WO2012053224A1 - Ballast water treatment system and ballast water treatment method - Google Patents

Ballast water treatment system and ballast water treatment method Download PDF

Info

Publication number
WO2012053224A1
WO2012053224A1 PCT/JP2011/005911 JP2011005911W WO2012053224A1 WO 2012053224 A1 WO2012053224 A1 WO 2012053224A1 JP 2011005911 W JP2011005911 W JP 2011005911W WO 2012053224 A1 WO2012053224 A1 WO 2012053224A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
sodium hypochlorite
ballast
liquid
line
Prior art date
Application number
PCT/JP2011/005911
Other languages
French (fr)
Japanese (ja)
Inventor
山本 寛
秀基 永岡
山口 典生
晶義 枝川
広之 遠藤
英典 船越
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011146048A external-priority patent/JP2012106224A/en
Priority claimed from JP2011177092A external-priority patent/JP2013039516A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180051038.6A priority Critical patent/CN103189319B/en
Priority to KR1020137012825A priority patent/KR20130135254A/en
Publication of WO2012053224A1 publication Critical patent/WO2012053224A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/01Density
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Definitions

  • the present invention relates to a ballast water treatment system and a ballast water treatment method.
  • ballast water In ships such as tankers and large cargo ships, when navigating in a state where oil or cargo is not loaded or in a small amount, the ballast water is usually placed in the ballast tank to ensure the stability and balance of the ship. Contained and sailed. This ballast water is usually pumped and injected into seawater at the port where it is unloaded and discharged at the port where it was loaded. In this way, since the ballast water uses the seawater of the port where it was unloaded, the ballast water includes aquatic organisms that inhabit the area around the port where it was unloaded, and discharged along with the ballast water at the port where this aquatic organism was loaded. Is done.
  • ballast water treatment Various methods have been proposed for ballast water treatment. Specifically, aquatic organisms are removed by filtration, centrifugation, etc., aquatic organisms are physically and mechanically killed, aquatic organisms are killed by heat, and chemicals are injected into the ballast tank. And a method of killing aquatic organisms by generating chlorine-based substances or the like (for example, Patent Document 1 and Non-Patent Document 1), a method combining these methods, and the like.
  • Patent Document 1 proposes a method of killing aquatic organisms of ballast water by electrolyzing the ballast water to generate sodium hypochlorite.
  • a large amount of sodium hypochlorite is required, and a large tank for storing sodium hypochlorite is required.
  • a large electrolysis processing apparatus and a large amount of electric power are required to generate a large amount of sodium hypochlorite.
  • the present invention provides a new ballast water treatment system and a ballast water treatment method that can reduce power consumption during berthing and are compact and easy to mount on a ship.
  • the present invention provides a ballast water supply line that connects a water intake and a ballast tank, and an aquatic organism in a liquid that is disposed in the line and taken from the water intake, either electrically or mechanically.
  • the chemical liquid supply device is connected to a second water intake port different from the water intake port connected to the ballast water supply line, and electrolyzes the liquid taken from the second water intake port to hypochlorous acid.
  • the present invention relates to a ballast water treatment system that generates sodium acid.
  • the aquatic organisms in the liquid taken from the water intake are electrically or mechanically killed, and the aqueous sodium hypochlorite solution is supplied to the liquid taken from the water intake. And storing the liquid subjected to the killing treatment and the supply of the aqueous sodium hypochlorite solution in a ballast tank, and at least a liquid taken from a second water intake different from the water intake.
  • the present invention relates to a ballast water treatment method including electrolyzing a liquid for producing sodium hypochlorite containing to produce the sodium hypochlorite aqueous solution.
  • the present invention it is possible to reduce the power consumption while the port is anchored, and it is compact and easy to mount on a ship.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-1.
  • 2A to 2C are schematic configuration diagrams showing an example of the configuration of the chemical solution supply apparatus.
  • 3A to 3D are schematic configuration diagrams showing an example of the configuration of the electrical processing apparatus.
  • FIG. 4A is a flowchart illustrating an example of a method for treating ballast water while the port is anchored.
  • FIG. 4B is a flowchart showing an example of the deballast method and the production of sodium hypochlorite during navigation.
  • FIG. 5 is a functional block diagram illustrating a configuration example of the ballast water control system.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-1.
  • 2A to 2C are schematic configuration diagrams showing an example of the configuration of the chemical solution supply apparatus.
  • 3A to 3D are schematic configuration diagrams showing an example of the configuration of the electrical processing apparatus.
  • FIG. 6 is a functional block diagram illustrating a configuration example of the measurement unit and the control unit included in the ballast water control system and an example of data recorded in the recording unit.
  • FIG. 7 is a schematic configuration diagram illustrating another example of the ballast water treatment system according to Embodiment 1-1.
  • FIG. 8 is a schematic configuration diagram showing still another example of the ballast water treatment system according to Embodiment 1-1.
  • FIG. 9 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-2.
  • FIG. 10 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-3.
  • FIG. 11A is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-4.
  • FIG. 11B is a schematic configuration diagram illustrating another example of the ballast water treatment system according to Embodiment 1-4.
  • 12A and 12B are partial views of the ballast water treatment system in Embodiment 1-4.
  • FIG. 13 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-5.
  • FIG. 14 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-6.
  • FIG. 15 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 2-1.
  • FIG. 16 is a schematic configuration diagram illustrating an example of a configuration of a chemical solution supply apparatus.
  • FIG. 17 is a functional block diagram showing a configuration example of the ballast water control system in the embodiment 2-2.
  • FIG. 18 is a functional block diagram illustrating a configuration example of the measurement unit and the control unit and an example of data recorded in the recording unit.
  • FIG. 19 is a flowchart illustrating an example of a ballast water treatment method in the ballast water treatment system according to Embodiment 2-1.
  • FIG. 20 is a graph showing an example of a decay curve of sodium hypochlorite.
  • FIG. 21 shows an example of the configuration of a sodium hypochlorite attenuation measurement unit.
  • FIG. 22 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 2-3.
  • FIG. 23 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 3-1.
  • FIG. 24 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 4-1.
  • aquatic organisms include microorganisms that inhabit the sea, rivers, lakes, etc., in addition to yeast, mold, plant or zooplankton, plankton eggs and spores, bacteria, fungi, Includes relatively small-sized aquatic organisms such as viruses, algae, shellfish larvae such as snails and bivalves, and crustacean larvae such as crabs. Further, it may include microorganisms that can live in estuaries, rivers, canals and the like connected to the sea, and the aquatic organisms described above.
  • liquid taken from a water intake is taken from outside the ship, stored in a ballast tank, and used as ballast water.
  • the liquid may be, for example, a liquid containing sodium chloride such as seawater or a liquid not containing it.
  • region where water is taken in is not restrict
  • ballast water refers to a liquid stored in a ballast tank, and may include a liquid taken from a water intake for storing in the ballast tank.
  • the water intake port connected to a ballast water supply line in this specification contains a sea chest.
  • ship means a general ship having a ballast tank, and includes, for example, a container ship, a low-low ship, a tanker, a bulk carrier, a chemical ship, and an automobile carrier ship.
  • the present invention provides, as a first aspect, a ballast water supply line that connects a water intake and a ballast tank, and an aquatic organism in a liquid that is disposed in the line and is taken from the water intake, either electrically or mechanically.
  • the chemical supply device is connected to a second water intake port that is different from the water intake port to which the ballast water supply line is connected, and the liquid taken from the second water intake port is electrolyzed and subsequently
  • the present invention relates to a ballast water treatment system for generating sodium chlorite (hereinafter also referred to as “first ballast water treatment system of the present invention”).
  • Ships use a lot of electricity during berths because they perform operations such as taking and discharging ballast water and loading and unloading.
  • the present invention is based on the knowledge that if sodium hypochlorite is generated during navigation, the amount of electric power used during berthing can be reduced.
  • the ballast water is treated using two types of devices, that is, an electrical or mechanical killing treatment device and a chemical solution supply device for supplying sodium hypochlorite.
  • an electrical or mechanical killing treatment device and a chemical solution supply device for supplying sodium hypochlorite.
  • by generating sodium hypochlorite during navigation there is an effect that it is possible to reduce the power consumption during berthing.
  • “electrical or mechanical killing treatment of aquatic organisms” means that at least a part of the aquatic organisms contained in the liquid taken from the water intake is electrically Separating, removing, destroying and / or killing by mechanical or mechanical means.
  • the destruction of aquatic organisms includes the destruction of part or all of aquatic organisms.
  • Examples of the electrical or mechanical killing device include an electrolytic processing device, a centrifugal solid-liquid separation device, and a device that generates and processes a shock wave by water pressure.
  • the electrolytic treatment apparatus a known electrolytic treatment apparatus can be used.
  • the electrolytic treatment apparatus preferably includes, for example, a fixed bed type electrode electrolytic cell.
  • the fixed bed type electrode electrolytic cell includes, for example, a fixed bed that generates polarization and a power supply electrode for generating polarization.
  • the fixed bed type electrode electrolytic cell may be a monopolar type provided with one fixed bed, or may be a bipolar type provided with two or more fixed beds.
  • the voltage applied to the electrode includes a DC voltage and an AC voltage, preferably an AC voltage.
  • the voltage between the electrodes is, for example, 10 V or less, 5 V or less, 3 V or less, and is preferably 0.5 to 1.5 V from the viewpoint that power consumption can be reduced and generation of unnecessary gas due to electrolysis can be suppressed. .
  • the interelectrode voltage is more preferably about 1.5V.
  • the interelectrode voltage is more preferably about 0.75V.
  • the electrolytic processing apparatus may be a cross flow system or a dead end system. The cross flow method is preferable because clogging in the electrolytic treatment apparatus can be prevented and pressure loss can be reduced. From the same point, the electrolytic treatment apparatus may include a backwashing mechanism.
  • the centrifugal solid-liquid separator a known centrifugal solid-liquid separator can be used, and examples thereof include a liquid cyclone.
  • aquatic organism killing process means killing, sterilizing or killing at least part of the aspirated liquid and / or aquatic organisms contained in ballast water, and / or aquatic organisms. Inhibiting the growth of The aquatic organism killing process is preferably a liquid that has been taken and / or an electrical or mechanical killing process to meet the ballast water discharge criteria shown in Table 1 below when discharging ballast water. Supplying an aqueous sodium hypochlorite solution, and more preferably suppressing the killing, killing and / or growth of aquatic organisms so as to satisfy the ballast water discharge criteria shown in Table 1 below when discharging ballast water including.
  • the “chemical solution supply device” is a device that supplies an aqueous sodium hypochlorite solution to the liquid that has been taken in and / or that has been subjected to electrical or mechanical killing.
  • the “second intake port different from the intake port to which the ballast water supply line is connected” means other than the intake port (for example, sea chest) for taking in the liquid to be stored in the ballast tank.
  • a water intake for drinking water or the like existing in a ship can be mentioned.
  • the chemical liquid supply device is connected to a second water intake port that is different from the water intake port (for example, a sea chest) connected to the ballast water supply line.
  • the chemical liquid supply device can produce a sodium hypochlorite aqueous solution by electrolyzing the liquid taken from the second water intake port to generate sodium hypochlorite. Since the chemical supply device is connected to the second water intake, it can take water without driving a ballast pump, etc., and it is easy to take water and generate sodium hypochlorite even during navigation. Can be done.
  • the liquid water intake can be performed using, for example, an existing pump.
  • an existing pump for example, a pump for taking drinking water, a sanitary liquid, or the like can be cited. Normally, such a pump can be driven with less power consumption than a ballast pump, so that liquid can be taken in with a small amount of power by using this existing pump.
  • the chemical solution supply device may be a device that generates sodium hypochlorite by electrolysis, and includes, for example, a mode including an electrolytic cell and a storage tank. By providing a storage tank, high concentration sodium hypochlorite is stored and supplied to a ballast water supply line via a pump or a valve as necessary.
  • the chemical solution supply apparatus may include a temperature adjusting unit. By controlling the temperature of the sodium hypochlorite aqueous solution in the chemical solution supply device by the temperature adjusting means, the decomposition of hypochlorous acid in the sodium hypochlorite aqueous solution stored in the chemical solution supply device is suppressed, and further, effective chlorine The concentration can be increased and the chloric acid concentration can be reduced.
  • the temperature of the aqueous solution is, for example, 20 ° C. or less, preferably 15 ° C. or less, more preferably about 10 ° C., from the viewpoint of suppressing the decomposition of hypochlorous acid.
  • the temperature adjusting means include a cooling device such as a chiller unit and a heating device.
  • the chemical supply device can measure the concentration of sodium hypochlorite so that the concentration of sodium hypochlorite supplied to the ballast water supply line can be measured (hereinafter referred to as “sodium hypochlorite concentration meter” or simply And a flow meter, and it is preferable to control the concentration of sodium hypochlorite supplied to the ballast water supply line.
  • the chemical solution supply device may include a sodium chloride storage tank.
  • sodium hypochlorite can be generated, for example, even in a ship that navigates a freshwater area. Even a ship navigating in a seawater region can produce a higher concentration sodium hypochlorite aqueous solution by adding sodium chloride to the taken seawater.
  • Sodium chloride may be an aqueous solution or a solid.
  • the chemical solution supply device is connected to the ballast water supply line, and can supply sodium hypochlorite aqueous solution to the liquid taken from the intake port connected to the ballast water supply line.
  • connection position supply point of the sodium hypochlorite aqueous solution.
  • the connection between the intake port connected to the ballast water supply line and the killing treatment device, and between the killing treatment device and the ballast tank, etc. Can be mentioned.
  • the chemical liquid supply apparatus is connected to a water intake (for example, a water intake for ballast water such as a sea chest) connected to the ballast water supply line in addition to or instead of the second water intake. It may be.
  • a water intake for example, a water intake for ballast water such as a sea chest
  • the line connecting the water intake for the ballast water and the chemical liquid supply apparatus may include a water intake pump different from the ballast pump. Thereby, the liquid for manufacturing sodium hypochlorite aqueous solution can be taken in, without driving a ballast pump.
  • the chemical solution supply device may be connected to the ballast pump in addition to or instead of the second water intake port.
  • the first ballast water treatment system of the present invention may further include a post-treatment device for decomposing sodium hypochlorite in the ballast water when discharging the ballast water.
  • a post-treatment device for decomposing sodium hypochlorite in the ballast water when discharging the ballast water.
  • ballast water can be discharged quickly even when the sodium hypochlorite concentration of the ballast water exceeds the discharge standard at the time of ballast water discharge.
  • the amount used can be reduced.
  • the post-treatment device is not particularly limited as long as it can decompose or reduce hypochlorous acid, for example. However, the amount of reducing agent used is reduced to reduce the running cost for ballast water treatment. From the viewpoint, an apparatus using a catalyst capable of decomposing hypochlorous acid is preferable. Examples of the catalyst include nickel and palladium.
  • the post-treatment device may have an adsorbent such as alumina in addition to the catalyst.
  • the post-processing apparatus should just be arrange
  • it can be arranged in a ballast water supply line, or a branch line can be connected to the ballast water supply line and arranged in that line.
  • the post-treatment device is preferably used in combination with a reducing agent supply device for reducing the sodium hypochlorite aqueous solution.
  • the first ballast water treatment system of the present invention includes an acidic liquid storage tank (acidic liquid supply device) for controlling the pH of a liquid supplied with an aqueous sodium hypochlorite solution to be equal to or lower than the pKa of hypochlorous acid. be able to.
  • Sodium hypochlorite has a pKa of about 7.5.
  • the pH of the liquid is controlled to pKa or less, preferably in the range of pH 5-6, thereby improving the ability to kill hypochlorous acid and killing aquatic organisms. Can improve the processing efficiency.
  • the acidic liquid stored in the acidic liquid storage tank include hydrochloric acid and sulfuric acid, and hydrochloric acid is preferable from the viewpoint of high acidity.
  • the acidic liquid storage tank is connected to the ballast water supply line.For example, before supplying the sodium hypochlorite aqueous solution, the acidic liquid storage tank may be connected to the ballast water supply line so that the acidic liquid can be supplied to the liquid taken. That's fine.
  • the present invention relates to a ballast water injection method using the first ballast water treatment system of the present invention, and a ship equipped with the first ballast water treatment system of the present invention.
  • the present invention electrically or mechanically kills aquatic organisms in the liquid taken from the water intake, and supplies the sodium hypochlorite aqueous solution to the liquid taken from the water intake. And storing the liquid that has been supplied with the killing treatment and the aqueous sodium hypochlorite solution in a ballast tank, and further, the liquid taken from a second water intake different from the water intake
  • a ballast water treatment method (hereinafter referred to as “first ballast water treatment method of the present invention”), which comprises electrolyzing a liquid for producing sodium hypochlorite containing at least water to produce the sodium hypochlorite aqueous solution. Also called).
  • the first ballast water treatment method of the present invention electrical or mechanical killing treatment and treatment with sodium hypochlorite are performed. It is possible to easily kill shellfish and crustacean larvae that were difficult to handle. According to the first ballast water treatment method of the present invention, it is easy to take water from the outside of the ship to the chemical supply device even during navigation, and it is possible to easily produce a sodium hypochlorite aqueous solution during navigation. There is an effect that can be done.
  • the first ballast water treatment method of the present invention can be performed using the first ballast water treatment system of the present invention.
  • the sodium hypochlorite aqueous solution may be supplied either before the electrical or mechanical killing treatment or after the killing treatment, before and after the treatment. You may go to both.
  • the production of the sodium hypochlorite aqueous solution and / or the liquid intake therefor be performed during navigation, More preferably, both of these are performed during navigation.
  • the production and storage of the sodium hypochlorite aqueous solution is preferably performed while controlling the temperature. By controlling the temperature, it is possible to suppress the decomposition of hypochlorous acid in the sodium hypochlorite aqueous solution stored in the chemical solution supply device, further increase the effective chlorine concentration and reduce the chloric acid concentration.
  • the liquid for producing sodium hypochlorite may include a liquid taken from the water intake port for taking the liquid stored in the ballast tank.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a ballast water treatment system according to Embodiment 1-1 of the present invention.
  • the ballast water treatment system according to the embodiment 1-1 includes a chemical solution supply device 101, a killing treatment device 102, and a ballast water supply line 107.
  • the aquatic organisms are treated using the chemical solution supply device 101 and the killing treatment device 102 for supplying the sodium hypochlorite aqueous solution, so that it is more than conventional.
  • Aquatic organisms can be killed with a low concentration of sodium hypochlorite, and corrosion of pipes and ballast tanks can be prevented.
  • the ballast water supply line 107 is a line for supplying the liquid taken from the water intake 104 to the ballast tank 103.
  • One end of the ballast water supply line 107 is a water intake (sea chest) 104, a strainer 105, and a ballast pump. The other end is connected to the ballast tank 103.
  • the ballast tank 103 is usually divided into a plurality of ballast tanks 103a to 103d.
  • the killing treatment apparatus 102 is disposed in the ballast water supply line 107 and is disposed between the ballast pump 106 and the ballast tank 103.
  • the chemical liquid supply apparatus 101 is connected to the ballast water supply line 107 via the chemical liquid supply line 109 and can supply the sodium hypochlorite aqueous solution to the liquid processed by the killing apparatus 102.
  • the chemical solution supply apparatus 101 is connected via a line 110 to a second water intake 114 different from the water intake (sea chest) 104. Thereby, the chemical supply apparatus 101 can take in the liquid for generating sodium hypochlorite from the outside of the ship without driving the ballast pump 106.
  • the water intake line 110 may include a pump 116 and a strainer 115 for taking in the liquid.
  • a water intake port and a pump, etc. for liquids supplied to drinking water or sanitary existing in a ship can be used.
  • the chemical solution supply line 109 may include a pump for feeding the sodium hypochlorite aqueous solution to the ballast water supply line 107 and a valve M for controlling the supply amount of the sodium hypochlorite aqueous solution.
  • the sodium hypochlorite aqueous solution is sent to the ballast water supply line 107 by a pump (not shown) built in the chemical supply apparatus 101 instead of the pump arranged in the chemical supply line 109.
  • the chemical solution supply line 109 may include a sodium hypochlorite concentration meter and a flow meter, for example, in order to measure the amount of sodium hypochlorite supplied to the ballast water supply line 107.
  • the flow meter for example, an integrated flow meter FM capable of measuring a total flow rate and an instantaneous flow rate is preferable.
  • FIG. 2A is a schematic configuration diagram illustrating an example of a configuration of an apparatus capable of generating sodium hypochlorite by electrolyzing a liquid.
  • the chemical solution supply apparatus 201 includes a storage tank 211 for storing a sodium hypochlorite aqueous solution and an electrolytic tank 212 for generating sodium hypochlorite by electrolytic treatment.
  • the storage tank 211 is connected to the lines 110 and 109, can take in a liquid for generating sodium hypochlorite from the outside of the ship through the line 110, and ballasts the sodium hypochlorite aqueous solution stored through the line 109. It can be supplied to the water supply line 107.
  • the storage tank 211 and the electrolytic tank 212 are connected by lines 213 and 214, and sodium hypochlorite generated in the electrolytic tank 212 is stored in the storage tank 211 through the line 214. Between the storage tank 211 and the electrolytic cell 212, it is preferable that the sodium chlorite can be circulated by the line 213 and the line 214 from the viewpoint of generating and storing sodium hypochlorite.
  • the line 213 and / or the line 214 may include a pump for feeding liquid.
  • the line 213 includes a heat exchanger 215 and a chiller unit 216 for controlling the temperature of the aqueous sodium hypochlorite solution.
  • the storage tank 211 is preferably provided with a heat insulating material in order to control the temperature of the sodium hypochlorite aqueous solution to be stored and / or the liquid for producing the same.
  • the storage tank 211 is preferably equipped with a sodium hypochlorite concentration meter. Thereby, while being able to manage the sodium hypochlorite concentration in the storage tank 211, according to the sodium hypochlorite concentration in the storage tank 211, for example, the amount of sodium hypochlorite generated, supplied to the storage tank 211 The amount of liquid to be transferred, the amount of liquid transferred to the electrolytic cell 212, and the like can be controlled.
  • the storage tank 211 and the electrolytic tank 212 may include a blower 217 and a discharge port 218 for discharging generated gas (particularly, H 2 gas).
  • the chemical supply apparatus 101 may include a line (not shown) capable of taking in the liquid taken in by the ballast pump 106 in addition to the line 110 connected to the second water intake 116. By connecting to the ballast pump 106, the liquid for producing the sodium hypochlorite aqueous solution can be efficiently taken.
  • FIGS. 2B and 2C are schematic configuration diagrams showing another example of the configuration of an apparatus capable of generating sodium hypochlorite by electrolysis.
  • 2B includes an electrolytic tank 212 connected to the line 110 and a storage tank 211 connected to the line 109, and the electrolytic tank 212 and the storage tank 211 are connected by a line 213.
  • the chemical supply apparatus 201 of this embodiment takes in a liquid for generating sodium hypochlorite from the outside of the ship through the line 110 into the electrolytic cell 211 and generates sodium hypochlorite there.
  • the generated sodium hypochlorite aqueous solution is supplied / stored in the storage tank 211 through the line 213 and supplied to the ballast water supply line 107 through the line 109 as necessary.
  • the line 110 may include a heat exchanger (not shown) and a chiller unit (not shown) for controlling the temperature of the aqueous sodium hypochlorite solution.
  • FIG. 2B an example in which the storage tank 211 and the electrolytic tank 212 are connected by the line 213 is shown.
  • the chemical solution supply apparatus 201 of the present embodiment is not limited to this.
  • the tank 212 may be provided with a line capable of supplying a liquid, and the line and the line 213 may be circulated between the storage tank 211 and the electrolytic tank 212.
  • the 2C may be an apparatus provided with only one treatment tank 219.
  • the treatment tank 219 generates sodium hypochlorite by electrolytic treatment and stores a sodium hypochlorite aqueous solution.
  • the processing tank 219 serves as a storage tank and an electrolytic tank, for example, the chemical solution supply apparatus 201 can be further downsized.
  • the killing treatment apparatus 102 is an apparatus for killing aquatic organisms electrically or mechanically.
  • an electrical processing apparatus having the form shown in FIGS.
  • FIGS. 3A to 3D are schematic configuration diagrams showing an example of the configuration of the fixed bed type electrode electrolytic cell.
  • FIG. 3A shows a single electrode type fixed bed type electrode electrolysis arranged on the ballast water supply line 107 in a cross flow manner.
  • FIGS. 3B and 3C show an example of a bipolar fixed-bed electrode electrolyzer arranged in a cross flow manner on the ballast water supply line 107, and
  • FIG. 3D shows a dead tank on the ballast water supply line 107.
  • An example of a bipolar fixed-bed electrode electrolytic cell arranged in an end manner is shown. 3A to 3D, the same components are denoted by the same reference numerals.
  • the unipolar fixed-bed electrode electrolytic cell includes an electrolytic cell main body 302, a fixed-bed electrode 311, a power feeding electrode 312 and a power source 313, and a liquid flow (in FIG. 3A).
  • a black arrow is arranged in the ballast water supply line 107 so as to be in a horizontal direction (tangential direction) with respect to the membrane surface of the fixed floor electrode 311.
  • the liquid taken from the water intake 104 is supplied to the fixed-bed electrode electrolytic cell, the supplied liquid flows in a direction perpendicular to the membrane surface of the fixed-bed electrode 311 (the white arrow in FIG. 3A). ).
  • aquatic organisms in the liquid contact the fixed bed electrode 311 by liquid flow, electrons are transferred between the surface of the fixed bed electrode 311 and the aquatic organism cells, and the aquatic organism activity can be weakened.
  • Aquatic organisms can be destroyed or killed, or parts of aquatic organisms can be damaged.
  • accumulated matter or dirt accumulates on the membrane surface of the fixed bed electrode 311, these can be easily removed by opening the valve disposed in the line 303 and washing.
  • One end of the line 303 is connected to the outside of the ship, and the removed residue is discharged out of the ship.
  • the material of the fixed floor electrode 311 may be any material that can permeate the liquid taken from the water intake 104, for example, a porous material, a carbon-based material, and a metal material, and those coated with a noble metal.
  • a porous material for example, a porous material, a carbon-based material, and a metal material, and those coated with a noble metal.
  • the carbon-based material include activated carbon, graphite, and carbon fiber.
  • the metal material include nickel, copper, stainless steel, SUS (stainless steel), iron, and titanium. Among these, SUS and titanium are preferable as the material of the fixed floor electrode 311 from the viewpoint of strength and corrosion prevention.
  • the shape of the fixed floor electrode 311 is not particularly limited.
  • the aperture diameter of the fixed floor electrode 311 including spheres, grains, fibers, felts, woven fabrics, porous blocks, and the like is, for example, 100 ⁇ m or more. It is.
  • a material of the power supply electrode 312 for example, titanium is preferable.
  • the shape of the power supply electrode 312 include a flat plate, an expanded metal, and a perforated plate.
  • the power source 313 may be a DC power source or an AC power source, but an AC power source is preferable.
  • the bipolar fixed-bed electrode electrolytic cell includes an electrolytic cell main body 302, power supply electrode terminals 314 and 315, a fixed floor 316, a spacer 317, and a power source 313.
  • the fixed floor 316 is disposed between the power supply electrode terminals 314 and 315
  • the spacer 317 is disposed between the power supply electrode terminal 314 and the fixed floor 316, between the fixed floor 316, and between the fixed floor 316 and the power supply electrode terminal 315.
  • the spacer 317 is disposed between the power supply electrode terminal 314 and the fixed floor 316, between the fixed floor 316, and between the fixed floor 316 and the power supply electrode terminal 315.
  • each fixed floor 316 When an AC power supply is used as the power supply 313 and the power supply electrode terminals 314 and 315 are energized, the film surfaces on the power supply electrode terminal 314 side and the power supply electrode terminal 315 side of each fixed floor 316 are alternately changed to be positive and negative. Polarization is performed, and a porous anode and a porous cathode are formed on the film surface of each fixed bed 316. Since the number of fixed beds 316 arranged in the electrolytic cell is increased by using a bipolar fixed electrode electrolytic cell in this way, the number of times that aquatic organisms come into contact with the fixed bed 316 can be increased, and the processing efficiency can be increased. Can be improved.
  • 3C is the same as the configuration of FIG. 3B except that one fixed bed 316 is arranged.
  • the bipolar electrode fixed-bed electrode electrolyzer of FIG. 3D has the configuration of FIG. 3B except that it is arranged in a dead end method instead of the cross flow method, and three fixed beds 316 are arranged. It is the same.
  • a valve (not shown) is preferably disposed between the connection portion with the chemical solution supply line 109 and the killing device 102.
  • the amount of liquid (ballast water) injected into the ballast tank 103 can be controlled based on the measured value with a flow meter FM (not shown) disposed between the ballast pump 106 and the killing device 102.
  • the valve is preferably an electric valve from the viewpoint of easy control of the amount injected into the ballast tank 103.
  • ballast water treatment using the ballast water treatment system of the present Embodiment 1-1 will be described with reference to FIGS. 4A and 4B.
  • the unloading is started (S402).
  • the ballast water starts to be taken in and processed (S403), and the ballast pump 106, the killing device 102, and the chemical solution supply line 109 of the chemical solution supply device 101 are activated (S404).
  • liquid intake and ballast water treatment are started through the water intake port 104.
  • the liquid taken in through the water intake 104 is supplied to the killing apparatus 102 after large dust or the like is removed by the strainer 105, and killing of aquatic organisms contained in the liquid is performed.
  • the killing treatment apparatus 102 a relatively large aquatic organism among the aquatic organisms contained in the taken-in liquid is separated, removed, destroyed and / or killed by performing an electrical or mechanical treatment.
  • a sodium hypochlorite aqueous solution is supplied from the chemical solution supply apparatus 101 to the liquid processed by the killing apparatus 102, and aquatic organisms are killed by sodium hypochlorite.
  • a liquid containing sodium hypochlorite is supplied to the ballast tank 103 through the ballast water supply line 107.
  • the sodium hypochlorite concentration in the supplied sodium hypochlorite aqueous solution is, for example, 5000 ppm or more, and the pH is, for example, 8-9.
  • This ballast water treatment is performed while controlling the injection amount of ballast water and / or the supply amount of sodium hypochlorite (S405). If a predetermined amount of ballast water is injected into the ballast tank 103 and the concentration of sodium hypochlorite in the ballast tank 103 is controlled to a predetermined concentration (S406), the ballast water intake and processing is terminated. (S407), the pump of the chemical supply line 109 of the ballast pump 106, the killing treatment apparatus 102, and the chemical supply apparatus 101 is stopped (S408). After killing treatment in the killing treatment apparatus 102, by killing by supplying an aqueous sodium hypochlorite solution to kill the aquatic organisms contained in the taken-in liquid and / or ballast water in the ballast tank It can be done efficiently.
  • ballast pump 106 and the concentration meter are activated (S412).
  • discharge of the ballast water from the ballast tank 103 to the outside of the ship is started.
  • Ballast water is introduced into the ballast water supply line 107 from the ballast tank 103.
  • the sodium hypochlorite concentration of the ballast water to be discharged is measured by a concentration meter disposed in the ballast water supply line 107 (S413). It is determined whether the measured sodium hypochlorite concentration satisfies the discharge standard (S414).
  • the sodium hypochlorite concentration is less than 0.2 ppm, it is determined that the discharge standard is satisfied through the water intake 104. Release (deballast) into the sea (S415). When the sodium hypochlorite concentration is 0.2 ppm or more, a neutralizing agent is added (S416), and the measurement of the sodium hypochlorite concentration (S413) and the above determination (S414) are performed again. When all the ballast water in the ballast tank 103 is discharged, the deballasting is finished and the concentration meter and the ballast pump 106 are stopped (S417).
  • the port departs (S421).
  • the pump 116 is activated and the liquid is taken into the chemical supply apparatus 101 through the second water intake 114.
  • the ballast pump 106 may be activated in conjunction with the activation of the pump 116, and the liquid may be taken into the chemical solution supply apparatus 101 through the sea chest.
  • the temperature control means is activated (S422), and the temperature of the liquid for generating sodium hypochlorite is controlled to an optimum temperature at which decomposition of hypochlorous acid is suppressed.
  • the pump 116 is stopped (S423). At this time, it is preferable to operate the inverter without stopping the temperature control means.
  • the rectifier, pump, blower, etc. in the chemical supply apparatus 101 are started to start electrolysis of the liquid, and sodium hypochlorite is generated to produce an aqueous sodium hypochlorite solution.
  • S424 concentration of sodium hypochlorite stored in the storage tank 211 reaches a specified concentration, for example, 5000 ppm or more (S425), the generation of sodium hypochlorite is terminated (S426).
  • the manufactured sodium hypochlorite aqueous solution is stored in the chemical solution supply apparatus 101.
  • the pH of the aqueous sodium hypochlorite solution to be stored is, for example, 8-9.
  • the temperature control means is preferably operated without stopping until the sodium hypochlorite aqueous solution is supplied.
  • FIG. 5 is a functional block diagram showing an example of the configuration of the ballast water control system.
  • the ballast water control system of FIG. 5 is a functional block diagram showing an example of the configuration of the ballast water control system.
  • the 5 includes a measuring unit 501 including a concentration meter in the ballast water supply line 107, a recording unit 502 that records the sodium hypochlorite concentration measured by the measuring unit 501, and the concentration of the recording unit 502 Based on the data, the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 and the increase / decrease in the amount of ballast water injected into the ballast tank 103 are determined, and the hypochlorite supplied from the chemical solution supply line 109 to the ballast tank 103 is determined.
  • a control unit 503 is provided for controlling the amount of sodium chlorate, the amount of ballast water injected, and the like.
  • the measurement unit 501 may be configured as shown in the measurement unit 601 in FIG. That is, the measuring unit 501 includes a sodium hypochlorite concentration meter in the storage tank 211 of the chemical supply device 101 and a sodium hypochlorite concentration in the deballast line in addition to the sodium hypochlorite concentration meter in the ballast water supply line 107. One or more sodium hypochlorite concentration meters at the discharge end may be included.
  • the measurement result in the measurement unit 501 can be recorded in the recording unit 502.
  • the recording unit 502 can record one or more data as shown in the recording unit 602 of FIG. That is, the concentration of sodium hypochlorite stored in the storage tank 211 measured by the measurement unit 601, the ballast time (ballast water treatment time), the amount of ballast water stored in the ballast tank 103, navigation data (at least the time until drainage)
  • the sodium hypochlorite concentration of the ballast water after being treated with, the supply amount of the reducing agent, and the sodium hypochlorite concentration after the supply of the reducing agent may be included.
  • the recording unit 602 can also record a sodium hypochlorite concentration range to be maintained in the ballast tank 103.
  • the control unit 503 can be configured as shown in the control unit 603 of FIG. That is, the control unit 603 can include an analysis unit 611, a sodium hypochlorite generation control unit 612, and a supply amount control unit 613.
  • the analysis unit 611 for example, from the data recorded in the recording unit 602, the supply amount of the sodium hypochlorite aqueous solution supplied to the ballast water supply line 107, the supply amount of the reducing agent, and the next generated in the chemical solution supply apparatus 101. Determine the amount of sodium chlorite.
  • the sodium hypochlorite generation control unit 612 controls, for example, the amount of sodium hypochlorite generated in the chemical supply apparatus 101 based on the determination.
  • the supply amount control unit 613 controls, for example, the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 to the ballast tank 103 based on the determination.
  • the chemical solution supply apparatus 101 supplies the sodium hypochlorite aqueous solution to the liquid processed between the killing treatment apparatus 102 and the ballast tank 103, that is, the killing treatment apparatus 102.
  • the chemical solution supply line 109 may be connected between the ballast pump 106 and the killing treatment apparatus 102 to supply the sodium hypochlorite aqueous solution to the liquid before the killing treatment.
  • a chemical solution supply device 101 is connected between a chemical solution supply line 109 connected between the killing treatment device 102 and the ballast tank 103, and between the ballast pump 106 and the killing treatment device 102.
  • a second chemical solution supply line 809, and a sodium hypochlorite aqueous solution may be supplied to the liquid before and after the killing treatment.
  • FIG. 9 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-2 of the present invention.
  • the same components as those in FIG. 9 are identical to FIG. 9 in FIG. 9, the same components as those in FIG.
  • the ballast water treatment system of Embodiment 1-2 includes a post-treatment device 901, a line 902 for supplying the ballast water in the ballast tank 103 to the post-treatment device 901, and a discharge line (de-ballast for deballasting the ballast water).
  • the configuration is the same as that of the ballast water treatment system according to Embodiment 1-1 except that a ballast line) 903 and a reducing agent supply device (reducing agent storage tank) 904 are provided.
  • the ballast water treatment system of the present Embodiment 1-2 since the post-treatment device 901 is provided, the amount of reducing agent used can be reduced.
  • ballast water supply line 107 One end of the line 902 is connected to the ballast water supply line 107 and the other end is connected to the post-treatment device 901, and the ballast water in the ballast tank 103 is supplied to the post-treatment device 901 through the ballast water supply line 107. Can do.
  • the post-treatment device 901 is a device for performing a treatment for reducing the sodium hypochlorite concentration of the ballast water below the discharge standard and / or reducing the amount of reducing agent used when discharging the ballast water.
  • the reducing agent supply device 904 is for reducing sodium hypochlorite in the ballast water to be discharged so that the sodium hypochlorite concentration falls below the discharge standard.
  • the reducing agent supply device 904 is connected to the discharge line 903 and can supply the reducing agent to the discharged ballast water processed by the post-processing device 901.
  • Examples of the reducing agent include sodium thiosulfate and sodium sulfite.
  • the discharge line 903 measures the sodium hypochlorite concentration meter for measuring the concentration of sodium hypochlorite discharged and the number of living cells of aquatic organisms (particularly microorganisms) contained in the discharged ballast water. Therefore, you may provide apparatuses, such as a microbe inspection apparatus.
  • the sodium hypochlorite concentration meter is disposed at least between the aftertreatment device 901 and the ballast pump 106 and at the discharge end of the discharge line 903 (near the ballast water discharge port). It is preferable.
  • ballast water treatment at the time of ballast water discharge using the ballast water treatment system of the present embodiment 1-2 will be described.
  • the ballast pump 106 is driven to start discharging the ballast water from the ballast tank 103.
  • Ballast water in the ballast tank 103 is supplied to the post-treatment device 901 via the ballast water supply line 107 and the line 902.
  • the ballast water that has been subjected to the decomposition treatment of sodium hypochlorite in the post-treatment device 901 is supplied to the killing treatment device 102 via the discharge line 903 and discharged outside the ship. At this time, in the killing treatment apparatus 102, aquatic organisms contained in the discharged ballast water may be processed.
  • the discharge line 903 is connected to the killing apparatus 102
  • the present invention is not limited to this.
  • the discharge line 903 may not be connected to the killing treatment apparatus 102.
  • the ballast water may be discharged without passing through the killing apparatus 102.
  • FIG. 10 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-3 of the present invention.
  • the same components as those in FIG. 10 are identical to FIG. 10 in FIG. 10, the same components as those in FIG. 10 in FIG. 10, the same components as those in FIG. 10
  • the ballast water treatment system according to Embodiment 1-3 includes an acidic liquid storage tank 1001 for controlling the pH of a liquid that supplies an aqueous sodium hypochlorite solution to a pKa of sodium hypochlorite or less, and a ballast water supply. Except for the line 107 having a pH meter, the configuration is the same as that of the ballast water treatment system of the embodiment 1-1.
  • the ballast water treatment system includes the acidic liquid storage tank 1001 to control the pH of the liquid that supplies sodium hypochlorite to an optimum range for the killing ability of hypochlorous acid.
  • the optimum pH is, for example, 4 to 6, preferably about 5.
  • FIG. 11A is a schematic configuration diagram showing a configuration of a ballast water treatment system according to Embodiment 1-4 of the present invention.
  • FIG. 11A the same components as those in FIG. 11A.
  • the ballast water treatment system in the present embodiment 1-4 includes a ballast water supply line 107, a chamber 1101 arranged in the ballast water supply line 107, an electrical killing treatment apparatus 102 arranged in the discharge port of the chamber, A chemical solution supply apparatus 101 for supplying a sodium hypochlorite aqueous solution to the ballast water supply line 107 is provided.
  • the ballast water taken from the water intake 104 can be supplied to the electrical killing apparatus 102 while being temporarily stored in the chamber 1101.
  • the ballast water treatment system according to the present embodiment 1-4 includes the chamber 1101 and the ballast according to the embodiment 1-1 except that the electrical killing apparatus 102 is disposed at the discharge port of the chamber 1101.
  • the configuration is the same as that of the water treatment system.
  • ballast water treatment using the ballast water treatment system of the present embodiment 1-4 is performed, for example, as follows. First, ballast water taken from the water intake 104 is introduced into the chamber 1101 through the ballast water supply line 107, and then supplied to the electrical killing apparatus 102 through the outlet of the chamber 1101. Therefore, an electrical killing process is performed. The ballast water that has been killed is introduced into the ballast water supply line 107, then the aqueous sodium hypochlorite solution is supplied from the chemical solution supply apparatus 101, and is stored in the ballast tank 103 through the ballast water supply line 107.
  • the diameter of the chamber 1101 is preferably larger than the tube diameter of the ballast water supply line 107, and more preferably increases in a tapered shape from the connection portion with the ballast water supply line 107 toward the inside of the chamber 1101. According to this configuration, the flow rate of the ballast water in the chamber 1101 can be made slower than the flow rate in the ballast water supply line 107. For this reason, the frequency
