WO2012051936A1 - 一种基站设备 - Google Patents

一种基站设备 Download PDF

Info

Publication number
WO2012051936A1
WO2012051936A1 PCT/CN2011/080896 CN2011080896W WO2012051936A1 WO 2012051936 A1 WO2012051936 A1 WO 2012051936A1 CN 2011080896 W CN2011080896 W CN 2011080896W WO 2012051936 A1 WO2012051936 A1 WO 2012051936A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
uplink
frequency band
digital
downlink
Prior art date
Application number
PCT/CN2011/080896
Other languages
English (en)
French (fr)
Inventor
王大鹏
张大伟
曹汐
程广辉
Original Assignee
***通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信集团公司 filed Critical ***通信集团公司
Publication of WO2012051936A1 publication Critical patent/WO2012051936A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a base station device. Background technique
  • the existing mobile communication system can be divided into a Frequency Division Duplexing (FDD) system and a Time Division Duplexing (TDD) system according to the duplex mode, wherein the receiving channel and the transmitting of the FDD system
  • the channel uses different frequencies, and the receiving channel and the transmitting channel of the TDD system use the same frequency.
  • a typical TDD system base station has the same uplink and downlink frequency. If the transmitter and receiver use the same intermediate frequency, or both have zero intermediate frequency structure, the transmitter and receiver can use the same RF local oscillator to transmit and receive signals. Frequency conversion, as shown in Figure 1.
  • the TDD system base station can also use the single local oscillator switching structure, as shown in Figure 2, where DUC is a digital upconverter and DDC is a digital downconverter.
  • the uplink and downlink frequencies of a typical FDD system base station are different and spaced apart from each other.
  • the transmitter and receiver cannot use the same local oscillator to generate the frequency signal.
  • two different frequency RF local oscillators are used, as shown in Figure 3.
  • the TDD system and the FDD system will have adjacent frequency conditions.
  • the frequency band of the FDD system band7 is 2500 ⁇ 2570M (upstream) and 2620 ⁇ 2690M (downstream).
  • the frequency band of the TDD system band38 in the middle and lower frequency bands of the FDD system is 2570. ⁇ 2620M, the frequency bands of the above two systems are just close to the frequency.
  • a certain guard band needs to be reserved between the frequency bands of the TDD system and the FDD system, so that the respective front end filters (or duplexers) can provide sufficient protection by using the guard bands.
  • the present invention aims to provide a base station device, which can implement the application of the local oscillator scheme supporting the asymmetric TDD system, and can simultaneously support the traditional TDD and FDD base station systems.
  • the present invention uses the following technical solutions:
  • a base station apparatus includes a transmitter and a receiver, the transmitter including a digital upconverter, a digital to analog converter, a harmonic filter, and a mixer, the receiver including a digital down converter, analog to digital conversion a mixer, an anti-aliasing filter and a mixer, the mixer of the transmitter and the mixer of the receiver share a local oscillator, the digital down converter is a fixed intermediate frequency, and the digital up converter For variable intermediate frequency.
  • the technical solution proposed by the embodiment of the present invention has the following advantages: By applying the technical solution proposed by the embodiment of the present invention, not only the support for the asymmetric TDD system but also the common performance of one channel can be achieved.
  • the local oscillator circuit completes the frequency conversion of the uplink and downlink signals at different frequency points, and reduces the cost and complexity of the asymmetric TDD base station.
  • the local oscillator scheme proposed in the embodiment of the present invention is for the traditional symmetric TDD system. (When the receiving intermediate frequency is the same as the transmitting intermediate frequency) and the traditional FDD system (the receiving intermediate frequency and the transmitting intermediate frequency are fixed by the fixed uplink and downlink frequency difference) are applicable.
  • 1 is a schematic structural diagram of a typical TDD system base station in the prior art
  • 2 is a schematic structural diagram of a base station of a TDD system using a single local oscillator switching scheme in the prior art
  • FIG. 3 is a schematic structural diagram of a base station of a typical FDD system in the prior art
  • FIG. 4 is a schematic diagram of frequency profiles in a TDD system and an FDD system in the prior art
  • FIG. 5 is a schematic diagram of a typical uplink and downlink frequency band configuration according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of an optional uplink and downlink frequency band configuration according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a base station device according to an embodiment of the present invention. detailed description
  • the uplink frequency band and the downlink frequency band are identical.
