WO2012049967A1 - Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery - Google Patents

Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2012049967A1
WO2012049967A1 PCT/JP2011/072167 JP2011072167W WO2012049967A1 WO 2012049967 A1 WO2012049967 A1 WO 2012049967A1 JP 2011072167 W JP2011072167 W JP 2011072167W WO 2012049967 A1 WO2012049967 A1 WO 2012049967A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte secondary
functional group
sulfur
secondary battery
Prior art date
Application number
PCT/JP2011/072167
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 堺
圭介 佐藤
絵美 菅原
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CN201180048820.2A priority Critical patent/CN103155247B/en
Priority to KR1020137011754A priority patent/KR101351206B1/en
Priority to JP2012538621A priority patent/JP5877791B2/en
Publication of WO2012049967A1 publication Critical patent/WO2012049967A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode mixture for a nonaqueous electrolyte secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain large energy with a small volume and weight. ing.
  • PVDF Polyvinylidene fluoride
  • Binder resin Binder resin
  • PVDF has excellent electrochemical stability, mechanical properties, slurry properties, and the like.
  • PVDF has weak adhesiveness with a copper foil as a current collector. Therefore, a method has been proposed in which a functional group such as a carboxyl group is introduced into PVDF to improve the adhesiveness with the copper foil (see, for example, Patent Documents 1 to 5).
  • the present invention has been made in view of the above-described problems of the prior art, and can be used when producing a negative electrode for a non-aqueous electrolyte secondary battery that has excellent peel strength between the mixture layer and the current collector.
  • An object is to provide a negative electrode mixture for a non-aqueous electrolyte secondary battery.
  • Another object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery obtained by applying and drying the negative electrode mixture on a current collector.
  • the present invention provides a negative electrode for a nonaqueous electrolyte secondary battery, which is formed from a surface-treated current collector surface-treated with a specific compound and a negative electrode mixture, and has excellent peel strength between the mixture layer and the current collector. With the goal.
  • Another object is to provide a non-aqueous electrolyte secondary battery having the negative electrode.
  • the present inventors have produced a negative electrode for a nonaqueous electrolyte secondary battery containing a specific sulfur-containing organic compound when producing a negative electrode for a nonaqueous electrolyte secondary battery. It has been found that the above problems can be solved by using an agent, and the present invention has been completed. In addition, the present inventors have obtained a nonaqueous electrolyte secondary battery obtained by applying and drying a negative electrode mixture for a nonaqueous electrolyte secondary battery on a surface-treated current collector that has been surface-treated with a specific sulfur-containing organic compound. The negative electrode for use was discovered together that the said subject can be solved.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains a vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent, and the sulfur-containing organic compound is And having at least one functional group containing no sulfur atom.
  • the sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or an ⁇ -position or ⁇ -position carbon atom of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Is preferred.
  • the sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group as the functional group.
  • the sulfur-containing organic compound is preferably at least one sulfur-containing organic compound selected from thiourea analogs and thiomalic acid analogs.
  • the acidic functional group of the vinylidene fluoride-containing polymer having an acidic functional group is selected from a carboxyl group (—CO 2 H), a sulfo group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). It is preferably at least one kind of acidic functional group, and more preferably a carboxyl group.
  • a R A 1650-1800 / A 3000-3100 (1)
  • a 1650-1800 is the absorbance of absorption band derived from the carbonyl group is observed in the range of 1650 ⁇ 1800cm -1
  • a 3000-3100 is detected in the range of 3000 ⁇ 3100 cm -1
  • the vinylidene fluoride-based polymer having an acidic functional group is a copolymer of vinylidene fluoride and a monomer having an acidic functional group, and a structural unit derived from a monomer having an acidic functional group in the copolymer.
  • the random rate is preferably 40% or more.
  • the sulfur-containing organic compound is contained in an amount of 0.01 to 5% by mass per 100% by mass of the vinylidene fluoride polymer having an acidic functional group.
  • the electrode active material is preferably 70 to 99.9 parts by mass per 100 parts by mass in total of the electrode active material and the vinylidene fluoride-based polymer having an acidic functional group.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the present invention (first aspect) is obtained by applying and drying the negative electrode mixture for a nonaqueous electrolyte secondary battery on a current collector.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the present invention (second embodiment) is a fluoridation having an acidic functional group on a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound.
  • the sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or an ⁇ -position or ⁇ -position carbon atom of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Is preferred.
  • the sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group as the functional group.
  • the sulfur-containing organic compound is preferably at least one sulfur-containing organic compound selected from thiourea analogs and thiomalic acid analogs.
  • the nonaqueous electrolyte secondary battery of the present invention has the above-described negative electrode for a nonaqueous electrolyte secondary battery.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention can be used for producing a negative electrode for a non-aqueous electrolyte secondary battery having excellent peel strength between the mixture layer and the current collector. Moreover, since the negative electrode for nonaqueous electrolyte secondary batteries of this invention is obtained by apply
  • the negative electrode for a non-aqueous electrolyte secondary battery according to another aspect of the present invention is obtained by applying a negative electrode mixture for a non-aqueous electrolyte secondary battery to a surface-treated current collector surface-treated with a specific sulfur-containing organic compound. Since it is formed by drying, the peel strength between the mixture layer and the current collector is excellent.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains a vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material and an organic solvent, and the sulfur-containing organic compound is sulfur. It has at least one functional group containing no atoms. Moreover, the negative electrode for nonaqueous electrolyte secondary batteries of this invention is obtained by apply
  • negative electrode mixture for nonaqueous electrolyte secondary batteries
  • negative electrode mixture the negative electrode for nonaqueous electrolyte secondary batteries
  • negative electrode also simply referred to as “negative electrode”.
  • the negative electrode mixture for non-aqueous electrolyte secondary batteries of the present invention contains a vinylidene fluoride polymer having an acidic functional group as a binder resin (binder).
  • the vinylidene fluoride polymer having an acidic functional group is a polymer containing an acidic functional group in a polymer and obtained using at least vinylidene fluoride as a monomer.
  • the vinylidene fluoride polymer having an acidic functional group is usually a polymer obtained by copolymerizing vinylidene fluoride and an acidic functional group-containing monomer and, if necessary, other monomers.
  • vinylidene fluoride polymer having an acidic functional group one kind may be used alone, or two or more kinds may be used.
  • Examples of the acidic functional group possessed by the vinylidene fluoride polymer having an acidic functional group include a carboxyl group (—CO 2 H), a sulfo group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ).
  • a carboxyl group is preferred.
  • the vinylidene fluoride-based polymer having an acidic functional group usually has a structural unit derived from vinylidene fluoride per 100 parts by weight of the polymer, usually 80 parts by weight or more, preferably 85 parts by weight or more, and usually 99.9.
  • the vinylidene fluoride-based polymer having an acidic functional group used in the present invention is usually (1) a method of copolymerizing vinylidene fluoride and an acidic functional group-containing monomer and, if necessary, another monomer (hereinafter referred to as (1) (2), (2) polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and another monomer, polymerizing vinylidene fluoride polymer and acidic functional group-containing monomer, A method of grafting an acidic functional group-containing polymer onto a vinylidene fluoride polymer using an acidic functional group-containing polymer obtained by copolymerizing an acidic functional group-containing monomer and another monomer (hereinafter, (Also referred to as the method of (2)), (3) after polymerization of vinylidene fluoride or copolymerization of vinylidene fluoride and another monomer to obtain a vinylidene fluoride polymer, the vinylidene fluoride The system
  • the vinylidene fluoride polymer having an acidic functional group used in the present invention has an acidic functional group such as a carboxyl group, the adhesiveness to the current collector is higher than that of polyvinylidene fluoride having no acidic functional group. Improved.
  • the method (1) may be used from the viewpoint of the number of steps and production cost.
  • the vinylidene fluoride polymer having an acidic functional group is preferably a copolymer of vinylidene fluoride and an acidic functional group-containing monomer.
  • the vinylidene fluoride polymer having an acidic functional group used in the present invention contains vinylidene fluoride, usually 80 to 99.9 parts by weight, preferably 95 to 99.7 parts by weight, and an acidic functional group-containing monomer. Usually 0.1 to 20 parts by weight, preferably 0.3 to 5 parts by weight (provided that the total of vinylidene fluoride and acidic functional group-containing monomers is 100 parts by weight) copolymerized vinylidene fluoride It is a polymer.
  • the vinylidene fluoride polymer having an acidic functional group may be a polymer obtained by copolymerizing another monomer in addition to the vinylidene fluoride and the acidic functional group-containing monomer. When other monomers are used, the total amount of the vinylidene fluoride and the acidic functional group-containing monomer is 100 parts by weight, and the other monomer is usually used in an amount of 0.1 to 20 parts by weight.
  • Examples of the acidic functional group-containing monomer include a carboxyl group-containing monomer, a sulfo group-containing monomer, and a phosphonic acid group-containing monomer, which were obtained by applying and drying the negative electrode mixture of the present invention on a current collector. From the viewpoint of peel strength between the mixture layer and the current collector in the negative electrode, a carboxyl group-containing monomer is preferred.
  • carboxyl group-containing monomer unsaturated monobasic acid, unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
  • Examples of the unsaturated monobasic acid include acrylic acid and methacrylic acid.
  • Examples of the unsaturated dibasic acid include maleic acid and citraconic acid.
  • the unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
  • the carboxyl group-containing monomer is preferably at least one monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, More preferred is at least one monomer selected from citraconic acid monomethyl ester, acrylic acid, and methacrylic acid.
  • sulfo group-containing monomer examples include vinyl sulfonic acid, 4-sulfophenyl acrylate, 2-acrylamido-4-methylpropene sulfonic acid, and the like.
  • Examples of the phosphonic acid group-containing monomer include vinylphosphonic acid and mono (2-acryloyloxyethyl) acid phosphate.
  • the other monomer that can be copolymerized with the vinylidene fluoride and the acidic functional group-containing monomer means a monomer other than the vinylidene fluoride and the acidic functional group-containing monomer.
  • Examples of the other monomer include vinylidene fluoride.
  • fluorine-based monomer copolymerizable with vinylidene fluoride examples include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether. be able to.
  • the said other monomer may be used individually by 1 type, and may use 2 or more types.
  • methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be employed. From the viewpoint of ease of post-treatment, aqueous suspension polymerization and emulsion polymerization are preferred, and aqueous suspension is preferred. Turbid polymerization is particularly preferred.
  • suspending agents such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, gelatin, etc.
  • Polyvinylidene fluoride and acidic functional group-containing monomer, other monomer copolymerized as required 100 parts by weight, usually 0.005 to 1.0 part by weight, preferably 0.01 to 0 Add in the range of 4 parts by weight.
  • Polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (perfluoroacyl) Peroxides can be used.
  • the amount used is usually 0.1 to 5 when the total amount of monomers used for copolymerization (vinylidene fluoride, acidic functional group-containing monomers, and other monomers copolymerized as necessary) is 100 parts by weight. Part by weight, preferably 0.3 to 2 parts by weight.
  • a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, and the resulting fluoride having an acidic functional group
  • the amount used is usually 0.1 when all the monomers used for copolymerization (vinylidene fluoride, acidic functional group-containing monomer, and other monomers copolymerized as required) are 100 parts by weight. 1 to 5 parts by weight, preferably 0.5 to 3 parts by weight.
  • the total amount of monomers used for copolymerization is usually in the weight ratio of the total monomer: water Is 1: 1 to 1:10, preferably 1: 2 to 1: 5, the polymerization is at a temperature of 10 to 80 ° C., the polymerization time is 10 to 100 hours, and the pressure during the polymerization is usually under pressure. Preferably, it is 2.0 to 8.0 MPa-G.
  • vinylidene fluoride is polymerized by polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and another monomer.
  • a polymer is obtained.
  • the polymerization or copolymerization is usually performed by suspension polymerization or emulsion polymerization.
  • an acidic functional group-containing polymer is obtained by polymerizing an acidic functional group-containing monomer or copolymerizing an acidic functional group-containing monomer and another monomer.
  • the acidic functional group-containing polymer is usually obtained by emulsion polymerization or suspension polymerization.
  • the vinylidene fluoride polymer having an acidic functional group is obtained by grafting the acidic functional group-containing polymer onto the vinylidene fluoride polymer using the vinylidene fluoride polymer and the acidic functional group-containing polymer.
  • the grafting may be performed using a peroxide or may be performed using radiation.
  • a mixture of a vinylidene fluoride polymer and an acidic functional group-containing polymer is added in the presence of the peroxide. This is done by heat treatment.
  • the vinylidene fluoride polymer having an acidic functional group used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of a resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter).
  • a value in the range of 0.5 to 5.0 dl / g is preferable, and a value in the range of 1.0 to 4.0 dl / g is more preferable. If it is the viscosity within the said range, it can use suitably for the negative mix for nonaqueous electrolyte secondary batteries.
  • Inherent viscosity ⁇ i is calculated by dissolving 80 mg of vinylidene fluoride polymer having an acidic functional group in 20 ml of N, N-dimethylformamide and using an Ubbelohde viscometer in a constant temperature bath at 30 ° C. It can be carried out.
  • ⁇ i (1 / C) ⁇ ln ( ⁇ / ⁇ 0 )
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of the solvent N, N-dimethylformamide alone
  • C is 0.4 g / dl.
  • the vinylidene fluoride polymer having an acidic functional group has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) usually in the range of 50,000 to 2,000,000, preferably 20 It ranges from 10,000 to 1.5 million.
  • GPC gel permeation chromatography
  • the acidic functional group of the vinylidene fluoride polymer having an acidic functional group is a carboxyl group
  • the absorbance ratio (A R ) represented by 1) is preferably in the range of 0.1 to 2.0, more preferably 0.3 to 1.7.
  • AR is less than 0.1
  • the adhesion to the current collector may be insufficient.
  • a R exceeds 2.0
  • the electrolytic solution resistance of the resulting polymer tends to decrease.
  • the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer.
  • a R A 1650-1800 / A 3000-3100 (1)
  • a 1650-1800 is the absorbance of the absorption band derived from the carbonyl group which is detected in the range of 1650 ⁇ 1800cm -1
  • a 3000-3100 is detected in the range of 3000 ⁇ 3100 cm -1
  • It is the absorbance of the absorption band derived from the CH structure.
  • a R becomes a measure of the abundance of the carbonyl group of the vinylidene fluoride polymer having an acidic functional group, the measure of the abundance of the resulting carboxyl group.
  • the vinylidene fluoride-containing polymer having an acidic functional group is a copolymer of vinylidene fluoride and a monomer having an acidic functional group, and the constitution derived from the monomer having an acidic functional group in the copolymer
  • the unit random rate is preferably 40% or more, and more preferably 60% or more. Although the details are unknown if the random ratio is within the above range, it is preferable because the uniformity of the polymer chain is improved and the acidic functional group interacts with the sulfur-containing organic compound efficiently.
  • the random rate indicates how much of the structural unit derived from the acidic functional group-containing monomer present in the vinylidene fluoride-based polymer having an acidic functional group is dispersed in the polymer chain. It is an indicator. It means that the lower the random rate, the more the structural units derived from the acidic functional group-containing monomer are continuously present. In other words, the acidic functional group-containing monomers tend to have a polymerized chain. On the other hand, the higher the random ratio, the more structural units derived from the acidic functional group-containing monomer exist independently.In other words, the structural units derived from the acidic functional group-containing monomer do not continue and are linked to the structural unit derived from vinylidene fluoride. Tend to.
  • the random ratio of the vinylidene fluoride polymer having an acidic functional group is obtained by dividing the abundance [mol%] of the acidic functional group-containing monomer chain by the abundance [mol%] of the structural unit derived from the acidic functional group-containing monomer.
  • Random rate [%] Abundance of acidic functional group-containing monomer chain [mol%] / Abundance of structural unit derived from acidic functional group-containing monomer [mol%] ⁇ 100).
  • the abundance of the structural unit derived from vinylidene fluoride shall be 100 mol%.
  • the abundance of the acidic functional group-containing monomer chain can be determined by NMR spectrum, and the abundance of the structural unit derived from the acidic functional group-containing monomer can be determined by, for example, a neutralization titration method.
  • the random ratio can be obtained by the following method.
  • a method for producing a vinylidene fluoride-based polymer having an acidic functional group having a random ratio within the above range for example, a method of continuously adding an acidic functional group-containing monomer when performing the aforementioned suspension polymerization or the like Is mentioned.
  • the negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains a sulfur-containing organic compound.
  • the sulfur-containing organic compound contained in the negative electrode mixture of the present invention those having at least one functional group not containing a sulfur atom are used. Since the negative electrode mixture of the present invention contains the sulfur-containing organic compound, it can be used when producing a negative electrode for a non-aqueous electrolyte secondary battery that has excellent peel strength between the mixture layer and the current collector.
  • the sulfur-containing organic compound used in the present invention includes a sulfur atom in which the carbon atom to which the sulfur atom is bonded, or the ⁇ -position or ⁇ -position of the carbon atom to which the sulfur atom is bonded, and the functional group are bonded.
  • An organic compound is preferable, and a sulfur atom-containing organic compound in which the carbon atom to which the sulfur atom is bonded or the carbon atom at the ⁇ -position of the carbon atom to which the sulfur atom is bonded and the functional group is bonded is more preferable, and the sulfur atom is bonded.
  • a sulfur-containing organic compound in which the carbon atom to be bonded to the functional group is particularly preferable. These sulfur-containing organic compounds are preferable because they are easily chemically adsorbed to a current collector such as a copper foil.
  • the said functional group may be contained 1 type in the molecule
  • examples of the functional group include a carbonyl group, a hydroxyl group, and an amino group.
  • the sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group from the viewpoint of interaction with an acidic functional group in the polymer.
  • the sulfur-containing organic compound is selected from thiourea analogs and thiomalic acid analogs from the viewpoint of the peel strength between the negative electrode mixture layer formed using the negative electrode mixture of the present invention and the current collector. At least one sulfur-containing organic compound is preferred.
  • Examples of the thiourea analogues include compounds represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and the hydrocarbon group includes a part of the hydrogen atoms contained in the group, It may be substituted with at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group.
