WO2012057130A1 - Control device and control method for vehicle - Google Patents

Control device and control method for vehicle Download PDF

Info

Publication number
WO2012057130A1
WO2012057130A1 PCT/JP2011/074541 JP2011074541W WO2012057130A1 WO 2012057130 A1 WO2012057130 A1 WO 2012057130A1 JP 2011074541 W JP2011074541 W JP 2011074541W WO 2012057130 A1 WO2012057130 A1 WO 2012057130A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
vehicle
oil pump
engine
clutch
Prior art date
Application number
PCT/JP2011/074541
Other languages
French (fr)
Japanese (ja)
Inventor
武男 相澤
金子 格三
裕貴 小山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2012057130A1 publication Critical patent/WO2012057130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • B60W2710/1088Change speed gearings fluid pressure, e.g. oil pressure pressure of working fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device and a control method for controlling a hybrid vehicle including a main oil pump and a sub oil pump that supply hydraulic pressure to a clutch interposed between an engine and a drive wheel.
  • the transmission-side friction element is released until the number of rotations of the main oil pump exceeds a predetermined value, so that the driver is given a feeling that the engine is not accelerated smoothly when starting while starting the engine. There is a problem that there are cases.
  • the problem to be solved by the present invention is to provide a vehicle control device and control method capable of reducing the uncomfortable feeling given to the driver.
  • the sub oil pump when the sub oil pump is out of order, when the vehicle speed is between a predetermined threshold and the maximum vehicle speed in the first travel mode, the first travel mode is permitted, and the vehicle speed is less than or equal to the predetermined threshold.
  • the above problem is solved by starting the internal combustion engine.
  • the hydraulic pressure of the main oil pump can be maintained even if the vehicle speed decreases. It is possible to reduce the uncomfortable feeling given to the driver when the vehicle starts.
  • the first travel mode is permitted, so that the fuel consumption is improved. Can be achieved.
  • FIG. 1 is a block diagram showing the overall configuration of a hybrid vehicle in an embodiment of the present invention.
  • FIG. 2 is a diagram showing a powertrain of a hybrid vehicle according to another embodiment of the present invention.
  • FIG. 3 is a diagram showing a powertrain of a hybrid vehicle according to still another embodiment of the present invention.
  • FIG. 4 is a skeleton diagram showing the configuration of the automatic transmission according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a shift map of the automatic transmission shown in FIG.
  • FIG. 6 is a control block diagram of the integrated control unit in the embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of the target driving force map in the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of the mode map in the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a target charge / discharge amount map according to the embodiment of the present invention.
  • FIG. 10 is a flowchart showing engine start control in the embodiment of the present invention.
  • FIG. 11 is a time chart showing an example of a flow of engine start control in the embodiment of the present invention.
  • FIG. 12 is a flowchart showing engine start control in another embodiment of the present invention.
  • FIG. 13 is a time chart showing an example of the flow of engine start control in another embodiment of the present invention.
  • the hybrid vehicle 1 is a parallel electric vehicle that uses a plurality of power sources for driving the vehicle.
  • the hybrid vehicle 1 includes an internal combustion engine (hereinafter referred to as “engine”) 10, a first clutch 15, a motor generator (electric motor / generator) 20, a second clutch 25, a battery 30, and an inverter 35.
  • engine internal combustion engine
  • motor generator electric motor / generator
  • battery 30 a battery that stores power
  • inverter 35 an inverter 35
  • An automatic transmission 40 a propeller shaft 51, a differential gear unit 52, a drive shaft 53, and left and right drive wheels 54.
  • the engine 10 is an internal combustion engine that operates using gasoline or light oil as a fuel. Based on a control signal from the engine control unit 70, the valve opening of the throttle valve, the fuel injection amount of the injector, the ignition timing of the spark plug, and the like are controlled. Is done.
  • the engine 10 is provided with an engine rotation sensor 11 for detecting the rotation speed of the engine 10.
  • the first clutch 15 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor generator 20, and connects and disconnects power transmission between the engine 10 and the motor generator 20.
  • a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid can be exemplified.
  • the first clutch 15 engages / disengages the clutch plate (including a slip state) by controlling the hydraulic pressure of the hydraulic unit 16 based on a control signal from the integrated controller unit 60.
  • the motor generator 20 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 20 is provided with a motor rotation speed sensor 21 for detecting the rotation speed of the motor generator 20.
  • the motor generator 20 functions not only as an electric motor but also as a generator.
  • motor generator 20 When the rotor is rotated by an external force, motor generator 20 generates AC power by generating electromotive force at both ends of the stator coil (regeneration).
  • the AC power generated by the motor generator 20 is converted into a DC current by the inverter 35 and then charged to the battery 30.
  • the battery 30 include a lithium ion secondary battery and a nickel hydride secondary battery.
  • a current / voltage sensor 31 is attached to the battery 30, and these detection results can be output to the motor control unit 80.
  • the second clutch 25 is interposed between the motor generator 20 and the left and right drive wheels 54, and connects and disconnects power transmission between the motor generator 20 and the left and right drive wheels 54.
  • a wet multi-plate clutch can be exemplified as in the first clutch 15 described above.
  • the second clutch 25 causes the clutch plate to be engaged (including a slip state) / released by controlling the hydraulic pressure of the hydraulic unit 26 based on a control signal from the transmission control unit 90.
  • the automatic transmission 40 is a transmission that automatically switches stepped gear ratios such as forward 7 speed, reverse 1 speed, etc. according to the vehicle speed, accelerator opening, and the like.
  • the automatic transmission 40 changes the gear ratio based on a control signal from the transmission control 90.
  • the second clutch 25 does not need to be newly added as a dedicated clutch, and includes a plurality of frictional engagement elements that are engaged at each shift stage of the automatic transmission 40. Several frictional engagement elements can be used.
  • the present invention is not limited to such a configuration.
  • the second clutch 25 may be interposed between the output shaft of the motor generator 20 and the input shaft of the automatic transmission 40.
  • the second clutch 25 may be interposed between the output shaft of the automatic transmission 40 and the propeller shaft 51.
  • FIGS. 2 and 3 are diagrams showing the configuration of the hybrid vehicle according to another embodiment. Since the configuration other than the power train is the same as that of FIG. 1, only the power train is shown. 1 to 3 exemplify a rear-wheel drive hybrid vehicle, it is of course possible to use a front-wheel drive hybrid vehicle or a four-wheel drive hybrid vehicle.
  • FIG. 4 is a skeleton diagram showing the configuration of the automatic transmission 40.
  • the automatic transmission 40 includes a first planetary gear set GS1 (first planetary gear G1, second planetary gear G2) and a second planetary gear set GS2 (third planetary gear G3, fourth planetary gear G4). Yes.
  • the first planetary gear set GS1 (first planetary gear G1, second planetary gear G2) and the second planetary gear set GS2 (third planetary gear G3, fourth planetary gear G4) are shafts from the input shaft Input side. They are arranged in this order toward the direction output shaft Output.
  • the automatic transmission 40 includes a plurality of clutches C1, C2, C3, a plurality of brakes B1, B2, B3, B4 and a plurality of one-way clutches F1, F2 as friction engagement elements.
  • the first planetary gear G1 is a single pinion planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 meshing with both the gears S1 and R1. is there.
  • the second planetary gear G2 is a single pinion planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 supporting the second pinion P2 meshing with both the gears S2 and R2. is there.
  • the third planetary gear G3 is a single pinion type planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 supporting the third pinion P3 meshing with both the gears S3 and R3. It is a gear.
  • the fourth planetary gear G4 is a single pinion planet having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports the fourth pinion P4 meshing with both the gears S4 and R4. It is a gear.
  • the input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine 10.
  • the output shaft Output is connected to the third carrier PC3, and transmits the output rotational driving force to the drive wheels 54 via a final gear or the like not shown.
  • the first connecting member M1 is a member that integrally connects the first ring gear R1, the second carrier PC2, and the fourth ring gear R4.
  • the second connecting member M2 is a member that integrally connects the third ring gear R3 and the fourth carrier PC4.
  • the third connecting member M3 is a member that integrally connects the first sun gear S1 and the second sun gear S2.
  • the first planetary gear set GS1 is formed by connecting the first planetary gear G1 and the second planetary gear G2 with a first connecting member M1 and a third connecting member M3, and is composed of four rotating elements.
  • the second planetary gear set GS2 is formed by connecting the third planetary gear G3 and the fourth planetary gear G4 by the second connecting member M2, and is composed of five rotating elements.
  • the first planetary gear set GS1 has a torque input path that is input from the input shaft Input to the second ring gear R2.
  • the torque input to the first planetary gear set GS1 is output from the first connecting member M1 to the second planetary gear set GS2.
  • the second planetary gear set GS2 has a torque input path that is input from the input shaft Input to the second connection member M2, and a torque input path that is input from the first connection member M1 to the fourth ring gear R4.
  • the torque input to the second planetary gear set GS2 is output from the third carrier PC3 to the output shaft Output.
  • the input clutch C1 is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2.
  • the direct clutch C2 is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4.
  • the H & LR clutch C3 is a clutch that selectively connects and disconnects the third sun gear S3 and the fourth sun gear S4.
  • a second one-way clutch F2 is disposed between the third sun gear S3 and the fourth sun gear S4.
  • the front brake B1 is a brake that selectively stops the rotation of the first carrier PC1.
  • the first one-way clutch F1 is disposed in parallel with the front brake B1.
  • the low brake B2 is a brake that selectively stops the rotation of the third sun gear S3.
  • the 2346 brake B3 is a brake that selectively stops the rotation of the third connecting member M3 (the first sun gear S1 and the second sun gear S2).
  • the reverse brake B4 is a brake that selectively stops the rotation of the fourth carrier PC4.
  • FIG. 5 is a diagram showing a fastening operation table for the seventh forward speed and the first reverse speed in the automatic transmission 40.
  • “ ⁇ ” in FIG. 5 indicates a state in which the corresponding clutch or brake is engaged, and a blank in FIG. 5 indicates a state in which these are released. Further, “( ⁇ )” in FIG. 5 indicates that the fastening is performed only when the engine brake is operated.
  • the frictional engagement element in the automatic transmission 40 is used as the second clutch 25, and the frictional engagement element surrounded by the thick line in FIG.
  • the clutch 25 can be used.
  • the low brake B2 is used as the second clutch 25 from the first speed to the third speed
  • the H & LR clutch C3 is used as the second clutch 25 from the fourth speed to the seventh speed.
  • the stepped transmission with 7 forward speeds and 1 reverse speed is not particularly limited, and for example, as described in Japanese Patent Application Laid-Open No. 2007-314097, a stepped transmission with 5 forward speeds and 1 reverse speed. May be used as the automatic transmission 40.
  • the output shaft of the automatic transmission 40 is connected to the left and right drive wheels 54 via a propeller shaft 51, a differential gear unit 52, and left and right drive shafts 53.
  • reference numeral 55 denotes left and right steering front wheels.
  • a main oil pump 41 for supplying hydraulic pressure to the automatic transmission 40 and the first clutch 16 is provided.
  • the main oil pump 41 includes an internal gear pump, an external gear pump, a vane pump, or the like that generates discharge pressure using at least one of the engine 10 or the motor generator as a power source.
  • the main oil pump 41 is configured to generate hydraulic pressure in response to the rotation of the input shaft of the automatic transmission 40.
  • the main oil pump 41 can be driven by the engine 10 with the first clutch 15 engaged. It is also possible to drive the motor 15 by releasing the clutch 15.