  • a guard band is usually reserved between the TDD band and the FDD band to avoid uplink and downlink interference between different systems.
  • the protection band between the FDD uplink band and the TDD band is low.
  • End protection band, the protection band between the FDD downlink band and the TDD band is a high-end protection band.
  • the embodiment of the present invention provides a mobile communication system in which the uplink frequency band and the downlink frequency band are asymmetric.
  • the so-called uplink frequency band is symmetric with the downlink frequency band, which means the uplink frequency band. It has the same bandwidth as the downlink band and the center points coincide. Except for the symmetry of the uplink frequency band and the downlink frequency band, the situation is asymmetrical, that is, the bandwidth of the uplink frequency band and the downlink frequency band are not equal, and/or the center point of the uplink frequency band and the center point of the downlink frequency band do not coincide.
  • the start and end bands of the offset TDD system are not exactly the same, and the uplink and downlink bands overlap.
  • FIG. 5 shows an uplink and downlink frequency band configuration of a typical offset TDD system according to an embodiment of the present invention, wherein a TDD downlink frequency band (TDD DL of 5 in the figure) utilizes an original high-end protection band and an FDD downlink frequency band (FIG. 5).
  • the adjacent FDD DL) can coexist because there is no cross-slot interference between the two;
  • the TDD uplink band (TDD UL in Figure 5) utilizes the original low-end guard band and the FDD uplink band (FDD in Figure 5)
  • the UL is adjacent, and since there is no cross-slot interference between the two, it can coexist. Since the above-mentioned frequency band configuration mode only needs to reserve a guard band on one side, the spectrum utilization rate is improved.
  • the offset TDD also includes several other similar frequency allocation methods.
  • Figures 6 to 13 show several other similar spectrum allocation methods, among which:
  • the bandwidth of the uplink and downlink bands is still the same, but the intermediate frequency of the uplink frequency band is no longer aligned with the intermediate frequency of the downlink frequency band, but has an offset a, and the center point of the uplink frequency band and the center point of the downlink frequency band are not coincide.
  • the uplink and downlink frequency bands have different bandwidths, and the high frequency portion (right side) of the DL has an offset c relative to the UL, and the low frequency portion of the UL has an offset b with respect to the DL, and b is not equal to c. , and the center point of the uplink frequency band does not coincide with the center point of the downlink frequency band.
  • the bandwidth of the uplink and downlink bands is not equal, and the downlink band is extended (which can also be regarded as the contraction of the uplink band), and the center point of the uplink band coincides with the center point of the downlink band.
  • the bandwidth of the uplink and downlink bands is not equal, and the uplink frequency band is extended (it can also be regarded as the downlink frequency band shrinking), and the center point of the uplink frequency band does not coincide with the center point of the downlink frequency band.
  • the bandwidth of the uplink and downlink bands is not equal, the downlink frequency band is extended, and there is one discontinuity in the frequency occupied by the downlink frequency band.
  • the bandwidth of the uplink and downlink bands is equal, the uplink frequency band is extended, and there is one discontinuity in the frequency occupied by the uplink frequency band.
  • the bandwidth of the uplink and downlink bands is not equal, and there are two discontinuities in the frequency occupied by the downlink frequency band.
  • the bandwidth of the uplink and downlink bands is not equal, and each of the frequencies occupied by the uplink and downlink bands has one discontinuity, and the discontinuities are completely coincident.
  • the discontinuities in the frequencies occupied by the uplink and downlink bands may not completely coincide.
  • the frequency occupied by the line frequency band may also have no overlapping part, that is, the uplink frequency band and the downlink frequency band do not coincide, as shown in FIG.
  • the uplink and downlink frequency band configuration can be applied to the TDD system or to the FDD system. When applied to a TDD system, the time slot configuration of a typical TDD system is adopted.