  • R 3 is an atomic group having a molecular weight of 150 or less, including at least two elements selected from hydrogen, carbon, nitrogen, oxygen and sulfur.
  • R 1 and R 2 may be bonded to each other to form a ring, and R 1 and R 3 may be bonded to each other to form a ring.
  • Examples of the thiomalic acid-related compound include compounds represented by the following general formula (4).
  • R 4 is a hydrogen atom, a hydroxyl group, or a hydrocarbon having 1 to 6 carbon atoms, and the hydrocarbon group includes a carbonyl group, a hydroxyl group, It may be substituted with at least one functional group selected from a group and an amino group.
  • R 5 is an atomic group having a molecular weight of 150 or less, containing at least two elements selected from hydrogen, carbon, nitrogen, oxygen and sulfur. R 4 and R 5 may be bonded to each other to form a ring.
  • thiomalic acid analog a compound represented by the formula (5) can be used.
  • the sulfur-containing organic compound used in the present invention usually has a molecular weight of 64 to 500.
  • the negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains an electrode active material.
  • the electrode active material is not particularly limited, and conventionally known electrode active materials for negative electrodes can be used, and specific examples include carbon materials, metal / alloy materials, metal oxides, etc. Material is preferred.
  • the carbon material artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon, or the like is used. Moreover, the said carbon material may be used individually by 1 type, or may use 2 or more types.
  • the energy density of the battery can be increased.
  • the artificial graphite can be obtained, for example, by carbonizing an organic material, heat-treating it at a high temperature, pulverizing and classifying it.
  • artificial graphite MAG series (manufactured by Hitachi Chemical Co., Ltd.), MCMB (manufactured by Osaka Gas Chemical), etc. are used.
  • the specific surface area of the electrode active material is preferably 0.3 to 10 m 2 / g, and more preferably 0.5 to 6 m 2 / g.
  • the specific surface area is less than 0.3 m 2 / g, even when a conventional binder is used, it is difficult for the binder to be taken into the active material, and sufficient adhesiveness is ensured. Therefore, the effect of the present invention is small. If the specific surface area exceeds 10 m 2 / g, the amount of decomposition of the electrolytic solution increases and the initial irreversible capacity increases, which is not preferable.
  • the specific surface area of the electrode active material can be determined by a nitrogen adsorption method.
  • the negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains an organic solvent.
  • the organic solvent those having an action of dissolving the vinylidene fluoride-based polymer having the acidic functional group are used, and preferably a solvent having polarity is used.
  • Specific examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, triethyl phosphate.
  • N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide are preferable.
  • the organic solvent may be used alone or in combination of two or more.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte having the negative electrode from the viewpoint of peel strength between the negative electrode mixture layer and the current collector formed using the negative electrode mixture of the present invention.
  • the electrode active material is preferably 70 to 99.9 parts by mass, and 80 to 99.5 parts by mass per 100 parts by mass in total of the vinylidene fluoride polymer having an acidic functional group and the electrode active material. More preferably, it is 85 to 99 parts by mass, and the vinylidene fluoride polymer having an acidic functional group is preferably 0.1 to 30 parts by mass, and 0.5 to 20 parts by mass. The amount is more preferably part by mass, and particularly preferably 1 to 15 parts by mass. Further, when the total of the vinylidene fluoride polymer having an acidic functional group and the electrode active material is 100 parts by mass, the organic solvent is preferably 3 to 300 parts by mass, and 4 to 200 parts by mass. Is more preferable.
  • the peel strength between the negative electrode mixture layer formed using the negative electrode mixture of the present invention and the current collector is excellent.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains other components other than the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent. It may be. As other components, a conductive aid such as carbon black, a pigment dispersant such as polyvinylpyrrolidone, and the like may be included. As said other component, polymers other than the vinylidene fluoride type polymer which has the said acidic functional group may be included.
  • Examples of the other polymer include vinylidene fluoride such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-perfluoromethyl vinyl ether copolymer.
  • System polymers When the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains another polymer, it is usually 25 parts by mass or less with respect to 100 parts by mass of the vinylidene fluoride polymer having the acidic functional group. Included in quantity.
  • the viscosity of the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention when measured using an E-type viscometer at 25 ° C. and a shear rate of 2 s ⁇ 1 is usually 2000 to 50000 mPa ⁇ s, Preferably, it is 5000 to 30000 mPa ⁇ s.
  • the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent are made into a uniform slurry. What is necessary is just to mix.
  • the order of mixing is not particularly limited.
  • a method of obtaining a negative electrode mixture for a non-aqueous electrolyte secondary battery by simultaneously mixing all components contained in the negative electrode mixture, a vinylidene fluoride-based polymer having an acidic functional group A non-aqueous electrolyte secondary battery is obtained by dissolving the coalescence in a part of an organic solvent to obtain a binder solution, and adding and mixing the sulfur-containing organic compound, the electrode active material and the remaining organic solvent to the binder solution.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention has two aspects.
  • the negative electrode for nonaqueous electrolyte secondary batteries of the present invention has a current collector and a layer formed from a negative electrode mixture for nonaqueous electrolyte secondary batteries.
  • the negative electrode for a nonaqueous electrolyte secondary battery according to the first aspect is obtained by applying and drying the above-described negative electrode mixture for a nonaqueous electrolyte secondary battery on a current collector.
  • the negative electrode for a nonaqueous electrolyte secondary battery according to the second aspect is a vinylidene fluoride polymer having an acidic functional group on a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound.
  • the sulfur-containing organic compound is the same as the sulfur-containing organic compound contained in the above-described negative electrode mixture for nonaqueous electrolyte secondary batteries of the present invention. Things can be used.
  • the negative electrode for nonaqueous electrolyte secondary batteries of the second aspect as the negative electrode mixture for nonaqueous electrolyte secondary batteries, in the negative electrode mixture for nonaqueous electrolyte secondary batteries of the present invention described above, it contains sulfur. The same thing can be used except the organic compound does not need to contain.
  • coating and drying the negative mix for nonaqueous electrolyte secondary batteries to a collector is used as a mixture Marked as layer.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer.
  • the negative electrode for a nonaqueous electrolyte secondary battery according to the first aspect is characterized by using the negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention, because the negative electrode mixture contains a sulfur-containing organic compound.
  • the peel strength between the current collector and the mixture layer is excellent.
  • a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound as a current collector constituting the negative electrode. Even if it is a case where the mixture which does not contain a sulfur-containing organic compound as a negative electrode mixture is used, it is excellent in the peeling strength of a collector and a mixture layer.
  • the surface treatment method is not particularly limited as long as the sulfur-containing organic compound contacts the surface of the current collector.
  • the sulfur-containing organic compound is ethanol, methanol, acetone, or the like. This is carried out by dissolving in an organic solvent and immersing the current collector in the solution.
  • the current collector immersed in the solution is taken out from the solution and then usually dried and used as a surface-treated current collector. Moreover, you may wash
  • the concentration of the sulfur-containing organic compound in the solution is usually 0.1 to 30 wt%, and the time for immersing the current collector in the solution is usually 1 to 180 minutes.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer is not clear, but the present inventors presume as follows.
  • the sulfur-containing organic compound and a current collector such as a copper foil are in contact.
  • the sulfur-containing organic compound a sulfur-containing organic compound having at least one functional group not containing a sulfur atom is used.
  • a sulfur-containing organic compound having at least one functional group not containing a sulfur atom comes into contact with a current collector such as a copper foil, a self-assembled monolayer is formed on the current collector, and the surface of the current collector is sulfur. It is thought that it coats with the functional group which does not contain an atom.
  • sulfur atoms in the molecule chemisorb to the current collector to form a self-assembled monolayer, and the amino group in the molecule It is thought that it is exposed on the current collector surface.
  • the interaction between the acidic functional group of vinylidene fluoride polymer having acidic functional group and the functional group not containing sulfur atom is the interaction between the current collector such as copper foil and the functional group not containing sulfur atom.
  • the current collector used in the present invention includes, for example, copper, and the shape thereof includes, for example, a metal foil, a metal net, and the like.
  • a copper foil is preferable.
  • the thickness of the current collector is usually 5 to 100 ⁇ m, preferably 5 to 20 ⁇ m.
  • the thickness of the mixture layer is usually 20 to 250 ⁇ m, preferably 20 to 150 ⁇ m.
  • the negative electrode mixture for a non-aqueous electrolyte secondary battery is applied to at least one surface, preferably both surfaces of the current collector.
  • the method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
  • drying performed after the coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes.
  • the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
  • heat treatment may be performed after drying. When heat treatment is performed, it is usually performed at a temperature of 100 to 250 ° C. for 1 to 300 minutes. In addition, although the temperature of heat processing overlaps with the said drying, these processes may be a separate process and the process performed continuously.
  • press processing may be performed.
  • it is usually performed at 1 to 200 MPa-G. It is preferable to perform the press treatment because the electrode density can be improved.
  • the negative electrode for nonaqueous electrolyte secondary batteries of the present invention can be produced.
  • a layer structure of the negative electrode for non-aqueous electrolyte secondary batteries when the negative electrode mixture for non-aqueous electrolyte secondary batteries is applied to one surface of the current collector, a two-layer structure of a mixture layer / current collector When the negative electrode mixture for a nonaqueous electrolyte secondary battery is applied to both sides of the current collector, it has a three-layer structure of a mixture layer / current collector / mixture layer.
  • the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is excellent in the peel strength between the current collector and the mixture layer by using the negative electrode mixture for a non-aqueous electrolyte secondary battery. It is preferable because the electrode is less likely to be cracked or peeled off in the process, etc., leading to improvement in productivity.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer as described above.
  • the peel strength between the current collector and the mixture layer is According to JIS K6854, it is usually 0.5 to 20 gf / mm, preferably 1 to 15 gf / mm, when measured by a 180 ° peel test.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer.
  • Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery of the present invention is characterized by having the negative electrode for a nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention is not particularly limited except that the non-aqueous electrolyte secondary battery has the negative electrode.
  • the electrode for a nonaqueous electrolyte secondary battery is usually used as a negative electrode, and conventionally known ones other than the negative electrode, such as a positive electrode and a separator, can be used.
  • a sample for measurement was prepared by adding 20 ml of N, N-dimethylformamide (DMF) to 80 mg of the polymer obtained in each production example and dissolving by heating at 70 ° C. for 2 hours.
  • the inherent viscosity of the measurement sample was measured at 30 ° C. using an Ubbelohde viscometer manufactured by Kusano Kagaku Co., Ltd.
  • the random ratio of the polymers obtained in the following Production Examples 4 to 6 was calculated by calculating the abundance of acidic functional group-containing monomer chains and the abundance of structural units derived from acidic functional group-containing monomers by the following method. did.
  • NMR measurement of the vinylidene fluoride copolymer was performed using a commercially available heavy DMSO as a measurement solvent as it was and using an AVANCE AC 400FT NMR spectrometer manufactured by Bruker.
  • the abundance of the acidic functional group-containing monomer chain is determined by calculating the peak intensity (integrated value) of F adjacent to the acidic functional group-containing monomer appearing in the vicinity of ⁇ 94 ppm in the 19 F-NMR spectrum, and the peak intensity (integrated value) of all F in the spectrum. Value).
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer A powder.
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer B powder.
  • the polymerization rate was 92%, and the inherent viscosity of the obtained polymer B was 2.2 dl / g.
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer C powder.
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, then dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer D powder.
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer E powder.
  • the polymerization rate is 6%
  • the inherent viscosity of the obtained polymer E is 2.1 dl / g
  • the random rate is 22%.
  • the polymer slurry was heat treated at 95 ° C. for 30 minutes, then dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer D powder.
  • PAA polyacrylic acid
  • PAA1 Wako Pure Chemical Industries, Ltd., Wako first grade Polyacid Acid, weight average molecular weight (Mw) 250,000
  • PAA2 Wako Pure Chemical Industries, Ltd., Wako first grade Polyacrylic Acid, weight average molecular weight (Mw) 1,000, 000 [Example 1] (Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery) 96 parts by weight of artificial graphite (“MCMB” manufactured by Osaka Gas Chemical Co., Ltd., average particle size 22 ⁇ m, specific surface area 0.9 m 2 / g) as negative electrode active material, 4 parts by weight of polymer A as binder, additive 0.02 parts by weight of thiourea and 5.04 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to obtain a negative electrode mixture (1) for a non-aqueous electrolyte secondary battery.
  • MCMB artificial graphite
  • NMP N-methyl-2-
  • the negative electrode mixture (1) for a non-aqueous electrolyte secondary battery was applied to one side of a copper foil having a thickness of about 10 ⁇ m using a bar coater at a coating amount of 10 g, dried at 110 ° C. for 30 minutes, and an electrode structure ( 1) was obtained.
  • the obtained electrode structure (1) was pressed at a pressing pressure of 0.8 t / cm 2 to obtain an electrode (1) (mixture layer thickness 130 ⁇ m).
  • the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
  • Examples 2 to 21 Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery Except that the amounts and types of the negative electrode active material, binder, and additive were changed as described in Tables 1 to 3, the same procedure as in Example 1 was performed, and the negative electrode mixtures for nonaqueous electrolyte secondary batteries (2) to ( 21) was obtained.
  • MAG-D20 means artificial graphite (manufactured by Hitachi Chemical Co., Ltd., “MAG”, average particle size 20 ⁇ m, specific surface area 4.2 m 2 / g).
  • the obtained electrodes (2) to (21) were used as samples, and the peel strength was measured in the same manner as in Example 1.
  • the obtained electrodes (c1) to (c9) were used as samples, and the peel strength was measured in the same manner as in Example 1.
  • Example 2 The same procedure as in Example 1 was conducted except that the negative electrode mixture (1) for nonaqueous electrolyte secondary batteries was changed to the negative electrode mixture (r1) and (r2) for nonaqueous electrolyte secondary batteries, and the electrode (r1) , (R2) was obtained.
  • the obtained electrodes (r1) and (r2) were used as samples, and the peel strength was measured in the same manner as in Example 1.
  • the negative electrode mixture (c10) for a non-aqueous electrolyte secondary battery was applied to one side of an aluminum foil having a thickness of about 15 ⁇ m using a bar coater at a coating amount of 20 g and dried at 110 ° C. for 30 minutes to obtain an electrode (c10). Obtained.
  • the peel strength between the mixture layer and the current collector was measured by a 90 ° peel test in accordance with JIS K6854.
  • the negative electrode mixture (c11) for a non-aqueous electrolyte secondary battery was applied to one side of an aluminum foil having a thickness of about 15 ⁇ m using a bar coater at a coating amount of 20 g and dried at 110 ° C. for 30 minutes to form an electrode (c11). Obtained.
  • the peel strength between the mixture layer and the current collector was measured by a 90 ° peel test in accordance with JIS K6854.
  • Example 22 (Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery) 96 parts by weight of artificial graphite (“MCMB” manufactured by Osaka Gas Chemical Co., Ltd.) as a negative electrode active material, 4 parts by weight of polymer A as a binder, and 5.04 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent Were mixed to obtain a negative electrode mixture (22) for a non-aqueous electrolyte secondary battery.
  • MCMB artificial graphite
  • polymer A as a binder
  • NMP N-methyl-2-pyrrolidone
  • a copper foil having a thickness of about 10 ⁇ m was immersed for 60 minutes.
  • the copper foil immersed in the solution was washed with ethanol and dried at 50 ° C. for 10 minutes to obtain a surface-treated copper foil.
  • the negative electrode mixture (22) for a non-aqueous electrolyte secondary battery was applied to one side of a surface-treated copper foil having a thickness of about 10 ⁇ m using a bar coater at a coating amount of 10 g, dried at 110 ° C. for 30 minutes, and an electrode structure Body (22) was obtained.
  • the obtained electrode structure (22) was pressed at a pressing pressure of 0.8 t / cm 2 to obtain an electrode (22) (mixture layer thickness 130 ⁇ m).
  • the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
  • Example 23 (Production of surface-treated copper foil) A surface-treated copper foil was obtained in the same manner as in Example 22 except that the immersion time was changed from 60 minutes to 10 minutes.
  • An electrode (23) (mixture layer thickness 130 ⁇ m) was obtained in the same manner as in Example 22 except that the surface-treated copper foil obtained by changing the immersion time from 60 minutes to 10 minutes was used.
  • the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.

Abstract

The purpose of the present invention is to provide: a negative electrode for non-aqueous electrolyte secondary batteries, in which the delamination strength between a mix layer and a current collector is excellent; and a negative electrode mix for non-aqueous electrolyte secondary batteries, which enables the production of the negative electrode. This negative electrode for non-aqueous electrolyte secondary batteries can be produced by applying a negative electrode mix onto a current collector and then drying the resulting current collector, wherein the negative electrode mix comprises a vinylidene fluoride polymer which has an acidic functional group, a sulfur-containing organic compound which has at least one functional group containing no sulfur atom, an electrode active material and an organic solvent. Alternatively, this negative electrode can be produced by applying a negative electrode mix for non-aqueous electrolyte secondary batteries onto a surface-treated current collector and then drying the resulting current collector, wherein the surface-treated current collector is produced by treating the surface of a current collector with a sulfur-containing organic compound which has at least one functional group containing no sulfur atom, and wherein the negative electrode mix comprises a vinylidene fluoride polymer which has an acidic functional group, an electrode active material and an organic solvent.

Description

非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
 本発明は、非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池に関する。 The present invention relates to a negative electrode mixture for a nonaqueous electrolyte secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
 近年電子技術の発展はめざましく、各種の機器が小型化、軽量化されている。この電子機器の小型化、軽量化と相まって、その電源となる電池の小型化、軽量化が求められている。小さい容積および重量で大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水電解質二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられている。 In recent years, the development of electronic technology has been remarkable, and various devices have become smaller and lighter. Along with the reduction in size and weight of the electronic device, there is a demand for reduction in size and weight of the battery serving as the power source. Non-aqueous electrolyte secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain large energy with a small volume and weight. ing.
