WO2012056500A1 - 油井管用ネジ継ぎ手 - Google Patents

油井管用ネジ継ぎ手 Download PDF

Info

Publication number
WO2012056500A1
WO2012056500A1 PCT/JP2010/006387 JP2010006387W WO2012056500A1 WO 2012056500 A1 WO2012056500 A1 WO 2012056500A1 JP 2010006387 W JP2010006387 W JP 2010006387W WO 2012056500 A1 WO2012056500 A1 WO 2012056500A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
male screw
oil well
screw
well pipe
Prior art date
Application number
PCT/JP2010/006387
Other languages
English (en)
French (fr)
Inventor
鈴木 照明
Original Assignee
株式会社メタルワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタルワン filed Critical 株式会社メタルワン
Priority to PCT/JP2010/006387 priority Critical patent/WO2012056500A1/ja
Publication of WO2012056500A1 publication Critical patent/WO2012056500A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded

Definitions

  • the present invention relates to an oil well pipe screw joint.
  • casings made up of oil well pipes, oil well pipe screw joints, etc.
  • mined materials oil and natural gas
  • the mining material when mining a large volume of mining material from a deep formation, the mining material is usually at high temperature and high pressure, and accordingly, the casing may be plastically deformed to cause a leak. .
  • energy is generated by geothermal power generation.
  • geothermal wells excavated by geothermal power generation the casing is exposed to high temperature by water vapor. There is a risk of causing plastic deformation and leakage.
  • JP-B-2-31271 for example, see page 1 and FIG. 1
  • Patent Document 1 and Patent Document 2 are configured such that a contact portion between a convex curved seal on the male screw side and a tapered seal on the female screw side is bonded to form a seal.
  • a portion called an inner shoulder at the tip of the male screw and a thin butted portion of the female screw cause plastic deformation. If this plastic deformation reaches the contact portion between the male screw and the female screw, the surface pressure of the seal (main seal) decreases, and the mined product may leak.
  • the present invention was made to solve the above-described problems, and suppresses plastic deformation to the contact portion between the male screw and the female screw, and the mined product leaks. It aims at providing the screw joint for oil well pipes which controls.
  • the screw joint for oil well pipe includes a seal formed in a convex curved surface shape, a male screw having a shoulder formed on the tip side from the seal, and a female screw having a taper-formed seal,
  • the male screw seal is based on the thickness of the oil well pipe in a direction parallel to the longitudinal direction of the male screw. The length from the tip of the male screw to the contact portion is set.
  • FIG. 1 is a diagram for explaining in which part plastic deformation that occurs in the vicinity of the seal tip occurs when a drilled product having a predetermined pressure flows in the oil well pipe 200.
  • the relationship of the size of each component may be different from the actual one.
  • a cross-section of a joint tip portion of the oil well pipe 200 is shown.
  • the cross-sectional view in the plane parallel to the longitudinal direction is described.
  • FIG. 2 is a cross-sectional view in a plane parallel to the longitudinal direction of the oil well pipe screw joint 100 according to the embodiment of the present invention.
  • FIG. 3 explains tangent points of the oil well pipe screw joint 100 shown in FIG.
  • FIG. 4 explains the shape of the male screw seal 5 of the oil well pipe screw joint 100 shown in FIG. 1 and the thickness of the tip of the male screw with respect to the seal length.
  • the configuration of the male screw 1 will be described with reference to FIGS. 2, 3, and 4.
  • the oil well pipe screw joint 100 is formed by fitting a male screw 1 (PIN) to a female screw 2 (BOX).
  • the male screw 1 has a screw thread 3 on the outer surface of the male screw 1 formed in a spiral shape.
  • the screw thread 3 on the male screw side engages with the female screw 2.
  • a seal 5 having a predetermined shape is formed on the distal end side of the male screw 1 in a direction substantially parallel to the longitudinal direction of the oil well pipe screw joint 100 (X-axis direction in FIG. 1). As shown in FIG. 2, the tip side corresponds to the back side of the female screw 2 when viewed from the female screw 2 side.
  • the male screw seal 5 is crimped to the female screw seal 7 with “strong surface pressure” to suppress leakage of the mined material flowing through the oil well pipe screw joint 100.
  • the “strong surface pressure” is a level corresponding to a surface pressure at which the mined material flowing through the oil well pipe screw joint 100 does not leak from the seal, and is about 3000 kgf / cm 2, for example.
  • the male screw seal 5 is formed with a convex curved surface protruding in a direction from the male screw 1 toward the female screw 2.
  • the convex curved cross section is provided in a plane perpendicular to the longitudinal direction of the oil well pipe thread joint 100 through the end A of the male screw seal 5.
  • the arc is centered on the point O.
  • a curved surface that is convex in the positive direction of the Y axis such as an elliptical arc, may be used instead of an arc.
  • the length in the X-axis direction from the tip of the male screw seal 5 to the tangent point is based on the thickness of the oil well pipe. Is set. Specifically, the length in the X-axis direction from the tip of the male screw seal 5 to the tangent point is 6.35 mm when the oil well pipe thickness WT is 12.7 mm (0.500 inches) or less. (0.250 inch) or more. The length in the X-axis direction from the tip of the male screw seal 5 to the tangent point is such that the oil well pipe thickness WT is greater than 12.7 mm (0.500 inches) and 19.05 mm (0.750 inches) or less.
  • the length in the X-axis direction from the tip of the male screw seal 5 to the tangent point is 8.9 mm (0.00 mm) when the oil well pipe thickness WT is greater than 19.05 mm (0.750 inches). 350 inches) or more. Since the seal thickness WT2 is set by the thickness WT of the oil well pipe, the length in the X-axis direction from the tip of the male screw seal 5 to the tangent point may be set from the seal thickness WT2. Needless to say.
  • the seal thickness WT2 here is the thickness of the seal at the tangent point.
  • the plastic deformation of the seal causes the tip of the male screw seal 5 to Even if a length corresponding to the oil well pipe thickness WT (or seal thickness WT2) is generated in the negative direction of the X-axis from the portion, it is suppressed that plastic deformation reaches the tangent point. It is possible to prevent the mined material from leaking when mining the mined material with the oil well pipe 200 or when mining again after stopping the mining.
  • the tangent point is a portion where the male screw seal 5 and the female screw side seal 7 are in contact with each other and the corresponding contact portion is crimped.
  • the male screw seal 5 and the female screw seal 7 are in contact with each other on the surface.
  • the female screw seal 7 has a metaphysically perfect straight line so that the male screw seal 5 Is a complete arc, they touch at a certain point. This point of contact is called a tangent point.
  • the length in the X-axis direction from the tip to the tangent point is set based on the oil well pipe thickness WT, but from the tip of the male screw seal 5 to the tangent point.
  • the thickness of the tip portion is reduced by that amount (see arrow F). That is, by increasing the length of the portion occupied by the arc in the seal 5 of the male screw, the thickness decreases toward the tip of the male screw 1 by that amount, so the tip of the male screw 1 is plastic. It becomes easy to deform
  • the male screw seal 5 is formed so that the cross-sectional arc shape is formed in a direction from the tangent point to the tip of the male screw seal 5 up to a maximum of 3 mm from the tangent point.
  • a straight section L (FIG. 4B) is formed from the portion formed in the circular arc shape to the tip of the male screw 1.