  • the uplink and downlink transmissions must meet the time synchronization, and the widths of the uplink and downlink frequency bands are not required to be equal.
  • the uplink and downlink frequency bands must be equal in width. .
  • the uplink frequency band and the downlink frequency band of the mobile communication system in the embodiment of the present invention are asymmetric, whether it is a typical TDD system transceiver structure as shown in FIG. 1, or a typical FDD system transceiver shown in FIG.
  • the structure of the letter machine cannot support both TDD and FDD duplex modes.
  • the base station structure of the TDD system using the single local oscillator switching scheme shown in Figure 2 has too high requirements on the local oscillator performance, which increases the difficulty of design and application. Increased equipment costs.
  • the embodiments of the present invention provide a technical solution for implementing an asymmetric TDD system by using a single local oscillator that satisfies different uplink and downlink frequency points of an asymmetric TDD system and minimizes the cost and complexity of the base station.
  • the base station apparatus may include a transmitter 1 and a receiver 2.
  • the transmitter 1 includes a digital up converter (DUC) 11, a harmonic filter 12, and a mixer 13;
  • the receiver 2 includes a digital down converter (DDC) 21, an anti-aliasing filter 22, and a mixer 23;
  • the mixer 13 of the transmitter 1 and the mixer 23 of the receiver 2 share a local oscillator (LO) 3 , and both the transmitter 1 and the receiver 2 employ a digital intermediate frequency scheme, wherein the receiver 2 uses a fixed intermediate frequency , Transmitter 1 uses a variable IF frequency.
  • LO local oscillator
  • the difference between the variable intermediate frequency of the transmitter 1 and the fixed intermediate frequency of the receiver 2 is equal to The difference between the downlink frequency and the uplink frequency currently configured.
  • the system bandwidth is BWs (such as 50M), and the minimum bandwidth of the channel is BWc (such as 5M).
  • BWs such as 50M
  • BWc such as 5M
  • the transmitter 1 can be set with the variable IF frequency by the following settings.
  • the DAC output IF signal and harmonic filter satisfy the following conditions:
  • the passband bandwidth of the harmonic filter 12 it is necessary to set the passband bandwidth of the harmonic filter 12 to > 8 ⁇ , and ensure that the transmit intermediate frequency signal is within the passband when A f takes any value within the specified range, and at the same time, the DAC output harmonic is sufficient. Suppression; In order to satisfy this, the IF output IF frequency and sampling frequency should be carefully selected.
  • the receiver 2 uses a fixed intermediate frequency, which is specifically achieved by:
  • the anti-aliasing filter 22 in the receiver 2 uses an intermediate frequency filter with a fixed center frequency. , set its center frequency to frm.
  • the value of the difference between the downlink frequency and the uplink frequency currently configured by the system is smaller than the size of the system bandwidth.
  • the above technical solution realizes the function of a single local oscillator to support an asymmetric TDD system.
  • the letter system and can also support typical TDD systems and FDD systems, can flexibly support different duplex systems.
  • the modification complexity of the base station in the embodiment of the present invention is small, and the transformation difficulty is low.
  • implementing any of the products of the embodiments of the present invention does not necessarily require all of the advantages described above to be achieved at the same time.
  • the system bandwidth is 50M and the channel bandwidth is 10M.
  • the upstream center frequency of the asymmetric TDD system is 2575M, and the downlink center frequency is 2615M, which is 40M.
  • the transmitting intermediate frequency signal is located in the first Nyquist zone, and the transmitting harmonic filter can be a low pass filter with a passband cutoff frequency of 195M; It is a bandpass filter with a passband range of 145M to 195M, but it is difficult to realize such a high speed DAC.