 非水電解質二次電池の負極には、結着剤(バインダー樹脂)として、ポリフッ化ビニリデン(PVDF)が使用されている。PVDFは優れた電気化学安定性、機械物性およびスラリー特性などを有している。しかしながら、PVDFは集電体である銅箔との接着性が弱い。そのため、カルボキシル基等の官能基をPVDF中に導入し、銅箔との接着性を改良する方法が提案されている(例えば、特許文献1~5参照)。 Polyvinylidene fluoride (PVDF) is used as a binder (binder resin) for the negative electrode of the nonaqueous electrolyte secondary battery. PVDF has excellent electrochemical stability, mechanical properties, slurry properties, and the like. However, PVDF has weak adhesiveness with a copper foil as a current collector. Therefore, a method has been proposed in which a functional group such as a carboxyl group is introduced into PVDF to improve the adhesiveness with the copper foil (see, for example, Patent Documents 1 to 5).
 しかしながら、カルボキシル基等の官能基を有するPVDFを結着剤として用いても、銅箔との剥離強度は未だ充分ではなかった。 However, even when PVDF having a functional group such as a carboxyl group is used as a binder, the peel strength from the copper foil has not been sufficient.
特開平6-172452号公報Japanese Patent Application Laid-Open No. 6-172452 特開2005-47275号公報JP 2005-47275 A 特開平9-231977号公報Japanese Patent Laid-Open No. 9-231977 特開昭56-133309号公報JP 56-133309 A 特開2004-200010号公報Japanese Patent Laid-Open No. 2004-200010
 本発明は上記従来技術の有する課題を鑑みてされたものであり、合剤層と集電体との剥離強度に優れる非水電解質二次電池用負極を製造する際に用いることが可能な、非水電解質二次電池用負極合剤を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and can be used when producing a negative electrode for a non-aqueous electrolyte secondary battery that has excellent peel strength between the mixture layer and the current collector. An object is to provide a negative electrode mixture for a non-aqueous electrolyte secondary battery.
 また、該負極合剤を集電体に塗布・乾燥することにより得られる非水電解質二次電池用負極を提供することを目的とする。 Another object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery obtained by applying and drying the negative electrode mixture on a current collector.
 さらに、特定の化合物で表面処理された表面処理集電体と負極合剤とから形成される、合剤層と集電体との剥離強度に優れる非水電解質二次電池用負極を提供することを目的とする。 Furthermore, the present invention provides a negative electrode for a nonaqueous electrolyte secondary battery, which is formed from a surface-treated current collector surface-treated with a specific compound and a negative electrode mixture, and has excellent peel strength between the mixture layer and the current collector. With the goal.
 また、前記負極を有する非水電解質二次電池を提供することを目的とする。 Another object is to provide a non-aqueous electrolyte secondary battery having the negative electrode.
 本発明者らは上記課題を達成するために鋭意研究を重ねた結果、非水電解質二次電池用負極を製造する際に、特定の硫黄含有有機化合物を含む非水電解質二次電池用負極合剤を用いることにより上記課題を解決できることを見出し、本発明を完成させた。また、本発明者らは特定の硫黄含有有機化合物により表面処理された表面処理集電体に、非水電解質二次電池用負極合剤を塗布・乾燥することにより得られる非水電解質二次電池用負極は、上記課題を解決できることを合わせて見出した。 As a result of intensive research to achieve the above-mentioned problems, the present inventors have produced a negative electrode for a nonaqueous electrolyte secondary battery containing a specific sulfur-containing organic compound when producing a negative electrode for a nonaqueous electrolyte secondary battery. It has been found that the above problems can be solved by using an agent, and the present invention has been completed. In addition, the present inventors have obtained a nonaqueous electrolyte secondary battery obtained by applying and drying a negative electrode mixture for a nonaqueous electrolyte secondary battery on a surface-treated current collector that has been surface-treated with a specific sulfur-containing organic compound. The negative electrode for use was discovered together that the said subject can be solved.
 すなわち、本発明の非水電解質二次電池用負極合剤は、酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質および有機溶剤を含有し、前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする。 That is, the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains a vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent, and the sulfur-containing organic compound is And having at least one functional group containing no sulfur atom.
 前記硫黄含有有機化合物が、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位あるいはβ位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物であることが好ましい。 The sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or an α-position or β-position carbon atom of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Is preferred.
 前記硫黄含有有機化合物が、前記官能基として、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基を含むことが好ましい。 The sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group as the functional group.
 前記硫黄含有有機化合物が、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物から選択される少なくとも1種の硫黄含有有機化合物であることが好ましい。 The sulfur-containing organic compound is preferably at least one sulfur-containing organic compound selected from thiourea analogs and thiomalic acid analogs.
 前記酸性官能基を有するフッ化ビニリデン系重合体が有する酸性官能基が、カルボキシル基(‐CO2H)、スルホ基(‐SO3H)、およびホスホン酸基(‐PO32)から選択される少なくとも1種の酸性官能基であることが好ましく、カルボキシル基であることがより好ましい。 The acidic functional group of the vinylidene fluoride-containing polymer having an acidic functional group is selected from a carboxyl group (—CO 2 H), a sulfo group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). It is preferably at least one kind of acidic functional group, and more preferably a carboxyl group.
 前記酸性官能基がカルボキシル基である酸性官能基を有するフッ化ビニリデン系重合体の赤外線吸収スペクトルを測定した際の下記式(1)で表わされる吸光度比(AR)が、0.1~2.0の範囲であることが好ましい。 The absorbance ratio (A R ) represented by the following formula (1) when the infrared absorption spectrum of the vinylidene fluoride-based polymer having an acidic functional group in which the acidic functional group is a carboxyl group is 0.1 to 2 A range of 0.0 is preferable.
 AR=A1650-1800/A3000-3100 ・・・(1)
 (上記式(1)において、A1650-1800は、1650~1800cm-1の範囲に観察されるカルボニル基由来の吸収帯の吸光度であり、A3000-3100は3000~3100cm-1の範囲に検出されるCH構造由来の吸収帯の吸光度である。)
 前記酸性官能基を有するフッ化ビニリデン系重合体が、フッ化ビニリデンと、酸性官能基を有するモノマーとの共重合体であり、該共重合体中の酸性官能基を有するモノマー由来の構成単位のランダム率が、40%以上であることが好ましい。
A R = A 1650-1800 / A 3000-3100 (1)
In (the above formula (1), A 1650-1800 is the absorbance of absorption band derived from the carbonyl group is observed in the range of 1650 ~ 1800cm -1, A 3000-3100 is detected in the range of 3000 ~ 3100 cm -1 The absorbance of the absorption band derived from the CH structure.)
The vinylidene fluoride-based polymer having an acidic functional group is a copolymer of vinylidene fluoride and a monomer having an acidic functional group, and a structural unit derived from a monomer having an acidic functional group in the copolymer. The random rate is preferably 40% or more.
 前記酸性官能基を有するフッ化ビニリデン系重合体100質量%あたり、前記硫黄含有有機化合物を0.01~5質量%含むことが好ましい。 It is preferable that the sulfur-containing organic compound is contained in an amount of 0.01 to 5% by mass per 100% by mass of the vinylidene fluoride polymer having an acidic functional group.
 前記電極活物質と酸性官能基を有するフッ化ビニリデン系重合体との合計100質量部あたり、前記電極活物質が、70~99.9質量部であることが好ましい。 The electrode active material is preferably 70 to 99.9 parts by mass per 100 parts by mass in total of the electrode active material and the vinylidene fluoride-based polymer having an acidic functional group.
 本発明の非水電解質二次電池用負極(第一の態様)は、前記非水電解質二次電池用負極合剤を、集電体に塗布・乾燥することにより得られる。 The negative electrode for a nonaqueous electrolyte secondary battery of the present invention (first aspect) is obtained by applying and drying the negative electrode mixture for a nonaqueous electrolyte secondary battery on a current collector.
 本発明の非水電解質二次電池用負極(第二の態様)は、集電体を、硫黄含有有機化合物で表面処理することにより得られる表面処理集電体に、酸性官能基を有するフッ化ビニリデン系重合体、電極活物質および有機溶剤を含有する非水電解質二次電池用負極合剤を塗布・乾燥することにより得られる負極であり、前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする。 The negative electrode for a nonaqueous electrolyte secondary battery of the present invention (second embodiment) is a fluoridation having an acidic functional group on a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound. A negative electrode obtained by applying and drying a negative electrode mixture for a non-aqueous electrolyte secondary battery containing a vinylidene polymer, an electrode active material, and an organic solvent, wherein the sulfur-containing organic compound is a functional group containing no sulfur atom. It has at least one group.
 前記硫黄含有有機化合物が、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位あるいはβ位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物であることが好ましい。 The sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or an α-position or β-position carbon atom of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Is preferred.
 前記硫黄含有有機化合物が、前記官能基として、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基を含むことが好ましい。 The sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group as the functional group.
 前記硫黄含有有機化合物が、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物から選択される少なくとも1種の硫黄含有有機化合物であることが好ましい。 The sulfur-containing organic compound is preferably at least one sulfur-containing organic compound selected from thiourea analogs and thiomalic acid analogs.
 本発明の非水電解質二次電池は、前述の非水電解質二次電池用負極を有する。 The nonaqueous electrolyte secondary battery of the present invention has the above-described negative electrode for a nonaqueous electrolyte secondary battery.
 本発明の非水電解質二次電池用負極合剤は、合剤層と集電体との剥離強度に優れる非水電解質二次電池用負極を製造する際に用いることが可能である。また、本発明の非水電解質二次電池用負極は、前記負極合剤を集電体に塗布・乾燥することにより得られるため、合剤層と集電体との剥離強度に優れる。 The negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention can be used for producing a negative electrode for a non-aqueous electrolyte secondary battery having excellent peel strength between the mixture layer and the current collector. Moreover, since the negative electrode for nonaqueous electrolyte secondary batteries of this invention is obtained by apply | coating and drying the said negative electrode mixture to a collector, it is excellent in the peeling strength of a mixture layer and a collector.
 さらに、本発明の別の態様の非水電解質二次電池用負極は、特定の硫黄含有有機化合物で表面処理された表面処理集電体に、非水電解質二次電池用負極合剤を塗布・乾燥することにより形成されるため、合剤層と集電体との剥離強度に優れる。 Furthermore, the negative electrode for a non-aqueous electrolyte secondary battery according to another aspect of the present invention is obtained by applying a negative electrode mixture for a non-aqueous electrolyte secondary battery to a surface-treated current collector surface-treated with a specific sulfur-containing organic compound. Since it is formed by drying, the peel strength between the mixture layer and the current collector is excellent.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明の非水電解質二次電池用負極合剤は、酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質および有機溶剤を含有し、前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする。また、本発明の非水電解質二次電池用負極は、前記非水電解質二次電池用負極合剤を、集電体に塗布・乾燥することにより得られる。 The negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains a vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material and an organic solvent, and the sulfur-containing organic compound is sulfur. It has at least one functional group containing no atoms. Moreover, the negative electrode for nonaqueous electrolyte secondary batteries of this invention is obtained by apply | coating and drying the said negative electrode mixture for nonaqueous electrolyte secondary batteries to a collector.
 なお、本明細書において非水電解質二次電池用負極合剤を以下、単に「負極合剤」とも記し、非水電解質二次電池用負極を以下、単に「負極」とも記す。 In the present specification, the negative electrode mixture for nonaqueous electrolyte secondary batteries is hereinafter simply referred to as “negative electrode mixture”, and the negative electrode for nonaqueous electrolyte secondary batteries is hereinafter also simply referred to as “negative electrode”.
 〔酸性官能基を有するフッ化ビニリデン系重合体〕
 本発明の非水電解質二次電池用負極合剤は、酸性官能基を有するフッ化ビニリデン系重合体をバインダー樹脂(結着剤)として含む。
[Vinylidene fluoride polymer having acidic functional group]
The negative electrode mixture for non-aqueous electrolyte secondary batteries of the present invention contains a vinylidene fluoride polymer having an acidic functional group as a binder resin (binder).
 本発明において、酸性官能基を有するフッ化ビニリデン系重合体とは、重合体中に酸性官能基を含有し、モノマーとして少なくともフッ化ビニリデンを用いて得られる重合体である。また、酸性官能基を有するフッ化ビニリデン系重合体は、通常フッ化ビニリデンおよび酸性官能基含有モノマー、並びに必要に応じて他のモノマーを共重合することにより得られる重合体である。 In the present invention, the vinylidene fluoride polymer having an acidic functional group is a polymer containing an acidic functional group in a polymer and obtained using at least vinylidene fluoride as a monomer. The vinylidene fluoride polymer having an acidic functional group is usually a polymer obtained by copolymerizing vinylidene fluoride and an acidic functional group-containing monomer and, if necessary, other monomers.
 なお、酸性官能基を有するフッ化ビニリデン系重合体としては、1種単独でも、2種以上を用いてもよい。 In addition, as a vinylidene fluoride polymer having an acidic functional group, one kind may be used alone, or two or more kinds may be used.
 酸性官能基を有するフッ化ビニリデン系重合体が有する酸性官能基としては、例えばカルボキシル基(‐CO2H)、スルホ基(‐SO3H)、ホスホン酸基(‐PO32)が挙げられるが、本発明の負極合剤を集電体に塗布・乾燥することにより得られた負極における、合剤層と集電体との剥離強度の観点から、カルボキシル基が好ましい。 Examples of the acidic functional group possessed by the vinylidene fluoride polymer having an acidic functional group include a carboxyl group (—CO 2 H), a sulfo group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). However, from the viewpoint of the peel strength between the mixture layer and the current collector in the negative electrode obtained by applying and drying the negative electrode mixture of the present invention on the current collector, a carboxyl group is preferred.
 酸性官能基を有するフッ化ビニリデン系重合体は、該重合体100重量部あたり、フッ化ビニリデン由来の構成単位を通常は80質量部以上、好ましくは85質量部以上有し、通常は99.9重量部以下、好ましくは99.7重量部以下有する重合体である。 The vinylidene fluoride-based polymer having an acidic functional group usually has a structural unit derived from vinylidene fluoride per 100 parts by weight of the polymer, usually 80 parts by weight or more, preferably 85 parts by weight or more, and usually 99.9. A polymer having not more than 9 parts by weight, preferably not more than 99.7 parts by weight.
 本発明に用いる、酸性官能基を有するフッ化ビニリデン系重合体は通常、(1)フッ化ビニリデンおよび酸性官能基含有モノマー、必要に応じて他のモノマーを共重合する方法(以下、(1)の方法とも記す)、(2)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合して得られた、フッ化ビニリデン系重合体と、酸性官能基含有モノマーを重合または、酸性官能基含有モノマーと他のモノマーとを共重合して得られた、酸性官能基含有重合体とを用いて、フッ化ビニリデン系重合体に酸性官能基含有重合体をグラフトする方法(以下、(2)の方法とも記す)、(3)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合し、フッ化ビニリデン系重合体を得た後に、該フッ化ビニリデン系重合体を、酸性官能基含有モノマーを用いてグラフト重合する方法(以下、(3)の方法とも記す)のいずれかの方法により製造される。 The vinylidene fluoride-based polymer having an acidic functional group used in the present invention is usually (1) a method of copolymerizing vinylidene fluoride and an acidic functional group-containing monomer and, if necessary, another monomer (hereinafter referred to as (1) (2), (2) polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and another monomer, polymerizing vinylidene fluoride polymer and acidic functional group-containing monomer, A method of grafting an acidic functional group-containing polymer onto a vinylidene fluoride polymer using an acidic functional group-containing polymer obtained by copolymerizing an acidic functional group-containing monomer and another monomer (hereinafter, (Also referred to as the method of (2)), (3) after polymerization of vinylidene fluoride or copolymerization of vinylidene fluoride and another monomer to obtain a vinylidene fluoride polymer, the vinylidene fluoride The system polymer, a method of graft-polymerization using an acidic functional group-containing monomer is produced by any method (hereinafter, (3) referred to as method).
 本発明に用いる、酸性官能基を有するフッ化ビニリデン系重合体は、カルボキシル基等の酸性官能基を有するため、酸性官能基を有さないポリフッ化ビニリデンと比べ、集電体との接着性が改善される。 Since the vinylidene fluoride polymer having an acidic functional group used in the present invention has an acidic functional group such as a carboxyl group, the adhesiveness to the current collector is higher than that of polyvinylidene fluoride having no acidic functional group. Improved.
 酸性官能基を有するフッ化ビニリデン系重合体の製造方法としては、前記(1)~(3)の方法の中でも、工程数、および生産コストの観点から、(1)の方法で製造することが好ましい。すなわち、酸性官能基を有するフッ化ビニリデン系重合体は、フッ化ビニリデンと、酸性官能基含有モノマーとの共重合体であることが好ましい。 As a method for producing a vinylidene fluoride polymer having an acidic functional group, among the methods (1) to (3), the method (1) may be used from the viewpoint of the number of steps and production cost. preferable. That is, the vinylidene fluoride polymer having an acidic functional group is preferably a copolymer of vinylidene fluoride and an acidic functional group-containing monomer.
 本発明に用いる酸性官能基を有するフッ化ビニリデン系重合体は、フッ化ビニリデンを、通常は80~99.9重量部、好ましくは95~99.7重量部、および酸性官能基含有モノマーを、通常は0.1~20重量部、好ましくは0.3~5重量部(但し、フッ化ビニリデンおよび酸性官能基含有モノマーの合計を100重量部とする)共重合して得られるフッ化ビニリデン系重合体である。なお、前記酸性官能基を有するフッ化ビニリデン系重合体としては、前記フッ化ビニリデンおよび酸性官能基含有モノマーに加えて、さらに他のモノマーを共重合して得られる重合体であってもよい。なお、他のモノマーを用いる場合には、前記フッ化ビニリデンおよび酸性官能基含有モノマーの合計を100重量部とすると、他のモノマーは通常0.1~20重量部用いられる。 The vinylidene fluoride polymer having an acidic functional group used in the present invention contains vinylidene fluoride, usually 80 to 99.9 parts by weight, preferably 95 to 99.7 parts by weight, and an acidic functional group-containing monomer. Usually 0.1 to 20 parts by weight, preferably 0.3 to 5 parts by weight (provided that the total of vinylidene fluoride and acidic functional group-containing monomers is 100 parts by weight) copolymerized vinylidene fluoride It is a polymer. The vinylidene fluoride polymer having an acidic functional group may be a polymer obtained by copolymerizing another monomer in addition to the vinylidene fluoride and the acidic functional group-containing monomer. When other monomers are used, the total amount of the vinylidene fluoride and the acidic functional group-containing monomer is 100 parts by weight, and the other monomer is usually used in an amount of 0.1 to 20 parts by weight.