  • the oil discharged from the main oil pump 41 is supplied to the hydraulic unit 16 of the first clutch 15 and the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25, respectively.
  • the automatic transmission 40 is provided with a sub oil pump 42 for starting the vehicle by operating the automatic transmission 40 when the main oil pump 41 is not operating.
  • the sub oil pump 42 is driven by a pump-dedicated motor other than the motor generator 20, and is hydraulically supplied to the hydraulic unit 16 of the first clutch 15 and the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25. Supply each.
  • the hybrid vehicle 1 in this embodiment can be switched to three travel modes according to the engaged / released state of the first and second clutches 15 and 25.
  • the first travel mode is referred to as a motor use travel mode (hereinafter referred to as “EV travel mode”) in which the first clutch 15 is disengaged and the second clutch 25 is engaged to travel using only the power of the motor generator 20 as a power source. ).
  • EV travel mode motor use travel mode
  • the second travel mode is an engine use travel mode (hereinafter referred to as “HEV travel mode”) in which both the first clutch 15 and the second clutch 25 are engaged to travel while including the engine 10 as a power source in addition to the motor generator 20. .)
  • HEV travel mode engine use travel mode
  • the third travel mode is a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source (hereinafter referred to as “WSC travel mode”).
  • WSC travel mode is a mode in which creep travel is achieved particularly when the SOC (charge amount: State of Charge) of the battery 30 is lowered or when the temperature of the cooling water of the engine 10 is low.
  • the released first clutch 15 is engaged, and the engine 10 is started using the torque of the motor generator 20.
  • the “HEV travel mode” includes three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • the drive wheels 54 are moved using only the engine 10 as a power source.
  • the drive wheels 54 are moved using two of the engine 10 and the motor generator 20 as power sources.
  • the motor generator 20 is caused to function as a generator at the same time as the drive wheels 54 are moved using the engine 10 as a power source.
  • a power generation mode for charging the battery 30 and supplying power to the electrical components by causing the motor generator 20 to function as a generator using the power of the engine 10 when the vehicle is stopped. May be.
  • the control system of the hybrid vehicle 1 in this embodiment includes an integrated control unit 60, an engine control unit 70, a motor control unit 80, and a transmission control unit 90, as shown in FIG. These control units 60, 70, 80, 90 are connected to each other via, for example, CAN communication.
  • the engine control unit 70 inputs sensor information such as the engine speed sensor 11 and controls the engine operating point (engine speed Ne, engine torque Te) in accordance with the target engine torque command tTe from the integrated control unit 60 and the like.
  • the command is output to a throttle valve actuator, an injector, a spark plug, etc. provided in the engine 10.
  • Information such as the engine speed Ne is sent from the engine control unit 70 to the integrated control unit 60 via the CAN communication line.
  • the motor control unit 80 inputs sensor information from the motor rotation speed sensor 21 and the like, and in accordance with a target motor generator torque command tTm and the like from the integrated control unit 60, the operating point of the motor generator 20 (motor rotation speed Nm, motor A command for controlling the torque Tm) is output to the inverter 35.
  • the sensor information such as the motor rotation speed Nm is sent from the motor control unit 80 to the integrated control unit 60 via CAN communication.
  • the motor control unit 80 calculates and manages the SOC of the battery 30 based on the current value and the voltage value detected by the current / voltage sensor 31.
  • the battery SOC information is used as control information for the motor generator 20 and is sent from the motor control unit 80 to the integrated control unit 60 via CAN communication.
  • the transmission control unit 90 inputs sensor information such as the accelerator opening sensor 91 and the vehicle speed sensor 92, and the target second clutch transmission torque capacity tTc2 and the target shift from the integrated control unit 60 in accordance with the shift schedule shown in the shift map.
  • the solenoid valve in the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25 is driven and controlled so as to achieve the stage.
  • the shift map used at this time is one in which a target gear position is set in advance based on the vehicle speed VSP and the accelerator opening APO.
  • Sensor information such as the accelerator opening APO and the vehicle speed VSP is sent from the transmission control unit 90 to the integrated control unit 60 via CAN communication.
  • the integrated control unit 60 efficiently controls the hybrid vehicle 1 by controlling the operating point of the power train including the engine 10, the motor generator 20, the automatic transmission 40, the first clutch 15, and the second clutch 25 in an integrated manner. It bears the function to make it run.
  • the integrated control unit 60 calculates the operating point of the powertrain based on information from each sensor acquired through CAN communication, and controls the operation of the engine 10 according to a control command to the engine control unit 70, and the motor control unit.
  • the release control and the engagement / release control of the second clutch 25 by the control command to the hydraulic unit 26 of the second clutch 25 are executed.
  • FIG. 6 is a control block diagram of the integrated control unit 60. Note that the control described below is executed, for example, every 10 msec.
  • the integrated control unit 60 includes a target driving force calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, and an operating point command unit 400.
  • the target driving force calculation unit 100 uses a predetermined target driving force map, based on the accelerator opening APO detected by the accelerator opening sensor 91 and the vehicle speed VSP detected by the vehicle speed sensor 92.
  • the driving force tFo0 is calculated.
  • FIG. 7 shows an example of the target driving force map.
  • the mode selection unit 200 refers to a predetermined mode map and selects a target mode.
  • FIG. 8 shows an example of the mode map.
  • EV travel mode, WSC travel mode, and HEV travel mode regions are set in accordance with the vehicle speed VSP and the accelerator opening APO.
  • the switching line from the EV traveling mode or the HEV traveling mode to the WSC traveling mode is based on the idling speed of the engine 10 when the automatic transmission 40 is at the first speed in the region below the predetermined opening APO1. Is set in a region lower than the lower limit vehicle speed VSP1 at which the rotational speed is small. Further, since a large driving force is required in the region of the predetermined opening APO1 or more, the WSC travel mode is set up to the vehicle speed VSP1 'region higher than the lower limit vehicle speed VSP1.
  • Target charge / discharge calculation unit 300 calculates target charge / discharge power tP from the SOC of battery 30 using a predetermined target charge / discharge amount map.
  • FIG. 9 shows an example of a target charge / discharge amount map.
  • the operating point command unit 400 uses the accelerator opening APO, the target driving force tFo0, the target mode, the vehicle speed VSP, and the target charge / discharge power tP as a target target for achieving the power train operating point tTe.
  • the target motor generator torque tTm, the target first clutch transmission torque capacity tTc1, the target second clutch transmission torque capacity tTc2, and the target gear position of the automatic transmission 40 are calculated.
  • the target engine torque tTe is sent from the integrated control unit 60 to the engine control unit 70, and the target motor generator torque tTm is sent from the integrated control unit 60 to the motor control unit 80.
  • the target second clutch transmission torque capacity tTc2 and the target shift speed are sent from the integrated control unit 60 to the transmission control unit 90.
  • the integrated control unit 60 supplies a solenoid current corresponding to the target first clutch transmission torque capacity tTc1 to the hydraulic unit 16.
  • the operating point command unit 400 includes a failure determination unit 410 and a start control unit 420.
  • the failure determination unit 410 determines whether or not a failure has occurred in the sub oil pump 42.
  • the start control unit 420 starts the engine 10. (See FIG. 8).
  • the predetermined threshold value VSPop is a minimum hydraulic pressure required to drive the automatic transmission 40 (more specifically, the second clutch 25 configured by using the frictional engagement element of the automatic transmission 40 is engaged. Therefore, it is set to a value equal to or higher than the vehicle speed capable of ensuring the necessary hydraulic pressure).
  • threshold value VSPop may be a fixed value
  • threshold value VSPop may be changed according to the deceleration of hybrid vehicle 1 by setting unit 430 (indicated by a dotted line in FIG. 6) of operating point command unit 400. .
  • the setting unit 430 sets the threshold value VSPop larger as the deceleration of the hybrid vehicle 1 is larger, and sets the threshold value VSPop smaller as the deceleration of the hybrid vehicle 1 is smaller.
  • this setting unit 430 is not necessary.
  • FIG. 10 is a flowchart showing the engine start control in this embodiment
  • FIG. 11 is a time chart showing an example of the flow of the engine start control in this embodiment.
  • step S10 of FIG. 10 the failure determination unit 410 determines whether or not a failure has occurred in the sub oil pump. If no failure has occurred in sub oil pump 42 (NO in step S10), this flow is terminated while maintaining the current control mode (step S60).
  • start control unit 420 compares actual vehicle speed VSP detected by vehicle speed sensor 92 with threshold value VSPop in step S40. To do.
  • step S50 start control unit 420 detects actual vehicle speed VSP detected by vehicle speed sensor 92 and the EV travel mode.
  • the maximum vehicle speed VSPevmax (see FIG. 8) is compared.
  • start control unit 420 permits switching from the HEV travel mode to the EV travel mode in step S70.
  • the hydraulic unit 16 is controlled to release the first clutch 15 that has been engaged, and the engine 10 is stopped.
  • step S50 when vehicle speed VSP is higher than maximum vehicle speed VSPevmax (VSP> VSPevmax, NO in step S50), this flow is maintained while maintaining the current control mode (in the example shown in FIG. 8, HEV travel mode). The process ends (step S60).
  • step S80 the start control means 420 is Then, control for starting the engine 10 is performed (see FIGS. 11A and 11C). Specifically, the start control unit 420 controls the hydraulic unit 16 so that the released first clutch 15 is engaged, and transmits the torque of the motor generator 20 to the engine 10 via the first clutch 15. After that, the engine 10 is started by opening the throttle and instructing the engine 10 to inject and ignite fuel to cause the engine 10 to perform an initial explosion. Note that when the vehicle speed VSP is equal to or lower than the threshold value VSPop and the engine 10 is operating at a rotational speed equal to or higher than the threshold value VSPop, the second clutch 25 is slipped or released.
  • the engine 10 is started when the vehicle speed VSP is equal to or lower than the predetermined threshold value VSPop while the sub oil pump 42 is malfunctioning.
  • the hydraulic pressure of the pump 41 can be maintained higher than the minimum hydraulic pressure of the automatic transmission 40 (see (a) and (b) of FIG. 11). For this reason, even when the hybrid vehicle 1 is started, the hydraulic pressure necessary for engaging and engaging the second clutch 25 configured using the frictional engagement element of the automatic transmission 40 is sufficiently ensured. The unpleasant feeling given can be reduced.
  • the fuel consumption can be improved.
  • FIG. 12 is a flowchart showing engine start control in another embodiment
  • FIG. 13 is a time chart showing an example of the flow of engine start control in another embodiment.
  • step S10 If it is determined in step S10 that the sub oil pump 42 has failed (YES in step S10), first, in step S20, the setting unit 430 detects the vehicle speed VSP detected by the vehicle speed sensor 92 and the time value. From these, the deceleration of the hybrid vehicle 1 is calculated. Note that the deceleration of the hybrid vehicle 1 may be detected using an acceleration sensor.
  • step S30 the setting unit 430 sets the vehicle speed VSPop according to the deceleration of the hybrid vehicle 1.
  • the setting unit 430 sets a higher threshold value VSPop as the deceleration increases as the threshold value VSPop.
  • the threshold VSPop is set lower as the deceleration is smaller.
  • step S40 the start control unit 420 compares the vehicle speed VSP detected by the vehicle speed sensor 92 with the threshold value VSPop set in step S30. Since the process after step S40 is the same as that of the above-mentioned FIG. 10, the description is abbreviate
  • the engine 10 is started when the sub oil pump 42 is out of order and the vehicle speed VSP is equal to or lower than the predetermined threshold value VSPop. Therefore, even if the vehicle speed decreases, the main oil pump 41 can be maintained (see (a) and (b) of FIG. 13). For this reason, even when the hybrid vehicle 1 is started, the hydraulic pressure necessary for engaging and engaging the second clutch 25 configured by using the frictional engagement element of the automatic transmission 40 is sufficiently secured. A sense of incongruity can be reduced.
