WO2012050131A1 - 水電解処理装置 - Google Patents

水電解処理装置 Download PDF

Info

Publication number
WO2012050131A1
WO2012050131A1 PCT/JP2011/073432 JP2011073432W WO2012050131A1 WO 2012050131 A1 WO2012050131 A1 WO 2012050131A1 JP 2011073432 W JP2011073432 W JP 2011073432W WO 2012050131 A1 WO2012050131 A1 WO 2012050131A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion
cation
water
permeable membrane
column
Prior art date
Application number
PCT/JP2011/073432
Other languages
English (en)
French (fr)
Inventor
知範 大平
晋也 尾上
賢二 川嶋
Original Assignee
株式会社朋インターナショナル
株式会社トモ・ケミカル
株式会社カワシマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社朋インターナショナル, 株式会社トモ・ケミカル, 株式会社カワシマ filed Critical 株式会社朋インターナショナル
Priority to CN201180049474XA priority Critical patent/CN103168005A/zh
Priority to US13/877,198 priority patent/US20130206671A1/en
Priority to JP2012538696A priority patent/JPWO2012050131A1/ja
Publication of WO2012050131A1 publication Critical patent/WO2012050131A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed

Definitions

  • the present invention relates to a water electrolyzing apparatus that electrolyzes water containing ions to obtain fresh water and various ions.
  • various techniques for removing ions from treated water containing ions such as seawater, for example, and obtaining water such as drinking water have been studied.
  • various techniques of water electrolysis treatment have been developed for applying electric power to the water to be treated through the electrode, attracting ions to the electrode, and removing the ions from the water to be treated.
  • the technology of this water electrolysis treatment can remove ions arbitrarily according to the applied electric power, so the purity of water after treatment can be increased, and the electrolysis of water makes it possible to use electrolyzed water and ion components. It attracts attention because it can obtain certain substances (in the case of seawater, sodium, chlorine, sodium chloride and hypochlorous acid having a bactericidal action, etc.).
  • an electrodialysis method for removing ions from water to be treated by concentrating the ions attracted to the electrode through a cation exchange membrane and an anion exchange membrane is adopted in a conventional plant There is.
  • Patent Document 1 discloses an electrodialysis apparatus to which a direct current or a direct current voltage can be applied by a direct current stabilized power supply.
  • a cation exchange membrane and an anion exchange membrane are alternately provided between the anode electrode and the cathode electrode of the electrodialysis apparatus.
  • sodium ions, potassium ions, and chloride ions are recovered from seawater to be treated, and the desalting chamber in which the concentration thereof is decreased; sodium ions, potassium ions, and chlorine
  • a laminated structure of at least two or more chambers is provided, which is divided into a concentration chamber where ions are collected and concentrated.
  • At least one electrode chamber interposed between the cation exchange membranes is provided on the anode side, and at least one electrode chamber interposed between the anion exchange membranes is provided on the cathode side.
  • This electrodialysis apparatus is intended to obtain concentrated ions and pure water by utilizing the fact that ions are concentrated in a concentration chamber near the electrodes and ions are removed from the desalting chamber near the central part. is there.
  • seawater to be treated alternately passes through the anion exchange membrane and the cation exchange membrane and is concentrated. Locations where the treated water approaches neutrality occur in the device. Since precipitation of salts and impurities contained in water is likely to occur at the location, clogging and staining of the ion exchange membrane and breakage of the ion exchange membrane due to an increase in pressure of seawater due to them may occur. There is a problem that such damage and leakage of the ion exchange membrane occur and the purity of the pure water is lowered, and maintenance such as replacement of the expensive ion exchange membrane is frequently required, and the maintenance cost becomes expensive. . Furthermore, since maintenance is performed by removing the plate-like and alternately filled ion exchange membrane, it is very difficult and time-consuming, and the maintenance work itself becomes the cause of damage to the permeable membrane and the device. It was
  • an object of the present invention is to provide a water electrolytic treatment apparatus which can stably produce high-purity water with less contamination and breakage.
  • Another object of the present invention is to provide a water electrolysis apparatus which is easy to manufacture, handle, remove and replace, and can be manufactured and maintained inexpensively.
  • the water electrolytic treatment apparatus comprises a treatment vessel, at least one anion column having a cylindrical anion permeable membrane provided in the treatment vessel, and a cylindrical shape provided in the treatment vessel. And at least one cation cylinder having a cation permeable membrane, an anode provided along the cylindrical axial direction inside the cylindrical shape of the anion permeable membrane, and a cylindrical inside of the cylindrical shape of the cation permeable membrane
  • the treated water stored in the treatment vessel is disposed along the axial direction of at least one anion cylinder and at least one cation cylinder in the treatment vessel.
  • An ion-concentrated water obtained by concentrating ions in at least one anion column and at least one cation column, which is configured to be able to flow, is obtained, and pure water is obtained in the processing tank.
  • the anions contained in the water to be treated in the treatment tank permeate through the anion-permeable membrane and are concentrated in at least one anion column, and the cations permeate the cation-permeable membrane to at least As it is concentrated in one cation column, the water to be treated is obtained as pure water by removing anions and cations.
  • Anion concentrated water in which anions and cations are concentrated is obtained in the anion column and the cation column, respectively.
  • anion permeable membrane and the cation permeable membrane are cylindrical, they can be made into an anion cylinder and a cation cylinder having a large surface area and a large ion permeability, and manufacture is also easy.
  • the anion and cation cylinders having cylindrical permeable membranes are easy to handle and easy to remove and replace, so it is easy to exchange concentrated ion concentrated water in the anion and cation cylinders. High safety and ease of maintenance. Since the anion-permeable membrane and the cation-permeable membrane are cylindrical and have no corners, sides, or seams to be sides, contamination, contamination, membrane breakage, wrinkles, and seam leakage are less likely to occur.
  • the permeating amount of ions is equal everywhere in the cylindrical shape, the same osmotic pressure is applied, so that it is difficult to make a difference in permeating performance depending on the location, and it is easy to adjust the permeating amount of ions by the surface area.
  • the permeation amount of anions per unit time of the anion-permeable membrane be equal to the permeation amount of cations per unit time of the cation-permeable membrane. Since equal amounts of anions and cations pass through the respective permeable membranes, equal amounts of anions and cations are removed from the water to be treated, and treated water of high purity can be obtained.
  • a single salt recovery tank connected to an opening provided at at least one of at least one anion column and at least one end of the cation column to collect ion-concentrated water.
  • the ions contained in the water to be treated can be collected in one tank, the system is simplified, the maintenance is simplified and the cost is reduced.
  • Salt can be recovered because anions and cations are recovered in the same tank, and in particular when equal amounts of ions are recovered in the anion and cation columns, the amount of liquid in the salt recovery tank is equal.
  • the salt solution contains cations and anions, and since it is a neutral solution, handling is simple, maintenance and recovery costs are low, and salts can be easily recovered.
  • the components to be concentrated in the anion column and the cation column can be recovered, processed or used, respectively.
  • At least one anion cylinder and at least one cation cylinder respectively hold at least both ends of the anion permeable membrane and the cation permeable membrane at least both ends, and at least a part of the cylindrical side faces the water to be treated
  • a sealing member configured to be configured such that at least one anion cylinder and at least one cation cylinder can be detachably held by fitting a part of the sealing member to the opening.
  • the anion cylinder and the cation cylinder can be particularly easily replaced via the sealing member, and the maintenance does not require labor and cost.
  • At least one anion cylinder or at least one cation cylinder is provided with a member that can be screwed with the sealing member at both ends of the anion permeable membrane or the cylinder of the cation permeable membrane. Since the anion or cation cylinder is assembled in a cartridge type by screwing, it is easy to replace the cathode or anode, anion permeable membrane or cation permeable membrane, and it is easy to cope with dirt and abrasion, and also at the time of replacement. There are few accidents of dirt and wear.
  • the at least one anion column or the at least one cation column is provided on the bottom surface with a fixing portion which can be screwed or fitted to the treatment vessel. Being able to be fixed to the treatment tank by screwing or fitting, the attachment and detachment are easy.
  • the bottom surface of the at least one anion column and the at least one cation column is fixed to the bottom surface of the processing tank.
  • the anion and cation cylinders can be efficiently arranged on the bottom, and high processing efficiency can be obtained.
  • the at least one anion cylinder and the at least one cation cylinder are a plurality of anion cylinders and a plurality of cation cylinders, and the plurality of anion cylinders and the plurality of cation cylinders are arranged so as to cover a part of the bottom surface of the treatment tank Is preferred. Since the plurality of anion cylinders and cation cylinders can be arranged efficiently and easily so as to be the largest number per volume of the treatment tank, the treatment efficiency increases and maintenance is easy to perform.
  • the cathode or the anode has a cylindrical shape with an open lower end, and at least one anion column or at least one cation column is a means for supplying ion-concentrated water from the top of the cylinder, a cation-permeable membrane or an anion It is preferable to have a means for recovering from the upper end of the ion permeable membrane.
  • ion concentrated water is supplied from the upper end of the cylinder of the cathode or anode, the ion concentrated water flows from the upper end to the lower end of the cathode or anode and then from the lower end to the upper end of the cation permeable membrane or the anion permeable membrane. Or it is recovered from the upper end of the anion permeable membrane. Since both supply and recovery of ion concentrated water can be performed from the upper end of the anion column or cation column, the configuration of the device is simplified and space is not taken.
