WO2012047225A2 - Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors - Google Patents

Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors Download PDF

Info

Publication number
WO2012047225A2
WO2012047225A2 PCT/US2010/051913 US2010051913W WO2012047225A2 WO 2012047225 A2 WO2012047225 A2 WO 2012047225A2 US 2010051913 W US2010051913 W US 2010051913W WO 2012047225 A2 WO2012047225 A2 WO 2012047225A2
Authority
WO
WIPO (PCT)
Prior art keywords
cirrhosis
liver
fibrosis
subject
egfr
Prior art date
Application number
PCT/US2010/051913
Other languages
French (fr)
Inventor
Kenneth Tanabe
Bryan C. Fuchs
Original Assignee
The General Hospital Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The General Hospital Corporation filed Critical The General Hospital Corporation
Priority to PCT/US2010/051913 priority Critical patent/WO2012047225A2/en
Priority to CN2010800706147A priority patent/CN103327978A/en
Publication of WO2012047225A2 publication Critical patent/WO2012047225A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • This disclosure relates to methods of treating fibrosis, e.g., liver fibrosis, and pre-cirrhosis by administering compositions comprising epidermal growth factor receptor inhibitors.
  • HSCs hepatic stellate cells
  • HCC hepatocellular carcinoma
  • This invention is based, at least in part, on the discovery that inhibitors of the epidermal growth factor receptor (EGFR) can be used for the treatment of fibrosis, e.g., liver fibrosis, and pre-cirrhosis.
  • the methods include administering a therapeutically effective amount of an EGFR inhibitor, as known in the art or described herein, e.g., erlotinib, gefitinib, lapatinib, vandetanib, HKI-272 (neratinib),
  • treatment of fibrosis means to ameliorate at least one symptom of the disorder associated with fibrosis.
  • Treatment of pre-cirrhosis means to ameliorate at least one symptom of the disorder associated with pre-cirrhosis.
  • Pre-cirrhosis refers to cirrhosis in the absence of, e.g., prior to the development of, macronodular cirrhosis.
  • the invention features methods of treating, e.g., reducing severity or progression of, liver fibrosis or pre-cirrhosis in a subject.
  • the methods can include selecting a subject on the basis that they have, or are at risk of developing, liver fibrosis and/or pre-cirrhosis, but do not yet have macronodular cirrhosis or HCC, or a subject with underlying fibrosis or pre-cirrhosis that remains in patients that have had surgery to remove tumorous liver tissue.
  • Selection of a subject can include detecting the presence of liver fibrosis and/or pre-cirrhosis (and/or confirming the absence of macronodular cirrhosis or HCC) by a liver biopsy, a blood test, or imaging tests of the liver. If the results of the test indicate that the subject has fibrosis or precirrhosis, the methods also include administering a therapeutically effective amount of an EGFR inhibitor, e.g., erlotinib, gefitinib, lapatinib, vandetanib, HKI-272
  • an EGFR inhibitor e.g., erlotinib, gefitinib, lapatinib, vandetanib, HKI-272
  • Epidermal growth factor receptor inhibitors include small molecule tyrosine kinase inhibitor that blocks EGFR signaling, e.g., a quinazoline or a monoclonal antibody or antigen binding fragment thereof that binds specifically to the EGFR, e.g., as known in the art and/or described herein.
  • the inhibitors can be administered orally, by injection, e.g., intraperitoneal or intravenous injection, trans dermally, or transmucosally.
  • Epidermal growth factor receptor inhibitors include antibodies such as cetuximab, panitumumab, zalutumumab, nimotuzumab and matuzumab.
  • the amount of epidermal growth factor receptor inhibitor to be administered can be readily determined by one of skill in the art using methods known in the art, and may determine on the specific inhibitor identified. In some embodiments, for example when the inhibitor is a small molecule, daily doses can range from about 0.1 to about 5.0 milligrams per kilogram body weight.
  • the methods include a step of evaluating liver function by performing a liver biopsy, a blood test, or a radiological image of the liver. The blood test is used to evaluate liver function by assaying levels of aspartate aminotransferase, alanine aminotransferase, bilirubin, glucose, or hyaluronate.
  • the invention provides several advantages.
  • the methods disclosed reduce the severity or progression of liver fibrosis and pre-cirrhosis and therefore, inhibit the progression of fibrosis or pre-cirrhosis to macronodular cirrhosis and reduce the risk of developing liver cancers.
  • Currently, no treatment options are effective in decreasing mortality rates of HCC subjects.
  • the methods disclosed reduce the severity of liver fibrosis and pre-cirrhosis and therefore improve liver function, including, but not limited to, production of clotting factors, synthesis of albumin and other proteins, clearance of bilirubin from the bloodstream, and reduction in death of liver cells.
  • DEN diethylnitrosamine
  • FIGs. IB, 1C, and ID are a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B) vehicle only, (C) 0.5 mg/kg erlotinib (Erl 0.5), or (D) 2 mg/kg erlotinib (Erl 2) during weeks 12-18.
  • FIGs. 2B-2G are a series of six panels showing representative pictures of Masson's trichome (B-D) and a-SMA stains (E-G) of liver sections from rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B and E) vehicle only, (C and F) 0.5 mg/kg erlotinib (Erl 0.5), or (D and G) 2 mg/kg erlotinib (Erl 2) during weeks 12-18.
  • B-D Masson's trichome
  • E-G a-SMA stains
  • FIGs. 3A-3D shows that erlotinib inhibits fibrogenesis and reverses DEN- induced cirrhosis in rats.
  • FIG. 3 A is a scheme of the experiment. Male Wistar rats received weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks. After 12 weeks, the rats underwent a survival hepatectomy and a liver biopsy was removed for histology. Rats then received vehicle or erlotinib (2 mg/kg) daily (5 days/week) during weeks 13-18. Rats were sacrificed at 19 weeks after a one-week washout of DEN.
  • FIG. 3B is a bar graph showing Ishak scores from Masson's trichrome stains of liver sections from each animal. ** p ⁇ 0.01 compared to vehicle.
  • FIG. 3C is a bar graph depicting the number of tumor nodules that were greater than 5 mm in diameter in rats that received vehicle or erlotinib. ** p ⁇ 0.01 compared to vehicle.
  • FIG. 3D is a bar graph showing the weights of livers at the time of sacrifice expressed as percent body weight.
  • FIGs. 4A, 4B, and 4C are a series of three bar graphs showing the levels of (A) aspartate transaminase (AST), (B) total bilirubin (TBIL), and (C) total glucose (Glu) in serum from rats treated with PBS for 18 weeks or DEN (50 mg/kg) for 18 weeks plus either vehicle, 0.5 mg/kg erlotinib (Erl 0.5), or 2 mg/kg erlotinib (Erl 2) during weeks 12-18. *, significant.
  • AST aspartate transaminase
  • TBIL total bilirubin
  • Glu total glucose
  • FIGs. 5B and 5C are a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B) vehicle only or (C) 18 mg/kg lapatinib during weeks 12-18.
  • FIGs. 6B-6E are a series of four panels showing representative pictures of Masson's trichrome (B-C) and a-SMA stains (D-E) of liver sections from rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B and D) vehicle only or (C and E) 18 mg/kg lapatinib during weeks 12-18.
  • B-C Masson's trichrome
  • D-E a-SMA stains
  • FIGs. 7A, 7B, and 7C are a series of three bar graphs showing levels of (A) aspartate transaminase (AST), (B) total bilirubin (TBIL), and (C) total glucose (Glu) in serum from rats treated with DEN (50 mg/kg) for 18 weeks plus either vehicle or 18 mg/kg lapatinib during weeks 12-18. *, significant.
  • AST aspartate transaminase
  • TBIL total bilirubin
  • Glu total glucose
  • FIG. 8A is a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for either 8, 12, or 15 weeks. Macroscopic cirrhosis is not noted until 15 weeks.
  • Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, that occurs in most types of chronic liver diseases. Advanced liver fibrosis often results in liver cirrhosis, increases risk for hepatocellular carcinoma, and frequently requires liver transplantation.
  • a treatment administered early in the disease process i.e., to subjects with liver fibrosis or precirrhosis, can result in a reduction in severity of liver cirrhosis and/or reduction in the rate of progression of severity of fibrosis or pre-cirrhosis, and/or reduce the risk of hepatocellular carcinoma, and/or improve liver function and morphology.
  • administration of a therapeutically effective amount of an inhibitor of EGFR results in decreased liver disease.
  • Hepatic fibrosis is associated with a process of overly exuberant wound healing, which results in an accumulation of excessive connective tissue in the liver due to a build-up of extracellular matrix overproduction and/or insufficient degradation.
  • the fibrotic process is triggered by chronic injury, especially if there is an inflammatory component.
  • Hepatic fibrosis by itself usually is generally asymptomatic, but can lead to portal hypertension (in which case the scarring distorts hepatic blood flow) or cirrhosis (in which the failure to properly replace destroyed liver cells results in liver dysfunction), which results in widespread distortion of normal hepatic architecture.
  • Cirrhosis is characterized by the presence of regenerative nodules surrounded by dense fibrotic tissue.
  • Symptoms associated with cirrhosis may not develop for years and are often nonspecific (e.g., anorexia, fatigue, weight loss). Late manifestations include portal hypertension, ascites, and, when decompensation occurs, liver failure. A diagnosis of fibrosis or cirrhosis can be confirmed by liver biopsy.