  • the DAC sampling rate is 135M ⁇ 140M, the transmitting IF signal is in the third Nyquist zone, and the transmitting harmonic filter is a bandpass filter with a passband range of 145M ⁇ 195M.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a
  • the terminal device (which may be a cell phone, a personal computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Description

一种基站设备 本申请要求在 2010年 10月 19日提交中国专利局、申请号为 201010519612.3、发明名称为"一 种基站设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别是涉及一种基站设备。 背景技术
现有的移动通信***按照双工方式的不同,可以分为频分双工( Frequency Division Duplexing, FDD ) ***和时分双工 ( Time Division Duplexing, TDD ) ***, 其中, FDD***的接收通道和发射通道釆用不同的频率, TDD***的 接收通道和发射通道釆用相同的频率。
由于双工方式的不同, FDD***和 TDD***的收发信机设计存在较大的 差异。 典型的 TDD***基站的上下行频语相同, 如果发射机和接收机釆用相 同的中频频率, 或者都为零中频结构, 则发射机和接收机可使用相同的射频 本振对收发信号进行上下变频, 如图 1所示。
如果 TDD***基站釆用不同的中频频率时, 还可以釆用单本振切换的构 架, 如图 2所示, 其中, DUC为数字上变频器, DDC为数字下变频器。
典型的 FDD***基站的上下行频语不同 , 且相互间隔 , 发射机和接收机 不能使用相同本振发出的频率信号, 一般釆用两个不同频率的射频本振, 如 图 3所示。
TDD***和 FDD***会出现邻频的情况, 例如, FDD*** band7的频 段为 2500 ~ 2570M (上行 )和 2620 ~ 2690M (下行), 该 FDD***的上下行 频段中间的 TDD*** band38的频段为 2570 ~ 2620M, 上述两个***的频段 正好紧邻频。 为了实现 TDD***和 FDD***的共存共址要求, 在 TDD*** 和 FDD***的频段间需要预留一定的保护带,从而使得各自的前端滤波器(或 双工器) 能够利用保护带提供足够的带外抑制, 上述情况下的频谱示意图如 在实现本发明的过程中, 发明人发现现有技术至少存在如下问题: 典型的 TDD***收发信机和典型的 FDD***收发信机都无法同时支持 TDD和 FDD两种双工方式,使得基站收发信机无法在不同双工方式的***中 灵活应用。 并且, 当 TDD***与 FDD***混合部署时, 两***间的保护带 不能传送任何信息, 浪费了频谱资源, 如果保护带全部预留在 TTD频段, 将 会缩减 TDD基站前端滤波器的带宽, 降低了 TDD***的频谱利用率。 发明内容
本发明的目的在于提供一种基站设备, 可以实现支持非对称 TDD***的 本振方案的应用, 并同时可以支持传统的 TDD和 FDD基站***, 为此, 本 发明釆用如下技术方案:
一种基站设备, 包括发射机和接收机, 所述发射机中包括数字上行变频 器、 数模变换器、 谐波滤波器和混频器, 所述接收机包括数字下行变频器、 模数变换器、 抗混叠滤波器和混频器, 所述发射机的混频器和所述接收机的 混频器共用一个本振, 所述数字下行变频器为固定中频, 所述数字上行变频 器为可变中频。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例所提出的技术方案, 不但可以实现对非对称 TDD ***的支持, 并且仅釆用一路普通性能的本振电路即完成了对不同频点的上 下行信号的变频, 降低了非对称 TDD基站的成本和复杂度, 不仅如此, 本发 明实施例中所提出的本振方案对于传统对称型 TDD***(接收中频与发射中 频相同时)和传统 FDD***(接收中频与发射中频相隔固定的上下行频差) 均可适用。 附图说明
图 1为现有技术中的典型的 TDD***基站的结构示意图; 图 2 为现有技术中的应用单本振切换方案的 TDD ***基站的结构示意 图;
图 3为现有技术中的典型的 FDD***基站的结构示意图;
图 4为现有技术中的 TDD***和 FDD***邻频时的频语示意图; 图 5为本发明实施例中典型的上下行频段配置的示意图;
图 6为本发明实施例中一种可选的上下行频段配置的示意图;
图 7为本发明实施例中一种可选的上下行频段配置的示意图;
图 8为本发明实施例中一种可选的上下行频段配置的示意图;
图 9为本发明实施例中一种可选的上下行频段配置的示意图;
图 10为本发明实施例中一种可选的上下行频段配置的示意图;