  • the anions contained in the water to be treated in the treatment tank permeate through the anion permeable membrane and are concentrated in at least one anion column, and the cations are cation permeable. Since the water permeates through the membrane and is concentrated in at least one cation column, the water to be treated is obtained as pure water by removing anions and cations. Anion concentrated water in which anions and cations are concentrated is obtained in the anion column and the cation column, respectively.
  • anion permeable membrane and the cation permeable membrane are cylindrical, they can be made into an anion cylinder and a cation cylinder having a large surface area and a large ion permeability, and manufacture is also easy.
  • the anion and cation cylinders having cylindrical permeable membranes are easy to handle and easy to remove and replace, so it is easy to exchange concentrated ion concentrated water in the anion and cation cylinders. High safety and ease of maintenance. Since the anion-permeable membrane and the cation-permeable membrane are cylindrical and have no corners, sides, or seams to be sides, contamination, contamination, membrane breakage, wrinkles, and seam leakage are less likely to occur.
  • the permeating amount of ions is equal everywhere in the cylindrical shape, the same osmotic pressure is applied, so that it is difficult to make a difference in permeating performance depending on the location, and the permeating amount of ions is easily adjusted by the surface area. There are also few occurrences of breakage and wrinkles due to the pressure difference at each location of the anion permeable membrane and the cation permeable membrane. From these effects, it can be used without maintenance for a long time.
  • FIG. 1 is a partially broken perspective view showing a water electrolytic treatment apparatus according to a first embodiment of the present invention.
  • the water electrolytic treatment apparatus 1 includes a treatment tank 2, an anion cylinder 3 and a cation cylinder 4 each formed as a cartridge unit, and an anion collection tank 9a and a cation collection tank 9b as a salt collection tank.
  • the treatment tank 2 is a tank capable of storing the water 20 to be treated.
  • the treatment tank 2 is cylindrical and includes an inlet 21 and an outlet 22.
  • the water 20 to be treated is supplied from the inlet 21 by a pump (not shown) and discharged from the outlet 22. It is configured to be distributed.
  • water containing impurities such as seawater, river water, natural water such as lake water or mineral water, drainage such as industrial drainage, or water in which ions such as industrial water or tap water remain is used be able to.
  • the water to be treated 20 is water such as seawater containing sodium chloride.
  • the processing tank 2 is provided with openings 23 and 24 through which a cartridge unit consisting of an anion cylinder 3 and a cation cylinder 4 can be inserted and fitted and fixed.
  • the openings 23 and 24 are circularly bored on the upper surface of the processing tank 2.
  • the anion cylinder 3 and the cation cylinder 4 are respectively a cylindrical anion-permeable membrane 5 and a cation-permeable membrane 6 having seamless smooth surfaces, and these cylindrical anion-permeable membranes 5 and 6 And sealing members 30a and 30b for sealing the openings at both ends of the lens.
  • the anion permeable membrane 5 and the cation permeable membrane 6 are filters which selectively transmit anions and cations, respectively.
  • each of the anion-permeable membrane 5 and the cation-permeable membrane 6 uses a filter made of a constituent material provided with an ion exchange group in polyolefin, styrene or vinylbenzene, etc., and has an outer diameter of 60 mm and a length Although it is configured in a cylindrical shape of 130 mm, the dimensions are preferably determined according to the relationship between the ion transmission amount and the surface area described later, and the present invention is not limited to this value.
  • the anion permeable membrane 5 and the cation permeable membrane 6 are such that the permeation amount of anions per unit time of the anion permeation membrane 5 and the cation permeation amount per unit time of the cation permeation membrane 6 are equal. Is configured. Specifically, the unit time and the mass (g / cm 2 ⁇ min) of the ion recovered per unit area of the membrane are determined, and the product of the mass of the ion and the surface area (cm 2 ) is equal. The surface area of each of the ion permeable membrane 5 and the cation permeable membrane 6 is adjusted.
  • the mass of the ions collected per each of the anion cylinder 3 and the cation cylinder 4 is experimentally obtained, and the ion transmission amount is adjusted to be equal depending on the number of the anion cylinder 3 and the cation cylinder 4 installed. ing.
  • the surface areas of the respective membranes are also substantially equal.
  • An anode 7 extending along the axial direction is provided inside the cylindrical anion-permeable membrane 5, and a cathode 8 extending along the axial direction is provided inside the cylindrical cation-permeable membrane 6.
  • the constituent materials of the anode 7 and the cathode 8 are not particularly limited as long as the material to be treated 20 can be easily energized, and various metals and carbon having conductivity, or various coatings for preventing corrosion and adhesion of impurities You can use the one that you In the present embodiment, the anode 7 is mainly composed of iridium oxide (IrO 2 ) and the cathode 8 is mainly composed of titanium (Ti), and two plate-like electrodes are provided adjacent to each other in a V shape.
  • IrO 2 iridium oxide
  • Ti titanium
  • the total area is 120 mm ⁇ 50 mm, and the effective area is about 1 square dm.
  • the anode 7 and the cathode 8 are connected to a power source (not shown) through the conducting wires 51 and 61, respectively, and can be energized.
  • FIG. 2 (a) is a perspective view of the anion cylinder 3 and FIG. 2 (b) is a cross-sectional view of the anion cylinder 3 taken along line AA.
  • the anion cylinder 3 includes sealing members 30 a and 30 b that respectively seal the openings at both ends of the cylindrical anion permeable membrane 5, and is formed into a cartridge unit.
  • the sealing members 30a and 30b are short two-step cylindrical members made of resin and are respectively fitted to the upper and lower ends of the anion-permeable membrane 5 to seal the openings thereof.
  • the sealing member is configured to be sealed.
  • the sealing member 30a has a main body 31a having an inner diameter larger than the outer diameter of the anion permeable membrane 5, a connecting portion 33a provided at the upper end of the main body 31a and having an anion cylinder outlet 32a, and an anion permeable membrane at the lower end of the main body 31a. And a fitting portion 34a having an outer diameter substantially equal to the inner diameter of the fifth portion.
  • the fitting portion 34 a is inserted into the opening of the anion permeable membrane 5 and fitted therein. The opening is hermetically sealed by tightening the outer periphery of the anion-permeable membrane 5 in this portion with a ring-shaped tightening member 35a having elasticity such as rubber or resin.
  • the main body 31b, the anion cylinder inlet 32b, the connection portion 33b, the fitting portion 34b, and the tightening member 35b in the sealing member 30b for sealing the opening at the lower end of the anion permeable membrane 5 have the same structure.
  • a cartridge unit in which the upper and lower ends of the anion-permeable membrane 5 are sealed can be obtained.
  • Pipes 37 and 36 are connected to the anion cylinder inlet 32 b and the anion cylinder outlet 32 a, respectively.
  • a conductive wire 51 electrically connected to the anode 7 is sealingly inserted into the connection portion 33a.
  • the anode 7 is supported by the connection portions 33 a and 33 b inside the anion permeable membrane 5.
  • the cation cylinder 4 is also made into a cartridge unit by the same structure as this anion cylinder 3.
  • the anion cylinder 3 and the cation cylinder 4 formed into the cartridge unit are fitted and fixed to the openings 23 and 24 of the processing tank 2.
  • these cartridge units are detachably held in the openings 23 and 24 by the elasticity of the resin that is the constituent material of the sealing member 30 a of the anion cylinder 3 and the sealing member 40 a of the cation cylinder 4.
  • the anion recovery tank 9a is connected to the anion cylinder inlet 31 and the anion cylinder outlet 32 by pipes 37 and 36, and the cation recovery tank 9b is connected to the cation cylinder inlet 41 and the cation cylinder outlet 42 by pipes 39 and 38, respectively. There is.
  • the pipes 37 and 39 can be circulated by the operation of a pump (not shown) provided in the anion recovery tank 9a and the cation recovery tank 9b and the opening and closing of the valves 90a and 90b.
  • the anions contained in the water to be treated 20 are positive ions to the anode 7 and positive ions are It is drawn to the cathode 8.
  • the anion-permeable membrane 5 transmits only anions
  • the anions are concentrated in the anion column 3.
  • the cation-permeable membrane 6 transmits only cations, the cations are concentrated in the cation column 4.
  • anions and cations are removed from the water 20 to be treated.
  • the water to be treated 20 flows from the inflow port 21 toward the outflow port 22, and extends in the longitudinal direction of the anode 7 and the cathode 8 arranged along the axial direction of the anion cylinder 3 and the cation cylinder 4. As it flows, the ion content decreases as it flows. When the water to be treated 20 is discharged from the outlet 22, it is pure water with the lowest ion content.
  • the ion concentrated waters 91 and 92 concentrated in the anion column 3 and the cation column 4 are collected in the anion collection tank 9a and the cation collection tank 9b through the pipes 36 and 38, respectively.
  • chloride ions are collected in the anion collection tank 9a
  • sodium ions are collected in the cation collection tank 9b.
  • valves 90a and 90b are closed, and only when the amount of ions in anion column 3 and cation column 4 increases, pump and valves 90a and 90b You may operate it.
  • the anion cylinder 3 and the cation cylinder 4 are formed into a cartridge unit, attachment and removal to and from the processing layer 2 are easy. Therefore, breakage at the time of exchange of the member provided with the anion permeable membrane 5 and the cation permeable membrane 6 is small, and maintenance is easy. Therefore, installation costs and maintenance costs can be kept low. Due to the ease of installation and maintenance, the water electrolytic processing apparatus of the present embodiment can be easily applied to various places and purposes, and used for electrodeposition coating of automobiles, construction materials and home appliances, demineralization and concentration Can.
  • the anode 7 and the cathode 8 are disposed in the anion column 3 and the cation column 4 so as to form a V-shape, the anode 7 and the cathode 8 are disposed parallel to each other as compared with each other. Thus, the surface area of the electrode can be increased.
  • two or more sets of the anion cylinder 3 and the cation cylinder 4 can be provided.
  • the total number of surface areas of the anion permeable membrane 5 and the cation permeable membrane 6 is increased by increasing the number of the anion cylinders 3 and the cation cylinders 4, the amount of ions which can permeate the anion permeable membrane 5 and the cation permeable membrane 6
  • the amount of the salt concentrates 91 and 92 that can be concentrated in the anion column 3 and the cation column 4 increases, the effect of removing ions is enhanced.