 前記酸性官能基含有モノマーとしては例えば、カルボキシル基含有モノマー、スルホ基含有モノマー、ホスホン酸基含有モノマーが挙げられるが、本発明の負極合剤を集電体に塗布・乾燥することにより得られた負極における、合剤層と集電体との剥離強度の観点から、カルボキシル基含有モノマーが好ましい。 Examples of the acidic functional group-containing monomer include a carboxyl group-containing monomer, a sulfo group-containing monomer, and a phosphonic acid group-containing monomer, which were obtained by applying and drying the negative electrode mixture of the present invention on a current collector. From the viewpoint of peel strength between the mixture layer and the current collector in the negative electrode, a carboxyl group-containing monomer is preferred.
 前記カルボキシル基含有モノマーとしては、不飽和一塩基酸、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が好ましい。 As the carboxyl group-containing monomer, unsaturated monobasic acid, unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
 前記不飽和一塩基酸としては、アクリル酸、メタクリル酸等が挙げられる。前記不飽和二塩基酸としては、マレイン酸、シトラコン酸等が挙げられる。また、前記不飽和二塩基酸のモノエステルとしては、炭素数5~8のものが好ましく、例えばマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。 Examples of the unsaturated monobasic acid include acrylic acid and methacrylic acid. Examples of the unsaturated dibasic acid include maleic acid and citraconic acid. The unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
 中でも、カルボキシル基含有モノマーとしては、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のモノマーが好ましく、マレイン酸、シトラコン酸、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、アクリル酸、およびメタクリル酸から選択される少なくとも一種のモノマーがより好ましい。 Among them, the carboxyl group-containing monomer is preferably at least one monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, More preferred is at least one monomer selected from citraconic acid monomethyl ester, acrylic acid, and methacrylic acid.
 前記スルホ基含有モノマーとしては、ビニルスルホン酸、4‐スルホフェニルアクリラート、2‐アクリルアミド‐4‐メチルプロペンスルホン酸等が挙げられる。 Examples of the sulfo group-containing monomer include vinyl sulfonic acid, 4-sulfophenyl acrylate, 2-acrylamido-4-methylpropene sulfonic acid, and the like.
 前記ホスホン酸基含有モノマーとしては、ビニルホスホン酸、モノ(2-アクリロイルオキシエチル)アシッドホスフェート等が挙げられる。 Examples of the phosphonic acid group-containing monomer include vinylphosphonic acid and mono (2-acryloyloxyethyl) acid phosphate.
 前記フッ化ビニリデンおよび酸性官能基含有モノマーと共重合することが可能な他のモノマーとは、フッ化ビニリデンおよび酸性官能基含有モノマー以外のモノマーを意味し、他のモノマーとしては、例えばフッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。なお、前記他のモノマーは、1種単独で用いてもよく、2種以上を用いてもよい。 The other monomer that can be copolymerized with the vinylidene fluoride and the acidic functional group-containing monomer means a monomer other than the vinylidene fluoride and the acidic functional group-containing monomer. Examples of the other monomer include vinylidene fluoride. And a fluorine-based monomer copolymerizable with a hydrocarbon monomer such as ethylene and propylene. Examples of the fluorine-based monomer copolymerizable with vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether. be able to. In addition, the said other monomer may be used individually by 1 type, and may use 2 or more types.
 また、(1)の方法としては、懸濁重合、乳化重合、溶液重合等の方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましく、水系の懸濁重合が特に好ましい。 As the method (1), methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be employed. From the viewpoint of ease of post-treatment, aqueous suspension polymerization and emulsion polymerization are preferred, and aqueous suspension is preferred. Turbid polymerization is particularly preferred.
 水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、共重合に使用する全モノマー(フッ化ビニリデンおよび、酸性官能基含有モノマー、必要に応じて共重合される他のモノマー)100重量部に対して、通常は0.005~1.0重量部、好ましくは0.01~0.4重量部の範囲で添加して使用する。 In suspension polymerization using water as a dispersion medium, all monomers used for the copolymerization of suspending agents such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, gelatin, etc. (Polyvinylidene fluoride and acidic functional group-containing monomer, other monomer copolymerized as required) 100 parts by weight, usually 0.005 to 1.0 part by weight, preferably 0.01 to 0 Add in the range of 4 parts by weight.
 重合開始剤としては、ジイソプロピルペルオキシジカーボネート、ジノルマルプロピルペルオキシジカーボネート、ジノルマルヘプタフルオロプロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、イソブチリルペルオキシド、ジ(クロロフルオロアシル)ペルオキシド、ジ(ペルフルオロアシル)ペルオキシド等が使用できる。その使用量は、共重合に使用する全モノマー(フッ化ビニリデンおよび、酸性官能基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、通常は0.1~5重量部、好ましくは0.3~2重量部である。 Polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (perfluoroacyl) Peroxides can be used. The amount used is usually 0.1 to 5 when the total amount of monomers used for copolymerization (vinylidene fluoride, acidic functional group-containing monomers, and other monomers copolymerized as necessary) is 100 parts by weight. Part by weight, preferably 0.3 to 2 parts by weight.
 また、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる酸性官能基を有するフッ化ビニリデン系重合体の重合度を調節することも可能である。その使用量は、通常は、共重合に使用する全モノマー(フッ化ビニリデンおよび、酸性官能基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、通常は0.1~5重量部、好ましくは0.5~3重量部である。 In addition, the addition of a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, and the resulting fluoride having an acidic functional group It is also possible to adjust the degree of polymerization of the vinylidene polymer. The amount used is usually 0.1 when all the monomers used for copolymerization (vinylidene fluoride, acidic functional group-containing monomer, and other monomers copolymerized as required) are 100 parts by weight. 1 to 5 parts by weight, preferably 0.5 to 3 parts by weight.
 また、共重合に使用する全モノマー(フッ化ビニリデンおよび、酸性官能基含有モノマー、必要に応じて共重合される他のモノマー)の仕込量は、単量体の合計:水の重量比で通常は1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~80℃であり、重合時間は10~100時間であり、重合時の圧力は通常加圧下で行われ、好ましくは2.0~8.0MPa‐Gである。 Also, the total amount of monomers used for copolymerization (vinylidene fluoride and acidic functional group-containing monomers, and other monomers copolymerized as necessary) is usually in the weight ratio of the total monomer: water Is 1: 1 to 1:10, preferably 1: 2 to 1: 5, the polymerization is at a temperature of 10 to 80 ° C., the polymerization time is 10 to 100 hours, and the pressure during the polymerization is usually under pressure. Preferably, it is 2.0 to 8.0 MPa-G.
 上記の条件で水系の懸濁重合を行うことにより、容易にフッ化ビニリデンおよび、酸性官能基含有モノマー、必要に応じて共重合される他のモノマーを共重合することができ、本発明に用いる酸性官能基を有するフッ化ビニリデン系重合体を得ることができる。 By performing aqueous suspension polymerization under the above conditions, it is possible to easily copolymerize vinylidene fluoride, acidic functional group-containing monomers, and other monomers that are copolymerized as necessary, and are used in the present invention. A vinylidene fluoride-based polymer having an acidic functional group can be obtained.
 また、前記(2)の方法により酸性官能基を有するフッ化ビニリデン系重合体を製造する場合には例えば以下の方法で行うことができる。 Further, when producing a vinylidene fluoride polymer having an acidic functional group by the method (2), for example, the following method can be used.
 (2)の方法により酸性官能基を有するフッ化ビニリデン系重合体を製造する場合には、まずフッ化ビニリデンを重合またはフッ化ビニリデンと他のモノマーとを共重合することにより、フッ化ビニリデン系重合体を得る。該重合または共重合は通常懸濁重合あるいは乳化重合により行われる。また、前記フッ化ビニリデン系重合体とは別に、酸性官能基含有モノマーを重合または、酸性官能基含有モノマーと他のモノマーとを共重合することにより酸性官能基含有重合体を得る。該酸性官能基含有重合体は通常、乳化重合あるいは懸濁重合により得られる。さらに上記フッ化ビニリデン系重合体および酸性官能基含有重合体を用いて、フッ化ビニリデン系重合体に酸性官能基含有重合体をグラフトすることにより、酸性官能基を有するフッ化ビニリデン系重合体を得ることができる。該グラフトは、過酸化物を用いて行ってもよく、放射線を用いて行ってもよいが、好ましくはフッ化ビニリデン系重合体および酸性官能基含有重合体の混合物を過酸化物の存在下で加熱処理することにより行われる。 In the case of producing a vinylidene fluoride polymer having an acidic functional group by the method (2), first, vinylidene fluoride is polymerized by polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and another monomer. A polymer is obtained. The polymerization or copolymerization is usually performed by suspension polymerization or emulsion polymerization. In addition to the vinylidene fluoride polymer, an acidic functional group-containing polymer is obtained by polymerizing an acidic functional group-containing monomer or copolymerizing an acidic functional group-containing monomer and another monomer. The acidic functional group-containing polymer is usually obtained by emulsion polymerization or suspension polymerization. Furthermore, the vinylidene fluoride polymer having an acidic functional group is obtained by grafting the acidic functional group-containing polymer onto the vinylidene fluoride polymer using the vinylidene fluoride polymer and the acidic functional group-containing polymer. Obtainable. The grafting may be performed using a peroxide or may be performed using radiation. Preferably, a mixture of a vinylidene fluoride polymer and an acidic functional group-containing polymer is added in the presence of the peroxide. This is done by heat treatment.
 本発明に用いる酸性官能基を有するフッ化ビニリデン系重合体は、インヘレント粘度(樹脂4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度。以下、同様)が0.5~5.0dl/gの範囲内の値であることが好ましく、1.0~4.0dl/gの範囲内の値であることがより好ましい。上記範囲内の粘度であれば、非水電解質二次電池用負極合剤に好適に用いることができる。 The vinylidene fluoride polymer having an acidic functional group used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of a resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter). A value in the range of 0.5 to 5.0 dl / g is preferable, and a value in the range of 1.0 to 4.0 dl / g is more preferable. If it is the viscosity within the said range, it can use suitably for the negative mix for nonaqueous electrolyte secondary batteries.
 インヘレント粘度ηiの算出は、酸性官能基を有するフッ化ビニリデン系重合体80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローデ粘度計を用いて次式により行うことができる。 Inherent viscosity η i is calculated by dissolving 80 mg of vinylidene fluoride polymer having an acidic functional group in 20 ml of N, N-dimethylformamide and using an Ubbelohde viscometer in a constant temperature bath at 30 ° C. It can be carried out.
   ηi=(1/C)・ln(η/η0
 ここでηは重合体溶液の粘度、η0は溶媒のN,N-ジメチルホルムアミド単独の粘度、Cは0.4g/dlである。
η i = (1 / C) · ln (η / η 0 )
Where η is the viscosity of the polymer solution, η 0 is the viscosity of the solvent N, N-dimethylformamide alone, and C is 0.4 g / dl.
 また、酸性官能基を有するフッ化ビニリデン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の重量平均分子量が、通常は5万~200万の範囲であり、好ましくは20万~150万の範囲である。 In addition, the vinylidene fluoride polymer having an acidic functional group has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) usually in the range of 50,000 to 2,000,000, preferably 20 It ranges from 10,000 to 1.5 million.
 また、酸性官能基を有するフッ化ビニリデン系重合体が有する酸性官能基がカルボキシル基である場合には、酸性官能基を有するフッ化ビニリデン系重合体の赤外線吸収スペクトルを測定した際の下記式(1)で表される吸光度比(AR)が、0.1~2.0の範囲であることが好ましく、0.3~1.7であることがより好ましい。ARが0.1未満の場合は、集電体との接着性が不充分となる場合がある。一方で、ARが2.0を超えると、得られる重合体の耐電解液性が低下する傾向がある。なお、該重合体の赤外線吸収スペクトルの測定は、該重合体に熱プレスを施すことにより製造したフィルムについて、赤外線吸収スペクトルを測定することにより行われる。 Further, when the acidic functional group of the vinylidene fluoride polymer having an acidic functional group is a carboxyl group, the following formula (when the infrared absorption spectrum of the vinylidene fluoride polymer having an acidic functional group is measured ( The absorbance ratio (A R ) represented by 1) is preferably in the range of 0.1 to 2.0, more preferably 0.3 to 1.7. When AR is less than 0.1, the adhesion to the current collector may be insufficient. On the other hand, when A R exceeds 2.0, the electrolytic solution resistance of the resulting polymer tends to decrease. In addition, the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer.
 AR=A1650-1800/A3000-3100 ・・・(1)
 上記式(1)において、A1650-1800は1650~1800cm-1の範囲に検出されるカルボニル基由来の吸収帯の吸光度であり、A3000-3100は3000~3100cm-1の範囲に検出されるCH構造由来の吸収帯の吸光度である。ARは酸性官能基を有するフッ化ビニリデン系重合体中のカルボニル基の存在量を示す尺度となり、結果的にカルボキシル基の存在量を示す尺度となる。
A R = A 1650-1800 / A 3000-3100 (1)
In the above formula (1), A 1650-1800 is the absorbance of the absorption band derived from the carbonyl group which is detected in the range of 1650 ~ 1800cm -1, A 3000-3100 is detected in the range of 3000 ~ 3100 cm -1 It is the absorbance of the absorption band derived from the CH structure. A R becomes a measure of the abundance of the carbonyl group of the vinylidene fluoride polymer having an acidic functional group, the measure of the abundance of the resulting carboxyl group.
 また、酸性官能基を有するフッ化ビニリデン系重合体としては、フッ化ビニリデンと、酸性官能基を有するモノマーとの共重合体であり、該共重合体中の酸性官能基を有するモノマー由来の構成単位のランダム率が、40%以上であることが好ましく、60%以上であることがより好ましい。ランダム率が前記範囲内であると詳細については不明であるが高分子鎖の均一性が向上し酸性官能基が効率よく硫黄含有有機化合物と相互作用するため好ましい。 The vinylidene fluoride-containing polymer having an acidic functional group is a copolymer of vinylidene fluoride and a monomer having an acidic functional group, and the constitution derived from the monomer having an acidic functional group in the copolymer The unit random rate is preferably 40% or more, and more preferably 60% or more. Although the details are unknown if the random ratio is within the above range, it is preferable because the uniformity of the polymer chain is improved and the acidic functional group interacts with the sulfur-containing organic compound efficiently.
 なお、本発明において、ランダム率とは、酸性官能基を有するフッ化ビニリデン系重合体中に存在する、酸性官能基含有モノマー由来の構成単位がどの程度重合体鎖中に分散しているかを示す指標である。ランダム率が低いほど、酸性官能基含有モノマー由来の構成単位が連続して存在する、言い換えると酸性官能基含有モノマー同士が重合した鎖を有する傾向があることを意味する。一方、ランダム率が高いほど、酸性官能基含有モノマー由来の構成単位が独立して存在する、言い換えると酸性官能基含有モノマー由来の構成単位が連続せずに、フッ化ビニリデン由来の構成単位と結合する傾向がある。 In the present invention, the random rate indicates how much of the structural unit derived from the acidic functional group-containing monomer present in the vinylidene fluoride-based polymer having an acidic functional group is dispersed in the polymer chain. It is an indicator. It means that the lower the random rate, the more the structural units derived from the acidic functional group-containing monomer are continuously present. In other words, the acidic functional group-containing monomers tend to have a polymerized chain. On the other hand, the higher the random ratio, the more structural units derived from the acidic functional group-containing monomer exist independently.In other words, the structural units derived from the acidic functional group-containing monomer do not continue and are linked to the structural unit derived from vinylidene fluoride. Tend to.
 酸性官能基を有するフッ化ビニリデン系重合体のランダム率は、酸性官能基含有モノマー鎖の存在量[モル%]を、酸性官能基含有モノマー由来の構成単位の存在量[モル%]で除することにより求めることができる(ランダム率[%]=酸性官能基含有モノマー鎖の存在量[モル%]/酸性官能基含有モノマー由来の構成単位の存在量[モル%]×100)。なお、前記モル%では、フッ化ビニリデン由来の構成単位の存在量を100モル%とする。また、前記酸性官能基含有モノマー鎖の存在量は、NMRスペクトルにより求めることができ、酸性官能基含有モノマー由来の構成単位の存在量は、例えば中和滴定法により求めることができる。 The random ratio of the vinylidene fluoride polymer having an acidic functional group is obtained by dividing the abundance [mol%] of the acidic functional group-containing monomer chain by the abundance [mol%] of the structural unit derived from the acidic functional group-containing monomer. (Random rate [%] = Abundance of acidic functional group-containing monomer chain [mol%] / Abundance of structural unit derived from acidic functional group-containing monomer [mol%] × 100). In addition, in the said mol%, the abundance of the structural unit derived from vinylidene fluoride shall be 100 mol%. Moreover, the abundance of the acidic functional group-containing monomer chain can be determined by NMR spectrum, and the abundance of the structural unit derived from the acidic functional group-containing monomer can be determined by, for example, a neutralization titration method.