图 11为本发明实施例中一种可选的上下行频段配置的示意图;
图 12为本发明实施例中一种可选的上下行频段配置的示意图;
图 13为本发明实施例中一种可选的上下行频段配置的示意图;
图 14为本发明实施例中一种可选的上下行频段配置的示意图;
图 15为本发明实施例的基站设备结构示意图。 具体实施方式
下面将结合本发明中的附图, 对本发明中的技术方案进行清楚、 完整的 描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施 例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的 前提下所获得的所有其他实施例, 都属于本发明保护的范围。
现有的 TDD***中, 上行频段和下行频段是完全相同的。 当 TDD*** 与 FDD***混合部署时, 通常在 TDD频段与 FDD频段之间预留保护带, 以 避免不同***之间的上下行干扰, 其中, FDD上行频段与 TDD频段之间的保 护带为低端保护带, FDD下行频段与 TDD频段之间的保护带为高端保护带。
为提高通信***的频谱利用率, 本发明实施例提出一种上行频段与下行 频段不对称的移动通信***。 所谓上行频段与下行频段对称, 是指上行频段 和下行频段的带宽相同, 且中心点重合。 除了上行频段与下行频段对称以外 的其他情况均为不对称, 即, 上行频段与下行频段的带宽不等, 和 /或上行频 段的中心点与下行频段的中心点不重合。
TDD ( offset TDD ) ***, 该 offset TDD***的上下行频段起止范围不完全相 同, 上下行频段有重叠。
图 5示出了本发明实施例提出的一种典型的 offset TDD***的上下行频 段配置,其中, TDD下行频段(图中 5的 TDD DL )利用原高端保护带与 FDD 下行频段(图 5中的 FDD DL )相邻, 由于两者之间不存在交叉时隙干扰, 因 而可以共存; TDD上行频段(图 5中的 TDD UL )利用原低端保护带与 FDD 上行频段(图 5中的 FDD UL )相邻, 由于两者之间也不存在交叉时隙干扰, 因而可以共存。 由于上述频段配置方式只需要在单侧预留保护带, 提高了频 谱利用率。
offset TDD还包括其他几种类似的频语分配方式, 图 6至图 13分别示出 了其他几种类似的频谱分配方式, 其中:
如图 6所示, 上下行频段的带宽仍然相同, 但是上行频段的中间频率与 下行频段的中间频率不再对齐, 而是具有偏移量 a, 上行频段的中心点与下行 频段的中心点不重合。
如图 7所示, 上下行频段带宽不等, 表现为 DL的高频部分(右侧)相对 于 UL具有偏移量 c, UL的低频部分相对于 DL具有偏移量 b, b不等于 c, 且上行频段的中心点与下行频段的中心点不重合。
如图 8所示, 上下行频段带宽不等, 下行频段扩展(也可看作上行频段 收缩), 且上行频段的中心点与下行频段的中心点重合。
如图 9所示, 上下行频段带宽不等, 上行频段扩展(也可看作下行频段 收缩), 且上行频段的中心点与下行频段的中心点不重合。
如图 10所示, 上下行频段带宽不等, 下行频段扩展, 下行频段所占用的 频率中有 1个间断点。 如图 11所示, 上下行频段带宽相等, 上行频段扩展, 上行频段所占用的 频率中有 1个间断点。
如图 12所示, 上下行频段带宽不等, 下行频段所占用的频率中有 2个间 断点。
如图 13所示, 上下行频段带宽不等, 上下行频段所占用的频率中各有 1 个间断点, 且间断点完全重合。 当然, 在本发明其他的实施方式中, 上下行 频段所占用的频率中的间断点也可以不完全重合。 行频段所占用的频率还可以没有重叠部分, 即上行频段和下行频段不重合, 如图 14所示。该上下行频段配置方式可应用于 TDD***,也可以应用于 FDD ***。 当应用于 TDD***时, 釆用典型的 TDD***的时隙配置方式, 上下 行传输需满足时间同步, 且上下行频段的宽度不要求相等; 当应用于 FDD系 统时, 上下行频段宽度必须相等。
针对本发明实施例中的移动通信***的上行频段与下行频段不对称的情 况, 无论是如图 1所示的典型的 TDD***收发信机结构, 还是如图 3所示的 典型的 FDD***收发信机结构,都无法同时支持 TDD和 FDD两种双工方式, 而且, 如图 2所示的应用单本振切换方案的 TDD***基站结构对本振性能要 求过高, 加大了设计应用难度, 提高了设备成本。
为此, 本发明实施例提供了一种满足非对称 TDD***不同的上下行频点 并尽量减少基站成本和复杂度的单本振实现非对称 TDD***的技术方案。
如图 15所示,本发明实施例提供的基站设备可包括发射机 1和接收机 2。 发射机 1中包括数字上行变频器(DUC ) 11、 谐波滤波器 12和混频器 13; 接 收机 2包括数字下行变频器 ( DDC ) 21、 抗混叠滤波器 22和混频器 23 ; 发射 机 1的混频器 13和接收机 2的混频器 23共用一个本振(LO ) 3 , 发射机 1 和接收机 2均釆用数字中频方案, 其中, 接收机 2釆用固定中频频率, 发射 机 1釆用可变中频频率。