  • the vehicle speed VSP is between the predetermined threshold value VSPop and the maximum vehicle speed VSPevmax in the EV traveling mode (VSPop ⁇ VSP ⁇ VSPevmax) in a state where the sub oil pump 42 is malfunctioning, EV Since the travel mode is permitted and the engine 10 is stopped, fuel consumption can be improved.
  • the threshold value VSPop by changing the threshold value VSPop according to the deceleration, it is possible to prevent the hydraulic pressure of the automatic transmission 40 from reaching the minimum hydraulic pressure when the deceleration is large. As shown in b), the occurrence of a shock associated with starting the engine after reaching the minimum hydraulic pressure is eliminated. On the other hand, when the deceleration is small, fuel consumption can be suppressed by continuing the state where the engine 10 is stopped as much as possible.
  • the second clutch 25 in the present embodiment corresponds to an example of a friction engagement element in the present invention
  • the failure determination unit 410 in the present embodiment corresponds to an example of a failure determination unit in the present invention
  • the start control in the present embodiment corresponds to an example of the start control unit in the present invention
  • the setting unit 430 in the present embodiment corresponds to an example of the setting unit in the present invention.
  • the EV travel mode in the present embodiment corresponds to an example of the first travel mode in the present invention
  • the HEV travel mode in the present embodiment corresponds to an example of the second travel mode in the present invention
  • the predetermined travel mode in the present embodiment The threshold value VSPop corresponds to an example of a predetermined threshold value in the present invention
  • the maximum vehicle speed VSPevmax in the EV traveling mode in the present embodiment corresponds to an example of the maximum vehicle speed in the first traveling mode in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A control device (60) for a vehicle (1), said control device being provided with: a malfunction-determination unit (410) that determines whether or not there is a malfunction in a sub-oil pump (42); and a start control unit (420) that, if said sub-pump (42) is malfunctioning, permits an EV drive mode if the speed (VSP) of the vehicle is between a prescribed threshold (VSPop) and a maximum vehicle speed (VSPevmax) for the EV drive mode and starts an engine (10) if the vehicle speed (VSP) is less than or equal to said prescribed threshold (VPSop).

Description

車輌の制御装置及び制御方法Vehicle control apparatus and control method
 本発明は、エンジンと駆動輪との間に介装されたクラッチに油圧を供給するメインオイルポンプとサブオイルポンプを備えたハイブリッド車輌を制御する制御装置及び制御方法に関するものである。 The present invention relates to a control device and a control method for controlling a hybrid vehicle including a main oil pump and a sub oil pump that supply hydraulic pressure to a clutch interposed between an engine and a drive wheel.
 本出願は、2010年10月26日に出願された日本国特許出願の特願2010―239282に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。 This application claims priority based on Japanese Patent Application No. 2010-239282 filed on October 26, 2010. For designated countries that are allowed to be incorporated by reference, The contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
 サブオイルポンプが故障した場合に、変速機側摩擦要素を開放指令した状態で、メインオイルポンプの回転数を引き上げ、所定ライン圧が確保された後に変速機側摩擦要素のトルク制御により駆動輪に駆動力を発生させる技術が知られている(例えば特許文献1参照)。 When the sub oil pump fails, the main oil pump speed is increased while the transmission side friction element is instructed to be released, and after the predetermined line pressure is secured, the torque is controlled on the transmission side friction element to drive wheels. A technique for generating a driving force is known (see, for example, Patent Document 1).
特開2009-262659号公報JP 2009-262659 A
 上記技術では、メインオイルポンプの回転数が所定値を超えるまで変速機側摩擦要素が開放されているので、エンジンを始動しながら発進する場合にスムーズに加速されない感覚(ヘジテイト感)をドライバに与える場合があるという問題がある。 In the above technique, the transmission-side friction element is released until the number of rotations of the main oil pump exceeds a predetermined value, so that the driver is given a feeling that the engine is not accelerated smoothly when starting while starting the engine. There is a problem that there are cases.
 本発明が解決しようとする課題は、ドライバに与える違和感の低減を図ることが可能な車輌の制御装置及び制御方法を提供することである。 The problem to be solved by the present invention is to provide a vehicle control device and control method capable of reducing the uncomfortable feeling given to the driver.
 本発明は、サブオイルポンプが故障している場合に、車速が所定の閾値から第1走行モードにおける最大車速までの間にあるときには前記第1走行モードを許可し、車速が所定の閾値以下であるときには内燃機関を始動させることによって上記課題を解決する。 In the present invention, when the sub oil pump is out of order, when the vehicle speed is between a predetermined threshold and the maximum vehicle speed in the first travel mode, the first travel mode is permitted, and the vehicle speed is less than or equal to the predetermined threshold. In some cases, the above problem is solved by starting the internal combustion engine.
 本発明によれば、サブオイルポンプが故障している状態で車速が所定の閾値以下となった場合に、内燃機関を始動させるので、車速が低下してもメインオイルポンプの油圧を維持することができ、車輌の発進時にドライバに与える違和感を低減することができる。 According to the present invention, since the internal combustion engine is started when the vehicle speed falls below a predetermined threshold in a state where the sub oil pump has failed, the hydraulic pressure of the main oil pump can be maintained even if the vehicle speed decreases. It is possible to reduce the uncomfortable feeling given to the driver when the vehicle starts.
 また、本発明では、サブオイルポンプが故障している状態で、車速が所定の閾値から第1走行モードにおける最大車速までの間にある場合に、第1走行モードを許可するので、燃費の向上を図ることができる。 Further, in the present invention, when the vehicle speed is between the predetermined threshold value and the maximum vehicle speed in the first travel mode in a state where the sub oil pump is out of order, the first travel mode is permitted, so that the fuel consumption is improved. Can be achieved.
図1は、本発明の実施形態におけるハイブリッド車輌の全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a hybrid vehicle in an embodiment of the present invention. 図2は、本発明の他の実施形態におけるハイブリッド車輌のパワートレインを示す図である。FIG. 2 is a diagram showing a powertrain of a hybrid vehicle according to another embodiment of the present invention. 図3は、本発明のさらに他の実施形態におけるハイブリッド車輌のパワートレインを示す図である。FIG. 3 is a diagram showing a powertrain of a hybrid vehicle according to still another embodiment of the present invention. 図4は、本発明の実施形態における自動変速機の構成を示すスケルトン図である。FIG. 4 is a skeleton diagram showing the configuration of the automatic transmission according to the embodiment of the present invention. 図5は、図4に示す自動変速機のシフトマップを示す図である。FIG. 5 is a diagram showing a shift map of the automatic transmission shown in FIG. 図6は、本発明の実施形態における統合コントロールユニットの制御ブロック図である。FIG. 6 is a control block diagram of the integrated control unit in the embodiment of the present invention. 図7は、本発明の実施形態における目標駆動力マップの一例を示す図である。FIG. 7 is a diagram showing an example of the target driving force map in the embodiment of the present invention. 図8は、本発明の実施形態におけるモードマップの一例を示す図である。FIG. 8 is a diagram showing an example of the mode map in the embodiment of the present invention. 図9は、本発明の実施形態における目標充放電量マップの一例を示す図である。FIG. 9 is a diagram illustrating an example of a target charge / discharge amount map according to the embodiment of the present invention. 図10は、本発明の実施形態におけるエンジン始動制御を示すフローチャートである。FIG. 10 is a flowchart showing engine start control in the embodiment of the present invention. 図11は、本発明の実施形態におけるエンジン始動制御の流れの一例を示すタイムチャートである。FIG. 11 is a time chart showing an example of a flow of engine start control in the embodiment of the present invention. 図12は、本発明の他の実施形態におけるエンジン始動制御を示すフローチャートである。FIG. 12 is a flowchart showing engine start control in another embodiment of the present invention. 図13は、本発明の他の実施形態におけるエンジン始動制御の流れの一例を示すタイムチャートである。FIG. 13 is a time chart showing an example of the flow of engine start control in another embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施形態に係るハイブリッド車輌1は、複数の動力源を車輌の駆動に使用するパラレル方式の電気自動車である。このハイブリッド車輌1は、図1に示すように、内燃機関(以下、「エンジン」という)10、第1クラッチ15、モータジェネレータ(電動機・発電機)20、第2クラッチ25、バッテリ30、インバータ35、自動変速機40、プロペラシャフト51、ディファレンシャルギアユニット52、ドライブシャフト53、及び左右の駆動輪54を備えている。 The hybrid vehicle 1 according to the present embodiment is a parallel electric vehicle that uses a plurality of power sources for driving the vehicle. As shown in FIG. 1, the hybrid vehicle 1 includes an internal combustion engine (hereinafter referred to as “engine”) 10, a first clutch 15, a motor generator (electric motor / generator) 20, a second clutch 25, a battery 30, and an inverter 35. , An automatic transmission 40, a propeller shaft 51, a differential gear unit 52, a drive shaft 53, and left and right drive wheels 54.
 エンジン10は、ガソリン又は軽油を燃料として作動する内燃機関であり、エンジンコントロールユニット70からの制御信号に基づいて、スロットルバルブのバルブ開度、インジェクタの燃料噴射量、点火プラグの点火時期等が制御される。このエンジン10には、エンジン10の回転数を検出するためのエンジン回転センサ11が設けられている。 The engine 10 is an internal combustion engine that operates using gasoline or light oil as a fuel. Based on a control signal from the engine control unit 70, the valve opening of the throttle valve, the fuel injection amount of the injector, the ignition timing of the spark plug, and the like are controlled. Is done. The engine 10 is provided with an engine rotation sensor 11 for detecting the rotation speed of the engine 10.
 第1クラッチ15は、エンジン10の出力軸とモータジェネレータ20の回転軸との間に介装されており、エンジン10とモータジェネレータ20との間の動力伝達を断接する。この第1クラッチ15の具体例としては、例えば比例ソレノイドで油流量及び油圧を連続的に制御できる湿式多板クラッチ等を例示することができる。この第1クラッチ15は、統合コントローラユニット60からの制御信号に基づいて油圧ユニット16の油圧が制御されることで、クラッチ板を締結(スリップ状態も含む。)/解放させる。 The first clutch 15 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor generator 20, and connects and disconnects power transmission between the engine 10 and the motor generator 20. As a specific example of the first clutch 15, for example, a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid can be exemplified. The first clutch 15 engages / disengages the clutch plate (including a slip state) by controlling the hydraulic pressure of the hydraulic unit 16 based on a control signal from the integrated controller unit 60.
 モータジェネレータ20は、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータジェネレータである。このモータジェネレータ20には、モータジェネレータ20の回転数を検出するためのモータ回転数センサ21が設けられている。このモータジェネレータ20は、電動機としても機能するし発電機としても機能する。インバータ35から三相交流電力が供給されている場合には、モータジェネレータ20は回転駆動する(力行)。一方、外力によってロータが回転している場合には、モータジェネレータ20は、ステータコイルの両端に起電力を生じさせることで交流電力を生成する(回生)。モータジェネレータ20によって発電された交流電力は、インバータ35によって直流電流に変換された後に、バッテリ30に充電される。 The motor generator 20 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. The motor generator 20 is provided with a motor rotation speed sensor 21 for detecting the rotation speed of the motor generator 20. The motor generator 20 functions not only as an electric motor but also as a generator. When three-phase AC power is supplied from the inverter 35, the motor generator 20 is driven to rotate (powering). On the other hand, when the rotor is rotated by an external force, motor generator 20 generates AC power by generating electromotive force at both ends of the stator coil (regeneration). The AC power generated by the motor generator 20 is converted into a DC current by the inverter 35 and then charged to the battery 30.