  • the male screw seal 5 will be described on the assumption that the cross-sectional linear shape L is formed in a cross-sectional linear shape parallel to the X-axis, but it is not parallel to the X-axis unless the thickness is reduced. Also good.
  • a shoulder 6 having a predetermined angle is formed at the tip of the male screw 1.
  • This male threaded shoulder 6 acts to increase the surface pressure of the seal by the structure having a predetermined angle as described above when the mined material flows and compressive force is applied to the oil well pipe joint 100. Therefore, it is possible to prevent the mined product from leaking.
  • the angle ⁇ 2 of the shoulder 6 of the male screw is an angle formed clockwise with respect to the perpendicular direction (the negative direction of the Y axis) from the inner surface to the outer surface of the male screw. 5 degrees to 10 degrees. The reason for this will be described in the description of FIGS.
  • the configuration of the female screw 2 will be described with reference to FIGS. 2, 3, and 4.
  • the female screw 2 has a screw thread 4 on the female screw side formed in a spiral shape so as to be engaged with the screw thread 3 on the male screw side.
  • the screw thread 3 on the male screw side is connected to the screw thread 4 on the female screw side. It comes to fit.
  • a female screw seal 7 which is a linear taper in a cross section of a surface substantially parallel to the longitudinal direction of the oil well pipe joint 100, is formed on the back side of the female screw 2, a female screw seal 7, which is a linear taper in a cross section of a surface substantially parallel to the longitudinal direction of the oil well pipe joint 100, is formed. As shown in FIG. 1, the back side corresponds to the front end side of the male screw 1 when viewed from the male screw 1 side.
  • the female screw seal 7 is connected to the male screw seal 5 with a strong surface pressure to suppress leakage of the mined material flowing through the oil well pipe joint 100.
  • the female screw seal 7 has a predetermined angle ⁇ 1. As shown in FIG. 3, the predetermined angle ⁇ 1 is set to 5 degrees or less clockwise with respect to a direction parallel to the longitudinal direction of the oil well pipe joint 100 (the positive direction of the X axis). This is because not only the internal pressure caused by the mined material but also the tensile force is exerted on the oil well pipe 200 due to its own weight, and the tensile force may become so strong that the oil well pipe 200 is plastically deformed. is there. When such a tensile force is applied, the female screw seal 7 is elongated in the longitudinal direction of the oil well pipe 200, resulting in misalignment between the male screw seal 5 and the female screw seal 7.
  • the surface pressure between the male screw seal 5 and the female screw seal 7 is reduced, which causes leakage.
  • the taper of the predetermined angle ⁇ 1 is formed on the female thread seal 7 and the oil well pipe 200 is elongated in the longitudinal direction, it contacts the male thread seal 5. Since the reduction of the surface pressure is suppressed, the leakage is suppressed (self-sealing effect).
  • the female threaded shoulder 8 has a predetermined angle similar to that of the male threaded shoulder 6, and the angle is such that the female threaded shoulder 8 and the male threaded shoulder 6 are crimped so that there is as little gap as possible. Good.
  • FIG. 5 illustrates the magnitude of the seal surface pressure with respect to the distance from the tip of the male screw 1 based on the simulation results.
  • FIG. 5 shows that an oil pipe is formed by fitting a male screw and a female screw of a predetermined shape, and a fluid (predetermined density, flow rate and other parameters) corresponding to a mined product is formed inside the oil well pipe 200.
  • the result of verifying by simulation using the finite element method how the surface pressure of the male screw seal changes with respect to the distance from the tip of the male screw It is.
  • the surface pressure is generated from about 1.8 mm to 4.2 mm from the tip of the male screw.
  • the male screw is a contact portion with the female screw between about 1.8 mm and 4.2 mm from the tip of the male screw.
  • the length of the contact portion is referred to as “contact length”.
  • the value having the highest surface pressure in the “contact length” is referred to as “maximum surface pressure”.
  • a value obtained by integrating the value of the seal surface pressure at the contact portion is referred to as “seal index (seal performance)”.
  • the “seal index (seal performance)” is, in other words, an index indicating that if the “contact length” of the seal is long and the “surface pressure” is large, the seal is difficult to leak.
  • FIG. 6 illustrates the size of the seal index with respect to the shoulder surface tightening allowance for each shoulder angle.
  • FIG. 7 explains the decrease in the seal surface pressure with respect to the shoulder angle.
  • FIG. 6 it can be understood that as the size of the angle ⁇ ⁇ b> 2 of the shoulder 6 is increased, the “seal index” is also increased, so that the sealing performance is improved.
  • FIG. 7 when the size of the angle ⁇ 2 of the shoulder 6 is increased, when the drilled material flows and pressure is applied to the oil well pipe 200, the male screw seal 5 is connected to the female screw. It can be seen that the amount of plastic deformation is increased by the amount of pressing strongly against the seal 7 side. Therefore, when the angle ⁇ 2 of the shoulder 6 is set to 5 degrees to 10 degrees by balancing the results of FIGS. 6 and 7, the plastic deformation amount can be suppressed while improving the sealing performance.
  • the oil well pipe screw joint 100 sets the length in the X-axis direction from the tip of the male screw seal 5 to the tangent point based on the thickness WT of the oil well pipe.
  • compression it is possible to suppress plastic deformation to the contact portion between the male screw and the female screw, so that it is possible to suppress the leakage of the mined material. Therefore, it is possible to prevent the mined product from leaking when mining the mined product with the oil well pipe 200 or when mining again after stopping the mining.
  • the oil well pipe screw joint 100 has a cross-sectional arc shape in a direction from the tangent point toward the tip of the male screw seal 5 and has a maximum of 3 mm from the tangent point. Since the cross section of the male screw 1 is formed in a linear shape, it is possible to suppress plastic deformation to the contact portion between the male screw and the female screw when the oil well pipe joint 100 is highly compressed. . Therefore, it is possible to prevent the mined product from leaking when mining the mined product with the oil well pipe 200 or when mining again after stopping the mining.
  • the oil well pipe thread joint 100 has a taper angle ⁇ 1 of the female thread seal 7 of 5 degrees or less clockwise with respect to a direction parallel to the longitudinal direction of the oil well pipe thread joint 100 (positive direction of the X axis). It is said.
  • the screw joint for the oil well pipe Even if a tensile force opposite to the compressive force acts to cause elongation in the longitudinal direction of the oil well pipe 200, the contact surface pressure with the male screw seal 5 is suppressed from decreasing. Therefore, it is possible to prevent the mined product from leaking when mining the mined product with the oil well pipe 200 or when mining again after stopping the mining.
  • the oil joint pipe screw joint 100 has the shoulder 6 having an angle ⁇ 2 of 5 degrees to 10 degrees, the amount of plastic deformation can be suppressed while improving the sealing performance. Therefore, it is possible to prevent the mined product from leaking when mining the mined product with the oil well pipe 200 or when mining again after stopping the mining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)