  • the discharge port of the chamber 1101 is preferably formed at the bottom of the chamber 1101. According to this configuration, the ballast water discharged from the bottom of the chamber 1101 can be processed by the electrical killing apparatus 102.
  • the ballast water supply line 107 may further include a filter.
  • FIG. 11B is a schematic configuration diagram showing another example of the configuration of the ballast water treatment system according to Embodiment 1-4. In FIG. 11B, the same components as those in FIG. 11A are denoted by the same reference numerals.
  • the filter 1102 for example, plankton in the ballast water supplied to the ballast tank, a dead body of aquatic organisms killed by the electrical killing device 102, or the like Can be captured.
  • FIG. 11B shows a form in which the filter 1102 is disposed between the connection portion with the chemical solution supply apparatus 101 and the ballast tank 103
  • the present invention is not limited to this, and for example, a killing treatment apparatus You may arrange
  • FIG. The number of filters 1102 is not particularly limited, and may be one or may be two or more. When two or more filters are arranged, for example, as shown in FIG. 11B, the ballast water supply line 107 may be branched and one filter may be arranged for each.
  • the filter 1102 is not particularly limited. For example, a filter having a pore diameter of 10 to 200 ⁇ m can be used.
  • FIG. 12 is a partial view showing a part of the ballast water treatment system according to Embodiment 1-4.
  • FIGS. 12A and 12B are views showing a portion (a portion surrounded by a broken line in FIG. 11A) connecting the killing treatment device 102 and the chemical solution feeding device 101 in the ballast water supply line 107.
  • medical solution supply apparatus 101 is shown.
  • the portion connecting the killing treatment device 102 and the chemical solution supply device 101 may be a refracting portion that is refracted into a crank shape, or from the killing treatment device 102 as shown in FIG. 12B. It may be an inclined portion in which a gentle upward gradient is formed toward the chemical solution supply apparatus 101.
  • the chemical solution supply device 101 is preferably disposed near the upper end of the refracting portion as shown in FIG. 12A.
  • the ballast water supply line 107 has an inclined part, it is preferable to arrange
  • the sodium hypochlorite aqueous solution supplied from the chemical solution supply apparatus 101 can be supplied to the killing treatment apparatus 102. Thereby, the sterilization process by the liquid sodium hypochlorite which remains in the killing processing apparatus 102 can be performed.
  • the gradient of the inclined portion is not particularly limited as long as it is a gentle gradient, but is, for example, 1/200 or more, preferably 1/100 or more and 1/50 or less.
  • a valve may be disposed on the inclined portion. Thereby, the amount of sodium hypochlorite aqueous solution supplied to the killing apparatus 102 can be controlled.
  • the order of the supply of the sodium hypochlorite aqueous solution and the electrical killing device is not particularly limited, and hypochlorous acid is required before the electrical killing device is treated.
  • An aqueous sodium solution may be supplied.
  • FIG. 13 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-5 of the present invention.
  • FIG. 13 the same components as those in FIG. 13
  • the ballast water treatment system according to Embodiment 1-5 includes a ballast water supply line 107, a chemical solution supply apparatus 101 for supplying a sodium hypochlorite aqueous solution to the ballast water supply line 107, and a ballast water supply line 107.
  • a disposed chamber 1301 and an electrical killing device 1302 are provided, and the electrical killing device 1302 is placed in the chamber 1301.
  • the electrical killing treatment device 1302 since the electrical killing treatment device 1302 is disposed in the chamber 1301, the ballast water introduced from the ballast water supply line 107 is stored in the chamber 1301. However, the killing process by the electrical killing apparatus 1302 can be performed.
  • ballast water treatment system according to the first embodiment is the same as the configuration of the ballast water treatment system according to the first embodiment except that the killing treatment apparatus 1302 is disposed in the chamber 1301.
  • ballast water treatment using the ballast water treatment system of the present Embodiment 1-5 can be performed as follows, for example.
  • ballast water taken from the water intake port 104 is introduced into the chamber 1301 through the ballast water supply line 107, where an aquatic organism in the ballast water is electrically killed.
  • the electrical killing apparatus 1302 is preferably disposed in a portion of the chamber 1301 where the flow velocity is low, for example, near the bottom of the chamber 1301.
  • the aquatic organisms in the ballast water stagnate due to the difference in specific gravity with the ballast water, so that the number of contact between the aquatic organism and the electrical killing device 1302 can be further increased.
  • the treated liquid is introduced into the ballast water supply line 107 from the chamber 1301, and the sodium hypochlorite aqueous solution is supplied from the chemical solution supply apparatus 101 and then introduced into the ballast tank 103.
  • the discharge port of the chamber 1301 is preferably formed in the upper part of the chamber 1301. Thereby, the amount of aquatic organisms in the liquid introduced into the ballast water supply line 107 can be reduced.
  • the discharge port of the chamber 1301 is preferably formed at a position lower than the introduction port of the chamber 1301.
  • the diameter of the discharge port of the chamber 1301 is preferably larger than the diameter of the introduction port. According to these configurations, the flow rate of the ballast water in the chamber 1301 is made slower than the flow rate in the ballast water supply line 107, and the number of times that aquatic organisms in the ballast water contact the electrical killing device 1302 is further increased. be able to.
  • the ratio of the diameter of the discharge port to the diameter of the introduction port is not particularly limited, but may be, for example, 1: 1.2 to 1.5.
  • the diameter of the line connected to the discharge port is preferably gradually increased from the chamber 1301 toward the chemical solution supply apparatus 101. Thereby, an increase in pressure loss can be suppressed.
  • the chamber 1301 may further include a rectifying member such as a baffle. Thereby, the flow velocity in the chamber 1301 can be easily made constant. Further, the rectifying member is preferably arranged on the upper part of the electrical killing apparatus 1302. According to this configuration, more aquatic organisms in the ballast water can be collected on the electrical killing treatment device 1302 side, and the number of contacts with the electrical killing treatment device 1302 can be further increased to improve the killing treatment efficiency. Can do.
  • a line (not shown) connected to the outboard or the discharge line may be connected to the bottom of the chamber 1301. Through this line, it is possible to discharge the accumulated matter and dust accumulated in the chamber 1301 and / or the electrical killing apparatus 1302 out of the ship.
  • the portion connecting the killing treatment device 102 and the chemical solution feeding device 101 may be a refracting portion refracted in a crank shape as in the embodiment 1-4, or the killing treatment device.
  • An inclined portion in which a gentle upward gradient is formed from 102 to the chemical solution supply apparatus 101 may be used.
  • an aqueous sodium hypochlorite solution supplied from the chemical solution supply apparatus 101 can be supplied to the chamber 1301 in which the killing treatment apparatus 102 is disposed. Thereby, the sterilization process by the liquid sodium hypochlorite which remains in the chamber 1301 can be performed.
  • the order of the supply of the sodium hypochlorite aqueous solution and the processing by the electrical killing device is not particularly limited to this order, and before performing the processing of the electrical killing device.
  • a sodium hypochlorite aqueous solution may be supplied.
  • FIG. 14 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-6 of the present invention. 14, the same components as those in FIG. 13 are denoted by the same reference numerals.
  • the ballast water treatment system in the present Embodiment 1-6 is arranged in the ballast water supply line 107, the chemical solution supply apparatus 101 for supplying the sodium hypochlorite aqueous solution to the ballast water supply line, and the ballast water supply line 107.
  • a chamber 1301 and an electrical killing device 1302 disposed in the chamber 1301, and the chemical solution supply device 101 has a water intake line 1410 for taking water for generating sodium hypochlorite,
  • the intake line 1410 is connected to the intake port 104 to which the ballast water supply line is connected, and includes an intake pump 116 different from the ballast water intake pump 106 (for example, a ballast pump).
  • the chemical liquid supply apparatus 101 has a water intake line 1410 connected to the water intake (sea chest) 104, and the water intake line 116 is different from the ballast pump 106. Is the same as the configuration of the ballast water treatment system of Embodiment 1-5.
  • ballast water treatment system of Embodiment 1-6 since the water intake pump 116 different from the ballast pump 106 is provided, water can be taken without driving the ballast pump 106 and the like. For this reason, for example, liquid intake and sodium hypochlorite can be easily generated even during navigation.
  • a ballast water supply line for supplying a liquid taken from an intake port to a ballast tank, and an aqueous sodium hypochlorite solution for sterilizing aquatic microorganisms in the liquid.
  • ballast water treatment system comprising a chemical solution supply device for supplying to the line, the liquid in the line supplied with a predetermined amount of sodium hypochlorite from the chemical solution supply device is sampled, and hypochlorite in the sampled sample
  • a method for controlling ballast water comprising measuring attenuation of sodium acid concentration and adjusting a supply amount of sodium hypochlorite supplied from the chemical solution supply device to the line based on the measurement data. It is also referred to as “ballast water control method”.
  • the degree of attenuation of sodium hypochlorite for sterilizing aquatic microorganisms in ballast water varies depending on the liquid to be treated. That is, the attenuation of sodium hypochlorite is, for example, Based on the knowledge that it is influenced by the type and amount of microorganisms and organic matter in the seawater. Furthermore, the present invention measures the decay of sodium hypochlorite using the taken-up liquid, and controls the supply amount of sodium hypochlorite using the decay data, so that the inside of the ballast tank after completion of water injection This is based on the knowledge that sodium hypochlorite concentration of ballast water can be controlled more accurately.
  • ballast Water Management Convention As described above, the adoption of the Ballast Water Management Convention and the obligatory installation of ballast water treatment equipment demanded a new technology that can treat ballast water. Among them, if sodium hypochlorite is excessive in the ballast water, a reducing agent is required at the time of discharge, or it takes time to leave, so sodium hypochlorite in the ballast water. New technologies related to concentration control are expected. Then, this invention provides the new processing system which can control the sodium hypochlorite density
  • the concentration of sodium hypochlorite in the ballast tank while injecting the ballast water.
  • the sodium hypochlorite concentration can be controlled according to the liquid taken.
  • sodium hypochlorite becomes excessive in the ballast tank, and a large amount of reducing agent is used for drainage, or it is allowed to leave over time. There is an effect that it can be avoided.
  • the reference sodium hypochlorite supply amount initially added to the taken-up liquid is not excessive or insufficient with respect to the target concentration range in the ballast water after water injection. It is possible to control the sodium hypochlorite concentration according to the taken-in liquid by making a decision while injecting and adjusting the supply amount added to the taken-in liquid. Therefore, according to the ballast water control method of the present invention, the sodium hypochlorite is insufficient in the ballast tank and the sterilizing effect is not exhibited, or the sodium hypochlorite is excessive and a large amount is discharged during drainage. There is an effect that it is possible to avoid the need for a reducing agent or a long time leaving.
  • “sterilization treatment of aquatic microorganisms” includes sterilizing at least part of the aquatic microorganisms contained in the liquid to be treated and / or ballast water and / or suppressing the growth of aquatic microorganisms.
  • “sterilization treatment of aquatic microorganisms” means that at least aquatic microorganisms may be sterilized, and together with the sterilization treatment of aquatic microorganisms, sterilization treatment of organisms larger than the aquatic microorganisms, other organisms, etc. May be.
  • the sterilization treatment of aquatic microorganisms preferably includes managing the sodium hypochlorite concentration in the ballast tank so as to satisfy the ballast water discharge standard shown in Table 1 above when discharging the ballast water, more preferably, Including sterilization so as to satisfy the ballast water discharge criteria shown in Table 1 above when ballast water is discharged.
  • the “chemical solution supply device” is a device that supplies an aqueous sodium hypochlorite solution to the taken-in liquid and / or ballast water, and generates sodium hypochlorite by electrolysis.
  • the form of the apparatus which stores sodium hypochlorite or its aqueous solution may be sufficient.
  • the chemical solution supply apparatus using electrolysis include a mode including an electrolytic cell and a storage tank as described later. Since the chemical supply device using electrolysis can produce sodium hypochlorite using seawater, for example, aquatic microorganisms can be used without using special chemicals such as disinfectants brought in from outside the ship. Can be sterilized.
  • Supply of seawater or the like to the storage tank may be performed from a ballast water supply line via a pump or a valve, or may be directly taken from outside the ship. It is preferable to take water directly instead of from the ballast water supply line from the viewpoint of easily taking water during navigation.
  • generated sodium hypochlorite is stored by the storage tank with the form of aqueous solution, and is supplied to a ballast water supply line via a pump or a valve
  • the chemical supply device can measure the concentration of sodium hypochlorite so that the amount of sodium hypochlorite supplied to the ballast water supply line can be measured (hereinafter referred to as “sodium hypochlorite concentration meter” or “ It is preferable to provide a flow meter.
  • the chemical solution supply apparatus using electrolysis includes a sodium chloride aqueous solution storage tank and / or a sodium chloride storage tank from the viewpoint of improving processing efficiency.
  • the sodium chloride aqueous solution storage tank and / or the sodium chloride storage tank By providing the sodium chloride aqueous solution storage tank and / or the sodium chloride storage tank, the sodium chloride aqueous solution / sodium chloride can be stored in the tank, and the sodium chloride aqueous solution / sodium chloride can be supplied to the electrolytic cell as necessary. Thereby, even if it is a ship which takes in ballast water in a fresh water area, for example, sodium hypochlorite can be generated and sterilization processing by sodium hypochlorite can be performed.
  • vigation data refers to data including navigation time, time to drainage, water quality at the intake port, weather conditions in the navigation sea area, and / or information related to these obtained during navigation.
  • “attenuation of sodium hypochlorite” means that the concentration of sodium hypochlorite in the ballast water that has been supplied with sodium hypochlorite from the chemical supply device is reduced.
  • FIG. 20 shows an example of the decay curve of sodium hypochlorite.
  • the solid curve in FIG. 20 shows the change in sodium hypochlorite concentration in the model seawater.
  • concentration first decreases rapidly (time 0 to time t3). Thereafter, a substantially plateau concentration (dx) is displayed (from time t3).
  • the degree of decay of sodium hypochlorite is also affected by the type and amount of microorganisms, organic matter, and / or other water components in the drawn water.
  • the dotted line curve in FIG. 20 is an example in the case where the concentration (dy) at the time of almost plateau in the actually drawn seawater is lower by ⁇ d than the model seawater.
  • FIG. 20 demonstrates the case where the extent of attenuation
  • sodium hypochlorite is supplied only according to the expected attenuation (attenuation in model seawater), there is a concentration difference ⁇ d when a plateau is reached with the seawater actually taken.
  • the sodium hypochlorite concentration may be insufficient or excessive.
  • ballast water control method of the present invention is to measure the attenuation of sodium hypochlorite in the ballast water poured in parallel while pouring the ballast water, and based on the measurement data, the chemical solution Adjusting the amount of sodium hypochlorite supplied from the supply device to the line.
  • the adjustment of the supply amount is based on predicting the sodium hypochlorite concentration in the ballast tank when the ballast water injection is completed, when a predetermined time has elapsed, and / or when the ballast water is discharged, based on the attenuation measurement data. Based on the determination, increase / decrease in the amount of sodium hypochlorite supplied from the chemical supply device to the ballast water supply line, and control the amount of sodium hypochlorite supplied to the line based on the determination. Can include.
  • the adjustment of the supply amount from the chemical solution supply device based on the attenuation data of sodium hypochlorite can be performed as follows, for example. Decay of sodium hypochlorite using model seawater can be measured in advance, so the initial supply amount of sodium hypochlorite to be supplied is determined based on this model measurement data and information such as the flow rate of the liquid to be taken it can. Next, attenuation is measured using the taken-in liquid and compared with model measurement data measured in advance, for example, ⁇ d in FIG. 20 is calculated. Based on these data, the supply amount is increased if the degree of attenuation is high, and the supply amount is decreased if the degree of attenuation is low. By performing such adjustment, the sodium hypochlorite concentration in the ballast tank can be kept within the target range.
  • Attenuation of sodium hypochlorite in the drawn liquid can be performed by measuring the concentration of sodium hypochlorite at predetermined intervals. For example, it is possible to obtain attenuation data by measuring at time t1 to t6 shown in FIG. Examples of the measurement interval include 20 minutes to 1.5 hours, preferably 30 minutes to 1 hour.
  • the number of measurements is preferably in a range where an attenuation curve can be predicted from the necessity of performing attenuation measurement in parallel with water injection into the ballast tank and adjusting the concentration of hypochlorous acid supplied as necessary.
  • FIG. 20 illustrates six measurements from t1 to t6, the number of measurements can be reduced if an attenuation curve can be predicted.
  • sodium hypochlorite decay measurement is performed by sampling the ballast water in the ballast water supply line after sodium hypochlorite is supplied from the chemical supply device.
  • the sampling point of the sample to be measured for attenuation is preferably a ballast water supply line between the connection point between the chemical solution supply device and the ballast water supply line and the ballast tank.
  • damping measurement are performed by the attenuation
  • sampling is performed only once after the start of water pouring, and the method for controlling ballast water of the present invention can be performed by obtaining attenuation data of sodium hypochlorite based on this sample.
  • sampling can be performed a plurality of times to obtain attenuation data of a plurality of sodium hypochlorites and perform the ballast water control method of the present invention.
  • measurement can be performed by exchanging samples using one attenuation measurement unit, or multiple samples sampled simultaneously or at different times using multiple attenuation measurement units can be measured in parallel. Can be measured.
  • the present invention relates to a ballast water injection method including controlling the sodium hypochlorite concentration in ballast water by the ballast water control method of the present invention.
  • the present invention relates to a ballast water treatment system capable of performing the ballast water control method of the present invention, and a ship equipped with the ballast water system.
  • the present invention includes, as other aspects, a ballast water supply line that connects a water intake and a ballast tank, and a sodium hypochlorite aqueous solution that is connected to the line and sterilizes aquatic microorganisms in the liquid.
  • a chemical solution supplying device for supplying to the line, a connection point between the line and the chemical solution supplying device, and a ballast tank, and sampling the liquid in the line to measure the sodium hypochlorite concentration.
  • a controller the controller based on the decay rate data of sodium hypochlorite, when the ballast water injection is completed, when a predetermined time has elapsed, and Predicts the concentration of sodium hypochlorite in the ballast tank when ballast water is discharged, determines the increase or decrease in the amount of sodium hypochlorite supplied from the chemical supply device, and the amount of sodium hypochlorite supplied to the line It is related with the ballast water treatment system (henceforth "the 2nd ballast water treatment system of this invention") including control.
  • the control unit further includes at least an integrated water injection amount of ballast water, an integrated supply amount of sodium hypochlorite, navigation data, and a predetermined sodium hypochlorite concentration to be maintained in the ballast tank before the control.
  • the prediction and / or the determination may be made based on one.
  • ballast water may exist in the ballast tank water before pouring.
  • the ballast tank is equipped with an instrument that can measure the capacity of ballast water such as a liquid level gauge, and an instrument that can measure the sodium hypochlorite concentration in the ballast tank, and includes the above information and the prediction and / or Preferably, the determination is made.
  • FIG. 15 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 2-1 of the present invention.
  • the ballast water treatment system of the present Embodiment 2-1 includes a chemical solution supply apparatus 101 and an attenuation measurement unit 112.
  • the chemical solution supply apparatus 101 is connected to a ballast water supply line 107 via lines 108 and 109.
  • the line 108 is a line for supplying the liquid (ballast water) taken before the sodium hypochlorite aqueous solution in the ballast water supply line 107 is added to the chemical supply apparatus 101.
  • the line 109 is a line for supplying a sodium hypochlorite aqueous solution from the chemical solution supply apparatus 101 to the ballast water supply line 107.
  • a liquid may be directly taken in from the outside by the line 110 instead of the line 108 for transporting the liquid taken from the ballast water supply line 107 to the chemical liquid supply apparatus 101.
  • Lines 108-110 may be equipped with a pump for feeding liquid.
  • the line 109 preferably includes a sodium hypochlorite concentration meter and a flow meter for measuring the amount of sodium hypochlorite supplied to the ballast water supply line 107, and the flow meter has a total flow rate.
  • An integrated flow meter FM that can be measured is preferable.
  • the lines 108 to 110 each have a form including a pump, but the present invention is not limited to this form.
  • the chemical solution supply apparatus 101 has a built-in structure. The liquid may be transported by a pump (not shown).
  • the line 109 may be connected to the sea chest 104 instead of the ballast water supply line 107.
  • ballast water supply line 107 is connected to the ballast tank 103.
  • the ballast tank 103 includes a plurality of ballast tanks 103a to 103d.
  • the other end of the ballast water supply line 107 is connected to a water intake (sea chest) 104, a strainer 105, and a ballast pump 106 that take in the ballast water.
  • an attenuation measurement unit 112 is arranged.
  • the attenuation measurement unit 112 samples ballast water from the line 111 after the start of ballast water injection, and repeatedly measures the sodium hypochlorite concentration over time. As described above, by measuring in this way, it is possible to analyze how sodium hypochlorite is reduced in the taken-up liquid and to adjust the amount of sodium hypochlorite supplied from the line 109. In addition, while the attenuation measurement unit 112 is measuring the attenuation, it can be continued without stopping the water injection of the ballast water, thereby preventing time loss.
  • FIG. 16 is a schematic configuration diagram illustrating an example of a configuration of an apparatus capable of sterilizing aquatic microorganisms using electrolysis.
  • the chemical solution supply apparatus 201 includes a storage tank 211 and an electrolytic tank 212.
  • the storage tank 211 and the electrolytic tank 212 are connected by lines 213 and 214.
  • the liquid in the storage tank 211 is conveyed to the electrolytic tank 212 through the line 213, and sterilization processing by electrolytic treatment is performed in the electrolytic tank 212.
  • the liquid processed in the electrolytic bath 212 is transferred to the storage bath 211 through the line 214. It is preferable that the storage tank 211 and the electrolytic tank 212 are circulated by lines 213 and 214 from the viewpoint of generating and storing sodium hypochlorite.
  • Such a chemical solution supply apparatus 201 uses electrolytic treatment, for example, it is possible to sterilize aquatic microorganisms in a liquid without using special chemicals such as a bactericide brought in from the outside of the ship. it can.
  • electrolytic bath 212 it is preferable that sodium hypochlorite is generated by electrolytic treatment of sodium chloride contained in the liquid, and the aquatic microorganisms in the liquid are sterilized using the generated sodium hypochlorite.
  • a storage tank 211 is a tank for storing unprocessed and / or processed liquid, and the storage tank 211 includes a line 213 for introducing a liquid for electrolysis and a post-electrolysis liquid. Each is connected to a line 214 for discharging liquid.
  • the reservoir 211 can be connected to the lines 108, 109, and 110.
  • the storage tank 211 is preferably equipped with a sodium hypochlorite concentration meter. Thereby, while being able to manage the sodium hypochlorite density
  • a chemical solution supply apparatus 201 shown in FIGS. 2A and 2B can be used as the chemical solution supply apparatus 101 using electrolysis.
  • the ballast water treatment system further includes a recording unit for recording data measured by the attenuation measurement unit, and a ballast water injection solution from the chemical solution supply device to the line via the connection point. It is preferable to include a controller that controls the amount of sodium hypochlorite supplied.
  • the control unit predicts the sodium hypochlorite concentration in the ballast tank when the ballast water injection is completed, the predetermined time has elapsed, or the ballast water is discharged based on the decay rate data of sodium hypochlorite, An increase or decrease in the amount of sodium hypochlorite supplied from the supply device can be determined, and the amount of sodium hypochlorite supplied to the line can be controlled.
  • the attenuation measurement unit for example, an apparatus as shown in FIG. 21 can be used.
  • a sample sampled from the ballast water supply line 107 is poured into the container 701 through the line 111.
  • the attenuation measurement unit 112 includes a stirrer 703 driven by a motor M from the viewpoint of maintaining the uniformity of concentration in the container 701.
  • the sample in the container 701 is periodically measured by the densitometer C through the line 702 by the pump P.
  • FIG. 17 is a functional block diagram showing the configuration of the ballast water control system in the embodiment 2-2 of the present invention.
  • Embodiment 2-2 relates to a ballast water control system that can be applied to a ballast water treatment system as shown in FIG. That is, the ballast water control system 170 in FIG. 17 includes a measurement unit 171 including the attenuation measurement unit 112, a recording unit 172 that records sodium hypochlorite attenuation rate data measured by the measurement unit 171, and a recording unit 172.
  • a control unit 173 is provided that determines increase / decrease in the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 based on the decay rate data and controls the amount of sodium hypochlorite supplied to the ballast water supply line 107.
  • the ballast water control system 170 of FIG. 17 may be included as a component in the ballast water treatment system of Embodiment 2-1 shown in FIG.
  • the measurement unit 171 may be configured as shown in the measurement unit 181 in FIG. That is, the measurement unit 181 includes a flow meter (FM) and a sodium hypochlorite concentration meter (C) disposed in the ballast water supply line 107 in addition to the attenuation measurement unit 112, and the storage tank 211 of the chemical solution supply apparatus 101. A sodium hypochlorite concentration meter may be included. Such information can be recorded in the recording unit 172.
  • FM flow meter
  • C sodium hypochlorite concentration meter
  • the recording unit 172 can record data as shown in the recording unit 182 of FIG. That is, the decay rate data measured by the measurement unit 181, the flow rate and sodium hypochlorite concentration of the ballast water, and the sodium hypochlorite concentration of the storage tank are included, and the elapsed time from the start of ballast water injection As well as navigation data (preferably including at least the time to drain).
  • the recording unit 182 can also record a sodium hypochlorite concentration range to be maintained in the ballast tank.
  • the control unit 173 can be configured as shown in the control unit 183 of FIG. That is, the analysis unit 1811 that predicts the sodium hypochlorite concentration in the ballast tank 103 when the ballast water injection is completed, when a predetermined time elapses, and / or when the ballast water is discharged from the data recorded in the recording unit 182; A supply amount control unit 1812 that determines increase / decrease in the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 based on the result of 1811 and controls the amount of sodium hypochlorite supplied to the ballast water supply line 107, May be included.
  • ballast pump 106 is started (S501).
  • liquid intake is started through the sea chest 104.
  • chemical solution supply apparatus 101 is an apparatus using electrolysis
  • generation of sodium hypochlorite is started (S502).
  • the ballast pump 106 is started (S501)
  • the liquid taken into the ballast water supply line 107 is sent to the ballast tank 103 (S503).
  • a flow rate of ballast water, a water injection disclosure time, an integrated water injection amount, a hypochlorous acid concentration, and the like are measured by a flow meter (FM) and a concentration meter (C) arranged in the ballast water supply line 107. These pieces of information can be stored in the recording unit 182.
  • a flow meter FM
  • C concentration meter
  • the initial set amount includes the concentration range of sodium hypochlorite in the ballast water in the ballast tank 103 after water injection, the concentration of the sodium hypochlorite aqueous solution stored in the chemical solution supply apparatus 101 (or the storage tank 211), and It can be set in advance based on attenuation data of sodium hypochlorite obtained in advance.
  • the initial set amount can be stored in the recording unit 182. Based on this information, the supply amount control unit 1812 of the control unit 183 may control the supply amount. It should be noted that the initial set amount is set so that it is less than a predetermined concentration that can be discharged when the ship arrives at the destination and discharges the ballast water (time tx in FIG. 20). It is preferable from the point.
  • the ballast water supplied with sodium hypochlorite is sampled from the line 111 and the concentration measurement of the sodium hypochlorite is repeatedly performed by the attenuation measurement unit 112 to obtain attenuation data (S505).
  • Sampling can be performed, for example, within 0 to 1 hour after the start of ballast water injection, and the concentration measurement of sodium hypochlorite in the attenuation measurement unit 112 is performed within a range of, for example, 1 to 10 times every 30 minutes to 1 hour. Can be measured.
  • the attenuation data of the water taken in this way is stored in the recording unit 182. During the measurement of the attenuation data in the attenuation measurement unit 112, the ballast water injection can be continued without stopping.
  • the analysis unit 1811 of the control unit 183 accesses the recording unit 182 and determines whether the amount of sodium hypochlorite currently supplied is appropriate (S506). Note that the analysis unit 1811 can access the recording unit 182 as needed to make a determination when the attenuation curve of the drawn liquid can be predicted. If the sodium hypochlorite concentration is too high, it will cause damage and deterioration of the piping (line) and ballast tank, and a reducing agent and leaving time will be required during discharge. On the other hand, when the sodium hypochlorite concentration is too low, the sterilization treatment of aquatic microorganisms becomes insufficient.
  • the supply amount control unit 1812 of the control unit 183 corrects the amount supplied from the chemical solution supply apparatus 101 (or the storage tank 211) (S507).
  • the water injection of ballast water is continued (S508). Sampling and generation of attenuation data may be performed once or multiple times. Further, the number of determinations as to whether or not the sodium hypochlorite supply amount needs to be corrected based on the attenuation data (S506) may be one or more. These can be determined according to the time required for pouring the ballast water and the total amount of ballast water to be poured (S509). Finally, the ballast water is poured to the target volume (S510), and the ballast water injection is completed.
  • FIG. 22 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 2-3 of the present invention.
  • the same components as those of FIG. 22 are identical to FIG. 22.
  • the chemical solution supply device 801 is connected to a second intake port 804 different from the intake port 104 to which the ballast water supply line 107 is connected. That is, the chemical solution supply device 801 of the present embodiment 2-3 is not connected to a line that can take in the liquid taken from the water intake (sea chest) 104 for taking the ballast water, and is connected via the line 810. 2 is the same as the ballast water treatment system of Embodiment 2-1, except that it is connected to the water intake port 804.
  • the liquid (sodium hypochlorite aqueous solution) taken from the water intake (sea chest) 104 for taking the ballast water in the chemical supply device 801 The sodium hypochlorite is generated using the liquid taken from the second water intake 804 rather than the liquid taken before the water is added).
  • the water intake 104 for taking ballast water the liquid can be taken in with low power and easily. For this reason, by taking in a liquid for generating sodium hypochlorite from the outside during navigation, sodium hypochlorite can be generated in the chemical solution supply device 801 during navigation. Power consumption when storing in the ballast tank 103 can be reduced.
  • the line 810 may include, for example, a pump 806 for sending the liquid taken in from the second water intake 804 to the chemical liquid supply device 801. Further, the line 810 may include a strainer 805 for protecting the chemical solution supply device 801.
  • the present invention provides a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment of aquatic microorganisms in the liquid that is connected to the line and taken from the water intake.
  • a chemical supply device that supplies the sodium hypochlorite aqueous solution to the line, and the chemical supply device is connected to a second intake port that is different from the intake port to which the ballast water supply line is connected.
  • the present invention relates to a ballast water treatment system (hereinafter, also referred to as “third ballast water treatment system of the present invention”) that generates sodium hypochlorite by electrolyzing a liquid taken from two water intakes.
  • the third ballast water treatment system of the present invention is a simple and low power sodium hypochlorite by performing water intake in the chemical solution supply device from a water intake different from the water intake (sea chest) for taking ballast water. Based on the knowledge that can be generated.
  • the third ballast water treatment system of the present invention has a water intake and discharge of ballast water and a cargo loading / unloading operation while the ship is anchored at the port. Based on the knowledge that by taking in the liquid used to generate sodium hypochlorite and generating sodium hypochlorite, the peak of power consumption can be dispersed and the capacity of the generator mounted on the ship can be reduced.
  • the chemical supply device is connected to the second intake port that is different from the intake port to which the ballast water supply line is connected.
  • production has the effect that water can be taken in easily. Therefore, according to the third ballast water treatment system of the present invention, water can be taken without driving the sea chest. For example, the liquid used for generating sodium hypochlorite can be easily used even during navigation. The water can be taken in, and the water can be taken with low power.
  • the “second intake port different from the intake port to which the ballast water supply line is connected” means something other than the intake port (for example, sea chest) for taking in liquid for storage in the ballast tank. And, for example, a water intake for drinking water or the like existing in a ship can be mentioned.
  • the third ballast water treatment system of the present invention may include a control unit that controls the amount of sodium hypochlorite supplied from the chemical supply device to the ballast water supply line.
  • the control unit according to the third aspect is configured so that the liquid intake from the second intake port and hypochlorous acid are based on the amount of sodium hypochlorite in the chemical supply apparatus and / or the sodium hypochlorite concentration in the ballast tank. It is preferable to control the generation of sodium.
  • the present invention provides, as still another aspect, a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment for aquatic microorganisms in a liquid that is connected to the line and taken from the water intake.
  • a ballast comprising: electrolyzing a liquid taken from the water intake 2 to generate sodium hypochlorite; and supplying the sodium hypochlorite from the chemical liquid supply device to the ballast water supply line
  • the present invention relates to a water treatment method.
  • the present invention provides, as still another aspect, a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment for aquatic microorganisms in a liquid that is connected to the line and taken from the water intake.
  • a chemical solution supply device for supplying a sodium chlorite aqueous solution to the line, a method for producing sodium hypochlorite for sterilizing aquatic microorganisms in ballast water, the chemical solution supply device,
  • the present invention relates to a production method including electrolyzing a liquid taken from a second water intake different from a water intake connected to the ballast water supply line to generate sodium hypochlorite.
  • the chemical supply device can easily take in the liquid used for generating sodium hypochlorite from the second intake different from the intake connected to the ballast water supply line. There is an effect that sodium hypochlorite can be easily generated.
  • the electrolysis of the liquid is preferably performed during navigation. Thereby, the power consumption at the time of ballast water injection can be reduced.
  • FIG. 23 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 3-1 of the present invention. 23, the same components as those in FIG. 15 are denoted by the same reference numerals.
  • the ballast water treatment system of the present Embodiment 3-1 is the same as that of the Embodiment 2-3 except that the attenuation measurement unit 112 and the line 111 for sampling from the ballast water supply line 107 to the attenuation measurement unit 112 are not provided.
  • ballast water treatment method using the ballast water treatment system of the present Embodiment 3-1 will be described.
  • the line 810 for taking in liquid used for generating sodium hypochlorite is connected to the second water intake 804 different from the ballast water intake 104. Therefore, the liquid can be taken in without driving the ballast pump 106.
  • Ships also have cargo loading and unloading work while berthing at the time of ballast water storage, etc., and because they use the most electricity, they disperse peaks in power consumption and reduce generator capacity.
  • the liquid used for generating sodium hypochlorite is taken in and sodium hypochlorite is generated and stored.
  • the supply amount of the sodium hypochlorite aqueous solution is determined in advance based on the amount of ballast water injected into the ballast tank 103, the concentration of the sodium hypochlorite aqueous solution stored in the chemical solution supply device 801 (or the storage tank 211), and the like. it can. In addition, based on the measured values of the flow meter (FM) and the sodium hypochlorite concentration meter (C) arranged in the ballast water supply line 107, the supply amount of the sodium hypochlorite aqueous solution in the control unit (not shown) May be controlled.
  • the present invention provides, as a fourth aspect, a ballast water supply line that connects a water intake and a ballast tank, and killing for killing aquatic organisms in the liquid that is disposed in the line and taken from the water intake.
  • a treatment device, and a chemical solution supply device connected to the line and supplying a sodium hypochlorite aqueous solution to the line for killing aquatic organisms in the liquid taken from the intake port,
  • the killing treatment device relates to a ballast water treatment system selected from the group consisting of an electrolytic treatment device, a centrifugal solid-liquid separation device, and a device that generates and processes shock waves by water pressure.
  • ballast water treatment system of the fourth aspect since the killing process by the killing device and the killing process by sodium hypochlorite are performed, the ballast water can be efficiently treated.
  • the chemical solution supply device, the electrolytic treatment device, the ballast water supply line, and the like are the same as in the first to third aspects.
  • the chemical solution supply device is preferably connected to a ballast pump.
  • the liquid for manufacturing sodium hypochlorite aqueous solution can be performed simultaneously with the intake of ballast water, and processing efficiency can be improved.
  • FIG. 24 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 4-1 of the present invention.
  • the same components as those in FIG. 24 are identical to FIG. 24.
  • the ballast water treatment system of the present embodiment 4-1 is the same as that of the embodiment 1-1 except that the chemical solution supply apparatus 101 is connected to the ballast pump 106 via the line 110 and the killing treatment apparatus is the electrolytic treatment apparatus 202.
  • the chemical solution supply line 109 includes a deaeration tank (not shown) for removing gas contained in the sodium hypochlorite aqueous solution from the viewpoint of suppressing introduction of excess air into the ballast tank 103. May be.
  • ballast water treatment method using the ballast water treatment system of the embodiment 4-1 will be described.
  • the ballast pump 106 is started to take in the ballast water.
  • liquid intake is started through the sea chest 104, and water injection into the ballast tank 103 is started through the ballast water supply line 107.
  • a liquid used for generating sodium hypochlorite is taken into the chemical liquid supply apparatus 101 through the line 110, and sodium hypochlorite is generated by electrolysis.
  • the liquid to be used can be performed at the time of taking ballast water.
  • the liquid used to generate sodium hypochlorite can be taken without driving any pump other than the ballast pump 106.
  • the liquid taken in through the sea chest 104 is killed in the electrolytic processing apparatus 2020.
  • the killed liquid is supplied to the ballast tank 103 through the ballast water supply line 107 after the aqueous sodium hypochlorite solution generated by the chemical supply apparatus 101 is supplied through the chemical supply line 109.
  • the ballast water can be efficiently processed to a level satisfying the ballast water discharge standard.
  • the ballast water stored in the ballast tank 103 contains sodium hypochlorite, the killing effect is maintained even during navigation, and the growth of aquatic organisms can be suppressed.
  • the chemical solution supply line 109 is connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied to the liquid that has been killed by the electrolytic treatment apparatus 202.
  • the chemical solution supply line 109 may be connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied before the treatment by the electrolytic treatment apparatus 202, or before the treatment by the electrolytic treatment apparatus 202 and
  • the chemical solution supply line 109 may be connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied at both later times.
  • the present invention is useful in the treatment of ballast water in a ship.
  • ballast water supply line for supplying liquid taken from the water intake to the ballast tank, and chemical supply for supplying sodium hypochlorite aqueous solution for sterilizing aquatic microorganisms in the liquid to the line
  • a ballast water treatment system comprising a device, The liquid in the line to which a predetermined amount of sodium hypochlorite is supplied from the chemical supply device is sampled, the decay of the sodium hypochlorite concentration in the sampled sample is measured, and the chemical is based on the measurement data
  • a method for controlling ballast water comprising adjusting a supply amount of sodium hypochlorite supplied from a supply device to the line; ⁇ 2> The adjustment of the supply amount is based on the decay measurement data of sodium hypochlorite in the drawn-in liquid, and when the ballast water injection is completed, the predetermined time has elapsed, and / or the ballast water is discharged.
  • Predicting the sodium chlorite concentration determining the increase or decrease in the amount of sodium hypochlorite supplied to the ballast water supply line from the chemical solution supply device based on the prediction, and based on the determination,
  • the method for controlling ballast water according to ⁇ 1> comprising controlling the amount of sodium hypochlorite supplied to the line;
  • ⁇ 3> The method for controlling ballast water according to ⁇ 1> or ⁇ 2>, wherein the sampling and attenuation measurement are performed in an attenuation measurement unit including a concentration meter of sodium hypochlorite;
  • a method for injecting ballast water comprising controlling by the control method according to any one of ⁇ 1> to ⁇ 3>;
  • ⁇ 5> A ballast water supply line connecting the water intake and the ballast tank;
  • a chemical supply apparatus connected to the line and supplying a sodium hypochlorite aqueous solution to the line for sterilizing aquatic microorganisms in the liquid taken from the water intake;
  • An attenuation measurement unit that
  • the ballast water treatment system according to ⁇ 5> wherein the prediction and / or the determination is performed based on at least one of concentrations; ⁇ 7>
  • the chemical solution supply device is connected to a second intake port different from the intake port to which the ballast water supply line is connected, and sodium hypochlorite using a liquid taken from the second intake port.
  • Generating a ballast water treatment system according to ⁇ 5> or ⁇ 6>; ⁇ 8> A ship provided with the ballast water treatment system according to any one of ⁇ 5> to ⁇ 7>.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Provided is a ballast water treatment system equipped with: a ballast water supply line (107) that connects a water intake port (104) and a ballast tank (103); an eradication treatment device (102) positioned on the line (107), for electrically or mechanically eradicating aquatic organisms in fluid taken from the water intake port (104); a chemical supply device (101) that is connected to the line (107), and supplies sodium hypochlorite to the line (107) in order to kill aquatic organisms in fluid taken from the water intake port (104). The chemical supply device (101) is connected to a second water intake port (114), which is different to the water intake port (104) to which the ballast water supply line (107) is connected, and produces sodium hypochlorite by electrolyzing fluid taken from the second water intake port (114).