  • EGF was first isolated in 1962 (Cohen, J Biol Chem 237: 1555-62, 1962). The EGF gene is transcribed into what is commonly called preproEGF mRNA (Bell et al, Nucleic Acids Res 14:8427-46, 1986), which is translated into a large precursor protein, referred to as proEGF that is -170 kilodaltons (KDa) after glycosylation (Marti et al, Hepatology 9: 126-38, 1989). Thus, EGF is synthesized as a
  • Additional proteases present in the extracellular space/fluid can further cleave proEGF.
  • the isoforms detected range in size depending on the source, with the 6 KDa form being referred to as mature EGF. All the isoforms have been reported to be biologically active, although the smaller isoforms bind EGF receptor (EGFR) with greater affinity. Once EGF binds EGFR, EGFR undergoes a transition from an inactive monomer to an active homodimer.
  • the homodimer stimulates its intrinsic intracellular protein-tyros ine kinase activity and several signaling pathways can be initiated, including phosphoinositide 3 -kinase (PI3K)/AKT, janus kinase (JAK)/signal transducers and activator of transcription (STAT) and several mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase ( ⁇ ) (Yarden and Sliwkowski, Nat Rev Mol Cell Biol 2: 127-37, 2001 ; Yarden and Shilo, Cell 131 : 1018, 2007).
  • PI3K phosphoinositide 3 -kinase
  • AKT janus kinase
  • STAT janus kinase
  • MAPKs mitogen-activated protein kinases
  • ERK extracellular signal-regulated kinase
  • EGF Since its discovery, EGF has been shown to have many biological functions, including stimulating the proliferation and differentiation of epidermal and epithelial tissues (Carpenter and Cohen, Annu Rev Biochem 48: 193-216, 1979; Fisher and Lakshmanan, Endocr Rev 11 :418-42, 1990). EGF also has important roles in tumorigenesis as it enhances both chemical carcinogenesis and viral transformation (Stoscheck and King, Cancer Res 46: 1030-7, 1986), as well as the in vitro growth of human epithelial and mesenchymal-derived tumors (Singletary et al, Cancer Res 47:403-6, 1987).
  • EGFR c-ErbBl, HER1
  • EGF is a known mitogen for adult (Blanc et al, Gastroenterology 102: 1340- 50, 1992) and fetal hepatocytes (Hoffmann et al, J Cell Physiol 139:654-62, 1989) grown in culture. EGF transcription is induced during the immediate-early phase of liver regeneration (Mullhaupt et al, J Biol Chem 269: 19667-70, 1994) where it plays a vital role in hepatocyte proliferation.
  • EGF EGF
  • sialoadenectomized rats (Lambotte et al, Hepatology 25:607-12, 1997; Jones et al, Am J Physiol 268:G872-8, 1995) and mice (Noguchi et al, J Endocrinol 128: 425-31, 1991) have impaired liver regeneration after partial hepatectomy, which can be restored to normal with exogenous addition of EGF (Lambotte et al,
  • Chronic liver injury causes a local population of endothelial cells, macrophages (Kupffer cells), and hepatic stellate cells to become active and secrete several cytokines and growth factors into the liver milieu, which stimulate the surrounding hepatocytes (Bataller and Brenner, J Clin Invest 1 15:209-18, 2005).
  • EGFR has emerged as a promising chemotherapeutic target as it is overexpressed in a wide range of cancers and plays important roles in cell growth and survival (Ciardiello and Tortora, Clin Cancer Res 7:2958-70, 2001).
  • drugs that target EGFR have emerged including the small-molecule tyrosine kinase inhibitors, e.g., the quinazolines, e.g., erlotinib (4-Quinazolinamine, N-(3- ethynylphenyl)-6,7-bis(2-methoxyethoxy); brand name Tarceva ® , from OSI
  • gefitinib (4 -Quinazolinamine, N-(3-chloro-4-fluorophenyl)-7- methoxy-6-(3-(4-morpholinyl)propoxy); brand name Iressa ® , from AstraZeneca); lapatinib (4-Quinazolinamine, N-(3-chloro-4-((3-fluorophenyl)methoxy)phenyl)-6-(5- (((2-(methylsulfonyl)ethyl)amino)methyl)-2-furanyl); brand name Tykerb ® , from GlaxoSmithKline); vandetanib (4-Quninazolinamine, N-(4-bromo-2-fluorophenyl)-6- methoxy-7-((l-methyl-4-piperidinyl)methoxy); brand name Zactima ® , from
  • HKI-272 (neratinib, (2E)-N-(4-((3-chloro-4-((pyridin-2- yl)methoxy)phenyl)amino)-3-cyano-7-ethoxyquinolin-6-yl)-4-(dimethylamino)but-2- enamide, from Wyeth), BIBW2992 (2-Butenamide, N-(4-((3-chloro-4- fluorophenyl)amino)-7-(((3S)-tetrahydro-3-furanyl)oxy)-6-quinazolinyl)-4- (dimethylamino); brand name Tovok ® , from Boehringer Ingelheim), XL647 (from Exelixis); and PF00299804 (from Pfizer); as well as monoclonal antibodies, or antigen-binding fragments thereof, that selectively bind to the EGFR, e.g.,
  • DEN induces liver cirrhosis after 12 weeks and HCC at approximately 18 weeks allowing ample opportunity for preventative intervention.
  • erlotinib was shown to decrease tumor formation when administered as a chemopreventive agent during weeks 12-18 (see Examples 1-2, herein). Similar results have also been reported for gefitinib (Schiffer et al, Hepatology 41:307-14, 2005).
  • erlotinib inhibits fibrogenesis in the DEN-induced rat model. Further, erlotinib reduced hepatotoxicity as assessed by decreased serum levels of aspartate transaminase and improved liver function as assessed by decreased serum levels of bilirubin and increased serum levels of glucose. As one theory, not meant to be limiting, these effects may be explained by the ability of erlotinib to prevent the activation of hepatic stellate cells. This is consistent with previous reports showing that EGF can activate hepatic stellate cells (Yang et al, Gastroenterology 124:147-59, 2003; Chang et al, Hepatobiliary Pancreat Dis Int 7:401-5, 2008).
  • EGFR-targeted therapies have been shown to reduce pulmonary fibrosis (Ishii et al, Am J Respir Crit Care Med 174:550-6, 2006; Hardie et al, Am J Physiol Lung Cell Mol Physiol 294:L1217-25, 2008) and renal fibrosis (Francois et al, FASEB J 18:926-8, 2004).
  • pulmonary fibrosis Ishii et al, Am J Respir Crit Care Med 174:550-6, 2006; Hardie et al, Am J Physiol Lung Cell Mol Physiol 294:L1217-25, 2008
  • renal fibrosis Ferancois et al, FASEB J 18:926-8, 2004.
  • this is the first report that EGFR-targeted therapies can reduce or inhibit liver fibrosis and pre-cirrhosis. Subjects to be Treated
  • a subject is selected on the basis that they have, or are at risk of developing, fibrosis or pre-cirrhosis.
  • fibrosis can be treated, including liver fibrosis, cystic fibrosis of the pancreas and lungs, idiopathic pulmonary fibrosis of the lung, endomyocardial fibrosis, mediastinal fibrosis, myelofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, injection fibrosis, and nephrogenic systemic fibrosis.
  • pre-cirrhosis refers to a cirrhotic condition characterized by the absence of macronodular cirrhosis, e.g., a stage of cirrhosis prior to the development of macronodular cirrhosis.
  • a subject that has, or is at risk of developing, liver fibrosis or pre-cirrhosis is can be diagnosed or identified by one of skill in the art based on the totality of the evidence, including the presence of one or more symptoms of the condition.
  • liver fibrosis or pre-cirrhosis vary greatly and are well-known to those of skill in the art and may include, without limitation, shrunken liver, liver pain, jaundice, jaundice-like symptoms (e.g., yellow skin, yellow eyes), abnormal liver function tests, abdominal pain, kidney pain, kidney failure, abnormal nerve function, gallstones, hair loss, itchy skin, muscle loss, poor appetite, weight loss, portal hypertension, redness of palms, spider-like veins in the skin, enlarged veins around the esophagus or stomach (varices), small testicles (atrophy), enlargement of the spleen, low platelet count, enlargement of the breasts (gynecomastia), and salivary gland enlargement in cheeks.
  • shrunken liver liver pain, jaundice, jaundice-like symptoms
  • abnormal liver function tests e.g., abdominal pain, kidney pain, kidney failure, abnormal nerve function, gallstones, hair loss, itchy skin, muscle loss, poor appetite, weight loss, portal
  • Liver fibrosis and pre-cirrhosis can be further diagnosed by, for example, a biopsy, serum aspartate aminotransferase, bilirubin, glucose, hyaluronate (Patel et al., J Gastroenterol Hepatol 18:253-257, 2003), procollagen III -peptide (Guechot et al, Clin Chem 42:558-563, 1996), laminin (Pilette et al., J Hepatol 28:439-446, 1998), type rv collagen (Castera et al, J Hepatol 32:412-418, 2000), matrix metalloproteases (Murawaki et al, J Gastroenterol Hepatol 14: 138-145, 1999), tissue inhibitory metalloprotease- 1 (Boeker et al, Clin Chim Acta 316:71-81, 2002), transforming growth factor-beta (Nelson et al, J Viral He
  • Imaging studies can be used to diagnose fibrosis or pre-cirrhosis, e.g., x-rays, magnetic resonance imaging, CT scan, or magnetic resonance elastography of the liver. Such methods can be used to rule out the presence of macronodular cirrhosis.
  • a subject that is "at risk of developing liver fibrosis or pre-cirrhosis” is one that has a predisposition to develop liver fibrosis or pre-cirrhosis (e.g., a genetic predisposition to develop liver fibrosis or pre-cirrhosis such as a mutation in a gene implicated in hepatic fibrogenesis, e.g., IL- 10, TNF-a, IL-4R, TGF- ⁇ , AT-II, CTLA-4, or MMP-3 (Friedman, Gastroenterology 134: 1655-1669 2008), or that has been exposed to conditions that can result in liver fibrosis or pre-cirrhosis.
  • a predisposition to develop liver fibrosis or pre-cirrhosis e.g., a genetic predisposition to develop liver fibrosis or pre-cirrhosis such as a mutation in a gene implicated in hepatic fibrogenesis, e.g., IL- 10, T