 例えば酸性官能基を有するフッ化ビニリデン系重合体が、フッ化ビニリデンとアクリル酸との共重合体である場合には、ランダム率は以下の方法で求めることができる。19F‐NMRでは、アクリル酸に隣接するCF2ピークは、-94ppm付近に観察される。該ピークと、スペクトル中の全てのピークの積分比より、アクリル酸鎖のモル%が決定される。ランダム率は、該アクリル酸鎖のモル%と、中和滴定法等により求めた重合体中の全アクリル酸由来の構造単位のモル%との比(ランダム率[%]=アクリル酸鎖のモル%/全アクリル酸由来の構造単位のモル%×100)として求めることができる。 For example, when the vinylidene fluoride polymer having an acidic functional group is a copolymer of vinylidene fluoride and acrylic acid, the random ratio can be obtained by the following method. In 19 F-NMR, the CF 2 peak adjacent to acrylic acid is observed around −94 ppm. From the integration ratio of the peak and all the peaks in the spectrum, the mol% of the acrylic acid chain is determined. Random rate is the ratio between the mol% of the acrylic acid chain and the mol% of structural units derived from the total acrylic acid in the polymer determined by the neutralization titration method (random ratio [%] = mol of acrylic acid chain) % / Mol% of structural units derived from total acrylic acid × 100).
 ランダム率が前記範囲内である酸性官能基を有するフッ化ビニリデン系重合体を製造する方法としては、例えば前述の懸濁重合等を行う際に、連続的に酸性官能基含有モノマーを添加する方法が挙げられる。 As a method for producing a vinylidene fluoride-based polymer having an acidic functional group having a random ratio within the above range, for example, a method of continuously adding an acidic functional group-containing monomer when performing the aforementioned suspension polymerization or the like Is mentioned.
 〔硫黄含有有機化合物〕
 本発明の非水電解質二次電池用負極合剤は、硫黄含有有機化合物を含む。本発明の負極合剤に含まれる硫黄含有有機化合物としては、硫黄原子を含まない官能基を少なくとも一つ有するものが用いられる。本発明の負極合剤は、前記硫黄含有有機化合物を含むため、合剤層と集電体との剥離強度に優れる非水電解質二次電池用負極を製造する際に用いることができる。
[Sulfur-containing organic compounds]
The negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains a sulfur-containing organic compound. As the sulfur-containing organic compound contained in the negative electrode mixture of the present invention, those having at least one functional group not containing a sulfur atom are used. Since the negative electrode mixture of the present invention contains the sulfur-containing organic compound, it can be used when producing a negative electrode for a non-aqueous electrolyte secondary battery that has excellent peel strength between the mixture layer and the current collector.
 本発明に用いられる硫黄含有有機化合物としては、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位あるいはβ位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物が好ましく、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物がより好ましく、硫黄原子が結合する炭素原子と、前記官能基とが結合している硫黄含有有機化合物が特に好ましい。これらの硫黄含有有機化合物は、銅箔等の集電体に対して化学吸着しやすいため好ましい。 The sulfur-containing organic compound used in the present invention includes a sulfur atom in which the carbon atom to which the sulfur atom is bonded, or the α-position or β-position of the carbon atom to which the sulfur atom is bonded, and the functional group are bonded. An organic compound is preferable, and a sulfur atom-containing organic compound in which the carbon atom to which the sulfur atom is bonded or the carbon atom at the α-position of the carbon atom to which the sulfur atom is bonded and the functional group is bonded is more preferable, and the sulfur atom is bonded. A sulfur-containing organic compound in which the carbon atom to be bonded to the functional group is particularly preferable. These sulfur-containing organic compounds are preferable because they are easily chemically adsorbed to a current collector such as a copper foil.
 前記官能基は、分子中に少なくとも一つ含まれていればよく、二つ以上含まれていてもよい。また、前記官能基は、分子中に一種含まれていてもよく、二種以上含まれていてもよい。 It is sufficient that at least one functional group is contained in the molecule, and two or more functional groups may be contained. Moreover, the said functional group may be contained 1 type in the molecule | numerator, and may be contained 2 or more types.
 また、前記官能基としては、カルボニル基、ヒドロキシル基、アミノ基等が挙げられる。 Moreover, examples of the functional group include a carbonyl group, a hydroxyl group, and an amino group.
 前記硫黄含有有機化合物としては、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基を含むことが、ポリマー中の酸性官能基との相互作用の観点から好ましい。 The sulfur-containing organic compound preferably contains at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group from the viewpoint of interaction with an acidic functional group in the polymer.
 前記硫黄含有有機化合物としては、本発明の負極合剤を用いて形成された負極の合剤層と集電体との剥離強度の観点から、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物から選択される少なくとも1種の硫黄含有有機化合物が好ましい。 The sulfur-containing organic compound is selected from thiourea analogs and thiomalic acid analogs from the viewpoint of the peel strength between the negative electrode mixture layer formed using the negative electrode mixture of the present invention and the current collector. At least one sulfur-containing organic compound is preferred.
 前記チオ尿素類縁化合物としては、以下の一般式(1)で表される化合物が挙げられる。 Examples of the thiourea analogues include compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)において、R1およびR2はそれぞれ独立に、水素原子または炭素数1~6の炭化水素基であり、前記炭化水素基は、該基が有する水素原子の一部が、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基で置換されていてもよい。またR3は、水素、炭素、窒素、酸素および硫黄から選択される少なくとも2つ以上の元素を含む、分子量が150以下の原子団である。また、前記R1とR2とは、互いに結合し環を形成してもよく、前記R1とR3とは、互いに結合し環を形成してもよい。 In the general formula (1), R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and the hydrocarbon group includes a part of the hydrogen atoms contained in the group, It may be substituted with at least one functional group selected from a carbonyl group, a hydroxyl group and an amino group. R 3 is an atomic group having a molecular weight of 150 or less, including at least two elements selected from hydrogen, carbon, nitrogen, oxygen and sulfur. R 1 and R 2 may be bonded to each other to form a ring, and R 1 and R 3 may be bonded to each other to form a ring.
 前記チオ尿素類縁化合物の具体例としては、式(2)または式(3)で表わされる化合物を用いることができる。 As a specific example of the thiourea analog, a compound represented by formula (2) or formula (3) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記チオリンゴ酸類縁化合物としては、以下の一般式(4)で表される化合物が挙げられる。 Examples of the thiomalic acid-related compound include compounds represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記一般式(4)において、R4は、水素原子、ヒドロキシル基または炭素数1~6の炭化水素であり、前記炭化水素基は、該基が有する水素原子の一部が、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基で置換されていてもよい。また、R5は、水素、炭素、窒素、酸素および硫黄から選択される少なくとも2つ以上の元素を含む、分子量が150以下の原子団である。また、前記R4とR5とは、互いに結合し環を形成してもよい。 In the general formula (4), R 4 is a hydrogen atom, a hydroxyl group, or a hydrocarbon having 1 to 6 carbon atoms, and the hydrocarbon group includes a carbonyl group, a hydroxyl group, It may be substituted with at least one functional group selected from a group and an amino group. R 5 is an atomic group having a molecular weight of 150 or less, containing at least two elements selected from hydrogen, carbon, nitrogen, oxygen and sulfur. R 4 and R 5 may be bonded to each other to form a ring.
 前記チオリンゴ酸類縁化合物の具体例としては、式(5)で表わされる化合物を用いることができる。 As a specific example of the thiomalic acid analog, a compound represented by the formula (5) can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物以外の本発明に用いることが可能な硫黄含有化合物としては、例えば以下の式(6)で表わされる化合物を用いることができる。 Moreover, as a sulfur containing compound which can be used for this invention other than a thiourea analog compound and a thiomalic acid analog compound, the compound represented by the following formula | equation (6) can be used, for example.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、本発明に用いられる硫黄含有有機化合物としては、通常は分子量が64~500である。 In addition, the sulfur-containing organic compound used in the present invention usually has a molecular weight of 64 to 500.
 〔電極活物質〕
 本発明の非水電解質二次電池用負極合剤は、電極活物質を含む。電極活物質としては、特に限定は無く、従来公知の負極用の電極活物質を用いることができ、具体例としては、炭素材料、金属・合金材料、金属酸化物などが挙げられるが、中でも炭素材料が好ましい。
[Electrode active material]
The negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains an electrode active material. The electrode active material is not particularly limited, and conventionally known electrode active materials for negative electrodes can be used, and specific examples include carbon materials, metal / alloy materials, metal oxides, etc. Material is preferred.
 前記炭素材料としては、人造黒鉛、天然黒鉛、難黒鉛化炭素、易黒鉛化炭素などが用いられる。また、前記炭素材料は、1種単独で用いても、2種以上を用いてもよい。 As the carbon material, artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon, or the like is used. Moreover, the said carbon material may be used individually by 1 type, or may use 2 or more types.
 このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。 When such a carbon material is used, the energy density of the battery can be increased.
 前記人造黒鉛としては、例えば、有機材料を炭素化しさらに高温で熱処理を行い、粉砕・分級することにより得られる。人造黒鉛としては、MAGシリーズ(日立化成工業製)、MCMB(大阪ガスケミカル製)等が用いられる。 The artificial graphite can be obtained, for example, by carbonizing an organic material, heat-treating it at a high temperature, pulverizing and classifying it. As artificial graphite, MAG series (manufactured by Hitachi Chemical Co., Ltd.), MCMB (manufactured by Osaka Gas Chemical), etc. are used.
 前記電極活物質の比表面積は、0.3~10m2/gであることが好ましく、0.5~6m2/gであることがより好ましい。比表面積が0.3m2/g未満の場合は、従来の結着剤を用いた場合であっても、結着剤の活物質中への取り込みが起こり難く、充分な接着性が確保されるため、本発明の効果は小さい。比表面積が10m2/gを超えると、電解液の分解量が増加し、初期の不可逆容量が増えるため好ましくない。 The specific surface area of the electrode active material is preferably 0.3 to 10 m 2 / g, and more preferably 0.5 to 6 m 2 / g. When the specific surface area is less than 0.3 m 2 / g, even when a conventional binder is used, it is difficult for the binder to be taken into the active material, and sufficient adhesiveness is ensured. Therefore, the effect of the present invention is small. If the specific surface area exceeds 10 m 2 / g, the amount of decomposition of the electrolytic solution increases and the initial irreversible capacity increases, which is not preferable.
 なお、電極活物質の比表面積は、窒素吸着法により求めることができる。 Note that the specific surface area of the electrode active material can be determined by a nitrogen adsorption method.
 〔有機溶剤〕
 本発明の非水電解質二次電池用負極合剤は、有機溶剤を含有する。有機溶剤としては前記酸性官能基を有するフッ化ビニリデン系重合体を溶解する作用を有するものが用いられ、好ましくは極性を有する溶剤が用いられる。有機溶剤の具体例としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルホスフェイトなどが挙げられ、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドが好ましい。また、有機溶剤は1種単独でも、2種以上を混合してもよい。
〔Organic solvent〕
The negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention contains an organic solvent. As the organic solvent, those having an action of dissolving the vinylidene fluoride-based polymer having the acidic functional group are used, and preferably a solvent having polarity is used. Specific examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, triethyl phosphate. And N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide are preferable. Moreover, the organic solvent may be used alone or in combination of two or more.
 本発明の非水電解質二次電池用負極合剤は、前記酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質、および有機溶剤を含有する。 The negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent.
 本発明の非水電解質二次電池用負極合剤は、本発明の負極合剤を用いて形成された負極の合剤層と集電体との剥離強度の観点、該負極を有する非水電解質二次電池の物性の観点から、酸性官能基を有するフッ化ビニリデン系重合体100質量%あたり、硫黄含有化合物を0.01~5質量%含むことが好ましく、0.03~4質量%含むことがより好ましく、0.05~3質量%含むことが特に好ましい。また、酸性官能基を有するフッ化ビニリデン系重合体と、電極活物質との合計100質量部あたり、電極活物質が70~99.9質量部であることが好ましく、80~99.5質量部であることがより好ましく、85~99質量部であることが特に好ましく、酸性官能基を有するフッ化ビニリデン系重合体は、0.1~30質量部であることが好ましく、0.5~20質量部であることがより好ましく、1~15質量部であることが特に好ましい。また、酸性官能基を有するフッ化ビニリデン系重合体と、電極活物質との合計を100質量部とすると、有機溶剤は3~300質量部であることが好ましく、4~200質量部であることがより好ましい。 The negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte having the negative electrode from the viewpoint of peel strength between the negative electrode mixture layer and the current collector formed using the negative electrode mixture of the present invention. From the viewpoint of the physical properties of the secondary battery, it is preferable to contain 0.01 to 5% by mass, and 0.03 to 4% by mass of the sulfur-containing compound per 100% by mass of the vinylidene fluoride polymer having an acidic functional group. Is more preferable, and 0.05 to 3% by mass is particularly preferable. Further, the electrode active material is preferably 70 to 99.9 parts by mass, and 80 to 99.5 parts by mass per 100 parts by mass in total of the vinylidene fluoride polymer having an acidic functional group and the electrode active material. More preferably, it is 85 to 99 parts by mass, and the vinylidene fluoride polymer having an acidic functional group is preferably 0.1 to 30 parts by mass, and 0.5 to 20 parts by mass. The amount is more preferably part by mass, and particularly preferably 1 to 15 parts by mass. Further, when the total of the vinylidene fluoride polymer having an acidic functional group and the electrode active material is 100 parts by mass, the organic solvent is preferably 3 to 300 parts by mass, and 4 to 200 parts by mass. Is more preferable.
 上記範囲内で各成分を含有すると、本発明の負極合剤を用いて形成された負極の合剤層と集電体との剥離強度に優れる。 When each component is contained within the above range, the peel strength between the negative electrode mixture layer formed using the negative electrode mixture of the present invention and the current collector is excellent.
 また、本発明の非水電解質二次電池用負極合剤は、前記酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質、および有機溶剤以外の他の成分を含有していてもよい。他の成分としては、カーボンブラックなどの導電助剤やポリビニルピロリドンなどの顔料分散剤等を含んでいてもよい。前記他の成分としては、前記酸性官能基を有するフッ化ビニリデン系重合体以外の他の重合体を含んでいてもよい。前記他の重合体としては、例えばポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-ペルフルオロメチルビニルエーテル共重合体等のフッ化ビニリデン系重合体が挙げられる。本発明の非水電解質二次電池用負極合剤に、他の重合体が含まれる場合には、通常前記酸性官能基を有するフッ化ビニリデン系重合体100質量部に対して25質量部以下の量で含まれる。 In addition, the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains other components other than the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent. It may be. As other components, a conductive aid such as carbon black, a pigment dispersant such as polyvinylpyrrolidone, and the like may be included. As said other component, polymers other than the vinylidene fluoride type polymer which has the said acidic functional group may be included. Examples of the other polymer include vinylidene fluoride such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-perfluoromethyl vinyl ether copolymer. System polymers. When the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention contains another polymer, it is usually 25 parts by mass or less with respect to 100 parts by mass of the vinylidene fluoride polymer having the acidic functional group. Included in quantity.
 本発明の非水電解質二次電池用負極合剤の、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際の粘度は、通常2000~50000mPa・sであり、好ましくは5000~30000mPa・sである。 The viscosity of the negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention when measured using an E-type viscometer at 25 ° C. and a shear rate of 2 s −1 is usually 2000 to 50000 mPa · s, Preferably, it is 5000 to 30000 mPa · s.
 本発明の非水電解質二次電池用負極合剤の製造方法としては、前記酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質、および有機溶剤を均一なスラリーとなるように混合すればよい。混合する際の順序は特に限定されないが、例えば負極合剤に含まれる全成分を同時に混合することにより非水電解質二次電池用負極合剤を得る方法、酸性官能基を有するフッ化ビニリデン系重合体を、有機溶剤の一部に溶解し、バインダー溶液を得て、該バインダー溶液に、硫黄含有有機化合物、電極活物質および残りの有機溶剤を添加し、混合することにより非水電解質二次電池用負極合剤を得る方法、硫黄含有有機化合物以外の各成分を混合し、得られた溶液に硫黄含有有機化合物を添加し、混合することにより非水電解質二次電池用負極合剤を得る方法等が挙げられる。 As a method for producing a negative electrode mixture for a non-aqueous electrolyte secondary battery of the present invention, the vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material, and an organic solvent are made into a uniform slurry. What is necessary is just to mix. The order of mixing is not particularly limited. For example, a method of obtaining a negative electrode mixture for a non-aqueous electrolyte secondary battery by simultaneously mixing all components contained in the negative electrode mixture, a vinylidene fluoride-based polymer having an acidic functional group A non-aqueous electrolyte secondary battery is obtained by dissolving the coalescence in a part of an organic solvent to obtain a binder solution, and adding and mixing the sulfur-containing organic compound, the electrode active material and the remaining organic solvent to the binder solution. A method for obtaining a negative electrode mixture for a nonaqueous electrolyte secondary battery by mixing each component other than a sulfur-containing organic compound, adding a sulfur-containing organic compound to the resulting solution, and mixing them Etc.
 〔非水電解質二次電池用負極〕
 本発明の非水電解質二次電池用負極は、二つの態様がある。本発明の非水電解質二次電池用負極は、集電体と、非水電解質二次電池用負極合剤から形成される層とを有する。
[Negative electrode for non-aqueous electrolyte secondary battery]
The negative electrode for a non-aqueous electrolyte secondary battery of the present invention has two aspects. The negative electrode for nonaqueous electrolyte secondary batteries of the present invention has a current collector and a layer formed from a negative electrode mixture for nonaqueous electrolyte secondary batteries.
 第一の態様の非水電解質二次電池用負極は、前述の非水電解質二次電池用負極合剤を、集電体に塗布・乾燥することにより得られる。 The negative electrode for a nonaqueous electrolyte secondary battery according to the first aspect is obtained by applying and drying the above-described negative electrode mixture for a nonaqueous electrolyte secondary battery on a current collector.