Abstract

凸曲面状に形成されたシール5、及び該シール5より先端側に形成されたショルダ6を有する雄ネジ1と、テーパーが形成されたシール7を有する雌ネジ2とを備え、雄ネジのシール5と雌ネジのシール7との当接部が圧着されて構成した油井管用ネジ継ぎ手100において、雄ネジのシール5は、雄ネジの長手方向と平行な方向において、油井管の厚みに基づいて、前記雄ネジの先端から前記当接部までの長さが設定された。

Description

油井管用ネジ継ぎ手
 本発明は、油井管用ネジ継ぎ手に関するものである。
 近年石油や天然ガス(以下、採掘物とも称する)などの掘削において使用されるケーシング(油井管、油井管用ネジ継ぎ手等から構成される)は、以下に挙げるような事情から塑性変形してしまい、採掘物がリークしてしまう恐れがある。
 例えば、深い地層から大容量の採掘物を採掘する場合において、通常、その採掘物は、高温高圧であったりするので、これに伴いケーシングが、塑性変形してしまいリークが生じてしまう恐れがある。
 また、グリーンエネルギー政策の促進のために、地熱発電によってエネルギーを発生させることが行われているが、この地熱発電で掘削された地熱井戸では、ケーシングが、水蒸気によって高温にさらされるので、ケーシングが、塑性変形してしまいリークが生じてしまう恐れがある。              
 また、近年の石油価格の上昇を受けて、従来商業的に採算のとることが難しかった重質油を利用する動きがある。しかし、重質油を採掘するためには、地上より高温(例えば350度程度)の水蒸気を、ケーシングを介して地下に貯留されている重質油に注入し、粘度を下げて採掘しやすくすることが行われているが、このときにおいても、高温(水蒸気)にケーシングが晒されることになるので、これに伴いケーシングが、塑性変形してしまいリークが生じてしまう恐れがある。
 さらに、通常、ケーシングを地下に降ろした後に、該ケーシングの長手方向の動きを制限するために、ケーシングの外側面をコンクリート等で固める処理が行われている。従って、上記のようにケーシングが高温にさらされた場合には、ケーシングが膨張しようとするが、外側面がコンクリートで固められているために、膨張が抑えられるので、ケーシングに高い圧縮力がかかることになる。これにより、ケーシングが、塑性変形してしまいリークが生じてしまう恐れがある。
 従って、ケーシングには、高い強度(耐塑性変形性)が要求されるようになっているが、ケーシングのうち特に油井管同士をつないでいる継ぎ手部分には、リークが生じやすいので、この継ぎ手部分の強度を向上させるための改良が各種なされている。
 そのような改良の中には、雄ネジ(PIN)と雌ネジ(BOX)がネジの勘合力によりシール同士が当接する部分が圧着され、該当接部で生じている面圧が大きくなるように構成したものが提案されている(例えば、特許文献1、特許文献2参照)。
特開昭61-6488号公報(例えば、1頁、図1参照) 特公平2-31271号公報(例えば、1頁、図1参照)
 特許文献1、特許文献2に記載された技術は、雄ネジ側の凸曲面状のシールと、雌ネジ側のテーパー形状のシールとの当接する部分が圧着してシールを構成したものである。ここで、油井管用ネジ継ぎ手を圧縮する強い力が加わると、雄ネジ先端の内面ショルダと呼ばれる部位と、雌ネジの薄い突き合わせの部分が、塑性変形を起こしてしまう。この塑性変形が、上記雄ネジと雌ネジとの当接部分まで及んでしまうと、上記シール(メインシール)の面圧が減少してしまい、採掘物がリークしてしまう恐れがある。
 また、地熱井戸や水蒸気注入井戸において、採掘物の採掘を一時的に停止したり、水蒸気の注入を一時的に停止したりして、油井管の温度が下がると、油井管用ネジ継ぎ手に、上記圧縮力とは逆の引張力が働き、既に、採掘物の採掘や蒸気の注入によって生じる高圧縮で塑性変形を起こしたシールが、さらに変形してしまい、再度採掘を開始したり、再度蒸気を注入したりするとリークを起こしてしまっていた。
 本発明は、以上のような課題を解決するためになされたもので、雄ネジと雌ネジとの当接部分まで塑性変形してしまうことを抑制して、採掘物がリークしてしまうことを抑制する油井管用ネジ継ぎ手を提供することを目的としている。
 本発明に係る油井管用ネジ継ぎ手は、凸曲面状に形成されたシール、及び該シールより先端側に形成されたショルダを有する雄ネジと、テーパーが形成されたシールを有する雌ネジとを備え、雄ネジのシールと雌ネジのシールとの当接部が圧着されて構成した油井管用ネジ継ぎ手において、雄ネジのシールは、雄ネジの長手方向と平行な方向において、油井管の厚みに基づいて、雄ネジの先端から当接部までの長さが設定されたものである。
 本発明に係る油井管用ネジ継ぎ手によれば、上記構成を備えているため、雄ネジと雌ネジとの当接部分まで塑性変形してしまうことが抑制されるので、採掘物がリークしてしまうことを抑制することができる。