  • a subject that is "at risk of developing liver fibrosis or pre-cirrhosis” can be a subject who has one or more of alcoholism, chronic hepatitis B infection, chronic hepatitis C infection, diabetes, or obesity.
  • subjects treated using the methods described herein have fibrosis, but do not have macronodular cirrhosis or HCC.
  • subjects treated using the methods described herein have pre-cirrhosis, but do not have macronodular cirrhosis or HCC.
  • the present methods are effective for a variety of subjects including mammals, e.g., humans and other animals, such as laboratory animals, e.g., mice, rats, rabbits, or monkeys, or domesticated and farm animals, e.g., cats, dogs, goats, sheep, pigs, cows, or horses.
  • mammals e.g., humans and other animals, such as laboratory animals, e.g., mice, rats, rabbits, or monkeys, or domesticated and farm animals, e.g., cats, dogs, goats, sheep, pigs, cows, or horses.
  • Systemic administration of a therapeutic EGFR inhibiting compound as described herein can be parenteral, e.g., by infusion (e.g., intravenous) or injection (e.g., intraperitoneal), transmucosal, or transdermal.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds are delivered directly to the liver, e.g., via infusion into the common hepatic artery, the celiac artery, or the portal vein.
  • EGFR inhibitors can also be administered orally.
  • LD50 the dose lethal to 50% of the population
  • ED50 the dose therapeutically effective in 50% of the population
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
  • Compounds that exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture.
  • IC50 i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms
  • levels in plasma may be measured, for example, by high performance liquid chromatography.
  • an "effective amount” is an amount sufficient to effect beneficial or desired results.
  • a therapeutic amount is one that achieves the desired therapeutic effect, i.e., a reduction in fibrosis or pre-cirrhosis. This amount can be the same or different from a prophylactically effective amount, which is an amount necessary to prevent onset of disease or disease symptoms.
  • An effective amount can be administered in one or more administrations, applications or dosages.
  • a therapeutically effective amount of a composition depends on the composition selected. The compositions can be administered from one or more times per day to one or more times per week; including once every other day.
  • treatment of a subject with a therapeutically effective amount of the compositions described herein can include a single treatment or a series of treatments.
  • Example 1 Erlotinib Reduces Fibrogenesis and Inhibits Hepatic Stellate Cell Activation
  • Erlotinib is a drug used to treat non-small cell lung cancer and pancreatic cancer. Erlotinib specifically targets the EGFR, which is highly expressed and occasionally mutated in various forms of cancer, by binding to the adenosine triphosphate (ATP) binding site of the receptor (Raymond et al, Drugs 60 Suppl 1 : 15- 23, 2000).
  • ATP adenosine triphosphate
  • Erlotinib was administered by intraperitoneal injection daily (5X a week) during weeks 12-18 at a dose of 2 mg/kg, which is equivalent to chemotherapeutic dosing regimens in humans. Erlotinib dramatically decreased tumor formation by 75% under these conditions (FIG. 1A). In a separate study, the dose of erlotinib was lowered to 0.5 mg/kg. In this second study, erlotinib was shown to inhibit tumor formation by 49% (FIG. 1A).
  • a-SMA smooth muscle actin
  • intraperitoneal administration of DEN causes, on average, an Ishak score 0.8 (range 0 - 2) fibrosis after 8 weeks, an Ishak score 4.1 (range 3 - 6) fibrosis/cirrhosis after 12 weeks, and an Ishak score 5.1 (range 4 - 6) cirrhosis after 18 weeks. Consistent with this, hepatic stellate cell activation increases over time after DEN administration as assessed by a-SMA staining.
  • erlotinib inhibited fibrogenesis. Rats that received 2 mg kg erlotinib significantly regressed to an average Ishak score 2.6 fibrosis compared to rats that received vehicle solution, which had on average, an Ishak score 4.9 fibrosis/cirrhosis (FIG. 2A). Rats that received 0.5 mg/kg erlotinib also had a lower Ishak score 4.3 fibrosis/cirrhosis. The range for 16 vehicle animals was 2 - 6 with a mode of 6 as illustrated in FIG. 2B. By comparison, the range for 0.5 mg/kg erlotinib was 3 - 6 with a mode of 4 as illustrated in FIG.
  • Example 2 DEN-Treated Rats that Receive Erlotinib as a Preventive Agent Between Weeks 13 and 18 have Reduced Levels of Fibrosis and Cirrhosis
  • erlotinib may be able to reverse fibrosis and cirrhosis in DEN-treated rats.
  • liver biopsies were performed on DEN-treated rats before and after they received erlotinib (FIG. 3A) to determine disease progression within the same animal. Similar to the study described in Example 1, erlotinib-treated rats had significantly less fibrosis and cirrhosis (FIG. 3B) as well as a significant decrease in tumorigenesis (FIG. 3C), which is consistent with the observed decrease in liver weight (FIG. 3D). Further, erlotinib reversed disease progression in two out of eight animals (Table 1).
  • Example 3 Erlotinib Reduces Hepatotoxicity and Improves Liver Function During fibrosis, hepatic stellate cells are activated and deposit fibrous collagen into the space of Disse, the area between the hepatocytes and the sinusoid containing blood plasma. The deposition of collagen inhibits the normal exchange of nutrients and wastes between the hepatocytes and plasma resulting in hepatotoxicity and liver failure. The degree of liver toxicity and failure can be assessed by measuring several proteins or a carbohydrate present in the serum. For example, aspartate
  • AST aminotransferase
  • TBIL Bilirubin
  • AST TBIL
  • Glu Glu
  • Male Wistar rats (n 4) were treated with PBS for 18 weeks or a weekly intraperitoneal injection of 50 mg/kg DEN for 18 weeks plus either vehicle, 0.5 mg/kg erlotinib (Erl 0.5), or 2 mg/kg erlotinib (Erl 2) between weeks 12 and 18.
  • Whole blood was isolated from the rats and allowed to clot for 2 hours at room temperature. The blood was then spun at 2,000 rpm for 10 minutes and serum (top layer) was isolated. Liver function tests were performed on serum from the rats.
  • erlotinib In the current model, intraperitoneal administration of DEN causes both hepatotoxicity and liver failure to increase over time as assessed by these three markers. However, compared to vehicle controls, erlotinib reduced the degree of hepatotoxicity and liver failure in a dose-dependent fashion. Specifically, erlotinib decreased serum levels of AST and TBIL and increased serum levels of Glu (FIGs. 4A-C).
  • Example 4 Lapatinib Reduces Fibrogenesis and Inhibits Hepatic Stellate Cell Activation
  • Lapatinib As a chemoprevention strategy for liver fibrogenesis, male Wistar rats were given a weekly intraperitoneal injection of 50 mg/kg DEN to induce cirrhosis and HCC (Lee et al, Korean J Hepatol 13:70-80, 2007). Lapatinib was administered by intraperitoneal injection daily (5X a week) during weeks 12-18 at a dose of 18 mg/kg. Lapatinib dramatically decreased tumor formation by greater than 50% under these conditions (FIG. 5A). The livers from DEN-induced rats treated with lapatinib (FIG. 5C) not only exhibited less tumors, but also appeared less cirrhotic compared to vehicle controls (FIG. 5B).
  • Example 5 Lapatinib Reduces Hepatotoxicity and Improves Liver Function Levels of AST, TBIL, and Glu were assayed in serum from rats treated with lapatinib.
  • Whole blood was isolated from the rats and allowed to clot for 2 hours at room temperature. The blood was then spun at 2,000 rpm for 10 minutes and serum (top layer) was isolated. Liver function tests were performed on serum from the rats.
  • lapatinib In the current model, intraperitoneal administration of DEN causes both hepatotoxicity and liver failure to increase over time as assessed by these three markers. However, compared to vehicle controls, lapatinib reduced the degree of hepatotoxicity and liver failure. Specifically, lapatinib decreased serum levels of AST and TBIL and increased serum levels of Glu (FIGs. 7A-C).
  • Example 6 Male Wistar rats received weekly intraperitoneal injections of DEN (50 mg/kg) for 16 weeks. Rats received vehicle control or gefitinib (2 mg/kg) daily beginning at either 8, 12, or 15 weeks and lasting until 18 weeks. To assess the extent of liver disease at the start of each treatment, a subgroup of rats were sacrificed after a two-week washout of DEN and the liver was harvested and processed for analysis. Masson's trichrome stains of liver sections from each animal were analyzed by a blinded pathologist. After 8 weeks and 12 weeks of DEN administration, no macroscopic findings were observed on the surface of the liver (FIG. 8A).
  • Example 7 To investigate erlotinib as a treatment and preventive strategy for liver fibrogenesis, male Wistar rats are given a weekly intraperitoneal injection of 50 mg/kg DEN to induce cirrhosis and HCC (Lee et al, Korean J Hepatol 13:70-80, 2007). Erlotinib is administered by intraperitoneal injection daily (5X a week) during weeks 6-12, 12-18, or 10-12, at a dose of either 2 mg/kg, which is equivalent to chemotherapeutic dosing regimens in humans, or 0.5 mg/kg, which as described above inhibited tumor formation by 49% when administered at weeks 12-18.
  • Liver function tests are performed as described above in Example 3 to evaluate hepatotoxicity and liver failure.
  • histology is performed to evaluate fibrogenesis. The results are expected to demonstrate a reduction in fibrogenesis in the animals treated with erlotinib.