Description

バラスト水処理システム及びバラスト水処理方法Ballast water treatment system and ballast water treatment method
 本発明は、バラスト水処理システム及びバラスト水処理方法に関する。 The present invention relates to a ballast water treatment system and a ballast water treatment method.
 タンカーや大型貨物船等といった船舶においては、オイルや貨物を搭載しない又はそれらの搭載量が少ない状態で航行する場合、船舶の安定性やバランスの確保のために、通常、バラストタンク内にバラスト水を収容して航行している。このバラスト水は、通常、荷揚げした港において海水などを汲み上げて注入し、荷積みした港において排出される。このように、バラスト水は荷揚げした港の海水などを使用することから、バラスト水には荷揚げした港周辺に生息する水生生物等が含まれ、この水生生物が荷積みした港においてバラスト水とともに排出される。 In ships such as tankers and large cargo ships, when navigating in a state where oil or cargo is not loaded or in a small amount, the ballast water is usually placed in the ballast tank to ensure the stability and balance of the ship. Contained and sailed. This ballast water is usually pumped and injected into seawater at the port where it is unloaded and discharged at the port where it was loaded. In this way, since the ballast water uses the seawater of the port where it was unloaded, the ballast water includes aquatic organisms that inhabit the area around the port where it was unloaded, and discharged along with the ballast water at the port where this aquatic organism was loaded. Is done.
 近年、この水生生物を含むバラスト水の排出による生態系の乱れが国際的な問題となっている。このため、国際海事機関(IMO)は、2004年にバラスト水管理条約を採択し、その中で、排出するバラスト水に生息する生物の排出基準が厳しく定められている。 In recent years, disturbance of the ecosystem due to the discharge of ballast water including aquatic organisms has become an international problem. For this reason, the International Maritime Organization (IMO) adopted the Ballast Water Management Convention in 2004, in which the emission standards for organisms that inhabit the discharged ballast water are strictly set.
 バラスト水の処理方法としては様々な方法が提案されている。具体的には、ろ過及び遠心分離等により水生生物を除去する方法、物理的・機械的に水生生物を殺滅する方法、熱により水生生物を殺滅する方法、化学薬品をバラストタンク中に注入したり塩素系物質等を生成させたりすることにより水生生物を殺滅する方法(例えば、特許文献1及び非特許文献1)並びにこれらの方法を組み合わせた方法等がある。 Various methods have been proposed for ballast water treatment. Specifically, aquatic organisms are removed by filtration, centrifugation, etc., aquatic organisms are physically and mechanically killed, aquatic organisms are killed by heat, and chemicals are injected into the ballast tank. And a method of killing aquatic organisms by generating chlorine-based substances or the like (for example, Patent Document 1 and Non-Patent Document 1), a method combining these methods, and the like.
 一方で、バラスト水中の水生生物を排除できたとしても、排水中に残留する次亜塩素酸ナトリウム濃度によっては、港周辺の環境を破壊する恐れもある。そのため、排出時にはバラスト水の次亜塩素酸ナトリウム濃度等に応じて還元剤が添加され中和する方法や、バラスト水を放置してバラスト水の残留塩素濃度を実質的にゼロとする方法(特許文献2)等が提案されている。 On the other hand, even if aquatic organisms in the ballast water can be eliminated, the environment around the port may be destroyed depending on the concentration of sodium hypochlorite remaining in the wastewater. Therefore, a method of neutralizing by adding a reducing agent according to the sodium hypochlorite concentration of ballast water at the time of discharge, or a method of leaving the ballast water to make the residual chlorine concentration of the ballast water substantially zero (patent Document 2) has been proposed.
特表2007-515289号公報JP-T-2007-515289 特許第4262720号公報Japanese Patent No. 4262720
 上記の通り、バラスト水管理条約が採択されてバラスト水処理装置の設置が義務付けられたことにより、バラスト水を処理可能となる新たな技術がいっそう求められることとなった。特許文献1には、バラスト水を電気分解して次亜塩素酸ナトリウムを発生させてバラスト水の水生生物を死滅させる方法が提案されている。しかしながら、次亜塩素酸ナトリウムのみでバラスト水中の水生生物を殺滅処理するには、多量の次亜塩素酸ナトリウムが必要となり、次亜塩素酸ナトリウムを貯留するための大きなタンクが必要となるという問題や、多量の次亜塩素酸ナトリウムを発生させるために大きな電気分解処理装置及び多くの電力量が必要となるという問題がある。また、次亜塩素酸ナトリウムの発生及びそれを用いたバラスト水の処理は通常寄港停泊中に行われるが、寄港停泊中には荷積み揚げやバラスト水の取排水等のために多くの電力が必要であり、これらの最中に電力が不足すると、荷積み揚げや取排水の作業に支障が出たり、さらには船舶の運航に支障が出たりするという問題がある。そこで、本発明は、寄港停泊中における電力消費量を低減でき、かつコンパクトで船舶への搭載が容易である新たなバラスト水処理システム及びバラスト水処理方法を提供する。 As described above, the adoption of the Ballast Water Management Convention and the installation of a ballast water treatment system have become obligatory, and new technologies that can treat ballast water have been further demanded. Patent Document 1 proposes a method of killing aquatic organisms of ballast water by electrolyzing the ballast water to generate sodium hypochlorite. However, to kill aquatic organisms in ballast water using only sodium hypochlorite, a large amount of sodium hypochlorite is required, and a large tank for storing sodium hypochlorite is required. There is a problem that a large electrolysis processing apparatus and a large amount of electric power are required to generate a large amount of sodium hypochlorite. In addition, the generation of sodium hypochlorite and the treatment of ballast water using it are usually performed while the port is anchored, but during the berth, a large amount of electricity is used for loading and unloading and discharging ballast water. It is necessary, and if there is a shortage of electricity during these operations, there is a problem that the work of loading and discharging is hindered, and further, the operation of the ship is hindered. Therefore, the present invention provides a new ballast water treatment system and a ballast water treatment method that can reduce power consumption during berthing and are compact and easy to mount on a ship.
 本発明は、一態様において、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに配置され、前記取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理するための殺傷処理装置と、前記ラインに接続し、前記取水口から取水された液体中の水生生物の殺滅処理を行うための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させるバラスト水処理システムに関する。 In one aspect, the present invention provides a ballast water supply line that connects a water intake and a ballast tank, and an aquatic organism in a liquid that is disposed in the line and taken from the water intake, either electrically or mechanically. A killing treatment apparatus for connecting to the line, and a chemical supply apparatus for supplying the line with an aqueous sodium hypochlorite solution for killing aquatic organisms in the liquid taken from the intake port. The chemical liquid supply device is connected to a second water intake port different from the water intake port connected to the ballast water supply line, and electrolyzes the liquid taken from the second water intake port to hypochlorous acid. The present invention relates to a ballast water treatment system that generates sodium acid.
 本発明は、その他の態様において、取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理すること、取水口から取水された液体に次亜塩素酸ナトリウム水溶液を供給すること、及び、前記殺傷処理及び前記次亜塩素酸ナトリウム水溶液の供給を行った液体をバラストタンクに貯留することを含み、さらに、前記取水口とは異なる第2の取水口から取水された液体を少なくとも含む次亜塩素酸ナトリウム製造のための液体を電気分解して前記次亜塩素酸ナトリウム水溶液を製造することを含むバラスト水処理方法に関する。 In another aspect of the present invention, the aquatic organisms in the liquid taken from the water intake are electrically or mechanically killed, and the aqueous sodium hypochlorite solution is supplied to the liquid taken from the water intake. And storing the liquid subjected to the killing treatment and the supply of the aqueous sodium hypochlorite solution in a ballast tank, and at least a liquid taken from a second water intake different from the water intake The present invention relates to a ballast water treatment method including electrolyzing a liquid for producing sodium hypochlorite containing to produce the sodium hypochlorite aqueous solution.
 本発明によれば、寄港停泊中における電力消費量を低減でき、かつコンパクトで船舶への搭載が容易となる。 According to the present invention, it is possible to reduce the power consumption while the port is anchored, and it is compact and easy to mount on a ship.
図1は、実施の形態1-1におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-1. 図2A~Cは、薬液供給装置の構成の一例を示す概略構成図である。2A to 2C are schematic configuration diagrams showing an example of the configuration of the chemical solution supply apparatus. 図3A~Dは、電気的処理装置の構成の一例を示す概略構成図である。3A to 3D are schematic configuration diagrams showing an example of the configuration of the electrical processing apparatus. 図4Aは、寄港停泊中におけるバラスト水の処理方法の一例を示すフローチャートである。FIG. 4A is a flowchart illustrating an example of a method for treating ballast water while the port is anchored. 図4Bは、デバラスト方法及び航行中における次亜塩素酸ナトリウムの製造の一例を示すフローチャートである。FIG. 4B is a flowchart showing an example of the deballast method and the production of sodium hypochlorite during navigation. 図5は、バラスト水制御システムの構成例を示す機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration example of the ballast water control system. 図6は、バラスト水制御システムに含まれる測定部及び制御部の構成例、並びに記録部に記録されるデータ例を示す機能ブロック図である。FIG. 6 is a functional block diagram illustrating a configuration example of the measurement unit and the control unit included in the ballast water control system and an example of data recorded in the recording unit. 図7は、実施の形態1-1におけるバラスト水処理システムのその他の例を示す概略構成図である。FIG. 7 is a schematic configuration diagram illustrating another example of the ballast water treatment system according to Embodiment 1-1. 図8は、実施の形態1-1におけるバラスト水処理システムのさらにその他の例を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing still another example of the ballast water treatment system according to Embodiment 1-1. 図9は、実施の形態1-2におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 9 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-2. 図10は、実施の形態1-3におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 10 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-3. 図11Aは、実施の形態1-4におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 11A is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-4. 図11Bは、実施の形態1-4におけるバラスト水処理システムのその他の例を示す概略構成図である。FIG. 11B is a schematic configuration diagram illustrating another example of the ballast water treatment system according to Embodiment 1-4. 図12A及びBは、実施の形態1-4におけるバラスト水処理システムの部分図である。12A and 12B are partial views of the ballast water treatment system in Embodiment 1-4. 図13は、実施の形態1-5におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 13 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-5. 図14は、実施の形態1-6におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 14 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 1-6. 図15は、実施の形態2-1におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 15 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 2-1. 図16は、薬液供給装置の構成の一例を示す概略構成図である。FIG. 16 is a schematic configuration diagram illustrating an example of a configuration of a chemical solution supply apparatus. 図17は、実施の形態2-2におけるバラスト水制御システムの構成例を示す機能ブロック図である。FIG. 17 is a functional block diagram showing a configuration example of the ballast water control system in the embodiment 2-2. 図18は、測定部及び制御部の構成例、並びに記録部に記録されるデータ例を示す機能ブロック図である。FIG. 18 is a functional block diagram illustrating a configuration example of the measurement unit and the control unit and an example of data recorded in the recording unit. 図19は、実施の形態2-1のバラスト水処理システムにおけるバラスト水処理方法の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of a ballast water treatment method in the ballast water treatment system according to Embodiment 2-1. 図20は、次亜塩素酸ナトリウムの減衰曲線の一例を示すグラフである。FIG. 20 is a graph showing an example of a decay curve of sodium hypochlorite. 図21は、次亜塩素酸ナトリウムの減衰測定ユニットの構成の一例を示す。FIG. 21 shows an example of the configuration of a sodium hypochlorite attenuation measurement unit. 図22は、実施の形態2-3におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 22 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 2-3. 図23は、実施の形態3-1におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 23 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 3-1. 図24は、実施の形態4-1におけるバラスト水処理システムの一例を示す概略構成図である。FIG. 24 is a schematic configuration diagram illustrating an example of a ballast water treatment system according to Embodiment 4-1.
 本明細書において「水生生物」とは、海、川、湖等に生息する微生物を含み、その他には、酵母、カビ、植物性又は動物性プランクトン、プランクトンの卵や胞子、細菌類、菌類、ウイルス、藻類、巻貝及び二枚貝等の貝類の幼生、カニ等の甲殻類の幼生などの比較的微小サイズの水生生物等を含む。また、海とつながっている河口、河川、運河等に生息し得る微生物及び上述の水生生物を含みうる。 As used herein, “aquatic organisms” include microorganisms that inhabit the sea, rivers, lakes, etc., in addition to yeast, mold, plant or zooplankton, plankton eggs and spores, bacteria, fungi, Includes relatively small-sized aquatic organisms such as viruses, algae, shellfish larvae such as snails and bivalves, and crustacean larvae such as crabs. Further, it may include microorganisms that can live in estuaries, rivers, canals and the like connected to the sea, and the aquatic organisms described above.
 本明細書において「取水口から取水された液体(単に「取水された液体」という場合も含む)」とは、船外から取水されバラストタンクに貯留されてバラスト水として用いるものであって、海水、汽水及び淡水を含みうる。液体は、例えば、海水などのような塩化ナトリウムを含む液体であってもよいし、含まない液体であってもよい。また、液体が取水される領域は特に制限されず、海水域であってもよく、淡水域でも、汽水域であってもよい。本明細書において「バラスト水」は、バラストタンク内に貯留される液体をいい、バラストタンク内に貯留するために取水口から取水された液体を含みうる。また、本明細書においてバラスト水供給ラインに接続する取水口は、シーチェストを含む。 In this specification, “liquid taken from a water intake (including simply“ liquid taken ”)” is taken from outside the ship, stored in a ballast tank, and used as ballast water. , Brackish water and fresh water. The liquid may be, for example, a liquid containing sodium chloride such as seawater or a liquid not containing it. Moreover, the area | region where water is taken in is not restrict | limited, A seawater area may be sufficient, and a freshwater area or a brackish water area may be sufficient. In the present specification, “ballast water” refers to a liquid stored in a ballast tank, and may include a liquid taken from a water intake for storing in the ballast tank. Moreover, the water intake port connected to a ballast water supply line in this specification contains a sea chest.
 本明細書において「船舶」とは、バラストタンクを備える船一般をいい、例えば、コンテナ船、ローロー船、タンカー、バルクキャリア、ケミカル船、自動車運搬船を含む。 In this specification, “ship” means a general ship having a ballast tank, and includes, for example, a container ship, a low-low ship, a tanker, a bulk carrier, a chemical ship, and an automobile carrier ship.
 [第1の態様]
 本発明は、第1の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに配置され、前記取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理するための殺傷処理装置と、前記ラインに接続し、前記取水口から取水された液体中の水生生物の殺滅処理を行うための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させるバラスト水処理システム(以下、「本発明の第1のバラスト水処理システム」ともいう)に関する。
[First embodiment]
The present invention provides, as a first aspect, a ballast water supply line that connects a water intake and a ballast tank, and an aquatic organism in a liquid that is disposed in the line and is taken from the water intake, either electrically or mechanically. A killing treatment device for killing treatment and a chemical supply for connecting to the line and supplying a sodium hypochlorite aqueous solution to the line for killing aquatic organisms in the liquid taken from the intake port The chemical supply device is connected to a second water intake port that is different from the water intake port to which the ballast water supply line is connected, and the liquid taken from the second water intake port is electrolyzed and subsequently The present invention relates to a ballast water treatment system for generating sodium chlorite (hereinafter also referred to as “first ballast water treatment system of the present invention”).
 船舶では、バラスト水の取排水や荷積み揚げ等の作業を行うことから、寄港停泊中に多くの電力を使用する。本発明は、航行中に次亜塩素酸ナトリウムの発生を行えば、寄港停泊中に使用する電力量を低減できるという知見に基づく。 Ships use a lot of electricity during berths because they perform operations such as taking and discharging ballast water and loading and unloading. The present invention is based on the knowledge that if sodium hypochlorite is generated during navigation, the amount of electric power used during berthing can be reduced.
 第1の態様の本発明によれば、電気的又は機械的な殺傷処理装置と次亜塩素酸ナトリウムを供給するための薬液供給装置との2種類の装置を用いてバラスト水の処理を行うため、船舶内での分散設置が可能となり、また次亜塩素酸ナトリウム発生装置を小型化でき、船舶への搭載が容易となるという効果を奏する。第1の態様の本発明によれば、航行中に次亜塩素酸ナトリウムを発生させることにより、寄港停泊中における電力消費量を低減できるという効果を奏する。 According to the first aspect of the present invention, the ballast water is treated using two types of devices, that is, an electrical or mechanical killing treatment device and a chemical solution supply device for supplying sodium hypochlorite. In addition, it is possible to disperse installation in the ship, and it is possible to reduce the size of the sodium hypochlorite generator and to facilitate mounting on the ship. According to the first aspect of the present invention, by generating sodium hypochlorite during navigation, there is an effect that it is possible to reduce the power consumption during berthing.
 第1の態様において「水生生物の電気的又は機械的な殺傷処理(以下、「殺傷処理装置」ともいう)」とは、取水口から取水された液体に含まれる水生生物の少なくとも一部を電気的又は機械的手段によって分離、除去、破壊及び又は殺滅することを含む。水生生物の破壊は、水生生物の一部分又は全部の破壊を含む。電気的又は機械的な殺傷処理装置としては、例えば、電解処理装置、遠心式固液分離装置、及び水圧により衝撃波を発生させて処理する装置等が挙げられる。電解処理装置としては、公知の電解処理装置を使用できる。電解処理装置は、例えば、固定床型電極電解槽を備えることが好ましい。固定床型電極電解槽は、例えば、分極を生じる固定床と、分極を生じさせるための給電用電極とを含む。固定床型電極電解槽は、1つの固定床を備える単極式であってもよいし、2以上の固定床を備える複極式であってもよい。電極に印加する電圧としては、直流電圧及び交流電圧があるが、好ましくは交流電圧である。電極間電圧は、例えば、10V以下、5V以下、3V以下であり、消費電力を低減でき、また電気分解による不要なガスの発生を抑制できる点から、好ましくは0.5~1.5Vである。電極に印加する電圧が交流電圧である場合、電極間電圧は略1.5Vであることがより好ましい。電極に印加する電圧が直流電圧である場合、電極間電圧は略0.75Vであることがより好ましい。電解処理装置は、クロスフロー方式であってもよいし、デッドエンド方式であってもよい。電解処理装置における目詰まりを防止して圧力損失を低減できる点から、クロスフロー方式であることが好ましい。同様の点から、電解処理装置は、逆洗機構を備えていてもよい。遠心式固液分離装置としては、公知の遠心式固液分離装置が使用でき、例えば、液体サイクロン等が挙げられる。 In the first aspect, “electrical or mechanical killing treatment of aquatic organisms (hereinafter also referred to as“ killing treatment device ”)” means that at least a part of the aquatic organisms contained in the liquid taken from the water intake is electrically Separating, removing, destroying and / or killing by mechanical or mechanical means. The destruction of aquatic organisms includes the destruction of part or all of aquatic organisms. Examples of the electrical or mechanical killing device include an electrolytic processing device, a centrifugal solid-liquid separation device, and a device that generates and processes a shock wave by water pressure. As the electrolytic treatment apparatus, a known electrolytic treatment apparatus can be used. The electrolytic treatment apparatus preferably includes, for example, a fixed bed type electrode electrolytic cell. The fixed bed type electrode electrolytic cell includes, for example, a fixed bed that generates polarization and a power supply electrode for generating polarization. The fixed bed type electrode electrolytic cell may be a monopolar type provided with one fixed bed, or may be a bipolar type provided with two or more fixed beds. The voltage applied to the electrode includes a DC voltage and an AC voltage, preferably an AC voltage. The voltage between the electrodes is, for example, 10 V or less, 5 V or less, 3 V or less, and is preferably 0.5 to 1.5 V from the viewpoint that power consumption can be reduced and generation of unnecessary gas due to electrolysis can be suppressed. . When the voltage applied to the electrodes is an alternating voltage, the interelectrode voltage is more preferably about 1.5V. When the voltage applied to the electrodes is a DC voltage, the interelectrode voltage is more preferably about 0.75V. The electrolytic processing apparatus may be a cross flow system or a dead end system. The cross flow method is preferable because clogging in the electrolytic treatment apparatus can be prevented and pressure loss can be reduced. From the same point, the electrolytic treatment apparatus may include a backwashing mechanism. As the centrifugal solid-liquid separator, a known centrifugal solid-liquid separator can be used, and examples thereof include a liquid cyclone.
 第1の態様において「水生生物の殺滅処理」とは、処理対象である取水された液体及び又はバラスト水に含まれる水生生物の少なくとも一部を殺傷、殺菌若しくは殺滅すること及び又は水生生物の増殖を抑制することを含む。水生生物の殺滅処理としては、好ましくはバラスト水の排出時において下記表1に示すバラスト水排出基準を満たすように、取水された液体、及び又は電気的若しくは機械的な殺傷処理がなされた液体に次亜塩素酸ナトリウム水溶液を供給することを含み、より好ましくはバラスト水の排出時において下記表1に示すバラスト水排出基準を満たすように水生生物の殺傷、殺滅及び又は増殖を抑制することを含む。 In the first aspect, “aquatic organism killing process” means killing, sterilizing or killing at least part of the aspirated liquid and / or aquatic organisms contained in ballast water, and / or aquatic organisms. Inhibiting the growth of The aquatic organism killing process is preferably a liquid that has been taken and / or an electrical or mechanical killing process to meet the ballast water discharge criteria shown in Table 1 below when discharging ballast water. Supplying an aqueous sodium hypochlorite solution, and more preferably suppressing the killing, killing and / or growth of aquatic organisms so as to satisfy the ballast water discharge criteria shown in Table 1 below when discharging ballast water including.
Figure JPOXMLDOC01-appb-T000001
 第1の態様において「薬液供給装置」とは、取水された液体、及び又は電気的若しくは機械的な殺傷処理がなされた液体に次亜塩素酸ナトリウム水溶液を供給する装置である。第1の態様において「バラスト水供給ラインが接続する取水口とは異なる第2の取水口」とは、バラストタンクに貯留するため液体を取水するための取水口(例えば、シーチェスト)以外のものであって、例えば、船舶に既存する飲料水等のための取水口等が挙げられる。薬液供給装置は、バラスト水供給ラインが接続する取水口(例えば、シーチェスト等)とは異なる第2の取水口と接続する。このため、薬液供給装置は、第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させることにより、次亜塩素酸ナトリウム水溶液を製造できる。薬液供給装置は、第2の取水口と接続しているため、バラストポンプ等を駆動させることなく取水することができ、航行中であっても液体の取水及び次亜塩素酸ナトリウムの発生を容易に行うことができる。液体の取水は、例えば、既存のポンプ等を用いて行うことができる。既存のポンプとしては、例えば、飲料水やサニタリー用の液体等を取水するためのポンプ等が挙げられる。通常、このようなポンプはバラストポンプと比較して少ない消費電力で駆動させることができることから、この既存のポンプを使用することにより少ない電力量で液体を取水できる。
Figure JPOXMLDOC01-appb-T000001
In the first aspect, the “chemical solution supply device” is a device that supplies an aqueous sodium hypochlorite solution to the liquid that has been taken in and / or that has been subjected to electrical or mechanical killing. In the first aspect, the “second intake port different from the intake port to which the ballast water supply line is connected” means other than the intake port (for example, sea chest) for taking in the liquid to be stored in the ballast tank. And, for example, a water intake for drinking water or the like existing in a ship can be mentioned. The chemical liquid supply device is connected to a second water intake port that is different from the water intake port (for example, a sea chest) connected to the ballast water supply line. For this reason, the chemical liquid supply device can produce a sodium hypochlorite aqueous solution by electrolyzing the liquid taken from the second water intake port to generate sodium hypochlorite. Since the chemical supply device is connected to the second water intake, it can take water without driving a ballast pump, etc., and it is easy to take water and generate sodium hypochlorite even during navigation. Can be done. The liquid water intake can be performed using, for example, an existing pump. As an existing pump, for example, a pump for taking drinking water, a sanitary liquid, or the like can be cited. Normally, such a pump can be driven with less power consumption than a ballast pump, so that liquid can be taken in with a small amount of power by using this existing pump.
 薬液供給装置は、電気分解により次亜塩素酸ナトリウムを発生させる装置であればよく、例えば、電解槽と貯留槽とを備える形態が挙げられる。貯留槽を備えることにより、高濃度の次亜塩素酸ナトリウムを貯留し、必要に応じてポンプやバルブを介してバラスト水供給ラインに供給される。薬液供給装置は、温度調節手段を備えていてもよい。温度調節手段によって薬液供給装置における次亜塩素酸ナトリウム水溶液の温度を制御することにより、薬液供給装置に貯留される次亜塩素酸ナトリウム水溶液における次亜塩素酸の分解を抑制し、さらには有効塩素濃度を増加させかつ塩素酸濃度を低減できる。水溶液の温度としては、次亜塩素酸の分解を抑制する点から、例えば、20℃以下であり、好ましくは15℃以下、より好ましくは略10℃である。温度調節手段としては、例えば、チラーユニット等の冷却装置、及び加温装置等が挙げられる。薬液供給装置は、バラスト水供給ラインに供給する次亜塩素酸ナトリウム濃度を把握できるように、次亜塩素酸ナトリウムの濃度を計測できる計測器(以下、「次亜塩素酸ナトリウム濃度計」又は単に「濃度計」という。)及び流量計を備えることが好ましく、これらを用いてバラスト水供給ラインに供給する次亜塩素酸ナトリウム濃度を制御することが好ましい。 The chemical solution supply device may be a device that generates sodium hypochlorite by electrolysis, and includes, for example, a mode including an electrolytic cell and a storage tank. By providing a storage tank, high concentration sodium hypochlorite is stored and supplied to a ballast water supply line via a pump or a valve as necessary. The chemical solution supply apparatus may include a temperature adjusting unit. By controlling the temperature of the sodium hypochlorite aqueous solution in the chemical solution supply device by the temperature adjusting means, the decomposition of hypochlorous acid in the sodium hypochlorite aqueous solution stored in the chemical solution supply device is suppressed, and further, effective chlorine The concentration can be increased and the chloric acid concentration can be reduced. The temperature of the aqueous solution is, for example, 20 ° C. or less, preferably 15 ° C. or less, more preferably about 10 ° C., from the viewpoint of suppressing the decomposition of hypochlorous acid. Examples of the temperature adjusting means include a cooling device such as a chiller unit and a heating device. The chemical supply device can measure the concentration of sodium hypochlorite so that the concentration of sodium hypochlorite supplied to the ballast water supply line can be measured (hereinafter referred to as “sodium hypochlorite concentration meter” or simply And a flow meter, and it is preferable to control the concentration of sodium hypochlorite supplied to the ballast water supply line.
 薬液供給装置は、塩化ナトリウム貯留タンクを備えていてもよい。これにより、例えば、淡水域を航行する船舶であっても、次亜塩素酸ナトリウムを発生させることができる。海水域を航行する船舶であっても、取水した海水に塩化ナトリウムを添加することにより、より高濃度の次亜塩素酸ナトリウム水溶液を製造できる。塩化ナトリウムは、水溶液であってもよいし、固形であってもよい。 The chemical solution supply device may include a sodium chloride storage tank. Thereby, sodium hypochlorite can be generated, for example, even in a ship that navigates a freshwater area. Even a ship navigating in a seawater region can produce a higher concentration sodium hypochlorite aqueous solution by adding sodium chloride to the taken seawater. Sodium chloride may be an aqueous solution or a solid.
 薬液供給装置は、バラスト水供給ラインに接続し、バラスト水供給ラインに接続する取水口から取水された液体に次亜塩素酸ナトリウム水溶液を供給可能である。接続位置(次亜塩素酸ナトリウム水溶液の供給箇所)は特に制限されず、例えば、バラスト水供給ラインに接続する取水口と殺傷処理装置との間、及び殺傷処理装置とバラストタンクとの間等が挙げられる。 The chemical solution supply device is connected to the ballast water supply line, and can supply sodium hypochlorite aqueous solution to the liquid taken from the intake port connected to the ballast water supply line. There are no particular restrictions on the connection position (supply point of the sodium hypochlorite aqueous solution). For example, the connection between the intake port connected to the ballast water supply line and the killing treatment device, and between the killing treatment device and the ballast tank, etc. Can be mentioned.
 薬液供給装置は、一実施形態において、上記第2の取水口に加えて或いは替えて、バラスト水供給ラインが接続する取水口(例えば、シーチェスト等のバラスト水のための取水口)に接続していてもよい。バラスト水のための取水口及び第2の取水口の両方と接続することにより、薬液供給装置に次亜塩素酸ナトリウム水溶液を製造するための液体を効率よく取水できる。バラスト水のための取水口と薬液供給装置とを接続するラインは、バラストポンプとは異なる取水ポンプを備えていてもよい。これにより、バラストポンプを駆動させることなく次亜塩素酸ナトリウム水溶液を製造するための液体を取り込むことができる。また、薬液供給装置は、一実施形態において、上記第2の取水口に加えて或いは替えてバラストポンプに接続していてもよい。 In one embodiment, the chemical liquid supply apparatus is connected to a water intake (for example, a water intake for ballast water such as a sea chest) connected to the ballast water supply line in addition to or instead of the second water intake. It may be. By connecting to both the water intake port for the ballast water and the second water intake port, the liquid for producing the sodium hypochlorite aqueous solution can be efficiently taken into the chemical liquid supply device. The line connecting the water intake for the ballast water and the chemical liquid supply apparatus may include a water intake pump different from the ballast pump. Thereby, the liquid for manufacturing sodium hypochlorite aqueous solution can be taken in, without driving a ballast pump. In addition, in one embodiment, the chemical solution supply device may be connected to the ballast pump in addition to or instead of the second water intake port.
 本発明の第1のバラスト水処理システムは、一実施形態において、さらに、バラスト水排出時にバラスト水中の次亜塩素酸ナトリウムを分解処理するための後処理装置を備えることができる。後処理装置を備えることにより、バラスト水排出時にバラスト水の次亜塩素酸ナトリウム濃度が排出基準を超えている場合であっても、速やかにバラスト水の排出を行うことができ、また還元剤の使用量を低減できる。後処理装置としては、例えば、次亜塩素酸を分解又は還元可能なものであれば特に制限されるものではないが、還元剤の使用量を低減してバラスト水処理にかかるランニングコストを低減する点から、次亜塩素酸を分解可能な触媒を用いた装置が好ましい。触媒としては、例えば、ニッケル、パラジウムが挙げられる。後処理装置は、前記触媒に加えて、アルミナ等の吸着剤を有していてもよい。後処理装置は、バラスト水排出時にバラスト水が通過するラインに配置されていればよい。例えば、バラスト水供給ラインに配置したり、バラスト水供給ラインに分岐ラインを接続してそのラインに配置したりすることができる。後処理装置は、次亜塩素酸ナトリウム水溶液を還元するための還元剤供給装置と併用して使用することが好ましい。 In one embodiment, the first ballast water treatment system of the present invention may further include a post-treatment device for decomposing sodium hypochlorite in the ballast water when discharging the ballast water. By providing an aftertreatment device, ballast water can be discharged quickly even when the sodium hypochlorite concentration of the ballast water exceeds the discharge standard at the time of ballast water discharge. The amount used can be reduced. The post-treatment device is not particularly limited as long as it can decompose or reduce hypochlorous acid, for example. However, the amount of reducing agent used is reduced to reduce the running cost for ballast water treatment. From the viewpoint, an apparatus using a catalyst capable of decomposing hypochlorous acid is preferable. Examples of the catalyst include nickel and palladium. The post-treatment device may have an adsorbent such as alumina in addition to the catalyst. The post-processing apparatus should just be arrange | positioned at the line through which ballast water passes at the time of ballast water discharge | emission. For example, it can be arranged in a ballast water supply line, or a branch line can be connected to the ballast water supply line and arranged in that line. The post-treatment device is preferably used in combination with a reducing agent supply device for reducing the sodium hypochlorite aqueous solution.
 本発明の第1のバラスト水処理システムは、次亜塩素酸ナトリウム水溶液が供給される液体のpHを次亜塩素酸のpKa以下に制御するための酸性液貯留槽(酸性液供給装置)を備えることができる。次亜塩素酸ナトリウムのpKaは7.5程度である。このため、次亜塩素酸ナトリウム水溶液を供給する前に、液体のpHをpKa以下、好ましくはpH5~6の範囲に制御することによって次亜塩素酸による殺滅能力を向上させ、水生生物の殺滅能力の処理効率を向上できる。また、低濃度の次亜塩素酸ナトリウムであっても十分に殺滅処理を行うことができ、配管やバラストタンクの腐敗を低減できる。酸性液貯留槽に貯留する酸性液としては、例えば、塩酸及び硫酸等が挙げられ、酸度が高い点からは塩酸が好ましい。酸性液貯留槽は、バラスト水供給ラインに接続し、例えば、次亜塩素酸ナトリウム水溶液を供給する前に、取水された液体に酸性液を供給可能なようにバラスト水供給ラインに接続していればよい。 The first ballast water treatment system of the present invention includes an acidic liquid storage tank (acidic liquid supply device) for controlling the pH of a liquid supplied with an aqueous sodium hypochlorite solution to be equal to or lower than the pKa of hypochlorous acid. be able to. Sodium hypochlorite has a pKa of about 7.5. For this reason, before supplying the sodium hypochlorite aqueous solution, the pH of the liquid is controlled to pKa or less, preferably in the range of pH 5-6, thereby improving the ability to kill hypochlorous acid and killing aquatic organisms. Can improve the processing efficiency. Moreover, even if it is a low concentration sodium hypochlorite, it can fully kill and can reduce the decay of piping and a ballast tank. Examples of the acidic liquid stored in the acidic liquid storage tank include hydrochloric acid and sulfuric acid, and hydrochloric acid is preferable from the viewpoint of high acidity. The acidic liquid storage tank is connected to the ballast water supply line.For example, before supplying the sodium hypochlorite aqueous solution, the acidic liquid storage tank may be connected to the ballast water supply line so that the acidic liquid can be supplied to the liquid taken. That's fine.
 本発明は、その他の態様として、本発明の第1のバラスト水処理システムを用いたバラスト水の注水方法、本発明の第1のバラスト水処理システムを備える船舶に関する。 As another aspect, the present invention relates to a ballast water injection method using the first ballast water treatment system of the present invention, and a ship equipped with the first ballast water treatment system of the present invention.
 本発明は、さらにその他の態様として、取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理すること、取水口から取水された液体に次亜塩素酸ナトリウム水溶液を供給すること、及び、前記殺傷処理及び前記次亜塩素酸ナトリウム水溶液の供給を行った前記液体をバラストタンクに貯留することを含み、さらに、前記取水口とは異なる第2の取水口から取水された液体を少なくとも含む次亜塩素酸ナトリウム製造のための液体を電気分解して前記次亜塩素酸ナトリウム水溶液を製造することを含むバラスト水処理方法(以下、「本発明の第1のバラスト水処理方法」ともいう)に関する。 In another aspect, the present invention electrically or mechanically kills aquatic organisms in the liquid taken from the water intake, and supplies the sodium hypochlorite aqueous solution to the liquid taken from the water intake. And storing the liquid that has been supplied with the killing treatment and the aqueous sodium hypochlorite solution in a ballast tank, and further, the liquid taken from a second water intake different from the water intake A ballast water treatment method (hereinafter referred to as “first ballast water treatment method of the present invention”), which comprises electrolyzing a liquid for producing sodium hypochlorite containing at least water to produce the sodium hypochlorite aqueous solution. Also called).
 本発明の第1のバラスト水処理方法によれば、電気的又は機械的な殺傷処理と、次亜塩素酸ナトリウムによる処理とを行うため、例えば、次亜塩素酸ナトリウムによる処理だけでは十分な殺傷が困難であった貝類や甲殻類の幼生を容易に殺傷することができる。本発明の第1のバラスト水処理方法によれば、航行中であっても船外から薬液供給装置への取水が容易となり、航行中における次亜塩素酸ナトリウム水溶液の製造を容易に行うことができるという効果を奏する。本発明の第1のバラスト水処理方法は、本発明の第1のバラスト水処理システムを用いて行うことができる。 According to the first ballast water treatment method of the present invention, electrical or mechanical killing treatment and treatment with sodium hypochlorite are performed. It is possible to easily kill shellfish and crustacean larvae that were difficult to handle. According to the first ballast water treatment method of the present invention, it is easy to take water from the outside of the ship to the chemical supply device even during navigation, and it is possible to easily produce a sodium hypochlorite aqueous solution during navigation. There is an effect that can be done. The first ballast water treatment method of the present invention can be performed using the first ballast water treatment system of the present invention.
 本発明の第1のバラスト水処理方法において、次亜塩素酸ナトリウム水溶液の供給は、電気的又は機械的な殺傷処理の前及び殺傷処理の後のいずれに行ってもよく、処理前及び処理後の双方に行ってもよい。 In the first ballast water treatment method of the present invention, the sodium hypochlorite aqueous solution may be supplied either before the electrical or mechanical killing treatment or after the killing treatment, before and after the treatment. You may go to both.
 本発明の第1のバラスト水処理方法において、寄港停泊中の消費電力量を低減する点から、次亜塩素酸ナトリウム水溶液の製造、及び又はそのための液体の取水は航行中に行うことが好ましく、これらの双方を航行中に行うことがより好ましい。航行中に製造した次亜塩素酸ナトリウム水溶液は、薬液供給装置に貯留しておくことが好ましい。これにより、寄港停泊中における消費電力量を低減でき、またすみやかに次亜塩素酸ナトリウム水溶液の供給を開始することができる。次亜塩素酸ナトリウム水溶液の製造及び貯留は、温度を制御しながら行うことが好ましい。温度を制御することにより、薬液供給装置に貯留される次亜塩素酸ナトリウム水溶液における次亜塩素酸の分解を抑制し、さらには有効塩素濃度を増加させかつ塩素酸濃度を低減できる。 In the first ballast water treatment method of the present invention, from the viewpoint of reducing power consumption during berthing, it is preferable that the production of the sodium hypochlorite aqueous solution and / or the liquid intake therefor be performed during navigation, More preferably, both of these are performed during navigation. It is preferable to store the sodium hypochlorite aqueous solution manufactured during the navigation in the chemical supply device. As a result, it is possible to reduce the amount of power consumed while the port is anchored, and it is possible to immediately start the supply of the sodium hypochlorite aqueous solution. The production and storage of the sodium hypochlorite aqueous solution is preferably performed while controlling the temperature. By controlling the temperature, it is possible to suppress the decomposition of hypochlorous acid in the sodium hypochlorite aqueous solution stored in the chemical solution supply device, further increase the effective chlorine concentration and reduce the chloric acid concentration.
 本発明の第1のバラスト水処理方法において、次亜塩素酸ナトリウム製造のための液体は、バラストタンクに貯留する液体を取水する前記取水口から取水された液体を含んでいてもよい。 In the first ballast water treatment method of the present invention, the liquid for producing sodium hypochlorite may include a liquid taken from the water intake port for taking the liquid stored in the ballast tank.
 以下に、本発明を好適な実施の形態を示しながら詳細に説明する。但し、本発明は以下に示す実施の形態に限定されない。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments. However, the present invention is not limited to the embodiments described below.
 (実施の形態1-1)
 図1は、本発明の実施の形態1-1におけるバラスト水処理システムの構成を示す概略構成図である。
(Embodiment 1-1)
FIG. 1 is a schematic configuration diagram showing a configuration of a ballast water treatment system according to Embodiment 1-1 of the present invention.
 図1に示すように、本実施の形態1-1のバラスト水処理システムは、薬液供給装置101と、殺傷処理装置102と、バラスト水供給ライン107とを含む。本実施の形態1-1のバラスト水処理システムによれば、次亜塩素酸ナトリウム水溶液を供給する薬液供給装置101と殺傷処理装置102とを用いて水生生物の処理を行うことから、従来よりも低濃度の次亜塩素酸ナトリウムによって水生生物を殺滅処理することができ、配管やバラストタンクの腐食等を防止できる。 As shown in FIG. 1, the ballast water treatment system according to the embodiment 1-1 includes a chemical solution supply device 101, a killing treatment device 102, and a ballast water supply line 107. According to the ballast water treatment system of the present Embodiment 1-1, the aquatic organisms are treated using the chemical solution supply device 101 and the killing treatment device 102 for supplying the sodium hypochlorite aqueous solution, so that it is more than conventional. Aquatic organisms can be killed with a low concentration of sodium hypochlorite, and corrosion of pipes and ballast tanks can be prevented.
 バラスト水供給ライン107は、取水口104から取水された液体をバラストタンク103に供給するためのラインであって、一端はバラスト水を取水する取水口(シーチェスト)104、ストレーナ105、及びバラストポンプ106と接続し、他端はバラストタンク103に接続している。バラストタンク103は、通常、複数のバラストタンク103a~103dに分割されている。 The ballast water supply line 107 is a line for supplying the liquid taken from the water intake 104 to the ballast tank 103. One end of the ballast water supply line 107 is a water intake (sea chest) 104, a strainer 105, and a ballast pump. The other end is connected to the ballast tank 103. The ballast tank 103 is usually divided into a plurality of ballast tanks 103a to 103d.
 殺傷処理装置102はバラスト水供給ライン107に配置されており、バラストポンプ106とバラストタンク103との間に配置されている。薬液供給装置101は、薬液供給ライン109を介してバラスト水供給ライン107と接続しており、殺傷処理装置102で処理された液体に次亜塩素酸ナトリウム水溶液を供給可能である。 The killing treatment apparatus 102 is disposed in the ballast water supply line 107 and is disposed between the ballast pump 106 and the ballast tank 103. The chemical liquid supply apparatus 101 is connected to the ballast water supply line 107 via the chemical liquid supply line 109 and can supply the sodium hypochlorite aqueous solution to the liquid processed by the killing apparatus 102.
 薬液供給装置101は、取水口(シーチェスト)104とは異なる第2の取水口114とライン110を介して接続している。これにより薬液供給装置101は、次亜塩素酸ナトリウムを発生させるための液体を、バラストポンプ106を駆動させることなく船外から取水することができる。取水ライン110には、液体を取り込むためのポンプ116とストレーナ115とを備えていてもよい。第2の取水口114及びポンプ116としては、船舶に既存する、飲料水やサニタリーに供給される液体等のための取水口及びポンプ等がそれぞれ使用できる。薬液供給ライン109は、バラスト水供給ライン107に次亜塩素酸ナトリウム水溶液を送液するためのポンプ及び次亜塩素酸ナトリウム水溶液の供給量を制御するためのバルブMを備えていてもよい。また、バラスト水供給ライン107への次亜塩素酸ナトリウム水溶液の送液は、薬液供給ライン109に配置されるポンプに替えて、薬液供給装置101に内蔵されたポンプ(図示せず)によって行ってもよい。薬液供給ライン109は、その他には、バラスト水供給ライン107への次亜塩素酸ナトリウムの供給量を測定するために、例えば、次亜塩素酸ナトリウム濃度計及び流量計を備えていてもよい。流量計としては、例えば、総流量や瞬時流量を計測可能な積算流量計FMが好ましい。 The chemical solution supply apparatus 101 is connected via a line 110 to a second water intake 114 different from the water intake (sea chest) 104. Thereby, the chemical supply apparatus 101 can take in the liquid for generating sodium hypochlorite from the outside of the ship without driving the ballast pump 106. The water intake line 110 may include a pump 116 and a strainer 115 for taking in the liquid. As the second water intake port 114 and the pump 116, a water intake port and a pump, etc., for liquids supplied to drinking water or sanitary existing in a ship can be used. The chemical solution supply line 109 may include a pump for feeding the sodium hypochlorite aqueous solution to the ballast water supply line 107 and a valve M for controlling the supply amount of the sodium hypochlorite aqueous solution. In addition, the sodium hypochlorite aqueous solution is sent to the ballast water supply line 107 by a pump (not shown) built in the chemical supply apparatus 101 instead of the pump arranged in the chemical supply line 109. Also good. In addition, the chemical solution supply line 109 may include a sodium hypochlorite concentration meter and a flow meter, for example, in order to measure the amount of sodium hypochlorite supplied to the ballast water supply line 107. As the flow meter, for example, an integrated flow meter FM capable of measuring a total flow rate and an instantaneous flow rate is preferable.