油井管内に所定の圧力を有する採掘物が流れた際に、シール先端部近傍に生じる塑性変形がどの部分に生じるかを説明するものである。 本発明の実施の形態に係る油井管用ネジ継ぎ手の長手方向と平行な面における断面図である。 図2に示す油井管用ネジ継ぎ手のタンジェントポイントについて説明するものである。 図2に示す油井管用ネジ継ぎ手の雄ネジのシールの形状と、該シール長に対する雄ネジの先端部の肉厚の大きさを説明するものである。 雄ネジの先端からの距離に対するシール面圧の大きさを、シミュレーション結果に基づいて説明するものである。 ショルダ面の締め付け代に対するシールインデックスの大きさを、ショルダ角ごとに説明するものである。 ショルダ角に対するシール面圧の減少分について説明するものである。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態.
 図1は、油井管200内に所定の圧力を有する採掘物が流れた際に、シール先端部近傍に生じる塑性変形がどの部分に生じるかを説明するものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面では、油井管200のうち継ぎ手の先端部の断面を示したものである。さらに、図1を含め、以下の図面では、長手方向と平行な面における断面図で説明している。
 図1から油井管200内に採掘物が流れることで生じた圧力によって、雄ネジ1の先端部と雌ネジ2の奥側が、それぞれ押しつけ合って塑性変形が、どの部分に発生したかがわかる。具体的には、雄ネジ1の先端部と該先端部と向かい合う雌ネジ2の部分(図1のK参照)に、大きな塑性変形が発生していることがわかる(色が濃い程塑性変形量が大きい)。このKで示される部分は、シール(メインシール)と呼ばれ、このシール及びシール近傍が塑性変形を起こしてしまうと、採掘物のリークの原因となる。本油井管用ネジ継ぎ手100は、このリークを抑制するための改良を施したものである。
[雄ネジ1の構成]
 図2は、本発明の実施の形態に係る油井管用ネジ継ぎ手100の長手方向と平行な面における断面図である。図3は、図2に示す油井管用ネジ継ぎ手100のタンジェントポイントについて説明するものである。図4は、図1に示す油井管用ネジ継ぎ手100の雄ネジのシール5の形状と、該シール長に対する雄ネジの先端部の肉厚の大きさを説明するものである。
 雄ネジ1の構成について図2、図3及び図4に基づいて説明する。 
 油井管用ネジ継ぎ手100は、雄ネジ1(PIN)が、雌ネジ2(BOX)に勘合して構成されたものである。
 雄ネジ1は、雄ネジ1の外側面に雄ネジ側のネジ山3が螺旋状に形成されており、この雄ネジ側のネジ山3で雌ネジ2と勘合するようになっている。この雄ネジ1の先端側には、油井管用ネジ継ぎ手100の長手方向と略平行な方向(図1のX軸方向)に、所定の形状を有するシール5が形成されている。なお、先端側とは、図2に示すように、雌ネジ2側から見ると、雌ネジ2の奥側に相当する。この雄ネジのシール5には、雌ネジのシール7と「強い面圧」で圧着しており、油井管用ネジ継ぎ手100を流れる採掘物のリークを抑制している。なお、「強い面圧」とは、油井管用ネジ継ぎ手100を流れる採掘物が、シールからリークしない面圧に相当する程度であって、例えば3000kgf/cm2 位である。
 雄ネジのシール5は、図4(a)に示すように、雄ネジ1から雌ネジ2方向に向かう方向に凸出した凸曲面が形成されている。油井管用ネジ継ぎ手100の長手方向と平行な断面において、この凸曲面の断面形状としては、雄ネジのシール5の終端Aを通り、油井管用ネジ継ぎ手100の長手方向と垂直な面内に設けた点Oを中心とした円弧となっている。なお、円弧でなく、楕円弧等といったY軸の正方向に凸である曲面であればよいことはいうまでもない。但し、X軸の正方向に向かうにつれてY軸の負方向に傾斜しているものとする。なお、以下の説明では、円弧であるものとして説明する。
 ここで、図2、図3及び図4(a)に示すように、雄ネジのシール5の先端部からタンジェントポイント(下記参照)までのX軸方向の長さは、油井管の厚みに基づいて設定されているものとする。
 具体的には、雄ネジのシール5の先端部からタンジェントポイントまでのX軸方向の長さは、油井管の厚みWTが12.7mm(0.500インチ)以下の場合においては、6.35mm(0.250インチ)以上とするとよい。
 また、雄ネジのシール5の先端部からタンジェントポイントまでのX軸方向の長さは、油井管の厚みWTが12.7mm(0.500インチ)より大きく19.05mm(0.750インチ)以下の場合においては、7.62mm(0.300インチ)以上とするとよい。