Description

METHODS OF TREATING LIVER FIBROSIS AND
PRE-CIRRHOSIS WITH EPIDERMAL GROWTH FACTOR
RECEPTOR INHIBITORS
TECHNICAL FIELD
This disclosure relates to methods of treating fibrosis, e.g., liver fibrosis, and pre-cirrhosis by administering compositions comprising epidermal growth factor receptor inhibitors.
BACKGROUND
The prevalence of chronic liver disease has escalated rapidly worldwide due to the rising number of people inflicted with alcoholism, chronic hepatitis B infection, chronic hepatitis C infection, diabetes, and obesity. During fibrosis and pre-cirrhosis, hepatic stellate cells (HSCs) are activated and deposit fibrous collagen into the space of Disse. As a result, the normal liver architecture is destroyed and normal liver cells, called hepatocytes, can no longer exchange nutrients and wastes with the blood plasma. This ultimately results in cirrhosis, the formation of regenerative nodules of hepatocytes surrounded by fibrous scar tissue. During cirrhosis, the risk of developing hepatocellular carcinoma (HCC) is dramatically elevated as HCC develops in a step-wise progression from regenerative nodules to dysplastic nodules to well-differentiated tumors. Treatment options for HCC are currently ineffective, and as such, HCC is one of the few cancers where the incidence and mortality rates are equal. Therefore, early intervention to reduce fibrosis and pre-cirrhosis and the risk of developing macronodular cirrhosis and HCC would be desirable.
SUMMARY
This invention is based, at least in part, on the discovery that inhibitors of the epidermal growth factor receptor (EGFR) can be used for the treatment of fibrosis, e.g., liver fibrosis, and pre-cirrhosis. Generally, the methods include administering a therapeutically effective amount of an EGFR inhibitor, as known in the art or described herein, e.g., erlotinib, gefitinib, lapatinib, vandetanib, HKI-272 (neratinib),
BIBW2992 (Tovok), XL647, and PF00299804, to a subject who is in need of, or who has been determined to be in need of, such treatment. As used in this context, "treatment of fibrosis" means to ameliorate at least one symptom of the disorder associated with fibrosis. "Treatment of pre-cirrhosis" means to ameliorate at least one symptom of the disorder associated with pre-cirrhosis. "Pre-cirrhosis" refers to cirrhosis in the absence of, e.g., prior to the development of, macronodular cirrhosis.
In one aspect, the invention features methods of treating, e.g., reducing severity or progression of, liver fibrosis or pre-cirrhosis in a subject. The methods can include selecting a subject on the basis that they have, or are at risk of developing, liver fibrosis and/or pre-cirrhosis, but do not yet have macronodular cirrhosis or HCC, or a subject with underlying fibrosis or pre-cirrhosis that remains in patients that have had surgery to remove tumorous liver tissue. Selection of a subject can include detecting the presence of liver fibrosis and/or pre-cirrhosis (and/or confirming the absence of macronodular cirrhosis or HCC) by a liver biopsy, a blood test, or imaging tests of the liver. If the results of the test indicate that the subject has fibrosis or precirrhosis, the methods also include administering a therapeutically effective amount of an EGFR inhibitor, e.g., erlotinib, gefitinib, lapatinib, vandetanib, HKI-272
(neratinib), BIBW2992 (Tovok), XL647, and PF00299804, and detecting an effect of the inhibitor on liver fibrosis or pre-cirrhosis in the subject, thereby reducing liver fibrosis or pre-cirrhosis in the subject.
Epidermal growth factor receptor inhibitors include small molecule tyrosine kinase inhibitor that blocks EGFR signaling, e.g., a quinazoline or a monoclonal antibody or antigen binding fragment thereof that binds specifically to the EGFR, e.g., as known in the art and/or described herein. The inhibitors can be administered orally, by injection, e.g., intraperitoneal or intravenous injection, trans dermally, or transmucosally.
Epidermal growth factor receptor inhibitors include antibodies such as cetuximab, panitumumab, zalutumumab, nimotuzumab and matuzumab.
In the methods described herein, the amount of epidermal growth factor receptor inhibitor to be administered can be readily determined by one of skill in the art using methods known in the art, and may determine on the specific inhibitor identified. In some embodiments, for example when the inhibitor is a small molecule, daily doses can range from about 0.1 to about 5.0 milligrams per kilogram body weight. In some embodiments, the methods include a step of evaluating liver function by performing a liver biopsy, a blood test, or a radiological image of the liver. The blood test is used to evaluate liver function by assaying levels of aspartate aminotransferase, alanine aminotransferase, bilirubin, glucose, or hyaluronate.
The invention provides several advantages. The methods disclosed reduce the severity or progression of liver fibrosis and pre-cirrhosis and therefore, inhibit the progression of fibrosis or pre-cirrhosis to macronodular cirrhosis and reduce the risk of developing liver cancers. Currently, no treatment options are effective in decreasing mortality rates of HCC subjects. The methods disclosed reduce the severity of liver fibrosis and pre-cirrhosis and therefore improve liver function, including, but not limited to, production of clotting factors, synthesis of albumin and other proteins, clearance of bilirubin from the bloodstream, and reduction in death of liver cells.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.
DESCRIPTION OF DRAWINGS
FIG. 1A is a bar graph depicting the number of tumor nodules in male Wistar rats receiving weekly intraperitoneal injections of 50 mg/kg diethylnitrosamine (DEN) for 18 weeks and vehicle only (n = 16), 0.5 mg/kg erlotinib (Erl 0.5; n = 8), or 2 mg/kg erlotinib (Erl 2; n = 8) during weeks 12-18.
FIGs. IB, 1C, and ID are a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B) vehicle only, (C) 0.5 mg/kg erlotinib (Erl 0.5), or (D) 2 mg/kg erlotinib (Erl 2) during weeks 12-18.
FIG. 2A is a bar graph depicting the Ishak score of male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and vehicle only (n = 16), 0.5 mg/kg erlotinib (Erl 0.5; n = 8), or 2 mg/kg erlotinib (Erl 2; n = 8) during weeks 12-18.
FIGs. 2B-2G are a series of six panels showing representative pictures of Masson's trichome (B-D) and a-SMA stains (E-G) of liver sections from rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B and E) vehicle only, (C and F) 0.5 mg/kg erlotinib (Erl 0.5), or (D and G) 2 mg/kg erlotinib (Erl 2) during weeks 12-18.
FIGs. 3A-3D shows that erlotinib inhibits fibrogenesis and reverses DEN- induced cirrhosis in rats. FIG. 3 A is a scheme of the experiment. Male Wistar rats received weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks. After 12 weeks, the rats underwent a survival hepatectomy and a liver biopsy was removed for histology. Rats then received vehicle or erlotinib (2 mg/kg) daily (5 days/week) during weeks 13-18. Rats were sacrificed at 19 weeks after a one-week washout of DEN. FIG. 3B is a bar graph showing Ishak scores from Masson's trichrome stains of liver sections from each animal. ** p < 0.01 compared to vehicle. FIG. 3C is a bar graph depicting the number of tumor nodules that were greater than 5 mm in diameter in rats that received vehicle or erlotinib. ** p < 0.01 compared to vehicle. FIG. 3D is a bar graph showing the weights of livers at the time of sacrifice expressed as percent body weight.
FIGs. 4A, 4B, and 4C are a series of three bar graphs showing the levels of (A) aspartate transaminase (AST), (B) total bilirubin (TBIL), and (C) total glucose (Glu) in serum from rats treated with PBS for 18 weeks or DEN (50 mg/kg) for 18 weeks plus either vehicle, 0.5 mg/kg erlotinib (Erl 0.5), or 2 mg/kg erlotinib (Erl 2) during weeks 12-18. *, significant.
FIG. 5 A is a bar graph depicting the number of tumor nodules in male Wistar rats receiving weekly intraperitoneal injections of 50 mg/kg DEN for 18 weeks and vehicle only (n = 8) or 18 mg/kg lapatinib (n = 8) during weeks 12-18. *, significant. FIGs. 5B and 5C are a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B) vehicle only or (C) 18 mg/kg lapatinib during weeks 12-18.
FIG. 6A is a bar graph depicting the Ishak score of male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and vehicle only (n = 8) or 18 mg/kg lapatinib (n = 8) during weeks 12-18. *, significant.
FIGs. 6B-6E are a series of four panels showing representative pictures of Masson's trichrome (B-C) and a-SMA stains (D-E) of liver sections from rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (B and D) vehicle only or (C and E) 18 mg/kg lapatinib during weeks 12-18.
FIGs. 7A, 7B, and 7C are a series of three bar graphs showing levels of (A) aspartate transaminase (AST), (B) total bilirubin (TBIL), and (C) total glucose (Glu) in serum from rats treated with DEN (50 mg/kg) for 18 weeks plus either vehicle or 18 mg/kg lapatinib during weeks 12-18. *, significant.
FIG. 8A is a series of images showing representative livers from male Wistar rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for either 8, 12, or 15 weeks. Macroscopic cirrhosis is not noted until 15 weeks.
FIG. 8B is a bar graph depicting Ishak scores in male Wistar rats receiving weekly intraperitoneal injections of 50 mg/kg DEN for 18 weeks and vehicle only (n = 8) or 2 mg/kg gefitnib (n = 8) beginning at either 8, 12, or 15 weeks. *, significant.
DETAILED DESCRIPTION
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, that occurs in most types of chronic liver diseases. Advanced liver fibrosis often results in liver cirrhosis, increases risk for hepatocellular carcinoma, and frequently requires liver transplantation. Thus, a treatment administered early in the disease process, i.e., to subjects with liver fibrosis or precirrhosis, can result in a reduction in severity of liver cirrhosis and/or reduction in the rate of progression of severity of fibrosis or pre-cirrhosis, and/or reduce the risk of hepatocellular carcinoma, and/or improve liver function and morphology. As demonstrated herein, in subjects with liver fibrosis or pre-cirrhosis, administration of a therapeutically effective amount of an inhibitor of EGFR results in decreased liver disease. Hepatic Fibrosis and Cirrhosis