其中, 发射机 1 的可变中频频率与接收机 2的固定中频频率之差等于系 统当前所配置的下行频率和上行频率之差。
结合具体的应用场景, 对上述技术方案说明如下:
假设在某一 TDD频段内, ***带宽为 BWs (如 50M ), 信道最小带宽为 BWc (如 5M )。 某运营商设置非对称 TDD***的上行中心频点为 fu, 下行中 心频点为 fd=fu+A f, 其中 abs ( A f) <BWs, 且 Af可正、 可负、 可变, 但对 于以给定***和频段, A f的符号确定。
在具体的实现过程中, 可以通过以下设定实现发射机 1 釆用可变中频频 率的设定, DAC输出中频信号和谐波滤波器满足以下条件:
( 1 )设置发射机 1 中的数字上行变频器的数字控制振荡器(Numerical Controlled Oscillator, NCO ), 使发射机 1中向谐波滤波器 12输出的中频信号 的中心频点与接收机 2 的固定中频频率之差等于***当前所配置的下行频率 和上行频率之差, 即使得数模变换器 (DAC ) 输出中频信号的中心频点 ftm=frm+A f。
( 2 )设置发射机 1 的谐波滤波器 12的通带带宽大于或等于***带宽, 且设置发射机 1所发射的中频信号都位于通带的范围内。
具体而言, 需要设定谐波滤波器 12通带带宽> 8\^, 且确保 A f取规定 范围内的任意值时发射中频信号都在通带以内, 同时对 DAC输出谐波有足够 的抑制; 为了满足此条, DAC输出中频频率和釆样频率需注意选取。
另一方面, 接收机 2釆用固定中频频率, 具体通过以下方式实现: 为了保证接收机 2的抗干扰性能, 接收机 2中的抗混叠滤波器 22釆用固 定中心频点的中频滤波器, 设其中心频点为 frm。
需要说明的是, 本振 3 所输出的本振频率为***当前所配置的下行频率 与接收机 2所釆用的固定中频频率之差, 即本振频率为 flo=fu-frm。
进一步的, ***当前所配置的下行频率与上行频率之差的数值大小小于 ***带宽的大小。
通过上述设定可以看出, 发射机 1所发射的中频信号和本振信号混频后, 其射频发射频率为: fd=ftm+flo= frm+ Δ f+fu-frm=fu+ Δ f ,
与运营商设置值相同, 因此, 上述的技术方案实现了单本振支持非对称 TDD***的功能。 信***, 并且还可支持典型的 TDD***和 FDD***, 即可灵活支持不同的 双工***。 相对于传统的技术方案而言, 本发明实施例对基站的改造复杂度 较小, 改造难度较低。 当然, 实施本发明的实施例的任一产品并不一定需要 同时达到以上所述的所有优点。
根据上述的处理过程, 进一步结合具体的应用场景, 对本发明实施例所 提出的技术方案进行进一步说明如下:
假设在 band38 ( 2570 - 2620M )内, ***带宽为 50M, 信道带宽为 10M, 非对称 TDD ***的上行中心频点为 2575M, 下行中心频点为 2615M, 相差 40M。
为了保证较好的接收性能, 假设接收机数字中频频率选择 150M, 则本振 频率(釆用低本振 ) flo=fu-frm =2575-150=2425M。 通过调整 DUC中的 NCO 使发射机数字中频频率 ftm=frm+ Δ f=150+40=190M, 则发射射频信号中心频 点 fd=ftm+flo=190+2425=2615M, 与期望值相同。
需要进一步指出的是, 如果 DAC釆样速率大于 400M或更大, 则发射中 频信号位于第一奈奎斯特区, 发射谐波滤波器可为低通滤波器, 通带截止频 率为 195M; 也可为带通滤波器, 通带范围为 145M ~ 195M, 但目前来看如此 高速的 DAC实现较难。 如果 DAC釆样速率为 135M ~ 140M, 则发射中频信 号位于第三奈奎斯特区, 发射谐波滤波器为带通滤波器, 通带范围为 145M ~ 195M。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述 进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的一 个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步拆 分成多个子模块。 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案 本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台终端 设备(可以是手机, 个人计算机, 服务器, 或者网络设备等)执行本发明各 个实施例所述的方法。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润 饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权 利 要 求
1、 一种基站设备, 包括发射机和接收机, 所述发射机中包括数字上行变 频器、 数模变换器、 谐波滤波器和混频器, 所述接收机包括数字下行变频器、 模数变换器、 抗混叠滤波器和混频器, 其特征在于, 所述发射机的混频器和 所述接收机的混频器共用一个本振, 所述数字下行变频器为固定中频, 所述 数字上行变频器为可变中频。