 さらに、雄ネジのシール5の先端部からタンジェントポイントまでのX軸方向の長さは、油井管の厚みWTが19.05mm(0.750インチ)より大きい場合においては、8.9mm(0.350インチ)以上とするものとよい。
 なお、油井管の厚みWTによりシール厚みWT2が設定されるので、上記の雄ネジのシール5の先端部からタンジェントポイントまでのX軸方向の長さを、シール厚みWT2から設定してもよいことは言うまでもない。ここでいう、シール厚みWT2とは、タンジェントポイントにおけるシールの厚みである。
 このように油井管の厚みWTに基づいて、雄ネジのシール5の先端部からタンジェントポイントまでのX軸方向の長さを設定することにより、シールの塑性変形が、雄ネジのシール5の先端部からX軸の負方向に向かって、油井管の厚みWT(又はシール厚みWT2)に相当する長さ程度発生してしまっても、タンジェントポイントにまで塑性変形が及ぶことが抑制されるので、油井管200で採掘物を採掘している際や、一度採掘を停止した後に再度採掘する際に、採掘物がリークしまうことを抑制することができる。
 ここで、タンジェントポイントとは、図3及び図4(a)に示すように、雄ネジのシール5と雌ネジ側のシール7とが、当接し、該当接部が圧着された部分である。実際には、雄ネジのシール5と雌ネジのシール7とは、面で接触しているものであるが、しかし、雌ネジのシール7を形而上的な完全な直線とし、雄ネジのシール5を完全な円弧とした場合には、ある一点で接することになる。この接する一点をタンジェントポイントと呼ぶということである。
 雄ネジのシール5において、先端部からタンジェントポイントまでのX軸方向の長さを、油井管の厚みWTに基づいて設定すると述べたが、雄ネジのシール5の先端部からこのタンジェントポイントのまで距離を長くすると、図4(a)に示すように、その分だけ、先端部の肉厚が薄くなってしまう(矢印F参照)。つまり、雄ネジのシール5のうち円弧の占める部分の長さを長くすることで、その分だけ雄ネジ1の先端に向かうにつれて肉厚が薄くなってしまうので、雄ネジ1の先端部が塑性変形してしまいやすくなり、リークの原因となってしまう。
 これを受けて、雄ネジのシール5は、断面円弧形状に形成される範囲が、タンジェントポイントから雄ネジのシール5の先端に向かう方向において、タンジェントポイントから最大3mmまでが形成されたものであるとし、さらに、この断面円弧形状に形成された部分より雄ネジ1の先端までは、断面直線形状部L(図4(b)が形成されている。
 なお、雄ネジのシール5は、断面直線形状Lが、X軸に平行に、断面直線形状に形成されたものとして説明するが、肉厚が薄くなるのでなければ、X軸に平行でなくてもよい。
 また、雄ネジ1の先端には、所定の角度を有するショルダ6が形成されている。この雄ネジのショルダ6は、採掘物が流れて油井管用ネジ継ぎ手100に圧縮力がかかった際に、上記のように所定の角度を有する構成によって、シールの面圧を大きくするように作用して、採掘物がリークしてしまうことを抑制するものである。なお、図3に示すように、雄ネジのショルダ6の角度θ2は、雄ネジの内側面から外側面に向かう垂線方向(Y軸の負の方向)を基準として、時計回りになす角度が、5度から10度までとしている。この理由については、図6及び図7の説明で述べるものとする。
[雌ネジ2の構成]
 雌ネジ2の構成について図2、図3及び図4に基づいて説明する。
 雌ネジ2は、雄ネジ側のネジ山3と勘合するように雌ネジ側のネジ山4が螺旋状に形成されており、この雌ネジ側のネジ山4に雄ネジ側のネジ山3が勘合するようになっている。この雌ネジ2の奥側には、油井管用ネジ継ぎ手100の長手方向と略平行な面の断面において、直線状のテーパーである雌ネジのシール7が形成されている。なお、奥側とは、図1に示すように、雄ネジ1側から見ると、雄ネジ1の先端側に相当する。この雌ネジのシール7は、雄ネジのシール5と強い面圧で当節して、油井管用ネジ継ぎ手100を流れる採掘物のリークを抑制している。
 この雌ネジのシール7は所定の角度θ1を有している。この所定の角度θ1は、図3に示すように、油井管用ネジ継ぎ手100の長手方向と平行な方向(X軸の正方向)に対して時計回りに、5度以下となるようにした。これは、油井管200には、採掘物に起因する内圧だけでなく、油井管200の自重により引張力が働いており、当該引張力が油井管200を塑性変形させてしまうほど強くなる場合もある。このような引張力が加わった場合には、雌ネジのシール7が油井管200の長手方向に伸びが発生し、雄ネジのシール5と雌ネジのシール7との位置ずれを生じてしまい、雄ネジのシール5と雌ネジのシール7との面圧が低下してしまい、リークの原因となる。一方、本油井管用ネジ継ぎ手100においては、雌ネジのシール7に所定の角度θ1のテーパを形成して、油井管200の長手方向に伸びが発生しても、雄ネジのシール5との接触面圧が減少してしまうことが抑制されるので、リークしてしまうことが抑制される(セルフシール効果)。