  • the anion recovery tank 9a, the cation recovery tank 9b, and the pipes 36 to 39 can be omitted. Since the anion cylinder 3 and the cation cylinder 4 are detachable from the processing tank 2, the anion cylinder 3 and the cation cylinder 4 can be removed periodically to exchange the ion concentrates 91 and 92 inside the cylinder shape. The structure of the device is simplified.
  • the shapes of the anode 7 and the cathode 8 may be any other shape. For example, even if the anode 7 and the cathode 8 are cylindrical smaller in diameter than the cylindrical form of the anion permeable membrane 5 or the cation permeable membrane 6, they may be inserted into the anion permeable membrane 5 or the cation permeable membrane 6. Good.
  • the shape of the cathode 7 or the anode 8 may be another shape, for example, a cylindrical shape or an X-shape within a range that can be accommodated in the diameters of the anion cylinder 3 and the cation cylinder 4.
  • the shape of the sealing members 30a, 30b, 40a and 40b may be any other shape.
  • the sealing members 30a, 30b, 40a, and 40b are made of resin as a constituent material and have a cylindrical shape in which the side surface is formed in a net shape or a lattice shape as a form in which only a part of the anion permeable membrane 5 or the cation permeable membrane 6 is exposed.
  • the anion permeable membrane 5 or the cation permeable membrane 6 may be inserted into the inside of the cylinder. In this case, since the anion permeable membrane 5 and the cation permeable membrane 6 are protected by the sealing members 30a, 30b, 40a and 40b, there is little damage.
  • the water electrolyzing apparatus of the present embodiment can be used for processing for removing heavy metals from water and recovery of heavy metals for reuse.
  • hydrogen ions are generated by electrolysis, and the hydrogen ions have the function of reducing chemical substances.
  • substances that may affect the human body such as MCP (monochloropropanediol) and DCP (dichloropropanediol), which may be generated by hydrolysis of proteins or high heat treatment of fats and oils, are degraded by this reduction action.
  • FIG. 3 is a partially broken perspective view showing a water electrolytic treatment apparatus according to a second embodiment of the present invention.
  • the water electrolytic treatment apparatus 1A is provided with a single salt recovery tank 9c connected to the ends of the anion cylinder 3 and the cation cylinder 4 by the pipes 36b and 37b.
  • the description of elements having the same configuration and operation as those of the one embodiment described above will be omitted.
  • the ion concentrates 93 of the anion cylinder 3 and the cation cylinder 4 are collected in a single salt collection tank 9c.
  • the permeation amount of anions per unit time of the anion permeable membrane 5 and the permeation amount of cations per unit time of the cation permeation membrane 6 are equal, and the ion concentrate 93 has equal amounts of anions and cations.
  • the salt recovery tank 9c contains equal amounts of anions and cations.
  • equal amounts of chloride ion and sodium ion are contained, so the ion concentrate 93 recovered in the salt recovery tank 9c is a salt solution.
  • the salt solution is neutral in pH and has little influence on the human body and the environment in handling, so transportation and disposal are easy. Salt can also be recovered from the saline solution.
  • the configurations of the anion permeable membrane and the cation permeable membrane can be changed according to the ion value contained in the water to be treated.
  • the ion contained in the water to be treated is Na 2 CO 3
  • the cation permeable membrane may have a surface area twice as large as that of the anion permeable membrane, or may be provided with two cation cylinders.
  • the water to be treated is electrolytically produced 1 cation to 2 anions, but twice the amount of the cation is concentrated in the cation column, so the purity of the water to be treated from which ions are removed In the salt recovery tank, it is possible to recover neutral concentrated water containing Na 2 CO 3 salt and salts.
  • FIG. 4 is (a) a perspective view and (b) an exploded view showing an anion column according to a third embodiment of the present invention
  • FIG. 5 is a side sectional view showing the function of the anion column in FIG.
  • the cylindrical anode 7A is inserted through the cylindrical anion permeable membrane 5, and the both ends of the anion permeable membrane 5 are hermetically sealed by the pair of cylindrical main bodies 31c and 31d. It will be done.
  • the anode 7A is fitted to one of the pair of main bodies 31c and 31d.
  • the anode 7A is cylindrical and has a liquid inlet 37c welded to one end.
  • the liquid inlet 37c has a cylindrical shape smaller in diameter than the anode 7A, and has a screw thread cut.
  • a bottom spacer 37e made of resin is fitted at the other end of the anode 7A.
  • the bottom spacer 37e has a hollow mushroom shape, and the cord portion has an inner diameter substantially the same as the inner diameter of the anode 7A, and can be fitted to the anode 7A.
  • the umbrella portion is provided with a through hole, and the hollow portion communicates with the outside.
  • An end spacer 37f is fitted in the liquid inlet 37c.
  • the end spacer 37f is made of vinyl chloride as a constituent material, and has an inner diameter substantially the same as the outer diameter of the liquid inlet 37c.
  • the anode 7A is inserted into the insulating net 70.
  • the insulation net 70 is a mesh-like cylinder made of polypropylene, and its inner diameter is slightly larger than that of the anode 7A, and its length is slightly shorter than that of the anode 7A.
  • the main body 31c is inserted into the liquid inlet 37c.
  • the main body 31c has a cylindrical shape with an inner diameter larger than the outer diameter of the anode 7A, and an end portion closing one end of the cylinder includes an insertion hole through which the liquid inlet 37c can be inserted.
  • the liquid inlet 37c is inserted into the insertion hole, and the nut 37d is tightened to the screw thread of the liquid inlet 37c, thereby clamping the main body 31c between the anode 7A and the end spacer 37f.
  • the end closing one end in the cylinder also connects the space 24 in the cylinder to the pipe 36 through the communication hole.
  • a conductive wire 51 is electrically connected to one of the threads of the liquid inlet 37c. In this embodiment, although it is soldered, it may only be wound so as to be easily disassembled again.
  • the cylindrical end of the liquid inlet 37 c is connected to a pipe 37 which is an inlet of the ion concentrated water 91.
  • the other main body 31d is cylindrical, and one end of the cylinder has an inner diameter larger than that of the cylinder of the anode 7A, and includes a main threaded portion 30f having a smaller radius and a thread cut than the other portion.
  • the other of the ends of the cylinder is closed and provided with a fastening portion 36f which is a threaded projecting end.
  • the fixing portion 36f can fix the anion cylinder 3A by screwing to a member in which the screw hole is cut, and in the present embodiment, the screw hole is formed in the bottom of the processing tank 2 and fixed. It can be fixed relative to the tank 2.
  • the anion-permeable membrane 5 is cylindrical and is clamped at both ends by sealing members 30c and 30d.
  • the sealing members 30c and 30d are ring-shaped, and clamp the anion-permeable membrane 5 in a watertight manner through a ring-shaped tightening member 35c made of rubber as a constituent material at substantially the middle of the inner diameter.
  • Sealed screwing portions 30e and 30f are formed by cutting a screw thread that can be fitted to the screw thread of the main body screwing portion 31e.
  • the anode 7A When assembling this anion cylinder 3A, as shown in FIG. 4 (b), the anode 7A is inserted through the insulating net 70 and the anion permeable membrane 5, and the main screw 31e of the main body 31c and the sealing screw Screw the mating portion 30e. The other end of the anode 7A is also inserted into the other main body 31d, and the main body screwing portion 31f and the sealing screwing portion 30f are screwed together. The bottom spacer 37e of the anode 7A abuts on the closed end of the body 31d.
  • the ion concentrated water 91 flows from the liquid inlet 37c to the anion column 3A, the ion concentrated water 91 flows through the space 23 in the cylindrical anode 7A and then the lower end of the anode 7A.
  • the anions of the treated water 20 (FIGS. 1 and 3) outside the anion column 3A move to the anode 7A side by the charge of the anode 7A, and permeate the anion permeable membrane 5. Then, the anions are concentrated to ion-concentrated water 91 passing through the space 24.
  • the cation column 4 also has the same configuration as that of the anion column except that the cathode 8 and the cation-permeable membrane 6 are used.
  • the liquid inlet 37c and the pipe 36 are disposed at one end of the anion column 3A, and the inflow and discharge of the ion concentrated water 91 can be performed from one end.
  • the anion column 3A since the anode 7A and the anion exchange membrane 5 are assembled in a cartridge type by screwing, exchange of the anode 7A and the anion permeable membrane 5 is easy.
  • the attachment and detachment are easy. By these, it is easy to cope with dirt and wear, and there are few dirt and wear accidents at the time of replacement. Water of high purity can be produced and maintenance is easy.
  • the fixing portion 36f may have a structure in which it can be fitted by means of a wedge shape or elasticity of a rubber or the like other than screwing.
  • the outer diameter of the main body 37d is a fixed portion 36f, and a cylindrical fitting member having an inner diameter substantially the same as the outer diameter of the main body 37d is provided at the bottom of the processing tank 2
  • the fitting of the anion tube 3A to the processing tank 2 may be possible by fitting.
  • the main body 37d can be easily removed by the elasticity of the fitting member, and maintenance is simplified.
  • FIG. 6 is a partially broken perspective view showing a processing tank according to a fourth embodiment of the present invention.
  • approximately the same number of treatment tanks 2A as the anion cylinders 3A and the cation cylinders 4A are placed vertically so that the bottom surfaces of the respective cylinders cover the substantially entire bottom surface of the processing tank 2A.
  • the anion cylinder 3A and the cation cylinder 4A are the same as those described in the third embodiment, and the other configurations are the same as those in the first embodiment.
  • eight anion cylinders 3A, eight cation cylinders 4A, and a total of 16 cylinders are disposed, and the respective electrodes are connected in parallel and connected to the power supply.
  • the anion cylinder 3A and the cation cylinder 4A are screwed together by a fixing portion 31g in a screw hole 2b bored in the bottom of the processing tank 2A.
  • the amount by which the anion cylinder 3A and the cation cylinder 4A are installed is maximum with respect to the bottom area of the processing tank 2A, and the effect of removing ions is enhanced.
  • Other configurations and effects are the same as those of the embodiment shown in FIG.
  • the present invention is useful for the production of household water such as drinking water and industrial water, treatment of waste water for various household water and various industries, and recovery of water-containing substances by electrolysis, and can be applied to both large scale and small scale. It is useful for a wide range of fields that require water, and can contribute not only to life and industry but also to environmental problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