Hepatic fibrosis is associated with a process of overly exuberant wound healing, which results in an accumulation of excessive connective tissue in the liver due to a build-up of extracellular matrix overproduction and/or insufficient degradation. In general, the fibrotic process is triggered by chronic injury, especially if there is an inflammatory component. Hepatic fibrosis by itself usually is generally asymptomatic, but can lead to portal hypertension (in which case the scarring distorts hepatic blood flow) or cirrhosis (in which the failure to properly replace destroyed liver cells results in liver dysfunction), which results in widespread distortion of normal hepatic architecture. Cirrhosis is characterized by the presence of regenerative nodules surrounded by dense fibrotic tissue. Symptoms associated with cirrhosis may not develop for years and are often nonspecific (e.g., anorexia, fatigue, weight loss). Late manifestations include portal hypertension, ascites, and, when decompensation occurs, liver failure. A diagnosis of fibrosis or cirrhosis can be confirmed by liver biopsy.
EGF Biology
EGF was first isolated in 1962 (Cohen, J Biol Chem 237: 1555-62, 1962). The EGF gene is transcribed into what is commonly called preproEGF mRNA (Bell et al, Nucleic Acids Res 14:8427-46, 1986), which is translated into a large precursor protein, referred to as proEGF that is -170 kilodaltons (KDa) after glycosylation (Marti et al, Hepatology 9: 126-38, 1989). Thus, EGF is synthesized as a
nondiffusible, glycosylated membrane-associated precursor, which is exposed at the cell surface. Proteolytic cleavage releases the proEGF in a process known as ectodomain shedding (Le Gall et al, J Biol Chem 278:45255-68, 2003), which is mediated by a metalloproteinase of the a disintegrin and metalloprotease (ADAM) family. Ectodomain shedding of EGF has been shown to be mediated by both ADAMIO (Sahin et al, J Cell Biol 164:769-79, 2004) and ADAM 17 (Chen et al, Am J Physiol Cell Physiol 291 :C946-56, 2006). Additional proteases present in the extracellular space/fluid can further cleave proEGF. The isoforms detected range in size depending on the source, with the 6 KDa form being referred to as mature EGF. All the isoforms have been reported to be biologically active, although the smaller isoforms bind EGF receptor (EGFR) with greater affinity. Once EGF binds EGFR, EGFR undergoes a transition from an inactive monomer to an active homodimer. The homodimer stimulates its intrinsic intracellular protein-tyros ine kinase activity and several signaling pathways can be initiated, including phosphoinositide 3 -kinase (PI3K)/AKT, janus kinase (JAK)/signal transducers and activator of transcription (STAT) and several mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (ΓΝΚ) (Yarden and Sliwkowski, Nat Rev Mol Cell Biol 2: 127-37, 2001 ; Yarden and Shilo, Cell 131 : 1018, 2007). Upon binding EGFR, EGF is internalized within the cell.
EGF and Cancer
Since its discovery, EGF has been shown to have many biological functions, including stimulating the proliferation and differentiation of epidermal and epithelial tissues (Carpenter and Cohen, Annu Rev Biochem 48: 193-216, 1979; Fisher and Lakshmanan, Endocr Rev 11 :418-42, 1990). EGF also has important roles in tumorigenesis as it enhances both chemical carcinogenesis and viral transformation (Stoscheck and King, Cancer Res 46: 1030-7, 1986), as well as the in vitro growth of human epithelial and mesenchymal-derived tumors (Singletary et al, Cancer Res 47:403-6, 1987). Further, overexpression of EGFR (c-ErbBl, HER1), is a common event in neoplastic transformation (Herbst and Shin, Cancer 94: 1593-61 1, 2002) and for this reason, EGFR has emerged as an important chemotherapeutic target
(Ciardiello and Tortora, Clin Cancer Res 7:2958-70, 2001; Mendelsohn and Baselga, J Clin Oncol 21 :2787-99, 2003; Roskoski, Biochem Biophys Res Commun 319: 1-11, 2004).
EGF and the Liver
EGF is a known mitogen for adult (Blanc et al, Gastroenterology 102: 1340- 50, 1992) and fetal hepatocytes (Hoffmann et al, J Cell Physiol 139:654-62, 1989) grown in culture. EGF transcription is induced during the immediate-early phase of liver regeneration (Mullhaupt et al, J Biol Chem 269: 19667-70, 1994) where it plays a vital role in hepatocyte proliferation. In rodents, the main source of EGF is the salivary glands (Fisher and Lakshmanan, Endocr Rev 11 :418-42, 1990), and removal of these glands lowers plasma (Noguchi et al, J Endocrinol 128: 425-31, 1991) and serum (Yamamoto et al, Virchows Arch 425:79-82, 1994) levels of EGF. Furthermore, sialoadenectomized rats (Lambotte et al, Hepatology 25:607-12, 1997; Jones et al, Am J Physiol 268:G872-8, 1995) and mice (Noguchi et al, J Endocrinol 128: 425-31, 1991) have impaired liver regeneration after partial hepatectomy, which can be restored to normal with exogenous addition of EGF (Lambotte et al,
Hepatology 25:607-12, 1997; Jones et al, Am J Physiol 268:G872-8, 1995; Noguchi et al, J Endocrinol 128: 425-31, 1991). Additional studies demonstrated that sialoadenectomized mice developed fewer HCC nodules in response to the carcinogen, 3'-methyl-4-dimethylaminoazobenzene (Yamamoto et al, Virchows Arch 425:79-82, 1994). Therefore, increased expression of EGF during liver regeneration may be beneficial for the regenerative process, but could also lead to an increased risk of cancer.
EGF and HCC
Overexpression of EGF in the liver induces transformation to HCC in animal models. For example, Stern et al. constructed a plasmid to express a secretable form of human EGF termed IgEGF (Stern et al, Science 235:321-4, 1987). When IgEGF expression was targeted to the liver by the addition of an albumin promoter/enhancer element, transgenic mice expressing this transgene at high levels developed HCC and died within 7 months, whereas lower expressing mice developed HCC within 8 - 13 months (Tonjes et al, Oncogene 10:765-8, 1995; Borlak et al, Oncogene 24: 1809-19, 2005). This study suggested that a dose-response exists between levels of EGF and risk of HCC.
EGF Expression and Chronic Liver Disease
Chronic liver injury causes fibrosis or pre-cirrhosis, ultimately resulting in cirrhosis, and increases risk for HCC. Liver synthesis of EGF is marginal; however its expression has been reported to increase in cirrhotic livers (Komuves et al, J Histochem Cytochem 48:821-30, 2000). Consistent with this, a recent report has shown that EGF is part of a gene-expression signature in the surrounding nontumoral liver tissue that is associated with recurrence and poor survival in HCC patients who had undergone potentially curative resection (Hoshida et al, N Engl J Med 359: 1995- 2004, 2008). Chronic liver injury causes a local population of endothelial cells, macrophages (Kupffer cells), and hepatic stellate cells to become active and secrete several cytokines and growth factors into the liver milieu, which stimulate the surrounding hepatocytes (Bataller and Brenner, J Clin Invest 1 15:209-18, 2005).
Known EGFR-Targeted Therapies
EGFR has emerged as a promising chemotherapeutic target as it is overexpressed in a wide range of cancers and plays important roles in cell growth and survival (Ciardiello and Tortora, Clin Cancer Res 7:2958-70, 2001). Several drugs that target EGFR have emerged including the small-molecule tyrosine kinase inhibitors, e.g., the quinazolines, e.g., erlotinib (4-Quinazolinamine, N-(3- ethynylphenyl)-6,7-bis(2-methoxyethoxy); brand name Tarceva®, from OSI
Pharmaceuticals); gefitinib (4 -Quinazolinamine, N-(3-chloro-4-fluorophenyl)-7- methoxy-6-(3-(4-morpholinyl)propoxy); brand name Iressa®, from AstraZeneca); lapatinib (4-Quinazolinamine, N-(3-chloro-4-((3-fluorophenyl)methoxy)phenyl)-6-(5- (((2-(methylsulfonyl)ethyl)amino)methyl)-2-furanyl); brand name Tykerb®, from GlaxoSmithKline); vandetanib (4-Quninazolinamine, N-(4-bromo-2-fluorophenyl)-6- methoxy-7-((l-methyl-4-piperidinyl)methoxy); brand name Zactima®, from
AstraZeneca); HKI-272 (neratinib, (2E)-N-(4-((3-chloro-4-((pyridin-2- yl)methoxy)phenyl)amino)-3-cyano-7-ethoxyquinolin-6-yl)-4-(dimethylamino)but-2- enamide, from Wyeth), BIBW2992 (2-Butenamide, N-(4-((3-chloro-4- fluorophenyl)amino)-7-(((3S)-tetrahydro-3-furanyl)oxy)-6-quinazolinyl)-4- (dimethylamino); brand name Tovok®, from Boehringer Ingelheim), XL647 (from Exelixis); and PF00299804 (from Pfizer); as well as monoclonal antibodies, or antigen-binding fragments thereof, that selectively bind to the EGFR, e.g., cetuximab (Erbitux®), panitumumab (Vectibix®), zalutumumab (HuMax-EGFr, from GenMab), nimotuzumab (from YM Biosciences), and matuzumab (Merck Serono/Takeda). (Mendelsohn and Baselga, J Clin Oncol 21 :2787-99, 2003). Previous reports document EGFR overexpression in HCC (Ito et al, Br J Cancer 84: 1377-83, 2001). Unfortunately, in recent clinical trials, erlotinib improved disease control in only a minority of advanced HCC patients (Philip et al, J Clin Oncol 23 :6657-63, 2005; Thomas et al, Cancer 110: 1059-67, 2007) and no responses were seen after treatment with cetuximab (Zhu et al, Cancer 110:581-9, 2007). See also US 2008/0166358. Erlotinib Chemoprevention of HCC
Given the lack of successful treatment options for HCC, chemoprevention in high-risk patients has been proposed as an alternative strategy (Llovet et al, Lancet 362: 1907-17, 2003). Even though EGFR inhibition is not effective for chemotherapy, the data presented herein indicate that it is likely to be a good chemoprevention strategy. The diethylnitros amine (DEN)-induced rat model of sequential cirrhosis and HCC has emerged as a promising tool for not only studying the course of chronic liver disease but also for testing putative chemopreventive agents as it better resembles disease progression in humans (Lee et al, Korean J Hepatol 13:70-80, 2007; Schiffer et al, Hepatology 41 :307-14, 2005). In this model, DEN induces liver cirrhosis after 12 weeks and HCC at approximately 18 weeks allowing ample opportunity for preventative intervention. Using this model, erlotinib was shown to decrease tumor formation when administered as a chemopreventive agent during weeks 12-18 (see Examples 1-2, herein). Similar results have also been reported for gefitinib (Schiffer et al, Hepatology 41:307-14, 2005).
Erlotinib Inhibits Fibrogenesis