 雌ネジのショルダ8は、雄ネジのショルダ6と同様の所定の角度を有しており、雌ネジのショルダ8と雄ネジのショルダ6とが、極力隙間が無くなるように圧着するような角度とするとよい。
 図5は、雄ネジ1の先端からの距離に対するシール面圧の大きさを、シミュレーション結果に基づいて説明するものである。具体的には、図5は、所定の形状の雄ネジと雌ネジを勘合させて油性管を構成し、該油井管200の内部に採掘物に相当する流体(所定の密度、流速等のパラメータが決定されている)を流したモデルを作成し、雄ネジのシールの面圧が雄ネジの先端からの距離に対してどのように変化するかを有限要素法を用いたシミュレーションで検証した結果である。
 図5に示すように、このシミュレーションモデルでは、雄ネジの先端から約1.8mm~4.2mmまでに面圧が発生していることがわかる。換言すれば、雄ネジは、雄ネジの先端から約1.8mm~4.2mmとの間で、雌ネジとの接触部分であるということがわかる。この接触部分の長さを、「接触長」という。また、「接触長」の中で一番面圧が高い値を、「最大面圧」という。さらに、この接触部分におけるシール面圧の値を積分したものを「シールインデックス(シール性能)」という。なお、「シールインデックス(シール性能)」とは、換言すれば、シールの「接触長」が長く、「面圧」が大きいと、シールからリークしにくいということを示す指標のことである。
 図6は、ショルダ面の締め付け代に対するシールインデックスの大きさを、ショルダ角ごとに説明するものである。図7は、ショルダ角に対するシール面圧の減少分について説明するものである。
 図6に示すように、ショルダ6の角度θ2の大きさを大きくしていくと、「シールインデックス」も大きくなるので、シール性能が向上するということがわかる。それに対し、図7に示すように、ショルダ6の角度θ2の大きさを大きくしていくと、採掘物が流れて油井管200に圧力がかかった場合に、雄ネジのシール5が雌ネジのシール7側に強く押されるので、その分塑性変形量も大きくなってしまうということがわかる。
 従って、ショルダ6の角度θ2は、図6及び図7の結果のバランスをとって、5度~10度までとすると、シール性能を向上しながら、塑性変形量を抑制することができる。
[油井管用ネジ継ぎ手100の有する効果]
 油井管用ネジ継ぎ手100は、雄ネジのシール5の先端部からタンジェントポイントのまでのX軸方向の長さを、油井管の厚みWTに基づいて設定しているので、油井管用ネジ継ぎ手100に高圧縮がかかった場合に、雄ネジと雌ネジとの当接部分まで塑性変形してしまうことが抑制されるので、採掘物がリークしてしまうことを抑制することができる。従って、油井管200で採掘物を採掘している際や、一度採掘を停止した後に再度採掘する際に、採掘物がリークしまうことを抑制することができる。
 また、油井管用ネジ継ぎ手100は、タンジェントポイントから雄ネジのシール5の先端に向かう方向において、断面円弧形状に形成される範囲を、タンジェントポイントから最大で3mmまでとするとともに、該凸曲面状から雄ネジ1の先端までを断面直線形状に形成したので、油井管用ネジ継ぎ手100に高圧縮がかかった場合に、雄ネジと雌ネジとの当接部分まで塑性変形してしまうことが抑制される。従って、油井管200で採掘物を採掘している際や、一度採掘を停止した後に再度採掘する際に、採掘物がリークしまうことを抑制することができる。
 また、油井管用ネジ継ぎ手100は、雌ネジのシール7のテーパーの角度θ1を、油井管用ネジ継ぎ手100の長手方向と平行な方向(X軸の正方向)に対して時計回りに、5度以下としている。これにより、例えば地熱井戸や水蒸気注入井戸において、採掘物の採掘を一時的に停止したり、水蒸気の注入を一時的に停止したりして、油井管の温度が下がると、油井管用ネジ継ぎ手に、上記圧縮力とは逆の引張力が働いて油井管200の長手方向に伸びが発生しても、雄ネジのシール5との接触面圧が減少してしまうことが抑制される。従って、油井管200で採掘物を採掘している際や、一度採掘を停止した後に再度採掘する際に、採掘物がリークしまうことを抑制することができる。
 さらに、油井管用ネジ継ぎ手100は、ショルダ6の角度θ2を5度~10度までとしたので、シール性能を向上しながら、塑性変形量を抑制することができる。従って、油井管200で採掘物を採掘している際や、一度採掘を停止した後に再度採掘する際に、採掘物がリークしまうことを抑制することができる。
 1 雄ネジ、2 雌ネジ、3 雄ネジ側のネジ山、4 雌ネジ側のネジ山、5 雄ネジのシール、6 雄ネジのショルダ、7 雌ネジのシール、8 雌ネジのショルダ、100 油井管用ネジ継ぎ手、200 油井管、A シールの終端、O 中心。

Claims (5)

  1.  凸曲面状に形成されたシール、及び該シールより先端側に形成されたショルダを有する雄ネジと、
     テーパーが形成されたシールを有する雌ネジとを備え、
     前記雄ネジのシールと前記雌ネジのシールとの当接部が圧着されて構成した油井管用ネジ継ぎ手において、
     前記雄ネジのシールは、
     前記雄ネジの長手方向と平行な方向において、
     前記油井管の厚みに基づいて、前記雄ネジの先端から前記当接部までの長さが設定された
     ことを特徴とする油井管用ネジ継ぎ手。
  2.  前記油井管の厚みが、0.500インチの場合には、
     前記雄ネジの先端から前記当接部までの長さを0.250インチ以上とし、
     前記油井管の厚みが、0.500インチより大きく0.750インチ以下の場合には、
     前記雄ネジの先端から前記当接部までの長さを0.300インチ以上とし、
     前記油井管の厚みが、0.750インチより大きい場合には、
     前記雄ネジの先端から前記当接部までの長さを0.350インチ以上とした
     ことを特徴とする請求項1に記載の油井管用ネジ継ぎ手。
  3.  前記雄ネジのシールは、
     前記雄ネジの長手方向と平行であって先端側に向かう方向において、
     当接部から3mmまでが、凸曲面状に形成され、該凸曲面状から前記雄ネジの先端までが断面直線形状に形成された
     ことを特徴とする請求項1又は2に記載の油井管用ネジ継ぎ手。
  4.  前記雌ネジのテーパーの角度θ1は、
     前記雄ネジの長手方向と平行であって先端に向かう方向を基準として、
     時計回りに5度以下とした
     ことを特徴とする請求項1~3のいずれか一項に記載の油井管用ネジ継ぎ手。
  5.  前記雄ネジのショルダの角度θ2は、
     前記雄ネジの内側面から外側面に向かう垂線方向を基準として、
     時計回りに5度から10度までとした
     ことを特徴とする請求項1~4のいずれか一項に記載の油井管用ネジ継ぎ手。
PCT/JP2010/006387 2010-10-29 2010-10-29 油井管用ネジ継ぎ手 WO2012056500A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006387 WO2012056500A1 (ja) 2010-10-29 2010-10-29 油井管用ネジ継ぎ手

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006387 WO2012056500A1 (ja) 2010-10-29 2010-10-29 油井管用ネジ継ぎ手

Publications (1)

Publication Number Publication Date
WO2012056500A1 true WO2012056500A1 (ja) 2012-05-03

Family

ID=45993256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006387 WO2012056500A1 (ja) 2010-10-29 2010-10-29 油井管用ネジ継ぎ手

Country Status (1)

Country Link
WO (1) WO2012056500A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029176A (ja) * 2011-07-29 2013-02-07 Jfe Steel Corp 鋼管用ねじ継手
JP2013029175A (ja) * 2011-07-29 2013-02-07 Jfe Steel Corp 鋼管用ねじ継手
WO2015015799A1 (ja) * 2013-07-30 2015-02-05 Jfeスチール株式会社 油井管用ねじ継手
WO2015104739A1 (ja) * 2014-01-10 2015-07-16 Jfeスチール株式会社 極厚肉油井管用ねじ継手
WO2017141538A1 (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 油井管用ねじ継手
US10202809B2 (en) 2013-01-28 2019-02-12 Jfe Steel Corporation Threaded joint for steel pipes
CN110651149A (zh) * 2017-05-22 2020-01-03 日本制铁株式会社 钢管用螺纹接头
EP3702656A4 (en) * 2017-10-25 2020-10-28 Nippon Steel Corporation STEEL PIPE SCREW CONNECTION
AT17396U1 (de) * 2020-12-23 2022-03-15 Llc Interpipe Man Dichte Metallrohrgewindeverbindung
EP3356607B1 (en) * 2015-09-30 2023-01-18 Victor Jan De Waal Pile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314490A (ja) * 1999-04-30 2000-11-14 Kawasaki Steel Corp 油井管用鋼管ねじ継手
JP2001082644A (ja) * 1999-09-17 2001-03-30 Sumitomo Metal Ind Ltd 油井管用ねじ継手の製造方法
JP2005511990A (ja) * 2001-12-07 2005-04-28 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手
JP2005351324A (ja) * 2004-06-09 2005-12-22 Metal One Corp 油井管用ネジ継手

