 이용한 거리측정 시스템에 관한 것으로서, 무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치로서, 목표물에 대한 이미지를 각각 취득하는 카메라 장치; 및 상기 카메라 장치를 통해 취득한 이미지를 정합하여, 상기 무인 비행체와 목표물까지의 거리를 측정하는 이미지 처리장치; 를 포함하는 것을 특징으로 한다.
한편, 본 발명은 복수개의 카메라를 이용한 거리측정 방법에 관한 것으로서, (a) 무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치가 동일한 화각으로 특정 목표물에 대한 이미지를 각각 취득하는 과정; 및 (b) 상기 이미지 처리장치가 복수개의 카메라 장치를 통해 취득한 각각의 이미지 내에서 관심영역을 추출하고, 목표물과 복수개의 관심영역의 위치를 비교하여 상기 무인 비행체와 목표물까지의 거리를 측정하는 과정; 을 포함하는 것을 특징으로 한다.
상기와 같은 본 발명에 따르면, 복수개의 바람직하게, 두 개의 카메라를 이용해 상대적인 높이 정보를 사용자에게 제공함으로써 무인비행체의 자동 이착륙을 가능하게 한다. 즉, 본 발명은 상기와 같이 두 대의 카메라 영상을 효과적으로 모니터링 및 프로세싱 할 수 있게 함으로써, 다음과 같은 구체적인 효과가 있다.
1) 미세한 높이의 변화를 감지할 수 있다.
2) GPS 정보를 보완할 수 있다.
3) 두 대의 카메라 장치를 이용한 착륙지점의 넓은 모니터링이 가능하여, 착륙가능지점의 파악을 용이하다.
4) 두 대의 카메라 장치를 설치하여 사용자가 무인 자동차나 무인 항공기와 같은 장비의 조작을 용이하게 할 수 있도록 하고, 주변 상황을 신속하게 파악할 수 있다.
5) 넓은 영역의 높이에서 사용이 용이하며, 복수의 표적지 또는 목표물 등의 다수의 관심영역에 대한 습득이 용이하여 이미지 기반의 위치 파악이 용이하며, 저비용의 예산이 소요된다.
도 1 은 본 발명의 일실시예에 따른 복수개의 카메라를 이용한 거리측정 시스템을 개념적으로 도시한 전체 구성도.
도 2 는 본 발명의 일실시예에 따른 두 개의 카메라 장치를 통해 취득한 각각의 이미지 내에서 관심영역을 각각 추출하고, 각각의 관심영역에서 목표물까지의 간격을 나타내고 있는 일예시도.
도 3 은 본 발명의 일실시예에 따른 두 개의 카메라 장치를 통해 취득한 각각의 이미지를 블록영역으로 분할한 모습을 보이는 일예시도.
도 4 는 본 발명의 일실시예에 따른 각각의 제 1 이미지 및 제 2 이미지와, 상기 제 1 이미지 및 제 2 이미지가 중첩된 영역을 보이는 일예시도.
도 5 는 본 발명의 일실시예에 따른 두 개의 카메라 장치를 통해 취득한 두 개의 이미지를 이용하여, 각 이미지를 블록영역으로 분할한 후, 겹치는 블록의 개수별 목표물과의 거리를 나타낸 일예시도.
도 6 은 본 발명의 일실시예에 따른 복수개의 카메라를 이용한 거리측정 방법에 관한 전체 흐름도.
[부호의 설명]
S: 복수개의 카메라를 이용한 거리측정 시스템
100: 카메라 장치 200: 이미지 처리장치
210: 제 1 거리 측정부 220: 제 2 거리 측정부
300: 모니터링 장치
본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다.