2、 如权利要求 1所述的基站设备, 其特征在于, 所述抗混叠滤波器为固 定中心频点的中频滤波器。
3、如权利要求 1所述的基站设备,其特征在于, 所述本振的振荡频率为: flo=fu-frm
其中, flo为所述本振的振荡频率, fu为***上行中心频点, frm为所述 抗混叠滤波器的中心频点。
4、 如权利要求 1所述的基站设备, 其特征在于, 发射机的可变中频频率 与接收机的固定中频频率之差等于***当前所配置的下行频率和上行频率之 差;
则所述数字上行变频器经数模变换器变换后的中频信号的中心频点为: ftm=frm+ A f
其中, ftm为所述数字上行变频器经数模变换器变换后的中频信号的中心 频点, frm为所述抗混叠滤波器的中心频点, △ f为***的下行频率和上行频 率之差。
5、 如权利要求 4所述的基站设备, 其特征在于, 所述谐波滤波器的通带 带宽不小于***带宽;
所述数模变换器输出的中频频率和釆样频率的设置保证***的下行频率 和上行频率之差取规定范围内的任意值时, 所述数模变换器输出的发射中频 信号都在所述谐波滤波器的通带内, 且对所述数模变换器的抑制符合规定要 求。
6、 如权利要求 1至 5任一项所述的基站设备, 其特征在于, 所述基站设 备应用于上行频段与下行频段不对称的通信***。
7、 如权利要求 6所述的基站设备, 其特征在于, 所述上行频段与下行频 段不对称的通信***的上行频段与下行频段的带宽不等, 和 /或上行频段的中 心点与下行频段的中心点不重合。
8、 如权利要求 6所述的基站设备, 其特征在于, 所述上行频段与下行频 段不对称的通信***的上行频段和 /或下行频段具有至少一个间断点。
9、 如权利要求 6所述的基站设备, 其特征在于, 上行频段与下行频段不 对称的通信***的上行频段和下行频段各具有一个间断点, 且间断点重合。
10、 如权利要求 6 所述的基站设备, 其特征在于, 所述上行频段与下行 频段不对称的通信***的上行频段和下行频段不重合。
PCT/CN2011/080896 2010-10-19 2011-10-18 一种基站设备 WO2012051936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010519612.3A CN102457858B (zh) 2010-10-19 2010-10-19 一种基站设备
CN201010519612.3 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012051936A1 true WO2012051936A1 (zh) 2012-04-26

Family

ID=45974700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080896 WO2012051936A1 (zh) 2010-10-19 2011-10-18 一种基站设备

Country Status (2)

Country Link
CN (1) CN102457858B (zh)
WO (1) WO2012051936A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932029A (zh) * 2012-09-20 2013-02-13 中国联合网络通信集团有限公司 Lte室内分布***及其双路变频设备和方法
CN104540155B (zh) * 2014-12-15 2018-11-16 大唐移动通信设备有限公司 一种基站频率调整方法和装置
EP3982546A4 (en) * 2019-06-29 2022-06-15 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR WIRELESS COMMUNICATION AND RADIO FREQUENCY SUBSYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1619970A (zh) * 2003-11-19 2005-05-25 华为技术有限公司 一种接收机及与所述接收机配套用的发射机
CN1922795A (zh) * 2004-03-15 2007-02-28 三星电子株式会社 多模式/多频带移动站及其操作方法
CN101064522A (zh) * 2006-04-24 2007-10-31 中兴通讯股份有限公司 一种用于时分双工***中的多功能收发信机
US20090252252A1 (en) * 2008-04-07 2009-10-08 Qualcomm Incorporated Highly linear embedded filtering passive mixer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040214603A1 (en) * 2001-09-17 2004-10-28 Manabu Tanabe Control station apparatus base station apparatus and optical transmission method