 バッテリ30の具体例としては、リチウムイオン二次電池やニッケル水素二次電池等を例示することができる。このバッテリ30には電流・電圧センサ31が取り付けられており、これらの検出結果をモータコントロールユニット80に出力することが可能となっている。 Specific examples of the battery 30 include a lithium ion secondary battery and a nickel hydride secondary battery. A current / voltage sensor 31 is attached to the battery 30, and these detection results can be output to the motor control unit 80.
 第2クラッチ25は、モータジェネレータ20と左右の駆動輪54との間に介装されており、モータジェネレータ20と左右の駆動輪54との間の動力伝達を断接する。この第2クラッチ25の具体例としては、上述の第1クラッチ15と同様に、例えば、湿式多板クラッチ等を例示することができる。この第2クラッチ25は、トランスミッションコントロールユニット90からの制御信号に基づいて油圧ユニット26の油圧が制御されることで、クラッチ板の締結(スリップ状態も含む。)/解放させる。 The second clutch 25 is interposed between the motor generator 20 and the left and right drive wheels 54, and connects and disconnects power transmission between the motor generator 20 and the left and right drive wheels 54. As a specific example of the second clutch 25, for example, a wet multi-plate clutch can be exemplified as in the first clutch 15 described above. The second clutch 25 causes the clutch plate to be engaged (including a slip state) / released by controlling the hydraulic pressure of the hydraulic unit 26 based on a control signal from the transmission control unit 90.
 自動変速機40は、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機である。この自動変速機40は、トランスミッションコントロール90からの制御信号に基づいて変速比を変化させる。なお、第2クラッチ25としては、図1に示すように、専用クラッチとして新たに追加したものである必要はなく、自動変速機40の各変速段階にて締結される複数の摩擦締結要素のうち、幾つかの摩擦締結要素を流用したものとすることができる。 The automatic transmission 40 is a transmission that automatically switches stepped gear ratios such as forward 7 speed, reverse 1 speed, etc. according to the vehicle speed, accelerator opening, and the like. The automatic transmission 40 changes the gear ratio based on a control signal from the transmission control 90. As shown in FIG. 1, the second clutch 25 does not need to be newly added as a dedicated clutch, and includes a plurality of frictional engagement elements that are engaged at each shift stage of the automatic transmission 40. Several frictional engagement elements can be used.
 但し、このような構成に限定されず、例えば、図2に示すように、第2クラッチ25をモータジェネレータ20の出力軸と自動変速機40の入力軸との間に介装した構成としてもよい。或いは、図3に示すように、第2クラッチ25を、自動変速機40の出力軸とプロペラシャフト51との間に介装した構成としてもよい。 However, the present invention is not limited to such a configuration. For example, as shown in FIG. 2, the second clutch 25 may be interposed between the output shaft of the motor generator 20 and the input shaft of the automatic transmission 40. . Alternatively, as shown in FIG. 3, the second clutch 25 may be interposed between the output shaft of the automatic transmission 40 and the propeller shaft 51.
 なお、図2及び図3においては、他の実施形態におけるハイブリッド車輌の構成を示す図であり、パワートレイン以外の構成は図1と同様であるため、パワートレインのみを示している。また、図1~図3においては、後輪駆動のハイブリッド車輌を例示したが、前輪駆動のハイブリッド車両や四輪駆動のハイブリッド車輌とすることも勿論可能である。 2 and 3 are diagrams showing the configuration of the hybrid vehicle according to another embodiment. Since the configuration other than the power train is the same as that of FIG. 1, only the power train is shown. 1 to 3 exemplify a rear-wheel drive hybrid vehicle, it is of course possible to use a front-wheel drive hybrid vehicle or a four-wheel drive hybrid vehicle.
 図4は自動変速機40の構成を示すスケルトン図である。自動変速機40は、第1遊星ギアセットGS1(第1遊星ギアG1、第2遊星ギアG2)と、第2遊星ギアセットGS2(第3遊星ギアG3、第4遊星ギアG4)とを備えている。なお、これら第1遊星ギアセットGS1(第1遊星ギアG1、第2遊星ギアG2)及び第2遊星ギアセットGS2(第3遊星ギアG3、第4遊星ギアG4)は、入力軸Input側から軸方向出力軸Output側に向けて、この順に配置されている。 FIG. 4 is a skeleton diagram showing the configuration of the automatic transmission 40. The automatic transmission 40 includes a first planetary gear set GS1 (first planetary gear G1, second planetary gear G2) and a second planetary gear set GS2 (third planetary gear G3, fourth planetary gear G4). Yes. The first planetary gear set GS1 (first planetary gear G1, second planetary gear G2) and the second planetary gear set GS2 (third planetary gear G3, fourth planetary gear G4) are shafts from the input shaft Input side. They are arranged in this order toward the direction output shaft Output.
 また、自動変速機40は、摩擦締結要素として複数のクラッチC1,C2,C3と、複数のブレーキB1,B2,B3,B4と、複数のワンウェイクラッチF1,F2と、を備えている。 Further, the automatic transmission 40 includes a plurality of clutches C1, C2, C3, a plurality of brakes B1, B2, B3, B4 and a plurality of one-way clutches F1, F2 as friction engagement elements.
 第1遊星ギアG1は、第1サンギアS1と、第1リングギアR1と、これら両ギアS1,R1に噛合する第1ピニオンP1を支持する第1キャリアPC1と、を有するシングルピニオン型遊星ギアである。 The first planetary gear G1 is a single pinion planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 meshing with both the gears S1 and R1. is there.
 第2遊星ギアG2は、第2サンギアS2と、第2リングギアR2と、これら両ギアS2,R2に噛合する第2ピニオンP2を支持する第2キャリアPC2と、を有するシングルピニオン型遊星ギアである。 The second planetary gear G2 is a single pinion planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 supporting the second pinion P2 meshing with both the gears S2 and R2. is there.
 また、第3遊星ギアG3は、第3サンギアS3と、第3リングギアR3と、これら両ギアS3,R3に噛合する第3ピニオンP3を支持する第3キャリアPC3と、を有するシングルピニオン型遊星ギアである。 The third planetary gear G3 is a single pinion type planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 supporting the third pinion P3 meshing with both the gears S3 and R3. It is a gear.
 さらに、第4遊星ギアG4は、第4サンギアS4と、第4リングギアR4と、これら両ギアS4、R4に噛合する第4ピニオンP4を支持する第4キャリアPC4と、を有するシングルピニオン型遊星ギアである。 Further, the fourth planetary gear G4 is a single pinion planet having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports the fourth pinion P4 meshing with both the gears S4 and R4. It is a gear.
 入力軸Inputは、第2リングギアR2に連結され、エンジン10からの回転駆動力を入力する。出力軸Outputは、第3キャリアPC3に連結され、出力回転駆動力を図外のファイナルギア等を介して駆動輪54に伝達する。 The input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine 10. The output shaft Output is connected to the third carrier PC3, and transmits the output rotational driving force to the drive wheels 54 via a final gear or the like not shown.
 第1連結メンバM1は、第1リングギアR1と第2キャリアPC2と第4リングギアR4とを一体的に連結するメンバである。第2連結メンバM2は、第3リングギアR3と第4キャリアPC4とを一体的に連結するメンバである。第3連結メンバM3は、第1サンギアS1と第2サンギアS2とを一体的に連結するメンバである。 The first connecting member M1 is a member that integrally connects the first ring gear R1, the second carrier PC2, and the fourth ring gear R4. The second connecting member M2 is a member that integrally connects the third ring gear R3 and the fourth carrier PC4. The third connecting member M3 is a member that integrally connects the first sun gear S1 and the second sun gear S2.
 第1遊星ギアセットGS1は、第1遊星ギアG1と第2遊星ギアG2とを、第1連結メンバM1と第3連結メンバM3により連結してなり、4つの回転要素から構成される。 The first planetary gear set GS1 is formed by connecting the first planetary gear G1 and the second planetary gear G2 with a first connecting member M1 and a third connecting member M3, and is composed of four rotating elements.
 また、第2遊星ギアセットGS2は、第3遊星ギアG3と第4遊星ギアG4とを、第2連結メンバM2により連結してなり、5つの回転要素から構成されている。 Further, the second planetary gear set GS2 is formed by connecting the third planetary gear G3 and the fourth planetary gear G4 by the second connecting member M2, and is composed of five rotating elements.
 第1遊星ギアセットGS1は、入力軸Inputから第2リングギアR2に入力されるトルク入力経路を有する。第1遊星ギアセットGS1に入力されたトルクは、第1連結メンバM1から第2遊星ギアセットGS2に出力される。 The first planetary gear set GS1 has a torque input path that is input from the input shaft Input to the second ring gear R2. The torque input to the first planetary gear set GS1 is output from the first connecting member M1 to the second planetary gear set GS2.
 第2遊星ギアセットGS2は、入力軸Inputから第2連結メンバM2に入力されるトルク入力経路と、第1連結メンバM1から第4リングギアR4に入力されるトルク入力経路とを有する。第2遊星ギアセットGS2に入力されたトルクは、第3キャリアPC3から出力軸Outputに出力される。 The second planetary gear set GS2 has a torque input path that is input from the input shaft Input to the second connection member M2, and a torque input path that is input from the first connection member M1 to the fourth ring gear R4. The torque input to the second planetary gear set GS2 is output from the third carrier PC3 to the output shaft Output.
 なお、H&LRクラッチC3が解放され、第3サンギアS3よりも第4サンギアS4の回転数が大きい時は、第3サンギアS3と第4サンギアS4は独立した回転数を発生する。よって、第3遊星ギアG3と第4遊星ギアG4が第2連結メンバM2を介して接続された構成となり、それぞれの遊星ギアが独立したギア比を達成する。 When the H & LR clutch C3 is released and the rotation speed of the fourth sun gear S4 is larger than that of the third sun gear S3, the third sun gear S3 and the fourth sun gear S4 generate independent rotation speeds. Therefore, the third planetary gear G3 and the fourth planetary gear G4 are connected via the second connecting member M2, and each planetary gear achieves an independent gear ratio.
 また、インプットクラッチC1は、入力軸Inputと第2連結メンバM2とを選択的に断接するクラッチである。ダイレクトクラッチC2は、第4サンギアS4と第4キャリアPC4とを選択的に断接するクラッチである。H&LRクラッチC3は、第3サンギアS3と第4サンギアS4とを選択的に断接するクラッチである。なお、第3サンギアS3と第4サンギアS4との間には、第2ワンウェイクラッチF2が配置されている。 The input clutch C1 is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2. The direct clutch C2 is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4. The H & LR clutch C3 is a clutch that selectively connects and disconnects the third sun gear S3 and the fourth sun gear S4. A second one-way clutch F2 is disposed between the third sun gear S3 and the fourth sun gear S4.