본 발명의 일실시예에 따른 복수개의 카메라를 이용한 거리측정 시스템에 관하여 도 1 내지 도 5 를 참조하여 설명하면 다음과 같다.
도 1 은 본 발명의 일실시예에 따른 복수개의 카메라를 이용한 거리측정 시스템(S)을 개념적으로 도시한 전체 구성도로서, 도시된 바와 같이 카메라 장치(100), 이미지 처리장치(200) 및 모니터링 장치(300)를 포함하여 이루어진다.
카메라 장치(100)는 무인 비행체의 동일한 가로선상에 일정한 거리를 두고 설치되는 복수개의 카메라 장치로서, 동일한 화각으로 목표물(착륙지)에 대한 이미지를 각각 취득한다.
본 실시예에서, 카메라 장치(100)의 개수를 두 개로 설정하였으나, 본 발명이 이에 한정되는 것은 아니다.
또한, 이미지 처리장치(200)는 상기 복수개의 카메라 장치(100)를 통해 취득한 이미지를 정합하여, 상기 무인 비행체와 목표물까지의 거리를 측정하는 기능을 수행하는 바, 상기 도 1 에 도시된 바와 같이, 제 1 거리 측정부(210) 및 제 2 거리 측정부(220)를 포함한다.
도 2 는 본 발명의 일실시예에 따른 두 개의 카메라 장치(100)를 통해 취득한 각각의 이미지(제 1 이미지, 제 2 이미지)내에서 관심영역(a, A)을 각각 추출하고, 각각의 관심영역에서 목표물까지의 간격을 나타내고 있는 일예시도이다.
구체적으로, 제 1 거리 측정부(210)는 복수개(두 개)의 카메라 장치(100)를 통해 취득한 각각의 이미지 내에서 관심영역(a, A)을 추출하고, 목표물과 복수개(두 개)의 관심영역(a, A)의 위치를 비교하여 상기 무인 비행체와 목표물까지의 거리를 측정한다.
이때, 무인 비행체와 목표물(착륙지)까지의 거리에 따라 관심영역의 간격이 달라질 수 있다. 따라서, 제 1 거리 측정부(210)는 각 관심영역에서 목표물까지의 간격을 바탕으로 목표물까지의 거리(고도)를 측정한다.
여기서, 관심영역이란, 카메라 장치(100)를 통해 취득한 이미지 내에 존재하는 영역으로서, 목표물과 인접한 거리에 존재할 수 있다.
제 2 거리 측정부(220)는 복수개(두 개)의 카메라 장치(100)를 통해 취득한 복수개(두 개)의 이미지를 블록영역으로 분할한 후, 블록으로 분할된 이미지간의 블록의 유사도를 판단하여, 목표물과의 거리(고도)를 측정한다.
도 3 은 본 발명의 일실시예에 따른 두 개의 카메라 장치(100)를 통해 취득한 각각의 이미지(제 1 이미지, 제 2 이미지)를 블록영역으로 분할한 모습을 보이는 일예시도이며, 도 4 는 본 발명의 일실시예에 따른 각각의 제 1 이미지 및 제 2 이미지와, 상기 제 1 이미지 및 제 2 이미지가 중첩된 영역을 보이는 일예시도이다.
구체적으로, 제 2 거리 측정부(220)는 상기 도 3 내지 도 4 에 도시된 바와 같이, 복수개의 카메라 장치(100)를 통해 취득한 복수개(두 개)의 이미지를 각각 블록영역으로 분할한 후, 분할된 복수개(두 개)의 이미지간의 중첩된 블록의 개수 정도를 판단하여, 중첩된 블록의 개수에 따라 기 설정된 목표물과의 거리(고도)를 설정한다.
도 5 는 본 발명의 일실시예에 따른 두 개의 카메라 장치(100)를 통해 취득한 두 개의 이미지를 이용하여, 각 이미지를 블록영역으로 분할한 후, 겹치는 블록의 개수별 목표물과의 거리(고도)를 나타낸 일예시도로서, 도시된 바와 같이 겹치는 블록의 개수가 7일 경우 100m, 6개일 경우 75m, 5개일 경우 50m, 4개일 경우 4m, 2개일 경우 15m로 설정되어 있다.