As shown herein, erlotinib inhibits fibrogenesis in the DEN-induced rat model. Further, erlotinib reduced hepatotoxicity as assessed by decreased serum levels of aspartate transaminase and improved liver function as assessed by decreased serum levels of bilirubin and increased serum levels of glucose. As one theory, not meant to be limiting, these effects may be explained by the ability of erlotinib to prevent the activation of hepatic stellate cells. This is consistent with previous reports showing that EGF can activate hepatic stellate cells (Yang et al, Gastroenterology 124:147-59, 2003; Chang et al, Hepatobiliary Pancreat Dis Int 7:401-5, 2008). EGFR-targeted therapies have been shown to reduce pulmonary fibrosis (Ishii et al, Am J Respir Crit Care Med 174:550-6, 2006; Hardie et al, Am J Physiol Lung Cell Mol Physiol 294:L1217-25, 2008) and renal fibrosis (Francois et al, FASEB J 18:926-8, 2004). However, this is the first report that EGFR-targeted therapies can reduce or inhibit liver fibrosis and pre-cirrhosis. Subjects to be Treated
In one aspect of the methods described herein, a subject is selected on the basis that they have, or are at risk of developing, fibrosis or pre-cirrhosis. Many types of fibrosis can be treated, including liver fibrosis, cystic fibrosis of the pancreas and lungs, idiopathic pulmonary fibrosis of the lung, endomyocardial fibrosis, mediastinal fibrosis, myelofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, injection fibrosis, and nephrogenic systemic fibrosis. As used herein, "pre-cirrhosis" refers to a cirrhotic condition characterized by the absence of macronodular cirrhosis, e.g., a stage of cirrhosis prior to the development of macronodular cirrhosis.
A subject that has, or is at risk of developing, liver fibrosis or pre-cirrhosis is can be diagnosed or identified by one of skill in the art based on the totality of the evidence, including the presence of one or more symptoms of the condition.
Symptoms of liver fibrosis or pre-cirrhosis vary greatly and are well-known to those of skill in the art and may include, without limitation, shrunken liver, liver pain, jaundice, jaundice-like symptoms (e.g., yellow skin, yellow eyes), abnormal liver function tests, abdominal pain, kidney pain, kidney failure, abnormal nerve function, gallstones, hair loss, itchy skin, muscle loss, poor appetite, weight loss, portal hypertension, redness of palms, spider-like veins in the skin, enlarged veins around the esophagus or stomach (varices), small testicles (atrophy), enlargement of the spleen, low platelet count, enlargement of the breasts (gynecomastia), and salivary gland enlargement in cheeks.
Liver fibrosis and pre-cirrhosis can be further diagnosed by, for example, a biopsy, serum aspartate aminotransferase, bilirubin, glucose, hyaluronate (Patel et al., J Gastroenterol Hepatol 18:253-257, 2003), procollagen III -peptide (Guechot et al, Clin Chem 42:558-563, 1996), laminin (Pilette et al., J Hepatol 28:439-446, 1998), type rv collagen (Castera et al, J Hepatol 32:412-418, 2000), matrix metalloproteases (Murawaki et al, J Gastroenterol Hepatol 14: 138-145, 1999), tissue inhibitory metalloprotease- 1 (Boeker et al, Clin Chim Acta 316:71-81, 2002), transforming growth factor-beta (Nelson et al, J Viral Hepat 4:29-35, 1997), YKL-40 (Johansen et al, J Hepatol 32:911-920, 2000), prothrombin index (Oberti et al, Gastroenterology 113 : 1609-1616, 1997), gamma-globulin, platelet count (Pohl et al, Am J
Gastroenterol 96:3142-3146, 2001), aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (Imperiale et al, Am J Gastroenterol 95:2328-2332, 2000), and Fibrolndex (Koda et al, Hepatology 45:297-306, 2007). Imaging studies can be used to diagnose fibrosis or pre-cirrhosis, e.g., x-rays, magnetic resonance imaging, CT scan, or magnetic resonance elastography of the liver. Such methods can be used to rule out the presence of macronodular cirrhosis. A subject that is "at risk of developing liver fibrosis or pre-cirrhosis" is one that has a predisposition to develop liver fibrosis or pre-cirrhosis (e.g., a genetic predisposition to develop liver fibrosis or pre-cirrhosis such as a mutation in a gene implicated in hepatic fibrogenesis, e.g., IL- 10, TNF-a, IL-4R, TGF-βΙ, AT-II, CTLA-4, or MMP-3 (Friedman, Gastroenterology 134: 1655-1669 2008), or that has been exposed to conditions that can result in liver fibrosis or pre-cirrhosis. Thus, a subject that is "at risk of developing liver fibrosis or pre-cirrhosis" can be a subject who has one or more of alcoholism, chronic hepatitis B infection, chronic hepatitis C infection, diabetes, or obesity. In some embodiments, subjects treated using the methods described herein have fibrosis, but do not have macronodular cirrhosis or HCC. In some embodiments, subjects treated using the methods described herein have pre-cirrhosis, but do not have macronodular cirrhosis or HCC.
The present methods are effective for a variety of subjects including mammals, e.g., humans and other animals, such as laboratory animals, e.g., mice, rats, rabbits, or monkeys, or domesticated and farm animals, e.g., cats, dogs, goats, sheep, pigs, cows, or horses.
Administration of Compounds
Systemic administration of a therapeutic EGFR inhibiting compound as described herein can be parenteral, e.g., by infusion (e.g., intravenous) or injection (e.g., intraperitoneal), transmucosal, or transdermal. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. In some embodiments, the compounds are delivered directly to the liver, e.g., via infusion into the common hepatic artery, the celiac artery, or the portal vein. EGFR inhibitors can also be administered orally.
Dosage, toxicity and therapeutic efficacy of the compounds can be
determined, e.g., by known pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
An "effective amount" is an amount sufficient to effect beneficial or desired results. For example, a therapeutic amount is one that achieves the desired therapeutic effect, i.e., a reduction in fibrosis or pre-cirrhosis. This amount can be the same or different from a prophylactically effective amount, which is an amount necessary to prevent onset of disease or disease symptoms. An effective amount can be administered in one or more administrations, applications or dosages. A therapeutically effective amount of a composition depends on the composition selected. The compositions can be administered from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the compositions described herein can include a single treatment or a series of treatments.
The following are examples of the practice of the invention.
EXAMPLES
The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
Example 1 : Erlotinib Reduces Fibrogenesis and Inhibits Hepatic Stellate Cell Activation
Erlotinib is a drug used to treat non-small cell lung cancer and pancreatic cancer. Erlotinib specifically targets the EGFR, which is highly expressed and occasionally mutated in various forms of cancer, by binding to the adenosine triphosphate (ATP) binding site of the receptor (Raymond et al, Drugs 60 Suppl 1 : 15- 23, 2000). To investigate erlotinib as a chemoprevention strategy for liver fibrogenesis, male Wistar rats were given a weekly intraperitoneal injection of 50 mg/kg DEN to induce cirrhosis and HCC (Lee et al, Korean J Hepatol 13 :70-80, 2007). Erlotinib was administered by intraperitoneal injection daily (5X a week) during weeks 12-18 at a dose of 2 mg/kg, which is equivalent to chemotherapeutic dosing regimens in humans. Erlotinib dramatically decreased tumor formation by 75% under these conditions (FIG. 1A). In a separate study, the dose of erlotinib was lowered to 0.5 mg/kg. In this second study, erlotinib was shown to inhibit tumor formation by 49% (FIG. 1A).
The livers from DEN-induced rats treated with erlotinib (FIGs. 1C and ID) not only exhibited less tumors, but also appeared less cirrhotic compared to vehicle controls (FIG. IB). Repeated injury to the liver causes damage to hepatocytes and activates resident macrophages called Kupffer cells. Damaged hepatocytes and activated Kupffer cells secrete cytokines and growth factors into the liver milieu, which activate hepatic stellate cells (Friedman, Gastroenterology 134: 1655-69, 2008). Normally, hepatic stellate cells are quiescent and store vitamin A and fat. Upon activation, they differentiate into a myofibroblast-phenotype and express a-smooth muscle actin (a-SMA) (Friedman, Gastroenterology 134: 1655-69, 2008). Activated hepatic stellate cells deposit fibrous collagen into the space of Disse acutely causing fibrosis and chronically causing cirrhosis. The degree of liver disease (fibrosis versus cirrhosis) is pathologically assessed through trichrome staining of collagen by the method of Ishak (Mod Pathol 7:690-713, 1994).
In early stages of liver fibrosis, collagen deposition is localized around the portal tracts (Ishak score 1 or 2), but it bridges between portal tracts at later stages of fibrosis (Ishak score 3 or 4) and ultimately forms nodules around regenerating hepatocytes during cirrhosis (Ishak score 5 or 6). Although there is some
heterogeneity in this model, intraperitoneal administration of DEN causes, on average, an Ishak score 0.8 (range 0 - 2) fibrosis after 8 weeks, an Ishak score 4.1 (range 3 - 6) fibrosis/cirrhosis after 12 weeks, and an Ishak score 5.1 (range 4 - 6) cirrhosis after 18 weeks. Consistent with this, hepatic stellate cell activation increases over time after DEN administration as assessed by a-SMA staining.
Remarkably, erlotinib inhibited fibrogenesis. Rats that received 2 mg kg erlotinib significantly regressed to an average Ishak score 2.6 fibrosis compared to rats that received vehicle solution, which had on average, an Ishak score 4.9 fibrosis/cirrhosis (FIG. 2A). Rats that received 0.5 mg/kg erlotinib also had a lower Ishak score 4.3 fibrosis/cirrhosis. The range for 16 vehicle animals was 2 - 6 with a mode of 6 as illustrated in FIG. 2B. By comparison, the range for 0.5 mg/kg erlotinib was 3 - 6 with a mode of 4 as illustrated in FIG. 2C, while the range for 2 mg/kg erlotinib was 1 - 4 with a mode of 2 as illustrated in FIG. 2D. To further examine the effects of erlotinib on liver fibrosis, a-SMA staining was performed for activated hepatic stellate cells. Compared to vehicle controls, erlotinib dramatically decreased the activation of hepatic stellate cells in a dose-dependent fashion (FIGs. 2E-G).
Example 2: DEN-Treated Rats that Receive Erlotinib as a Preventive Agent Between Weeks 13 and 18 have Reduced Levels of Fibrosis and Cirrhosis
Interestingly, it also appeared that erlotinib may be able to reverse fibrosis and cirrhosis in DEN-treated rats. To further examine the ability of erlotinib to reverse fibrosis and cirrhosis, liver biopsies were performed on DEN-treated rats before and after they received erlotinib (FIG. 3A) to determine disease progression within the same animal. Similar to the study described in Example 1, erlotinib-treated rats had significantly less fibrosis and cirrhosis (FIG. 3B) as well as a significant decrease in tumorigenesis (FIG. 3C), which is consistent with the observed decrease in liver weight (FIG. 3D). Further, erlotinib reversed disease progression in two out of eight animals (Table 1).
Table 1. Ishak scores from 16 DEN-treated rats, eight of which received vehicle only and eight others that were treated with erlotinib between weeks 13 to 18.
Vehicle
Figure imgf000017_0001
Example 3: Erlotinib Reduces Hepatotoxicity and Improves Liver Function During fibrosis, hepatic stellate cells are activated and deposit fibrous collagen into the space of Disse, the area between the hepatocytes and the sinusoid containing blood plasma. The deposition of collagen inhibits the normal exchange of nutrients and wastes between the hepatocytes and plasma resulting in hepatotoxicity and liver failure. The degree of liver toxicity and failure can be assessed by measuring several proteins or a carbohydrate present in the serum. For example, aspartate
aminotransferase (AST) is an enzyme present in hepatocytes that is released into the serum when hepatocytes die. Bilirubin (TBIL) is the breakdown product of heme and its levels become elevated in the serum if hepatocytes cannot properly metabolize it. Finally, liver failure will result in lower levels of glucose (Glu) production causing serum Glu levels to drop.
The levels of AST, TBIL, and Glu were assayed in serum from rats treated with erlotinib. Male Wistar rats (n = 4) were treated with PBS for 18 weeks or a weekly intraperitoneal injection of 50 mg/kg DEN for 18 weeks plus either vehicle, 0.5 mg/kg erlotinib (Erl 0.5), or 2 mg/kg erlotinib (Erl 2) between weeks 12 and 18. Whole blood was isolated from the rats and allowed to clot for 2 hours at room temperature. The blood was then spun at 2,000 rpm for 10 minutes and serum (top layer) was isolated. Liver function tests were performed on serum from the rats. In the current model, intraperitoneal administration of DEN causes both hepatotoxicity and liver failure to increase over time as assessed by these three markers. However, compared to vehicle controls, erlotinib reduced the degree of hepatotoxicity and liver failure in a dose-dependent fashion. Specifically, erlotinib decreased serum levels of AST and TBIL and increased serum levels of Glu (FIGs. 4A-C).
Example 4: Lapatinib Reduces Fibrogenesis and Inhibits Hepatic Stellate Cell Activation
To investigate lapatinib as a chemoprevention strategy for liver fibrogenesis, male Wistar rats were given a weekly intraperitoneal injection of 50 mg/kg DEN to induce cirrhosis and HCC (Lee et al, Korean J Hepatol 13:70-80, 2007). Lapatinib was administered by intraperitoneal injection daily (5X a week) during weeks 12-18 at a dose of 18 mg/kg. Lapatinib dramatically decreased tumor formation by greater than 50% under these conditions (FIG. 5A). The livers from DEN-induced rats treated with lapatinib (FIG. 5C) not only exhibited less tumors, but also appeared less cirrhotic compared to vehicle controls (FIG. 5B).
Similar to erlotinib, lapatinib inhibited fibrogenesis. Rats that received 18 mg/kg lapatinib significantly regressed to an average Ishak score 4.3 fibrosis compared to rats that received vehicle solution, which had on average, an Ishak score 5.6 fibrosis/cirrhosis (FIG. 6A), as shown by Masson's trichrome staining of liver sections from rats receiving weekly intraperitoneal injections of DEN (50 mg/kg) for 18 weeks and (FIG. 6B) vehicle only or (FIG. 6C) 18 mg/kg lapatinib during weeks 12-18. To further examine the effects of lapatinib on liver fibrosis, a-SMA staining was performed for activated hepatic stellate cells. Compared to vehicle controls, lapatinib dramatically decreased the activation of hepatic stellate cells in a dose- dependent fashion (FIGs. 6D-E).
Example 5: Lapatinib Reduces Hepatotoxicity and Improves Liver Function Levels of AST, TBIL, and Glu were assayed in serum from rats treated with lapatinib. Male Wistar rats (n = 4) were treated with PBS for 18 weeks or a weekly intraperitoneal injection of 50 mg/kg DEN for 18 weeks plus either vehicle or 18 mg/kg lapatinib between weeks 12 and 18. Whole blood was isolated from the rats and allowed to clot for 2 hours at room temperature. The blood was then spun at 2,000 rpm for 10 minutes and serum (top layer) was isolated. Liver function tests were performed on serum from the rats. In the current model, intraperitoneal administration of DEN causes both hepatotoxicity and liver failure to increase over time as assessed by these three markers. However, compared to vehicle controls, lapatinib reduced the degree of hepatotoxicity and liver failure. Specifically, lapatinib decreased serum levels of AST and TBIL and increased serum levels of Glu (FIGs. 7A-C).
Example 6: Male Wistar rats received weekly intraperitoneal injections of DEN (50 mg/kg) for 16 weeks. Rats received vehicle control or gefitinib (2 mg/kg) daily beginning at either 8, 12, or 15 weeks and lasting until 18 weeks. To assess the extent of liver disease at the start of each treatment, a subgroup of rats were sacrificed after a two-week washout of DEN and the liver was harvested and processed for analysis. Masson's trichrome stains of liver sections from each animal were analyzed by a blinded pathologist. After 8 weeks and 12 weeks of DEN administration, no macroscopic findings were observed on the surface of the liver (FIG. 8A). However, microscopic examination revealed that the rats had early stages of liver fibrosis at 8 weeks which progressed to late fibrosis/early cirrhosis by 12 weeks. After 15 weeks of DEN administration, the rats had progressed to late stage cirrhosis which could be observed macroscopically on the surface of the liver (FIG. 8A) as well as
microscopically. Rats receiving vehicle or gefitinib were sacrificed at 18 weeks after a two-week washout of DEN. The liver was harvested and processed for analysis. Masson's trichrome stains of liver sections from each animal were scored by a blinded pathologist by the method of Ishak. Gefitinib inhibited the progression of liver fibrosis/pre-cirrhosis when it was administered after either 8 or 12 weeks, but not after 15 weeks (FIG. 8B). These data suggest that the effects of gefitinib on liver disease progression only occur during fibrosis and pre-cirrhosis. Once the disease has progressed to late stage cirrhosis, e.g., macroscopic cirrhosis, it can no longer be prevented.
Example 7: To investigate erlotinib as a treatment and preventive strategy for liver fibrogenesis, male Wistar rats are given a weekly intraperitoneal injection of 50 mg/kg DEN to induce cirrhosis and HCC (Lee et al, Korean J Hepatol 13:70-80, 2007). Erlotinib is administered by intraperitoneal injection daily (5X a week) during weeks 6-12, 12-18, or 10-12, at a dose of either 2 mg/kg, which is equivalent to chemotherapeutic dosing regimens in humans, or 0.5 mg/kg, which as described above inhibited tumor formation by 49% when administered at weeks 12-18.
Liver function tests are performed as described above in Example 3 to evaluate hepatotoxicity and liver failure. In addition, histology is performed to evaluate fibrogenesis. The results are expected to demonstrate a reduction in fibrogenesis in the animals treated with erlotinib. OTHER EMBODIMENTS
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method of reducing fibrosis or pre-cirrhosis in a subject, the method comprising:
selecting a subject on the basis that they have, or are at risk of developing, fibrosis or pre-cirrhosis;
administering to the subject a therapeutically effective amount of an epidermal growth factor receptor (EGFR) inhibitor; and
detecting an effect of EGFR inhibition on liver fibrosis or pre-cirrhosis in the subject, thereby reducing fibrosis or pre-cirrhosis in the subject.
2. The method of claim 1, wherein selecting a subject comprises detecting the presence of liver fibrosis or pre-cirrhosis.
3. The method of claim 2, wherein detecting the presence of liver fibrosis comprises performing one or more tests selected from the group consisting of a liver biopsy, a blood test, and radiological imaging of the liver, and wherein the results of the test indicate that the subject has fibrosis, but does not have macronodular cirrhosis or hepatocellular carcinoma.
4. The method of claim 2, wherein detecting the presence of pre-cirrhosis comprises performing one or more tests selected from the group consisting of a liver biopsy, a blood test, and radiological imaging of the liver, and wherein the results of the test indicate that the subject has pre-cirrhosis, but does not have macronodular cirrhosis or hepatocellular carcinoma.
5. The method of claim 3, wherein the blood test used to evaluate liver function comprises assaying levels of one or more of aspartate aminotransferase, alanine aminotransferase, bilirubin, glucose, or hyaluronate.
6. The method of claim 4, wherein the blood test used to evaluate liver function comprises assaying levels of one or more of aspartate aminotransferase, alanine aminotransferase, bilirubin, glucose, or hyaluronate.
7. The method of claim 1, wherein the EGFR inhibitor inhibits EGFR signaling.
8. The method of claim 1, wherein the EGFR inhibitor is a tyrosine kinase inhibitor.
9. The method of claim 8, wherein the tyrosine kinase inhibitor inhibits EGFR signaling.
10. The method of claim 7, wherein the EGFR inhibitor is a quinazoline.
11. The method of claim 1 , wherein the EGFR inhibitor is erlotinib.
12. The method of claim 7, wherein the EGFR inhibitor is a monoclonal antibody or antigen-binding fragment thereof that selectively binds to the EGFR.
13. The method of claim 1, wherein the EGFR inhibitor is administered orally, intravenously, or by injection.
14. The method of claim 1, wherein the amount of EGFR inhibitor administered comprises 0.1 to 3.0 milligram per kilogram body weight.
15. The method of claim 14, wherein the amount of EGFR inhibitor administered is about 0.5 milligram per kilogram body weight.
16. The method of claim 1, wherein the subject is a mammal.
17. The method of claim 1, wherein the subject is a human.
PCT/US2010/051913 2010-10-08 2010-10-08 Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors WO2012047225A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US2010/051913 WO2012047225A2 (en) 2010-10-08 2010-10-08 Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors
CN2010800706147A CN103327978A (en) 2010-10-08 2010-10-08 Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/051913 WO2012047225A2 (en) 2010-10-08 2010-10-08 Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors

Publications (1)

Publication Number Publication Date
WO2012047225A2 true WO2012047225A2 (en) 2012-04-12

Family

ID=45928270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/051913 WO2012047225A2 (en) 2010-10-08 2010-10-08 Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors

Country Status (2)

Country Link
CN (1) CN103327978A (en)
WO (1) WO2012047225A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147246A1 (en) * 2013-03-21 2014-09-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and pharmaceutical composition for use in the treatment of chronic liver diseases associated with a low hepcidin expression
WO2019054106A1 (en) * 2017-09-13 2019-03-21 国立大学法人千葉大学 Suppressor of extracellular matrix production and utilization thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111888358A (en) * 2020-08-24 2020-11-06 天津济坤医药科技有限公司 Application of nilotinib in preparation of medicines for treating hepatic fibrosis diseases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358954B1 (en) * 1999-11-09 2002-03-19 Yissum Research Development Company Of The Hebrew University Of Jerusalem PDGF receptor kinase inhibitory compounds, their preparation, purification and pharmaceutical compositions including same
US6430467B1 (en) * 2000-07-12 2002-08-06 Rock-Tenn Company Processes for packaging perishable and other products
IL159225A0 (en) * 2001-06-13 2004-06-01 Genmab As Human monoclonal antibodies to epidermal growth factor receptor (egfr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147246A1 (en) * 2013-03-21 2014-09-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and pharmaceutical composition for use in the treatment of chronic liver diseases associated with a low hepcidin expression
WO2019054106A1 (en) * 2017-09-13 2019-03-21 国立大学法人千葉大学 Suppressor of extracellular matrix production and utilization thereof

Also Published As

Publication number Publication date
CN103327978A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
Belotti et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation
US11666572B2 (en) Treatment of HER2 positive cancers
KR101839161B1 (en) Anti-angiogenesis therapy for the treatment of ovarian cancer
Roman et al. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome
JP2019513737A (en) Compositions and methods for treating cancer, inflammatory diseases and autoimmune diseases
RU2748549C2 (en) Method of renal cell carcinoma treatment using n-(4-(6,7-dimethoxyquinoline-4-iloxy)phenyl)-n&#39; - (4-fluorophenyl)cyclopropane-1,1-dicarboxamide, (2s) - hydroxybutanedioate
KR20080068848A (en) Egfr dependent modulation of chemokine expression and influence on therapy and diagnosis of tumors and side effects thereof
RU2580626C2 (en) Use of vap-1 inhibitors for fibrotic sickness treatment
JP2010508277A (en) Methods for detecting and suppressing cancer
AU2014296288B2 (en) Compositions and methods for modulating thermogenesis using PTH-related and EGF-related molecules
Novoplansky et al. MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer
AU2009205428B2 (en) Inhibiting angiogenesis using EGFL8 antagonists
Ardiles et al. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria
Pan et al. Knockout of CD147 inhibits the proliferation, invasion, and drug resistance of human oral cancer CAL27 cells in Vitro and in Vivo
WO2012047225A2 (en) Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors
CN109890364A (en) The prevention and treatment of diabetic nephropathy
JP2003238441A (en) Neovascularization inhibitor
US9072741B2 (en) Methods of treating liver fibrosis and pre-cirrhosis with epidermal growth factor receptor inhibitors
JP2022553041A (en) Methods of treating HER2-positive breast cancer with tucatinib in combination with capecitabine and trastuzumab
KR101957613B1 (en) Aryl amine substituted quinoxaline used as anticancer drugs
Ding et al. Paeonol attenuates Substance P-induced urticaria by inhibiting Src kinase phosphorylation in mast cells
CN115427077A (en) Treatment of liver failure
EP4122467A1 (en) Thx-b for treating and preventing cancer and metastasis
EP3067369A1 (en) Methods and compositions for the treatment of anti-angiogenic resistant cancer
US20150023920A1 (en) Novel compositions and methods for preventing or treating cancer metastasis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858245

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858245

Country of ref document: EP

Kind code of ref document: A2