 フロントブレーキB1は、第1キャリアPC1の回転を選択的に停止させるブレーキである。また、第1ワンウェイクラッチF1は、フロントブレーキB1と並列に配置されている。ローブレーキB2は、第3サンギアS3の回転を選択的に停止させるブレーキである。2346ブレーキB3は、第3連結メンバM3(第1サンギアS1及び第2サンギアS2)の回転を選択的に停止させるブレーキである。リバースブレーキB4は、第4キャリアPC4の回転を選択的に停止させるブレーキである。 The front brake B1 is a brake that selectively stops the rotation of the first carrier PC1. The first one-way clutch F1 is disposed in parallel with the front brake B1. The low brake B2 is a brake that selectively stops the rotation of the third sun gear S3. The 2346 brake B3 is a brake that selectively stops the rotation of the third connecting member M3 (the first sun gear S1 and the second sun gear S2). The reverse brake B4 is a brake that selectively stops the rotation of the fourth carrier PC4.
 図5は自動変速機40での前進7速、後退1速の締結作動表を示す図である。図5中の「○」は、該当するクラッチ若しくはブレーキが締結している状態を示し、図5中の空白は、これらが解放している状態を示す。また、図5中の「(○)」は、エンジンブレーキ作動時にのみ締結することを示す。 FIG. 5 is a diagram showing a fastening operation table for the seventh forward speed and the first reverse speed in the automatic transmission 40. “◯” in FIG. 5 indicates a state in which the corresponding clutch or brake is engaged, and a blank in FIG. 5 indicates a state in which these are released. Further, “(◯)” in FIG. 5 indicates that the fastening is performed only when the engine brake is operated.
 なお、上述したように、本実施形態においては、第2クラッチ25として、自動変速機40内の摩擦締結要素を流用しており、図5中において太い線で囲まれた摩擦締結要素を第2クラッチ25とすることができる。具体的には、第1速~第3速まではローブレーキB2を第2クラッチ25として利用し、第4速~第7速まではH&LRクラッチC3を第2クラッチ25として利用する。 As described above, in the present embodiment, the frictional engagement element in the automatic transmission 40 is used as the second clutch 25, and the frictional engagement element surrounded by the thick line in FIG. The clutch 25 can be used. Specifically, the low brake B2 is used as the second clutch 25 from the first speed to the third speed, and the H & LR clutch C3 is used as the second clutch 25 from the fourth speed to the seventh speed.
 なお、上述した前進7速後退1速の有段階の変速機に特に限定されず、例えば、特開2007-314097号に記載されているような、前進5速後退1速の有段階の変速機を自動変速機40として用いてもよい。 The stepped transmission with 7 forward speeds and 1 reverse speed is not particularly limited, and for example, as described in Japanese Patent Application Laid-Open No. 2007-314097, a stepped transmission with 5 forward speeds and 1 reverse speed. May be used as the automatic transmission 40.
 図1に戻り、自動変速機40の出力軸は、プロペラシャフト51、ディファレンシャルギアユニット52、及び左右のドライブシャフト53を介して、左右の駆動輪54に連結されている。なお、図1において55は左右の操舵前輪である。 1, the output shaft of the automatic transmission 40 is connected to the left and right drive wheels 54 via a propeller shaft 51, a differential gear unit 52, and left and right drive shafts 53. In FIG. 1, reference numeral 55 denotes left and right steering front wheels.
 さらに、本実施形態では、自動変速機40や第1クラッチ16に油圧を供給するためのメインオイルポンプ41が設けられている。このメインオイルポンプ41は、エンジン10又はモータジェネレータの少なくとも一方を動力源として吐出圧を発生する内接ギア式ポンプや外接ギア式ポンプやベーンポンプ等で構成されている。 Furthermore, in this embodiment, a main oil pump 41 for supplying hydraulic pressure to the automatic transmission 40 and the first clutch 16 is provided. The main oil pump 41 includes an internal gear pump, an external gear pump, a vane pump, or the like that generates discharge pressure using at least one of the engine 10 or the motor generator as a power source.
 このメインオイルポンプ41は、自動変速機40の入力軸の回転を受けて油圧を発生することができる構成となっており、第1クラッチ15を締結させてエンジン10により駆動することも、第1クラッチ15を解放してモータジェネレータ20により駆動することも可能である。そして、このメインオイルポンプ41からの吐出油は、第1クラッチ15の油圧ユニット16と、第2クラッチ25の油圧ユニット26を含む自動変速機40の油圧回路とにそれぞれ供給される。 The main oil pump 41 is configured to generate hydraulic pressure in response to the rotation of the input shaft of the automatic transmission 40. The main oil pump 41 can be driven by the engine 10 with the first clutch 15 engaged. It is also possible to drive the motor 15 by releasing the clutch 15. The oil discharged from the main oil pump 41 is supplied to the hydraulic unit 16 of the first clutch 15 and the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25, respectively.
 また、本実施形態では、メインオイルポンプ41が作動していない状態において、自動変速機40を作動させて発進するためのサブオイルポンプ42が自動変速機40に設けられている。このサブオイルポンプ42は、モータジェネレータ20以外のポンプ専用のモータによって駆動し、第1クラッチ15の油圧ユニット16と、第2クラッチ25の油圧ユニット26を含む自動変速機40の油圧回路とに油圧をそれぞれ供給する。 In the present embodiment, the automatic transmission 40 is provided with a sub oil pump 42 for starting the vehicle by operating the automatic transmission 40 when the main oil pump 41 is not operating. The sub oil pump 42 is driven by a pump-dedicated motor other than the motor generator 20, and is hydraulically supplied to the hydraulic unit 16 of the first clutch 15 and the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25. Supply each.
 本実施形態におけるハイブリッド車輌1は、第1及び第2クラッチ15,25の締結/解放状態に応じて3つの走行モードに切り替えることが可能となっている。 The hybrid vehicle 1 in this embodiment can be switched to three travel modes according to the engaged / released state of the first and second clutches 15 and 25.
 第1走行モードは、第1クラッチ15を解放させると共に第2クラッチ25を締結させて、モータジェネレータ20の動力のみを動力源として走行するモータ使用走行モード(以下、「EV走行モード」と称する。)である。 The first travel mode is referred to as a motor use travel mode (hereinafter referred to as “EV travel mode”) in which the first clutch 15 is disengaged and the second clutch 25 is engaged to travel using only the power of the motor generator 20 as a power source. ).
 第2走行モードは、第1クラッチ15及び第2クラッチ25のいずれも締結させて、モータジェネレータ20に加えてエンジン10を動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と称する。)である。 The second travel mode is an engine use travel mode (hereinafter referred to as “HEV travel mode”) in which both the first clutch 15 and the second clutch 25 are engaged to travel while including the engine 10 as a power source in addition to the motor generator 20. .)
 第3走行モードは、第2クラッチ25をスリップ状態として、エンジン10又はモータジェネレータ20の少なくとも一方を動力源に含みながら走行するスリップ走行モード(以下、「WSC走行モード」と称する。)である。このWSC走行モードは、特にバッテリ30のSOC(充電量:State of Charge)が低下している場合やエンジン10の冷却水の温度が低い場合等にクリープ走行を達成するモードである。 The third travel mode is a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source (hereinafter referred to as “WSC travel mode”). This WSC travel mode is a mode in which creep travel is achieved particularly when the SOC (charge amount: State of Charge) of the battery 30 is lowered or when the temperature of the cooling water of the engine 10 is low.
 なお、EV走行モードからHEV走行モードに移行する際には、解放していた第1クラッチ15を締結し、モータジェネレータ20のトルクを利用してエンジン10を始動させる。 When shifting from the EV travel mode to the HEV travel mode, the released first clutch 15 is engaged, and the engine 10 is started using the torque of the motor generator 20.
 さらに、上記の「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを含む。 Furthermore, the “HEV travel mode” includes three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
 「エンジン走行モード」は、エンジン10のみを動力源として駆動輪54を動かす。「モータアシスト走行モード」は、エンジン10とモータジェネレータ20の2つを動力源として駆動輪54を動かす。「走行発電モード」は、エンジン10を動力源として駆動輪54を動かすと同時に、モータジェネレータ20を発電機として機能させる。 In the “engine running mode”, the drive wheels 54 are moved using only the engine 10 as a power source. In the “motor assist travel mode”, the drive wheels 54 are moved using two of the engine 10 and the motor generator 20 as power sources. In the “running power generation mode”, the motor generator 20 is caused to function as a generator at the same time as the drive wheels 54 are moved using the engine 10 as a power source.
 なお、以上に説明したモードの他に、停車時において、エンジン10の動力を利用してモータジェネレータ20を発電機として機能させ、バッテリ30を充電したり電装品へ電力を供給する発電モードを備えてもよい。 In addition to the modes described above, there is a power generation mode for charging the battery 30 and supplying power to the electrical components by causing the motor generator 20 to function as a generator using the power of the engine 10 when the vehicle is stopped. May be.
 本実施形態におけるハイブリッド車輌1の制御系は、図1に示すように、統合コントロールユニット60、エンジンコントロールユニット70、モータコントロールユニット80、及びトランスミッションコントロールユニット90を備えている。これらの各コントロールユニット60,70,80,90は、例えばCAN通信を介して相互に接続されている。 The control system of the hybrid vehicle 1 in this embodiment includes an integrated control unit 60, an engine control unit 70, a motor control unit 80, and a transmission control unit 90, as shown in FIG. These control units 60, 70, 80, 90 are connected to each other via, for example, CAN communication.
 エンジンコントロールユニット70は、エンジン回転数センサ11等のセンサ情報を入力し、統合コントロールユニット60からの目標エンジントルク指令tTe等に応じ、エンジン動作点(エンジン回転数Ne、エンジントルクTe)を制御する指令を、エンジン10に備えられたスロットルバルブアクチュエータ、インジェクタ、点火プラグ等に出力する。なお、エンジン回転数Ne等の情報は、CAN通信線を介してエンジンコントロールユニット70から統合コントロールユニット60に送出される。 The engine control unit 70 inputs sensor information such as the engine speed sensor 11 and controls the engine operating point (engine speed Ne, engine torque Te) in accordance with the target engine torque command tTe from the integrated control unit 60 and the like. The command is output to a throttle valve actuator, an injector, a spark plug, etc. provided in the engine 10. Information such as the engine speed Ne is sent from the engine control unit 70 to the integrated control unit 60 via the CAN communication line.
 モータコントロールユニット80は、モータ回転数センサ21等からのセンサ情報を入力し、統合コントロールユニット60からの目標モータジェネレータトルク指令tTm等に応じて、モータジェネレータ20の動作点(モータ回転数Nm、モータトルクTm)を制御する指令をインバータ35に出力する。このモータ回転数Nm等のセンサ情報は、CAN通信を介してモータコントロールユニット80から統合コントロールユニット60に送出される。 The motor control unit 80 inputs sensor information from the motor rotation speed sensor 21 and the like, and in accordance with a target motor generator torque command tTm and the like from the integrated control unit 60, the operating point of the motor generator 20 (motor rotation speed Nm, motor A command for controlling the torque Tm) is output to the inverter 35. The sensor information such as the motor rotation speed Nm is sent from the motor control unit 80 to the integrated control unit 60 via CAN communication.
 また、モータコントロールユニット80は、電流・電圧センサ31により検出された電流値及び電圧値に基づいてバッテリ30のSOCを演算及び管理する。このバッテリSOC情報は、モータジェネレータ20の制御情報に用いられると共に、CAN通信を介してモータコントロールユニット80から統合コントロールユニット60に送出される。 Further, the motor control unit 80 calculates and manages the SOC of the battery 30 based on the current value and the voltage value detected by the current / voltage sensor 31. The battery SOC information is used as control information for the motor generator 20 and is sent from the motor control unit 80 to the integrated control unit 60 via CAN communication.