汚れや破損が生じにくく、純度の高い水を安定して製造でき、取り扱い、取り外しや交換が容易で、安価に製造、維持できる水電解処理装置を提供する。水電解処理装置は、処理槽と、この処理槽内に備えられた円筒形の陰イオン透過膜を有するアニオン筒と、この処理槽内に備えられた円筒形の陽イオン透過膜を有するカチオン筒と、陰イオン透過膜の円筒形の内側に円筒形の軸方向に沿って備えられた陽極と、陽イオン透過膜の円筒形の内側に円筒形の軸方向に沿って備えられた陰極とを備え、処理槽内に貯水された被処理水は、処理槽内のアニオン筒及びカチオン筒の円筒形の軸方向に沿って流通可能に構成され、アニオン筒及びカチオン筒内にイオンを濃縮したイオン濃縮水を得ると共に被処理槽内に純水を得る。

Description

水電解処理装置
 本発明は、イオンを含有する水を電解し、淡水及び各種イオンを得る水電解処理装置に関する。
 従来、例えば海水などのイオンを含む被処理水からイオンを除去し、飲料水などの水を得る技術が各種検討されている。そうした技術のうち、被処理水に対して電極を介して電力を印加し、電極にイオンを引き寄せて、被処理水からイオンを除去する水電解処理の技術が各種開発されている。この水電解処理の技術は、印加する電力に応じてイオンを任意に除去することができるので、処理後の水の純度を高くすることができ、水の電解によって電解水や、イオンの成分である物質(海水の場合は、ナトリウム、塩素、食塩及び殺菌作用を有する次亜塩素酸等)を得ることができるため、注目されている。水電解処理の技術のうち、電極に引き寄せられたイオンを陽イオン交換膜及び陰イオン交換膜を介して濃縮することで被処理水からイオンを除去する電気透析法が従来のプラントに採用されている。
 特許文献1には、直流安定化電源によって直流電流又は直流電圧が印加できる電気透析装置が開示されている。この電気透析装置の陽極側電極と陰極側電極との間には、陽イオン交換膜及び陰イオン交換膜が交互に設けられている。これら陽イオン交換膜及び陰イオン交換膜の間に、処理対象となる海水からナトリウムイオン、カリウムイオン、塩素イオンが回収され、これらの濃度が低下する脱塩室と、ナトリウムイオン、カリウムイオン、塩素イオンが回収されて濃縮される濃縮室とに分かれている、少なくとも2室以上の積層構造が設けられている。また、陽極側には陽イオン交換膜に挟まれた少なくとも一つの極液室と、陰極側には陰イオン交換膜に挟まれた少なくとも一つの極液室とがそれぞれ設けられている。この電気透析装置は、電極近くの濃縮室にイオンが濃縮され、中央部近くの脱塩室からイオンが除去されることを利用して濃縮されたイオンと純水とを得ようとするものである。
特開2002-306118号公報
 特許文献1に開示されている電気透析装置では、処理対象となる海水が陰イオン交換膜及び陽イオン交換膜を交互に通過して濃縮するので、陰極及び陽極を同じ回数ずつ通過した直後など被処理水が中性に近くなる箇所が装置内に生じる。その箇所では水に含まれる塩や不純物の析出が起こりやすくなるので、イオン交換膜の詰まりや汚れ、それらに起因する海水の圧力の上昇によるイオン交換膜の破損などが起こることがある。このようなイオン交換膜の破損や漏れが起こり、純水の純度の低下が起こるほか、高価なイオン交換膜の交換などのメンテナンスが頻繁に必要となり、維持コストが高価となるという問題があった。さらに、メンテナンスの際には平板状で交互に充填されたイオン交換膜を取り外して行うため、困難が伴う上に非常に手間がかかり、メンテナンス作業そのものが透過膜や装置の破損の原因にもなっていた。
 従って本発明の目的は、汚れや破損が生じにくく、純度の高い水を安定して製造できる水電解処理装置を提供することにある。
 本発明の他の目的は、製造、取り扱い、取り外しや交換が容易であり、安価に製造及び維持することができる水電解処理装置を提供することにある。
 本発明によれば、水電解処理装置は、処理槽と、この処理槽内に備えられた円筒形の陰イオン透過膜を有する少なくとも1つのアニオン筒と、この処理槽内に備えられた円筒形の陽イオン透過膜を有する少なくとも1つのカチオン筒と、陰イオン透過膜の円筒形の内側に円筒形の軸方向に沿って備えられた陽極と、陽イオン透過膜の円筒形の内側に円筒形の軸方向に沿って備えられた陰極とを備え、処理槽内に貯水された被処理水は、処理槽内の少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒の円筒形の軸方向に沿って流通可能に構成され、少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒内にイオンを濃縮したイオン濃縮水を得ると共に被処理槽内に純水を得る。
 陰極及び陽極間に通電すると、処理槽の被処理水に含まれる陰イオンは陰イオン透過膜を透過して少なくとも1つのアニオン筒内に濃縮され、陽イオンは陽イオン透過膜を透過して少なくとも1つのカチオン筒内に濃縮されるので、被処理水は陰イオンと陽イオンとが除去され純水として得られる。アニオン筒及びカチオン筒内にはそれぞれ陰イオン及び陽イオンが濃縮されたイオン濃縮水が得られる。陰イオン透過膜及び陽イオン透過膜が円筒形であることで、表面積が大きくイオンの透過性の大きいアニオン筒及びカチオン筒とすることができ、製造も容易である。円筒形の透過膜を有するアニオン筒及びカチオン筒は、取り扱いが簡易であり、取り外し及び交換がしやすいので、アニオン筒及びカチオン筒内に濃縮されたイオン濃縮水を交換することが容易である。メンテナンスの際の安全性や簡便性も高い。陰イオン透過膜及び陽イオン透過膜が円筒形で角や辺、辺となる合わせ目がないため、汚れ、汚染、膜の破れ、しわ及び合わせ目からの漏れが生じることが少ない。特に円筒形のどこでもイオンの透過する量が等しいため、等しい浸透圧がかかるので、箇所によって透過性能に差が生じにくく、イオンが透過する量を表面積により調整しやすい。陰イオン透過膜及び陽イオン透過膜の箇所ごとの圧力差による破れやしわの発生も少ない。これらの作用から、長時間メンテナンスを行わず使用することができる。
 陰イオン透過膜の単位時間あたりの陰イオンの透過量と、陽イオン透過膜の単位時間あたりの陽イオンの透過量とが等しくなるよう構成されていることが好ましい。それぞれの透過膜をそれぞれ等量の陰イオンと陽イオンが通過するので、被処理水からは等量の陰イオンと陽イオンが除去され、純度の高い処理水が得られる。
 少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒の端部のうち少なくとも一方に設けられた開口に接続されイオン濃縮水を回収する単一の塩類回収槽を備えることが好ましい。被処理水に含まれていたイオンを一つの槽で回収することができ、システムが単純化し、メンテナンスが簡便となりコストが低下する。陰イオンと陽イオンが同一の槽で回収されることから塩を回収することができ、特にアニオン筒及びカチオン筒で等量のイオンが回収される際には、塩類回収槽の液体は等量の陽イオンと陰イオンを含む塩溶液となり、中性溶液であるため取り扱いが簡便でありメンテナンスや回収のコストも低く、塩を容易に回収することができる。
 少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒とそれぞれ接続されイオン濃縮水を回収する2つの塩類回収槽を備えることも好ましい。アニオン筒及びカチオン筒に濃縮される成分をそれぞれ回収、処理又は利用することができる。
 少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒は、それぞれ陰イオン透過膜及び陽イオン透過膜の円筒形の少なくとも両端を保持しつつ、円筒形の側面の少なくとも一部が被処理水に面するように構成された封止部材を備えており、開口に封止部材の一部を嵌合することにより少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒を着脱自在に保持可能に構成されてなることが好ましい。アニオン筒及びカチオン筒は封止部材を介して特に容易に交換が可能となり、メンテナンスに手間とコストを要さない。
 少なくとも1つのアニオン筒又は少なくとも1つのカチオン筒は、陰イオン透過膜又は陽イオン透過膜の円筒の両端に封止部材と螺合可能な部材を備えることが好ましい。アニオン筒又はカチオン筒が螺合によってカートリッジ式に組み立てられているので、陰極又は陽極、陰イオン透過膜又は陽イオン透過膜の交換が容易で、汚れや磨耗に対処しやすく、また交換の際の汚れや磨耗の事故も少ない。
 少なくとも1つのアニオン筒又は少なくとも1つのカチオン筒は、底面に処理槽に対して螺合又は嵌合可能な固着部を備えることが好ましい。螺合又は嵌合によって処理槽に固着可能なことで、着脱が容易である。
 少なくとも1つのアニオン筒及び少なくとも1つのカチオン筒は、底面が処理槽の底面に固着されていることが好ましい。アニオン筒及びカチオン筒を底面に効率的に配置することができ、高い処理効率が得られる。
 少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒は、複数のアニオン筒及び複数のカチオン筒であり、この複数のアニオン筒及び複数のカチオン筒は処理槽の底面の一部を覆うように敷き詰め配置されていることが好ましい。複数のアニオン筒及びカチオン筒を処理槽の容積あたり最も多数となるよう効率的かつ容易に配置できるため、処理の効率が上昇し、メンテナンスを行いやすい。
 陰極又は陽極は下端が開放された円筒形状からなり、少なくとも1つのアニオン筒又は前記少なくとも1つのカチオン筒はイオン濃縮水を円筒の上端から供給する手段と、イオン濃縮水を陽イオン透過膜又は陰イオン透過膜の上端から回収する手段を備えることが好ましい。陰極又は陽極の円筒の上端からイオン濃縮水を供給すると、イオン濃縮水は陰極又は陽極の上端から下端に、ついで陽イオン透過膜又は陰イオン透過膜の下端から上端に流通し、陽イオン透過膜又は陰イオン透過膜の上端から回収される。イオン濃縮水の供給と回収をいずれもアニオン筒又はカチオン筒の上端から行うことができるので、装置の構成が簡素となりスペースを取らない。
 本発明によれば、陰極と陽極間に通電すると、処理槽の被処理水に含まれる陰イオンは陰イオン透過膜を透過して少なくとも1つのアニオン筒内に濃縮され、陽イオンは陽イオン透過膜を透過して少なくとも1つのカチオン筒内に濃縮されるので、被処理水は陰イオンと陽イオンとが除去され純水として得られる。アニオン筒及びカチオン筒内にはそれぞれ陰イオン及び陽イオンが濃縮されたイオン濃縮水が得られる。陰イオン透過膜及び陽イオン透過膜が円筒形であることで、表面積が大きくイオンの透過性の大きいアニオン筒及びカチオン筒とすることができ、製造も容易である。円筒形の透過膜を有するアニオン筒及びカチオン筒は、取り扱いが簡易であり、取り外し及び交換がしやすいので、アニオン筒及びカチオン筒内に濃縮されたイオン濃縮水を交換することが容易である。メンテナンスの際の安全性や簡便性も高い。陰イオン透過膜及び陽イオン透過膜が円筒形で角や辺、辺となる合わせ目がないため、汚れ、汚染、膜の破れ、しわ及び合わせ目からの漏れが生じることが少ない。特に円筒形のどこでもイオンの透過する量が等しいため、等しい浸透圧がかかるので、箇所によって透過性能に差が生じにくく、イオンが透過する量を表面積により調整しやすい。陰イオン透過膜及び陽イオン透過膜の箇所ごとの圧力差による破れやしわの発生も少ない。これらの作用から、長時間メンテナンスを行わず使用することができる。
本発明の第1の実施形態における水電解処理装置を示す一部破断斜視図である。 (a)図1の水電解処理装置のアニオン筒を示す斜視図及び(b)そのA-A線断面図である。 本発明の第2の実施形態における水電解処理装置を示す一部破断斜視図である。 (a)本発明の第3の実施形態におけるアニオン筒を示す斜視図及び(b)その分解図である。 図4のアニオン筒の作用を示す側断面図である。 本発明の第4の実施形態における水電解処理装置を示す一部破断斜視図である。
(第1の実施形態)
 図1は本発明の第1の実施形態における水電解処理装置を示す一部破断斜視図である。水電解処理装置1は、処理槽2と、それぞれがカートリッジユニットとして構成されたアニオン筒3及びカチオン筒4と、塩類回収槽として陰イオン回収槽9a及び陽イオン回収槽9bとを備えている。
 処理槽2は、被処理水20を貯水可能な槽である。本実施形態では、処理槽2は円筒形であり、流入口21及び流出口22を備え、被処理水20はポンプ(図示せず)によって流入口21から供給され、流出口22から排出されることで流通するように構成されている。被処理水20としては、海水、河川水、湖水若しくは鉱水等の自然水、工業排水等の排水、又は工業用水や水道水等のイオン等が残留した水など、不純物を含有する水を利用することができる。本実施形態では、被処理水20は食塩を含有する海水等の水である。
 処理槽2は、アニオン筒3及びカチオン筒4からなるカートリッジユニットが挿通し嵌合固着可能な開口23及び24を備えている。本実施形態では、開口23及び24は処理槽2の上面に円形に穿たれている。
 アニオン筒3及びカチオン筒4は、それぞれ、継ぎ目の無い滑らかな表面を有する円筒形の陰イオン透過膜5及び陽イオン透過膜6と、これら円筒形の陰イオン透過膜5及び陽イオン透過膜6の両端の開口を封止する封止部材30a及び30bとから主として構成されている。陰イオン透過膜5及び陽イオン透過膜6は、それぞれ陰イオン及び陽イオンを選択的に透過するフィルタである。本実施形態では、陰イオン透過膜5及び陽イオン透過膜6の各々は、ポリオレフィン、スチレン又はビニルベンゼン系等にイオン交換基を備えた構成素材からなるフィルタを使用し、外径60mm及び長さ130mmの円筒形に構成されているが、寸法は後述するイオンの透過量と表面積の関係に応じて決めることが望ましく、この値に限定されるものではない。
 陰イオン透過膜5と陽イオン透過膜6とは、陰イオン透過膜5の単位時間あたりの陰イオンの透過量と、陽イオン透過膜6の単位時間あたりの陽イオン透過量とが等しくなるように構成されている。具体的には、単位時間及び膜の単位面積あたり回収されるイオンの質量(g/cm・分)を求め、このイオンの質量と表面積(cm)との積が等しくなるように、陰イオン透過膜5と陽イオン透過膜6とのそれぞれの表面積を調整する。本実施形態では、アニオン筒3及びカチオン筒4の各一つあたり回収されるイオンの質量を実験的に求め、アニオン筒3及びカチオン筒4の設置数によってイオンの透過量が等しくなるよう調整している。本実施形態では、陰イオン透過膜5と陽イオン透過膜6との単位面積及び単位時間あたりのイオンの透過量がほぼ等しいので、それぞれの表面積もほぼ等しくなるように構成されている。
 円筒形の陰イオン透過膜5の内部には、その軸方向に沿って伸長する陽極7が備えられ、円筒形の陽イオン透過膜6の内部には、その軸方向に沿って伸長する陰極8が備えられている。陽極7及び陰極8の構成材料は被処理水20に通電しやすいものならば特に限定されず、導電性を有する各種金属や炭素を用いたもの、又は腐食や不純物の付着を防ぐための各種コーティングを施したものなどが使用できる。本実施形態では、陽極7は酸化イリジウム(IrO)、陰極8はチタン(Ti)を主要な構成材料とするもので、いずれも2枚の板状の電極をV字型に隣接させて設けられ、面積は合計120mm×50mmであり、有効面積はおよそ1平方dmである。陽極7及び陰極8はそれぞれ通電線51及び61をそれぞれ介して電源(図示せず)に接続され、通電可能となっている。
 図2(a)にアニオン筒3の斜視図、図2(b)にアニオン筒3のA-A線断面図を示す。アニオン筒3は、筒状の陰イオン透過膜5の両端の開口をそれぞれ封止する封止部材30a及び30bを備えており、カートリッジユニット化されている。本実施形態では封止部材30a及び30bは、樹脂を構成素材とした短い2段の円筒形であり、陰イオン透過膜5の上下の端にそれぞれ一つずつ嵌合されてその開口を密封的に封止する密封部材となるように構成されている。封止部材30aは、陰イオン透過膜5の外径より大きい内径を有する本体31aと、本体31aの上端に設けられアニオン筒出口32aを有する接続部33aと、本体31aの下端に陰イオン透過膜5の内径にほぼ等しい外径を有する嵌合部34aとを備えている。嵌合部34aは陰イオン透過膜5の開口の内側に挿入されて嵌合されている。この部分の陰イオン透過膜5の外周をゴムや樹脂等の弾性を有するリング状の締付部材35aによって締め付けることによって、この開口が密封的に封止されている。陰イオン透過膜5の下端の開口を封止する封止部材30bにおける本体31b、アニオン筒入口32b、接続部33b、嵌合部34b及び締付部材35bも同様の構造となっている。この構造によって、陰イオン透過膜5の上下端が封止されたカートリッジユニットが得られる。アニオン筒入口32b及びアニオン筒出口32aには配管37及び36がそれぞれ接続されている。接続部33aには陽極7と電気的に接続された通電線51が密封的に挿通されている。陽極7は、陰イオン透過膜5の内部において、接続部33a及び33bによって支持されている。カチオン筒4もこのアニオン筒3と同様の構造によってカートリッジユニット化されている。
 これらカートリッジユニット化されたアニオン筒3及びカチオン筒4は、処理槽2の開口23及び24に嵌合固着されている。本実施形態では、これらカートリッジユニットは、アニオン筒3の封止部材30a及びカチオン筒4の封止部材40aの構成材料である樹脂の弾性によって開口23及び24に着脱自在に保持されている。
 陰イオン回収槽9aは配管37及び36によってアニオン筒入口31及びアニオン筒出口32にそれぞれ接続され、陽イオン回収槽9bは配管39及び38によってカチオン筒入口41及びカチオン筒出口42にそれぞれ接続されている。配管37及び39は陰イオン回収槽9a及び陽イオン回収槽9bに設けられたポンプ(図示せず)の作動並びにバルブ90a及び90bの開閉によって流通可能となっている。
 次いで、水電解処理装置1の作用について説明する。
 処理槽2に流入口21及び流出口22を介して被処理水20を流通させ、陽極7と陰極8の間に通電すると、被処理水20に含まれる陰イオンは陽極7に、陽イオンは陰極8に引き寄せられる。ここで、陰イオン透過膜5は陰イオンのみを透過するので、陰イオンはアニオン筒3内に濃縮される。陽イオン透過膜6は陽イオンのみを透過するので、陽イオンはカチオン筒4内に濃縮される。その結果、被処理水20からは陰イオンと陽イオンとが除去される。
 処理槽2内において、被処理水20は流入口21から流出口22に向かって流通し、アニオン筒3及びカチオン筒4の軸方向に沿って配置された陽極7及び陰極8の長手方向に沿って流通するので、流通するにしたがってイオンの含有量が低下する。被処理水20が流出口22から排出される際には最もイオンの含有量が少なくなった純水となっている。
 アニオン筒3及びカチオン筒4内に濃縮されたイオン濃縮水91及び92は、配管36及び38をそれぞれ介して陰イオン回収槽9a及び陽イオン回収槽9bに回収される。本実施形態では、食塩を含有する被処理水20に含まれていたイオンのうち、陰イオン回収槽9aには塩化物イオン、陽イオン回収槽9bにはナトリウムイオンが回収される。これらはイオン濃縮水91及び92から気体塩素及び金属ナトリウムとして回収することができる。普段は陰イオン回収槽9a及び陽イオン回収槽9bのポンプを停止しバルブ90a及び90bを閉じ、アニオン筒3及びカチオン筒4内のイオンの量が多くなったときのみポンプ並びにバルブ90a及び90bを動作させてもよい。
 本実施形態では、アニオン筒3及びカチオン筒4がカートリッジユニット化されているので、処理層2に対する取り付け及び取り外しが容易である。そのため、陰イオン透過膜5及び陽イオン透過膜6を備える部材の交換の際の破損が少なく、メンテナンスが容易である。そのため、設置費用、維持費用を低廉に保つことができる。これらの設置及び維持のしやすさから、本実施形態の水電解処理装置は様々な場所及び目的に容易に適用でき、自動車、建材及び家電等の電着塗装、脱塩や濃縮に使用することができる。
 本実施形態では、陽極7及び陰極8がV字型をなすようにアニオン筒3及びカチオン筒4に配置されているので、陽極7及び陰極8を並行に互いに離間等させて配置する場合に比べて、電極の表面積を大きくすることができる。
 この実施形態の変更態様として、アニオン筒3及びカチオン筒4を二組以上設けることができる。アニオン筒3及びカチオン筒4の数を増やし、陰イオン透過膜5及び陽イオン透過膜6の表面積の総計が大きくなると、陰イオン透過膜5及び陽イオン透過膜6を透過可能なイオンの量が多くなり、アニオン筒3及びカチオン筒4内に濃縮可能な塩類濃縮液91及び92の量が増加するので、イオンを除去する効果が高くなる。
 陰イオン回収槽9a、陽イオン回収槽9b、及び配管36~39を省略することもできる。アニオン筒3及びカチオン筒4は処理槽2から着脱自在となっているので、定期的にアニオン筒3及びカチオン筒4を取り外し、筒形状の内部のイオン濃縮液91及び92を交換することができ、装置の構造が簡素なものとなる。
 陽極7及び陰極8の形状は他のいかなるものであってもよい。例えば陽極7及び陰極8は、陰イオン透過膜5や陽イオン透過膜6の円筒形よりも径の小さい円筒形で、陰イオン透過膜5や陽イオン透過膜6の内部に挿通されていてもよい。例えば、電極の表面積を大きくするよう、陰極7又は陽極8の形状をアニオン筒3及びカチオン筒4の径に収納できる範囲内で別の形状、例えば円筒形やX字型等にしてもよい。
 封止部材30a、30b、40a及び40bの形状も他のいかなるものであってもよい。例えば陰イオン透過膜5や陽イオン透過膜6の一部のみが露出した形態として、封止部材30a、30b、40a及び40bは樹脂を構成材料とし側面が網状や格子状に構成された円筒形で、陰イオン透過膜5や陽イオン透過膜6がその円筒の内部に挿通されていてもよい。この場合、陰イオン透過膜5や陽イオン透過膜6が封止部材30a、30b、40a及び40bによって保護されているので破損が少ない。
 被処理水20に重金属を含む水、例えばめっきの廃液などを利用した場合には、陽イオン回収槽9bには重金属が濃縮される。そのため本実施形態の水電解処理装置は水から重金属を除去する処理や、再利用のための重金属の回収に利用することができる。
 この水電解処理装置では、電解により水素イオンが生じ、この水素イオンが化学物質を還元する作用を持つ。例えば、蛋白質の加水分解や油脂の高熱処理によって生じる場合があるMCP(モノクロロプロパンジオール)、DCP(ジクロロプロパンジオール)といった、人体に影響を及ぼす可能性のある物質について、この還元作用により分解することができる効果がある。
(第2の実施形態)
 図3は本発明の第2の実施形態における水電解処理装置を示す一部破断斜視図である。この実施形態では、水電解処理装置1Aは、アニオン筒3及びカチオン筒4の端部に配管36b及び37bで接続された単一の塩類回収槽9cを備えている。なお、前述した一の実施形態と構成及び作用を同じくする要素については説明を省略する。
 この実施形態では、アニオン筒3及びカチオン筒4のイオン濃縮液93が、単一の塩類回収槽9cに回収される。陰イオン透過膜5の単位時間あたりの陰イオンの透過量と、陽イオン透過膜6の単位時間あたりの陽イオンの透過量とが等しく、イオン濃縮液93には等量の陰イオンと陽イオンが濃縮されているので、塩類回収槽9cには等量の陰イオンと陽イオンが含まれる。本実施形態では等量の塩化物イオンとナトリウムイオンが含まれるので、塩類回収槽9cに回収されるイオン濃縮液93は食塩溶液となる。食塩溶液はpHが中性で取り扱いにおいて人体や環境への影響がほとんどないため輸送や廃棄なども容易である。食塩溶液からは食塩を回収することもできる。
 本形態の作用及び効果は、付加的に上述した点を除くと先述した一実施形態の作用及び効果と同じである。
 この実施形態の変更態様として、被処理水に含まれるイオン価に応じて陰イオン透過膜及び陽イオン透過膜の構成を変更することができる。例えば、被処理水に含まれるイオンがNaCOである場合、陽イオン透過膜の表面積が陰イオン透過膜の2倍になるよう、又はカチオン筒を2基設ける構成をとることができる。被処理水は電解によって陽イオンが2に対して陰イオンが1生じるが、カチオン筒には陰イオンの2倍の量の陽イオンが濃縮されるので、イオンを除去された被処理水の純度が高まり、塩類回収槽ではNaCO塩が含まれる中性の濃縮水や、塩を回収することができる。
(第3の実施形態)
 図4は本発明の第3の実施形態のアニオン筒を示す(a)斜視図及び(b)その分解図、図5は図4のアニオン筒の作用を示す側断面図である。この実施形態のアニオン筒3Aは、円筒形の陰イオン透過膜5に円筒形の陽極7Aが挿通され、陰イオン透過膜5の両端を一対の円筒形の本体31c及び31dで密封的に封止してなる。
 図4(b)に示すように、陽極7Aは一対の本体31c及び31dのうち一方の本体31cに嵌合されている。陽極7Aは円筒形で、一方の端には液体流入口37cが溶接されている。液体流入口37cは陽極7Aよりも径の小さい円筒形で、螺子山が切られている。陽極7Aの他方の端には樹脂を構成素材とする底部スペーサ37eが嵌めこまれている。底部スペーサ37eは中空のキノコ形状で、索の部分が陽極7Aの内径と略同形の内径を持ち、陽極7Aに嵌合可能となっている。傘の部分には貫通孔が設けられ、中空部分が外部と連通している。液体流入口37cには、端部スペーサ37fがはめ込まれている。端部スペーサ37fは塩化ビニルを構成素材とし、内径が液体流入口37cの外径と略同じ円筒である。
 陽極7Aは、絶縁ネット70に挿通される。絶縁ネット70は、ポリプロピレンを構成素材とするメッシュ状の円筒で、内径は陽極7Aよりやや大きく、長さは陽極7Aよりもやや短い。
 液体流入口37cには、本体31cが挿通されている。本体31cは、陽極7Aの外径よりも大きい内径を備えた円筒形状で、その円筒の一端を閉塞する端部には、液体流入口37cを挿通可能な挿通孔を備える。この挿通孔に液体流入口37cを挿通し、液体流入口37cの螺子山にナット37dを締めることによって、本体31cを陽極7Aと端部スペーサ37fに挟み込んで緊締する。円筒内の一端を閉塞する端部はまた、連通孔を介して円筒内の空間24を配管36に連通している。
 液体流入口37cの螺子山のひとつには通電線51が電気的に接続される。この実施形態では半田付けされるが、再び分解しやすいよう巻きつけられるのみでもよい。液体流入口37cの円筒状の端はイオン濃縮水91の流入口である配管37に接続されている。
 他方の本体31dは、円筒形で、円筒の端の一方は陽極7Aの円筒より大きい内径を有してなり、他の部分より半径が小さく螺子山が切られた本体螺合部30fを備える。円筒の端の他方は閉塞され、螺子山が切られた突出端である固着部36fを備えている。固着部36fは螺子孔が切られた部材に対して螺合することで、アニオン筒3Aを固着することができ、本実施形態では処理槽2の底部に螺子孔を穿ち、固着することで処理槽2に対して固定することができる。
 陰イオン透過膜5は円筒形で、両端が封止部材30c及び30dで緊締されている。封止部材30c及び30dはリング状で、内径の略半ばにおいて、ゴムを構成素材とするリング状の締付部材35cを介して陰イオン透過膜5を水密に緊締し、その残りの内径には本体螺合部31eの螺子山と嵌合可能な螺子山が切られた封止螺合部30e及び30fが形成されている。
 このアニオン筒3Aの組立ての際には、図4(b)に示すように、陽極7Aを絶縁ネット70、ついで陰イオン透過膜5に挿通し、本体31cの本体螺合部31eと封止螺合部30eとを螺合する。他方の本体31dにも陽極7Aの他端を挿通し、本体螺合部31fと封止螺合部30fとを螺合する。陽極7Aの底部スペーサ37eは、本体31dの閉塞された側の端と当接する。
 図5に示すように、このアニオン筒3Aに液体流入口37cからイオン濃縮水91を流すと、イオン濃縮水91は筒状の陽極7Aの筒内の空間23を流通し、ついで陽極7Aの下端から底部スペーサ37eの貫通孔を介して、陽極7Aの筒の外側と陰イオン透過膜5及び本体31d並びに31cの筒の内側の間の空間24を流通する。アニオン筒3Aの外部の被処理水20(図1及び図3)の陰イオンは、陽極7Aの電荷によって陽極7A側に移動し、陰イオン透過膜5を透過する。そして、この陰イオンは空間24を通るイオン濃縮水91へと濃縮される。
 なお、本実施形態ではカチオン筒4も、陰極8及び陽イオン透過膜6を用いていることのほかは、それぞれアニオン筒同様の構成からなっている。
 この実施形態では、アニオン筒3Aの一方の端に液体流入口37c及び配管36が配置され、イオン濃縮水91の流入と排出を一方の端から行うことができるので、処理槽2内で配置しやすくスペースが節約される。アニオン筒3Aを処理槽2内から取り外してのメンテナンスや交換も行いやすい。アニオン筒3Aは、陽極7Aと陰イオン交換膜5が螺合によってカートリッジ式に組み立てられているので、陽極7Aや陰イオン透過膜5の交換が容易である。固着部36fの螺合によって処理槽2に固着可能なことで、着脱が容易である。これらにより、汚れや磨耗に対処しやすく、また交換の際の汚れや磨耗の事故も少ない。純度の高い水を生成することができ、メンテナンスが容易である。
 固着部36fは螺合の他、楔状の形状やラバー等の弾力などによって嵌合が可能な構造となっていてもよい。例えば、本体37dの外径が固着部36fとなっており、処理槽2の底部に本体37dの外径と略同じ内径の円筒形状の嵌合部材が設けられ、本体37dをこの嵌合部材に嵌合することでアニオン筒3Aの処理槽2への固着が可能となっていてもよい。本体37dを嵌合部材の弾力により容易に取り外しが可能であり、メンテナンスが簡易となる。
(第4の実施形態)
 図6は本発明の第4の実施形態の処理槽を示す一部破断斜視図である。この実施形態では、処理槽2Aほぼ同じ数のアニオン筒3A及びカチオン筒4Aが、それぞれの筒の底面によって処理槽2Aの底面のほぼ全面を覆うように敷き詰められる形で、縦置きに載置されている。アニオン筒3A及びカチオン筒4Aは第3の実施形態で説明しているものと同様で、その他の構成については第1の実施形態と同様である。図に示した例では、アニオン筒3Aが8つ、カチオン筒4Aが8つ、計16の筒が配置され、それぞれの電極は並列繋ぎで電源に接続されている。アニオン筒3A及びカチオン筒4Aは、処理槽2Aの底面に穿たれた螺子孔2bに、固着部31gによって螺合されている。
 この実施形態では、処理槽2Aの底面積に対してアニオン筒3A及びカチオン筒4Aが設置される量が最大となり、イオンを除去する効果が高くなる。その他の構成及び作用効果については図1に示す実施形態と同様である。
 以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
 本発明は飲料水などの生活用水や産業用水の製造をはじめ、各種生活用水や各種産業の廃液の処理、電解によるこれらの水の含有物質の回収に役立ち、大規模及び小規模ともに適用できるので、水を必要とされる分野に幅広く役立ち、生活や産業に貢献するのみならず環境問題に対しても貢献できるものである。
 1、1A  水電解処理装置
 2、2A  処理槽
 2b 螺子孔
 3、3A  アニオン筒
 4  カチオン筒
 5  陰イオン透過膜
 6  陽イオン透過膜
 7、7A  陽極
 8  陰極
 9a  陰イオン回収槽
 9b  陽イオン回収槽
 9c  塩類回収槽
 20  被処理水
 21  流入口
 22  流出口
 23、24 空間
 30a、30b、30c、30d、40a、40b  封止部材
 30e、30f 封止螺合部
 31a、31b、31c、31d  本体
 31e  本体螺合部
 31g 固着部
 32a  アニオン筒出口
 32b  アニオン筒入口
 33a、33b  接続部
 34a、34b  嵌合部
 35a、35b、35c  締付部材
 36、36b、37、37b、38、39  配管
 37c 液体流入口
 37d ナット
 37e 底部スペーサ
 37f 端部スペーサ
 51、61  通電線
 70 絶縁ネット
 90a、90b  バルブ
 91、92、93  イオン濃縮液
 

Claims (10)

  1.  処理槽と、
     該処理槽内に備えられた円筒形の陰イオン透過膜を有する少なくとも1つのアニオン筒と、
     前記処理槽内に備えられた円筒形の陽イオン透過膜を有する少なくとも1つのカチオン筒と、
     前記陰イオン透過膜の前記円筒形の内側に該円筒形の軸方向に沿って備えられた陽極と、
     前記陽イオン透過膜の前記円筒形の内側に該円筒形の軸方向に沿って備えられた陰極とを備え、
     前記処理槽内に貯水された被処理水は、前記処理槽内の前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒の前記円筒形の軸方向に沿って流通可能に構成され、
     前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒内にイオンを濃縮したイオン濃縮水を得ると共に前記被処理槽内に純水を得ることを特徴とする水電解処理装置。
  2.  前記陰イオン透過膜の単位時間あたりの陰イオンの透過量と、前記陽イオン透過膜の単位時間あたりの陽イオンの透過量とが等しくなるよう構成されていることを特徴とする請求項1に記載の水電解処理装置。
  3.  前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒の前記端部のうち少なくとも一方に設けられた開口に接続され前記イオン濃縮水を回収する単一の塩類回収槽を備えることを特徴とする請求項1に記載の水電解処理装置。
  4.  前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒とそれぞれ接続され前記イオン濃縮水を回収する2つの塩類回収槽を備えることを特徴とする請求項1に記載の水電解処理装置。
  5.  前記処理槽は外壁に開口を備え、
     前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒は、それぞれ前記陰イオン透過膜及び前記陽イオン透過膜の円筒形の少なくとも両端を保持しつつ、前記円筒形の側面の少なくとも一部が前記被処理水に面するように構成された封止部材を備えており、
     前記開口に前記封止部材の一部を嵌合することにより前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒を着脱自在に保持可能に構成されてなることを特徴とする請求項1に記載の水電解処理装置。
  6.  前記少なくとも1つのアニオン筒又は前記少なくとも1つのカチオン筒は、前記陰イオン透過膜又は前記陽イオン透過膜の円筒の両端に前記封止部材と螺合可能な部材を備えることを特徴とする請求項5に記載の水電解処理装置。
  7.  前記少なくとも1つのアニオン筒又は前記少なくとも1つのカチオン筒は、底面に前記処理槽に対して螺合又は嵌合可能な固着部を備えることを特徴とする請求項1に記載の水電解処理装置。
  8.  前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒は、底面が前記処理槽の底面に対して固着されていることを特徴とする請求項1に記載の水電解処理装置。
  9.  前記少なくとも1つのアニオン筒及び前記少なくとも1つのカチオン筒は、複数のアニオン筒及び複数のカチオン筒であり、該複数のアニオン筒及び該複数のカチオン筒は前記処理槽の底面の一部を覆うように敷き詰め配置されていることを特徴とする請求項1に記載の水電解処理装置。
  10.  前記陰極又は陽極は下端が開放された円筒形状からなり、前記少なくとも1つのアニオン筒又は前記少なくとも1つのカチオン筒は、前記イオン濃縮水を前記円筒の上端から供給する手段と、前記イオン濃縮水を前記陽イオン透過膜又は前記陰イオン透過膜の上端から回収する手段を備えることを特徴とする請求項1に記載の水電解処理装置。
PCT/JP2011/073432 2010-10-13 2011-10-12 水電解処理装置 WO2012050131A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180049474XA CN103168005A (zh) 2010-10-13 2011-10-12 水电解处理装置
US13/877,198 US20130206671A1 (en) 2010-10-13 2011-10-12 Water Electrolysis Treatment Device
JP2012538696A JPWO2012050131A1 (ja) 2010-10-13 2011-10-12 水電解処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010230947 2010-10-13
JP2010-230947 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050131A1 true WO2012050131A1 (ja) 2012-04-19

Family

ID=45938358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073432 WO2012050131A1 (ja) 2010-10-13 2011-10-12 水電解処理装置

Country Status (4)

Country Link
US (1) US20130206671A1 (ja)
JP (1) JPWO2012050131A1 (ja)
CN (1) CN103168005A (ja)
WO (1) WO2012050131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293639A (zh) * 2015-11-17 2016-02-03 天津大学 阴极阳极协同电解处理废水的方法与装置
US20230084544A1 (en) * 2019-10-11 2023-03-16 Rheem Manufacturing Company Integrated Anode For A Heat Exchanger

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383202B2 (en) 2008-06-13 2013-02-26 Kateeva, Inc. Method and apparatus for load-locked printing
US10434804B2 (en) 2008-06-13 2019-10-08 Kateeva, Inc. Low particle gas enclosure systems and methods
US11975546B2 (en) 2008-06-13 2024-05-07 Kateeva, Inc. Gas enclosure assembly and system
CN103614740B (zh) * 2013-12-13 2016-05-25 攀枝花钢企欣宇化工有限公司 电解槽稳压装置
EP3087623B1 (en) 2013-12-26 2021-09-22 Kateeva, Inc. Thermal treatment of electronic devices
CN107256840B (zh) 2014-01-21 2019-05-31 科迪华公司 用于电子装置封装的设备和技术
US9586226B2 (en) 2014-04-30 2017-03-07 Kateeva, Inc. Gas cushion apparatus and techniques for substrate coating
US11325168B2 (en) * 2018-05-29 2022-05-10 Tri-Bros. Chemical Corp. Dissolving silicate scale
CN111762853B (zh) * 2020-06-19 2021-10-08 昆明理工大学 一种液态阳极及其富集分离水体中阴离子的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087399A (ja) * 2004-09-27 2006-04-06 Masayoshi Iwahara 野菜若しくは果実ジュースの成分調整方法
JP2006231159A (ja) * 2005-02-23 2006-09-07 Masayoshi Iwahara 電気透析装置
JP2006289177A (ja) * 2005-04-06 2006-10-26 Masayoshi Iwahara 電気透析用電極装置
JP2007075712A (ja) * 2005-09-13 2007-03-29 Masayoshi Iwahara 無菌化電気透析方法
JP2008191084A (ja) * 2007-02-07 2008-08-21 Toshiba Corp 円筒型脱塩器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985636A (en) * 1975-09-26 1976-10-12 Aqua-Chem, Inc. Electrodialysis apparatus electrode system
US6780292B2 (en) * 2001-04-11 2004-08-24 Raintech International, Inc. Electrolytic treatment apparatus having replaceable and interchangeable electrode reactor cartridges therefor
JP4394525B2 (ja) * 2004-06-29 2010-01-06 日東精工株式会社 部品供給装置
CN201089733Y (zh) * 2007-09-18 2008-07-23 上海可瑞水技术有限公司 一种螺旋电场的电化膜净化水装置
JP4723627B2 (ja) * 2007-11-15 2011-07-13 ペルメレック電極株式会社 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
CN102395710B (zh) * 2009-02-17 2015-02-11 麦卡利斯特技术有限责任公司 电解槽及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087399A (ja) * 2004-09-27 2006-04-06 Masayoshi Iwahara 野菜若しくは果実ジュースの成分調整方法
JP2006231159A (ja) * 2005-02-23 2006-09-07 Masayoshi Iwahara 電気透析装置
JP2006289177A (ja) * 2005-04-06 2006-10-26 Masayoshi Iwahara 電気透析用電極装置
JP2007075712A (ja) * 2005-09-13 2007-03-29 Masayoshi Iwahara 無菌化電気透析方法
JP2008191084A (ja) * 2007-02-07 2008-08-21 Toshiba Corp 円筒型脱塩器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293639A (zh) * 2015-11-17 2016-02-03 天津大学 阴极阳极协同电解处理废水的方法与装置
US20230084544A1 (en) * 2019-10-11 2023-03-16 Rheem Manufacturing Company Integrated Anode For A Heat Exchanger

Also Published As

Publication number Publication date
CN103168005A (zh) 2013-06-19
US20130206671A1 (en) 2013-08-15
JPWO2012050131A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012050131A1 (ja) 水電解処理装置
US10329174B2 (en) Apparatus and process for separation and selective recomposition of ions
US20110024354A1 (en) Desalination system and method
US9422176B2 (en) Systems and techniques for electrodialysis
US7691249B2 (en) Method and apparatus for making electrolyzed water
US20130146473A1 (en) Dual diaphragm electrolysis cell assembly and method for generating a cleaning solution without any salt residues and simultaneously generating a sanitizing solution having a predetermined level of available free chlorine and pH
JP2009543695A (ja) マイクロスケール容量性脱イオン装置
CA2960825C (en) Electrocoagulation reactor
WO2012070287A1 (ja) 電解水製造装置
US20140299551A1 (en) Desalination system and method
US20150176142A1 (en) Dual Diaphragm Electrolysis cell assembly and method for generating a cleaning solution without any salt residues and simultaneously generating a sanitizing solution having a predetermined level of available free chlorine and PH
WO2014113178A1 (en) Apparatus and method for generating a stabilized sanitizing solution
KR100915338B1 (ko) 전기 흡탈착식 정화장치용 구조체
KR20140006423A (ko) 정수기
WO2016100876A1 (en) Dual diaphragm electrolysis cell assembly and method for generating a cleaning solution without any salt residues and simultaneously generating a sanitizing solution having a predetermined level of available free chlorine and ph
Mitko et al. Energy consumption in membrane capacitive deionization and electrodialysis of low salinity water
TWI383955B (zh) 飲用水之提供方法和淨水之製法
RU2078737C1 (ru) Устройство для электрохимической обработки воды
CN210340436U (zh) 一种脱盐设备
RU2729184C1 (ru) Электрохимический реактор и установка для электрохимического синтеза смеси оксидантов
RU2454489C1 (ru) Электрохимическая ячейка для обработки растворов электролитов
KR101108142B1 (ko) 기능수용 정수시스템
Dermentzis et al. A new process for desalination and electrodeionization of water by means of electrostatic shielding zones-ionic current sinks.
KR20240020315A (ko) 연속운전이 가능하고 탈염 효율 저하가 방지되는 탈염 시스템
JP2005185912A (ja) 水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832565

Country of ref document: EP

Kind code of ref document: A1