 第二の態様の非水電解質二次電池用負極は、集電体を、硫黄含有有機化合物で表面処理することにより得られる表面処理集電体に、酸性官能基を有するフッ化ビニリデン系重合体、電極活物質および有機溶剤を含有する非水電解質二次電池用負極合剤を塗布・乾燥することにより得られる負極であり、前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする。なお、第二の態様の非水電解質二次電池用負極における、前記硫黄含有有機化合物としては、前述の本発明の非水電解質二次電池用負極合剤に含まれる硫黄含有有機化合物と同様のものを用いることができる。また、第二の態様の非水電解質二次電池用負極における、前記非水電解質二次電池用負極合剤としては、前述の本発明の非水電解質二次電池用負極合剤において、硫黄含有有機化合物が含有されていなくてもよい以外は同様のものを用いることができる。 The negative electrode for a nonaqueous electrolyte secondary battery according to the second aspect is a vinylidene fluoride polymer having an acidic functional group on a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound. , A negative electrode obtained by applying and drying a negative electrode mixture for a nonaqueous electrolyte secondary battery containing an electrode active material and an organic solvent, wherein the sulfur-containing organic compound has at least one functional group containing no sulfur atom. It is characterized by having one. In addition, in the negative electrode for nonaqueous electrolyte secondary batteries of the second aspect, the sulfur-containing organic compound is the same as the sulfur-containing organic compound contained in the above-described negative electrode mixture for nonaqueous electrolyte secondary batteries of the present invention. Things can be used. Moreover, in the negative electrode for nonaqueous electrolyte secondary batteries of the second aspect, as the negative electrode mixture for nonaqueous electrolyte secondary batteries, in the negative electrode mixture for nonaqueous electrolyte secondary batteries of the present invention described above, it contains sulfur. The same thing can be used except the organic compound does not need to contain.
 なお、本発明において、非水電解質二次電池用負極合剤を集電体に塗布・乾燥することにより形成される、非水電解質二次電池用負極合剤から形成される層を、合剤層と記す。 In addition, in this invention, the layer formed from the negative mix for nonaqueous electrolyte secondary batteries formed by apply | coating and drying the negative mix for nonaqueous electrolyte secondary batteries to a collector is used as a mixture Marked as layer.
 本発明の非水電解質二次電池用負極は、集電体と合剤層との剥離強度に優れる。第一の態様の非水電解質二次電池用負極においては、本発明の非水電解質二次電池用負極合剤を用いることを特徴としており、該負極合剤に硫黄含有有機化合物が含まれるため、集電体と合剤層との剥離強度に優れる。一方、第二の態様の非水電解質二次電池用負極においては、負極を構成する集電体として、集電体を、硫黄含有有機化合物で表面処理することにより得られる表面処理集電体を用いることにより、負極合剤として硫黄含有有機化合物を含まない合剤を用いた場合であっても、集電体と合剤層との剥離強度に優れる。 The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer. The negative electrode for a nonaqueous electrolyte secondary battery according to the first aspect is characterized by using the negative electrode mixture for a nonaqueous electrolyte secondary battery of the present invention, because the negative electrode mixture contains a sulfur-containing organic compound. The peel strength between the current collector and the mixture layer is excellent. On the other hand, in the negative electrode for a nonaqueous electrolyte secondary battery according to the second aspect, a surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound as a current collector constituting the negative electrode. Even if it is a case where the mixture which does not contain a sulfur-containing organic compound as a negative electrode mixture is used, it is excellent in the peeling strength of a collector and a mixture layer.
 なお、前記表面処理の方法としては、前記硫黄含有有機化合物が、集電体の表面に接触すればよく、特に限定はないが、通常は、前記硫黄含有有機化合物を、エタノール、メタノール、アセトン等の有機溶媒に溶解し、該溶液中に集電体を浸漬することにより行われる。該溶液中に浸漬された集電体は、溶液中から取り出された後、通常は乾燥を行い、表面処理集電体として用いられる。また、乾燥を行う前にエタノール、メタノール、アセトン等で洗浄を行ってもよい。また、前記溶液中の、前記硫黄含有有機化合物の濃度は、通常は0.1~30wt%であり、集電体を前記溶液に浸漬する時間は、通常1~180分である。 The surface treatment method is not particularly limited as long as the sulfur-containing organic compound contacts the surface of the current collector. Usually, the sulfur-containing organic compound is ethanol, methanol, acetone, or the like. This is carried out by dissolving in an organic solvent and immersing the current collector in the solution. The current collector immersed in the solution is taken out from the solution and then usually dried and used as a surface-treated current collector. Moreover, you may wash | clean with ethanol, methanol, acetone, etc. before performing drying. The concentration of the sulfur-containing organic compound in the solution is usually 0.1 to 30 wt%, and the time for immersing the current collector in the solution is usually 1 to 180 minutes.
 本発明の非水電解質二次電池用負極が、集電体と合剤層との剥離強度に優れる理由は明らかではないが、本発明者らは以下のように推定している。本発明の非水電解質二次電池用負極では、第一の態様、第二の態様のどちらの態様においても、硫黄含有有機化合物と、銅箔等の集電体とが接触する。また、前記硫黄含有有機化合物としては、硫黄原子を含まない官能基を少なくとも一つ有する硫黄含有有機化合物が用いられる。 The reason why the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer is not clear, but the present inventors presume as follows. In the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, in both the first aspect and the second aspect, the sulfur-containing organic compound and a current collector such as a copper foil are in contact. In addition, as the sulfur-containing organic compound, a sulfur-containing organic compound having at least one functional group not containing a sulfur atom is used.
 硫黄原子を含まない官能基を少なくとも一つ有する硫黄含有有機化合物が、銅箔等の集電体と接触すると、集電体上に自己組織化単分子膜を形成し、集電体表面を硫黄原子を含まない官能基で被覆すると考えられる。例えば、硫黄含有有機化合物としてチオ尿素を用いた場合には、該分子中の硫黄原子が、集電体に化学吸着することにより自己組織化単分子膜を形成し、該分子中のアミノ基が集電体表面に露出すると考えられる。酸性官能基を有するフッ化ビニリデン系重合体の酸性官能基と、硫黄原子を含まない官能基との相互作用は、銅箔等の集電体と、硫黄原子を含まない官能基との相互作用よりも大きいため、剥離強度に優れると本発明者らは推定した。 When a sulfur-containing organic compound having at least one functional group not containing a sulfur atom comes into contact with a current collector such as a copper foil, a self-assembled monolayer is formed on the current collector, and the surface of the current collector is sulfur. It is thought that it coats with the functional group which does not contain an atom. For example, when thiourea is used as the sulfur-containing organic compound, sulfur atoms in the molecule chemisorb to the current collector to form a self-assembled monolayer, and the amino group in the molecule It is thought that it is exposed on the current collector surface. The interaction between the acidic functional group of vinylidene fluoride polymer having acidic functional group and the functional group not containing sulfur atom is the interaction between the current collector such as copper foil and the functional group not containing sulfur atom. The present inventors estimated that the peel strength is excellent because of its larger size.
 本発明に用いる集電体としては、例えば銅が挙げられ、その形状としては例えば金属箔や金属網等が挙げられる。集電体としては、銅箔が好ましい。 The current collector used in the present invention includes, for example, copper, and the shape thereof includes, for example, a metal foil, a metal net, and the like. As the current collector, a copper foil is preferable.
 集電体の厚さは、通常は5~100μmであり、好ましくは5~20μmである。 The thickness of the current collector is usually 5 to 100 μm, preferably 5 to 20 μm.
 また、合剤層の厚さは、通常は20~250μmであり、好ましくは20~150μmである。 Further, the thickness of the mixture layer is usually 20 to 250 μm, preferably 20 to 150 μm.
 本発明の非水電解質二次電池用負極を製造する際には、前記非水電解質二次電池用負極合剤を前記集電体の少なくとも一面、好ましくは両面に塗布を行う。塗布する際の方法としては特に限定は無く、バーコーター、ダイコーター、コンマコーターで塗布する等の方法が挙げられる。 When producing the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, the negative electrode mixture for a non-aqueous electrolyte secondary battery is applied to at least one surface, preferably both surfaces of the current collector. The method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
 また、塗布した後に行われる乾燥としては、通常50~150℃の温度で1~300分行われる。また、乾燥の際の圧力は特に限定はないが、通常は、大気圧下または減圧下で行われる。 Further, the drying performed after the coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes. Moreover, the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
 さらに、乾燥を行ったのちに、熱処理が行われてもよい。熱処理を行う場合には、通常100~250℃の温度で1~300分行われる。なお、熱処理の温度は前記乾燥と重複するが、これらの工程は、別個の工程であってもよく、連続的に行われる工程であってもよい。 Furthermore, heat treatment may be performed after drying. When heat treatment is performed, it is usually performed at a temperature of 100 to 250 ° C. for 1 to 300 minutes. In addition, although the temperature of heat processing overlaps with the said drying, these processes may be a separate process and the process performed continuously.
 また、さらにプレス処理を行ってもよい。プレス処理を行う場合には、通常1~200MPa-Gで行われる。プレス処理を行うと電極密度を向上できるため好ましい。 Further, press processing may be performed. When performing the press treatment, it is usually performed at 1 to 200 MPa-G. It is preferable to perform the press treatment because the electrode density can be improved.
 以上の方法で、本発明の非水電解質二次電池用負極を製造することができる。なお、非水電解質二次電池用負極の層構成としては、非水電解質二次電池用負極合剤を集電体の一面に塗布した場合には、合剤層/集電体の二層構成であり、非水電解質二次電池用負極合剤を集電体の両面に塗布した場合には、合剤層/集電体/合剤層の三層構成である。 By the above method, the negative electrode for nonaqueous electrolyte secondary batteries of the present invention can be produced. In addition, as a layer structure of the negative electrode for non-aqueous electrolyte secondary batteries, when the negative electrode mixture for non-aqueous electrolyte secondary batteries is applied to one surface of the current collector, a two-layer structure of a mixture layer / current collector When the negative electrode mixture for a nonaqueous electrolyte secondary battery is applied to both sides of the current collector, it has a three-layer structure of a mixture layer / current collector / mixture layer.
 本発明の非水電解質二次電池用負極は、前記非水電解質二次電池用負極合剤を用いることにより、集電体と合剤層との剥離強度に優れるため、プレス、スリット、捲回などの工程で電極に亀裂や剥離が生じにくく、生産性の向上に繋がるために好ましい。 The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is excellent in the peel strength between the current collector and the mixture layer by using the negative electrode mixture for a non-aqueous electrolyte secondary battery. It is preferable because the electrode is less likely to be cracked or peeled off in the process, etc., leading to improvement in productivity.
 本発明の非水電解質二次電池用負極は、前述のように集電体と合剤層との剥離強度に優れるが、具体的には、集電体と合剤層との剥離強度は、JIS K6854に準拠して、180°剥離試験により測定を行った際に通常は0.5~20gf/mmであり、好ましくは1~15gf/mmである。 The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer as described above. Specifically, the peel strength between the current collector and the mixture layer is According to JIS K6854, it is usually 0.5 to 20 gf / mm, preferably 1 to 15 gf / mm, when measured by a 180 ° peel test.
 本発明の非水電解質二次電池用負極は、集電体と合剤層との剥離強度に優れる。 The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer.
 〔非水電解質二次電池〕
 本発明の非水電解質二次電池は、前記非水電解質二次電池用負極を有することを特徴とする。
[Nonaqueous electrolyte secondary battery]
The nonaqueous electrolyte secondary battery of the present invention is characterized by having the negative electrode for a nonaqueous electrolyte secondary battery.
 本発明の非水電解質二次電池としては、前記非水電解質二次電池用負極を有していること以外は特に限定は無い。非水電解質二次電池としては、前記非水電解質二次電池用電極を通常は負極として有し、負極以外の部位、例えば正極、セパレータ等は従来公知のものを用いることができる。 The non-aqueous electrolyte secondary battery of the present invention is not particularly limited except that the non-aqueous electrolyte secondary battery has the negative electrode. As the nonaqueous electrolyte secondary battery, the electrode for a nonaqueous electrolyte secondary battery is usually used as a negative electrode, and conventionally known ones other than the negative electrode, such as a positive electrode and a separator, can be used.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 以下の製造例1~6において、得られた重合体のインヘレント粘度は、以下の方法で測定した。 In the following Production Examples 1 to 6, the inherent viscosity of the obtained polymers was measured by the following method.
 各製造例で得られた重合体80mgにN,N-ジメチルホルムアミド(DMF)20mlを加え、70℃で2時間加熱溶解して測定サンプルを調製した。該測定サンプルのインヘレント粘度を、株式会社草野科学製ウベローデ型粘度計を用いて、30℃にて測定した。 A sample for measurement was prepared by adding 20 ml of N, N-dimethylformamide (DMF) to 80 mg of the polymer obtained in each production example and dissolving by heating at 70 ° C. for 2 hours. The inherent viscosity of the measurement sample was measured at 30 ° C. using an Ubbelohde viscometer manufactured by Kusano Kagaku Co., Ltd.
 また、以下の製造例4~6において得られた重合体のランダム率は、以下の方法で酸性官能基含有モノマー鎖の存在量および酸性官能基含有モノマー由来の構成単位の存在量を求め、算出した。 In addition, the random ratio of the polymers obtained in the following Production Examples 4 to 6 was calculated by calculating the abundance of acidic functional group-containing monomer chains and the abundance of structural units derived from acidic functional group-containing monomers by the following method. did.
 〔酸性官能基含有モノマー鎖の存在量〕
 各製造例で得られた重合体の酸性官能基含有モノマー鎖の存在量は、核磁気共鳴(NMR)スペクトルより算出を行った。
[Abundance of acidic functional group-containing monomer chain]
The abundance of the acidic functional group-containing monomer chain in the polymer obtained in each production example was calculated from a nuclear magnetic resonance (NMR) spectrum.
 フッ化ビニリデン共重合体(各製造例で得られた重合体)のNMRの測定は、測定溶媒として市販の重DMSOをそのまま用い、Bruker社製AVANCE AC 400FT NMRスペクトルメータを用いて測定した。酸性官能基含有モノマー鎖の存在量は、19F-NMRスペクトルにおいて-94ppm付近に現れる酸性官能基含有モノマーに隣接するFのピーク強度(積分値)を、該スペクトルの全Fのピーク強度(積分値)で除することで求めた。 NMR measurement of the vinylidene fluoride copolymer (polymer obtained in each production example) was performed using a commercially available heavy DMSO as a measurement solvent as it was and using an AVANCE AC 400FT NMR spectrometer manufactured by Bruker. The abundance of the acidic functional group-containing monomer chain is determined by calculating the peak intensity (integrated value) of F adjacent to the acidic functional group-containing monomer appearing in the vicinity of −94 ppm in the 19 F-NMR spectrum, and the peak intensity (integrated value) of all F in the spectrum. Value).
 〔酸性官能基含有モノマー由来の構成単位の存在量〕
 各製造例で得られた重合体の酸性官能基含有モノマー由来の構成単位の存在量は、中和滴定法により算出を行った。
[Abundance of structural units derived from acidic functional group-containing monomers]
The abundance of the structural unit derived from the acidic functional group-containing monomer of the polymer obtained in each production example was calculated by a neutralization titration method.
 フッ化ビニリデン共重合体(各製造例で得られた重合体)0.3gにアセトン30gを加え加熱溶解し、次いで純水3gを加えた後、室温まで放冷した。フェノールフタレイン溶液を指示薬として用い、濃度既知の水酸化ナトリウム水溶液で滴定を行った。 30 g of acetone was added to 0.3 g of vinylidene fluoride copolymer (polymer obtained in each production example) and dissolved by heating, then 3 g of pure water was added, and the mixture was allowed to cool to room temperature. The phenolphthalein solution was used as an indicator, and titration was performed with a sodium hydroxide aqueous solution having a known concentration.
 〔製造例1〕
 (重合体Aの製造)
 内容量2リットルのオートクレーブに、イオン交換水1020g、メチルセルロース0.6g、酢酸エチル2.2g、50wt%ジ-i-プロピルペルオキシジカーボネート-フロン225cb溶液8.0g、フッ化ビニリデン396g、およびモノメチルマレイン酸4.0gを仕込み、温度28℃、圧力が4.3MPa-Gの条件で反応を開始し、1.5MPa-G(反応開始から30時間後)に下がるまで、懸濁重合を行った。
[Production Example 1]
(Production of polymer A)
In an autoclave having an internal volume of 2 liters, 1020 g of ion exchange water, 0.6 g of methyl cellulose, 2.2 g of ethyl acetate, 8.0 g of a 50 wt% di-i-propylperoxydicarbonate-fluorocarbon 225 cb solution, 396 g of vinylidene fluoride, and monomethylmalein 4.0 g of acid was charged, the reaction was started under conditions of a temperature of 28 ° C. and a pressure of 4.3 MPa-G, and suspension polymerization was carried out until the pressure dropped to 1.5 MPa-G (30 hours after the start of the reaction).
 重合完了後、重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体A粉末を得た。重合率は88%で、得られた重合体Aのインヘレント粘度は1.1dl/gであり、AR(=A1650-1800/A3000-3100)は、0.446であった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer A powder. The polymerization rate was 88%, the inherent viscosity of the obtained polymer A was 1.1 dl / g, and A R (= A 1650-1800 / A 3000-3100 ) was 0.446.
 〔製造例2〕
 (重合体Bの製造)
 内容量2リットルのオートクレーブに、イオン交換水1010g、メチルセルロース0.2g、酢酸エチル1.7g、50wt%ジ-i-プロピルペルオキシジカーボネート-フロン225cb溶液4.0g、およびフッ化ビニリデン400gを仕込み、温度26℃、圧力が4.1MPa-Gの条件で反応を開始し、1.5MPa-G(反応開始から15時間後)に下がるまで、懸濁重合を行った。
[Production Example 2]
(Production of polymer B)
An autoclave having an internal volume of 2 liters was charged with 1010 g of ion-exchanged water, 0.2 g of methyl cellulose, 1.7 g of ethyl acetate, 4.0 g of a 50 wt% di-i-propylperoxydicarbonate-fluorocarbon 225 cb solution, and 400 g of vinylidene fluoride, The reaction was started under the conditions of a temperature of 26 ° C. and a pressure of 4.1 MPa-G, and suspension polymerization was performed until the pressure dropped to 1.5 MPa-G (15 hours after the start of the reaction).
 重合完了後、重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体B粉末を得た。重合率は92%で、得られた重合体Bのインヘレント粘度は2.2dl/gであった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer B powder. The polymerization rate was 92%, and the inherent viscosity of the obtained polymer B was 2.2 dl / g.
 〔製造例3〕
 (重合体Cの製造)
 内容量2リットルのオートクレーブに、イオン交換水980g、メチルセルロース0.8g、50wt%ジ-i-プロピルペルオキシジカーボネート-フロン225cb溶液3.6g、フッ化ビニリデン396g、およびモノメチルマレイン酸4.0gを仕込み、温度29℃、圧力が4.3MPa-Gの条件で反応を開始し、1.5MPa-G(反応開始から55時間後)に下がるまで、懸濁重合を行った。
[Production Example 3]
(Production of polymer C)
A 2-liter autoclave is charged with 980 g of ion-exchanged water, 0.8 g of methylcellulose, 3.6 g of a 50 wt% di-i-propylperoxydicarbonate-fluorocarbon 225 cb solution, 396 g of vinylidene fluoride, and 4.0 g of monomethylmaleic acid. The reaction was started under the conditions of a temperature of 29 ° C. and a pressure of 4.3 MPa-G, and suspension polymerization was performed until the pressure dropped to 1.5 MPa-G (55 hours after the start of the reaction).
 重合完了後、重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体C粉末を得た。重合率は85%で、得られた重合体Cのインヘレント粘度は2.0dl/gであり、AR(=A1650-1800/A3000-3100)は、0.372であった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer C powder. The polymerization rate was 85%, the inherent viscosity of the obtained polymer C was 2.0 dl / g, and A R (= A 1650-1800 / A 3000-3100 ) was 0.372.
 〔製造例4〕
 (重合体Dの製造)
 内容量2リットルのオートクレーブに、イオン交換水900g、ヒドロキシプロピルメチルセルロース0.4g、50wt%パーブチルパーピバレート-フロン225cb溶液2.0g、フッ化ビニリデン396g、およびアクリル酸0.2gを仕込み、温度50℃、圧力が6.2MPa-Gの条件で反応を開始し、懸濁重合を行った。
[Production Example 4]
(Production of polymer D)
An autoclave having an internal volume of 2 liters was charged with 900 g of ion exchange water, 0.4 g of hydroxypropylmethylcellulose, 2.0 g of a 50 wt% perbutyl perpivalate-fluorocarbon 225 cb solution, 396 g of vinylidene fluoride, and 0.2 g of acrylic acid. The reaction was started under the conditions of 50 ° C. and a pressure of 6.2 MPa-G, and suspension polymerization was performed.
 懸濁重合を行っている間、重合初期圧を維持するようにポンプで15g/Lのアクリル酸水溶液220gを重合缶(オートクレーブ)に連続的に添加した。アクリル酸水溶液を添加し終えたところで重合を停止した。 During the suspension polymerization, 220 g of 15 g / L aqueous acrylic acid solution was continuously added to the polymerization can (autoclave) with a pump so as to maintain the initial polymerization pressure. The polymerization was stopped when the acrylic acid aqueous solution had been added.
 重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体D粉末を得た。重合率は30%で、得られた重合体Dのインヘレント粘度は2.1dl/gであり、AR(=A1650-1800/A3000-3100)は1.68であり、ランダム率は96%であった。 The polymer slurry was heat treated at 95 ° C. for 30 minutes, then dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer D powder. The polymerization rate is 30%, the inherent viscosity of the obtained polymer D is 2.1 dl / g, A R (= A 1650-1800 / A 3000-3100 ) is 1.68, and the random rate is 96 %Met.
 〔製造例5〕
 (重合体Eの製造)
 内容量2リットルのオートクレーブに、イオン交換水1040g、ヒドロキシプロピルメチルセルロース0.2g、50wt%ジ-i-プロピルペルオキシジカーボネート-フロン225cb溶液0.8g、フッ化ビニリデン398g、およびアクリル酸2.0gを仕込み、温度50℃、圧力が6.50MPa-Gの条件で反応を開始し、6.63MPa-G(反応開始から7時間後)に下がるまで、懸濁重合を行った。
[Production Example 5]
(Production of polymer E)
In an autoclave with an internal volume of 2 liters, 1040 g of ion-exchanged water, 0.2 g of hydroxypropylmethylcellulose, 0.8 g of a 50 wt% di-i-propylperoxydicarbonate-fluorocarbon 225 cb, 398 g of vinylidene fluoride, and 2.0 g of acrylic acid The reaction was started under the conditions of charging, temperature of 50 ° C., and pressure of 6.50 MPa-G, and suspension polymerization was carried out until the temperature dropped to 6.63 MPa-G (7 hours after the start of the reaction).
 重合完了後、重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体E粉末を得た。重合率は6%で、得られた重合体Eのインヘレント粘度は2.1dl/gであり、AR(=A1650-1800/A3000-3100)は、1.54であり、ランダム率は22%であった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer E powder. The polymerization rate is 6%, the inherent viscosity of the obtained polymer E is 2.1 dl / g, A R (= A 1650-1800 / A 3000-3100 ) is 1.54, and the random rate is 22%.
 〔製造例6〕
 (重合体Fの製造)
 容量2リットルのオートクレーブに、イオン交換水900g、ヒドロキシプロピルメチルセルロース0.4g、50wt%パーブチルパーピバレート-フロン225cb溶液6.0g、フッ化ビニリデン396g、およびアクリル酸0.8gを仕込み、温度50℃、圧力が6.0MPa-Gの条件で反応を開始し、懸濁重合を行った。
[Production Example 6]
(Production of polymer F)
A 2 liter autoclave is charged with 900 g of ion exchange water, 0.4 g of hydroxypropyl methylcellulose, 6.0 g of a 50 wt% perbutyl perpivalate-fluorocarbon 225 cb solution, 396 g of vinylidene fluoride, and 0.8 g of acrylic acid at a temperature of 50 g. The reaction was started under the conditions of ° C and a pressure of 6.0 MPa-G to carry out suspension polymerization.
 懸濁重合を行っている間、重合初期圧を維持するようにポンプで10g/Lのアクリル酸水溶液316gを重合缶(オートクレーブ)に連続的に添加した。アクリル酸水溶液を添加し終えたところで重合を停止した。 During the suspension polymerization, 316 g of 10 g / L acrylic acid aqueous solution was continuously added to the polymerization can (autoclave) with a pump so as to maintain the initial polymerization pressure. The polymerization was stopped when the acrylic acid aqueous solution had been added.
 重合体スラリーを95℃で30分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体D粉末を得た。重合率は40%で、得られた重合体Fのインヘレント粘度は1.5dl/gであり、AR(=A1650-1800/A3000-3100)は、1.13であり、ランダム率は93%であった。 The polymer slurry was heat treated at 95 ° C. for 30 minutes, then dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer D powder. The polymerization rate is 40%, the inherent viscosity of the obtained polymer F is 1.5 dl / g, A R (= A 1650-1800 / A 3000-3100 ) is 1.13, and the random rate is 93%.
 比較例で用いたポリアクリル酸(PAA)としては、以下のもの用いた。PAA1:和光純薬工業(株)製、 和光一級 Polyacrylic Acid、重量平均分子量(Mw)250,000PAA2:和光純薬工業(株)製、 和光一級 Polyacrylic Acid、重量平均分子量(Mw) 1,000,000
 〔実施例1〕
 (非水電解質二次電池用負極合剤の調製)
 負極活物質として人造黒鉛(大阪ガスケミカル(株)製「MCMB」、平均粒径22μm、比表面積0.9m2/g)を96重量部、バインダーとして重合体Aを4重量部、添加剤としてチオ尿素を0.02重量部、溶剤としてN‐メチル‐2‐ピロリドン(NMP)5.04重量部を混合して非水電解質二次電池用負極合剤(1)を得た。
As polyacrylic acid (PAA) used in the comparative examples, the following were used. PAA1: Wako Pure Chemical Industries, Ltd., Wako first grade Polyacid Acid, weight average molecular weight (Mw) 250,000 PAA2: Wako Pure Chemical Industries, Ltd., Wako first grade Polyacrylic Acid, weight average molecular weight (Mw) 1,000, 000
[Example 1]
(Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery)
96 parts by weight of artificial graphite (“MCMB” manufactured by Osaka Gas Chemical Co., Ltd., average particle size 22 μm, specific surface area 0.9 m 2 / g) as negative electrode active material, 4 parts by weight of polymer A as binder, additive 0.02 parts by weight of thiourea and 5.04 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to obtain a negative electrode mixture (1) for a non-aqueous electrolyte secondary battery.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(1)を厚さ約10μmの銅箔の片面にバーコーターを用いて、塗布量10gで塗布し、110℃で30分乾燥し、電極構造体(1)を得た。
(Production of electrodes)
The negative electrode mixture (1) for a non-aqueous electrolyte secondary battery was applied to one side of a copper foil having a thickness of about 10 μm using a bar coater at a coating amount of 10 g, dried at 110 ° C. for 30 minutes, and an electrode structure ( 1) was obtained.
 得られた電極構造体(1)をプレス圧0.8t/cm2でプレスし、電極(1)(合剤層の厚さ130μm)を得た。 The obtained electrode structure (1) was pressed at a pressing pressure of 0.8 t / cm 2 to obtain an electrode (1) (mixture layer thickness 130 μm).
 得られた電極(1)を試料とし、合剤層と集電体との剥離強度をJIS K6854に準拠して180°剥離試験により測定した。 Using the obtained electrode (1) as a sample, the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
 なお、該試験には、引張試験機としてORIENTEC社製STA-1150 UNIVERSAL TESTING MACHINEを用いた。 For this test, ORI-1TEC STA-1150 UNIVERSAL TESTING MACHINE was used as a tensile tester.
 結果を表1に示す。 The results are shown in Table 1.
 〔実施例2~21〕
 (非水電解質二次電池用負極合剤の調製)
 負極活物質、バインダー、添加剤の量および種類を表1~3に記載したように変更した以外は、実施例1と同様に行い、非水電解質二次電池用負極合剤(2)~(21)を得た。
[Examples 2 to 21]
(Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery)
Except that the amounts and types of the negative electrode active material, binder, and additive were changed as described in Tables 1 to 3, the same procedure as in Example 1 was performed, and the negative electrode mixtures for nonaqueous electrolyte secondary batteries (2) to ( 21) was obtained.
 なお、表中、「MAG‐D20」とは、人造黒鉛(日立化成工業製、「MAG」、平均粒径20μm、比表面積4.2m2/g)を意味する。 In the table, “MAG-D20” means artificial graphite (manufactured by Hitachi Chemical Co., Ltd., “MAG”, average particle size 20 μm, specific surface area 4.2 m 2 / g).
 (電極の作製)
 前記非水電解質二次電池用負極合剤(1)を非水電解質二次電池用負極合剤(2)~(21)に変更した以外は、実施例1と同様に行い、電極(2)~(21)を得た。
(Production of electrodes)
The same procedure as in Example 1 was conducted except that the negative electrode mixture (1) for nonaqueous electrolyte secondary batteries was changed to the negative electrode mixture (2) to (21) for nonaqueous electrolyte secondary batteries. To (21) were obtained.
 得られた電極(2)~(21)を、試料とし、実施例1と同様の方法で剥離強度を測定した。 The obtained electrodes (2) to (21) were used as samples, and the peel strength was measured in the same manner as in Example 1.
 結果を表1~3に示す。 Results are shown in Tables 1-3.
 〔比較例1~9〕
 (非水電解質二次電池用負極合剤の調製)
 負極活物質、バインダー、添加剤の量および種類を表1~2に記載したように変更した以外は、実施例1と同様に行い、非水電解質二次電池用負極合剤(c1)~(c9)を得た。
[Comparative Examples 1 to 9]
(Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery)
Except that the amounts and types of the negative electrode active material, binder, and additive were changed as described in Tables 1 and 2, the same procedure as in Example 1 was performed, and the negative electrode mixture for nonaqueous electrolyte secondary batteries (c1) to ( c9) was obtained.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(1)を非水電解質二次電池用負極合剤(c1)~(c9)に変更した以外は、実施例1と同様に行い、電極(c1)~(c9)を得た。
(Production of electrodes)
The same procedure as in Example 1 was conducted except that the negative electrode mixture (1) for nonaqueous electrolyte secondary batteries was changed to the negative electrode mixtures (c1) to (c9) for nonaqueous electrolyte secondary batteries, and the electrode (c1) To (c9) were obtained.
 得られた電極(c1)~(c9)を、試料とし、実施例1と同様の方法で剥離強度を測定した。 The obtained electrodes (c1) to (c9) were used as samples, and the peel strength was measured in the same manner as in Example 1.
 結果を表1~2に示す。 The results are shown in Tables 1-2.
 〔参考例1、2〕
 (非水電解質二次電池用負極合剤の調製)
 負極活物質、バインダー、添加剤の量および種類を表2に記載したように変更した以外は、実施例1と同様に行い、非水電解質二次電池用負極合剤(r1)、(r2)を得た。
[Reference Examples 1 and 2]
(Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery)
A negative electrode mixture for nonaqueous electrolyte secondary batteries (r1), (r2), except that the amounts and types of the negative electrode active material, binder, and additive were changed as described in Table 2, and performed in the same manner as in Example 1. Got.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(1)を非水電解質二次電池用負極合剤(r1)、(r2)に変更した以外は、実施例1と同様に行い、電極(r1)、(r2)を得た。
(Production of electrodes)
The same procedure as in Example 1 was conducted except that the negative electrode mixture (1) for nonaqueous electrolyte secondary batteries was changed to the negative electrode mixture (r1) and (r2) for nonaqueous electrolyte secondary batteries, and the electrode (r1) , (R2) was obtained.
 得られた電極(r1)、(r2)を、試料とし、実施例1と同様の方法で剥離強度を測定した。 The obtained electrodes (r1) and (r2) were used as samples, and the peel strength was measured in the same manner as in Example 1.
 結果を表2に示す。 The results are shown in Table 2.
 〔比較例10〕
 (非水電解質二次電池用合剤の調製)
 正極活物質としてコバルト酸リチウム(LCO)(日本化学工業(株)社製 「セルシードC10」)を100重量部、導電助剤としてアセチレンブラック(電気化学工業(株)社製 デンカブラック)を2重量部、バインダーとして重合体Aを2重量部、チオ尿素を0.02重量部、溶剤としてN‐メチル‐2‐ピロリドン(NMP)6.93重量部を混合して非水電解質二次電池用合剤(c10)を得た。
[Comparative Example 10]
(Preparation of non-aqueous electrolyte secondary battery mixture)
100 parts by weight of lithium cobalt oxide (LCO) ("Cell Seed C10" manufactured by Nippon Chemical Industry Co., Ltd.) as the positive electrode active material, and 2 weights of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive auxiliary agent 2 parts by weight of polymer A as a binder, 0.02 parts by weight of thiourea, and 6.93 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to prepare a composite for a non-aqueous electrolyte secondary battery. Agent (c10) was obtained.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(c10)を厚さ約15μmのアルミ箔の片面にバーコーターを用いて、塗布量20gで塗布し、110℃で30分乾燥し電極(c10)を得た。
(Production of electrodes)
The negative electrode mixture (c10) for a non-aqueous electrolyte secondary battery was applied to one side of an aluminum foil having a thickness of about 15 μm using a bar coater at a coating amount of 20 g and dried at 110 ° C. for 30 minutes to obtain an electrode (c10). Obtained.
 得られた電極(c10)を試料とし、合剤層と集電体との剥離強度をJIS K6854に準拠して90°剥離試験により測定した。 Using the obtained electrode (c10) as a sample, the peel strength between the mixture layer and the current collector was measured by a 90 ° peel test in accordance with JIS K6854.
 なお、該試験には、引張試験機としてORIENTEC社製STA-1150 UNIVERSAL TESTING MACHINEを用いた。 For this test, ORI-1TEC STA-1150 UNIVERSAL TESTING MACHINE was used as a tensile tester.
 結果を表4に示す。 The results are shown in Table 4.
 〔比較例11〕
 (非水電解質二次電池用合剤の調製)
 チオ尿素を用いないこと以外は、比較例10と同様に行い、非水電解質二次電池用合剤(c11)を得た。
[Comparative Example 11]
(Preparation of non-aqueous electrolyte secondary battery mixture)
Except not using thiourea, it carried out similarly to the comparative example 10, and obtained the mixture (c11) for nonaqueous electrolyte secondary batteries.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(c11)を厚さ約15μmのアルミ箔の片面にバーコーターを用いて、塗布量20gで塗布し、110℃で30分乾燥し電極(c11)を得た。
(Production of electrodes)
The negative electrode mixture (c11) for a non-aqueous electrolyte secondary battery was applied to one side of an aluminum foil having a thickness of about 15 μm using a bar coater at a coating amount of 20 g and dried at 110 ° C. for 30 minutes to form an electrode (c11). Obtained.
 得られた電極(c11)を試料とし、合剤層と集電体との剥離強度をJIS K6854に準拠して90°剥離試験により測定した。 Using the obtained electrode (c11) as a sample, the peel strength between the mixture layer and the current collector was measured by a 90 ° peel test in accordance with JIS K6854.
 なお、該試験には、引張試験機としてORIENTEC社製STA-1150 UNIVERSAL TESTING MACHINEを用いた。 For this test, ORI-1TEC STA-1150 UNIVERSAL TESTING MACHINE was used as a tensile tester.
 結果を表4に示す。 The results are shown in Table 4.
 〔実施例22〕
 (非水電解質二次電池用負極合剤の調製)
 負極活物質として人造黒鉛(大阪ガスケミカル(株)製「MCMB」)を96重量部、バインダーとして重合体Aを4重量部、溶剤としてN‐メチル‐2‐ピロリドン(NMP)5.04重量部を混合して非水電解質二次電池用負極合剤(22)を得た。
[Example 22]
(Preparation of negative electrode mixture for non-aqueous electrolyte secondary battery)
96 parts by weight of artificial graphite (“MCMB” manufactured by Osaka Gas Chemical Co., Ltd.) as a negative electrode active material, 4 parts by weight of polymer A as a binder, and 5.04 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent Were mixed to obtain a negative electrode mixture (22) for a non-aqueous electrolyte secondary battery.
 (表面処理銅箔の作製)
 チオ尿素1gをエタノール200gに溶解し、溶液を得た。
(Production of surface-treated copper foil)
1 g of thiourea was dissolved in 200 g of ethanol to obtain a solution.
 該溶液に、厚さ約10μmの銅箔を60分間浸漬した。溶液に浸漬した銅箔を、エタノールで洗浄し、50℃で10分間乾燥し、表面処理銅箔を得た。 In this solution, a copper foil having a thickness of about 10 μm was immersed for 60 minutes. The copper foil immersed in the solution was washed with ethanol and dried at 50 ° C. for 10 minutes to obtain a surface-treated copper foil.
 (電極の作製)
 前記非水電解質二次電池用負極合剤(22)を厚さ約10μmの表面処理銅箔の片面にバーコーターを用いて、塗布量10gで塗布し、110℃で30分乾燥し、電極構造体(22)を得た。
(Production of electrodes)
The negative electrode mixture (22) for a non-aqueous electrolyte secondary battery was applied to one side of a surface-treated copper foil having a thickness of about 10 μm using a bar coater at a coating amount of 10 g, dried at 110 ° C. for 30 minutes, and an electrode structure Body (22) was obtained.
 得られた電極構造体(22)をプレス圧0.8t/cm2でプレスし、電極(22)(合剤層の厚さ130μm)を得た。 The obtained electrode structure (22) was pressed at a pressing pressure of 0.8 t / cm 2 to obtain an electrode (22) (mixture layer thickness 130 μm).
 得られた電極(22)を試料とし、合剤層と集電体との剥離強度をJIS K6854に準拠して180°剥離試験により測定した。 Using the obtained electrode (22) as a sample, the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
 なお、該試験には、引張試験機としてORIENTEC社製STA-1150 UNIVERSAL TESTING MACHINEを用いた。 For this test, ORI-1TEC STA-1150 UNIVERSAL TESTING MACHINE was used as a tensile tester.
 結果を表5に示す。 The results are shown in Table 5.
 〔実施例23〕
 (表面処理銅箔の作製)
 浸漬時間を60分から10分に変えた以外は実施例22と同様に行い、表面処理銅箔を得た。
Example 23
(Production of surface-treated copper foil)
A surface-treated copper foil was obtained in the same manner as in Example 22 except that the immersion time was changed from 60 minutes to 10 minutes.
 (電極の作製)
 浸漬時間を60分から10分に変えることにより得られた表面処理銅箔を用いた以外は実施例22と同様に行い、電極(23)(合剤層の厚さ130μm)を得た。
(Production of electrodes)
An electrode (23) (mixture layer thickness 130 μm) was obtained in the same manner as in Example 22 except that the surface-treated copper foil obtained by changing the immersion time from 60 minutes to 10 minutes was used.
 得られた電極(23)を試料とし、合剤層と集電体との剥離強度をJIS K6854に準拠して180°剥離試験により測定した。 Using the obtained electrode (23) as a sample, the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JIS K6854.
 なお、該試験には、引張試験機としてORIENTEC社製STA-1150 UNIVERSAL TESTING MACHINEを用いた。 For this test, ORI-1TEC STA-1150 UNIVERSAL TESTING MACHINE was used as a tensile tester.
 結果を表5に示す。 The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (16)

  1.  酸性官能基を有するフッ化ビニリデン系重合体、硫黄含有有機化合物、電極活物質および有機溶剤を含有し、
     前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする非水電解質二次電池用負極合剤。
    Contains a vinylidene fluoride polymer having an acidic functional group, a sulfur-containing organic compound, an electrode active material and an organic solvent,
    The negative electrode mixture for a nonaqueous electrolyte secondary battery, wherein the sulfur-containing organic compound has at least one functional group not containing a sulfur atom.
  2.  前記硫黄含有有機化合物が、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位あるいはβ位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物である請求項1に記載の非水電解質二次電池用負極合剤。 The sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or a carbon atom at the α-position or β-position of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Item 2. The negative electrode mixture for nonaqueous electrolyte secondary batteries according to Item 1.
  3.  前記硫黄含有有機化合物が、前記官能基として、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基を含む請求項1または2に記載の非水電解質二次電池用負極合剤。 The negative electrode mixture for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the sulfur-containing organic compound contains at least one functional group selected from a carbonyl group, a hydroxyl group, and an amino group as the functional group. .
  4.  前記硫黄含有有機化合物が、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物から選択される少なくとも1種の硫黄含有有機化合物である請求項1~3のいずれか一項に記載の非水電解質二次電池用負極合剤。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the sulfur-containing organic compound is at least one sulfur-containing organic compound selected from a thiourea analogue compound and a thiomalate analogue compound. Negative electrode mixture.
  5.  前記酸性官能基を有するフッ化ビニリデン系重合体が有する酸性官能基が、カルボキシル基(‐CO2H)、スルホ基(‐SO3H)、およびホスホン酸基(‐PO32)から選択される少なくとも1種の酸性官能基である請求項1~4のいずれか一項に記載の非水電解質二次電池用負極合剤。 The acidic functional group of the vinylidene fluoride-containing polymer having an acidic functional group is selected from a carboxyl group (—CO 2 H), a sulfo group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). The negative electrode mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, which is at least one kind of acidic functional group.
  6.  前記酸性官能基を有するフッ化ビニリデン系重合体が有する酸性官能基が、カルボキシル基である請求項1~4のいずれか一項に記載の非水電解質二次電池用負極合剤。 The negative electrode mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the acidic functional group of the vinylidene fluoride-based polymer having an acidic functional group is a carboxyl group.
  7.  前記酸性官能基を有するフッ化ビニリデン系重合体の赤外線吸収スペクトルを測定した際の下記式(1)で表わされる吸光度比(AR)が、0.1~2.0の範囲であることを特徴とする請求項6に記載の非水電解質二次電池用負極合剤。
     AR=A1650-1800/A3000-3100 ・・・(1)
     (上記式(1)において、A1650-1800は、1650~1800cm-1の範囲に観察されるカルボニル基由来の吸収帯の吸光度であり、A3000-3100は3000~3100cm-1の範囲に検出されるCH構造由来の吸収帯の吸光度である。)
    The absorbance ratio (A R ) represented by the following formula (1) when the infrared absorption spectrum of the vinylidene fluoride polymer having an acidic functional group is measured is in the range of 0.1 to 2.0. The negative electrode mixture for a nonaqueous electrolyte secondary battery according to claim 6, wherein the negative electrode mixture is a nonaqueous electrolyte secondary battery.
    A R = A 1650-1800 / A 3000-3100 (1)
    In (the above formula (1), A 1650-1800 is the absorbance of absorption band derived from the carbonyl group is observed in the range of 1650 ~ 1800cm -1, A 3000-3100 is detected in the range of 3000 ~ 3100 cm -1 The absorbance of the absorption band derived from the CH structure.)
  8.  前記酸性官能基を有するフッ化ビニリデン系重合体が、フッ化ビニリデンと、酸性官能基を有するモノマーとの共重合体であり、
     該共重合体中の酸性官能基を有するモノマー由来の構成単位のランダム率が、40%以上である請求項1~7のいずれか一項に記載の非水電解質二次電池用負極合剤。
    The vinylidene fluoride-based polymer having an acidic functional group is a copolymer of vinylidene fluoride and a monomer having an acidic functional group,
    The negative electrode mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein a random rate of the structural unit derived from the monomer having an acidic functional group in the copolymer is 40% or more.
  9.  前記酸性官能基を有するフッ化ビニリデン系重合体100質量%あたり、前記硫黄含有有機化合物を0.01~5質量%含む請求項1~8のいずれか一項に記載の非水電解質二次電池用負極合剤。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 8, comprising 0.01 to 5% by mass of the sulfur-containing organic compound per 100% by mass of the vinylidene fluoride-based polymer having an acidic functional group. Negative electrode mixture.
  10.  前記電極活物質と酸性官能基を有するフッ化ビニリデン系重合体との合計100質量部あたり、前記電極活物質が、70~99.9質量部である請求項1~9のいずれか一項に記載の非水電解質二次電池用負極合剤。 The electrode active material is 70 to 99.9 parts by mass per 100 parts by mass in total of the electrode active material and the vinylidene fluoride-based polymer having an acidic functional group. The negative electrode mixture for nonaqueous electrolyte secondary batteries as described.
  11.  請求項1~10のいずれか一項に記載の非水電解質二次電池用負極合剤を、集電体に塗布・乾燥することにより得られる非水電解質二次電池用負極。 A negative electrode for a nonaqueous electrolyte secondary battery obtained by applying and drying the negative electrode mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 10 on a current collector.
  12.  集電体を、硫黄含有有機化合物で表面処理することにより得られる表面処理集電体に、
     酸性官能基を有するフッ化ビニリデン系重合体、電極活物質および有機溶剤を含有する非水電解質二次電池用負極合剤を塗布・乾燥することにより得られる負極であり、
     前記硫黄含有有機化合物が、硫黄原子を含まない官能基を少なくとも一つ有することを特徴とする非水電解質二次電池用負極。
    A surface-treated current collector obtained by surface-treating a current collector with a sulfur-containing organic compound,
    It is a negative electrode obtained by applying and drying a negative electrode mixture for a non-aqueous electrolyte secondary battery containing a vinylidene fluoride polymer having an acidic functional group, an electrode active material and an organic solvent,
    The negative electrode for a non-aqueous electrolyte secondary battery, wherein the sulfur-containing organic compound has at least one functional group not containing a sulfur atom.
  13.  前記硫黄含有有機化合物が、硫黄原子が結合する炭素原子、または硫黄原子が結合する炭素原子のα位あるいはβ位の炭素原子と、前記官能基とが結合している硫黄含有有機化合物である請求項12に記載の非水電解質二次電池用負極。 The sulfur-containing organic compound is a sulfur-containing organic compound in which a carbon atom to which a sulfur atom is bonded, or a carbon atom at the α-position or β-position of a carbon atom to which a sulfur atom is bonded, and the functional group are bonded. Item 15. The negative electrode for a nonaqueous electrolyte secondary battery according to Item 12.
  14.  前記硫黄含有有機化合物が、前記官能基として、カルボニル基、ヒドロキシル基およびアミノ基から選択される少なくとも1種の官能基を含む請求項12または13に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 12 or 13, wherein the sulfur-containing organic compound contains at least one functional group selected from a carbonyl group, a hydroxyl group, and an amino group as the functional group.
  15.  前記硫黄含有有機化合物が、チオ尿素類縁化合物およびチオリンゴ酸類縁化合物から選択される少なくとも1種の硫黄含有有機化合物である請求項12~14のいずれか一項に記載の非水電解質二次電池用負極。 The non-aqueous electrolyte secondary battery according to any one of claims 12 to 14, wherein the sulfur-containing organic compound is at least one sulfur-containing organic compound selected from thiourea analogs and thiomalic acid analogs. Negative electrode.
  16.  請求項11~15のいずれか一項に記載の非水電解質二次電池用負極を有する非水電解質二次電池。 A non-aqueous electrolyte secondary battery having the negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 11 to 15.
PCT/JP2011/072167 2010-10-14 2011-09-28 Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery WO2012049967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180048820.2A CN103155247B (en) 2010-10-14 2011-09-28 Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR1020137011754A KR101351206B1 (en) 2010-10-14 2011-09-28 Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2012538621A JP5877791B2 (en) 2010-10-14 2011-09-28 Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010231939 2010-10-14
JP2010-231939 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012049967A1 true WO2012049967A1 (en) 2012-04-19

Family

ID=45938198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072167 WO2012049967A1 (en) 2010-10-14 2011-09-28 Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JP5877791B2 (en)
KR (1) KR101351206B1 (en)
CN (1) CN103155247B (en)
WO (1) WO2012049967A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069548A1 (en) * 2012-11-02 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device electrode, method for forming the same, power storage device, and electrical device
WO2017056974A1 (en) * 2015-09-30 2017-04-06 株式会社クレハ Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2018010880A (en) * 2017-10-24 2018-01-18 株式会社東芝 Negative electrode, nonaqueous electrolyte secondary battery and battery pack
WO2018211916A1 (en) * 2017-05-18 2018-11-22 富士フイルム株式会社 Perforated metal foil, perforated metal foil manufacturing method, secondary battery negative electrode, and secondary battery positive electrode
US20180366733A1 (en) 2015-12-10 2018-12-20 Kaneka Corporation Nonaqueous electrolyte secondary battery
JP2020053385A (en) * 2018-09-19 2020-04-02 株式会社東芝 Electrode, secondary battery, battery pack, vehicle, and stationary power supply
EP3923377A1 (en) * 2020-04-20 2021-12-15 Sumitomo Rubber Industries, Ltd. Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
WO2023127432A1 (en) * 2021-12-27 2023-07-06 株式会社クレハ Binder for non-aqueous electrolyte secondary battery, electrode mixture, electrode, and battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190954A (en) * 2013-07-29 2015-12-23 株式会社Lg化学 Electrode for secondary battery and lithium secondary battery comprising same
JP2015064988A (en) * 2013-09-24 2015-04-09 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
EP3451420B1 (en) * 2016-04-28 2021-10-27 Toppan Printing Co., Ltd. Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
TWI603526B (en) * 2016-08-23 2017-10-21 達興材料股份有限公司 Water-based negative electrode paste composition, negative electrode and lithium battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (en) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer
JPH10306265A (en) * 1997-05-02 1998-11-17 Elf Atochem Japan Kk Polyvinylidene fluoride-based composition adhesive to metal and electrode for battery
WO2004049475A1 (en) * 2002-11-22 2004-06-10 Kureha Chemical Industry Company, Limited Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same
JP2005310747A (en) * 2004-03-23 2005-11-04 Kureha Chem Ind Co Ltd Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP2007128871A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
WO2010035587A1 (en) * 2008-09-26 2010-04-01 株式会社クレハ Negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2010055858A1 (en) * 2008-11-13 2010-05-20 株式会社クレハ Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2010074041A1 (en) * 2008-12-26 2010-07-01 株式会社クレハ Negative-electrode mix for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
CN101492596B (en) * 2005-03-23 2011-11-23 日本瑞翁株式会社 Binder for electrode of nonaqueous electrolyte secondary battery, electrode, and nonaqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (en) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer
JPH10306265A (en) * 1997-05-02 1998-11-17 Elf Atochem Japan Kk Polyvinylidene fluoride-based composition adhesive to metal and electrode for battery
WO2004049475A1 (en) * 2002-11-22 2004-06-10 Kureha Chemical Industry Company, Limited Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same
JP2005310747A (en) * 2004-03-23 2005-11-04 Kureha Chem Ind Co Ltd Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP2007128871A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
WO2010035587A1 (en) * 2008-09-26 2010-04-01 株式会社クレハ Negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2010055858A1 (en) * 2008-11-13 2010-05-20 株式会社クレハ Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2010074041A1 (en) * 2008-12-26 2010-07-01 株式会社クレハ Negative-electrode mix for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806334B2 (en) 2012-11-02 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Power storage device electrode, method for forming the same, power storage device, and electrical device
KR20150082357A (en) * 2012-11-02 2015-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device electrode, method for forming the same, power storage device, and electrical device
WO2014069548A1 (en) * 2012-11-02 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device electrode, method for forming the same, power storage device, and electrical device
KR102164631B1 (en) * 2012-11-02 2020-10-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device electrode, method for forming the same, power storage device, and electrical device
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
WO2017056974A1 (en) * 2015-09-30 2017-04-06 株式会社クレハ Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
US20180366733A1 (en) 2015-12-10 2018-12-20 Kaneka Corporation Nonaqueous electrolyte secondary battery
US10790512B2 (en) 2015-12-10 2020-09-29 Kaneka Corporation Nonaqueous electrolyte secondary battery
JPWO2018211916A1 (en) * 2017-05-18 2020-03-12 富士フイルム株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery and positive electrode for secondary battery
WO2018211916A1 (en) * 2017-05-18 2018-11-22 富士フイルム株式会社 Perforated metal foil, perforated metal foil manufacturing method, secondary battery negative electrode, and secondary battery positive electrode
JP2018010880A (en) * 2017-10-24 2018-01-18 株式会社東芝 Negative electrode, nonaqueous electrolyte secondary battery and battery pack
JP2020053385A (en) * 2018-09-19 2020-04-02 株式会社東芝 Electrode, secondary battery, battery pack, vehicle, and stationary power supply
JP7098558B2 (en) 2018-09-19 2022-07-11 株式会社東芝 Electrodes, rechargeable batteries, battery packs, vehicles, and stationary power supplies
US11462742B2 (en) 2018-09-19 2022-10-04 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, vehicle, and stationary power supply
EP3923377A1 (en) * 2020-04-20 2021-12-15 Sumitomo Rubber Industries, Ltd. Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
WO2023127432A1 (en) * 2021-12-27 2023-07-06 株式会社クレハ Binder for non-aqueous electrolyte secondary battery, electrode mixture, electrode, and battery

Also Published As

Publication number Publication date
KR101351206B1 (en) 2014-01-14
CN103155247B (en) 2015-06-10
JP5877791B2 (en) 2016-03-08
JPWO2012049967A1 (en) 2014-02-24
KR20130054467A (en) 2013-05-24
CN103155247A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5877791B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5797206B2 (en) Vinylidene fluoride copolymer and use of the copolymer
JP6045581B2 (en) Method for producing resin film for non-aqueous electrolyte secondary battery and resin film for non-aqueous electrolyte secondary battery
JP5684235B2 (en) Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery
WO2019087652A1 (en) Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
JP5626791B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
CN109075344B (en) Binder composition, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JPWO2014002936A1 (en) Resin composition, filler-containing resin film for non-aqueous electrolyte secondary battery, and method for producing filler-containing resin film for non-aqueous electrolyte secondary battery
WO2018092677A1 (en) Electrode mix, method for producing electrode mix, electrode structure, method for producing electrode structure, and secondary battery
JP7062476B2 (en) Binder composition, electrode mixture raw material, electrode mixture, electrode, non-aqueous electrolyte secondary battery and method for manufacturing electrode mixture
JP5697660B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
US8642210B2 (en) Negative electrode mixture for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5400058B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048820.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011754

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11832405

Country of ref document: EP

Kind code of ref document: A1