 トランスミッションコントロールユニット90は、アクセル開度センサ91及び車速センサ92等のセンサ情報を入力し、シフトマップに示すシフトスケジュールに沿って、統合コントロールユニット60からの目標第2クラッチ伝達トルク容量tTc2及び目標変速段を達成するように、第2クラッチ25の油圧ユニット26を含む自動変速機40の油圧回路内のソレノイドバルブを駆動制御する。なお、この際に用いられるシフトマップは、車速VSPとアクセル開度APOに基づいて予め目標変速段が設定されたものである。アクセル開度APO及び車速VSP等のセンサ情報は、CAN通信を介してトランスミッションコントロールユニット90から統合コントロールユニット60に送出される。 The transmission control unit 90 inputs sensor information such as the accelerator opening sensor 91 and the vehicle speed sensor 92, and the target second clutch transmission torque capacity tTc2 and the target shift from the integrated control unit 60 in accordance with the shift schedule shown in the shift map. The solenoid valve in the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25 is driven and controlled so as to achieve the stage. Note that the shift map used at this time is one in which a target gear position is set in advance based on the vehicle speed VSP and the accelerator opening APO. Sensor information such as the accelerator opening APO and the vehicle speed VSP is sent from the transmission control unit 90 to the integrated control unit 60 via CAN communication.
 統合コントロールユニット60は、エンジン10、モータジェネレータ20、自動変速機40、第1クラッチ15、及び第2クラッチ25からなるパワートレインの動作点を統合的に制御することで、ハイブリッド車輌1を効率的に走行させるための機能を担うものである。 The integrated control unit 60 efficiently controls the hybrid vehicle 1 by controlling the operating point of the power train including the engine 10, the motor generator 20, the automatic transmission 40, the first clutch 15, and the second clutch 25 in an integrated manner. It bears the function to make it run.
 この統合コントロールユニット60は、CAN通信を介して取得される各センサからの情報に基づいてパワートレインの動作点を演算し、エンジンコントロールユニット70への制御指令によるエンジン10の動作制御、モータコントロールユニット80への制御指令によるモータジェネレータ20の動作制御、トランスミッションコントロールユニット90への制御指令による自動変速機40の動作制御、第1クラッチ15の油圧ユニット16への制御指令による第1クラッチ15の締結・解放制御、及び、第2クラッチ25の油圧ユニット26への制御指令による第2クラッチ25の締結・解放制御を実行する。 The integrated control unit 60 calculates the operating point of the powertrain based on information from each sensor acquired through CAN communication, and controls the operation of the engine 10 according to a control command to the engine control unit 70, and the motor control unit. The operation control of the motor generator 20 by the control command to 80, the operation control of the automatic transmission 40 by the control command to the transmission control unit 90, the engagement / disengagement of the first clutch 15 by the control command to the hydraulic unit 16 of the first clutch 15 The release control and the engagement / release control of the second clutch 25 by the control command to the hydraulic unit 26 of the second clutch 25 are executed.
 次いで、統合コントロールユニット60により実行される制御について説明する。図6は統合コントロールユニット60の制御ブロック図である。なお、以下に説明する制御は、例えば10msec毎に実行される。 Next, the control executed by the integrated control unit 60 will be described. FIG. 6 is a control block diagram of the integrated control unit 60. Note that the control described below is executed, for example, every 10 msec.
 図6に示すように、統合コントロールユニット60は、目標駆動力演算部100、モード選択部200、目標充放電演算部300、及び動作点指令部400を備えている。 As shown in FIG. 6, the integrated control unit 60 includes a target driving force calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, and an operating point command unit 400.
 目標駆動力演算部100は、予め定められた目標駆動力マップを用いて、アクセル開度センサ91により検出されたアクセル開度APOと、車速センサ92により検出された車速VSPとに基づいて、目標駆動力tFo0を演算する。図7に目標駆動力マップの一例を示す。 The target driving force calculation unit 100 uses a predetermined target driving force map, based on the accelerator opening APO detected by the accelerator opening sensor 91 and the vehicle speed VSP detected by the vehicle speed sensor 92. The driving force tFo0 is calculated. FIG. 7 shows an example of the target driving force map.
 モード選択部200は、予め定められたモードマップを参照し、目標モードを選択する。図8にモードマップの一例を示す。この図8のモードマップには、車速VSPとアクセル開度APOに応じて、EV走行モード、WSC走行モード、及びHEV走行モードの領域がそれぞれ設定されている。 The mode selection unit 200 refers to a predetermined mode map and selects a target mode. FIG. 8 shows an example of the mode map. In the mode map of FIG. 8, EV travel mode, WSC travel mode, and HEV travel mode regions are set in accordance with the vehicle speed VSP and the accelerator opening APO.
 このモードマップにおいて、EV走行モード又はHEV走行モードからWSC走行モードへの切替線は、所定開度APO1未満の領域では、自動変速機40が第1速のときに、エンジン10のアイドル回転数よりも小さな回転数となる下限車速VSP1よりも低い領域に設定されている。また、所定開度APO1以上の領域では、大きな駆動力を要求されていることから、下限車速VSP1よりも高い車速VSP1’領域までWSC走行モードが設定されている。 In this mode map, the switching line from the EV traveling mode or the HEV traveling mode to the WSC traveling mode is based on the idling speed of the engine 10 when the automatic transmission 40 is at the first speed in the region below the predetermined opening APO1. Is set in a region lower than the lower limit vehicle speed VSP1 at which the rotational speed is small. Further, since a large driving force is required in the region of the predetermined opening APO1 or more, the WSC travel mode is set up to the vehicle speed VSP1 'region higher than the lower limit vehicle speed VSP1.
 目標充放電演算部300は、予め定められた目標充放電量マップを用いて、バッテリ30のSOCから、目標充放電電力tPを演算する。図9に目標充放電量のマップの一例を示す。 Target charge / discharge calculation unit 300 calculates target charge / discharge power tP from the SOC of battery 30 using a predetermined target charge / discharge amount map. FIG. 9 shows an example of a target charge / discharge amount map.
 動作点指令部400は、アクセル開度APO、目標駆動力tFo0と、目標モードと、車速VSPと、目標充放電電力tPとから、パワートレインの動作点達成目標として、過渡的な目標エンジントルクtTe、目標モータジェネレータトルクtTm、目標第1クラッチ伝達トルク容量tTc1、目標第2クラッチ伝達トルク容量tTc2、及び自動変速機40の目標変速段を演算する。 The operating point command unit 400 uses the accelerator opening APO, the target driving force tFo0, the target mode, the vehicle speed VSP, and the target charge / discharge power tP as a target target for achieving the power train operating point tTe. The target motor generator torque tTm, the target first clutch transmission torque capacity tTc1, the target second clutch transmission torque capacity tTc2, and the target gear position of the automatic transmission 40 are calculated.
 目標エンジントルクtTeは、統合コントロールユニット60からエンジンコントロールユニット70に送出され、目標モータジェネレータトルクtTmは、統合コントロールユニット60からモータコントロールユニット80に送出される。また、目標第2クラッチ伝達トルク容量tTc2と目標変速段は、統合コントロールユニット60からトランスミッションコントロールユニット90に送出される。 The target engine torque tTe is sent from the integrated control unit 60 to the engine control unit 70, and the target motor generator torque tTm is sent from the integrated control unit 60 to the motor control unit 80. The target second clutch transmission torque capacity tTc2 and the target shift speed are sent from the integrated control unit 60 to the transmission control unit 90.
 一方、目標第1クラッチ伝達トルク容量tTc1については、統合コントロールユニット60が、当該目標第1クラッチ伝達トルク容量tTc1に対応したソレノイド電流を油圧ユニット16に供給する。 On the other hand, for the target first clutch transmission torque capacity tTc1, the integrated control unit 60 supplies a solenoid current corresponding to the target first clutch transmission torque capacity tTc1 to the hydraulic unit 16.
 さらに、本実施形態では、図6に示すように、動作点指令部400が、故障判定部410と始動制御部420を有している。 Furthermore, in this embodiment, as shown in FIG. 6, the operating point command unit 400 includes a failure determination unit 410 and a start control unit 420.
 故障判定部410は、サブオイルポンプ42に故障が生じているか否かを判定する。 The failure determination unit 410 determines whether or not a failure has occurred in the sub oil pump 42.
 具体的には、サブオイルポンプ42の作動電流が過少若しくは過多であったり、或いは、第2クラッチ25の油圧ユニット26を含む自動変速機40の油圧回路内の油圧が上がらない等の場合に、サブオイルポンプ42に故障が生じていると判断する。 Specifically, when the operating current of the sub oil pump 42 is too small or excessive, or when the hydraulic pressure in the hydraulic circuit of the automatic transmission 40 including the hydraulic unit 26 of the second clutch 25 does not increase, It is determined that the sub oil pump 42 has failed.
 始動制御部420は、サブオイルポンプ42が故障しており、且つ、車速センサ92によって取得された車速VSPが所定の閾値VSPopからEV走行モードにおける最大車速VSPevmaxまでの間にある場合(VSPop<VSP≦VSPevmax)には、EV走行モードを許可する(図8参照)。一方、サブオイルポンプ42が故障しており、且つ、車速センサ92によって取得された車速VSPが所定の閾値VSPop以下である場合(VSP≦VSPop)には、始動制御部420はエンジン10を始動させる(図8参照)。なお、この所定の閾値VSPopは、自動変速機40を駆動させるのに必要な最低油圧(より詳しくは、自動変速機40の摩擦締結要素を流用して構成される第2クラッチ25を締結作動させるために必要な油圧)を確保することが可能な車速以上の値に設定されている。 When the sub oil pump 42 has failed and the vehicle speed VSP acquired by the vehicle speed sensor 92 is between the predetermined threshold value VSPop and the maximum vehicle speed VSPevmax in the EV traveling mode (VSPop <VSP). ≦ VSPevmax), the EV travel mode is permitted (see FIG. 8). On the other hand, when the sub oil pump 42 is out of order and the vehicle speed VSP acquired by the vehicle speed sensor 92 is equal to or lower than the predetermined threshold value VSPop (VSP ≦ VSPop), the start control unit 420 starts the engine 10. (See FIG. 8). The predetermined threshold value VSPop is a minimum hydraulic pressure required to drive the automatic transmission 40 (more specifically, the second clutch 25 configured by using the frictional engagement element of the automatic transmission 40 is engaged. Therefore, it is set to a value equal to or higher than the vehicle speed capable of ensuring the necessary hydraulic pressure).
 この閾値VSPopは固定値であってもよいが、動作点指令部400の設定部430(図6中において点線で示す)によって、ハイブリッド車輌1の減速度に応じて閾値VSPopを変化させてもよい。具体的には、この設定部430は、ハイブリッド車輌1の減速度が大きいほど閾値VSPopを大きく設定し、ハイブリッド車輌1の減速度が小さいほど閾値VSPopを小さく設定する。なお、閾値VSPopを固定値とした場合には、この設定部430は不要である。 Although this threshold value VSPop may be a fixed value, threshold value VSPop may be changed according to the deceleration of hybrid vehicle 1 by setting unit 430 (indicated by a dotted line in FIG. 6) of operating point command unit 400. . Specifically, the setting unit 430 sets the threshold value VSPop larger as the deceleration of the hybrid vehicle 1 is larger, and sets the threshold value VSPop smaller as the deceleration of the hybrid vehicle 1 is smaller. When the threshold value VSPop is a fixed value, this setting unit 430 is not necessary.
 以下に、図10及び図11を参照しながら、本実施形態におけるハイブリッド車輌1のエンジン始動制御について説明する。図10は本実施形態におけるエンジン始動制御を示すフローチャートであり、図11は本実施形態におけるエンジン始動制御の流れの一例を示すタイムチャートである。 Hereinafter, engine start control of the hybrid vehicle 1 in the present embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a flowchart showing the engine start control in this embodiment, and FIG. 11 is a time chart showing an example of the flow of the engine start control in this embodiment.
 先ず、図10のステップS10において、故障判定部410がサブオイルポンプ42に故障が生じているか否かを判定する。サブオイルポンプ42に故障が生じていない場合(ステップS10にてNO)には、現状の制御モードを維持したままこのフローを終了する(ステップS60)。 First, in step S10 of FIG. 10, the failure determination unit 410 determines whether or not a failure has occurred in the sub oil pump. If no failure has occurred in sub oil pump 42 (NO in step S10), this flow is terminated while maintaining the current control mode (step S60).
 一方、サブオイルポンプ42に故障が生じている場合(ステップS10にてYES)には、ステップS40において、始動制御部420が、車速センサ92によって検出された実際の車速VSPと閾値VSPopとを比較する。 On the other hand, if a failure has occurred in sub oil pump 42 (YES in step S10), start control unit 420 compares actual vehicle speed VSP detected by vehicle speed sensor 92 with threshold value VSPop in step S40. To do.
 車速VSPが閾値VSPopよりも大きい場合(VSP>VSPop、ステップS40にてNO)には、ステップS50において、始動制御部420が、車速センサ92によって検出された実際の車速VSPと、EV走行モードにおける最大車速VSPevmax(図8参照)とを比較する。 If vehicle speed VSP is greater than threshold value VSPop (VSP> VSPop, NO in step S40), in step S50, start control unit 420 detects actual vehicle speed VSP detected by vehicle speed sensor 92 and the EV travel mode. The maximum vehicle speed VSPevmax (see FIG. 8) is compared.
 例えば、図8におけるA動作点でサブオイルポンプ42に故障が発生し、ドライバがアクセルペダルを離して車輌1が減速して、車速VSPが最大車速VSPevmax以下になった場合(図8中の矢印I、VSPop<VSP≦VSPevmax、ステップS50にてYES)には、始動制御部420は、ステップS70において、HEV走行モードからEV走行モードへの切替を許可する。これにより、締結していた第1クラッチ15を解放するように油圧ユニット16が制御され、エンジン10を停止させる。 For example, when a failure occurs in the sub oil pump 42 at the operating point A in FIG. 8, the driver releases the accelerator pedal, the vehicle 1 decelerates, and the vehicle speed VSP becomes the maximum vehicle speed VSPevmax or less (arrow in FIG. 8). I, VSPop <VSP ≦ VSPevmax, YES in step S50), start control unit 420 permits switching from the HEV travel mode to the EV travel mode in step S70. As a result, the hydraulic unit 16 is controlled to release the first clutch 15 that has been engaged, and the engine 10 is stopped.
 これに対し、車速VSPが最大車速VSPevmaxよりも大きい場合(VSP>VSPevmax、ステップS50にてNO)には、現在の制御モード(図8に示す例ではHEV走行モード)を維持したままこのフローを終了する(ステップS60)。 On the other hand, when vehicle speed VSP is higher than maximum vehicle speed VSPevmax (VSP> VSPevmax, NO in step S50), this flow is maintained while maintaining the current control mode (in the example shown in FIG. 8, HEV travel mode). The process ends (step S60).
 そして、ハイブリッド車輌1がさらに減速して車速VSPが閾値VSPop以下になった場合(図8中の矢印II、VSP≦VSPop,ステップS40にてYES)には、ステップS80において、始動制御手段420は、エンジン10を始動させる制御を行う(図11の(a)及び(c)を参照)。具体的には、始動制御部420は、解放していた第1クラッチ15を締結させるように油圧ユニット16を制御して、第1クラッチ15を介してモータジェネレータ20のトルクをエンジン10に伝達させた後に、エンジン10に対してスロットルを開くと共に燃料を噴射し点火する指令を行ってエンジン10を初爆させることで、エンジン10を始動させる。なお、車速VSPが閾値VSPop以下であり、且つ、閾値VSPopに対応する回転数以上でエンジン10が作動している状態では、第2クラッチ25をスリップ状態或いは解放させる。 When the hybrid vehicle 1 further decelerates and the vehicle speed VSP falls below the threshold value VSPop (arrow II in FIG. 8, VSP ≦ VSPop, YES in step S40), in step S80, the start control means 420 is Then, control for starting the engine 10 is performed (see FIGS. 11A and 11C). Specifically, the start control unit 420 controls the hydraulic unit 16 so that the released first clutch 15 is engaged, and transmits the torque of the motor generator 20 to the engine 10 via the first clutch 15. After that, the engine 10 is started by opening the throttle and instructing the engine 10 to inject and ignite fuel to cause the engine 10 to perform an initial explosion. Note that when the vehicle speed VSP is equal to or lower than the threshold value VSPop and the engine 10 is operating at a rotational speed equal to or higher than the threshold value VSPop, the second clutch 25 is slipped or released.
 以上のように、本実施形態では、サブオイルポンプ42が故障している状態で車速VSPが所定の閾値VSPop以下となった場合に、エンジン10を始動させるので、車速が低下してもメインオイルポンプ41の油圧を自動変速機40の最低油圧よりも高く維持することができる(図11の(a)及び(b)を参照)。このため、ハイブリッド車輌1の発進時にも、自動変速機40の摩擦締結要素を流用して構成される第2クラッチ25を締結作動させるために必要な油圧が十分に確保されているので、ドライバに与える違和感を低減することができる。 As described above, in the present embodiment, the engine 10 is started when the vehicle speed VSP is equal to or lower than the predetermined threshold value VSPop while the sub oil pump 42 is malfunctioning. The hydraulic pressure of the pump 41 can be maintained higher than the minimum hydraulic pressure of the automatic transmission 40 (see (a) and (b) of FIG. 11). For this reason, even when the hybrid vehicle 1 is started, the hydraulic pressure necessary for engaging and engaging the second clutch 25 configured using the frictional engagement element of the automatic transmission 40 is sufficiently ensured. The unpleasant feeling given can be reduced.
 また、本実施形態では、サブオイルポンプ42が故障している状態で、車速VSPが所定の閾値VSPopからEV走行モードにおける最大車速VSPevmaxまでの間にある場合(VSPop<VSP≦VSPevmax)には、EV走行モードを許可してエンジン10を停止させるので、燃費の向上を図ることができる。 Further, in the present embodiment, when the vehicle speed VSP is between the predetermined threshold value VSPop and the maximum vehicle speed VSPevmax in the EV traveling mode in a state where the sub oil pump 42 is out of order (VSPop <VSP ≦ VSPevmax), Since the EV traveling mode is permitted and the engine 10 is stopped, the fuel consumption can be improved.
 なお、所定の車速度VSPopを固定値とせずに減速度に応じて変化させる場合には、上記の制御に加えて、以下の制御を実行する。 In addition, in order to change the predetermined vehicle speed VSPop according to the deceleration without making it a fixed value, the following control is executed in addition to the above control.
 図12は他の実施形態におけるエンジン始動制御を示すフローチャートであり、図13は他の実施形態におけるエンジン始動制御の流れの一例を示すタイムチャートである。 FIG. 12 is a flowchart showing engine start control in another embodiment, and FIG. 13 is a time chart showing an example of the flow of engine start control in another embodiment.
 上述のステップS10にてサブオイルポンプ42が故障していると判定されたら(ステップS10にてYES)、先ず、ステップS20において、設定部430が、車速センサ92によって検出された車速VSPと時間値とからハイブリッド車輌1の減速度を演算する。なお、加速度センサを用いてハイブリッド車輌1の減速度を検出してもよい。 If it is determined in step S10 that the sub oil pump 42 has failed (YES in step S10), first, in step S20, the setting unit 430 detects the vehicle speed VSP detected by the vehicle speed sensor 92 and the time value. From these, the deceleration of the hybrid vehicle 1 is calculated. Note that the deceleration of the hybrid vehicle 1 may be detected using an acceleration sensor.
 次いで、ステップS30において、設定部430は、ハイブリッド車輌1の減速度に応じて車速度VSPopを設定する。この際、設定部430は、図13の(a)に示すように、閾値VSPopとして、減速度が大きいほど高い閾値VSPophを設定する。一方、減速度が小さいほど、閾値VSPopは低く設定される。 Next, in step S30, the setting unit 430 sets the vehicle speed VSPop according to the deceleration of the hybrid vehicle 1. At this time, as illustrated in FIG. 13A, the setting unit 430 sets a higher threshold value VSPop as the deceleration increases as the threshold value VSPop. On the other hand, the threshold VSPop is set lower as the deceleration is smaller.
 設定部430によって閾値VSPopが設定されたら、ステップS40において、始動制御手段420が、車速センサ92によって検出された車速度VSPを、ステップS30で設定された閾値VSPopと比較する。ステップS40以降の処理は、上述の図10と同様であるのでその説明を省略する。 When the threshold value VSPop is set by the setting unit 430, in step S40, the start control unit 420 compares the vehicle speed VSP detected by the vehicle speed sensor 92 with the threshold value VSPop set in step S30. Since the process after step S40 is the same as that of the above-mentioned FIG. 10, the description is abbreviate | omitted.
 以上のように、本実施形態では、サブオイルポンプ42が故障しており且つ車速VSPが所定の閾値VSPop以下となった場合に、エンジン10を始動させるので、車速が低下してもメインオイルポンプ41の油圧を維持することができる(図13の(a)及び(b)を参照)。そのため、ハイブリッド車輌1の発進時にも、自動変速機40の摩擦締結要素を流用して構成される第2クラッチ25を締結作動させるために必要な油圧が十分に確保されているので、ドライバに与える違和感を低減することができる。 As described above, in the present embodiment, the engine 10 is started when the sub oil pump 42 is out of order and the vehicle speed VSP is equal to or lower than the predetermined threshold value VSPop. Therefore, even if the vehicle speed decreases, the main oil pump 41 can be maintained (see (a) and (b) of FIG. 13). For this reason, even when the hybrid vehicle 1 is started, the hydraulic pressure necessary for engaging and engaging the second clutch 25 configured by using the frictional engagement element of the automatic transmission 40 is sufficiently secured. A sense of incongruity can be reduced.
 また、本実施形態では、サブオイルポンプ42が故障している状態で、車速VSPが所定の閾値VSPopからEV走行モードにおける最大車速VSPevmaxまでの間にある場合(VSPop<VSP≦VSPevmax)に、EV走行モードを許可してエンジン10を停止させるので、燃費の向上を図ることができる。 Further, in the present embodiment, when the vehicle speed VSP is between the predetermined threshold value VSPop and the maximum vehicle speed VSPevmax in the EV traveling mode (VSPop <VSP ≦ VSPevmax) in a state where the sub oil pump 42 is malfunctioning, EV Since the travel mode is permitted and the engine 10 is stopped, fuel consumption can be improved.
 また、本実施形態では、減速度に応じて閾値VSPopを変化させることで、減速度が大きい場合に、自動変速機40の油圧が最低油圧に達するのを防止することができ、図13の(b)に示すように、当該最低油圧に達してからのエンジン始動に伴うショックの発生がなくなる。一方、減速度が小さい場合には、できる限りエンジン10を停止させた状態を継続することで燃料消費を抑制することができる。 Further, in the present embodiment, by changing the threshold value VSPop according to the deceleration, it is possible to prevent the hydraulic pressure of the automatic transmission 40 from reaching the minimum hydraulic pressure when the deceleration is large. As shown in b), the occurrence of a shock associated with starting the engine after reaching the minimum hydraulic pressure is eliminated. On the other hand, when the deceleration is small, fuel consumption can be suppressed by continuing the state where the engine 10 is stopped as much as possible.