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314490A (ja) * 1999-04-30 2000-11-14 Kawasaki Steel Corp 油井管用鋼管ねじ継手
JP2001082644A (ja) * 1999-09-17 2001-03-30 Sumitomo Metal Ind Ltd 油井管用ねじ継手の製造方法
JP2005511990A (ja) * 2001-12-07 2005-04-28 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手
JP2005351324A (ja) * 2004-06-09 2005-12-22 Metal One Corp 油井管用ネジ継手

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029176A (ja) * 2011-07-29 2013-02-07 Jfe Steel Corp 鋼管用ねじ継手
JP2013029175A (ja) * 2011-07-29 2013-02-07 Jfe Steel Corp 鋼管用ねじ継手
US10202809B2 (en) 2013-01-28 2019-02-12 Jfe Steel Corporation Threaded joint for steel pipes
WO2015015799A1 (ja) * 2013-07-30 2015-02-05 Jfeスチール株式会社 油井管用ねじ継手
JP2015028346A (ja) * 2013-07-30 2015-02-12 Jfeスチール株式会社 耐久性に優れた油井管用ねじ継手
US9982815B2 (en) 2013-07-30 2018-05-29 Jfe Steel Corporation Threaded joint for oil country tubular goods
AU2014376828B2 (en) * 2014-01-10 2016-09-22 Jfe Steel Corporation Threaded joint for heavy-walled oil country tubular goods
JP2015132285A (ja) * 2014-01-10 2015-07-23 Jfeスチール株式会社 極厚肉油井管用ねじ継手
US9709196B2 (en) 2014-01-10 2017-07-18 Jfe Steel Corporation Threaded joint for heavy-walled oil country tubular goods
WO2015104739A1 (ja) * 2014-01-10 2015-07-16 Jfeスチール株式会社 極厚肉油井管用ねじ継手
RU2637783C1 (ru) * 2014-01-10 2017-12-07 ДжФЕ СТИЛ КОРПОРЕЙШН Резьбовое соединение для толстостенных трубных изделий нефтепромыслового сортамента
EP3356607B1 (en) * 2015-09-30 2023-01-18 Victor Jan De Waal Pile
CN107101054B (zh) * 2016-02-19 2019-06-28 杰富意钢铁株式会社 油井管用螺纹接头
US10900595B2 (en) 2016-02-19 2021-01-26 Jfe Steel Corporation Threaded joint for oil well tubing
EP3418617A4 (en) * 2016-02-19 2019-03-20 JFE Steel Corporation THREADED JOINT FOR OIL WELL DRIVING
AU2016393093B2 (en) * 2016-02-19 2019-05-02 Jfe Steel Corporation Threaded joint for oil well tubing
RU2692177C1 (ru) * 2016-02-19 2019-06-21 ДжФЕ СТИЛ КОРПОРЕЙШН Резьбовое соединение насосно-компрессорных труб для нефтяных скважин
CN107101054A (zh) * 2016-02-19 2017-08-29 杰富意钢铁株式会社 油井管用螺纹接头
WO2017141538A1 (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 油井管用ねじ継手
JP6187724B1 (ja) * 2016-02-19 2017-08-30 Jfeスチール株式会社 油井管用ねじ継手
AU2018273320B2 (en) * 2017-05-22 2020-11-26 Nippon Steel Corporation Threaded connection for steel pipes
EP3633255A4 (en) * 2017-05-22 2020-06-17 Nippon Steel Corporation SCREW JOINT FOR STEEL PIPE
CN110651149B (zh) * 2017-05-22 2021-05-07 日本制铁株式会社 钢管用螺纹接头
US11339901B2 (en) 2017-05-22 2022-05-24 Nippon Steel Corporation Threaded connection for steel pipes
CN110651149A (zh) * 2017-05-22 2020-01-03 日本制铁株式会社 钢管用螺纹接头
EP3702656A4 (en) * 2017-10-25 2020-10-28 Nippon Steel Corporation STEEL PIPE SCREW CONNECTION
AT17396U1 (de) * 2020-12-23 2022-03-15 Llc Interpipe Man Dichte Metallrohrgewindeverbindung

Similar Documents

Publication Publication Date Title
WO2012056500A1 (ja) 油井管用ネジ継ぎ手
RU2631590C1 (ru) Резьбовое соединение для стальных труб
US10495241B2 (en) Threaded joint for steel pipe
CA3047902C (en) Threaded connection for steel pipe
CA3080458C (en) Threaded connection for steel pipe
US11300233B2 (en) Threaded connection for steel pipe
CN103238017B (zh) 一种管道间的改进的密封
CA3114740C (en) Threaded connection for steel pipe
CN112823256B (zh) 钢管用螺纹接头
CN101975034A (zh) 一种油套管特殊扣的气密封连接结构
CN102011557B (zh) 高气密封油套管特殊螺纹接头
RU134279U1 (ru) Герметичное резьбовое соединение нефтепромысловых труб
JP4691904B2 (ja) 油井鋼管用継手
CN102996079A (zh) 一种管状气密封螺纹接头及其应用
CN202706941U (zh) 抗腐蚀高气密封螺纹接头
JP6900470B2 (ja) 鋼管用ねじ継手
US12007045B2 (en) Threaded connection for pipe
CN102071881A (zh) 气井用套管气密封螺纹接头
US12018777B2 (en) Threaded connection for steel pipe
US20230146768A1 (en) Threaded connection for steel pipe
CN201443658U (zh) 一种气密封油管螺纹接头
CN205895470U (zh) 一种高压油管
CN207648290U (zh) 加油机油管卡套密封圈复合密封防脱机构
CN103556955A (zh) 一种高密封性油管的密封部结构
CN113309474A (zh) 一种膨胀套管金属密封接头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP