WO2012050109A1 - 複数組電池の電圧監視装置 - Google Patents

複数組電池の電圧監視装置 Download PDF

Info

Publication number
WO2012050109A1
WO2012050109A1 PCT/JP2011/073383 JP2011073383W WO2012050109A1 WO 2012050109 A1 WO2012050109 A1 WO 2012050109A1 JP 2011073383 W JP2011073383 W JP 2011073383W WO 2012050109 A1 WO2012050109 A1 WO 2012050109A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cell
signal
analog
determination signal
Prior art date
Application number
PCT/JP2011/073383
Other languages
English (en)
French (fr)
Inventor
将士 関▲崎▼
石川 聡
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP11832544.8A priority Critical patent/EP2629104B1/en
Priority to CN201180049787.5A priority patent/CN103154748B/zh
Publication of WO2012050109A1 publication Critical patent/WO2012050109A1/ja
Priority to US13/859,953 priority patent/US9335381B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a voltage monitoring device that determines whether or not each cell voltage is normal in a plurality of assembled batteries that output a desired voltage by connecting a plurality of unit cells in series.
  • an electric vehicle, a hybrid vehicle, and the like are provided with a high voltage battery as a drive power source for the motor.
  • a high voltage battery obtains a high voltage by connecting a plurality of unit cells of a secondary battery (storage battery) such as a nickel-hydrogen battery or a lithium battery in series.
  • each unit cell is charged with the same power when charging, and each unit cell is discharged with the same power when discharging. Tends to be overcharged or overdischarged. For this reason, it is necessary to check the charge state of each unit cell so that the secondary battery is not overcharged or overdischarged. Therefore, conventionally, a plurality of (for example, 55) unit cells are divided into, for example, five blocks (that is, one block of eleven unit cells), and the voltage of each block is provided for each block.
  • a voltage detection IC measures the voltage in real time and monitors whether or not an abnormality has occurred in the voltage.
  • the voltage detection IC measures the voltage of each unit cell (for example, 11 cells) included in one block, and measures the analog voltage signal measured by the A / D converter included in the voltage detection IC. Is converted to a digital signal. Then, the digitized measurement voltage is compared with the upper limit threshold and the lower limit threshold of the cell voltage. When the measurement voltage is equal to or higher than the upper limit threshold, it is determined that the battery is overcharged. Judged as overdischarge. A related technique is disclosed in, for example, Japanese Patent Publication No. 2010-35337. Thereafter, the result of this determination is transmitted as a digital fail signal to the microcomputer on the low voltage side, so that an abnormality in the cell voltage can be recognized on the microcomputer side.
  • the related voltage monitoring device notifies the occurrence of overcharge and overdischarge by transmitting a digital fail signal from the voltage detection IC to the microcomputer.
  • a communication error occurs, there has been a problem that the occurrence of overcharge or overdischarge cannot be accurately transmitted to the microcomputer side.
  • the present invention has been made to solve such a problem, and according to the present invention, the overcharge or overdischarge data detected by the voltage abnormality detection means is reliably transmitted to the monitoring device side. It is possible to provide a voltage monitoring device for a plurality of assembled batteries.
  • a voltage monitoring device for a plurality of battery packs for monitoring an abnormality in the output voltage of each cell of a plurality of battery packs that output a desired voltage by connecting a plurality of cells in series
  • the plurality of cells are divided into a plurality of blocks, and voltage abnormality detection means for detecting voltage abnormality of each cell included in the block is provided for each block, and each voltage abnormality detection means is provided for each cell included in the block.
  • Each cell voltage is overcharged or overdischarged by comparing the voltage detection means for detecting the cell voltage of the cell, the cell voltage detected by the voltage detection means, and a preset upper threshold and lower threshold.
  • Comparison means for determining whether or not and a transmission means for transmitting the determination result by the comparison means as a digitized digital determination signal and an analog analog determination signal, Serial digital determination signal transmitted from the transmitting unit, and based on the analog determination signal, wherein each abnormal voltage detecting apparatus is characterized in that a monitoring means for determining whether or not operating properly.
  • FIG. 1 is a block diagram showing a voltage monitoring apparatus 10 according to an embodiment of the present invention and a secondary battery 13 (a plurality of assembled batteries) including a plurality of unit cells BT1 to BT55.
  • FIG. 2 is a diagram for detecting a first voltage. It is a block diagram which shows the detailed structure of IC (21-1).
  • the secondary battery 13 employed in the present embodiment is used as a high voltage battery for driving a motor used in, for example, an electric vehicle or a hybrid vehicle.
  • the voltage monitoring apparatus 10 is separated into a high voltage side apparatus 11 and a low voltage side apparatus 12 via insulating devices 41 and 42.
  • the high voltage side device 11 includes n voltage detection ICs, that is, a first voltage detection IC (21-1) to an nth voltage detection IC (21-n).
  • Each of the voltage detection ICs (21-1) to (21-n) is a voltage abnormality detection unit connected to a plurality of unit cells, and measures the voltage of each unit cell.
  • the low voltage side device 12 includes a microcomputer 31 such as a microcontroller provided with a CPU 32 (monitoring means).
  • the CPU 32 receives the voltage of each unit cell detected by each of the voltage detection ICs (21-1) to the n-th voltage detection IC (21-n) of the high voltage side device 11, and receives the voltage of each unit cell. Is displayed on a display (not shown) and the like, and based on overcharge / overdischarge data (fail signal) transmitted from each of the voltage detection ICs (21-1) to the nth voltage detection IC (21-n). This is notified when the voltage of the unit cell becomes overcharged or overdischarged.
  • Each of the voltage detection ICs (21-1) to (21-n) is provided with an AD converter (A / D conversion means) 26 (see FIG. 2), and A output from the reference power supply 22 is provided.
  • the cell voltages (analog voltage signals) of the voltage detection ICs (21-1) to (21-n) are converted into digital voltage signals using the / D conversion voltage Vref.
  • the voltage detecting ICs (21-1) to (21-n) are connected to each other through digital communication lines L1 and L2, and further connected to the microcomputer 31 through an insulating device 42.
  • a TX signal for example, a voltage detection command signal
  • each voltage detection IC ( RX signals for example, fail signals indicating overcharge and overdischarge) output from 21-1) to (21-n) are transmitted to the microcomputer 31 by daisy chain communication.
  • the voltage detection ICs (21-1) to (21-n) are connected to each other through the analog communication line L3, and further connected to the CPU 32 of the microcomputer 31 through the insulation device 41. Has been.
  • each of the voltage detection ICs (21-1) to (21-n) will be described with reference to FIG.
  • the first voltage detection IC (21-1) will be described as an example.
  • the first voltage detection IC (21-1) is connected to a plurality of unit cells BT1 to BT11 (here, 11 as an example), detects these output powers, A multiplexer 51 that converts the detected voltage signals of the unit cells BT1 to BT11 into a time-series signal of one system, an AD converter 52 that digitizes the voltage signal (analog signal) output from the multiplexer 51, A cell voltage storage unit 53 that stores the voltage signal digitized by the AD converter 52 is provided.
  • a threshold storage unit 55 that stores an upper limit threshold for determining overcharge of the cell voltage and a lower limit threshold for determining overdischarge, a cell voltage of each of the unit cells BT1 to BT11, and a threshold storage unit 55
  • a comparator 54 compares the stored upper threshold and lower threshold
  • a determination result register 56 that stores a determination result by the comparator 54
  • a DA converter 57 that stores a digital communication circuit 58
  • the determination result register 56 determines that the unit cell is in an overcharged state when the cell voltage of a certain unit cell is equal to or higher than the upper threshold, and if the cell voltage is equal to or lower than the lower threshold, It is determined that the unit cell is in an overdischarged state, and the determination result is stored.
  • the DA converter 57 converts the determination result data (digital signal) stored in the determination result register 56 into an analog signal, and the CPU 32 of the microcomputer 31 via the analog communication line L3 and the insulating device 41 shown in FIG. Send to.
  • the DA converter 57 divides the cycle x into times T1 and T2 as shown in FIG. 3B, and outputs at the times T1 and T2.
  • a signal (fail signal) indicating overcharge and overdischarge is generated by a combination of levels “Hi” and “Lo”.
  • the digital communication circuit 58 uses a predetermined digital communication system and transmits the voltage data stored in the cell voltage storage unit 53 and the determination result data stored in the determination result register 56 in a communication cycle x [ms]. To do. As a result, for example, as shown in FIG. 3A, a digital signal that changes between “1” and “0” is sent to the CPU 32 of the microcomputer 31 via the digital communication line L2 and the insulating device 42 shown in FIG. Sent. Further, in the data string shown in FIG. 3A, for example, data indicated by “d1” is a signal (fail signal) indicating overcharge and overdischarge of each of the unit cells BT1 to BT11.
  • the CPU 32 sends a voltage detection command signal to each of the voltage detection ICs (21-1) to (21-n) via the insulating device 42 and the digital communication line L1 at a preset cycle of x [ms]. Send.
  • each of the voltage detection ICs (21-1) to (21-n) receives the voltage detection command signal
  • the voltage of each of the unit cells BT1 to BT11 is digitized by the AD converter 52, and the digitized voltage signal is cell voltage.
  • the comparator 54 compares the voltage signal of each of the unit cells BT1 to BT11 stored in the cell voltage storage unit 53 with the upper limit threshold and the lower limit threshold stored in the threshold storage unit 55, and each unit cell BT1. It is determined whether the voltage of BT11 is overcharged (is greater than or equal to the upper threshold) or overdischarge (is less than the lower threshold).
  • the determination result is temporarily stored in the determination result register 56 and then output to the DA converter 57 and the digital communication circuit 58.
  • the DA converter Based on the overcharge state or overdischarge state data of the unit cells BT1 to BT11 determined by the determination result register 56, the DA converter performs “Hi”, “Lo” as shown in FIG. A fail signal having two levels is generated. For example, when all of the unit cells BT1 to BT11 are normal voltages, both the times T1 and T2 are set to “Hi”, and at least one of the unit cells BT1 to BT11 is overcharged. When there is no unit cell, the time T1 is set to “Lo”, the time T2 is set to “Hi”, and at least one of the unit cells BT1 to BT11 is overdischarged, and there is no overcharged unit cell. When the time T1 is “Hi” and the time T2 is “Lo”, and at least one of the unit cells BT1 to BT11 is overcharged and at least one is overdischarged, both the times T1 and T2 are “ Lo ".
  • this fail signal is transmitted to the CPU 32 via the analog communication line L3 and the insulating device 41.
  • the digital communication circuit 58 converts the voltage signal stored in the cell voltage storage unit 53 and the fail signal stored in the determination result register 56 into the digital communication line L2 and the insulation device by a predetermined digital communication method. It transmits to CPU32 via 41.
  • the CPU 32 receives the analog fail signal transmitted via the analog communication line L3 and the digital fail signal transmitted via the digital communication line L2, and based on both of these fail signals, It is determined whether overcharge or overdischarge has occurred in the unit cells connected to the voltage detection ICs (21-1) to (21-n). In this determination process, overcharge and overdischarge are determined when both the analog fail signal and the digital fail signal match. If both fail signals do not match, it is assumed that a communication error has occurred, and the operator is notified by an alarm signal or the like. Therefore, even when an abnormality occurs in the communication lines L1 to L3, it is possible to reliably detect overcharge and overdischarge of each unit cell.
  • fail signals indicating overcharge and overdischarge of each unit cell detected by the voltage detection ICs (21-1) to (21-n) are generated.
  • the digital signal and the analog signal are transmitted to the CPU 32.
  • the CPU 32 determines that overcharge or overdischarge has occurred in the unit cell when the analog fail signal and the digital fail signal match. If the two fail signals do not match, it is determined that an error has occurred in the data communication via the communication lines L1 to L3, and the operator is notified by an alarm signal or the like.
  • the voltage monitoring apparatus for a plurality of assembled batteries according to the present invention has been described based on the illustrated embodiment.
  • the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. Can be replaced with something.
  • each voltage abnormality detection means for example, voltage detection ICs (21-1) to (21-n)
  • the monitoring means for example, the CPU 32.
  • the monitoring means determines that overcharge and overdischarge have occurred in the unit cell when the analog fail signal matches the digital fail signal. If both fail signals do not match, it is determined that a communication error has occurred in the communication lines (for example, communication lines L1 to L3) connecting the voltage abnormality detecting means and the monitoring means.
  • the present invention is extremely useful in detecting overcharge and overdischarge of unit cells provided in a plurality of assembled batteries with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 各電圧検出用IC(21-1)~(21-n)で検出される各単位セルの過充電、過放電を示すフェイル信号を、ディジタル信号、及びアナログ信号の双方でCPU32に送信する。そして、CPU32では、アナログのフェイル信号と、ディジタルのフェイル信号が一致する場合に、単位セルに過充電、過放電が発生していると判断する。また、双方のフェイル信号が一致しない場合には、通信線L1~L3を経由するデータ通信にエラーが発生しているものと判断して、警報信号等により操作者に通知する。その結果、過充電、過放電を高精度に検出することができる。

Description

複数組電池の電圧監視装置
 本発明は、複数の単位セルを直列接続して所望の電圧を出力する複数組電池の、各セル電圧が正常であるか否かを判断する電圧監視装置に関する。
 例えば、電気自動車やハイブリッド車両等では、モータの駆動電源として、高電圧バッテリを備えている。このような高電圧バッテリは、例えば、ニッケル・水素電池やリチウム電池などの二次電池(蓄電式電池)の単位セルを複数個、直列に接続することにより高電圧を得ている。
 また、二次電池は、充電時には各単位セルが同一の電力で充電され、放電時には各単位セルが同一の電力で放電されるので、各単位セルの劣化状態が異なる場合には、二次電池は過充電状態、或いは過放電状態になり易くなる。このため、二次電池が過充電状態、或いは過放電状態とならないように、各単位セル毎の充電状態を確認する必要がある。
そこで従来より、複数個(例えば、55個)の単位セルを、例えば5個のブロックに分割し(即ち、11個の単位セルで1ブロック)、各ブロックの電圧を各ブロック毎に設けられた電圧検出用ICにより、リアルタイムで電圧を測定し、電圧に異常が発生しているか否かを監視している。
 この際、電圧検出用ICでは、1つのブロックに含まれる各単位セル(例えば、11個)の電圧を測定し、電圧検出用ICが有するA/D変換器にて、測定したアナログの電圧信号をディジタル信号に変換する。そして、ディジタル化された測定電圧とセル電圧の上限閾値、及び下限閾値とを比較し、測定電圧が上限閾値以上である場合には過充電であると判断し、下限閾値以下である場合には過放電であると判断する。関連する技術はたとえば日本国特許公開公報特開2010-35337号に開示されている。その後、この判断の結果をディジタルのフェイル信号として、低電圧側のマイコンに送信することにより、マイコン側でセル電圧の異常を認識することができる。
 しかしながら、関連する電圧監視装置では、電圧検出用ICからマイコンにディジタルのフェイル信号を送信することにより、過充電の発生、及び過放電の発生を通知しているので、ディジタル信号の通信線にて通信エラーが発生した場合には、過充電或いは過放電の発生をマイコン側に正確に伝送することができなくなるという問題が発生していた。
 本発明は、このような課題を解決するためになされたものであり、本発明によれば、電圧異常検出手段で検出された過充電、或いは過放電のデータを確実に監視装置側に伝送することが可能な複数組電池の電圧監視装置を提供することができる。
 本発明の技術的側面によれば、複数のセルを直列に接続して所望の電圧を出力する複数組電池の、各セルの出力電圧の異常を監視する複数組電池の電圧監視装置において、前記複数のセルは複数のブロックに分割され、各ブロック毎に該ブロックに含まれる各セルの電圧異常を検出する電圧異常検出手段が設けられ、前記各電圧異常検出手段は、ブロックに含まれる各セルのセル電圧を検出する電圧検出手段と、前記電圧検出手段で検出されたセル電圧と、予め設定した上限閾値、及び下限閾値とを比較して、各セル電圧が過充電、或いは過放電であるか否かを判定する比較手段と、前記比較手段による判定結果を、ディジタル化したディジタル判定信号、及びアナログ化したアナログ判定信号として送信する送信手段と、を備え、更に、前記送信手段より送信されたディジタル判定信号、及びアナログ判定信号に基づいて、前記各電圧異常検出手段が正常に作動しているか否かを判断する監視手段を備えたことを特徴とする。
本発明の一実施形態に係る複数組電池の電圧監視装置の構成を示すブロック図である。 本発明の一実施形態に係る複数組電池の電圧監視装置に設けられる電圧検出用ICの詳細な構成を示すブロック図である。 本発明の一実施形態に係る複数組電池の電圧監視装置の、電圧検出用ICより送信されるディジタル信号、及びアナログ信号を示す波形図である。 本発明の一実施形態に係る複数組電池の電圧監視装置の、電圧検出用ICより送信されるアナログ信号の詳細を示す説明図である。
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る電圧監視装置10、及び複数の単位セルBT1~BT55からなる二次電池13(複数組電池)を示すブロック図、図2は、第1電圧検出用IC(21-1)の詳細な構成を示すブロック図である。本実施形態で採用する二次電池13は、例えば、電気自動車やハイブリッド車両等に用いられるモータを駆動するための高電圧バッテリとして用いられる。
 図1に示すように、本実施形態に係る電圧監視装置10は、絶縁デバイス41,42を介して、高電圧側装置11と低電圧側装置12に分離されている。
 高電圧側装置11は、n個の電圧検出用IC、即ち、第1電圧検出用IC(21-1)~第n電圧検出用IC(21-n)を備えている。そして、各電圧検出用IC(21-1)~(21-n)は、複数の単位セルに接続される電圧異常検出部であり、各単位セルの電圧を測定する。
 低電圧側装置12は、CPU32(監視手段)を備えたマイクロコントローラ等のマイコン31を有している。CPU32は、高電圧側装置11の各電圧検出用IC(21-1)~第n電圧検出用IC(21-n)で検出される各単位セルの電圧を受信して、各単位セルの電圧を図示省略のディスプレイ等に表示すると共に、各電圧検出用IC(21-1)~第n電圧検出用IC(21-n)より送信される過充電、過放電データ(フェイル信号)に基づいて、単位セルの電圧が過充電状態、或いは過放電状態となった場合にこれを報知する。
 また、各電圧検出用IC(21-1)~(21-n)は、それぞれ、ADコンバータ(A/D変換手段)26を備えており(図2参照)、基準電源22より出力されるA/D変換用の電圧Vrefを用いて、各電圧検出用IC(21-1)~(21-n)のセル電圧(アナログの電圧信号)をディジタルの電圧信号に変換する。
 また、各電圧検出用IC(21-1)~(21-n)は、それぞれ隣合うものどうしがディジタル通信線L1,L2を介して接続され、更に、絶縁デバイス42を介してマイコン31に接続されている。従って、マイコン31より出力されるTX信号(例えば、電圧検出指令信号)は、ディジーチェーン通信により各電圧検出用IC(21-1)~(21-n)に送信され、各電圧検出用IC(21-1)~(21-n)より出力されるRX信号(例えば、過充電、過放電を示すフェイル信号)は、ディジーチェーン通信によりマイコン31に送信される。
 更に、各電圧検出用IC(21-1)~(21-n)は、それぞれ隣合うものどうしがアナログ通信線L3を介して接続され、更に、絶縁デバイス41を介してマイコン31のCPU32に接続されている。
 図2を参照して各電圧検出用IC(21-1)~(21-n)の詳細な構成について説明する。なお、ここでは第1電圧検出用IC(21-1)を例に挙げて説明する。
 図2に示すように、第1電圧検出用IC(21-1)は、複数の単位セルBT1~BT11(ここでは、一例として11個としている)と接続され、これらの出力電力を検出し、且つ検出した各単位セルBT1~BT11の電圧信号を1系統の時系列的な信号に変換するマルチプレクサ51と、マルチプレクサ51より出力される電圧信号(アナログ信号)をディジタル化するADコンバータ52と、該ADコンバータ52でディジタル化された電圧信号を記憶するセル電圧記憶部53を有している。
 また、セル電圧の過充電を判定するための上限閾値、及び過放電を判定するための下限閾値を記憶する閾値記憶部55と、各単位セルBT1~BT11のセル電圧と、閾値記憶部55に記憶されている上限閾値、及び下限閾値を比較する比較器54(比較手段)と、比較器54による判定結果を記憶する判定結果レジスタ56と、DAコンバータ57、及びディジタル通信回路58を備えている。
 判定結果レジスタ56は、ある単位セルのセル電圧が上限閾値以上となった場合には、この単位セルを過充電状態であると判定し、セル電圧が下限閾値以下となった場合には、この単位セルを過放電状態であると判定して、この判定結果を記憶する。
 DAコンバータ57は、判定結果レジスタ56に記憶されている判定結果のデータ(ディジタル信号)をアナログ信号に変換し、図1に示すアナログ通信線L3、及び絶縁デバイス41を経由してマイコン31のCPU32に送信する。この際、DAコンバータ57は、通信の周期をx[ms]とした場合に、図3(b)に示すように、この周期xを時間T1、T2に分割し、各時間T1,T2における出力レベルの「Hi」、「Lo」の組み合わせにより、過充電、及び過放電を示す信号(フェイル信号)を生成する。
 本実施形態では、図4に示すように、時間T1,T2が共にHiである場合には、異常無しとし、時間T1がLo、時間T2がHiである場合には、過充電が発生していることを示し、時間T1がHi、時間T2がLoである場合には、過放電が発生していることを示し、時間T1,T2が共にLoである場合には、過充電及び過放電の双方が発生していることを示す。なお、フェイル信号を決める手法は、図4に示す例に限定されるものではない。
 ディジタル通信回路58は、所定のディジタル通信方式を用い、通信周期x[ms]でセル電圧記憶部53に記憶されている電圧データ、及び判定結果レジスタ56に記憶されている判定結果のデータを送信する。その結果、例えば、図3(a)に示すように、「1」、「0」で変化するディジタル信号が図1に示すディジタル通信線L2、及び絶縁デバイス42を経由してマイコン31のCPU32に送信される。また、図3(a)に示すデータ列のうち、例えば、「d1」に示すデータが、各単位セルBT1~BT11の過充電、過放電を示す信号(フェイル信号)とされている。
 上述のように構成された本実施形態に係る電圧監視装置の動作について説明する。初めに、CPU32は、予め設定したx[ms]の周期で、絶縁デバイス42及びディジタル通信線L1を介して、各電圧検出用IC(21-1)~(21-n)に電圧検出指令信号を送信する。
 各電圧検出用IC(21-1)~(21-n)は、電圧検出指令信号を受信すると、各単位セルBT1~BT11の電圧をADコンバータ52でディジタル化し、ディジタル化した電圧信号をセル電圧記憶部53に記憶する。その後、比較器54において、セル電圧記憶部53に記憶されてる各単位セルBT1~BT11の電圧信号と、閾値記憶部55に記憶されている上限閾値、及び下限閾値と比較し、各単位セルBT1~BT11の電圧が過充電であるか(上限閾値以上であるか)、或いは過放電であるか(下限閾値以下であるか)を判定する。
 そして、この判定結果は、判定結果レジスタ56に一旦記憶され、その後、DAコンバータ57、及びディジタル通信回路58に出力される。
 DAコンバータは、判定結果レジスタ56にて判定された各単位セルBT1~BT11の過充電状態、或いは過放電状態のデータに基づいて、図3(b)に示す如くの「Hi」、「Lo」の2つのレベルを有するフェイル信号を生成する。例えば、各単位セルBT1~BT11の全てが正常な電圧である場合には、時間T1,T2共に「Hi」とし、各単位セルBT1~BT11のうち、少なくとも1つが過充電であり、過放電の単位セルが存在しない場合には時間T1を「Lo」、時間T2を「Hi」とし、各単位セルBT1~BT11のうち、少なくとも1つが過放電であり、過充電の単位セルが存在しない場合には時間T1を「Hi」、時間T2を「Lo」とし、各単位セルBT1~BT11のうち、少なくとも1つが過充電であり、少なくとも1つが過放電である場合には、時間T1,T2共に「Lo」とする。
 そして、このフェイル信号をアナログ通信線L3、及び絶縁デバイス41を経由してCPU32に送信する。
 他方、ディジタル通信回路58は、所定のディジタル通信方式により、セル電圧記憶部53に記憶されている電圧信号、及び判定結果レジスタ56に記憶されているフェイル信号を、ディジタル通信線L2、及び絶縁デバイス41を経由してCPU32に送信する。
 そして、CPU32は、アナログ通信線L3を介して送信されるアナログのフェイル信号と、ディジタル通信線L2を介して送信されるディジタルのフェイル信号を受信し、これらの双方のフェイル信号に基づいて、各電圧検出用IC(21-1)~(21-n)に接続された単位セルに過充電、或いは過放電が発生しているか否かを判定する。この判定処理では、アナログのフェイル信号とディジタルのフェイル信号の双方が一致している場合に過充電、過放電を判定する。また、双方のフェイル信号が一致しない場合には、通信エラーが発生しているものと見なして、警報信号等により操作者に通知する。従って、通信線L1~L3に異常が発生した場合であっても、確実に各単位セルの過充電、過放電を検出することができる。
 このようにして、本実施形態に係る電圧監視装置10では、各電圧検出用IC(21-1)~(21-n)で検出される各単位セルの過充電、過放電を示すフェイル信号を、ディジタル信号、及びアナログ信号の双方でCPU32に送信する。そして、CPU32では、アナログのフェイル信号と、ディジタルのフェイル信号が一致する場合に、単位セルに過充電、過放電が発生していると判断する。また、双方のフェイル信号が一致しない場合には、通信線L1~L3を経由するデータ通信にエラーが発生しているものと判断して、警報信号等により操作者に通知する。
 従って、単位セルに過充電、或いは過放電が発生していることを確実に認識することができ、過充電、過放電の検出精度を著しく向上させることができる。更に、通信線L1~L3での通信にエラーが発生していることを即時に操作者に報知することができる。
 また、本実施形態では、通常用いられるディジタル信号による通信に加えて、アナログ信号によるフェイル信号を用いており、ディジタル信号自体を冗長化する構成ではないので、回路規模を小型化することができ、且つコストアップを抑えることができる。
 以上、本発明の複数組電池の電圧監視装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
 本発明に係る複数組電池の電圧監視装置では、各電圧異常検出手段(例えば、電圧検出用IC(21-1)~(21-n))で検出される各単位セルの過充電、過放電を示すフェイル信号を、ディジタル信号、及びアナログ信号の双方に変換し、アナログのフェイル信号、及びディジタルのフェイル信号の双方を監視手段(例えば、CPU32)に送信する。そして、監視手段では、アナログのフェイル信号と、ディジタルのフェイル信号が一致する場合に、単位セルに過充電、過放電が発生していると判断する。また、双方のフェイル信号が一致しない場合には、電圧異常検出手段と監視手段を接続する通信線(例えば、通信線L1~L3)に通信エラーが発生しているものと判断する。
 従って、単位セルに過充電、或いは過放電が発生していることを確実に認識することができ、過充電、過放電の検出精度を著しく向上させることができる。更に、通信線に通史エラーが発生している場合には、これを即時に認識することができる。
 本発明は、複数組電池に設けられる単位セルの過充電、過放電を高精度に検出する上で極めて有用である。
 (米国指定)
 本国際特許出願は米国指定に関し、2010年10月14日に出願された日本国特許出願第2010-231205号(2010年10月14日出願)について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。

Claims (4)

  1.  複数のセルを直列に接続して所望の電圧を出力する複数組電池の、各セルの出力電圧の異常を監視する複数組電池の電圧監視装置が、
     前記複数のセルは複数のブロックに分割され、各ブロック毎に該ブロックに含まれる各セルの電圧異常を検出する電圧異常検出部であって、
      ブロックに含まれる各セルのセル電圧を検出する電圧検出器と、
      前記電圧検出器で検出されたセル電圧と、予め設定した上限閾値、及び下限閾値とを比較して、各セル電圧が過充電、或いは過放電であるか否かを判定する比較器と、
      前記比較手段による判定結果を、ディジタル化したディジタル判定信号、及びアナログ化したアナログ判定信号として送信する送信器とを備えるものと、
     前記送信器より送信されたディジタル判定信号、及びアナログ判定信号に基づいて、前記各電圧異常検出部が正常に作動しているか否かを判断する監視手段と
    を具備することを特徴とする複数組電池の電圧監視装置。
  2.  前記監視手段は、前記ディジタル判定信号に基づく各セルの過充電、過放電の情報と、前記アナログ判定信号に基づく各セルの過充電、過放電の情報との一致、不一致を確認することにより、前記各電圧異常検出手段との間の通信線にて通信エラーが発生しているか否かを判断することを特徴とする請求項1に記載の複数組電池の電圧監視装置。
  3.  前記監視手段は、前記ディジタル判定信号に基づく各セルの過充電、過放電の情報と、前記アナログ判定信号に基づく各セルの過充電、過放電の情報とが不一致である場合に、警報信号を出力することを特徴とする請求項2に記載の複数組電池の電圧監視装置。
  4.  前記電圧異常検出手段は、高電圧側回路内に設けられ、前記監視手段は、前記高電圧側回路と絶縁インタフェースを介して接続される低電圧側回路内に設けられることを特徴とする請求項1~請求項3のいずれか1項に記載の複数組電池の電圧監視装置。
PCT/JP2011/073383 2010-10-14 2011-10-12 複数組電池の電圧監視装置 WO2012050109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11832544.8A EP2629104B1 (en) 2010-10-14 2011-10-12 Voltage monitoring device of plural assembly battery
CN201180049787.5A CN103154748B (zh) 2010-10-14 2011-10-12 用于组电池的电压监控装置
US13/859,953 US9335381B2 (en) 2010-10-14 2013-04-10 Voltage monitoring apparatus for plural battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231205 2010-10-14
JP2010231205A JP5670693B2 (ja) 2010-10-14 2010-10-14 組電池の電圧監視装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/859,953 Continuation US9335381B2 (en) 2010-10-14 2013-04-10 Voltage monitoring apparatus for plural battery

Publications (1)

Publication Number Publication Date
WO2012050109A1 true WO2012050109A1 (ja) 2012-04-19

Family

ID=45938338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073383 WO2012050109A1 (ja) 2010-10-14 2011-10-12 複数組電池の電圧監視装置

Country Status (5)

Country Link
US (1) US9335381B2 (ja)
EP (1) EP2629104B1 (ja)
JP (1) JP5670693B2 (ja)
CN (1) CN103154748B (ja)
WO (1) WO2012050109A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082152A (ja) * 2012-10-18 2014-05-08 Yazaki Corp 電圧検出装置
JP5713094B2 (ja) * 2013-06-06 2015-05-07 株式会社豊田自動織機 電池監視装置
DE102013215968A1 (de) 2013-08-13 2015-03-12 Robert Bosch Gmbh Elektromechanischer Adapter
KR101658865B1 (ko) * 2014-01-27 2016-09-22 주식회사 엘지화학 통신 에러로부터 잘못된 제어 알고리즘의 수행을 방지하는 배터리 관리 장치
FR3042282B1 (fr) * 2015-10-12 2018-11-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme electronique de controle d'une batterie electrique
US10418826B2 (en) * 2015-11-30 2019-09-17 Makita Corporation Battery device and charging device
CN105762870A (zh) * 2016-03-30 2016-07-13 合肥联宝信息技术有限公司 具有保护预警功能的电池及具有该电池的电子设备
CN107703350A (zh) * 2017-09-07 2018-02-16 上海斐讯数据通信技术有限公司 一种设备的电压监测***和方法
KR102474424B1 (ko) * 2017-10-31 2022-12-05 주식회사 엘엑스세미콘 마스터 콘트롤러와 슬레이브 콘트롤러들 간의 통신 방법, 그를 위한 슬레이브 콘트롤러, 및 그를 이용한 배터리 관리 시스템
EP3958005B1 (en) * 2020-07-02 2023-04-05 Contemporary Amperex Technology Co., Limited Battery state estimation method and apparatus, and device, battery system and storage medium
KR20220013167A (ko) * 2020-07-24 2022-02-04 주식회사 엘지에너지솔루션 이상 셀 진단 방법 및 이를 적용한 배터리 시스템
ES2910101B2 (es) * 2020-11-11 2023-07-17 Caf Power & Automation S L U Sistema de acumulacion de energia electrica
CN112540218A (zh) * 2020-12-07 2021-03-23 上海卫星工程研究所 卫星总装集成测试厂房装星锂电池组欠压报警装置
CN117207844A (zh) * 2023-10-08 2023-12-12 赛力斯汽车有限公司 一种动态告警方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032907A (ja) * 2001-07-12 2003-01-31 Denso Corp 充電状態検出装置
JP2006064639A (ja) * 2004-08-30 2006-03-09 Renesas Technology Corp 電池電圧監視装置
JP2009089487A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 電池セル用の集積回路および前記集積回路を使用した車両用電源システム
JP2010035337A (ja) 2008-07-29 2010-02-12 Denso Corp 組電池監視制御装置
JP2010231205A (ja) 2009-03-25 2010-10-14 Beijing Boe Optoelectronics Technology Co Ltd 共通電極駆動回路と液晶ディスプレイ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141101A (ja) * 1986-12-03 1988-06-13 Fuji Electric Co Ltd 冗長化制御装置
US5440585A (en) * 1993-06-14 1995-08-08 At&T Corp. Applications of simultaneous analog and digital communication
US6060864A (en) * 1994-08-08 2000-05-09 Kabushiki Kaisha Toshiba Battery set structure and charge/discharge control apparatus for lithium-ion battery
JPH11205217A (ja) * 1998-01-07 1999-07-30 Toshiba Corp アナログモードおよびディジタルモードを選択的に使用する機能を有するデュアルモード無線通信装置
JP2002365038A (ja) * 2001-06-07 2002-12-18 Mitsutoyo Corp デジタルアナログ併用表示型測定器
JP4196250B2 (ja) * 2001-09-18 2008-12-17 株式会社デンソー 組電池制御装置
JP2005318751A (ja) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
US7521896B2 (en) * 2004-07-20 2009-04-21 Panasonic Ev Energy Co., Ltd. Abnormal voltage detector apparatus for detecting voltage abnormality in assembled battery
JP2006062482A (ja) * 2004-08-25 2006-03-09 Honda Motor Co Ltd 船外機の遠隔操作装置
JP4858378B2 (ja) * 2007-09-14 2012-01-18 日本テキサス・インスツルメンツ株式会社 多セル直列電池用のセル電圧監視装置
CN100574915C (zh) * 2007-12-14 2009-12-30 苏州有色金属研究院有限公司 利用前馈网络提高冷轧机厚度控制性能的方法
DE102008057474B4 (de) * 2008-11-14 2012-08-02 Kg Transmitter Components Gmbh Meßumformer
JP5386155B2 (ja) * 2008-11-28 2014-01-15 株式会社日立製作所 蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032907A (ja) * 2001-07-12 2003-01-31 Denso Corp 充電状態検出装置
JP2006064639A (ja) * 2004-08-30 2006-03-09 Renesas Technology Corp 電池電圧監視装置
JP2009089487A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 電池セル用の集積回路および前記集積回路を使用した車両用電源システム
JP2010035337A (ja) 2008-07-29 2010-02-12 Denso Corp 組電池監視制御装置
JP2010231205A (ja) 2009-03-25 2010-10-14 Beijing Boe Optoelectronics Technology Co Ltd 共通電極駆動回路と液晶ディスプレイ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2629104A4

Also Published As

Publication number Publication date
US20130234719A1 (en) 2013-09-12
JP2012084459A (ja) 2012-04-26
JP5670693B2 (ja) 2015-02-18
US9335381B2 (en) 2016-05-10
EP2629104A4 (en) 2017-12-27
CN103154748A (zh) 2013-06-12
EP2629104B1 (en) 2023-02-22
CN103154748B (zh) 2016-01-06
EP2629104A1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2012050109A1 (ja) 複数組電池の電圧監視装置
JP7249129B2 (ja) マスターコントローラとスレーブコントローラ間の通信方法、そのためのスレーブコントローラ、およびそれを用いたバッテリー管理システム
CN105699777B (zh) 用于电池组中的接触点检测的方法和装置
WO2012050100A1 (ja) 複数組電池の電圧測定装置
US8269462B2 (en) State monitoring apparatus for assembled battery
US9885758B2 (en) Voltage monitoring device for assembled battery
US8793087B2 (en) Modular device for protecting and monitoring a battery
US8692510B2 (en) Battery charger, voltage monitoring device and self-diagnosis method of reference voltage circuit
US12040458B2 (en) Slave BMS inspection system and method
US10826138B2 (en) Method and apparatus for contact detection in battery packs
CN105191048A (zh) 异常诊断装置
JP2011038876A (ja) 複数組電池の電圧測定装置
CN113631938B (zh) 用于检测并联电池单元的连接故障的方法和***
KR20040090420A (ko) 잠수함의 전기 배터리를 모니터링하기 위한 장치 및 방법
JP2011076947A (ja) 二次電池装置及び車両
CN113646648B (zh) 检测并联电池单元的连接故障的方法和***
JP7271787B2 (ja) バッテリーパックシミュレーション装置及びこれを用いたバッテリー管理ユニットの点検方法
US11808816B2 (en) System for obtaining battery state information
TW200743283A (en) Lithium-battery protection method and its apparatus
JP2014134488A (ja) 電池監視装置
KR102376635B1 (ko) 전기차 재사용 배터리를 활용한 무정전 전원 장치
US20230084779A1 (en) Battery system and protection method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049787.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832544

Country of ref document: EP