 薬液供給装置101としては、例えば、図2Aに示す形態の薬液供給装置201が使用できる。図2Aは、液体を電気分解することによって次亜塩素酸ナトリウムを発生可能な装置の構成の一例を示す概略構成図である。図2Aに示すように、薬液供給装置201は、次亜塩素酸ナトリウム水溶液を貯留するための貯留槽211と、電解処理によって次亜塩素酸ナトリウムを発生させるための電解槽212とを備える。貯留槽211は、ライン110,109と接続し、ライン110を通じて船外から次亜塩素酸ナトリウムを発生させるための液体を取り込み可能であり、ライン109を通じて貯留された次亜塩素酸ナトリウム水溶液をバラスト水供給ライン107に供給可能である。貯留槽211と電解槽212とはライン213,214によって接続されており、電解槽212において発生させた次亜塩素酸ナトリウムは、ライン214を通じて貯留槽211に貯留される。貯留槽211と電解槽212との間は、次亜塩素酸ナトリウムを発生及び貯留させる点から、ライン213及びライン214によって循環可能であることが好ましい。ライン213及び又はライン214は、送液のためのポンプを備えていてもよい。ライン213は、次亜塩素酸ナトリウム水溶液の温度を制御するための熱交換器215及びチラーユニット216を備えている。 As the chemical solution supply device 101, for example, a chemical solution supply device 201 having the form shown in FIG. 2A can be used. FIG. 2A is a schematic configuration diagram illustrating an example of a configuration of an apparatus capable of generating sodium hypochlorite by electrolyzing a liquid. As shown in FIG. 2A, the chemical solution supply apparatus 201 includes a storage tank 211 for storing a sodium hypochlorite aqueous solution and an electrolytic tank 212 for generating sodium hypochlorite by electrolytic treatment. The storage tank 211 is connected to the lines 110 and 109, can take in a liquid for generating sodium hypochlorite from the outside of the ship through the line 110, and ballasts the sodium hypochlorite aqueous solution stored through the line 109. It can be supplied to the water supply line 107. The storage tank 211 and the electrolytic tank 212 are connected by lines 213 and 214, and sodium hypochlorite generated in the electrolytic tank 212 is stored in the storage tank 211 through the line 214. Between the storage tank 211 and the electrolytic cell 212, it is preferable that the sodium chlorite can be circulated by the line 213 and the line 214 from the viewpoint of generating and storing sodium hypochlorite. The line 213 and / or the line 214 may include a pump for feeding liquid. The line 213 includes a heat exchanger 215 and a chiller unit 216 for controlling the temperature of the aqueous sodium hypochlorite solution.
 貯留槽211は、貯留する次亜塩素酸ナトリウム水溶液、及び又はそれを製造するための液体の温度を制御するために、断熱材を備えることが好ましい。 The storage tank 211 is preferably provided with a heat insulating material in order to control the temperature of the sodium hypochlorite aqueous solution to be stored and / or the liquid for producing the same.
 貯留槽211は、次亜塩素酸ナトリウム濃度計を備えることが好ましい。これにより、貯留槽211内の次亜塩素酸ナトリウム濃度を管理できるとともに、貯留槽211内の次亜塩素酸ナトリウム濃度に応じて、例えば、次亜塩素酸ナトリウムの発生量、貯留槽211に供給する液体の量、電解槽212に搬送する液体の量等を制御できる。 The storage tank 211 is preferably equipped with a sodium hypochlorite concentration meter. Thereby, while being able to manage the sodium hypochlorite concentration in the storage tank 211, according to the sodium hypochlorite concentration in the storage tank 211, for example, the amount of sodium hypochlorite generated, supplied to the storage tank 211 The amount of liquid to be transferred, the amount of liquid transferred to the electrolytic cell 212, and the like can be controlled.
 貯留槽211及び電解槽212は、発生したガス(特に、Hガス)を排出するためのブロア217及び排出口218を備えていてもよい。 The storage tank 211 and the electrolytic tank 212 may include a blower 217 and a discharge port 218 for discharging generated gas (particularly, H 2 gas).
 薬液供給装置101は、第2の取水口116と接続するライン110に加えて、バラストポンプ106で取水された液体を取り込み可能なライン(図示せず)を備えていてもよい。バラストポンプ106と接続することにより、次亜塩素酸ナトリウム水溶液を製造するための液体を効率よく取水できる。 The chemical supply apparatus 101 may include a line (not shown) capable of taking in the liquid taken in by the ballast pump 106 in addition to the line 110 connected to the second water intake 116. By connecting to the ballast pump 106, the liquid for producing the sodium hypochlorite aqueous solution can be efficiently taken.
 薬液供給装置101のその他の例としては、例えば、図2B及びCに示す形態が挙げられる。図2B及びCは、電気分解により次亜塩素酸ナトリウムを発生可能な装置の構成のその他の例を示す概略構成図である。図2Bに示す形態の薬液供給装置201は、ライン110と接続する電解槽212と、ライン109と接続する貯留槽211とを備え、電解槽212と貯留槽211とはライン213によって接続されている。本形態の薬液供給装置201は、ライン110を通じて船外から次亜塩素酸ナトリウムを発生させるための液体を電解槽211に取り込み、そこで次亜塩素酸ナトリウムを発生させる。発生させた次亜塩素酸ナトリウム水溶液は、ライン213を通じて貯留槽211に供給・貯留され、必要に応じてライン109を通じてバラスト水供給ライン107に供給される。ライン110は、次亜塩素酸ナトリウム水溶液の温度を制御するための熱交換器(図示せず)及びチラーユニット(図示せず)を備えてもよい。 Other examples of the chemical solution supply apparatus 101 include, for example, the forms shown in FIGS. 2B and 2C. 2B and 2C are schematic configuration diagrams showing another example of the configuration of an apparatus capable of generating sodium hypochlorite by electrolysis. 2B includes an electrolytic tank 212 connected to the line 110 and a storage tank 211 connected to the line 109, and the electrolytic tank 212 and the storage tank 211 are connected by a line 213. . The chemical supply apparatus 201 of this embodiment takes in a liquid for generating sodium hypochlorite from the outside of the ship through the line 110 into the electrolytic cell 211 and generates sodium hypochlorite there. The generated sodium hypochlorite aqueous solution is supplied / stored in the storage tank 211 through the line 213 and supplied to the ballast water supply line 107 through the line 109 as necessary. The line 110 may include a heat exchanger (not shown) and a chiller unit (not shown) for controlling the temperature of the aqueous sodium hypochlorite solution.
 図2Bでは、貯留槽211と電解槽212とがライン213によって接続されている例を示したが、本形態の薬液供給装置201はこれに限定されるものではなく、例えば、貯留槽211から電解槽212に液体を供給可能なラインを備え、このラインとライン213とによって貯留槽211と電解槽212との間を循環可能であってもよい。 In FIG. 2B, an example in which the storage tank 211 and the electrolytic tank 212 are connected by the line 213 is shown. However, the chemical solution supply apparatus 201 of the present embodiment is not limited to this. The tank 212 may be provided with a line capable of supplying a liquid, and the line and the line 213 may be circulated between the storage tank 211 and the electrolytic tank 212.
 図2Cに示す形態の薬液供給装置201は、1つの処理槽219のみを備える装置であってもよい。処理槽219は電解処理による次亜塩素酸ナトリウムの発生と、次亜塩素酸ナトリウム水溶液の貯留とを行う。処理槽219が貯留槽と電解槽とを兼ねることにより、例えば、薬液供給装置201をさらに小型化することができる。 2C may be an apparatus provided with only one treatment tank 219. The treatment tank 219 generates sodium hypochlorite by electrolytic treatment and stores a sodium hypochlorite aqueous solution. When the processing tank 219 serves as a storage tank and an electrolytic tank, for example, the chemical solution supply apparatus 201 can be further downsized.
 殺傷処理装置102は、水生生物を電気的又は機械的に殺傷処理するための装置である。殺傷処理装置102としては、例えば、図3A~Dに示す形態の電気的処理装置が使用できる。図3A~Dは、固定床型電極電解槽の構成の一例を示す概略構成図であって、図3Aは、バラスト水供給ライン107にクロスフロー方式で配置された単極式固定床型電極電解槽の一例を示し、図3B及びCは、バラスト水供給ライン107にクロスフロー方式で配置された複極式固定床型電極電解槽の一例を示し、図3Dは、バラスト水供給ライン107にデッドエンド方式で配置された複極式固定床型電極電解槽の一例を示す。図3A~Dにおいて、同じ構成要素には同じ符号を付している。 The killing treatment apparatus 102 is an apparatus for killing aquatic organisms electrically or mechanically. As the killing treatment apparatus 102, for example, an electrical processing apparatus having the form shown in FIGS. FIGS. 3A to 3D are schematic configuration diagrams showing an example of the configuration of the fixed bed type electrode electrolytic cell. FIG. 3A shows a single electrode type fixed bed type electrode electrolysis arranged on the ballast water supply line 107 in a cross flow manner. FIGS. 3B and 3C show an example of a bipolar fixed-bed electrode electrolyzer arranged in a cross flow manner on the ballast water supply line 107, and FIG. 3D shows a dead tank on the ballast water supply line 107. An example of a bipolar fixed-bed electrode electrolytic cell arranged in an end manner is shown. 3A to 3D, the same components are denoted by the same reference numerals.
 図3Aに示すように、単極式固定床型電極電解槽は、電解槽本体302と、固定床型電極311と、給電用電極312と、電源313とを備え、液体の流れ(図3Aの黒矢印)が固定床型電極311の膜面に対して水平方向(接線方向)となるようにバラスト水供給ライン107に配置されている。クロスフロー方式で固定床型電極電解槽を配置することにより、固定床型電極311の膜面の汚れを容易に除去することができ、圧力損失を抑制できる。取水口104から取水された液体が固定床型電極電解槽に供給されると、供給された液体は、固定床型電極311の膜面に対して垂直方向に流れ(図3Aの白抜きの矢印)。液体中の水生生物が液流動によって固定床型電極311に接触すると固定床型電極311の表面と水生生物の細胞との間で電子の授受が起こり、水生生物の活動を弱めることができたり、水生生物を破壊又は死滅させたり、水生生物の一部分を損傷させたりすることができる。固定床型電極311の膜面に滞留物や汚れが蓄積した場合は、ライン303に配置されたバルブを開いて洗浄することにより、これらを容易に除去することができる。ライン303の一端は船外に接続し、除去された残渣は船外に排出される。 As shown in FIG. 3A, the unipolar fixed-bed electrode electrolytic cell includes an electrolytic cell main body 302, a fixed-bed electrode 311, a power feeding electrode 312 and a power source 313, and a liquid flow (in FIG. 3A). A black arrow) is arranged in the ballast water supply line 107 so as to be in a horizontal direction (tangential direction) with respect to the membrane surface of the fixed floor electrode 311. By disposing the fixed bed type electrode electrolytic cell by the cross flow method, dirt on the film surface of the fixed bed type electrode 311 can be easily removed, and pressure loss can be suppressed. When the liquid taken from the water intake 104 is supplied to the fixed-bed electrode electrolytic cell, the supplied liquid flows in a direction perpendicular to the membrane surface of the fixed-bed electrode 311 (the white arrow in FIG. 3A). ). When aquatic organisms in the liquid contact the fixed bed electrode 311 by liquid flow, electrons are transferred between the surface of the fixed bed electrode 311 and the aquatic organism cells, and the aquatic organism activity can be weakened. Aquatic organisms can be destroyed or killed, or parts of aquatic organisms can be damaged. When accumulated matter or dirt accumulates on the membrane surface of the fixed bed electrode 311, these can be easily removed by opening the valve disposed in the line 303 and washing. One end of the line 303 is connected to the outside of the ship, and the removed residue is discharged out of the ship.
 固定床型電極311の材質としては、取水口104から取水された液体を透過可能なものであればよく、例えば、多孔質材料、炭素系材料、及び金属材料、これらを貴金属でコーティングしたもの等が挙げられる。炭素系材料としては、例えば、活性炭、グラファイト及び炭素繊維等が挙げられる。金属材料としては、例えば、ニッケル、銅、ステンレス、SUS(ステンレス鋼)、鉄及びチタン等が挙げられる。固定床型電極311の材質としては、これらの中でも、強度及び腐食防止の点から、SUS及びチタンが好ましい。固定床型電極311を構成する形状は特に制限されないが、例えば、球、粒、繊維、フェルト、織布、及び多孔質ブロック等が挙げられる固定床型電極311の開孔径は、例えば、100μm以上である。給電用電極312の材質としては、例えば、チタンが好ましい。給電用電極312の形状としては、例えば、平板、エキスパンドメタル、及び有孔板等が挙げられる。電源313は、直流電源であってもよいし、交流電源であってもよいが、交流電源が好ましい。 The material of the fixed floor electrode 311 may be any material that can permeate the liquid taken from the water intake 104, for example, a porous material, a carbon-based material, and a metal material, and those coated with a noble metal. Is mentioned. Examples of the carbon-based material include activated carbon, graphite, and carbon fiber. Examples of the metal material include nickel, copper, stainless steel, SUS (stainless steel), iron, and titanium. Among these, SUS and titanium are preferable as the material of the fixed floor electrode 311 from the viewpoint of strength and corrosion prevention. The shape of the fixed floor electrode 311 is not particularly limited. For example, the aperture diameter of the fixed floor electrode 311 including spheres, grains, fibers, felts, woven fabrics, porous blocks, and the like is, for example, 100 μm or more. It is. As a material of the power supply electrode 312, for example, titanium is preferable. Examples of the shape of the power supply electrode 312 include a flat plate, an expanded metal, and a perforated plate. The power source 313 may be a DC power source or an AC power source, but an AC power source is preferable.
 図3Bに示すように、複極式固定床型電極電解槽は、電解槽本体302と、給電用電極ターミナル314,315と、固定床316と、スペーサ317と、電源313とを含む。固定床316は、給電用電極ターミナル314,315間に配置され、スペーサ317は、給電用電極ターミナル314と固定床316との間、固定床316間、及び固定床316と給電用電極ターミナル315との間にそれぞれ配置されている。電源313として交流電源を使用し、給電用電極ターミナル314,315に通電すると、各固定床316の給電用電極ターミナル314側及び給電用電極ターミナル315側の膜面が交互に入れ替わりながら正と負に分極し、各固定床316の膜面に多孔質陽極及び多孔質陰極が形成される。このように複極式固定型電極電解槽を使用することにより、電解槽に配置する固定床316の数が増えるため、水生生物が固定床316と接触する回数を増やすことができ、処理効率を向上させることができる。 As shown in FIG. 3B, the bipolar fixed-bed electrode electrolytic cell includes an electrolytic cell main body 302, power supply electrode terminals 314 and 315, a fixed floor 316, a spacer 317, and a power source 313. The fixed floor 316 is disposed between the power supply electrode terminals 314 and 315, and the spacer 317 is disposed between the power supply electrode terminal 314 and the fixed floor 316, between the fixed floor 316, and between the fixed floor 316 and the power supply electrode terminal 315. Are arranged respectively. When an AC power supply is used as the power supply 313 and the power supply electrode terminals 314 and 315 are energized, the film surfaces on the power supply electrode terminal 314 side and the power supply electrode terminal 315 side of each fixed floor 316 are alternately changed to be positive and negative. Polarization is performed, and a porous anode and a porous cathode are formed on the film surface of each fixed bed 316. Since the number of fixed beds 316 arranged in the electrolytic cell is increased by using a bipolar fixed electrode electrolytic cell in this way, the number of times that aquatic organisms come into contact with the fixed bed 316 can be increased, and the processing efficiency can be increased. Can be improved.
 図3Cの複極式固定床型電極電解槽は、固定床316が1つ配置されていること以外は、図3Bの構成と同様である。 3C is the same as the configuration of FIG. 3B except that one fixed bed 316 is arranged.
 図3Dの複極式固定床型電極電解槽は、クロスフロー方式に変えてデッドエンド方式で配置されていること、及び固定床316が3つ配置されていること以外は、図3Bの構成と同様である。 The bipolar electrode fixed-bed electrode electrolyzer of FIG. 3D has the configuration of FIG. 3B except that it is arranged in a dead end method instead of the cross flow method, and three fixed beds 316 are arranged. It is the same.
 バラスト水供給ライン107において、薬液供給ライン109との接続部と、殺傷処理装置102との間には、例えば、バルブ(図示せず)が配置されていることが好ましい。これにより、バラストポンプ106と殺傷処理装置102との間に配置された流量計FM(図示せず)での測定値に基づき、バラストタンク103へ注入する液体(バラスト水)の量を制御できる。バルブは、バラストタンク103への注入量の制御が容易になる点から、電動バルブが好ましい。 In the ballast water supply line 107, for example, a valve (not shown) is preferably disposed between the connection portion with the chemical solution supply line 109 and the killing device 102. As a result, the amount of liquid (ballast water) injected into the ballast tank 103 can be controlled based on the measured value with a flow meter FM (not shown) disposed between the ballast pump 106 and the killing device 102. The valve is preferably an electric valve from the viewpoint of easy control of the amount injected into the ballast tank 103.
 本実施の形態1-1のバラスト水処理システムを用いたバラスト水の処理の一実施形態を図4A及びBに基づき説明する。 An embodiment of ballast water treatment using the ballast water treatment system of the present Embodiment 1-1 will be described with reference to FIGS. 4A and 4B.
 まず、図4Aに示すように、航海が終了して(S401)寄港すると、荷下ろしを開始する(S402)。また、バラスト水の取り込み及び処理を開始し(S403)、バラストポンプ106、殺傷処理装置102、及び薬液供給装置101の薬液供給ライン109のポンプを起動させる(S404)。これにより、取水口104を通じて液体の取り込み、及びバラスト水の処理が開始される。取水口104を通じて取り込まれた液体は、ストレーナ105において大きなゴミ等が取り除かれた後、殺傷処理装置102に供給され、液体に含まれる水生生物の殺傷処理が行われる。殺傷処理装置102では、電気的又は機械的処理を行うことにより、取水された液体に含まれる水生生物のうち比較的大きな水生生物が分離、除去、破壊及び又は殺滅される。ついで、殺傷処理装置102で処理された液体に、薬液供給装置101から次亜塩素酸ナトリウム水溶液が供給され、次亜塩素酸ナトリウムによる水生生物の殺滅処理が行われる。次亜塩素酸ナトリウムを含む液体が、バラスト水供給ライン107を通じてバラストタンク103に供給される。供給される次亜塩素酸ナトリウム水溶液における次亜塩素酸ナトリウム濃度は、例えば、5000ppm以上であり、そのpHは、例えば、8~9である。このバラスト水の処理は、バラスト水の注入量及び又は次亜塩素酸ナトリウムの供給量を制御しながら行われる(S405)。バラストタンク103内に所定量のバラスト水が注入され、かつ、バラストタンク103内の次亜塩素酸ナトリウムの濃度が所定の濃度に制御されれば(S406)、バラスト水の取り込み及び処理を終了し(S407)、バラストポンプ106、殺傷処理装置102、及び薬液供給装置101の薬液供給ライン109のポンプを停止する(S408)。殺傷処理装置102において殺傷処理を行った後、次亜塩素酸ナトリウム水溶液を供給して殺滅することにより、取水された液体及び又はバラストタンク内のバラスト水に含まれる水生生物の殺滅処理を効率よく行うことができる。 First, as shown in FIG. 4A, when the voyage is completed (S401), the unloading is started (S402). In addition, the ballast water starts to be taken in and processed (S403), and the ballast pump 106, the killing device 102, and the chemical solution supply line 109 of the chemical solution supply device 101 are activated (S404). As a result, liquid intake and ballast water treatment are started through the water intake port 104. The liquid taken in through the water intake 104 is supplied to the killing apparatus 102 after large dust or the like is removed by the strainer 105, and killing of aquatic organisms contained in the liquid is performed. In the killing treatment apparatus 102, a relatively large aquatic organism among the aquatic organisms contained in the taken-in liquid is separated, removed, destroyed and / or killed by performing an electrical or mechanical treatment. Next, a sodium hypochlorite aqueous solution is supplied from the chemical solution supply apparatus 101 to the liquid processed by the killing apparatus 102, and aquatic organisms are killed by sodium hypochlorite. A liquid containing sodium hypochlorite is supplied to the ballast tank 103 through the ballast water supply line 107. The sodium hypochlorite concentration in the supplied sodium hypochlorite aqueous solution is, for example, 5000 ppm or more, and the pH is, for example, 8-9. This ballast water treatment is performed while controlling the injection amount of ballast water and / or the supply amount of sodium hypochlorite (S405). If a predetermined amount of ballast water is injected into the ballast tank 103 and the concentration of sodium hypochlorite in the ballast tank 103 is controlled to a predetermined concentration (S406), the ballast water intake and processing is terminated. (S407), the pump of the chemical supply line 109 of the ballast pump 106, the killing treatment apparatus 102, and the chemical supply apparatus 101 is stopped (S408). After killing treatment in the killing treatment apparatus 102, by killing by supplying an aqueous sodium hypochlorite solution to kill the aquatic organisms contained in the taken-in liquid and / or ballast water in the ballast tank It can be done efficiently.
 つぎに、図4Bに示すように、航海が終了して寄港すると、デバラストを開始し(S411)、バラストポンプ106及び濃度計を起動させる(S412)。これにより、バラストタンク103から船外へのバラスト水の排出が開始される。バラスト水は、バラストタンク103からバラスト水供給ライン107に導入される。バラスト水供給ライン107に配置された濃度計によって、排出するバラスト水の次亜塩素酸ナトリウム濃度を測定する(S413)。測定した次亜塩素酸ナトリウム濃度が排出基準を満たしているかを判断し(S414)、次亜塩素酸ナトリウム濃度が0.2ppm未満である場合、排出基準を満たしているとして取水口104を介して海へ放出(デバラスト)する(S415)。次亜塩素酸ナトリウム濃度が0.2ppm以上である場合、中和剤を添加し(S416)、次亜塩素酸ナトリウムの濃度の測定(S413)及び上記判断(S414)を再度行う。バラストタンク103内のバラスト水をすべて排出すれば、デバラストを終了し、濃度計及びバラストポンプ106を停止する(S417)。 Next, as shown in FIG. 4B, when the voyage is completed and the port is called, deballasting is started (S411), and the ballast pump 106 and the concentration meter are activated (S412). Thereby, discharge of the ballast water from the ballast tank 103 to the outside of the ship is started. Ballast water is introduced into the ballast water supply line 107 from the ballast tank 103. The sodium hypochlorite concentration of the ballast water to be discharged is measured by a concentration meter disposed in the ballast water supply line 107 (S413). It is determined whether the measured sodium hypochlorite concentration satisfies the discharge standard (S414). If the sodium hypochlorite concentration is less than 0.2 ppm, it is determined that the discharge standard is satisfied through the water intake 104. Release (deballast) into the sea (S415). When the sodium hypochlorite concentration is 0.2 ppm or more, a neutralizing agent is added (S416), and the measurement of the sodium hypochlorite concentration (S413) and the above determination (S414) are performed again. When all the ballast water in the ballast tank 103 is discharged, the deballasting is finished and the concentration meter and the ballast pump 106 are stopped (S417).
 デバラスト及び荷積みが終了すると、出港する(S421)。航行中、ポンプ116を起動させて第2の取水口114を通じて薬液供給装置101に液体を取り込む。また、ポンプ116の起動と合わせてバラストポンプ106を起動させてシーチェストを通じて薬液供給装置101に液体を取り込んでもよい。温度制御手段を起動させ(S422)、次亜塩素酸ナトリウムを発生させるための液体の温度を、次亜塩素酸の分解が抑制される最適な温度に制御する。貯留槽211に所定の量の液体の貯留が完了したら、ポンプ116を停止する(S423)。このとき、温度制御手段は停止することなく、インバータ運転することが好ましい。航海時間(寄港時間)に合わせて、薬液供給装置101における整流器、ポンプ及びブロア等を起動して液体の電気分解を開始し、次亜塩素酸ナトリウムを発生させて次亜塩素酸ナトリウム水溶液を製造する(S424)。貯留槽211に貯留する次亜塩素酸ナトリウムの濃度が規定濃度、例えば5000ppm以上となれば(S425)、次亜塩素酸ナトリウムの発生を終了する(S426)。製造した次亜塩素酸ナトリウム水溶液は、薬液供給装置101に貯留しておく。貯留する次亜塩素酸ナトリウム水溶液のpHは、例えば、8~9である。次亜塩素酸ナトリウム水溶液の製造後も、温度制御手段は次亜塩素酸ナトリウム水溶液を供給するまで停止することなく運転することが好ましい。 When deballasting and loading are completed, the port departs (S421). During navigation, the pump 116 is activated and the liquid is taken into the chemical supply apparatus 101 through the second water intake 114. Further, the ballast pump 106 may be activated in conjunction with the activation of the pump 116, and the liquid may be taken into the chemical solution supply apparatus 101 through the sea chest. The temperature control means is activated (S422), and the temperature of the liquid for generating sodium hypochlorite is controlled to an optimum temperature at which decomposition of hypochlorous acid is suppressed. When the storage of the predetermined amount of liquid in the storage tank 211 is completed, the pump 116 is stopped (S423). At this time, it is preferable to operate the inverter without stopping the temperature control means. In line with the voyage time (calling time), the rectifier, pump, blower, etc. in the chemical supply apparatus 101 are started to start electrolysis of the liquid, and sodium hypochlorite is generated to produce an aqueous sodium hypochlorite solution. (S424). When the concentration of sodium hypochlorite stored in the storage tank 211 reaches a specified concentration, for example, 5000 ppm or more (S425), the generation of sodium hypochlorite is terminated (S426). The manufactured sodium hypochlorite aqueous solution is stored in the chemical solution supply apparatus 101. The pH of the aqueous sodium hypochlorite solution to be stored is, for example, 8-9. Even after the production of the sodium hypochlorite aqueous solution, the temperature control means is preferably operated without stopping until the sodium hypochlorite aqueous solution is supplied.
 薬液供給装置101における次亜塩素酸ナトリウム水溶液の製造及び次亜塩素酸ナトリウム水溶液の供給は、例えば、図5に示すようなバラスト水制御システムによって制御できる。図5は、バラスト水制御システムの構成の一例を示す機能ブロック図である。図5のバラスト水制御システムは、バラスト水供給ライン107における濃度計等を含む測定部501、測定部501で測定された次亜塩素酸ナトリウム濃度を記録する記録部502、及び記録部502の濃度データに基づき、薬液供給装置101からの次亜塩素酸ナトリウムの供給量やバラストタンク103へのバラスト水の注入量の増減等を決定し、薬液供給ライン109からバラストタンク103に供給される次亜塩素酸ナトリウム量やバラスト水の注入量等を制御する制御部503を備える。 The manufacture of the sodium hypochlorite aqueous solution and the supply of the sodium hypochlorite aqueous solution in the chemical solution supply apparatus 101 can be controlled by, for example, a ballast water control system as shown in FIG. FIG. 5 is a functional block diagram showing an example of the configuration of the ballast water control system. The ballast water control system of FIG. 5 includes a measuring unit 501 including a concentration meter in the ballast water supply line 107, a recording unit 502 that records the sodium hypochlorite concentration measured by the measuring unit 501, and the concentration of the recording unit 502 Based on the data, the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 and the increase / decrease in the amount of ballast water injected into the ballast tank 103 are determined, and the hypochlorite supplied from the chemical solution supply line 109 to the ballast tank 103 is determined. A control unit 503 is provided for controlling the amount of sodium chlorate, the amount of ballast water injected, and the like.
 測定部501は、図6の測定部601に示すような構成であってもよい。すなわち、測定部501は、バラスト水供給ライン107における次亜塩素酸ナトリウム濃度計に加え、薬液供給装置101の貯留槽211の次亜塩素酸ナトリウム濃度計、デバラストラインの次亜塩素酸ナトリウム濃度計、排出端部の次亜塩素酸ナトリウム濃度計を1つ又は1つ以上含みうる。測定部501での測定結果は記録部502に記録されうる。 The measurement unit 501 may be configured as shown in the measurement unit 601 in FIG. That is, the measuring unit 501 includes a sodium hypochlorite concentration meter in the storage tank 211 of the chemical supply device 101 and a sodium hypochlorite concentration in the deballast line in addition to the sodium hypochlorite concentration meter in the ballast water supply line 107. One or more sodium hypochlorite concentration meters at the discharge end may be included. The measurement result in the measurement unit 501 can be recorded in the recording unit 502.
 記録部502は、図6の記録部602に示すような1又は1以上のデータを記録できる。すなわち、測定部601で測定された貯留槽211に貯留された次亜塩素酸ナトリウム濃度、バラスト時間(バラスト水処理時間)、バラストタンク103に収容されたバラスト水量、航行データ(少なくとも排水までの時間を含むことが好ましい)、次亜塩素酸ナトリウム水溶液の供給量、バラスト水供給ライン107における次亜塩素酸ナトリウム水溶液供給後の液体の次亜塩素酸ナトリウム濃度、デバラスト時間及びデバラスト量、後処理装置によって処理した後のバラスト水の次亜塩素酸ナトリウム濃度、還元剤の供給量、及び還元剤供給後の次亜塩素酸ナトリウム濃度が含まれうる。記録部602は、さらに、バラストタンク103内で維持すべき次亜塩素酸ナトリウム濃度範囲も記録しておくことができる。 The recording unit 502 can record one or more data as shown in the recording unit 602 of FIG. That is, the concentration of sodium hypochlorite stored in the storage tank 211 measured by the measurement unit 601, the ballast time (ballast water treatment time), the amount of ballast water stored in the ballast tank 103, navigation data (at least the time until drainage) The amount of sodium hypochlorite aqueous solution supplied, the concentration of sodium hypochlorite in the liquid after supplying the sodium hypochlorite aqueous solution in the ballast water supply line 107, the deballast time and the amount of deballast, and the aftertreatment device The sodium hypochlorite concentration of the ballast water after being treated with, the supply amount of the reducing agent, and the sodium hypochlorite concentration after the supply of the reducing agent may be included. The recording unit 602 can also record a sodium hypochlorite concentration range to be maintained in the ballast tank 103.
 制御部503は、図6の制御部603に示すような構成とすることができる。すなわち、制御部603は、分析部611、次亜塩素酸ナトリウム発生制御部612、及び供給量制御部613が含まれうる。分析部611は、例えば、記録部602に記録されたデータから、バラスト水供給ライン107に供給する次亜塩素酸ナトリウム水溶液の供給量、還元剤の供給量、及び薬液供給装置101において発生させる次亜塩素酸ナトリウム量等を決定する。次亜塩素酸ナトリウム発生制御部612は、例えば、前記決定に基づき薬液供給装置101において発生させる次亜塩素酸ナトリウム量等を制御する。供給量制御部613は、例えば、前記決定に基づき薬液供給装置101からバラストタンク103へ供給する次亜塩素酸ナトリウム量等を制御する。 The control unit 503 can be configured as shown in the control unit 603 of FIG. That is, the control unit 603 can include an analysis unit 611, a sodium hypochlorite generation control unit 612, and a supply amount control unit 613. The analysis unit 611, for example, from the data recorded in the recording unit 602, the supply amount of the sodium hypochlorite aqueous solution supplied to the ballast water supply line 107, the supply amount of the reducing agent, and the next generated in the chemical solution supply apparatus 101. Determine the amount of sodium chlorite. The sodium hypochlorite generation control unit 612 controls, for example, the amount of sodium hypochlorite generated in the chemical supply apparatus 101 based on the determination. The supply amount control unit 613 controls, for example, the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 to the ballast tank 103 based on the determination.
 本実施の形態1-1では、薬液供給装置101が、殺傷処理装置102とバラストタンク103との間、つまり、殺傷処理装置102で処理された液体に次亜塩素酸ナトリウム水溶液を供給する形態を例にとり説明したが、本発明はこれに制限されるものではない。例えば、図7に示すように、薬液供給ライン109がバラストポンプ106と殺傷処理装置102との間に接続し、殺傷処理前の液体に次亜塩素酸ナトリウム水溶液を供給する形態であってもよい。また、図8に示すように、薬液供給装置101が、殺傷処理装置102とバラストタンク103との間に接続する薬液供給ライン109と、バラストポンプ106と殺傷処理装置102との間に接続する第2の薬液供給ライン809とを有し、殺傷処理前及び殺傷処理後の液体にそれぞれ次亜塩素酸ナトリウム水溶液を供給する形態であってもよい。 In the embodiment 1-1, the chemical solution supply apparatus 101 supplies the sodium hypochlorite aqueous solution to the liquid processed between the killing treatment apparatus 102 and the ballast tank 103, that is, the killing treatment apparatus 102. Although described by way of example, the present invention is not limited to this. For example, as shown in FIG. 7, the chemical solution supply line 109 may be connected between the ballast pump 106 and the killing treatment apparatus 102 to supply the sodium hypochlorite aqueous solution to the liquid before the killing treatment. . Further, as shown in FIG. 8, a chemical solution supply device 101 is connected between a chemical solution supply line 109 connected between the killing treatment device 102 and the ballast tank 103, and between the ballast pump 106 and the killing treatment device 102. And a second chemical solution supply line 809, and a sodium hypochlorite aqueous solution may be supplied to the liquid before and after the killing treatment.
 (実施の形態1-2)
 図9は、本発明の実施の形態1-2におけるバラスト水処理システムの構成を示す概略構成図である。図9において、図1と同じ構成要素には同じ符号を付している。
(Embodiment 1-2)
FIG. 9 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-2 of the present invention. In FIG. 9, the same components as those in FIG.
 本実施の形態1-2のバラスト水処理システムは、後処理装置901、バラストタンク103内のバラスト水を後処理装置901に供給するためのライン902、バラスト水をデバラストするための排出ライン(デバラストライン)903、及び還元剤供給装置(還元剤貯留タンク)904を備える以外は、実施の形態1-1のバラスト水処理システムの構成と同じである。本実施の形態1-2のバラスト水処理システムによれば、後処理装置901を備えるため、還元剤の使用量を低減することができる。 The ballast water treatment system of Embodiment 1-2 includes a post-treatment device 901, a line 902 for supplying the ballast water in the ballast tank 103 to the post-treatment device 901, and a discharge line (de-ballast for deballasting the ballast water). The configuration is the same as that of the ballast water treatment system according to Embodiment 1-1 except that a ballast line) 903 and a reducing agent supply device (reducing agent storage tank) 904 are provided. According to the ballast water treatment system of the present Embodiment 1-2, since the post-treatment device 901 is provided, the amount of reducing agent used can be reduced.
 ライン902は、一端がバラスト水供給ライン107に接続し、他端が後処理装置901に接続しており、バラスト水供給ライン107を通じて後処理装置901にバラストタンク103内のバラスト水を供給することができる。 One end of the line 902 is connected to the ballast water supply line 107 and the other end is connected to the post-treatment device 901, and the ballast water in the ballast tank 103 is supplied to the post-treatment device 901 through the ballast water supply line 107. Can do.
 後処理装置901は、バラスト水排出時にバラスト水の次亜塩素酸ナトリウム濃度を排出基準以下にする及び又は還元剤の使用量を低減するための処理を行うための装置である。 The post-treatment device 901 is a device for performing a treatment for reducing the sodium hypochlorite concentration of the ballast water below the discharge standard and / or reducing the amount of reducing agent used when discharging the ballast water.
 還元剤供給装置904は、排出するバラスト水の次亜塩素酸ナトリウムを還元させて次亜塩素酸ナトリウム濃度を排出基準以下にするためのものである。還元剤供給装置904は、排出ライン903に接続し、後処理装置901で処理された排出バラスト水に還元剤を供給できる。還元剤としては、チオ硫酸ナトリウム、亜硫酸ナトリウム等が挙げられる。 The reducing agent supply device 904 is for reducing sodium hypochlorite in the ballast water to be discharged so that the sodium hypochlorite concentration falls below the discharge standard. The reducing agent supply device 904 is connected to the discharge line 903 and can supply the reducing agent to the discharged ballast water processed by the post-processing device 901. Examples of the reducing agent include sodium thiosulfate and sodium sulfite.
 排出ライン903は、排出するバラスト水の次亜塩素酸ナトリウム濃度を測定するために次亜塩素酸ナトリウム濃度計、及び排出するバラスト水に含まれる水生生物(特に微生物)の生細胞数を測定するために微生物検査装置等の装置を備えていてもよい。次亜塩素酸ナトリウム濃度計は、図9に示すように、少なくとも後処理装置901とバラストポンプ106との間、及び排出ライン903の排出端部(バラスト水の排出口付近)に配置されていることが好ましい。 The discharge line 903 measures the sodium hypochlorite concentration meter for measuring the concentration of sodium hypochlorite discharged and the number of living cells of aquatic organisms (particularly microorganisms) contained in the discharged ballast water. Therefore, you may provide apparatuses, such as a microbe inspection apparatus. As shown in FIG. 9, the sodium hypochlorite concentration meter is disposed at least between the aftertreatment device 901 and the ballast pump 106 and at the discharge end of the discharge line 903 (near the ballast water discharge port). It is preferable.
 本実施の形態1-2のバラスト水処理システムを用いたバラスト水排出時におけるバラスト水の処理の一実施形態を説明する。 An embodiment of ballast water treatment at the time of ballast water discharge using the ballast water treatment system of the present embodiment 1-2 will be described.
 バラストポンプ106を駆動させて、バラストタンク103からバラスト水の排出を開始する。バラストタンク103内のバラスト水は、バラスト水供給ライン107及びライン902を介して後処理装置901に供給される。後処理装置901において、次亜塩素酸ナトリウムの分解処理がされたバラスト水は、排出ライン903を介して殺傷処理装置102に供給され、船外に排出される。このとき、殺傷処理装置102において、排出するバラスト水に含まれる水生生物の処理を行ってもよい。 The ballast pump 106 is driven to start discharging the ballast water from the ballast tank 103. Ballast water in the ballast tank 103 is supplied to the post-treatment device 901 via the ballast water supply line 107 and the line 902. The ballast water that has been subjected to the decomposition treatment of sodium hypochlorite in the post-treatment device 901 is supplied to the killing treatment device 102 via the discharge line 903 and discharged outside the ship. At this time, in the killing treatment apparatus 102, aquatic organisms contained in the discharged ballast water may be processed.
 なお、本実施の形態1-2では、排出ライン903が殺傷処理装置102と接続する形態を例にとり説明したが、本発明はこれに限定されるものではない。例えば、排出ライン903が殺傷処理装置102に接続していなくてもよい。すなわち、バラスト水が、殺傷処理装置102を経由することなく排出される形態であってもよい。 In the present embodiment 1-2, an example in which the discharge line 903 is connected to the killing apparatus 102 has been described as an example, but the present invention is not limited to this. For example, the discharge line 903 may not be connected to the killing treatment apparatus 102. In other words, the ballast water may be discharged without passing through the killing apparatus 102.
 (実施の形態1-3)
 図10は、本発明の実施の形態1-3におけるバラスト水処理システムの構成を示す概略構成図である。図10において、図1と同じ構成要素には同じ符号を付している。
(Embodiment 1-3)
FIG. 10 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-3 of the present invention. In FIG. 10, the same components as those in FIG.
 本実施の形態1-3のバラスト水処理システムは、次亜塩素酸ナトリウム水溶液を供給する液体のpHを次亜塩素酸ナトリウムのpKa以下に制御するための酸性液貯留槽1001、及びバラスト水供給ライン107がpHメータを備える以外は、実施の形態1-1のバラスト水処理システムの構成と同じである。 The ballast water treatment system according to Embodiment 1-3 includes an acidic liquid storage tank 1001 for controlling the pH of a liquid that supplies an aqueous sodium hypochlorite solution to a pKa of sodium hypochlorite or less, and a ballast water supply. Except for the line 107 having a pH meter, the configuration is the same as that of the ballast water treatment system of the embodiment 1-1.
 本実施の形態1-3のバラスト水処理システムは、酸性液貯留槽1001を備えることにより、次亜塩素酸ナトリウムを供給する液体のpHを次亜塩素酸の殺傷能力に最適な範囲に制御し、その状態で次亜塩素酸ナトリウムの供給及び殺傷処理を行うことができる。このため、次亜塩素酸ナトリウムによる水生生物の殺滅処理の処理効率を向上できる。最適なpHとしては、例えば、4~6であり、好ましくは略5である。 The ballast water treatment system according to the first to third embodiments includes the acidic liquid storage tank 1001 to control the pH of the liquid that supplies sodium hypochlorite to an optimum range for the killing ability of hypochlorous acid. In this state, sodium hypochlorite can be supplied and killed. For this reason, the treatment efficiency of the aquatic organism killing process by sodium hypochlorite can be improved. The optimum pH is, for example, 4 to 6, preferably about 5.
 (実施の形態1-4)
 図11Aは、本発明の実施の形態1-4におけるバラスト水処理システムの構成を示す概略構成図である。図11Aにおいて、図1と同じ構成要素には同じ符号を付している。
(Embodiment 1-4)
FIG. 11A is a schematic configuration diagram showing a configuration of a ballast water treatment system according to Embodiment 1-4 of the present invention. In FIG. 11A, the same components as those in FIG.
 本実施の形態1-4におけるバラスト水処理システムは、バラスト水供給ライン107と、バラスト水供給ライン107に配置されたチャンバー1101と、チャンバーの排出口に配置された電気的殺傷処理装置102と、次亜塩素酸ナトリウム水溶液をバラスト水供給ライン107に供給するための薬液供給装置101とを備える。本実施の形態1-4のバラスト水処理システムによれば、取水口104から取水されたバラスト水を一時的にチャンバー1101内に貯留させながら電気的殺傷処理装置102に供給することができる。このため、電気的殺傷処理装置102に供給されるバラスト水の流速を略一定にすることができ、バラスト水中の水生生物が電気的殺傷処理装置102(特に、固定床)に接触する回数を増加させ殺傷処理効率を向上させることができる。本実施の形態1-4のバラスト水処理システムは、チャンバー1101を備えること、及び電気的殺傷処理装置102がチャンバー1101の排出口に配置されていること以外は、実施の形態1-1のバラスト水処理システムの構成と同様である。 The ballast water treatment system in the present embodiment 1-4 includes a ballast water supply line 107, a chamber 1101 arranged in the ballast water supply line 107, an electrical killing treatment apparatus 102 arranged in the discharge port of the chamber, A chemical solution supply apparatus 101 for supplying a sodium hypochlorite aqueous solution to the ballast water supply line 107 is provided. According to the ballast water treatment system of the present embodiment 1-4, the ballast water taken from the water intake 104 can be supplied to the electrical killing apparatus 102 while being temporarily stored in the chamber 1101. For this reason, the flow rate of the ballast water supplied to the electrical killing treatment apparatus 102 can be made substantially constant, and the number of times that aquatic organisms in the ballast water contact the electrical killing treatment apparatus 102 (particularly, the fixed bed) is increased. And killing efficiency can be improved. The ballast water treatment system according to the present embodiment 1-4 includes the chamber 1101 and the ballast according to the embodiment 1-1 except that the electrical killing apparatus 102 is disposed at the discharge port of the chamber 1101. The configuration is the same as that of the water treatment system.
 本実施の形態1-4のバラスト水処理システムを用いたバラスト水の処理は、例えば、以下のように行われる。まず、取水口104から取水されたバラスト水は、バラスト水供給ライン107を通じてチャンバー1101内に導入され、その後チャンバー1101の排出口を通じて電気的殺傷処理装置102に供給される。そこで電気的な殺傷処理が行われる。殺傷処理されたバラスト水はバラスト水供給ライン107に導入された後、薬液供給装置101から次亜塩素酸ナトリウム水溶液が供給され、そして、バラスト水供給ライン107を通じてバラストタンク103に貯留される。 The ballast water treatment using the ballast water treatment system of the present embodiment 1-4 is performed, for example, as follows. First, ballast water taken from the water intake 104 is introduced into the chamber 1101 through the ballast water supply line 107, and then supplied to the electrical killing apparatus 102 through the outlet of the chamber 1101. Therefore, an electrical killing process is performed. The ballast water that has been killed is introduced into the ballast water supply line 107, then the aqueous sodium hypochlorite solution is supplied from the chemical solution supply apparatus 101, and is stored in the ballast tank 103 through the ballast water supply line 107.
 チャンバー1101の径は、バラスト水供給ライン107の管径よりも大きいことが好ましく、バラスト水供給ライン107との接続部からチャンバー1101の内部に向かってテーパー状に大きくなっていることがより好ましい。この構成によれば、チャンバー1101内のバラスト水の流速をバラスト水供給ライン107での流速よりもさらに遅くすることができる。このため、バラスト水中の水生生物が電気的殺傷処理装置102に接触する回数をさらに増加させることができる。チャンバー1101の排出口は、チャンバー1101底部に形成されていることが好ましい。この構成によれば、チャンバー1101底部から排出されるバラスト水を電気的殺傷処理装置102によって処理することができる。チャンバー1101内での流速が遅くなると、バラスト水中の水生生物がバラスト水との比重差によってチャンバー1101の底部に滞るため、水生生物と電気的殺傷処理装置102とが接触する回数をさらに増加させることができる。 The diameter of the chamber 1101 is preferably larger than the tube diameter of the ballast water supply line 107, and more preferably increases in a tapered shape from the connection portion with the ballast water supply line 107 toward the inside of the chamber 1101. According to this configuration, the flow rate of the ballast water in the chamber 1101 can be made slower than the flow rate in the ballast water supply line 107. For this reason, the frequency | count that the aquatic organism in ballast water contacts the electrical killing apparatus 102 can further be increased. The discharge port of the chamber 1101 is preferably formed at the bottom of the chamber 1101. According to this configuration, the ballast water discharged from the bottom of the chamber 1101 can be processed by the electrical killing apparatus 102. When the flow velocity in the chamber 1101 is slowed, the aquatic organisms in the ballast water are stagnated at the bottom of the chamber 1101 due to the specific gravity difference with the ballast water, so that the number of contact between the aquatic organisms and the electrical killing device 102 is further increased. Can do.
 バラスト水供給ライン107は、さらにフィルターを備えていてもよい。図11Bに、本実施の形態1-4におけるバラスト水処理システムの構成のその他の例を示す概略構成図を示す。図11Bにおいて、図11Aと同じ構成要素には同じ符号を付している。第1の態様のバラスト水処理システムによれば、フィルター1102を備えることにより、例えば、バラストタンクに供給するバラスト水中のプランクトン類や、電気的殺傷処理装置102で殺傷処理された水生生物の死骸等を捕捉することができる。 The ballast water supply line 107 may further include a filter. FIG. 11B is a schematic configuration diagram showing another example of the configuration of the ballast water treatment system according to Embodiment 1-4. In FIG. 11B, the same components as those in FIG. 11A are denoted by the same reference numerals. According to the ballast water treatment system of the first aspect, by providing the filter 1102, for example, plankton in the ballast water supplied to the ballast tank, a dead body of aquatic organisms killed by the electrical killing device 102, or the like Can be captured.
 図11Bでは、フィルター1102が薬液供給装置101との接続部とバラストタンク103との間に配置された形態を示しているが、本発明はこれに限定されるものではなく、例えば、殺傷処理装置102とバラストタンク103との間に配置してもよい。フィルター1102の数は特に制限されるものではなく、1個であってもよいし、2個以上であってもよい。フィルターを2個以上配置する場合は、例えば、図11Bに示すように、バラスト水供給ライン107を分岐させそれぞれに1個ずつのフィルターを配置してもよい。フィルター1102としては特に制限されるものではないが、例えば、孔径が10~200μmのフィルターが使用できる。 Although FIG. 11B shows a form in which the filter 1102 is disposed between the connection portion with the chemical solution supply apparatus 101 and the ballast tank 103, the present invention is not limited to this, and for example, a killing treatment apparatus You may arrange | position between 102 and the ballast tank 103. FIG. The number of filters 1102 is not particularly limited, and may be one or may be two or more. When two or more filters are arranged, for example, as shown in FIG. 11B, the ballast water supply line 107 may be branched and one filter may be arranged for each. The filter 1102 is not particularly limited. For example, a filter having a pore diameter of 10 to 200 μm can be used.