본 실시예에서, 겹치는 블록의 개수마다 특정 높이를 설정하였으나, 본 발명이 그 높이에 한정되는 것은 아니다.
또한, 이미지 처리장치(200)는 거리측정을 위한 연산 또는 외부장치로의 전송을 위해, 각종 처리정보를 인코딩할 수 있다.
한편, 본 발명에서는 제 1 거리 측정부(210) 또는 제 2 거리 측정부(220) 중, 선택적으로 사용할 수 있으며, 정확성을 더욱 높이기 위하여 제 1 거리 측정부(210) 및 제 2 거리 측정부(220)를 동시에 사용한 후, 선택적으로 측정된 정보를 참조할 수 있다.
그리고, 모니터링 장치(300)는 사용자의 입력정보에 따라 상기 이미지 처리장치(200)를 제어함으로써, 거리측정을 위한 사용자의 각종 제어정보 및 목표물까지의 거리정보를 포함하는 무인 비행체에 관한 각종 상태정보를 모니터링 한다.
이때, 상기 모니터링 장치(300)는 상기 이미지 처리장치(200)와 근접 또는 원격의 위치에서 연결될 수 있도록 유무선으로 연결되어 있다.
이하에서는, 상술한 시스템을 이용한 복수개의 카메라를 이용한 거리측정 방법에 관하여 도 6 을 참조하여 설명하면 다음과 같다.
도 6 은 본 발명의 일실시예에 따른 복수개의 카메라를 이용한 거리측정 방법에 관한 전체 흐름도로서, 도시된 바와 같이 동일한 가로선상에 일정한 거리를 두고 무인 비행체에 설치되는 복수개의 카메라 장치(100)가 동일한 화각으로 목표물에 대한 이미지를 각각 취득한다(S10).
이후, 이미지 처리장치(200)는 상기 복수개의 카메라 장치(100)를 통해 취득한 이미지를 정합하여, 상기 무인 비행체와 목표물까지의 거리를 측정한다(S20).
구체적으로, 이미지 처리장치(200)의 제 1 거리 측정부(210)는 복수개(두 개)의 카메라 장치(100)를 통해 취득한 각각의 이미지 내에서 관심영역(a, A)을 추출하고(S22), 목표물과 복수개(두 개)의 관심영역(a, A)의 위치를 비교하여(S24), 상기 무인 비행체와 목표물까지의 거리를 측정한다(S26).
뒤이어, 이미지 처리장치(200)는 외부장치로의 전송을 위해, 각종 처리정보를 인코딩한다(S30).
그리고, 모니터링 장치(300)는 사용자의 입력정보에 따라 상기 이미지 처리장치(200)를 제어함으로써, 거리측정을 위한 사용자의 각종 제어정보 및 목표물까지의 거리정보를 포함하는 무인 비행체에 관한 각종 상태정보를 모니터링 한다(S40).
한편, 전술한 바와 같은 제 S20 과정은, 상기 도 6 에 도시된 바와 같이 제 S20' 과정으로 대치될 수 있다. 상기 제 S20' 과정을 살피면, 제 2 거리 측정부(220)는 복수개의 카메라 장치(100)를 통해 취득한 복수개(두 개)의 이미지를 각각 블록영역으로 분할한 후(S22'), 분할된 복수개(두 개)의 이미지간의 중첩된 블록의 개수 정도를 판단하여(S24'), 중첩된 블록의 개수에 따라 기 설정된 목표물과의 거리(고도)를 설정한다(S26').
부연하면, 본 발명에서 상술한 제 S20 과정과 제 S20' 과정 중 적어도 어느 하나 이상의 과정이 실행되는 것으로 설정할 수 있다.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (13)

  1. 복수개의 카메라를 이용한 거리측정 시스템에 있어서,
    무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치로서, 목표물에 대한 이미지를 각각 취득하는 카메라 장치(100); 및
    상기 카메라 장치(100)를 통해 취득한 이미지를 정합하여, 상기 무인 비행체와 목표물까지의 거리를 측정하는 이미지 처리장치(200); 를 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  2. 제 1 항에 있어서,
    상기 카메라 장치(100)는,
    상기 무인 비행체의 동일한 가로선상에 일정한 거리를 두고 설치되는 적어도 2개 이상의 카메라 장치로서, 동일한 화각으로 취득하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  3. 제 1 항에 있어서,
    상기 이미지 처리장치(200)는,
    복수개의 카메라 장치(100)를 통해 취득한 각각의 이미지 내에서 관심영역을 추출하고, 목표물과 복수개의 관심영역의 위치를 비교하여 상기 무인 비행체와 목표물까지의 거리를 측정하는 제 1 거리 측정부(210); 를 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  4. 제 3 항에 있어서,
    상기 제 1 거리 측정부(210)는,
    각 관심영역에서 목표물까지의 간격을 바탕으로 목표물까지의 거리를 측정하는 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  5. 제 1 항에 있어서,
    상기 이미지 처리장치(200)는,
    복수개의 카메라 장치(100)를 통해 취득한 복수개의 이미지를 블록영역으로 분할한 후, 블록으로 분할된 이미지간의 블록의 유사도를 판단하여, 목표물과의 거리를 측정하는 제 2 거리 측정부(220); 를 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  6. 제 5 항에 있어서,
    상기 제 2 거리 측정부(220)는,
    복수개의 카메라 장치(100)를 통해 취득한 복수개의 이미지를 각각 블록영역으로 분할한 후, 분할된 복수개의 이미지간의 중첩된 블록의 개수 정도를 판단하여, 중첩된 블록의 개수에 따라 기 설정된 목표물과의 거리를 설정하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  7. 제 1 항에 있어서,
    상기 이미지 처리장치(200)는,
    거리측정을 위한 연산 또는 외부장치로의 전송을 위해, 각종 처리정보를 인코딩하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  8. 제 1 항에 있어서,
    사용자의 입력정보에 따라 상기 이미지 처리장치(200)를 제어함으로써, 거리측정을 위한 사용자의 각종 제어정보 및 목표물까지의 거리정보를 포함하는 무인 비행체에 관한 각종 상태정보를 모니터링하는 모니터링 장치(300); 를 더 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  9. 제 1 항에 있어서,
    상기 모니터링 장치(300)는,
    상기 이미지 처리장치(200)와 근접 또는 원격의 위치에서 연결될 수 있도록 유무선으로 연결되어 있는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 시스템.
  10. 카메라 장치(100), 이미지 처리장치(200) 및 모니터링 장치(300)를 포함하는 시스템을 통한 복수개의 카메라를 이용한 거리측정 방법에 있어서,
    (a) 무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치(100)가 동일한 화각으로 목표물에 대한 이미지를 각각 취득하는 과정; 및
    (b) 상기 이미지 처리장치(200)가 복수개의 카메라 장치(100)를 통해 취득한 각각의 이미지 내에서 관심영역을 추출하고, 목표물과 복수개의 관심영역의 위치를 비교하여 상기 무인 비행체와 목표물까지의 거리를 측정하는 과정; 을 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 방법.
  11. 제 10 항에 있어서,
    상기 (b) 과정 이후에,
    (c) 상기 모니터링 장치(300)가 사용자의 입력정보에 따라 상기 이미지 처리장치(200)를 제어함으로써, 거리측정을 위한 사용자의 각종 제어정보 및 목표물까지의 거리정보를 포함하는 무인 비행체에 관한 각종 상태정보를 모니터링 하는 과정; 을 더 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 방법.
  12. 카메라 장치(100), 이미지 처리장치(200) 및 모니터링 장치(300)를 포함하는 시스템을 통한 복수개의 카메라를 이용한 거리측정 방법에 있어서,
    (a) 무인 비행체의 특정 위치에 설치되는 복수개의 카메라 장치(100)가 동일한 화각으로 특정 목표물에 대한 이미지를 각각 취득하는 과정; 및
    (b) 상기 이미지 처리장치(200)가 복수개의 카메라 장치(100)를 통해 취득한 복수개의 이미지를 각각 블록영역으로 분할한 후, 분할된 복수개의 이미지간의 중첩된 블록의 개수 정도를 판단하여, 중첩된 블록의 개수에 따라 기 설정된 목표물과의 거리를 설정하는 과정; 을 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 방법.
  13. 제 12 항에 있어서,
    상기 (b) 과정 이후에,
    (c) 상기 모니터링 장치(300)가 사용자의 입력정보에 따라 상기 이미지 처리장치(200)를 제어함으로써, 거리측정을 위한 사용자의 각종 제어정보 및 목표물까지의 거리정보를 포함하는 무인 비행체에 관한 각종 상태정보를 모니터링 하는 과정; 을 더 포함하는 것을 특징으로 하는 복수개의 카메라를 이용한 거리측정 방법.
PCT/KR2010/008083 2010-10-27 2010-11-16 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법 WO2012057392A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0105417 2010-10-27
KR1020100105417A KR20120044052A (ko) 2010-10-27 2010-10-27 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법

Publications (1)

Publication Number Publication Date
WO2012057392A1 true WO2012057392A1 (ko) 2012-05-03

Family

ID=45994086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008083 WO2012057392A1 (ko) 2010-10-27 2010-11-16 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법

Country Status (2)

Country Link
KR (1) KR20120044052A (ko)
WO (1) WO2012057392A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307837A (zh) * 2019-07-22 2019-10-08 张琦 一种基于图像识别的无人机导航***及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494394B1 (ko) * 2014-07-01 2015-02-17 엘아이지넥스원 주식회사 스테레오 비전을 이용한 탐색장치 및 그 방법
KR101494395B1 (ko) * 2014-07-01 2015-02-17 엘아이지넥스원 주식회사 스테레오 비전을 이용한 탐색장치를 포함하는 유도 비행체 및 이의 표적 추적 방법
KR101600862B1 (ko) * 2014-08-26 2016-03-08 연세대학교 산학협력단 복수의 uav를 이용한 스테레오 비전 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0130601B1 (ko) * 1994-10-12 1998-04-09 황해웅 지상 폭발고도 측정장치 및 방법
KR20060106429A (ko) * 2005-04-08 2006-10-12 한국항공우주연구원 항공기 고도보정 방법
KR100947106B1 (ko) * 2009-10-30 2010-03-12 새한항업(주) 기준점 데이터가 적용된 수치 영상이미지의 실시간 업데이팅 영상처리시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0130601B1 (ko) * 1994-10-12 1998-04-09 황해웅 지상 폭발고도 측정장치 및 방법
KR20060106429A (ko) * 2005-04-08 2006-10-12 한국항공우주연구원 항공기 고도보정 방법
KR100947106B1 (ko) * 2009-10-30 2010-03-12 새한항업(주) 기준점 데이터가 적용된 수치 영상이미지의 실시간 업데이팅 영상처리시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307837A (zh) * 2019-07-22 2019-10-08 张琦 一种基于图像识别的无人机导航***及方法

Also Published As

Publication number Publication date
KR20120044052A (ko) 2012-05-07

Similar Documents

Publication Publication Date Title
WO2020105898A1 (ko) 빅데이터 기반 자율 비행 드론 시스템 및 그 자율 비행 방법
KR101776823B1 (ko) 외부 감시카메라를 이용한 모바일 로봇의 위치인식 방법 및 시스템
WO2015005573A1 (ko) 회전익 구조체를 이용한 공중관측 지형자료 구축 방법
WO2016122069A1 (ko) 타이어 마모도 측정 방법 및 그 장치
CN107202793A (zh) 一种检测建筑外墙质量缺陷的检测***及方法
WO2019124639A1 (ko) 무인 장치를 활용한 무선통신 중계시스템 및 그 방법
WO2015115802A1 (ko) 깊이 정보 추출 장치 및 방법
KR101239532B1 (ko) 로봇의 위치 인식 장치 및 방법
WO2013133470A1 (ko) 열화상 내에서 특정부위 추적이 가능한 열상시스템 및 이를 이용한 특정부위의 추적방법
WO2012057392A1 (ko) 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법
WO2017034252A1 (ko) 영상 정보를 이용한 무인비행체의 위치 유도 제어방법
CN103675609A (zh) 电力巡线设备及***
WO2019198868A1 (ko) 무인기와 무선단말기 간의 상호 인식 방법
WO2020235734A1 (ko) 모노카메라를 이용한 자율주행 차량의 거리 및 위치 추정 방법
WO2023113058A1 (ko) 정밀 착륙을 위한 드론 제어 방법
WO2017119545A1 (ko) 2d 레이저 센서와 모터를 구비하는 스캐너를 이용하여 항공기를 주기장에 안전하게 유도하는 방법
WO2012057389A1 (ko) 복수개의 카메라를 이용한 관심영역 추출 시스템 및 그 방법
JP5858741B2 (ja) 自動追尾カメラシステム
US12022197B2 (en) Image capturing system, method, and analysis of objects of interest
JP2005253189A (ja) 配電線巡視システムおよび方法
WO2016060312A1 (ko) 실내위치인식기반 보안관리장치 및 방법
WO2017007077A1 (ko) 감시 방법
WO2018016793A1 (ko) 복합센서를 이용한 드론 제어 장치 및 그 방법
CN115826596B (zh) 基于多旋翼无人机的智能火电厂烟囱巡检方法及***
WO2023090465A1 (ko) 드론 및 드론의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859006

Country of ref document: EP

Kind code of ref document: A1