CN101155158A (zh) * 2006-09-25 2008-04-02 大唐移动通信设备有限公司 基带预失真装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1619970A (zh) * 2003-11-19 2005-05-25 华为技术有限公司 一种接收机及与所述接收机配套用的发射机
CN1922795A (zh) * 2004-03-15 2007-02-28 三星电子株式会社 多模式/多频带移动站及其操作方法
CN101064522A (zh) * 2006-04-24 2007-10-31 中兴通讯股份有限公司 一种用于时分双工***中的多功能收发信机
US20090252252A1 (en) * 2008-04-07 2009-10-08 Qualcomm Incorporated Highly linear embedded filtering passive mixer

Also Published As

Publication number Publication date
CN102457858B (zh) 2014-05-07
CN102457858A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US7848458B2 (en) Communication apparatus
US8098604B2 (en) WiMAX based point to multipoint system operating in frequencies below 1 GHz
US8036162B2 (en) Wireless communication system and wireless communication device
EP2540134B1 (en) Equipment for femtocell telecommunications system
JP2002111571A (ja) 無線中継器
JPH05122135A (ja) マイクロ基地局、センタ基地局および移動通信装置
CN111385079B (zh) 无线网络通信方法和终端设备
WO2021000076A1 (zh) 一种无线通信方法、装置及射频子***
WO2007112762A1 (en) Scheduling radio resources in a multi-carrier tdma mobile communication system
CN116707734A (zh) 一种探测参考信号的发送方法及相关装置
WO2012051936A1 (zh) 一种基站设备
CN108012320B (zh) 一种实现基站空口同步的方法、装置及***
US9998160B2 (en) Methods for avoiding inter-modulation distortion and communications apparatuses utilizing the same
CN105723786A (zh) 一种配置频率资源位置的方法和装置
CN102448148B (zh) 无线通信***以及在其中对载波进行时隙配置的方法
CN102457292B (zh) 一种终端设备
EP2790366B1 (en) Method and system for multi-carrier orthogonal frequency division multiplexing duplex transmission
CN103118425A (zh) 支持td-lte双通道传输的实现方法及有源微功率分布***
WO2023025158A1 (zh) 对讲中继基站
EP2640028B1 (en) Method, apparatus and system for transmitting communication signals
JP2005198077A (ja) 無線通信装置
CN102457991B (zh) 一种基站设备
WO2018106981A1 (en) Multi-protocol processor for mobile automotive networks
US20240106618A1 (en) Time Division Duplex (TDD) Network Repeater
WO2023245623A1 (en) Methods and apparatuses for uplink transmission in a full duplex system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 12.08.13

122 Ep: pct application non-entry in european phase

Ref document number: 11833842

Country of ref document: EP

Kind code of ref document: A1