 図12に、本実施の形態1-4のバラスト水処理システムの一部を示す部分図を示す。図12A及びBは、バラスト水供給ライン107において、殺傷処理装置102と薬液供給装置101とをつなぐ部分(図11Aにおいて破線で囲んだ部分)を取り出して示す図であって、殺傷処理装置102と薬液供給装置101とをつなぐ部分の形態の一例を示す。殺傷処理装置102と薬液供給装置101とをつなぐ部分は、例えば、図12Aに示すように、クランク状に屈折した屈折部となっていてもよいし、図12Bに示すように殺傷処理装置102から薬液供給装置101に向かって緩やかな上り勾配が形成された傾斜部であってもよい。バラスト水供給ライン107が屈折部を有する場合、薬液供給装置101は、図12Aに示すように、屈折部の上端付近に配置することが好ましい。バラスト水供給ライン107が傾斜部を有する場合、薬液供給装置101は、図12Bに示すように、傾斜部の上端付近に配置することが好ましい。これらの形態によれば、例えば、薬液供給装置101から供給される次亜塩素酸ナトリウム水溶液を殺傷処理装置102に供給することができる。これにより、殺傷処理装置102に残留する液体の次亜塩素酸ナトリウムによる殺菌処理を行うことができる。傾斜部の勾配は緩やかな勾配であれば特に制限されるものではないが、例えば、1/200以上であり、好ましくは1/100以上1/50以下である。傾斜部には、バルブが配置されていてもよい。これにより、殺傷処理装置102に供給する次亜塩素酸ナトリウム水溶液量を制御できる。 FIG. 12 is a partial view showing a part of the ballast water treatment system according to Embodiment 1-4. FIGS. 12A and 12B are views showing a portion (a portion surrounded by a broken line in FIG. 11A) connecting the killing treatment device 102 and the chemical solution feeding device 101 in the ballast water supply line 107. An example of the form of the part which connects with the chemical | medical solution supply apparatus 101 is shown. For example, as shown in FIG. 12A, the portion connecting the killing treatment device 102 and the chemical solution supply device 101 may be a refracting portion that is refracted into a crank shape, or from the killing treatment device 102 as shown in FIG. 12B. It may be an inclined portion in which a gentle upward gradient is formed toward the chemical solution supply apparatus 101. When the ballast water supply line 107 has a refracting portion, the chemical solution supply device 101 is preferably disposed near the upper end of the refracting portion as shown in FIG. 12A. When the ballast water supply line 107 has an inclined part, it is preferable to arrange | position the chemical | medical solution supply apparatus 101 near the upper end of an inclined part, as shown to FIG. 12B. According to these embodiments, for example, the sodium hypochlorite aqueous solution supplied from the chemical solution supply apparatus 101 can be supplied to the killing treatment apparatus 102. Thereby, the sterilization process by the liquid sodium hypochlorite which remains in the killing processing apparatus 102 can be performed. The gradient of the inclined portion is not particularly limited as long as it is a gentle gradient, but is, for example, 1/200 or more, preferably 1/100 or more and 1/50 or less. A valve may be disposed on the inclined portion. Thereby, the amount of sodium hypochlorite aqueous solution supplied to the killing apparatus 102 can be controlled.
 本実施の形態1-4において、次亜塩素酸ナトリウム水溶液の供給と電気的殺傷処理装置の順番は特に制限されるものではなく、電気的殺傷処理装置の処理を行う前に、次亜塩素酸ナトリウム水溶液を供給してもよい。 In the present embodiment 1-4, the order of the supply of the sodium hypochlorite aqueous solution and the electrical killing device is not particularly limited, and hypochlorous acid is required before the electrical killing device is treated. An aqueous sodium solution may be supplied.
 (実施の形態1-5)
 図13は、本発明の実施の形態1-5におけるバラスト水処理システムの構成を示す概略構成図である。図13において、図1と同じ構成要素には同じ符号を付している。
Embodiment 1-5
FIG. 13 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-5 of the present invention. In FIG. 13, the same components as those in FIG.
 本実施の形態1-5におけるバラスト水処理システムは、バラスト水供給ライン107と、次亜塩素酸ナトリウム水溶液をバラスト水供給ライン107に供給するための薬液供給装置101と、バラスト水供給ライン107に配置されたチャンバー1301と、電気的殺傷処理装置1302とを備え、電気的殺傷処理装置1302はチャンバー1301内に配置されている。本実施の形態1-5のバラスト水処理システムによれば、電気的殺傷処理装置1302がチャンバー1301内に配置されているため、バラスト水供給ライン107から導入されたバラスト水をチャンバー1301内に貯留しながら電気的殺傷処理装置1302による殺傷処理を行うことができる。これにより、バラスト水の流速をバラスト水供給ライン107での流速よりも遅くすることができ、バラスト水中の水生生物が電気的殺傷処理装置1302に接触する回数を増加させることができる。本実施の形態1-5のバラスト水処理システムは、殺傷処理装置1302がチャンバー1301内に配置されている以外は、実施の形態1-1のバラスト水処理システムの構成と同様である。 The ballast water treatment system according to Embodiment 1-5 includes a ballast water supply line 107, a chemical solution supply apparatus 101 for supplying a sodium hypochlorite aqueous solution to the ballast water supply line 107, and a ballast water supply line 107. A disposed chamber 1301 and an electrical killing device 1302 are provided, and the electrical killing device 1302 is placed in the chamber 1301. According to the ballast water treatment system of Embodiment 1-5, since the electrical killing treatment device 1302 is disposed in the chamber 1301, the ballast water introduced from the ballast water supply line 107 is stored in the chamber 1301. However, the killing process by the electrical killing apparatus 1302 can be performed. Thereby, the flow rate of ballast water can be made slower than the flow rate in the ballast water supply line 107, and the number of times that aquatic organisms in the ballast water come into contact with the electrical killing apparatus 1302 can be increased. The ballast water treatment system according to the first embodiment is the same as the configuration of the ballast water treatment system according to the first embodiment except that the killing treatment apparatus 1302 is disposed in the chamber 1301.
 本実施の形態1-5のバラスト水処理システムを用いたバラスト水の処理は、例えば、以下のように行うことができる。まず、取水口104から取水されたバラスト水は、バラスト水供給ライン107を通じてチャンバー1301内に導入され、そこでバラスト水中の水生生物の電気的な殺傷処理が行われる。電気的殺傷処理装置1302は、チャンバー1301内において流速が遅い部分、例えば、チャンバー1301底部付近に配置されていることが好ましい。流速が遅くなると、バラスト水中の水生生物がバラスト水との比重差によってその部分に滞ることから、水生生物と電気的殺傷処理装置1302とが接触する回数をさらに増加させることができる。ついで、処理された液体がチャンバー1301からバラスト水供給ライン107に導入され、薬液供給装置101から次亜塩素酸ナトリウム水溶液が供給された後、バラストタンク103に導入される。 The ballast water treatment using the ballast water treatment system of the present Embodiment 1-5 can be performed as follows, for example. First, ballast water taken from the water intake port 104 is introduced into the chamber 1301 through the ballast water supply line 107, where an aquatic organism in the ballast water is electrically killed. The electrical killing apparatus 1302 is preferably disposed in a portion of the chamber 1301 where the flow velocity is low, for example, near the bottom of the chamber 1301. When the flow rate is slowed down, the aquatic organisms in the ballast water stagnate due to the difference in specific gravity with the ballast water, so that the number of contact between the aquatic organism and the electrical killing device 1302 can be further increased. Next, the treated liquid is introduced into the ballast water supply line 107 from the chamber 1301, and the sodium hypochlorite aqueous solution is supplied from the chemical solution supply apparatus 101 and then introduced into the ballast tank 103.
 チャンバー1301の排出口は、チャンバー1301の上部に形成されていることが好ましい。これにより、バラスト水供給ライン107に導入される液体中の水生生物量を低減させることができる。チャンバー1301の排出口は、チャンバー1301の導入口よりも低い位置に形成されていることが好ましい。また、チャンバー1301の排出口の径は、導入口の径よりも大きいことが好ましい。これらの構成によれば、チャンバー1301内のバラスト水の流速をバラスト水供給ライン107での流速よりもさらに遅くし、バラスト水中の水生生物が電気的殺傷処理装置1302に接触する回数をさらに増加させることができる。チャンバー1301において排出口の径と導入口の径との比(排出口:導入口)は特に制限されるものではないが、例えば、1:1.2~1.5とすることができる。また、排出口に接続するラインの径は、チャンバー1301から薬液供給装置101に向かって徐々に大きくなることが好ましい。これにより、圧力損失の上昇を抑制することができる。 The discharge port of the chamber 1301 is preferably formed in the upper part of the chamber 1301. Thereby, the amount of aquatic organisms in the liquid introduced into the ballast water supply line 107 can be reduced. The discharge port of the chamber 1301 is preferably formed at a position lower than the introduction port of the chamber 1301. In addition, the diameter of the discharge port of the chamber 1301 is preferably larger than the diameter of the introduction port. According to these configurations, the flow rate of the ballast water in the chamber 1301 is made slower than the flow rate in the ballast water supply line 107, and the number of times that aquatic organisms in the ballast water contact the electrical killing device 1302 is further increased. be able to. In the chamber 1301, the ratio of the diameter of the discharge port to the diameter of the introduction port (discharge port: introduction port) is not particularly limited, but may be, for example, 1: 1.2 to 1.5. The diameter of the line connected to the discharge port is preferably gradually increased from the chamber 1301 toward the chemical solution supply apparatus 101. Thereby, an increase in pressure loss can be suppressed.
 チャンバー1301は、さらにバッフル等の整流部材を備えていてもよい。これにより、チャンバー1301内の流速を容易に一定にすることができる。また、整流部材は、電気的殺傷処理装置1302の上部に配置することが好ましい。この構成によれば、バラスト水中のより多くの水生生物を電気的殺傷処理装置1302側に集めることができ、電気的殺傷処理装置1302との接触回数をさらに増加させて殺傷処理効率を向上させることができる。 The chamber 1301 may further include a rectifying member such as a baffle. Thereby, the flow velocity in the chamber 1301 can be easily made constant. Further, the rectifying member is preferably arranged on the upper part of the electrical killing apparatus 1302. According to this configuration, more aquatic organisms in the ballast water can be collected on the electrical killing treatment device 1302 side, and the number of contacts with the electrical killing treatment device 1302 can be further increased to improve the killing treatment efficiency. Can do.
 チャンバー1301の底部には、一端が、船外又は排出ラインに接続するライン(図示せず)が接続していてもよい。このラインを通じて、チャンバー1301及び又は電気的殺傷処理装置1302に蓄積した滞留物やゴミ等を船外に排出することができる。 A line (not shown) connected to the outboard or the discharge line may be connected to the bottom of the chamber 1301. Through this line, it is possible to discharge the accumulated matter and dust accumulated in the chamber 1301 and / or the electrical killing apparatus 1302 out of the ship.
 バラスト水供給ライン107において、殺傷処理装置102と薬液供給装置101とをつなぐ部分は、実施の形態1-4と同様に、クランク状に屈折した屈折部となっていてもよいし、殺傷処理装置102から薬液供給装置101に向かって緩やかな上り勾配が形成された傾斜部であってもよい。これらの形態によれば、例えば、薬液供給装置101から供給される次亜塩素酸ナトリウム水溶液を、殺傷処理装置102が配置されたチャンバー1301に供給することができる。これにより、チャンバー1301内に残留する液体の次亜塩素酸ナトリウムによる殺菌処理を行うことができる。 In the ballast water supply line 107, the portion connecting the killing treatment device 102 and the chemical solution feeding device 101 may be a refracting portion refracted in a crank shape as in the embodiment 1-4, or the killing treatment device. An inclined portion in which a gentle upward gradient is formed from 102 to the chemical solution supply apparatus 101 may be used. According to these embodiments, for example, an aqueous sodium hypochlorite solution supplied from the chemical solution supply apparatus 101 can be supplied to the chamber 1301 in which the killing treatment apparatus 102 is disposed. Thereby, the sterilization process by the liquid sodium hypochlorite which remains in the chamber 1301 can be performed.
 本実施の形態1-5において、次亜塩素酸ナトリウム水溶液の供給と電気的殺傷処理装置による処理の順番はこの順番に特に制限されるものではなく、電気的殺傷処理装置の処理を行う前に、次亜塩素酸ナトリウム水溶液を供給してもよい。 In this Embodiment 1-5, the order of the supply of the sodium hypochlorite aqueous solution and the processing by the electrical killing device is not particularly limited to this order, and before performing the processing of the electrical killing device. A sodium hypochlorite aqueous solution may be supplied.
 (実施の形態1-6)
 図14は、本発明の実施の形態1-6におけるバラスト水処理システムの構成を示す概略構成図である。図14において、図13と同じ構成要素には同じ符号を付している。
Embodiment 1-6
FIG. 14 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 1-6 of the present invention. 14, the same components as those in FIG. 13 are denoted by the same reference numerals.
 本実施の形態1-6におけるバラスト水処理システムは、バラスト水供給ライン107と、次亜塩素酸ナトリウム水溶液をバラスト水供給ラインに供給するための薬液供給装置101と、バラスト水供給ライン107に配置されたチャンバー1301と、チャンバー1301内に配置された電気的殺傷処理装置1302とを備え、薬液供給装置101は、次亜塩素酸ナトリウム発生用の液体を取水するための取水ライン1410を有し、取水ライン1410はバラスト水供給ラインが接続する取水口104と接続し、かつ、バラスト水取水ポンプ106(例えば、バラストポンプ)とは異なる取水ポンプ116を備える。本実施の形態1-6のバラスト水処理システムは、薬液供給装置101が、取水口(シーチェスト)104と接続する取水ライン1410を有し、取水ライン1310がバラストポンプ106とは異なる取水ポンプ116を備える以外は、実施の形態1-5のバラスト水処理システムの構成と同様である。 The ballast water treatment system in the present Embodiment 1-6 is arranged in the ballast water supply line 107, the chemical solution supply apparatus 101 for supplying the sodium hypochlorite aqueous solution to the ballast water supply line, and the ballast water supply line 107. A chamber 1301 and an electrical killing device 1302 disposed in the chamber 1301, and the chemical solution supply device 101 has a water intake line 1410 for taking water for generating sodium hypochlorite, The intake line 1410 is connected to the intake port 104 to which the ballast water supply line is connected, and includes an intake pump 116 different from the ballast water intake pump 106 (for example, a ballast pump). In the ballast water treatment system of Embodiment 1-6, the chemical liquid supply apparatus 101 has a water intake line 1410 connected to the water intake (sea chest) 104, and the water intake line 116 is different from the ballast pump 106. Is the same as the configuration of the ballast water treatment system of Embodiment 1-5.
 本実施の形態1-6のバラスト水処理システムによれば、バラストポンプ106とは異なる取水ポンプ116を備えるため、バラストポンプ106等を駆動させることなく取水することができる。このため、例えば、航行中であっても液体の取水及び次亜塩素酸ナトリウムの発生を容易に行うことができる。 According to the ballast water treatment system of Embodiment 1-6, since the water intake pump 116 different from the ballast pump 106 is provided, water can be taken without driving the ballast pump 106 and the like. For this reason, for example, liquid intake and sodium hypochlorite can be easily generated even during navigation.
 [第2の態様]
 本発明は、さらにその他の態様として、取水口から取水された液体をバラストタンクに供給するためのバラスト水供給ラインと、前記液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備えるバラスト水処理システムにおいて、前記薬液供給装置から所定量の次亜塩素酸ナトリウムが供給された前記ライン中の液体をサンプリングし、サンプリングした試料における次亜塩素酸ナトリウム濃度の減衰を測定し、該測定データに基づいて前記薬液供給装置から前記ラインへ供給する次亜塩素酸ナトリウムの供給量を調節することを含むバラスト水の制御方法(以下、「本発明のバラスト水の制御方法」ともいう)に関する。
[Second embodiment]
According to another aspect of the present invention, there are provided a ballast water supply line for supplying a liquid taken from an intake port to a ballast tank, and an aqueous sodium hypochlorite solution for sterilizing aquatic microorganisms in the liquid. In a ballast water treatment system comprising a chemical solution supply device for supplying to the line, the liquid in the line supplied with a predetermined amount of sodium hypochlorite from the chemical solution supply device is sampled, and hypochlorite in the sampled sample A method for controlling ballast water (hereinafter referred to as “the present invention”) comprising measuring attenuation of sodium acid concentration and adjusting a supply amount of sodium hypochlorite supplied from the chemical solution supply device to the line based on the measurement data. It is also referred to as “ballast water control method”.
 第2の態様の本発明は、バラスト水中の水生微生物を殺菌処理するための次亜塩素酸ナトリウムが処理対象の液体によってその減衰の程度が異なる、すなわち、次亜塩素酸ナトリウムの減衰は、例えば、取水された海水中の微生物や有機物の種類や量によって影響されるという知見に基づく。さらに、本発明は、取水された液体を用いて次亜塩素酸ナトリウムの減衰を測定し、その減衰データを用いて次亜塩素酸ナトリウムの供給量を制御すれば、注水完了後のバラストタンク内のバラスト水の次亜塩素酸ナトリウム濃度をより正確に制御できるという知見に基づく。 According to the second aspect of the present invention, the degree of attenuation of sodium hypochlorite for sterilizing aquatic microorganisms in ballast water varies depending on the liquid to be treated. That is, the attenuation of sodium hypochlorite is, for example, Based on the knowledge that it is influenced by the type and amount of microorganisms and organic matter in the seawater. Furthermore, the present invention measures the decay of sodium hypochlorite using the taken-up liquid, and controls the supply amount of sodium hypochlorite using the decay data, so that the inside of the ballast tank after completion of water injection This is based on the knowledge that sodium hypochlorite concentration of ballast water can be controlled more accurately.
 上記の通り、バラスト水管理条約が採択されてバラスト水処理装置の設置が義務付けられたことによりバラスト水を処理可能となる新たな技術がいっそう求められることとなった。そのなかでも、バラスト水中に過剰に次亜塩素酸ナトリウムが存在すると排出時に還元剤が必要となったり、あるいは、放置のための時間が必要となったりするため、バラスト水における次亜塩素酸ナトリウム濃度の制御に関する新たな技術が期待されている。そこで、本発明は、第2の態様として、バラスト水の次亜塩素酸ナトリウム濃度を制御できる新たな処理システムを提供する。 As described above, the adoption of the Ballast Water Management Convention and the obligatory installation of ballast water treatment equipment demanded a new technology that can treat ballast water. Among them, if sodium hypochlorite is excessive in the ballast water, a reducing agent is required at the time of discharge, or it takes time to leave, so sodium hypochlorite in the ballast water. New technologies related to concentration control are expected. Then, this invention provides the new processing system which can control the sodium hypochlorite density | concentration of ballast water as a 2nd aspect.
 第2の態様の本発明によれば、バラストタンク内のバラスト水の次亜塩素酸ナトリウム濃度を、バラスト水を注入しながら制御できるという効果を奏する。また、本発明によれば、好ましくは、取水された液体に応じた次亜塩素酸ナトリウム濃度制御ができるという効果を奏する。さらにまた、第2の態様の本発明によれば、バラストタンク内で次亜塩素酸ナトリウムが過剰となって排水に多量の還元剤を用いたり、あるいは、時間をかけて放置したりすることを回避できるという効果を奏する。 According to the second aspect of the present invention, it is possible to control the concentration of sodium hypochlorite in the ballast tank while injecting the ballast water. In addition, according to the present invention, it is preferable that the sodium hypochlorite concentration can be controlled according to the liquid taken. Furthermore, according to the second aspect of the present invention, sodium hypochlorite becomes excessive in the ballast tank, and a large amount of reducing agent is used for drainage, or it is allowed to leave over time. There is an effect that it can be avoided.
 本発明のバラスト水の制御方法によれば、取水された液体に最初に加えた基準となる次亜塩素酸ナトリウム供給量が注水後のバラスト水における目的とする濃度範囲に対して過剰又は不足でないかを注入しながら判断し、取水された液体に加える供給量を調整することで、取水された液体に応じた次亜塩素酸ナトリウム濃度の制御ができるという効果を奏する。したがって、本発明のバラスト水の制御方法によれば、バラストタンク内で次亜塩素酸ナトリウムが不足して殺菌効果が発揮されないことや、あるいは、次亜塩素酸ナトリウムが過剰となって排水時に多量の還元剤又は長時間の放置を必要とすることを回避できるという効果を奏する。 According to the ballast water control method of the present invention, the reference sodium hypochlorite supply amount initially added to the taken-up liquid is not excessive or insufficient with respect to the target concentration range in the ballast water after water injection. It is possible to control the sodium hypochlorite concentration according to the taken-in liquid by making a decision while injecting and adjusting the supply amount added to the taken-in liquid. Therefore, according to the ballast water control method of the present invention, the sodium hypochlorite is insufficient in the ballast tank and the sterilizing effect is not exhibited, or the sodium hypochlorite is excessive and a large amount is discharged during drainage. There is an effect that it is possible to avoid the need for a reducing agent or a long time leaving.
 第2の態様において「水生微生物の殺菌処理」とは、処理対象である液体及び又はバラスト水に含まれる水生微生物の少なくとも一部を殺菌処理すること及び又は水生微生物の増殖を抑制することを含む。また、本明細書において「水生微生物の殺菌処理」とは、少なくとも水生微生物を殺菌処理すればよく、水生微生物の殺菌処理とあわせて、水生微生物よりも大きな生物やその他の生物等を殺菌処理してもよい。水生微生物の殺菌処理としては、好ましくはバラスト水の排出時において上記表1に示すバラスト水排出基準を満たすようにバラストタンク内の次亜塩素酸ナトリウム濃度を管理することを含み、より好ましくは、バラスト水の排出時において上記表1に示すバラスト水排出基準を満たすように殺菌処理を行うことを含む。 In the second embodiment, “sterilization treatment of aquatic microorganisms” includes sterilizing at least part of the aquatic microorganisms contained in the liquid to be treated and / or ballast water and / or suppressing the growth of aquatic microorganisms. . Further, in this specification, “sterilization treatment of aquatic microorganisms” means that at least aquatic microorganisms may be sterilized, and together with the sterilization treatment of aquatic microorganisms, sterilization treatment of organisms larger than the aquatic microorganisms, other organisms, etc. May be. The sterilization treatment of aquatic microorganisms preferably includes managing the sodium hypochlorite concentration in the ballast tank so as to satisfy the ballast water discharge standard shown in Table 1 above when discharging the ballast water, more preferably, Including sterilization so as to satisfy the ballast water discharge criteria shown in Table 1 above when ballast water is discharged.
 第2の態様において「薬液供給装置」とは、取水された液体及び又はバラスト水に次亜塩素酸ナトリウム水溶液を供給する装置であって、電気分解により次亜塩素酸ナトリウムを発生させる装置の形態や、次亜塩素酸ナトリウム又はその水溶液を貯留する装置の形態であってもよい。電気分解を用いた薬液供給装置としては、後述するように電解槽と貯留槽とを備える形態が挙げられる。電気分解を用いた薬液供給装置は、海水を利用して次亜塩素酸ナトリウムを生成できるため、例えば、船外から持ち込まれた殺菌剤等の特殊な化学薬品等を使用することなく、水生微生物の殺菌処理を行うことができる。海水等の貯留槽への供給は、バラスト水供給ラインからポンプやバルブを介して行ってもよく、船外から直接取水してもよい。航行中の取水を簡便に行う点からは、バラスト水供給ラインからではなく直接取水することが好ましい。また、生成された次亜塩素酸ナトリウムは水溶液の形態で貯留槽に貯留され、ポンプやバルブを介してバラスト水供給ラインに供給される。薬液供給装置は、バラスト水供給ラインに供給する次亜塩素酸ナトリウムの量を把握できるように、次亜塩素酸ナトリウムの濃度を計測できる計測器(以下、「次亜塩素酸ナトリウム濃度計」又は単に「濃度計」という。)及び流量計を備えることが好ましい。 In the second aspect, the “chemical solution supply device” is a device that supplies an aqueous sodium hypochlorite solution to the taken-in liquid and / or ballast water, and generates sodium hypochlorite by electrolysis. Or the form of the apparatus which stores sodium hypochlorite or its aqueous solution may be sufficient. Examples of the chemical solution supply apparatus using electrolysis include a mode including an electrolytic cell and a storage tank as described later. Since the chemical supply device using electrolysis can produce sodium hypochlorite using seawater, for example, aquatic microorganisms can be used without using special chemicals such as disinfectants brought in from outside the ship. Can be sterilized. Supply of seawater or the like to the storage tank may be performed from a ballast water supply line via a pump or a valve, or may be directly taken from outside the ship. It is preferable to take water directly instead of from the ballast water supply line from the viewpoint of easily taking water during navigation. Moreover, the produced | generated sodium hypochlorite is stored by the storage tank with the form of aqueous solution, and is supplied to a ballast water supply line via a pump or a valve | bulb. The chemical supply device can measure the concentration of sodium hypochlorite so that the amount of sodium hypochlorite supplied to the ballast water supply line can be measured (hereinafter referred to as “sodium hypochlorite concentration meter” or “ It is preferable to provide a flow meter.
 また、電気分解を用いた薬液供給装置は、処理効率向上の点から、塩化ナトリウム水溶液貯留タンク及び/又は塩化ナトリウム貯蔵タンクを備えることが好ましい。塩化ナトリウム水溶液貯留タンク及び/又は塩化ナトリウム貯蔵タンクを備えることにより、タンク内に塩化ナトリウム水溶液/塩化ナトリウムを貯留し、必要に応じて塩化ナトリウム水溶液/塩化ナトリウムを電解槽に供給できる。これにより、例えば、バラスト水を淡水域で取水する船舶であっても、次亜塩素酸ナトリウムを発生させて次亜塩素酸ナトリウムによる殺菌処理を行うことができる。 Moreover, it is preferable that the chemical solution supply apparatus using electrolysis includes a sodium chloride aqueous solution storage tank and / or a sodium chloride storage tank from the viewpoint of improving processing efficiency. By providing the sodium chloride aqueous solution storage tank and / or the sodium chloride storage tank, the sodium chloride aqueous solution / sodium chloride can be stored in the tank, and the sodium chloride aqueous solution / sodium chloride can be supplied to the electrolytic cell as necessary. Thereby, even if it is a ship which takes in ballast water in a fresh water area, for example, sodium hypochlorite can be generated and sterilization processing by sodium hypochlorite can be performed.
 第2の態様において「航行データ」とは、航行時間、排水までの時間、取水港の水質、航行海域の気象状況、及び/又は、航行中に得られるこれらに関する情報を含むデータをいう。 In the second aspect, “navigation data” refers to data including navigation time, time to drainage, water quality at the intake port, weather conditions in the navigation sea area, and / or information related to these obtained during navigation.
 第2の態様において「次亜塩素酸ナトリウムの減衰」とは、薬液供給装置から次亜塩素酸ナトリウムの供給を受けたバラスト水における次亜塩素酸ナトリウム濃度が低減することをいう。図20に次亜塩素酸ナトリウムの減衰曲線の一例を示す。図20の実線の曲線は、モデル海水における次亜塩素酸ナトリウム濃度の変化を示す。一般に、海水に次亜塩素酸ナトリウムを溶解させると、最初に急激な濃度低下を示す(時間0~時間t3)。その後、ほぼプラトーな濃度(dx)を示すようになる(時間t3~)。 In the second aspect, “attenuation of sodium hypochlorite” means that the concentration of sodium hypochlorite in the ballast water that has been supplied with sodium hypochlorite from the chemical supply device is reduced. FIG. 20 shows an example of the decay curve of sodium hypochlorite. The solid curve in FIG. 20 shows the change in sodium hypochlorite concentration in the model seawater. In general, when sodium hypochlorite is dissolved in seawater, the concentration first decreases rapidly (time 0 to time t3). Thereafter, a substantially plateau concentration (dx) is displayed (from time t3).
 しかしながら、次亜塩素酸ナトリウムの減衰の程度は、取水された液体中の微生物、有機物、及び/又はその他の水中成分の種類や量によっても影響される。図20の点線の曲線は、実際に取水した海水において、ほぼプラトーとなった時の濃度(dy)がモデル海水と比べてΔdだけ低い場合の例である。なお、図20ではモデル海水よりも実際に取水した海水における減衰の程度が大きい場合を説明するが、取水した海水における減衰の程度がモデル海水よりも小さい場合もある。よって、予め予想される減衰(モデル海水における減衰)のみに従って次亜塩素酸ナトリウムを供給しても、実際に取水した海水との間でプラトーに達した場合の濃度差Δdが存在する場合には、次亜塩素酸ナトリウム濃度が足りなかったり、過剰となったりすることが起こる。 However, the degree of decay of sodium hypochlorite is also affected by the type and amount of microorganisms, organic matter, and / or other water components in the drawn water. The dotted line curve in FIG. 20 is an example in the case where the concentration (dy) at the time of almost plateau in the actually drawn seawater is lower by Δd than the model seawater. In addition, although FIG. 20 demonstrates the case where the extent of attenuation | damping in the seawater actually taken is larger than model seawater, the degree of attenuation | damping in the taken seawater may be smaller than model seawater. Therefore, even if sodium hypochlorite is supplied only according to the expected attenuation (attenuation in model seawater), there is a concentration difference Δd when a plateau is reached with the seawater actually taken. The sodium hypochlorite concentration may be insufficient or excessive.
 したがって、バラスト水の注水完了時におけるバラスト水の次亜塩素酸ナトリウム濃度をより正確に予測又は制御するには、取水された液体における、次亜塩素酸ナトリウムの低減の度合いを知ることが重要となる。そこで、本発明のバラスト水の制御方法の一形態は、バラスト水を注水しながら、並行して注水されるバラスト水における次亜塩素酸ナトリウムの減衰を測定し、該測定データに基づいて前記薬液供給装置から前記ラインへ供給する次亜塩素酸ナトリウムの供給量を調節することを含む。前記供給量の調節は、前記減衰測定データに基づき、バラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時のバラストタンク内の次亜塩素酸ナトリウム濃度を予測すること、該予測に基づき、薬液供給装置からバラスト水供給ラインに供給される次亜塩素酸ナトリウムの供給量の増減を決定すること、並びに、前記決定に基づき、前記ラインに供給される次亜塩素酸ナトリウム量を制御することを含みうる。 Therefore, in order to more accurately predict or control the sodium hypochlorite concentration of ballast water at the completion of ballast water injection, it is important to know the degree of sodium hypochlorite reduction in the drawn water. Become. Thus, one form of the ballast water control method of the present invention is to measure the attenuation of sodium hypochlorite in the ballast water poured in parallel while pouring the ballast water, and based on the measurement data, the chemical solution Adjusting the amount of sodium hypochlorite supplied from the supply device to the line. The adjustment of the supply amount is based on predicting the sodium hypochlorite concentration in the ballast tank when the ballast water injection is completed, when a predetermined time has elapsed, and / or when the ballast water is discharged, based on the attenuation measurement data. Based on the determination, increase / decrease in the amount of sodium hypochlorite supplied from the chemical supply device to the ballast water supply line, and control the amount of sodium hypochlorite supplied to the line based on the determination. Can include.
 次亜塩素酸ナトリウムの減衰データに基づく前記薬液供給装置からの供給量の調節は、具体的には、例えば、以下のように行うことができる。モデル海水を使用した次亜塩素酸ナトリウムの減衰は予め測定できるから、このモデル測定データと取水する液体の流量等の情報に基づけば、供給すべき次亜塩素酸ナトリウム量の初期供給量を決定できる。次に、取水された液体を用いて減衰を測定し、予め測定したモデル測定データと比較して、例えば、図20のΔdを算出する。これらのデータに基づき、減衰の程度が高ければ供給量を増加させ、減衰の程度が低ければ供給量を減少させる。このような調整を行うことで、バラストタンク内の次亜塩素酸ナトリウム濃度を目的の範囲内とすることが可能となる。 Specifically, the adjustment of the supply amount from the chemical solution supply device based on the attenuation data of sodium hypochlorite can be performed as follows, for example. Decay of sodium hypochlorite using model seawater can be measured in advance, so the initial supply amount of sodium hypochlorite to be supplied is determined based on this model measurement data and information such as the flow rate of the liquid to be taken it can. Next, attenuation is measured using the taken-in liquid and compared with model measurement data measured in advance, for example, Δd in FIG. 20 is calculated. Based on these data, the supply amount is increased if the degree of attenuation is high, and the supply amount is decreased if the degree of attenuation is low. By performing such adjustment, the sodium hypochlorite concentration in the ballast tank can be kept within the target range.
 取水された液体における次亜塩素酸ナトリウムの減衰は、所定の間隔で次亜塩素酸ナトリウムの濃度を測定することで行える。例えば、図20に示す、t1~t6の時間で測定して減衰データを得ることが挙げられる。測定間隔としては、例えば、20分~1.5時間、好ましくは30分~1時間が挙げられる。測定回数は、バラストタンクへの注水と並行して減衰測定を行い、かつ、必要に応じて供給する次亜塩素酸濃度を調節する必要性から、減衰曲線が予測できる範囲が好ましい。図20ではt1~t6の6回の測定を例示するが、減衰曲線が予測できれば測定回数は減らすことができる。 Attenuation of sodium hypochlorite in the drawn liquid can be performed by measuring the concentration of sodium hypochlorite at predetermined intervals. For example, it is possible to obtain attenuation data by measuring at time t1 to t6 shown in FIG. Examples of the measurement interval include 20 minutes to 1.5 hours, preferably 30 minutes to 1 hour. The number of measurements is preferably in a range where an attenuation curve can be predicted from the necessity of performing attenuation measurement in parallel with water injection into the ballast tank and adjusting the concentration of hypochlorous acid supplied as necessary. Although FIG. 20 illustrates six measurements from t1 to t6, the number of measurements can be reduced if an attenuation curve can be predicted.
 本発明のバラスト水の制御方法の一形態において、次亜塩素酸ナトリウムの減衰測定は、薬液供給装置から次亜塩素酸ナトリウムが供給された後のバラスト水供給ラインのバラスト水をサンプリングして行う。よって、減衰測定する試料のサンプリングポイントとしては、薬液供給装置とバラスト水供給ラインとの接続点と、バラストタンクとの間のバラスト水供給ラインが好ましい。また、前記サンプリング及び減衰測定は、次亜塩素酸ナトリウムの濃度計を備える減衰測定ユニットで行われることが好ましい。サンプリングは、一実施形態においては、注水開始後1回のみ行い、このサンプルに基づき次亜塩素酸ナトリウムの減衰データを得て本発明のバラスト水の制御方法を行うことができる。また、サンプリングは、その他の実施形態においては、複数回行って複数の次亜塩素酸ナトリウムの減衰データを得て本発明のバラスト水の制御方法を行うことができる。サンプリングを複数回行う場合、1つの減衰測定ユニットを用いてサンプルを入れ替えて測定することができ、或いは、複数の減衰測定ユニットを用い、同時に又は時間をずらしてサンプリングした複数のサンプルを並行して測定することができる。 In one embodiment of the ballast water control method of the present invention, sodium hypochlorite decay measurement is performed by sampling the ballast water in the ballast water supply line after sodium hypochlorite is supplied from the chemical supply device. . Therefore, the sampling point of the sample to be measured for attenuation is preferably a ballast water supply line between the connection point between the chemical solution supply device and the ballast water supply line and the ballast tank. Moreover, it is preferable that the said sampling and attenuation | damping measurement are performed by the attenuation | damping measurement unit provided with the concentration meter of sodium hypochlorite. In one embodiment, sampling is performed only once after the start of water pouring, and the method for controlling ballast water of the present invention can be performed by obtaining attenuation data of sodium hypochlorite based on this sample. In other embodiments, sampling can be performed a plurality of times to obtain attenuation data of a plurality of sodium hypochlorites and perform the ballast water control method of the present invention. When sampling is performed multiple times, measurement can be performed by exchanging samples using one attenuation measurement unit, or multiple samples sampled simultaneously or at different times using multiple attenuation measurement units can be measured in parallel. Can be measured.
 本発明は、その他の態様として、本発明のバラスト水の制御方法によりバラスト水中の次亜塩素酸ナトリウム濃度を制御することを含むバラスト水の注水方法に関する。 As another aspect, the present invention relates to a ballast water injection method including controlling the sodium hypochlorite concentration in ballast water by the ballast water control method of the present invention.
 本発明は、また、その他の態様として、本発明のバラスト水の制御方法を行うことができるバラスト水処理システム、及び、該バラスト水システムを備える船舶に関する。 As another aspect, the present invention relates to a ballast water treatment system capable of performing the ballast water control method of the present invention, and a ship equipped with the ballast water system.
 すなわち、本発明はその他の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに接続し、前記液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置と、前記ラインと前記薬液供給装置との接続点とバラストタンクとの間に配置され、前記ライン中の液体をサンプリングして次亜塩素酸ナトリウム濃度を測定する減衰測定ユニットと、減衰測定ユニットで測定されたデータを記録する記録部と、バラスト水注水中に、薬液供給装置から前記接続点を介して前記ラインに供給される次亜塩素酸ナトリウム量を制御する制御部とを備え、前記制御部は、次亜塩素酸ナトリウムの減衰速度データに基づき、バラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時バラストタンク内の次亜塩素酸ナトリウム濃度を予測し、薬液供給装置からの次亜塩素酸ナトリウムの供給量の増減を決定し、前記ラインに供給される次亜塩素酸ナトリウム量を制御することを含む、バラスト水処理システム(以下、「本発明の第2のバラスト水処理システム」ともいう)に関する。 That is, the present invention includes, as other aspects, a ballast water supply line that connects a water intake and a ballast tank, and a sodium hypochlorite aqueous solution that is connected to the line and sterilizes aquatic microorganisms in the liquid. A chemical solution supplying device for supplying to the line, a connection point between the line and the chemical solution supplying device, and a ballast tank, and sampling the liquid in the line to measure the sodium hypochlorite concentration. Controls the amount of sodium hypochlorite supplied to the line from the chemical solution supply device through the connection point in the ballast water injection water in the measurement unit, the recording unit for recording the data measured by the attenuation measurement unit A controller, the controller based on the decay rate data of sodium hypochlorite, when the ballast water injection is completed, when a predetermined time has elapsed, and Predicts the concentration of sodium hypochlorite in the ballast tank when ballast water is discharged, determines the increase or decrease in the amount of sodium hypochlorite supplied from the chemical supply device, and the amount of sodium hypochlorite supplied to the line It is related with the ballast water treatment system (henceforth "the 2nd ballast water treatment system of this invention") including control.
 前記制御部は、さらに、制御前の時点におけるバラスト水の積算注水量、次亜塩素酸ナトリウムの積算供給量、航行データ、及びバラストタンク内で維持すべき所定の次亜塩素酸ナトリウム濃度の少なくとも1つに基づき、前記予測及び又は前記決定を行ってもよい。さらにまた、バラストタンク水には注水前にバラスト水が存在する場合もある。このため、バラストタンクに、液面計等のバラスト水の容量を測定できる計器、及び、バラストタンク内の次亜塩素酸ナトリウム濃度を測定できる計器を備え、これらの情報を含めて前記予測及び又は前記決定をすることが好ましい。 The control unit further includes at least an integrated water injection amount of ballast water, an integrated supply amount of sodium hypochlorite, navigation data, and a predetermined sodium hypochlorite concentration to be maintained in the ballast tank before the control. The prediction and / or the determination may be made based on one. Furthermore, ballast water may exist in the ballast tank water before pouring. For this reason, the ballast tank is equipped with an instrument that can measure the capacity of ballast water such as a liquid level gauge, and an instrument that can measure the sodium hypochlorite concentration in the ballast tank, and includes the above information and the prediction and / or Preferably, the determination is made.
 以下に、本発明を好適な実施の形態を示しながら詳細に説明する。但し、本発明は以下に示す実施の形態に限定されない。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments. However, the present invention is not limited to the embodiments described below.
 (実施の形態2-1)
 図15は、本発明の実施の形態2-1におけるバラスト水処理システムの構成を示す概略構成図である。
Embodiment 2-1
FIG. 15 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 2-1 of the present invention.
 図15に示すように、本実施の形態2-1のバラスト水処理システムは、薬液供給装置101と、減衰測定ユニット112とを含む。薬液供給装置101は、バラスト水供給ライン107に、ライン108及び109を介して接続している。ライン108は、バラスト水供給ライン107の次亜塩素酸ナトリウム水溶液が添加される前の取水された液体(バラスト水)を薬液供給装置101に供給するためのラインである。ライン109は、薬液供給装置101から次亜塩素酸ナトリウム水溶液をバラスト水供給ライン107に供給するためのラインである。なお、バラスト水供給ライン107から取水された液体を薬液供給装置101に搬送するライン108に換えて直接外部から液体(海水等)をライン110によって取り入れてもよい。ライン108~110は液を送るためのポンプを備えていてもよい。また、ライン109は、バラスト水供給ライン107への次亜塩素酸ナトリウムの供給量を測定するため、次亜塩素酸ナトリウム濃度計及び流量計を備えることが好ましく、前記流量計は、総流量を計測可能な積算流量計FMであることが好ましい。なお、図15では、ライン108~110はそれぞれポンプを備えた形態を示しているが、本発明はこの形態に限られるものではなく、例えば、これらのポンプに替えて、薬液供給装置101に内蔵されたポンプ(図示せず)によって液体の搬送を行ってもよい。また、ライン109は、バラスト水供給ライン107ではなく、シーチェスト104に接続する形態でもよい。 As shown in FIG. 15, the ballast water treatment system of the present Embodiment 2-1 includes a chemical solution supply apparatus 101 and an attenuation measurement unit 112. The chemical solution supply apparatus 101 is connected to a ballast water supply line 107 via lines 108 and 109. The line 108 is a line for supplying the liquid (ballast water) taken before the sodium hypochlorite aqueous solution in the ballast water supply line 107 is added to the chemical supply apparatus 101. The line 109 is a line for supplying a sodium hypochlorite aqueous solution from the chemical solution supply apparatus 101 to the ballast water supply line 107. It should be noted that a liquid (seawater or the like) may be directly taken in from the outside by the line 110 instead of the line 108 for transporting the liquid taken from the ballast water supply line 107 to the chemical liquid supply apparatus 101. Lines 108-110 may be equipped with a pump for feeding liquid. Further, the line 109 preferably includes a sodium hypochlorite concentration meter and a flow meter for measuring the amount of sodium hypochlorite supplied to the ballast water supply line 107, and the flow meter has a total flow rate. An integrated flow meter FM that can be measured is preferable. In FIG. 15, the lines 108 to 110 each have a form including a pump, but the present invention is not limited to this form. For example, instead of these pumps, the chemical solution supply apparatus 101 has a built-in structure. The liquid may be transported by a pump (not shown). The line 109 may be connected to the sea chest 104 instead of the ballast water supply line 107.
 バラスト水供給ライン107の一端は、バラストタンク103に接続する。通常、バラストタンク103は、複数個のバラストタンク103a~103dを含む形態である。バラスト水供給ライン107は、他端では、バラスト水を取水する取水口(シーチェスト)104、ストレーナ105、バラストポンプ106と接続する。また、次亜塩素酸ナトリウムが共有されるライン109とバラスト水供給ライン107との接続点と、バラストタンク103との間に、流量計(FM)、次亜塩素酸ナトリウム濃度計(C)、及び、減衰測定ユニット112が配置される。 One end of the ballast water supply line 107 is connected to the ballast tank 103. Normally, the ballast tank 103 includes a plurality of ballast tanks 103a to 103d. The other end of the ballast water supply line 107 is connected to a water intake (sea chest) 104, a strainer 105, and a ballast pump 106 that take in the ballast water. In addition, a flow meter (FM), a sodium hypochlorite concentration meter (C), between the connection point between the line 109 where sodium hypochlorite is shared and the ballast water supply line 107 and the ballast tank 103, In addition, an attenuation measurement unit 112 is arranged.
 減衰測定ユニット112は、バラスト水注水開始後にライン111からバラスト水をサンプリングし、時間を追って次亜塩素酸ナトリウム濃度を繰り返し測定する。上述したとおり、このように測定することで、取水した液体における次亜塩素酸ナトリウムの減り方を分析でき、ライン109から供給される次亜塩素酸ナトリウムの量を調節できる。また、減衰測定ユニット112で減衰を測定している間も並行してバラスト水の注水を止めることなく継続できるから、時間のロスも防ぐことができる。 The attenuation measurement unit 112 samples ballast water from the line 111 after the start of ballast water injection, and repeatedly measures the sodium hypochlorite concentration over time. As described above, by measuring in this way, it is possible to analyze how sodium hypochlorite is reduced in the taken-up liquid and to adjust the amount of sodium hypochlorite supplied from the line 109. In addition, while the attenuation measurement unit 112 is measuring the attenuation, it can be continued without stopping the water injection of the ballast water, thereby preventing time loss.
 電気分解を用いる薬液供給装置101としては、例えば、図16に示す薬液供給装置201が使用できる。図16は、電気分解を用いて水生微生物を殺菌処理可能な装置の構成の一例を示す概略構成図である。図16に示すように、薬液供給装置201は、貯留槽211と電解槽212とを備える。貯留槽211と電解槽212とはライン213及び214によって接続されている。貯留槽211の液体はライン213を通じて電解槽212に搬送され、電解槽212において電解処理による殺菌処理が行われる。ついで、電解槽212で処理された液体はライン214を通じて貯留槽211に搬送される。貯留槽211と電解槽212との間は、次亜塩素酸ナトリウムを生成・貯留させる観点から、ライン213及び214によって循環されていることが好ましい。 As the chemical solution supply device 101 using electrolysis, for example, a chemical solution supply device 201 shown in FIG. 16 can be used. FIG. 16 is a schematic configuration diagram illustrating an example of a configuration of an apparatus capable of sterilizing aquatic microorganisms using electrolysis. As shown in FIG. 16, the chemical solution supply apparatus 201 includes a storage tank 211 and an electrolytic tank 212. The storage tank 211 and the electrolytic tank 212 are connected by lines 213 and 214. The liquid in the storage tank 211 is conveyed to the electrolytic tank 212 through the line 213, and sterilization processing by electrolytic treatment is performed in the electrolytic tank 212. Next, the liquid processed in the electrolytic bath 212 is transferred to the storage bath 211 through the line 214. It is preferable that the storage tank 211 and the electrolytic tank 212 are circulated by lines 213 and 214 from the viewpoint of generating and storing sodium hypochlorite.
 このような薬液供給装置201では、電解処理を用いるため、例えば、船外から持ち込まれた殺菌剤等の特殊な化学薬品等を使用することなく、液体中の水生微生物の殺菌処理を行うことができる。電解槽212では、液体に含まれる塩化ナトリウムを電解処理することよって次亜塩素酸ナトリウムを発生させ、発生させた次亜塩素酸ナトリウムを用いて液体中の水生微生物を殺菌処理することが好ましい。 Since such a chemical solution supply apparatus 201 uses electrolytic treatment, for example, it is possible to sterilize aquatic microorganisms in a liquid without using special chemicals such as a bactericide brought in from the outside of the ship. it can. In the electrolytic bath 212, it is preferable that sodium hypochlorite is generated by electrolytic treatment of sodium chloride contained in the liquid, and the aquatic microorganisms in the liquid are sterilized using the generated sodium hypochlorite.
 薬液供給装置201において、貯留槽211は、未処理及び/又は処理後の液体を貯留するためのタンクであって、貯留槽211は、電気分解を行う液体を導入するライン213と電気分解後の液体を排出するためのライン214とそれぞれ接続している。貯留槽211は、ライン108、109、及び110と接続しうる。 In the chemical solution supply apparatus 201, a storage tank 211 is a tank for storing unprocessed and / or processed liquid, and the storage tank 211 includes a line 213 for introducing a liquid for electrolysis and a post-electrolysis liquid. Each is connected to a line 214 for discharging liquid. The reservoir 211 can be connected to the lines 108, 109, and 110.
 貯留槽211は、次亜塩素酸ナトリウムの濃度計を備えることが好ましい。これにより、貯留槽211内の次亜塩素酸ナトリウム濃度を管理できるとともに、貯留槽211内の次亜塩素酸ナトリウム濃度に応じて、例えば、貯留槽211に供給する液体の量、電解槽212及び/又はバラスト水供給ライン107に搬送する液体の量等といった薬液供給装置201におけるバラスト水の処理を制御できる。 The storage tank 211 is preferably equipped with a sodium hypochlorite concentration meter. Thereby, while being able to manage the sodium hypochlorite density | concentration in the storage tank 211, according to the sodium hypochlorite density | concentration in the storage tank 211, for example, the quantity of the liquid supplied to the storage tank 211, the electrolysis tank 212, and It is possible to control the ballast water treatment in the chemical liquid supply device 201 such as the amount of liquid conveyed to the ballast water supply line 107.
 また、電気分解を用いる薬液供給装置101としては、その他には、図2A~Bに示す薬液供給装置201が使用できる。 In addition, as the chemical solution supply apparatus 101 using electrolysis, a chemical solution supply apparatus 201 shown in FIGS. 2A and 2B can be used.
 本実施の形態2-1のバラスト水処理システムは、さらに、減衰測定ユニットで測定されたデータを記録する記録部と、バラスト水注水中に、薬液供給装置から前記接続点を介して前記ラインに供給される次亜塩素酸ナトリウム量を制御する制御部とを備えることが好ましい。前記制御部は、次亜塩素酸ナトリウムの減衰速度データに基づき、バラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時のバラストタンク内の次亜塩素酸ナトリウム濃度を予測し、薬液供給装置からの次亜塩素酸ナトリウムの供給量の増減を決定し、前記ラインに供給される次亜塩素酸ナトリウム量を制御することができる。 The ballast water treatment system according to the present embodiment 2-1 further includes a recording unit for recording data measured by the attenuation measurement unit, and a ballast water injection solution from the chemical solution supply device to the line via the connection point. It is preferable to include a controller that controls the amount of sodium hypochlorite supplied. The control unit predicts the sodium hypochlorite concentration in the ballast tank when the ballast water injection is completed, the predetermined time has elapsed, or the ballast water is discharged based on the decay rate data of sodium hypochlorite, An increase or decrease in the amount of sodium hypochlorite supplied from the supply device can be determined, and the amount of sodium hypochlorite supplied to the line can be controlled.
 減衰測定ユニットは、例えば、図21に記載のような装置を使用できる。図21の減衰測定ユニット112は、バラスト水供給ライン107からサンプリングした試料がライン111を通って容器701に注水される。減衰測定ユニット112は、容器701内の濃度の均一性を維持する点から、モータMによる駆動式の撹拌器703を備える。容器701内のサンプルは、定期的にポンプPによりライン702を通り濃度計Cによって測定される。 As the attenuation measurement unit, for example, an apparatus as shown in FIG. 21 can be used. In the attenuation measurement unit 112 of FIG. 21, a sample sampled from the ballast water supply line 107 is poured into the container 701 through the line 111. The attenuation measurement unit 112 includes a stirrer 703 driven by a motor M from the viewpoint of maintaining the uniformity of concentration in the container 701. The sample in the container 701 is periodically measured by the densitometer C through the line 702 by the pump P.
 (実施の形態2-2)
 図17は、本発明の実施の形態2-2におけるバラスト水制御システムの構成を示す機能ブロック図である。本実施の形態2-2は、図15に示されるようなバラスト水処理システムに適用されうるバラスト水制御システムに関する。すなわち、図17のバラスト水制御システム170は、減衰測定ユニット112を含む測定部171、測定部171で測定された次亜塩素酸ナトリウムの減衰速度データを記録する記録部172、及び記録部172の減衰速度データに基づき、薬液供給装置101からの次亜塩素酸ナトリウムの供給量の増減を決定し、バラスト水供給ライン107に供給される次亜塩素酸ナトリウム量を制御する制御部173を備える。なお、図17のバラスト水制御システム170は、図15に示される本実施の形態2-1のバラスト水処理システムに構成部分として含まれてもよい。
(Embodiment 2-2)
FIG. 17 is a functional block diagram showing the configuration of the ballast water control system in the embodiment 2-2 of the present invention. Embodiment 2-2 relates to a ballast water control system that can be applied to a ballast water treatment system as shown in FIG. That is, the ballast water control system 170 in FIG. 17 includes a measurement unit 171 including the attenuation measurement unit 112, a recording unit 172 that records sodium hypochlorite attenuation rate data measured by the measurement unit 171, and a recording unit 172. A control unit 173 is provided that determines increase / decrease in the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 based on the decay rate data and controls the amount of sodium hypochlorite supplied to the ballast water supply line 107. Note that the ballast water control system 170 of FIG. 17 may be included as a component in the ballast water treatment system of Embodiment 2-1 shown in FIG.
 測定部171は、図18の測定部181に示すような構成であってもよい。すなわち、測定部181は、減衰測定ユニット112に加え、バラスト水供給ライン107に配置される流量計(FM)及び次亜塩素酸ナトリウム濃度計(C)、並びに薬液供給装置101の貯留槽211の次亜塩素酸ナトリウム濃度計を含みうる。これらの情報は記録部172に記録されうる。 The measurement unit 171 may be configured as shown in the measurement unit 181 in FIG. That is, the measurement unit 181 includes a flow meter (FM) and a sodium hypochlorite concentration meter (C) disposed in the ballast water supply line 107 in addition to the attenuation measurement unit 112, and the storage tank 211 of the chemical solution supply apparatus 101. A sodium hypochlorite concentration meter may be included. Such information can be recorded in the recording unit 172.
 記録部172は、図18の記録部182に示すようなデータを記録できる。すなわち、測定部181で測定された減衰速度データ、バラスト水の流量及び次亜塩素酸ナトリウム濃度、並びに貯留槽の次亜塩素酸ナトリウム濃度が含まれ、さらに、バラスト水の注入開始からの経過時間、並びに、航行データ(少なくとも排水までの時間を含むことが好ましい)が含まれうる。記録部182は、さらに、バラストタンク内で維持すべき次亜塩素酸ナトリウム濃度範囲も記録しておくことができる。 The recording unit 172 can record data as shown in the recording unit 182 of FIG. That is, the decay rate data measured by the measurement unit 181, the flow rate and sodium hypochlorite concentration of the ballast water, and the sodium hypochlorite concentration of the storage tank are included, and the elapsed time from the start of ballast water injection As well as navigation data (preferably including at least the time to drain). The recording unit 182 can also record a sodium hypochlorite concentration range to be maintained in the ballast tank.
 制御部173は、図18の制御部183に示すような構成とすることができる。すなわち、記録部182に記録されたデータからバラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時のバラストタンク103内の次亜塩素酸ナトリウム濃度を予測する分析部1811と、分析部1811の結果に基づいて薬液供給装置101からの次亜塩素酸ナトリウムの供給量の増減を決定し、バラスト水供給ライン107に供給される次亜塩素酸ナトリウム量を制御する供給量制御部1812が含まれうる。 The control unit 173 can be configured as shown in the control unit 183 of FIG. That is, the analysis unit 1811 that predicts the sodium hypochlorite concentration in the ballast tank 103 when the ballast water injection is completed, when a predetermined time elapses, and / or when the ballast water is discharged from the data recorded in the recording unit 182; A supply amount control unit 1812 that determines increase / decrease in the amount of sodium hypochlorite supplied from the chemical solution supply apparatus 101 based on the result of 1811 and controls the amount of sodium hypochlorite supplied to the ballast water supply line 107, May be included.
 図19を用いて本発明のバラスト水の制御方法及びバラスト水の注水方法の一例を説明する。図19に示すように、まず、バラストポンプ106を始動させる(S501)。これによりシーチェスト104を通じて液体の取り込みが開始される。また、薬液供給装置101が電気分解を用いた装置である場合には、次亜塩素酸ナトリウムの発生を開始する(S502)。バラストポンプ106の始動(S501)によってバラスト水供給ライン107に取水された液体が送られ、バラストタンク103へ注水が始まる(S503)。バラスト水の流量、注水開示時間、積算注水量、次亜塩素酸濃度等は、バラスト水供給ライン107に配置された流量計(FM)及び濃度計(C)により測定される。これらの情報は記録部182に記憶されうる。バラスト水供給ライン107への注水が始まると薬液供給装置101からライン109を通じて初期設定量の次亜塩素酸ナトリウム水溶液がバラスト水供給ライン107に供給される(S504)。該初期設定量は、注水後のバラストタンク103内のバラスト水における次亜塩素酸ナトリウムの濃度範囲、薬液供給装置101(又は貯留槽211)に貯留される次亜塩素酸ナトリウム水溶液の濃度、及び、予め得られた次亜塩素酸ナトリウムの減衰データ等に基づいて、予め設定できる。該初期設定量は、記録部182に記憶させることができ、この情報に基づき、制御部183の供給量制御部1812に供給量を制御させてもよい。なお、初期設定量は、船舶が目的地に到着しバラスト水を排出する時(図20の時間tx)において排出可能な所定の濃度以下となるように設定することが、排水コストや排水時間の点から好ましい。 An example of the ballast water control method and ballast water injection method of the present invention will be described with reference to FIG. As shown in FIG. 19, first, the ballast pump 106 is started (S501). As a result, liquid intake is started through the sea chest 104. In addition, when the chemical solution supply apparatus 101 is an apparatus using electrolysis, generation of sodium hypochlorite is started (S502). When the ballast pump 106 is started (S501), the liquid taken into the ballast water supply line 107 is sent to the ballast tank 103 (S503). A flow rate of ballast water, a water injection disclosure time, an integrated water injection amount, a hypochlorous acid concentration, and the like are measured by a flow meter (FM) and a concentration meter (C) arranged in the ballast water supply line 107. These pieces of information can be stored in the recording unit 182. When water injection into the ballast water supply line 107 is started, an initial set amount of sodium hypochlorite aqueous solution is supplied to the ballast water supply line 107 through the line 109 from the chemical solution supply apparatus 101 (S504). The initial set amount includes the concentration range of sodium hypochlorite in the ballast water in the ballast tank 103 after water injection, the concentration of the sodium hypochlorite aqueous solution stored in the chemical solution supply apparatus 101 (or the storage tank 211), and It can be set in advance based on attenuation data of sodium hypochlorite obtained in advance. The initial set amount can be stored in the recording unit 182. Based on this information, the supply amount control unit 1812 of the control unit 183 may control the supply amount. It should be noted that the initial set amount is set so that it is less than a predetermined concentration that can be discharged when the ship arrives at the destination and discharges the ballast water (time tx in FIG. 20). It is preferable from the point.
 次に、次亜塩素酸ナトリウムが供給されたバラスト水をライン111からサンプリングして減衰測定ユニット112にて次亜塩素酸ナトリウムの濃度測定を繰り返し行い、減衰データを得る(S505)。サンプリングはバラスト水注水開始後例えば0~1時間以内に行うことができ、減衰測定ユニット112における次亜塩素酸ナトリウムの濃度測定は、30分~1時間ごとに、例えば1~10回の範囲で測定することができる。こうして得られた取水された液体における減衰データは、記録部182に記憶される。なお、減衰測定ユニット112における減衰データの測定中も、バラスト水注水は停止することなく続行できる。制御部183の分析部1811は記録部182にアクセスし、現在供給されている次亜塩素酸ナトリウムの量が適切かどうか判断する(S506)。なお、分析部1811は、随時記録部182にアクセスし、取水された液体の減衰曲線が予測できた時点で判断をすることができる。次亜塩素酸ナトリウム濃度が高すぎると、配管(ライン)やバラストタンクの損傷及び劣化の原因になり、また、排出時に還元剤や放置時間が必要となる。一方、次亜塩素酸ナトリウム濃度が低すぎると、水生微生物の殺菌処理が不十分となる。次亜塩素酸ナトリウムの供給量の補正が必要と判断した場合、制御部183の供給量制御部1812は、薬液供給装置101(又は貯留槽211)から供給される量を補正する(S507)。一方、次亜塩素酸ナトリウムの供給量の補正が必要ない場合にはそのままバラスト水の注水を継続する(S508)。サンプリング及び減衰データの作成は一回でもよいし複数回でもよい。また、減衰データに基づく次亜塩素酸ナトリウム供給量の補正の要否判断(S506)の回数も一回でもよいし複数回でもよい。これらは、バラスト水の注水にかかる時間や注水されるバラスト水総量に応じて判断できる(S509)。最後に、目的とする容量までバラスト水を注水し(S510)、バラスト水の注水が完了する。 Next, the ballast water supplied with sodium hypochlorite is sampled from the line 111 and the concentration measurement of the sodium hypochlorite is repeatedly performed by the attenuation measurement unit 112 to obtain attenuation data (S505). Sampling can be performed, for example, within 0 to 1 hour after the start of ballast water injection, and the concentration measurement of sodium hypochlorite in the attenuation measurement unit 112 is performed within a range of, for example, 1 to 10 times every 30 minutes to 1 hour. Can be measured. The attenuation data of the water taken in this way is stored in the recording unit 182. During the measurement of the attenuation data in the attenuation measurement unit 112, the ballast water injection can be continued without stopping. The analysis unit 1811 of the control unit 183 accesses the recording unit 182 and determines whether the amount of sodium hypochlorite currently supplied is appropriate (S506). Note that the analysis unit 1811 can access the recording unit 182 as needed to make a determination when the attenuation curve of the drawn liquid can be predicted. If the sodium hypochlorite concentration is too high, it will cause damage and deterioration of the piping (line) and ballast tank, and a reducing agent and leaving time will be required during discharge. On the other hand, when the sodium hypochlorite concentration is too low, the sterilization treatment of aquatic microorganisms becomes insufficient. When it is determined that the supply amount of sodium hypochlorite needs to be corrected, the supply amount control unit 1812 of the control unit 183 corrects the amount supplied from the chemical solution supply apparatus 101 (or the storage tank 211) (S507). On the other hand, when correction of the supply amount of sodium hypochlorite is not necessary, the water injection of ballast water is continued (S508). Sampling and generation of attenuation data may be performed once or multiple times. Further, the number of determinations as to whether or not the sodium hypochlorite supply amount needs to be corrected based on the attenuation data (S506) may be one or more. These can be determined according to the time required for pouring the ballast water and the total amount of ballast water to be poured (S509). Finally, the ballast water is poured to the target volume (S510), and the ballast water injection is completed.
 (実施の形態2-3)
 図22は、本発明の実施の形態2-3におけるバラスト水処理システムの構成を示す概略構成図である。図22において、図15と同じ構成要素には同じ符号を付している。
(Embodiment 2-3)
FIG. 22 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 2-3 of the present invention. In FIG. 22, the same components as those of FIG.
 本実施の形態2-3において、薬液供給装置801は、バラスト水供給ライン107が接続する取水口104とは異なる第2の取水口804と接続する。すなわち、本実施の形態2-3の薬液供給装置801は、バラスト水を取水する取水口(シーチェスト)104から取水された液体を取り込み可能となるラインと接続せず、ライン810を介して第2の取水口804と接続している以外は実施の形態2-1のバラスト水処理システムと同じ構成である。このように、本実施の形態2-3におけるバラスト水処理システムによれば、薬液供給装置801において、バラスト水を取水する取水口(シーチェスト)104から取水された液体(次亜塩素酸ナトリウム水溶液が添加される前の取水された液体)ではなく、第2の取水口804から取水された液体を用いて次亜塩素酸ナトリウムを発生させることから、例えば、バラスト水を取水する取水口104と比較して低電力かつ簡便に液体を取水することができる。このため、航行中に外部から次亜塩素酸ナトリウムを発生させるための液体を取水することにより、航行中に薬液供給装置801において次亜塩素酸ナトリウムを発生させることができ、例えば、バラスト水をバラストタンク103に貯留する際の消費電力を低減できる。また、航行中での次亜塩素酸ナトリウム水溶液のバラストタンク103への供給が容易になり、バラストタンク103内における水生微生物の再増殖を抑制できる。ライン810は、例えば、第2の取水口804から取り入れた液体を薬液供給装置801に送るためのポンプ806を備えていてもよい。また、ライン810は、薬液供給装置801を保護するためのストレーナ805を備えていてもよい。 In Embodiment 2-3, the chemical solution supply device 801 is connected to a second intake port 804 different from the intake port 104 to which the ballast water supply line 107 is connected. That is, the chemical solution supply device 801 of the present embodiment 2-3 is not connected to a line that can take in the liquid taken from the water intake (sea chest) 104 for taking the ballast water, and is connected via the line 810. 2 is the same as the ballast water treatment system of Embodiment 2-1, except that it is connected to the water intake port 804. Thus, according to the ballast water treatment system in the present embodiment 2-3, the liquid (sodium hypochlorite aqueous solution) taken from the water intake (sea chest) 104 for taking the ballast water in the chemical supply device 801 The sodium hypochlorite is generated using the liquid taken from the second water intake 804 rather than the liquid taken before the water is added). For example, the water intake 104 for taking ballast water and In comparison, the liquid can be taken in with low power and easily. For this reason, by taking in a liquid for generating sodium hypochlorite from the outside during navigation, sodium hypochlorite can be generated in the chemical solution supply device 801 during navigation. Power consumption when storing in the ballast tank 103 can be reduced. In addition, it becomes easy to supply the sodium hypochlorite aqueous solution to the ballast tank 103 during navigation, and re-growth of aquatic microorganisms in the ballast tank 103 can be suppressed. The line 810 may include, for example, a pump 806 for sending the liquid taken in from the second water intake 804 to the chemical liquid supply device 801. Further, the line 810 may include a strainer 805 for protecting the chemical solution supply device 801.
 [第3の態様]
 そこで、本発明は、第3の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させるバラスト水処理システム(以下、「本発明の第3のバラスト水処理システム」ともいう)に関する。
[Third Aspect]
Therefore, as a third aspect, the present invention provides a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment of aquatic microorganisms in the liquid that is connected to the line and taken from the water intake. A chemical supply device that supplies the sodium hypochlorite aqueous solution to the line, and the chemical supply device is connected to a second intake port that is different from the intake port to which the ballast water supply line is connected. The present invention relates to a ballast water treatment system (hereinafter, also referred to as “third ballast water treatment system of the present invention”) that generates sodium hypochlorite by electrolyzing a liquid taken from two water intakes.
 本発明の第3のバラスト水処理システムは、薬液供給装置における取水を、バラスト水を取水する取水口(シーチェスト)とは異なる取水口から行うことによって、簡便かつ低電力で次亜塩素酸ナトリウムを発生させることができるという知見に基づく。また、本発明の第3のバラスト水処理システムは、船舶では、寄港停泊中には、バラスト水の取水及び排出や、貨物の積み下ろし作業があり、最も多くの電力を使用するため、航行中に、次亜塩素酸ナトリウムの発生に用いる液体の取り入れ及び次亜塩素酸ナトリウムの発生を行うことで、消費電力のピークを分散させ、船舶に搭載する発電機の容量を小さくできるという知見に基づく。 The third ballast water treatment system of the present invention is a simple and low power sodium hypochlorite by performing water intake in the chemical solution supply device from a water intake different from the water intake (sea chest) for taking ballast water. Based on the knowledge that can be generated. In addition, the third ballast water treatment system of the present invention has a water intake and discharge of ballast water and a cargo loading / unloading operation while the ship is anchored at the port. Based on the knowledge that by taking in the liquid used to generate sodium hypochlorite and generating sodium hypochlorite, the peak of power consumption can be dispersed and the capacity of the generator mounted on the ship can be reduced.
 本発明の第3のバラスト水処理システムによれば、例えば、薬液供給装置が、バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続することから、次亜塩素酸ナトリウムの発生に用いる液体を簡便に取水することができるという効果を奏する。したがって、本発明の第3のバラスト水処理システムによれば、シーチェストを駆動することなく取水することができることから、例えば、航行中であっても次亜塩素酸ナトリウムの発生に用いる液体を簡便に取水でき、また、その取水を低電力で行うことができるという効果を奏する。 According to the third ballast water treatment system of the present invention, for example, the chemical supply device is connected to the second intake port that is different from the intake port to which the ballast water supply line is connected. The liquid used for generation | occurrence | production has the effect that water can be taken in easily. Therefore, according to the third ballast water treatment system of the present invention, water can be taken without driving the sea chest. For example, the liquid used for generating sodium hypochlorite can be easily used even during navigation. The water can be taken in, and the water can be taken with low power.
 第3の態様において「バラスト水供給ラインが接続する取水口とは異なる第2の取水口」とは、バラストタンクに貯留するため液体を取水するための取水口(例えば、シーチェスト)以外のものであって、例えば、船舶に既存する飲料水等のための取水口等が挙げられる。 In the third aspect, the “second intake port different from the intake port to which the ballast water supply line is connected” means something other than the intake port (for example, sea chest) for taking in liquid for storage in the ballast tank. And, for example, a water intake for drinking water or the like existing in a ship can be mentioned.
 本発明の第3のバラスト水処理システムは、薬液供給装置からバラスト水供給ラインに供給される次亜塩素酸ナトリウム量を制御する制御部を備えていてもよい。第3の態様における制御部は、薬液供給装置内の次亜塩素酸ナトリウム量及び又はバラストタンク内の次亜塩素酸ナトリウム濃度に基づき、第2の取水口からの液体の取水及び次亜塩素酸ナトリウムの発生を制御することが好ましい。 The third ballast water treatment system of the present invention may include a control unit that controls the amount of sodium hypochlorite supplied from the chemical supply device to the ballast water supply line. The control unit according to the third aspect is configured so that the liquid intake from the second intake port and hypochlorous acid are based on the amount of sodium hypochlorite in the chemical supply apparatus and / or the sodium hypochlorite concentration in the ballast tank. It is preferable to control the generation of sodium.
 本発明は、さらにその他の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備える船舶において、バラスト水を処理する方法であって、前記薬液供給装置において、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させること、及び、前記薬液供給装置から前記バラスト水供給ラインに前記次亜塩素酸ナトリウムを供給することを含むバラスト水の処理方法に関する。 The present invention provides, as still another aspect, a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment for aquatic microorganisms in a liquid that is connected to the line and taken from the water intake. A method for treating ballast water in a ship equipped with a chemical solution supply device for supplying a sodium chlorite aqueous solution to the line, wherein the chemical solution supply device is different from a water intake port connected to the ballast water supply line. A ballast comprising: electrolyzing a liquid taken from the water intake 2 to generate sodium hypochlorite; and supplying the sodium hypochlorite from the chemical liquid supply device to the ballast water supply line The present invention relates to a water treatment method.
 薬液供給装置における電気分解処理を航行中に行うことが好ましい。これにより、バラストタンクにバラスト水を注水する時の消費電力を低減できる。また、航行中に次亜塩素酸ナトリウムを発生させ貯留しておくことにより、バラスト水注水開始から次亜塩素酸ナトリウムを供給できるため、時間のロスを防ぐことができる。 It is preferable to perform the electrolysis process in the chemical solution supply apparatus during navigation. Thereby, the power consumption at the time of pouring ballast water into a ballast tank can be reduced. Moreover, since sodium hypochlorite is generated and stored during navigation, sodium hypochlorite can be supplied from the start of ballast water injection, thus preventing time loss.
 本発明は、さらにその他の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備える船舶において、バラスト水中の水生微生物を殺菌処理するための次亜塩素酸ナトリウムを製造する方法であって、前記薬液供給装置において、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口から取水した液体を電気分解して次亜塩素酸ナトリウムを発生させることを含む製造方法に関する。本発明の製造方法によれば、例えば、薬液供給装置が、バラスト水供給ラインが接続する取水口とは異なる第2の取水口から次亜塩素酸ナトリウムの発生に用いる液体を簡便に取水できることから、次亜塩素酸ナトリウムを簡便に発生できるという効果を奏する。 The present invention provides, as still another aspect, a ballast water supply line that connects a water intake and a ballast tank, and a sterilization treatment for aquatic microorganisms in a liquid that is connected to the line and taken from the water intake. In a ship equipped with a chemical solution supply device for supplying a sodium chlorite aqueous solution to the line, a method for producing sodium hypochlorite for sterilizing aquatic microorganisms in ballast water, the chemical solution supply device, The present invention relates to a production method including electrolyzing a liquid taken from a second water intake different from a water intake connected to the ballast water supply line to generate sodium hypochlorite. According to the production method of the present invention, for example, the chemical supply device can easily take in the liquid used for generating sodium hypochlorite from the second intake different from the intake connected to the ballast water supply line. There is an effect that sodium hypochlorite can be easily generated.
 前記液体の電気分解は、航行中に行うことが好ましい。これにより、バラスト水注水時の消費電力を低減できる。 The electrolysis of the liquid is preferably performed during navigation. Thereby, the power consumption at the time of ballast water injection can be reduced.
 (実施の形態3-1)
 図23は、本発明の実施の形態3-1におけるバラスト水処理システムの構成を示す概略構成図である。図23において、図15と同じ構成要素には同じ符号を付している。
Embodiment 3-1
FIG. 23 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 3-1 of the present invention. 23, the same components as those in FIG. 15 are denoted by the same reference numerals.
 本実施の形態3-1のバラスト水処理システムは、減衰測定ユニット112、及びバラスト水供給ライン107から減衰測定ユニット112にサンプリングするためのライン111を備えていない以外は実施の形態2-3のバラスト水処理システムと同じ構成である。 The ballast water treatment system of the present Embodiment 3-1 is the same as that of the Embodiment 2-3 except that the attenuation measurement unit 112 and the line 111 for sampling from the ballast water supply line 107 to the attenuation measurement unit 112 are not provided. The same configuration as the ballast water treatment system.
 本実施の形態3-1のバラスト水処理システムを用いたバラスト水の処理方法の一例について説明する。 An example of a ballast water treatment method using the ballast water treatment system of the present Embodiment 3-1 will be described.
 航行中、バラスト水取水前及び又はバラスト水取水時に、第2の取水口804からライン810を通じて船外から次亜塩素酸ナトリウムの発生に用いる液体を取り入れ、電気分解により次亜塩素酸ナトリウムを発生させる。本実施の形態3-1のバラスト水処理システムによれば、次亜塩素酸ナトリウムの発生に用いる液体を取り入れるライン810が、バラスト水取水口104とは異なる第2の取水口804と接続していることから、バラストポンプ106を駆動することなく、液体を取り入れることができる。また、船舶では、バラスト水貯留時等の寄港停泊中には貨物の積み下ろし作業があり、最も多くの電力を使用することから、消費電力のピークを分散させ、発電機の容量を小さくする点から、航行中に、次亜塩素酸ナトリウムの発生に用いる液体の取り入れ及び次亜塩素酸ナトリウムの発生を行い、貯留しておくことが好ましい。 During navigation, before taking ballast water and / or when taking ballast water, take the liquid used for generating sodium hypochlorite from the outside of the ship through the second intake 804 through line 810, and generate sodium hypochlorite by electrolysis. Let According to the ballast water treatment system of the present Embodiment 3-1, the line 810 for taking in liquid used for generating sodium hypochlorite is connected to the second water intake 804 different from the ballast water intake 104. Therefore, the liquid can be taken in without driving the ballast pump 106. Ships also have cargo loading and unloading work while berthing at the time of ballast water storage, etc., and because they use the most electricity, they disperse peaks in power consumption and reduce generator capacity. During navigation, it is preferable that the liquid used for generating sodium hypochlorite is taken in and sodium hypochlorite is generated and stored.
 バラスト水を取水するために、バラストポンプ106を始動させる。これによりシーチェスト104を通じて液体の取り込みが開始され、バラスト水供給ライン107を通じてバラストタンク103へ注水が始まる。バラスト水供給ライン107への注水が始まると、薬液供給装置801に貯留された次亜塩素酸ナトリウム水溶液がライン109を通じてバラスト水供給ライン107に供給される。本実施の形態3-1のバラスト水処理システムによれば、バラスト水取水前に事前に発生させておいた次亜塩素酸ナトリウムを貯留しておくことが可能であるため、バラストタンク103への注水開始とともに、次亜塩素酸ナトリウム水溶液をバラスト水供給ライン107に供給することができる。 バ ラ Start the ballast pump 106 to take in the ballast water. As a result, liquid intake is started through the sea chest 104, and water injection into the ballast tank 103 is started through the ballast water supply line 107. When water injection into the ballast water supply line 107 is started, the sodium hypochlorite aqueous solution stored in the chemical liquid supply device 801 is supplied to the ballast water supply line 107 through the line 109. According to the ballast water treatment system of the present Embodiment 3-1, it is possible to store sodium hypochlorite that has been generated in advance before taking in the ballast water. Along with the start of water injection, a sodium hypochlorite aqueous solution can be supplied to the ballast water supply line 107.
 次亜塩素酸ナトリウム水溶液の供給量は、バラストタンク103に注入するバラスト水の量、薬液供給装置801(又は貯留槽211)に貯留される次亜塩素酸ナトリウム水溶液の濃度等に基づいて予め決定できる。また、バラスト水供給ライン107に配置される流量計(FM)及び次亜塩素酸ナトリウム濃度計(C)の測定値に基づき、制御部(図示せず)において次亜塩素酸ナトリウム水溶液の供給量を制御させてもよい。 The supply amount of the sodium hypochlorite aqueous solution is determined in advance based on the amount of ballast water injected into the ballast tank 103, the concentration of the sodium hypochlorite aqueous solution stored in the chemical solution supply device 801 (or the storage tank 211), and the like. it can. In addition, based on the measured values of the flow meter (FM) and the sodium hypochlorite concentration meter (C) arranged in the ballast water supply line 107, the supply amount of the sodium hypochlorite aqueous solution in the control unit (not shown) May be controlled.
 [第4の態様]
 本発明は、第4の態様として、取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに配置され、前記取水口から取水された液体中の水生生物を殺傷処理するための殺傷処理装置と、前記ラインに接続し、前記取水口から取水された液体中の水生生物の殺滅処理を行うための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、前記殺傷処理装置は、電解処理装置、遠心式固液分離装置、及び水圧により衝撃波を発生させて処理する装置からなる群から選択される、バラスト水処理システムに関する。第4の態様のバラスト水処理システムによれば、上記の殺傷処理装置による殺傷処理と、次亜塩素酸ナトリウムによる殺傷処理とを行うことから、効率よくバラスト水の処理を行うことができる。第4の態様のバラスト水処理システムにおいて、薬液供給装置、電解処理装置、及びバラスト水供給ライン等は上記第1~3の態様と同様である。
[Fourth aspect]
The present invention provides, as a fourth aspect, a ballast water supply line that connects a water intake and a ballast tank, and killing for killing aquatic organisms in the liquid that is disposed in the line and taken from the water intake. A treatment device, and a chemical solution supply device connected to the line and supplying a sodium hypochlorite aqueous solution to the line for killing aquatic organisms in the liquid taken from the intake port, The killing treatment device relates to a ballast water treatment system selected from the group consisting of an electrolytic treatment device, a centrifugal solid-liquid separation device, and a device that generates and processes shock waves by water pressure. According to the ballast water treatment system of the fourth aspect, since the killing process by the killing device and the killing process by sodium hypochlorite are performed, the ballast water can be efficiently treated. In the ballast water treatment system of the fourth aspect, the chemical solution supply device, the electrolytic treatment device, the ballast water supply line, and the like are the same as in the first to third aspects.
 第4の態様のバラスト水処理システムにおいて、薬液供給装置は、バラストポンプに接続していることが好ましい。これにより、次亜塩素酸ナトリウム水溶液を製造するための液体をバラスト水の取水と同時に行うことができ、処理効率を向上させることができる。 In the ballast water treatment system according to the fourth aspect, the chemical solution supply device is preferably connected to a ballast pump. Thereby, the liquid for manufacturing sodium hypochlorite aqueous solution can be performed simultaneously with the intake of ballast water, and processing efficiency can be improved.
 (実施の形態4-1)
 図24は、本発明の実施の形態4-1におけるバラスト水処理システムの構成を示す概略構成図である。図24において、図1と同じ構成要素には同じ符号を付している。
(Embodiment 4-1)
FIG. 24 is a schematic configuration diagram showing the configuration of the ballast water treatment system according to Embodiment 4-1 of the present invention. In FIG. 24, the same components as those in FIG.
 本実施の形態4-1のバラスト水処理システムは、薬液供給装置101がライン110を介してバラストポンプ106と接続し、殺傷処理装置が電解処理装置202である以外は実施の形態1-1のバラスト水処理システムと同じ構成である。薬液供給ライン109は、バラストタンク103に余分な空気が導入されることを抑制する点から、次亜塩素酸ナトリウム水溶液に含まれる気体を除去するための脱気槽(図示せず)を備えていてもよい。 The ballast water treatment system of the present embodiment 4-1 is the same as that of the embodiment 1-1 except that the chemical solution supply apparatus 101 is connected to the ballast pump 106 via the line 110 and the killing treatment apparatus is the electrolytic treatment apparatus 202. The same configuration as the ballast water treatment system. The chemical solution supply line 109 includes a deaeration tank (not shown) for removing gas contained in the sodium hypochlorite aqueous solution from the viewpoint of suppressing introduction of excess air into the ballast tank 103. May be.
 本実施の形態4-1のバラスト水処理システムを用いたバラスト水の処理方法の一例について説明する。 An example of a ballast water treatment method using the ballast water treatment system of the embodiment 4-1 will be described.
 寄港停泊中、バラスト水を取水するためにバラストポンプ106を始動させる。これによりシーチェスト104を通じて液体の取り込みが開始され、バラスト水供給ライン107を通じてバラストタンク103へ注水が始まる。この際、バラスト水の取水と合わせて、ライン110を通じて薬液供給装置101に次亜塩素酸ナトリウムの発生に用いる液体を取り入れ、電気分解により次亜塩素酸ナトリウムの発生を行う。本実施の形態4-1のバラスト水処理システムによれば、次亜塩素酸ナトリウムの発生に用いる液体を取り入れるライン110がバラストポンプ106と接続していることから、次亜塩素酸ナトリウムの発生に用いる液体をバラスト水の取水時に行うことができる。バラストポンプ106以外のポンプを駆動させることなく次亜塩素酸ナトリウムの発生に用いる液体を取水することができる。 During the berth, the ballast pump 106 is started to take in the ballast water. As a result, liquid intake is started through the sea chest 104, and water injection into the ballast tank 103 is started through the ballast water supply line 107. At this time, together with the intake of ballast water, a liquid used for generating sodium hypochlorite is taken into the chemical liquid supply apparatus 101 through the line 110, and sodium hypochlorite is generated by electrolysis. According to the ballast water treatment system of the present Embodiment 4-1, since the line 110 for taking in the liquid used for generating sodium hypochlorite is connected to the ballast pump 106, the generation of sodium hypochlorite is prevented. The liquid to be used can be performed at the time of taking ballast water. The liquid used to generate sodium hypochlorite can be taken without driving any pump other than the ballast pump 106.
 ついで、シーチェスト104を通じて取り込まれた液体は、電解処理装置2020において殺傷処理される。殺傷処理された液体は、薬液供給装置101で生成された次亜塩素酸ナトリウム水溶液が薬液供給ライン109を通じて供給された後、バラスト水供給ライン107を通じてバラストタンク103に供給される。このように、電解処理による殺傷処理と、次亜塩素酸ナトリウムによる殺滅処理とを行うことにより、バラスト水を効率よくバラスト水排出基準を満たすレベルにまで処理することができる。また、バラストタンク103に貯留されるバラスト水は次亜塩素酸ナトリウムを含むため、航行中も殺滅効果が保持され、水生生物の増殖を抑制することができる。 Next, the liquid taken in through the sea chest 104 is killed in the electrolytic processing apparatus 2020. The killed liquid is supplied to the ballast tank 103 through the ballast water supply line 107 after the aqueous sodium hypochlorite solution generated by the chemical supply apparatus 101 is supplied through the chemical supply line 109. Thus, by performing the killing process by electrolytic treatment and the killing process by sodium hypochlorite, the ballast water can be efficiently processed to a level satisfying the ballast water discharge standard. Moreover, since the ballast water stored in the ballast tank 103 contains sodium hypochlorite, the killing effect is maintained even during navigation, and the growth of aquatic organisms can be suppressed.
 なお、実施の形態4-1では、電解処理装置202による殺傷処理がなされた液体に、次亜塩素酸ナトリウム水溶液が供給されるように薬液供給ライン109がバラスト水供給ライン107と接続する形態を例にとり説明したがこれに限定されるものではない。例えば、電解処理装置202による処理前に次亜塩素酸ナトリウム水溶液が供給されるように薬液供給ライン109がバラスト水供給ライン107と接続していてもよいし、電解処理装置202による処理の前及び後の双方で次亜塩素酸ナトリウム水溶液が供給されるように薬液供給ライン109がバラスト水供給ライン107と接続していてもよい。 In Embodiment 4-1, the chemical solution supply line 109 is connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied to the liquid that has been killed by the electrolytic treatment apparatus 202. The example has been described, but the present invention is not limited to this. For example, the chemical solution supply line 109 may be connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied before the treatment by the electrolytic treatment apparatus 202, or before the treatment by the electrolytic treatment apparatus 202 and The chemical solution supply line 109 may be connected to the ballast water supply line 107 so that the sodium hypochlorite aqueous solution is supplied at both later times.
 本発明は、船舶におけるバラスト水の処理において有用である。 The present invention is useful in the treatment of ballast water in a ship.
 なお、本発明は、その他に、以下のいずれかに関しうる。
<1> 取水口から取水された液体をバラストタンクに供給するためのバラスト水供給ラインと、前記液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備えるバラスト水処理システムにおいて、
前記薬液供給装置から所定量の次亜塩素酸ナトリウムが供給された前記ライン中の液体をサンプリングし、サンプリングした試料における次亜塩素酸ナトリウム濃度の減衰を測定し、該測定データに基づいて前記薬液供給装置から前記ラインへ供給する次亜塩素酸ナトリウムの供給量を調節することを含む、バラスト水の制御方法;
<2> 前記供給量の調節が、取水された液体における次亜塩素酸ナトリウムの減衰測定データに基づき、バラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時のバラストタンク内の次亜塩素酸ナトリウム濃度を予測すること、該予測に基づき、薬液供給装置からバラスト水供給ラインに供給される次亜塩素酸ナトリウムの供給量の増減を決定すること、及び、前記決定に基づき、前記ラインに供給される次亜塩素酸ナトリウム量を制御することを含む、<1>記載のバラスト水の制御方法;
<3> 前記サンプリング及び減衰測定が、次亜塩素酸ナトリウムの濃度計を備える減衰測定ユニットで行われる、<1>又は<2>に記載のバラスト水の制御方法;
<4> <1>から<3>のいずれかに記載の制御方法により制御を行うことを含む、バラスト水の注水方法;
<5> 取水口とバラストタンクとを接続するバラスト水供給ラインと、
前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置と、
前記ラインと前記薬液供給装置との接続点と、バラストタンクとの間に配置され、前記ライン中の液体をサンプリングして次亜塩素酸ナトリウム濃度を測定する減衰測定ユニットと、
減衰測定ユニットで測定されたデータを記録する記録部と、
バラスト水注水中に、薬液供給装置から前記接続点を介して前記ラインに供給される次亜塩素酸ナトリウム量を制御する制御部とを備え、
前記制御部は、次亜塩素酸ナトリウムの減衰速度データに基づき、バラスト水注水完了時、所定時間経過時、及び又はバラスト水排出時のバラストタンク内の次亜塩素酸ナトリウム濃度を予測し、薬液供給装置からの次亜塩素酸ナトリウムの供給量の増減を決定し、前記ラインに供給される次亜塩素酸ナトリウム量を制御することを含む、バラスト水処理システム;
<6> 前記制御部は、さらに、制御前の時点におけるバラスト水の積算注水量、次亜塩素酸ナトリウムの積算供給量、航行データ、及びバラストタンク内で維持すべき所定の次亜塩素酸ナトリウム濃度の少なくとも1つに基づき、前記予測及び又は前記決定を行う、<5>記載のバラスト水処理システム;
<7> 前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を用いて次亜塩素酸ナトリウムを発生させる、<5>又は<6>記載のバラスト水処理システム;
<8> <5>から<7>のいずれかに記載のバラスト水処理システムを備える船舶。
In addition, the present invention can relate to any of the following.
<1> Ballast water supply line for supplying liquid taken from the water intake to the ballast tank, and chemical supply for supplying sodium hypochlorite aqueous solution for sterilizing aquatic microorganisms in the liquid to the line A ballast water treatment system comprising a device,
The liquid in the line to which a predetermined amount of sodium hypochlorite is supplied from the chemical supply device is sampled, the decay of the sodium hypochlorite concentration in the sampled sample is measured, and the chemical is based on the measurement data A method for controlling ballast water, comprising adjusting a supply amount of sodium hypochlorite supplied from a supply device to the line;
<2> The adjustment of the supply amount is based on the decay measurement data of sodium hypochlorite in the drawn-in liquid, and when the ballast water injection is completed, the predetermined time has elapsed, and / or the ballast water is discharged. Predicting the sodium chlorite concentration, determining the increase or decrease in the amount of sodium hypochlorite supplied to the ballast water supply line from the chemical solution supply device based on the prediction, and based on the determination, The method for controlling ballast water according to <1>, comprising controlling the amount of sodium hypochlorite supplied to the line;
<3> The method for controlling ballast water according to <1> or <2>, wherein the sampling and attenuation measurement are performed in an attenuation measurement unit including a concentration meter of sodium hypochlorite;
<4> A method for injecting ballast water, comprising controlling by the control method according to any one of <1> to <3>;
<5> A ballast water supply line connecting the water intake and the ballast tank;
A chemical supply apparatus connected to the line and supplying a sodium hypochlorite aqueous solution to the line for sterilizing aquatic microorganisms in the liquid taken from the water intake;
An attenuation measurement unit that is disposed between a connection point between the line and the chemical solution supply device, and a ballast tank, and measures the sodium hypochlorite concentration by sampling the liquid in the line;
A recording unit for recording data measured by the attenuation measurement unit;
A controller for controlling the amount of sodium hypochlorite supplied to the line from the chemical supply device through the connection point in the ballast water injection water;
The controller predicts the sodium hypochlorite concentration in the ballast tank when the ballast water injection is completed, when a predetermined time has elapsed, or when the ballast water is discharged, based on the decay rate data of sodium hypochlorite, Determining the increase or decrease in the amount of sodium hypochlorite supplied from the supply device, and controlling the amount of sodium hypochlorite supplied to the line;
<6> The control unit further includes an integrated water supply amount of ballast water, an integrated supply amount of sodium hypochlorite, navigation data, and predetermined sodium hypochlorite to be maintained in the ballast tank before the control. The ballast water treatment system according to <5>, wherein the prediction and / or the determination is performed based on at least one of concentrations;
<7> The chemical solution supply device is connected to a second intake port different from the intake port to which the ballast water supply line is connected, and sodium hypochlorite using a liquid taken from the second intake port. Generating a ballast water treatment system according to <5> or <6>;
<8> A ship provided with the ballast water treatment system according to any one of <5> to <7>.

Claims (15)

  1. 取水口とバラストタンクとを接続するバラスト水供給ラインと、
    前記ラインに配置され、前記取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理するための殺傷処理装置と、
    前記ラインに接続し、前記取水口から取水された液体中の水生生物の殺滅処理を行うための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、
    前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させる、バラスト水処理システム。
    A ballast water supply line connecting the intake port and the ballast tank;
    A killing treatment apparatus for electrically or mechanically killing aquatic organisms in the liquid disposed in the line and taken from the water intake;
    A chemical supply device connected to the line and supplying an aqueous sodium hypochlorite solution for killing aquatic organisms in the liquid taken from the water intake to the line;
    The chemical liquid supply device is connected to a second water intake port that is different from the water intake port connected to the ballast water supply line, and electrolyzes the liquid taken from the second water intake port to obtain sodium hypochlorite. Generates a ballast water treatment system.
  2. 前記殺傷処理装置は、電解処理装置、又は遠心式固液分離装置である、請求項1記載のバラスト水処理システム。 The ballast water treatment system according to claim 1, wherein the killing treatment device is an electrolytic treatment device or a centrifugal solid-liquid separation device.
  3. 前記電解処理装置は、固定床型電極電解槽を備える、請求項2記載のバラスト水処理システム。 The ballast water treatment system according to claim 2, wherein the electrolytic treatment apparatus includes a fixed bed electrode electrolytic bath.
  4. 前記電解処理装置は、クロスフロー方式又はデッドエンド方式である、請求項2又は3に記載のバラストシステム。 The ballast system according to claim 2 or 3, wherein the electrolytic treatment apparatus is a cross flow system or a dead end system.
  5. 前記薬液供給装置は、前記バラスト水供給ラインにおいて、前記ラインが接続する取水口と前記殺傷処理装置との間、及び又は前記殺傷処理装置と前記バラストタンクとの間に接続している、請求項1から4のいずれかに記載のバラスト水処理システム。 The chemical solution supply device is connected to the ballast water supply line between a water intake port connected to the line and the killing treatment device and / or between the killing treatment device and the ballast tank. The ballast water treatment system according to any one of 1 to 4.
  6. さらに、バラスト水の排出時にバラスト水の次亜塩素酸ナトリウムを分解処理するための後処理装置を備える、請求項1から5のいずれかに記載のバラスト水処理システム。 Furthermore, the ballast water treatment system in any one of Claim 1 to 5 provided with the post-processing apparatus for decomposing | disassembling the sodium hypochlorite of ballast water at the time of discharge | emission of ballast water.
  7. さらに、次亜塩素酸ナトリウム水溶液を供給する液体のpHを、次亜塩素酸のpKa以下に制御するための酸性液貯留槽を備える、請求項1から6のいずれかに記載のバラスト水処理システム。 Furthermore, the ballast water treatment system in any one of Claim 1 to 6 provided with the acidic liquid storage tank for controlling the pH of the liquid which supplies sodium hypochlorite aqueous solution to below pKa of hypochlorous acid. .
  8. 取水口から取水された液体中の水生生物を電気的又は機械的に殺傷処理すること、
    取水口から取水された液体に次亜塩素酸ナトリウム水溶液を供給すること、及び
    前記殺傷処理及び前記次亜塩素酸ナトリウム水溶液の供給を行った液体をバラストタンクに貯留することを含み、
    さらに、前記取水口とは異なる第2の取水口から取水された液体を少なくとも含む次亜塩素酸ナトリウム製造のための液体を電気分解して、前記次亜塩素酸ナトリウム水溶液を製造することを含む、バラスト水処理方法。
    Electrically or mechanically killing aquatic organisms in the liquid drawn from the water intake;
    Supplying a sodium hypochlorite aqueous solution to the liquid taken from the water intake, and storing the liquid subjected to the killing treatment and the sodium hypochlorite aqueous solution in a ballast tank,
    The method further includes electrolyzing a liquid for producing sodium hypochlorite including at least a liquid taken from a second water intake different from the water intake to produce the sodium hypochlorite aqueous solution. , Ballast water treatment method.
  9. 前記次亜塩素酸ナトリウム水溶液の供給は、前記電気的又は機械的な殺傷処理の前及び又は後に行う、請求項8記載のバラスト水処理方法。 The ballast water treatment method according to claim 8, wherein the supply of the aqueous sodium hypochlorite solution is performed before and / or after the electrical or mechanical killing treatment.
  10. 前記次亜塩素酸ナトリウム水溶液の製造は、航行中に行う、請求項8又は9に記載のバラスト水処理方法。 The ballast water treatment method according to claim 8 or 9, wherein the sodium hypochlorite aqueous solution is produced during navigation.
  11. 取水口とバラストタンクとを接続するバラスト水供給ラインと、
    前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備え、
    前記薬液供給装置は、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口と接続し、前記第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させる、バラスト水処理システム。
    A ballast water supply line connecting the intake port and the ballast tank;
    A chemical supply device connected to the line and supplying a sodium hypochlorite aqueous solution to the line for sterilizing aquatic microorganisms in the liquid taken from the water intake,
    The chemical liquid supply device is connected to a second water intake port that is different from the water intake port connected to the ballast water supply line, and electrolyzes the liquid taken from the second water intake port to obtain sodium hypochlorite. Generates a ballast water treatment system.
  12. 前記薬液供給装置から前記ラインに供給される次亜塩素酸ナトリウム量を制御する制御部を備え、前記制御部は、前記薬液供給装置内の次亜塩素酸ナトリウム量及び又は前記バラストタンク内の次亜塩素酸ナトリウム濃度に基づき、前記第2の取水口からの液体の取水及び次亜塩素酸ナトリウムの発生を制御することを含む、請求項11記載のバラスト水処理システム。 A control unit that controls the amount of sodium hypochlorite supplied from the chemical solution supply device to the line; and the control unit includes the amount of sodium hypochlorite in the chemical solution supply device and / or the next amount in the ballast tank. The ballast water treatment system according to claim 11, comprising controlling liquid water intake from the second water intake and generation of sodium hypochlorite based on a sodium chlorite concentration.
  13. 取水口とバラストタンクとを接続するバラスト水供給ラインと、
    前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備える船舶において、バラスト水を処理する方法であって、
    前記薬液供給装置において、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口から取水された液体を電気分解して次亜塩素酸ナトリウムを発生させること、及び、
    前記薬液供給装置から前記バラスト水供給ラインに前記次亜塩素酸ナトリウムを供給することを含む、バラスト水の処理方法。
    A ballast water supply line connecting the intake port and the ballast tank;
    A ballast water is processed in a ship provided with a chemical solution supply device connected to the line and supplying a sodium hypochlorite aqueous solution to the line for sterilizing aquatic microorganisms in a liquid taken from the intake. A method,
    In the chemical liquid supply device, electrolyzing a liquid taken from a second water intake different from the water intake connected to the ballast water supply line to generate sodium hypochlorite; and
    A method for treating ballast water, comprising supplying the sodium hypochlorite from the chemical solution supply device to the ballast water supply line.
  14. 前記薬液供給装置における電気分解処理を航行中に行う、請求項13記載のバラスト水の処理方法。 The ballast water treatment method according to claim 13, wherein the electrolysis treatment in the chemical solution supply apparatus is performed during navigation.
  15. 取水口とバラストタンクとを接続するバラスト水供給ラインと、前記ラインに接続し、前記取水口から取水された液体中の水生微生物を殺菌処理するための次亜塩素酸ナトリウム水溶液を前記ラインに供給する薬液供給装置とを備える船舶において、バラスト水中の水生微生物を殺菌処理するための次亜塩素酸ナトリウムを製造する方法であって、
    前記薬液供給装置において、前記バラスト水供給ラインが接続する取水口とは異なる第2の取水口から取水した液体を電気分解して次亜塩素酸ナトリウムを発生させることを含む、製造方法。
    A ballast water supply line connecting the intake port and the ballast tank, and an aqueous sodium hypochlorite solution for sterilizing aquatic microorganisms in the liquid taken from the intake port connected to the line and supplied to the line A method for producing sodium hypochlorite for sterilizing aquatic microorganisms in ballast water in a ship equipped with a chemical solution supply device,
    The said chemical | medical solution supply apparatus WHEREIN: The manufacturing method including electrolyzing the liquid taken in from the 2nd water intake different from the water intake connected to the said ballast water supply line, and generating sodium hypochlorite.
PCT/JP2011/005911 2010-10-22 2011-10-21 Ballast water treatment system and ballast water treatment method WO2012053224A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180051038.6A CN103189319B (en) 2010-10-22 2011-10-21 Ballast water treatment system and ballast water treatment method
KR1020137012825A KR20130135254A (en) 2010-10-22 2011-10-21 Ballast water treatment system and ballast water treatment method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-237658 2010-10-22
JP2010237658 2010-10-22
JP2011-146048 2011-06-30
JP2011146048A JP2012106224A (en) 2010-10-22 2011-06-30 Ballast water control method and ballast water treatment system
JP2011177092A JP2013039516A (en) 2011-08-12 2011-08-12 Ballast water treatment system and ballast water treatment method
JP2011-177092 2011-08-12

Publications (1)

Publication Number Publication Date
WO2012053224A1 true WO2012053224A1 (en) 2012-04-26

Family

ID=45974953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005911 WO2012053224A1 (en) 2010-10-22 2011-10-21 Ballast water treatment system and ballast water treatment method

Country Status (1)

Country Link
WO (1) WO2012053224A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351044A (en) * 2013-06-18 2013-10-16 浙江逸盛石化有限公司 Discharged wastewater heavy metal precipitation recovery device and method
WO2013190600A1 (en) * 2012-06-21 2013-12-27 アタカ大機株式会社 Ballast water treatment device and operation method therefor
JP2014100643A (en) * 2012-11-19 2014-06-05 Uerushii:Kk Reservoir feeding device and method of medicinal solution, and ground water clarification processor and method
JP2016502476A (en) * 2012-10-23 2016-01-28 ソンポー インダストリイズ カンパニー リミテッドSunbo Industries Co.,Ltd Ship ballast water treatment system
JPWO2014064942A1 (en) * 2012-10-25 2016-09-08 パナソニックIpマネジメント株式会社 Ballast water treatment method and ballast water treatment apparatus used therefor
WO2017110154A1 (en) * 2015-12-24 2017-06-29 栗田工業株式会社 Ballast water control device and method for controlling ballast water treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235361A (en) * 1997-02-26 1998-09-08 Konica Corp Water purifier for porous carbon electrode regenerating type and regeneration of the same
JPH10263542A (en) * 1997-03-24 1998-10-06 Yoshiya Okazaki Undersink type electrolytic water tidying device forming selectively alkaline ionized water and sterilizing water
JP2007515289A (en) * 2003-12-22 2007-06-14 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Electrolytic ballast water treatment apparatus and treatment method
JP2009000583A (en) * 2007-06-19 2009-01-08 Jfe Engineering Kk Ballast water treatment apparatus
JP2009274028A (en) * 2008-05-15 2009-11-26 Mhi Environment Engineering Co Ltd Sea water treating apparatus and method of treating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235361A (en) * 1997-02-26 1998-09-08 Konica Corp Water purifier for porous carbon electrode regenerating type and regeneration of the same
JPH10263542A (en) * 1997-03-24 1998-10-06 Yoshiya Okazaki Undersink type electrolytic water tidying device forming selectively alkaline ionized water and sterilizing water
JP2007515289A (en) * 2003-12-22 2007-06-14 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Electrolytic ballast water treatment apparatus and treatment method
JP2009000583A (en) * 2007-06-19 2009-01-08 Jfe Engineering Kk Ballast water treatment apparatus
JP2009274028A (en) * 2008-05-15 2009-11-26 Mhi Environment Engineering Co Ltd Sea water treating apparatus and method of treating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190600A1 (en) * 2012-06-21 2013-12-27 アタカ大機株式会社 Ballast water treatment device and operation method therefor
JP2016502476A (en) * 2012-10-23 2016-01-28 ソンポー インダストリイズ カンパニー リミテッドSunbo Industries Co.,Ltd Ship ballast water treatment system
JPWO2014064942A1 (en) * 2012-10-25 2016-09-08 パナソニックIpマネジメント株式会社 Ballast water treatment method and ballast water treatment apparatus used therefor
JP2014100643A (en) * 2012-11-19 2014-06-05 Uerushii:Kk Reservoir feeding device and method of medicinal solution, and ground water clarification processor and method
CN103351044A (en) * 2013-06-18 2013-10-16 浙江逸盛石化有限公司 Discharged wastewater heavy metal precipitation recovery device and method
WO2017110154A1 (en) * 2015-12-24 2017-06-29 栗田工業株式会社 Ballast water control device and method for controlling ballast water treatment system
JP2017113710A (en) * 2015-12-24 2017-06-29 栗田工業株式会社 Ballast water control device and control method of ballast water processing system

Similar Documents

Publication Publication Date Title
WO2012053224A1 (en) Ballast water treatment system and ballast water treatment method
KR20130135254A (en) Ballast water treatment system and ballast water treatment method
TWI504784B (en) Seawater electrolysis system and seawater electrolysis method
TWI782112B (en) Electrolytic biocide generating system for use on-board a watercraft
JP5791377B2 (en) Seawater electrolysis system and seawater electrolysis method
KR101923094B1 (en) Ballast water treatment system with a low temperature water plasma device
US20090145773A1 (en) Membrane Cycle Cleaning
JP2013039516A (en) Ballast water treatment system and ballast water treatment method
JP2012106224A (en) Ballast water control method and ballast water treatment system
JP2012020218A (en) Ballast water treatment system and ballast water treatment method
JP6210383B2 (en) Ballast water treatment method and ballast water treatment apparatus used therefor
JP5431208B2 (en) Ballast water treatment equipment
WO2007114198A1 (en) Method for treating ballast water by membrane using membrane module, and membrane treatment apparatus
JP2013193000A (en) Ballast water treating system and ballast water treating method
KR20110052330A (en) Advanced electrolysis system using alkaline metal salt and carboxylated polymer as enhancement additives for ballast water treatment
JP2019530564A (en) Ballast water treatment and neutralization
CN111517541A (en) Water treatment device
JP2009241040A (en) Method and apparatus for regenerating membrane for manufacturing ballast water
KR20110114931A (en) Advanced electrolysis system using ultrasonic effects as enhancement equipments for ballast water treatment
JP2012086200A (en) System and method for ballast water treatment
JP2009241042A (en) Method and apparatus for refreshing membrane for preparing ballast water
US9522829B2 (en) Liquid treatment method and liquid treatment device used therein
JP2012152695A (en) Electrolytic salt water sterilization method and electrolytic salt water sterilization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012825

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11834070

Country of ref document: EP

Kind code of ref document: A1