 なお、本実施形態における第2クラッチ25が本発明における摩擦締結要素の一例に相当し、本実施形態における故障判定部410が本発明における故障判定手段の一例に相当し、本実施形態における始動制御部420が本発明における始動制御手段の一例に相当し、本実施形態における設定部430が本発明における設定手段の一例に相当する。 The second clutch 25 in the present embodiment corresponds to an example of a friction engagement element in the present invention, the failure determination unit 410 in the present embodiment corresponds to an example of a failure determination unit in the present invention, and the start control in the present embodiment. The unit 420 corresponds to an example of the start control unit in the present invention, and the setting unit 430 in the present embodiment corresponds to an example of the setting unit in the present invention.
 また、本実施形態におけるEV走行モードが本発明における第1走行モードの一例に相当し、本実施形態におけるHEV走行モードが本発明における第2走行モードの一例に相当し、本実施形態における所定の閾値VSPopが本発明における所定の閾値の一例に相当し、本実施形態におけるEV走行モードにおける最大車速VSPevmaxが本発明における第1走行モードにおける最大車速の一例に相当する。 Further, the EV travel mode in the present embodiment corresponds to an example of the first travel mode in the present invention, the HEV travel mode in the present embodiment corresponds to an example of the second travel mode in the present invention, and the predetermined travel mode in the present embodiment. The threshold value VSPop corresponds to an example of a predetermined threshold value in the present invention, and the maximum vehicle speed VSPevmax in the EV traveling mode in the present embodiment corresponds to an example of the maximum vehicle speed in the first traveling mode in the present invention.
 なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
1…ハイブリッド車輌
 10…エンジン
 15…第1クラッチ
 20…モータジェネレータ
 25…第2クラッチ
 30…バッテリ
 35…インバータ
 40…自動変速機
 41…メインオイルポンプ
 42…サブオイルポンプ
 60…統合コントローラユニット
  410…故障判定部
  420…始動制御部
  430…設定部
 70…エンジンコントローラユニット
 80…モータコントロールユニット
 90…トランスミッションコントロールユニット
 92…車速センサ
DESCRIPTION OF SYMBOLS 1 ... Hybrid vehicle 10 ... Engine 15 ... 1st clutch 20 ... Motor generator 25 ... 2nd clutch 30 ... Battery 35 ... Inverter 40 ... Automatic transmission 41 ... Main oil pump 42 ... Sub oil pump 60 ... Integrated controller unit 410 ... Failure Determination unit 420 ... Starting control unit 430 ... Setting unit 70 ... Engine controller unit 80 ... Motor control unit 90 ... Transmission control unit 92 ... Vehicle speed sensor

Claims (5)

  1.  動力源としての内燃機関及びモータジェネレータと、前記動力源と駆動輪との間に介装された摩擦締結要素と、前記内燃機関により駆動されて前記摩擦締結要素に油圧を供給するメインオイルポンプと、ポンプ用モータによって駆動されて前記摩擦締結要素に油圧を供給するサブオイルポンプと、車速を検出する車速検出手段と、を備え、前記モータジェネレータのみが前記駆動輪に動力伝達可能に接続された第1走行モードと、前記内燃機関及び前記モータジェネレータが前記駆動輪に動力伝達可能に接続された第2走行モードと、を選択可能な車輌を制御する制御装置であって、
     前記サブオイルポンプの故障の有無を判定する故障判定手段と、
     前記サブオイルポンプが故障している場合に、前記車速が所定の閾値から前記第1走行モードにおける最大車速までの間にあるときには前記第1走行モードを許可する一方、前記車速が前記閾値以下となったときには前記内燃機関を始動させる始動制御手段と、を備えたことを特徴とする車輌の制御装置。
    An internal combustion engine and a motor generator as a power source, a friction engagement element interposed between the power source and drive wheels, and a main oil pump driven by the internal combustion engine to supply hydraulic pressure to the friction engagement element A sub-oil pump that is driven by a pump motor to supply hydraulic pressure to the frictional engagement element, and a vehicle speed detecting means that detects a vehicle speed, wherein only the motor generator is connected to the drive wheel so that power can be transmitted. A control device for controlling a vehicle capable of selecting a first traveling mode and a second traveling mode in which the internal combustion engine and the motor generator are connected to the drive wheels so as to transmit power;
    A failure determination means for determining the presence or absence of a failure of the sub oil pump;
    When the sub oil pump is out of order, the first travel mode is permitted when the vehicle speed is between a predetermined threshold and the maximum vehicle speed in the first travel mode, while the vehicle speed is less than or equal to the threshold. And a start control means for starting the internal combustion engine when the engine is turned on.
  2.  請求項1に記載の車輌の制御装置であって、
     前記閾値は、前記摩擦締結要素を駆動させるのに必要な最低油圧を確保することが可能な車速以上の値であることを特徴とする車輌の制御装置。
    The vehicle control device according to claim 1,
    The vehicle control apparatus according to claim 1, wherein the threshold value is a value equal to or higher than a vehicle speed at which a minimum hydraulic pressure required to drive the frictional engagement element is secured.
  3.  請求項1又は2に記載の車輌の制御装置であって、
     前記車輌が有する減速度検出手段によって検出された減速度に応じて前記閾値を変化させる設定手段をさらに備えたことを特徴とする車輌の制御装置。
    The vehicle control device according to claim 1 or 2,
    The vehicle control apparatus further comprising setting means for changing the threshold value in accordance with the deceleration detected by the deceleration detection means of the vehicle.
  4.  請求項3に記載の車輌の制御装置であって、
     前記設定手段は、前記減速度が大きいほど前記閾値を大きく設定し、前記減速度が小さいほど前記閾値を小さく設定することを特徴とする車輌の制御装置。
    The vehicle control device according to claim 3,
    The vehicle control apparatus, wherein the setting means sets the threshold value larger as the deceleration is larger, and sets the threshold value smaller as the deceleration is smaller.
  5.  動力源としての内燃機関及びモータジェネレータと、前記動力源と駆動輪との間に介装された摩擦締結要素と、前記内燃機関により駆動されて前記摩擦締結要素に油圧を供給するメインオイルポンプと、ポンプ用モータによって駆動されて前記摩擦締結要素に油圧を供給するサブオイルポンプと、車速を検出する車速検出手段と、を備え、前記モータジェネレータのみが前記駆動輪に動力伝達可能に接続された第1走行モードと、前記内燃機関及び前記モータジェネレータが前記駆動輪に動力伝達可能に接続された第2走行モードと、を選択可能な車輌を制御する方法であって、
     前記サブオイルポンプの故障の有無を判定し、
     前記サブオイルポンプが故障している場合に、前記車速が所定の閾値から前記第1走行モードにおける最大車速までの間にあるときには前記第1走行モードを許可する一方、前記車速が前記閾値以下であるときには前記内燃機関を始動させることを特徴とする車輌の制御方法。
    An internal combustion engine and a motor generator as a power source, a friction engagement element interposed between the power source and drive wheels, and a main oil pump driven by the internal combustion engine to supply hydraulic pressure to the friction engagement element A sub-oil pump that is driven by a pump motor to supply hydraulic pressure to the frictional engagement element, and a vehicle speed detecting means that detects a vehicle speed, wherein only the motor generator is connected to the drive wheel so that power can be transmitted. A method for controlling a vehicle capable of selecting a first traveling mode and a second traveling mode in which the internal combustion engine and the motor generator are connected to the drive wheels so as to be capable of transmitting power,
    Determine whether or not the sub-oil pump has failed,
    When the sub oil pump is out of order, the first travel mode is permitted when the vehicle speed is between a predetermined threshold and the maximum vehicle speed in the first travel mode, while the vehicle speed is less than or equal to the threshold. A vehicle control method comprising starting the internal combustion engine at a certain time.
PCT/JP2011/074541 2010-10-26 2011-10-25 Control device and control method for vehicle WO2012057130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010239282 2010-10-26
JP2010-239282 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012057130A1 true WO2012057130A1 (en) 2012-05-03

Family

ID=45993837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074541 WO2012057130A1 (en) 2010-10-26 2011-10-25 Control device and control method for vehicle

Country Status (1)

Country Link
WO (1) WO2012057130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156931A1 (en) * 2013-03-25 2014-10-02 ジヤトコ株式会社 Failure determination device for hybrid vehicles and failure determination method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207305A (en) * 2004-01-22 2005-08-04 Toyota Motor Corp Controller of hybrid vehicle
JP2009262749A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Start controller for hybrid vehicle
JP2009262659A (en) * 2008-04-23 2009-11-12 Nissan Motor Co Ltd Starting controller for hybrid vehicle
JP2010036867A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Device for controlling power transmission device for vehicle
JP2010149652A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Hydraulic control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207305A (en) * 2004-01-22 2005-08-04 Toyota Motor Corp Controller of hybrid vehicle
JP2009262659A (en) * 2008-04-23 2009-11-12 Nissan Motor Co Ltd Starting controller for hybrid vehicle
JP2009262749A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Start controller for hybrid vehicle
JP2010036867A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Device for controlling power transmission device for vehicle
JP2010149652A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Hydraulic control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156931A1 (en) * 2013-03-25 2014-10-02 ジヤトコ株式会社 Failure determination device for hybrid vehicles and failure determination method therefor
KR20150105423A (en) * 2013-03-25 2015-09-16 쟈트코 가부시키가이샤 Failure determination device for hybrid vehicles and failure determination method therefor
CN105073538A (en) * 2013-03-25 2015-11-18 加特可株式会社 Failure determination device for hybrid vehicles and failure determination method therefor
JP5945628B2 (en) * 2013-03-25 2016-07-05 ジヤトコ株式会社 Hybrid vehicle failure determination device and failure determination method thereof
KR101665279B1 (en) 2013-03-25 2016-10-11 쟈트코 가부시키가이샤 Failure determination device for hybrid vehicles and failure determination method therefor
US10160460B2 (en) 2013-03-25 2018-12-25 Jatco Ltd Failure determining device of hybrid vehicle and failure determining method therefor

Similar Documents

Publication Publication Date Title
JP5354109B2 (en) Control device and control method for hybrid vehicle
JP5459411B2 (en) Control device and control method for hybrid vehicle
JP6048585B2 (en) Start-up control device and start-up control method for hybrid vehicle
WO2012056870A1 (en) Control device for hybrid vehicle
WO2012011495A1 (en) Hybrid-vehicle control device
EP3056369B1 (en) Device for controlling hybrid vehicle
JP5789997B2 (en) Control device for hybrid vehicle
JP5614236B2 (en) Control device for hybrid vehicle
JP6492908B2 (en) Control device for hybrid vehicle
JP2012091561A (en) Hybrid vehicle control device
CN111216551A (en) Control device for four-wheel drive vehicle
WO2012057130A1 (en) Control device and control method for vehicle
JP2015054646A (en) Hybrid vehicle
JP2021109473A (en) Hybrid vehicle control device
JP5338332B2 (en) Control device for hybrid vehicle
JP5664124B2 (en) Control device for hybrid vehicle
JP2012091553A (en) Vehicle control device
JP2021098485A (en) Control device of hybrid vehicle
JP2012101759A (en) Hybrid vehicle
JP2013237297A (en) Control device of hybrid vehicle
JP2012091550A (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836263

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP