WO2012046599A1 - Light-emitting device, display apparatus, and electronic equipment - Google Patents

Light-emitting device, display apparatus, and electronic equipment Download PDF

Info

Publication number
WO2012046599A1
WO2012046599A1 PCT/JP2011/072149 JP2011072149W WO2012046599A1 WO 2012046599 A1 WO2012046599 A1 WO 2012046599A1 JP 2011072149 W JP2011072149 W JP 2011072149W WO 2012046599 A1 WO2012046599 A1 WO 2012046599A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
excitation light
substrate
light
organic
Prior art date
Application number
PCT/JP2011/072149
Other languages
French (fr)
Japanese (ja)
Inventor
悦昌 藤田
別所 久徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012046599A1 publication Critical patent/WO2012046599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/22Illumination; Arrangements for improving the visibility of characters on dials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0267Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components
    • H04W52/027Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components by controlling a display operation or backlight unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a light-emitting device, a display device, and an electronic apparatus that include a phosphor layer that emits fluorescence by excitation light.
  • an electroluminescence (EL) light-emitting element has high visibility because it is self-luminous. Moreover, since the EL light emitting device is a completely solid device, it has excellent impact resistance and is easy to handle. For this reason, the EL light emitting element is attracting attention as a light emitting element in various display devices.
  • the EL light emitting element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
  • an organic EL device having a light emitting layer that emits blue to blue green light, and a green pixel that includes a phosphor layer that absorbs blue to blue green light emitted from the organic EL device as excitation light and emits green light
  • a method for realizing full-color display by combining a red pixel composed of a phosphor layer emitting red light and a blue pixel composed of a blue color filter for improving color purity has been proposed (for example, see Patent Document 1). ).
  • a conventional organic EL device has a configuration shown in FIG. 16, for example.
  • the conventional organic EL element for example, a reflective film 3, an excitation light source element 4, a sealing layer 5, an adhesive layer 6, a phosphor layer 7, and a sealing substrate 8 are sequentially laminated on a substrate 2.
  • the excitation light L 1 emitted from the excitation light source element 4 is reflected directly or reflected by the reflection film 3 and enters the phosphor layer 7 to excite the phosphor layer 7.
  • the fluorescence L2 emitted from the excited phosphor layer 7 is emitted to the outside through the sealing substrate 8 from the same direction as the direction in which the excitation light L1 is incident.
  • the organic EL element 1 having the above-described configuration is arranged in a unit of pixels emitting red, green, and blue, for example, thereby producing various colors typified by white, thereby achieving full color display. .
  • An aspect of the present invention has been made in view of such a conventional situation, and an object thereof is to provide a light-emitting device, a display device, and an electronic apparatus with high efficiency (high luminance).
  • the light-emitting device includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is applied to the phosphor layer.
  • the fluorescence is emitted to the outside in a direction opposite to the direction of incidence.
  • the excitation light source element may be formed between the substrate and the phosphor layer.
  • the substrate, the phosphor layer, and the excitation light source element may be sequentially formed.
  • the light-emitting device may further include a wavelength selective transmission / reflection film that reflects or absorbs the excitation light and transmits the fluorescence.
  • the wavelength selective transmission / reflection film may be formed of a dielectric multilayer film.
  • the excitation light source element may be a first electrode, an organic layer containing at least an organic light emitting material, and an organic EL element including a second electrode.
  • the light-emitting device further includes a reflective film that reflects at least a part of the excitation light and a part of the fluorescence, facing the wavelength selective transmission / reflection film with the excitation light source element interposed therebetween. May be.
  • the display device includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is directed toward the phosphor layer.
  • a light emitting device configured to emit the fluorescence to the outside in a direction opposite to the incident direction is provided.
  • the excitation light source element may be driven using an active drive element.
  • the active drive element may be formed on the substrate, and the fluorescence may be emitted from a side opposite to the substrate.
  • An electronic device includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is directed toward the phosphor layer.
  • a display device includes a light emitting device configured to emit the fluorescence to the outside in a direction opposite to the incident direction.
  • a highly efficient (high luminance) light emitting device, display device, and electronic device can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a light-emitting device according to the first embodiment of the present invention.
  • the light emitting device 10 includes a substrate 11, a wavelength selective transmission / reflection film (wavelength selection film) 12, an excitation light source element 13, a sealing layer 14, an adhesive layer 15, and a phosphor layer 16 that are sequentially stacked on one surface 11 a of the substrate 11. , And a sealing substrate 17. Further, the active drive element 18 is preferably formed on the one surface 11 a of the substrate 11.
  • the wavelength selective transmission / reflection film 12 reflects the excitation light (light in the wavelength band to be excitation light) L1 emitted from the excitation light source element 13, and is also excited by the excitation light and emitted from the phosphor layer 16 (fluorescence and fluorescence). It is a functional film that transmits light L2 in the wavelength band.
  • the excitation light source element 13 is an element that emits excitation light, and in this embodiment, for example, an organic EL element.
  • An organic EL element has an organic layer (organic EL layer) sandwiched between a first electrode and a second electrode. The organic layer emits excitation light by applying a voltage between the first electrode and the second electrode.
  • the phosphor layer 16 is excited by the excitation light L1 emitted from the excitation light source element 13 and emits fluorescence L2.
  • the phosphor layer 16 is a phosphor layer of three primary colors of a blue phosphor layer, a green phosphor layer, and a red phosphor layer. It should just be comprised from.
  • the sealing layer 14 and the adhesive layer 15 seal and bond the substrate 11 side on which the excitation light source element 13 is formed and the sealing substrate 17 on which the phosphor layer 16 is formed to each other.
  • the active drive element 18 is an element that drives the excitation light source element 13 and may be, for example, a TFT.
  • a metal substrate made of (Fe) or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material or the like on the substrate, or a metal substrate made of Al or the like is anodized.
  • substrate etc. which performed the insulation process by the method are mentioned, this embodiment is not limited to these board
  • the plastic substrate or the metal substrate because it is possible to form a bent portion or a bent portion without stress.
  • a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. This eliminates moisture permeation that can occur when an organic EL element is used as the excitation light source element 13 (organic EL is known to deteriorate even with a particularly low amount of moisture). Is possible.
  • the excitation light source element 13 is an organic EL element
  • leakage (short) due to protrusions of the metal substrate that can occur when the metal substrate is used as the organic EL substrate the film thickness of the organic EL is about 100 nm to 200 nm. Therefore, it is known that leakage (short-circuit) occurs in the current in the pixel portion due to the protrusion.
  • the active drive element 18 that drives the excitation light source element 13 is formed on a substrate, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 /
  • the active drive element 18 is formed on the glass substrate, and then transferred to the plastic substrate. An active drive element can be transferred and formed.
  • the fluorescence L2 emitted from the phosphor layer 16 is emitted from the sealing substrate 17 side facing the substrate 11, there is no restriction on the material related to the transparency of the substrate, but the fluorescence L2 emitted from the phosphor layer 17 is present.
  • the active drive element 18 for driving the excitation light source element 13 When the active drive element 18 for driving the excitation light source element 13 is formed on the substrate 11, the active drive element 18 is formed on the substrate 11 in advance before the excitation light source element 13 is formed, and functions as a switching and a drive. To do.
  • the active drive element 18 include known active drive elements.
  • TFT active drive element
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide-
  • oxide semiconductor material such as zinc oxide
  • organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene
  • TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • Examples of a method for forming an active layer constituting a TFT include the following methods. (1) Method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD) method, (2) Amorphous by low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas After forming silicon and crystallizing amorphous silicon by solid phase growth to obtain polysilicon, ion doping by ion implantation, (3) LPCVD using Si 2 H 6 gas or SiH 4 gas Amorphous silicon is formed by the PECVD method used, annealed by a laser such as an excimer laser, and the amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process), (4) LPCVD method or PECVD A polysilicon layer is formed by the method 10 A gate insulating film formed by thermal oxidation at 0 °C above, thereon, a gate electrode of the n + poly
  • a gate insulating film of a TFT active drive element
  • a known material can be used. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT used in this embodiment can be formed using a known material, for example, tantalum (Ta ), Aluminum (Al), copper (Cu), and the like.
  • the display device according to this embodiment can be formed with the above-described configuration, but is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN). Or an inorganic material such as Si 2 N 4 ) or tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material.
  • a known material for example, silicon oxide (SiO 2 ), silicon nitride (SiN).
  • an inorganic material such as Si 2 N 4 ) or tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material.
  • the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the fluorescence L2 emitted from the phosphor layer 17 When the fluorescence L2 emitted from the phosphor layer 17 is taken out from the substrate 11 side, the fluorescence L2 from the phosphor layer 17 enters a TFT (active drive element) formed on the substrate 11 and changes in TFT characteristics.
  • a TFT active drive element
  • a light-shielding insulating film having light-shielding properties when taking out the fluorescence L2 from the phosphor layer 17 from the sealing substrate 17 side, for the purpose of preventing external light from entering the TFT formed on the substrate 11 and changing the TFT characteristics.
  • a light-shielding insulating film having light-shielding properties when taking out the fluorescence L2 from the phosphor layer 17 from the sealing substrate 17 side, for the purpose of preventing external light from entering the TFT formed on the substrate 11 and changing the TFT characteristics
  • Examples of the light-shielding interlayer insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclone in polymer resins such as polyimide, color resists, black matrix materials, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4. Can be mentioned. However, this embodiment is not limited to these materials and forming methods.
  • the active drive element 18 for driving the excitation light source element 13 When the active drive element 18 for driving the excitation light source element 13 is formed on the substrate 11, irregularities are formed on the surface thereof, and this irregularity causes the excitation light source element 13, for example, an organic EL element, for example, a pixel electrode defect, organic EL There is a possibility that phenomena such as layer loss, disconnection of the counter electrode, short circuit between the pixel electrode and the counter electrode, and reduction in breakdown voltage may occur. In order to prevent these phenomena, a planarizing film may be provided on the interlayer insulating film.
  • planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is not limited to these materials and the forming method.
  • the planarization film may have a single layer structure or a multilayer structure.
  • the wavelength selective transmission / reflection film (wavelength selective transmission film) 12 is one that absorbs or reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 emitted from the phosphor layer 16. That's fine.
  • a wavelength selective transmission / reflection film that reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 from the phosphor layer 16 as the wavelength selective transmission / reflection film 12
  • the excitation light can be reflected and incident on the phosphor layer 16, and the excitation light L1 incident on the phosphor layer 16 can be increased. As a result, the luminous efficiency of the phosphor layer 16 is improved. It is possible to make it.
  • a color filter or the like can be used as the wavelength selective transmission / reflection film. It is not limited.
  • the color filter can be formed by a dry process or a wet process.
  • a pigment such as porphyrin, zinc porphyrin, phthalocyanine, or copper can be formed by vacuum deposition.
  • the pigment is dispersed in a transparent resin such as an acrylic resin, a polycarbonate resin, or a polystyrene resin, and the material composed of the pigment and the transparent resin is dissolved and dispersed in an organic solvent or the like. Etc. can be formed.
  • patterning can be performed by using a photosensitive transparent resin instead of the transparent resin.
  • a photosensitive resin one or more types of photosensitive resin (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use a mixture of types.
  • examples of the wavelength selective transmission / reflection film include a metal thin film and a dielectric multilayer film. It is not limited to.
  • the dielectric multilayer film can be formed by alternately laminating thin films of two kinds of materials having different refractive indexes. TiO 2 , SiO 2 , ZnS, Ta 2 O 5 , MgF 2 , Al 2 O 3, etc. can be used as the high refraction and low refraction materials.
  • the dielectric multilayer film can be formed, for example, by placing it in a high vacuum deposition apparatus and alternately depositing a high refractive material and a low refractive material with a desired film thickness.
  • the film thickness is determined by the desired wavelength to be reflected and the wavelength to be absorbed, but reflects at least a part of the excitation light wavelength region and at least the wavelength region of the fluorescence L2 from the phosphor layer 16. It is necessary to transmit a part of (wavelength band). In other words, when blue excitation light is used and a green phosphor is emitted, the wavelength selective transmission / reflection film reflects the blue wavelength region and transmits the green wavelength region in the dielectric multilayer film. It is necessary to control the film thickness of the high refractive material and the low refractive material.
  • the long-wavelength selective transmission / reflection film 12 preferably has an absorptance or reflectance of 50% or more at the maximum wavelength of the excitation light. Moreover, it is preferable that the wavelength selection transmission reflection film 12 has a transmittance of 50% or more at the maximum light emission wavelength of the phosphor layer. More preferably, the wavelength selective transmission / reflection film 12 preferably has an absorptance or reflectance of 80% or more at the maximum wavelength of the excitation light. Moreover, it is preferable that the wavelength selection transmission reflection film 12 has a transmittance of 80% or more at the maximum wavelength of light emission from the phosphor layer.
  • the excitation light source element (light source for exciting the phosphor layer) 13 an element that emits ultraviolet light or blue light is preferable.
  • an element that emits ultraviolet light or blue light is preferable.
  • publicly known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL, blue light emitting inorganic EL, ultraviolet light emitting organic EL, blue light emitting organic EL, and the like can be mentioned, but this embodiment is not limited thereto.
  • the excitation light source element 13 when passing through the excitation light source element 13 before the fluorescence L2 from the phosphor layer 16 is extracted outside, the excitation light source element 13 should have a higher transmittance in the emission wavelength region of the phosphor layer 16. good.
  • the excitation light source element 13 preferably has a transmittance of 50% or more at the maximum wavelength of the fluorescence L2 of the phosphor layer 16. More preferably, it has a transmittance of 80% or more at the maximum wavelength of the fluorescence L2 from the phosphor layer 16. From this point, an organic EL element (ultraviolet light emitting organic EL, blue light emitting organic EL) is preferable as the excitation light source element 13.
  • an organic EL element ultraviolet light emitting organic EL, blue light emitting organic EL
  • the excitation light source element 13 can be manufactured with a well-known material and a well-known manufacturing method.
  • the ultraviolet light light having a main light emission peak of 360 to 410 nm is preferable. Blue light is preferably emitted with a main emission peak of 410 to 470 nm. Further, by directly switching these light sources, it is possible to control ON / OFF of light emission for displaying an image.
  • an LED When using an LED as the excitation light source element 13, a known LED can be used.
  • an ultraviolet light emitting inorganic LED, a blue light emitting inorganic LED, or the like can be used.
  • Such an LED is composed of, for example, a substrate, a buffer layer, an n-type contact layer, an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type contact layer, but is not limited thereto. Absent.
  • the active layer in the case of using an LED as the excitation light source element 13 is a layer that emits light by recombination of electrons and holes.
  • the active layer material a known active layer material for LED can be used.
  • an active layer material for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ⁇ a, 0 ⁇ b, a + b ⁇ 1), blue active layer material In z Ga 1 -z N (0 ⁇ z ⁇ 1) and the like can be mentioned, but this embodiment is not limited to these.
  • the active layer has a single quantum well structure or a multiple quantum well structure.
  • the active layer of the quantum well structure may be either n-type or p-type.
  • the active layer may be doped with donor impurities and / or acceptor impurities.
  • doping with donor impurities can further increase the emission intensity between bands as compared with non-doped ones.
  • the acceptor impurity is doped, the peak wavelength can be shifted to a lower energy side by about 0.5 eV than the peak wavelength of interband light emission, but the full width at half maximum is increased.
  • the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity.
  • the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
  • n-type cladding layer As the n-type cladding layer, a known n-type cladding layer material for LED can be used, and it may be a single layer or a multilayer.
  • an n-type cladding layer By forming an n-type cladding layer with a material formed of an n-type semiconductor having a larger band gap energy than the active layer, a potential barrier against holes is created between the n-type cladding layer and the active layer, and the holes are activated. It becomes possible to confine in a layer.
  • it can be formed by n-type In x Ga 1-x N (0 ⁇ x ⁇ 1), but the present embodiment is not limited to these.
  • the p-type cladding layer As the p-type cladding layer, a known p-type cladding layer material for LED can be used, and it may be a single layer or a multilayer. By configuring the p-type cladding layer with a material formed of a p-type semiconductor having a larger band gap energy than the active layer, a potential barrier against electrons is formed between the p-type cladding layer and the active layer, and the electrons are in the active layer. It becomes possible to confine. For example, although it can be formed of Al y Ga 1-y N (0 ⁇ y ⁇ 1), the present embodiment is not limited to these.
  • a known contact layer material for LED can be used as the contact layer.
  • an n-type contact layer made of n-type GaN as a layer for forming an electrode in contact with the n-type cladding layer
  • p-type GaN as a layer for forming an electrode in contact with the p-type cladding layer.
  • this contact layer need not be formed if the second n-type cladding layer and the second p-type cladding layer are formed of GaN, and the second cladding layer may be used as a contact layer. Is possible.
  • the excitation light source element 13 For each of the above layers in the case where an LED is used as the excitation light source element 13, it is possible to use a known film forming process for LED, but this embodiment is not particularly limited thereto.
  • a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO) ) Or the like.
  • MOVPE metal organic vapor phase epitaxy
  • MBE molecular beam vapor phase epitaxy
  • HDVPE hydrogen vapor phase epitaxy
  • sapphire C plane, A plane, R
  • SiC including 6H—SiC, 4H—
  • An inorganic EL element can be used as the excitation light source element 13.
  • an ultraviolet light emitting inorganic EL or a blue light emitting inorganic EL can be used.
  • the inorganic EL element includes, for example, a substrate, a first electrode, a first dielectric layer, a light emitting layer, a second dielectric layer, and a second electrode, but is not limited thereto.
  • Examples of the substrate in the case of using an inorganic EL element as the excitation light source element 13 include insulation of an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc. Substrate, metal substrate made of aluminum (Al), iron (Fe), etc., or substrate coated with an insulator made of silicon oxide (SiO 2 ), organic insulating material, etc. on the substrate, Al, etc.
  • substrate etc. which performed the insulation process by the method of anodic oxidation etc. are mentioned for the surface of the metal substrate which consists of this embodiment, this embodiment is not limited to these board
  • the plastic substrate or the metal substrate because a bent portion and a bent portion can be formed without stress. Further, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable.
  • the first electrode and the second electrode when an inorganic EL element is used as the excitation light source element 13 for example, a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium
  • the transparent electrode material include oxides (ITO) composed of (In) and tin (Sn), oxides (SnO 2 ) of tin (Sn), oxides (IZO) composed of indium (In) and zinc (Zn), and the like.
  • ITO oxides
  • a transparent electrode such as ITO is better in the light extraction direction.
  • a reflective film such as aluminum is preferably used on the side opposite to the light extraction direction.
  • the first electrode and the second electrode can be formed by using the above-mentioned materials by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, etc. It is not limited to the forming method. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • a known dielectric material for inorganic EL can be used as the excitation light source element 13 .
  • dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but this embodiment is not limited thereto.
  • first and second dielectric layers of the present embodiment may have one type selected from the above-mentioned dielectric materials or a structure in which two or more types of materials are laminated.
  • the film thickness of the dielectric is preferably about 200 nm to 500 nm.
  • a known light emitting material for inorganic EL can be used.
  • a light emitting material for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material.
  • Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present embodiment is not limited thereto.
  • the film thickness of the light emitting layer is preferably about 300 nm to 1000 nm.
  • an organic EL element is used as the excitation light source element 13.
  • a known organic EL element can be used as the organic EL element, for example, at least between the first electrode, the second electrode, the first electrode, and the second electrode.
  • the organic electroluminescent layer containing the organic layer which has the organic light emitting layer which consists of organic luminescent materials it is not limited to these.
  • the first electrode and the second electrode function as a pair as an anode or a cathode of the organic EL element. That is, when the first electrode is an anode, the second electrode is a cathode, and when the first electrode is a cathode, the second electrode is an anode.
  • Specific compounds and formation methods are exemplified below, but the present embodiment is not limited to these materials and formation methods.
  • a known electrode material can be used as an electrode material for forming the first electrode and the second electrode.
  • a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more, Oxides such as molybdenum oxide (Mo 2 O 3 ) and vanadium oxide (V 2 O 5 ), indium (In) and tin (Sn) oxide (ITO), tin (Sn) oxide (SnO 2 )
  • Examples thereof include transparent electrode materials such as oxide (IZO) made of indium (In) and zinc (Zn), and a stacked structure thereof.
  • an electrode material for forming the cathode lithium (Li), calcium (Ca), cerium (Ce), a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer.
  • Examples include metal thin films such as barium (Ba) and aluminum (Al), thin film alloys such as Mg: Ag alloys and Li: Al alloys containing these metals, and laminated structures of the metal thin films and the transparent electrodes. It is done.
  • the first electrode and the second electrode can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. Is not limited to these forming methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more because the transparent electrode material has higher resistance than the metal material.
  • the wiring resistance is increased, which may increase the drive voltage.
  • the metal material has a very low transmittance, so it is necessary to use a translucent electrode, and it is preferable to use a translucent electrode.
  • a metal semitransparent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used as a material used here.
  • the film thickness of the semitransparent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, the resistance becomes high, the efficiency is lowered, the charge is not uniformly related, and problems such as uneven light emission occur. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered.
  • the organic EL layer may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the following configurations may be mentioned. However, the present embodiment is not limited to these.
  • the organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, and an additive
  • An agent (donor, acceptor, etc.) or the like may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, a material in which a luminescent dopant is dispersed in a host material is preferable.
  • the organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  • the light-emitting dopant optionally contained in the light-emitting layer a known dopant material for organic EL can be used.
  • a dopant material for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl.
  • Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr6).
  • a known host material for organic EL can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  • the charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer).
  • the charge injection layer and the charge transport layer may each be composed of only the charge injection / transport material exemplified below.
  • Each of the charge injection layer and the charge transport layer may optionally contain an additive (donor, acceptor, etc.) or the like in the charge injection / transport material exemplified below.
  • Each of the charge injection layer and the charge transport layer may have a structure in which these materials such as a charge injection transport material exemplified below are dispersed in a polymer material (binding resin) or an inorganic material.
  • charge injecting and transporting material known charge transporting materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • the hole injection transport material examples include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) ) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Compounds, low molecular weight materials such as hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS) ), Poly (triphenylamine) derivatives (Poly-TPD), polyvinylcarbazole (PVCz), Examples thereof include polymer materials such
  • the highest occupied molecular orbital (HOMO) is better than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  • the hole injecting / transporting material is preferably doped with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  • Examples of the electron injecting and transporting material include n-type semiconductor inorganic materials, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. Low molecular materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned.
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  • LUMO lowest unoccupied molecular orbital
  • the electron injecting and transporting material in order to further improve the electron injecting and transporting properties, it is preferable to dope the electron injecting and transporting material with a donor.
  • a donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -N
  • An organic EL layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer is spin-coated using a coating liquid for forming an organic EL layer in which the above materials are dissolved and dispersed in a solvent.
  • Known wet methods such as coating methods, dipping methods, doctor blade methods, discharge coating methods, spray coating methods, etc., inkjet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as microgravure coating methods, etc.
  • the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  • each organic EL layer is usually about 1 nm to 1000 nm, but preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the physical properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
  • the organic EL element is an edge portion of the first electrode formed on the substrate side between the first electrode and the second electrode, and the first electrode and the second electrode. It is preferable to have an edge cover for the purpose of preventing leakage between the two.
  • the edge cover can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using an insulating material, and a known dry or wet photolithography.
  • the present embodiment is not limited to these forming methods.
  • a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light.
  • a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light.
  • the film thickness is preferably 100 nm to 2000 nm. When the film thickness is 100 nm or less, the insulation is not sufficient, and leakage occurs between the first electrode and the second electrode, resulting in an increase in power consumption and non-light emission. On the other hand, if the film thickness is 2000 nm or more, the film forming process takes time, which causes deterioration in productivity and disconnection of the second electrode at the edge cover.
  • the organic EL element preferably has a microcavity structure (optical microresonator structure) due to an interference effect between the semitransparent electrodes by using a semitransparent electrode for both the anode and the cathode.
  • a microcavity structure optical microresonator structure
  • the transmissivity of the semi-transparent electrodes it becomes possible to condense the light emitted from the organic EL element in an arbitrary direction (provide directivity). It is possible to reduce the light emission loss that escapes to the surroundings, and to increase the light emission efficiency in the front. As a result, it is possible to more efficiently propagate light emission energy generated in the light emitting layer of the organic EL element to the phosphor layer, and to increase the front luminance.
  • the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Therefore, it is possible to improve the color purity of the blue pixel by controlling the spectrum so that the red and green phosphors can be excited more effectively.
  • the excitation light L1 emitted from the excitation light source element 13 isotropically radiates.
  • excitation light L1a emitted directly toward the phosphor layer 16 is directly incident on the phosphor layer 16 and excites the phosphor layer 16.
  • the excitation light L1b radiated toward the side opposite to the phosphor layer 16, that is, toward the substrate 11 is incident on the wavelength selective transmission / reflection film 12 formed on the substrate 11.
  • the wavelength selective transmission / reflection film 12 absorbs or reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 emitted from the phosphor layer 16, and in this embodiment, the excitation light.
  • the light in the wavelength region of L1 is reflected. For this reason, the excitation light L1b radiated toward the substrate 11 side is reflected toward the phosphor layer 16 by the wavelength selective transmission / reflection film 12.
  • the excitation light L1b emitted to the side opposite to the phosphor layer 16 can also be used to excite the phosphor layer 16.
  • the amount of excitation light absorbed by the phosphor layer 16 can be increased (increase in fluorescence quantum yield), and the amount of light emitted from the phosphor layer 16 itself can be increased.
  • FIG. 6 is a graph showing an example of light reflection characteristics and light transmission characteristics of the wavelength selection layer used in the light emitting device of the first embodiment. According to these graphs, the wavelength selection layer reflects almost all (97% or more) of the excitation light wavelength range in the range of about ⁇ 20 nm centered on the wavelength of 450 nm, and 3% of the light that can be transmitted in this wavelength range is 3%. It is suppressed to the following.
  • the fluorescence wavelength range (95% or more) can be transmitted.
  • the wavelength selective layer having such optical characteristics, the excitation light emitted toward the wavelength selective transmission / reflection film opposite to the phosphor layer is reliably reflected toward the phosphor layer, and the phosphor It can be seen that the fluorescence emitted from the layer can be emitted toward the outside of the light emitting device with almost no loss.
  • FIG. 2 is a schematic cross-sectional view showing an example of a light emitting device according to the second embodiment of the present invention.
  • the light emitting device 20 includes a substrate 11, a wavelength selective transmission / reflection film 12, an excitation light source element 13, a sealing layer 14, an adhesive layer 15, a phosphor layer 16, and a sealing layer, which are sequentially stacked on one surface 11 a of the substrate 11.
  • a substrate 17 is provided.
  • the reflection film 19 is formed opposite to the wavelength selective transmission / reflection film 12 with the excitation light source element 13 interposed therebetween, that is, between the phosphor layer 16 and the sealing substrate 17. .
  • the reflection film 19 is a functional film that reflects at least a part of the excitation light L1 and a part of the fluorescence L2.
  • the excitation light source element 13 for example, an inorganic EL element can be used.
  • the ultraviolet light emitting inorganic EL and the blue light emitting inorganic EL include, for example, a substrate, a first electrode, a first dielectric layer, a light emitting layer, a first light emitting layer, Although composed of two dielectric layers and a second electrode, it is not limited to these.
  • examples of the substrate 11 include an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc.
  • This embodiment is not limited to these board
  • the first electrode and the second electrode include a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium (
  • the transparent electrode material include oxide (ITO) made of In) and tin (Sn), oxide of Sn (Sn) (SnO 2 ), oxide made of indium (In) and zinc (Zn) (IZO), and the like.
  • ITO oxide
  • Sn oxide of Sn
  • IZO 2 oxide made of indium (In) and zinc (Zn)
  • this embodiment is not limited to these materials.
  • a transparent electrode such as ITO is good in the light extraction direction, and it is preferable to use a reflective film such as aluminum on the side opposite to the light extraction direction.
  • the first electrode and the second electrode can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials.
  • the forming method is not limited.
  • the formed electrode can be patterned by a photolithography method or a laser peeling method, or a directly patterned electrode can be formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • a known dielectric material for inorganic EL can be used as the first and second dielectric layers.
  • dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but this embodiment is not limited thereto.
  • the first and second dielectric layers may be one type selected from the above-mentioned dielectric materials or a structure in which two or more types of materials are laminated.
  • the film thickness of the dielectric is preferably about 200 nm to 500 nm.
  • a known light emitting material for inorganic EL can be used as the light emitter.
  • a light emitting material for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material.
  • Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present embodiment is not limited thereto.
  • the thickness of the light emitting layer is preferably about 300 nm to 1000 nm.
  • the phosphor layer 16 absorbs excitation light from an ultraviolet light emitting organic EL element, a blue light emitting organic EL element, an ultraviolet light emitting LED, a blue LED, etc., and emits blue, green, red light, a blue phosphor layer, a red phosphor layer, It is composed of a green phosphor layer and the like. Moreover, it is preferable to add phosphors emitting light of cyan and yellow to the pixels as necessary.
  • the color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of green and blue.
  • the phosphor 16 layer may be composed only of the phosphor materials exemplified below, and may optionally contain additives, etc., and these materials are in a polymer material (binding resin) or an inorganic material.
  • the configuration may be distributed in a distributed manner.
  • a known phosphor material can be used as the phosphor material of the present embodiment. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  • Organic phosphor materials include, as fluorescent dyes that convert ultraviolet excitation light into blue light emission, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstil Benzene, coumarin dyes: 7-hydroxy-4-methylcoumarin and the like.
  • coumarin dyes 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1 -Gh) Coumarin (coumarin 153), 3- (2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), na Phthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like.
  • cyanine dyes 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran
  • pyridine Dyes 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate
  • rhodamine dyes rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
  • an inorganic phosphor material as a phosphor that converts ultraviolet excitation light into blue light emission, Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , 0 Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ , BaMg 2 Al 16 O 27 : Eu 2+ , (Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ ,
  • Y 2 O 2 S Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3 + , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y ( P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 Examples thereof include K 5 Eu 2.5 (MoO 4 ) 6.25 and Na 5 Eu 2.5 (MoO 4 ) 6.25 .
  • the inorganic phosphor may be subjected to a surface modification treatment as necessary.
  • a surface modification treatment physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof.
  • an inorganic material it is preferable to use an inorganic material.
  • the average particle size (d 50 ) is preferably 0.5 ⁇ m to 50 ⁇ m.
  • the average particle size is 1 ⁇ m or less, the luminous efficiency of the phosphor is drastically reduced.
  • it is 50 ⁇ m or more, it becomes very difficult to form a flat film, and depletion occurs between the phosphor layer and the organic EL element (organic EL element (refractive index: about 1.7). ) And the inorganic phosphor layer (refractive index: about 2.3) depletion (refractive index: 1.0)).
  • the light from an organic EL element cannot reach an inorganic fluorescent layer efficiently, and the problem that the luminous efficiency of a fluorescent substance layer falls arises.
  • the phosphor layer 16 is prepared by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, Known wet processes such as coating methods such as spray coating, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, microgravure coating methods, and the like, and resistance heating vapor deposition method, electron beam ( EB) It can be formed by a known dry process such as a vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  • a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent
  • spin coating method such as spray coating, ink jet methods, letterpress printing methods, intaglio printing methods,
  • the phosphor layer 16 can be patterned by a photolithography method by using a photosensitive resin as the polymer resin.
  • a photosensitive resin one of photosensitive resins (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use one kind or a mixture of plural kinds.
  • wet processes such as the ink jet method, relief printing method, intaglio printing method, screen printing method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method It is also possible to directly pattern the phosphor material by a known dry process such as an organic vapor deposition (OVPD) method or a laser transfer method.
  • a known dry process such as an organic vapor deposition (OVPD) method or a laser transfer method.
  • the film thickness of the phosphor layer 16 is usually about 100 nm to 100 ⁇ m, for example, but preferably 1 ⁇ m to 100 ⁇ m. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the blue light emitted from the organic EL, so that the light emission efficiency is lowered, and the color purity is deteriorated by mixing blue transmitted light with the required color. Problems arise. Further, in order to increase absorption of light emitted from the organic EL and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 ⁇ m or more. Further, when the film thickness exceeds 100 ⁇ m, the blue light emission from the organic EL element is already sufficiently absorbed. Therefore, the efficiency is not increased, but only the material is consumed and the material cost is increased.
  • the cross-sectional shape of the phosphor layer 16 of the present embodiment is higher than that of the light absorption layer in order to efficiently emit light to the side surface of the phosphor layer 16 and to take out to the outside by the reflective layer 19. It is preferable that the portion has a tapered shape. Thereby, the reflective layer 19 can be efficiently formed on the side surface of the phosphor layer 16 and the surface opposite to the light extraction direction at the same time.
  • the reflection layer 19 is provided between the phosphor layer 16 and the sealing substrate 17 and has a characteristic of reflecting at least a part of the excitation light L1 and a part of the fluorescence L2 from the phosphor layer 16. Just do it.
  • the reflective layer 19 include reflective metals such as aluminum, silver, gold, an aluminum-lithium alloy, an aluminum-neodymium alloy, and an aluminum-silicon alloy, but this embodiment is limited to these substrates. It is not a thing.
  • the reflective film 19 can be formed by, for example, resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), or sputtering.
  • EB electron beam
  • MBE molecular beam epitaxy
  • the reflective film 19 has a reflectance of 50% or more at the maximum wavelength of the excitation light L1 and the maximum wavelength of the fluorescence L2. More preferably, it has a reflectance of 80% or more at the maximum wavelength of the excitation light L1 and the maximum wavelength of the fluorescence L2.
  • a color filter on the substrate 11 side of the light emitting device 20, or between the sealing substrate 17 and the wavelength selective transmission / reflection film 12, or on the sealing substrate 17 side.
  • a conventional color filter can be used as the color filter.
  • the color purity of red, green, and blue pixels can be increased, and the color reproduction range of the display device can be expanded.
  • the same substrate 11 can be used, for example, an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc.
  • An insulating substrate such as aluminum, a metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate coated on the surface with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like
  • Examples include a substrate obtained by subjecting the surface of a metal substrate made of Al or the like to insulation treatment by a method such as anodic oxidation, but the present embodiment is not limited to these substrates.
  • the sealing layer 14 and the adhesive layer 15 can use conventional sealing layers and adhesive layers, and the present invention is not particularly limited. Further, a protective film may be further formed in addition to the sealing layer 14.
  • the sealing layer 14 and the protective film can be formed as a sealing film by applying a resin material using a spin coating method, ODF, or a laminating method, such as plasma CVD, ion plating, After forming an inorganic film such as SiO, SiON, or SiN by a beam method, a sputtering method, or the like, a sealing material is further applied by applying or bonding a resin material using a spin coating method, an ODF, or a laminating method. 14 can also be used.
  • Such a sealing layer 14 can prevent the entry of oxygen and moisture into the light emitting element from the outside, and the life of the excitation light source element 13 can be improved. Further, when the substrate 11 and the sealing substrate 17 are bonded, the bonding layer 15 can be bonded with a conventional ultraviolet curable resin, a thermosetting resin, or the like.
  • an inert gas such as nitrogen gas or argon gas between the substrate 11 and the sealing substrate 17.
  • a moisture absorbent such as barium oxide in the enclosed inert gas because the influence of moisture on the organic EL can be effectively reduced.
  • the present embodiment is not limited to these members and forming methods.
  • the light emitting device 20 is preferably further provided with a polarizing plate on the light extraction side, that is, on the side where the fluorescence L2 is emitted to the outside.
  • a polarizing plate a combination of a conventional linear polarizing plate and a ⁇ / 4 plate can be used.
  • the polarizing plate it is possible to prevent external light reflection from the electrodes and external light reflection from the surface of the substrate 11 or the sealing substrate 17, and the contrast of the display device can be improved. .
  • FIG. 3 is a schematic cross-sectional view showing an example of a light emitting device according to the third embodiment of the present invention.
  • the light emitting device 30 includes a substrate 31, a phosphor layer 36, an excitation light source element 33, a wavelength selective transmission / reflection film 32, a sealing layer 34, an adhesive layer 35, and a sealing substrate 37 that are sequentially stacked on the substrate 31. ing.
  • Excitation light L1 emitted from the excitation light source element 33 isotropically radiates.
  • excitation light L1a emitted directly toward the phosphor layer 36 is directly incident on the phosphor layer 36 and excites the phosphor layer 36.
  • the excitation light L 1 b radiated toward the side opposite to the phosphor layer 36 is incident on the wavelength selective transmission / reflection film 32.
  • the excitation light L1b is reflected toward the phosphor layer 36 by the wavelength selective transmission / reflection film 32. Therefore, the excitation light L1b emitted toward the side opposite to the phosphor layer 36 in the excitation light L1 can also be used to excite the phosphor layer 36.
  • FIG. 4 is a schematic cross-sectional view showing an example of a light emitting device according to the fourth embodiment of the present invention.
  • the light emitting device 40 includes a substrate 41, a reflective film 49, a phosphor layer 46, an excitation light source element 43, a wavelength selective transmission reflective film 42, a sealing layer 44, an adhesive layer 45, and a sealing layer that are sequentially stacked on the substrate 41.
  • a substrate 47 is provided.
  • Excitation light L1 emitted from the excitation light source element 43 is emitted isotropically.
  • excitation light L1a directly emitted toward the phosphor layer 46 is directly incident on the phosphor layer 46 and excites the phosphor layer 46.
  • the excitation light L1b emitted toward the side opposite to the phosphor layer 46 is incident on the wavelength selective transmission / reflection film 42.
  • the excitation light L1b is reflected toward the phosphor layer 46 by the wavelength selective transmission / reflection film 42. Therefore, the excitation light L1b emitted toward the side opposite to the phosphor layer 46 in the excitation light L1 can also be used to excite the phosphor layer 46.
  • the excitation light L1 is efficiently absorbed by the phosphor layer 46, and the fluorescence L2 generated in the phosphor layer 46 is efficiently reflected toward the sealing substrate 47 on the emission side. .
  • FIG. 5 is a schematic cross-sectional view showing an example of a light emitting device according to the fifth embodiment of the present invention.
  • the light emitting device 50 includes a substrate 51, a wavelength selective transmission / reflection film 52, an excitation light source element 53, a sealing layer 54, an adhesive layer 55, a phosphor layer 56, and a sealing substrate 57 that are sequentially stacked on the substrate 51. ing.
  • Excitation light L1 emitted from the excitation light source element 53 isotropically radiates.
  • excitation light L1a directly emitted toward the phosphor layer 56 is directly incident on the phosphor layer 56 and excites the phosphor layer 56.
  • the excitation light L 1 b radiated toward the side opposite to the phosphor layer 56 enters the wavelength selective transmission / reflection film 52.
  • the excitation light L1b is reflected toward the phosphor layer 56 by the wavelength selective transmission / reflection film 52.
  • the excitation light L1b emitted toward the opposite side of the phosphor layer 56 can also be used to excite the phosphor layer 56.
  • the external light L3 incident from the substrate 51 side is reflected by the wavelength selective transmission / reflection film 52 so that the external light L3 does not reach the phosphor layer 56. Therefore, the phosphor layer 56 by the external light L3.
  • the fluorescence L2 having excellent contrast and high color purity can be emitted from the substrate 51 side.
  • FIG. 7 is an explanatory view showing stepwise the manufacturing process of the light emitting device according to this embodiment.
  • the substrate 11 is prepared ((a) of FIG. 7).
  • the wavelength selective transmission / reflection film 12 is formed on the substrate 11 (FIG. 7B).
  • An excitation light source element 13, for example, an organic EL element is formed on the wavelength selective transmission / reflection film 12 ((c) of FIG. 7).
  • the excitation light source element 13 is sealed with the sealing layer 14, and the board
  • a sealing substrate 17 to be bonded to the substrate on the excitation light source element side is prepared ((e) in FIG. 7). And this sealing substrate 17 is bonded together with the sealing layer 14 of the board
  • FIG. 8 is a cross-sectional view showing an active matrix driving type organic EL display which is an example of a display device including the light emitting device of the present embodiment.
  • a TFT which is an active driving element including a gate electrode 126, a drain electrode 127, a source electrode 108, a gate insulating film 129, a wiring 131, a through hole, and the like is formed on one surface of a substrate 101.
  • a wavelength selective transmission / reflection film 117 is formed on the TFT with the interlayer insulating film 132 interposed therebetween. Furthermore, the anode 102, the edge cover 122, the hole injection layer 103, the hole transport layer 104, the electron blocking layer 105, the light emitting layer 106, the hole blocking layer 107, the electron transport layer 108, and the electron injection that constitute the excitation light source element 118. A layer 109 and a cathode 110 are formed.
  • An adhesive layer 112 is formed on the excitation light source element 118.
  • a red light emitting phosphor layer 124 and a green light emitting phosphor layer 125 defined by a reflective film 120, a partition wall 123 are formed on the sealing substrate 116 side. Then, the sealing substrate 116 side and the substrate 101 side are bonded via the adhesive layer 112. According to the light emitting device of this embodiment, the excitation light emitted from the excitation light source element 118 is incident on the red light emitting phosphor layer 124 and the green light emitting phosphor layer 125 formed on the sealing substrate 116.
  • Red fluorescence and green fluorescence generated by the excitation light entering the red light emitting phosphor layer 124 and the green light emitting phosphor layer 125 are emitted in a direction opposite to the incident direction of the excitation light. That is, the generated fluorescence passes through the excitation light source element 118 and the wavelength selective transmission / reflection film 117 and is emitted from the substrate 101.
  • the emission color of the excitation light source element 118 is blue, the blue light emitting phosphor layer is not provided, but the present embodiment is not limited to this configuration. Further, since the blue light emitted from the excitation light source element 118 does not need to enter the phosphor layer, it is not necessary to provide the wavelength selective transmission / reflection film 117 in the portion where the blue light is emitted.
  • FIG. 9 is a schematic diagram illustrating a configuration example of a control portion of the display device.
  • the display device 130 includes a first substrate 131, a pixel portion G, a gate signal side driving circuit 132, a data signal side driving circuit 133, a wiring 134, a current supply line 135, a second substrate (sealing substrate) 136, and an FPC (Flexible printed). circuit) 137 and an external drive circuit 138.
  • the external driving circuit 138 sequentially selects the scanning lines (scanning lines) of the pixel portion G by the gate signal side driving circuit 132, and the data signal side for each pixel element arranged along the selected scanning line. Pixel data is written by the drive circuit 133. That is, the gate signal side driving circuit 132 sequentially drives the scanning lines, and the data signal side driving circuit 133 outputs pixel data to the data lines, so that the driven scanning lines and the data lines from which the data is output intersect. The pixel element arranged at the position to be driven is driven.
  • the display device can be applied to, for example, the mobile phone shown in FIG.
  • a cellular phone 60 shown in FIG. 10 includes an audio input unit 61, an audio output unit 62, an antenna 63, an operation switch 64, a display unit 65, a housing 66, and the like.
  • the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 61.
  • FIG. By applying the display device according to an embodiment of the present invention to the display unit 65 of the mobile phone 60, it is possible to display a high contrast image with low power consumption.
  • the organic EL device 1 according to an embodiment of the present invention can be applied to, for example, a flat-screen television shown in FIG.
  • a thin television 70 shown in FIG. 11 includes a display unit 71, speakers 72, a cabinet 73, a stand 74, and the like.
  • the display device of the above-described embodiment can be suitably applied as the display unit 71.
  • the display device according to an embodiment of the present invention can be applied to, for example, a portable game machine shown in FIG.
  • a portable game machine 80 shown in FIG. 12 includes operation buttons 81 and 82, an external connection terminal 83, a display unit 84, a housing 85, and the like.
  • the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 84.
  • FIG. By applying the display device according to the embodiment of the present invention to the display unit 84 of the portable game machine 80, it is possible to display a high contrast video with low power consumption.
  • the display device can be applied to, for example, a notebook computer shown in FIG.
  • a notebook computer 90 shown in FIG. 13 includes a display unit 91, a keyboard 92, a touch pad 93, a main switch 94, a camera 95, a recording medium slot 96, a housing 97, and the like.
  • the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 91 of this notebook personal computer 90.
  • FIG. By applying the display device according to the embodiment of the present invention to the display unit 91 of the notebook computer 90, the notebook computer 90 capable of displaying a high contrast image with low power consumption can be realized.
  • the display device according to an embodiment of the present invention can be applied to, for example, a ceiling light shown in FIG.
  • the ceiling light 150 shown in FIG. 14 includes a light emitting unit 151, a hanging line 152, a power cord 153, and the like.
  • the display apparatus of the above-mentioned embodiment can be applied suitably as the light emission part 151.
  • FIG. By applying the display device according to an embodiment of the present invention to the light emitting unit 151 of the ceiling light 150, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting device with high light performance. be able to. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  • the display device according to an embodiment of the present invention can be applied to, for example, a lighting stand shown in FIG.
  • the illumination stand 160 shown in FIG. 15 includes a light emitting unit 161, a stand 162, a main switch 163, a power cord 164, and the like.
  • the display device of the present invention can be suitably applied as the light emitting unit 161.
  • By applying the display device according to an embodiment of the present invention to the light emitting unit 161 of the ceiling light 160 it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. be able to.
  • Example 1 In this embodiment, an example in which a substrate, a wavelength selective transmission / reflection film, an organic EL element as an excitation light source element, a phosphor layer, and a sealing substrate are combined will be described.
  • As the substrate 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
  • ITO indium-tin oxide
  • a reflective electrode anode
  • the first electrode was patterned into 90 stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • SiO 2 is deposited to 200 nm on the first electrode by a sputtering method, and is patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode.
  • a short side of 10 ⁇ m from the end of the first electrode is covered with SiO 2 .
  • this substrate was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each organic layer.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • NPD N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a transparent electrode was formed as the second electrode.
  • the substrate was fixed to a metal deposition chamber.
  • a shadow mask for forming a second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode) and the above-mentioned
  • the substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 sec / sec and 0.9 sec / sec in a desired pattern (thickness) 1 nm).
  • indium-zinc oxide IZO
  • IZO indium-zinc oxide
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
  • a phosphor substrate was produced by forming a yellow phosphor layer having a thickness of 500 ⁇ m on the substrate.
  • the yellow phosphor layer In the formation of the yellow phosphor layer, first, 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, followed by stirring at room temperature for 1 hour. This mixture and 20 g of the yellow phosphor Y 5 Al 5 O 12 were transferred to a mortar and thoroughly mixed, and then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to surface-modify Y 5. Al 5 O 12 was obtained.
  • the substrate on which the organic EL element is formed as an excitation light source and the phosphor substrate are brought into close contact with each other through an existing UV curable resin.
  • the light emitting device was completed by curing by exposing to UV light from the side where the element was formed.
  • a voltage of 5V was applied to the organic EL element to evaluate the characteristics.
  • white light emission in which blue light emission from the organic EL element and yellow light emission from the phosphor were combined was observed from the organic EL side. Further, no light emission was observed from the phosphor side.
  • Example 2 In this embodiment, an example in which a substrate, an organic EL element as an excitation light source element, a wavelength selective transmission / reflection film, and a sealing substrate are combined will be described.
  • the substrate 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour. First, a yellow phosphor layer was formed on a substrate. The formation of the yellow phosphor layer was the same as in Example 1. Next, a 10 ⁇ m flattening film made of transparent polyimide was formed on the phosphor layer.
  • an organic EL comprising a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a second electrode on the planarizing film in the same manner as in Example 1.
  • An element was formed.
  • an inorganic protective layer made of SiO 2 was formed by plasma CVD as in Example 1.
  • nine layers of SiO 2 (refractive index: 1.4) and eight layers of TiO 2 (refractive index: 2.1) are alternately deposited in a vacuum to form a wavelength selective transmission / reflection film. Formed.
  • the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected.
  • this dielectric multilayer film reflected 96% of light having a wavelength region of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
  • the substrate and the sealing substrate are brought into close contact with each other through an existing UV curable resin in a glove box whose moisture content and oxygen content are controlled to 1 ppm or less, and UV light is exposed from the sealing substrate side.
  • the light emitting device was completed by curing.
  • a voltage of 5V was applied to the organic EL element to evaluate the characteristics.
  • white light emission in which blue light emission from the organic EL element and yellow light emission from the phosphor were combined was observed from the organic EL side. Further, no light emission was observed from the phosphor side.
  • Example 3 In this embodiment, an example in which a substrate, a wavelength selective transmission / reflection film, an organic EL element, a phosphor layer, a reflection film, and a sealing substrate are combined will be described.
  • As the substrate 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour. First, nine layers of SiO 2 (refractive index: 1.4) and eight layers of TiO 2 (refractive index: 2.1) were alternately deposited in a vacuum to form a wavelength selective transmission / reflection film.
  • the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected.
  • this dielectric multilayer film reflected 96% of light having a wavelength region of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
  • ITO indium-tin oxide
  • a reflection electrode anode
  • SiO 2 was deposited to 200 nm on the first electrode by a sputtering method, and was patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode.
  • a short side of 10 ⁇ m from the end of the first electrode is covered with SiO 2 .
  • this substrate was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each organic layer.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • UH-2 1,4-bis-triphenylsilyl-benzene
  • FIrpic picolinate iridium
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF). Thereafter, a transparent electrode was formed as the second electrode.
  • the substrate was fixed to a metal deposition chamber.
  • a shadow mask for forming a second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode) and the above-mentioned
  • the substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 sec / sec and 0.9 sec / sec in a desired pattern (thickness) 1 nm).
  • indium-zinc oxide IZO
  • IZO indium-zinc oxide
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
  • a phosphor substrate having a thickness of 50 ⁇ m was formed on the substrate to produce a phosphor substrate.
  • red phosphor layer 500 nm of aluminum was formed as a reflective film by EB vapor deposition. Next, a red phosphor layer was formed on the reflective film. In the formation of the red phosphor layer, first, 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar and mixed well, then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface.
  • WO 4 red phosphor K 5 Eu 2.5
  • K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  • a phosphor forming coating solution was prepared.
  • the red phosphor-forming coating solution prepared above was applied to a region where the low reflection layer on the glass was not formed by a screen printing method. Subsequently, it was heated and dried in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a red phosphor layer having a thickness of 50 ⁇ m.
  • the substrate on which the organic EL element is formed as an excitation light source and the phosphor substrate are brought into close contact with each other through an existing UV curable resin.
  • the light emitting device was completed by curing by exposing to UV light from the side where the element was formed.
  • a voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, no light emission from the organic EL element was observed from the wavelength selective transmission / reflection film, and only red light emission from the phosphor was observed. Further, no light emission was observed from the reflective film side.
  • Example 4 In this embodiment, an example in which a substrate, a reflection film, a phosphor layer, an organic EL element, a wavelength selective transmission reflection film, and a sealing substrate are combined will be described.
  • As the substrate 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
  • Example 1 a 10 ⁇ m flattening film made of transparent polyimide was formed on the phosphor layer.
  • an organic EL comprising a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a second electrode on the planarizing film in the same manner as in Example 1.
  • An element was formed.
  • an inorganic protective layer made of SiO 2 was formed by plasma CVD as in Example 1.
  • Example 3 a wavelength selective transmission / reflection film was formed in the same manner as in Example 3. Finally, the substrate and the sealing substrate are brought into close contact with each other through an existing UV curable resin in a glove box whose moisture content and oxygen content are controlled to 1 ppm or less, and UV light is exposed from the sealing substrate side. The light emitting device was completed by curing.
  • a voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, no light emission from the organic EL element was observed from the wavelength selective transmission / reflection film, and only red light emission from the phosphor was observed. Also, no light emission was observed from the reflective film.
  • Example 5 In this embodiment, an example in which an active drive blue organic EL and a phosphor system are combined will be described.
  • An amorphous silicon semiconductor film was formed on a 100 mm ⁇ 100 mm square glass substrate by PECVD. Subsequently, a polycrystalline silicon semiconductor film was formed by performing a crystallization treatment. Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by using a photolithography method. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed using a photolithography method.
  • the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was fabricated. Thereafter, a planarizing film was formed.
  • a silicon nitride film formed by PECVD and an acrylic resin layer were formed in this order using a spin coater. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source and / or drain region, and then a source wiring was formed.
  • an active matrix substrate was completed by forming an acrylic resin layer and forming a contact hole leading to the drain region at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film.
  • the function as a planarizing film was realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT to a constant potential is formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT.
  • the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected.
  • the dielectric multilayer film which is a wavelength selective transmission / reflection film, reflected 96% of light having a wavelength range of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
  • the driving TFT On the active matrix substrate, the driving TFT, the first electrode of the red light emitting organic EL element, the first electrode of the green light emitting organic EL element, the blue light emitting organic EL element, penetrating the planarizing layer and the wavelength selective transmission / reflection film Contact holes for electrically connecting the first electrodes were provided.
  • a first electrode (anode) of each pixel is formed by sputtering for electrical connection to a contact hole provided through a planarization layer connected to a TFT for driving each light emitting pixel. It was done.
  • the first electrode was formed of IZO (indium oxide-zinc oxide) with a thickness of 150 nm.
  • the first electrode was patterned into a shape corresponding to each pixel by a conventional photolithography method.
  • the area of the first electrode is 300 ⁇ m ⁇ 160 ⁇ m.
  • the display unit formed on a 100 mm ⁇ 100 mm square substrate is 80 mm ⁇ 80 mm, and 2 mm wide sealing areas are provided on the top, bottom, left and right of the display unit, and further sealing is provided on the short side.
  • a 2 mm terminal lead-out portion is provided outside the area.
  • On the long side a 2 mm terminal extraction part is provided on the side to be bent.
  • the edge cover is made to have a structure in which four sides are covered with SiO 2 by 10 ⁇ m from the end of the first electrode.
  • the active substrate was cleaned. As cleaning of the active substrate, acetone and IPA were used for ultrasonic cleaning for 10 minutes, and then UV-ozone cleaning was performed for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less.
  • Each organic layer was formed.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • UH-2 1,4-bis-triphenylsilyl-benzene
  • FIrpic picolinate iridium
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a semitransparent electrode was formed as the second electrode.
  • the substrate was fixed to a metal deposition chamber.
  • the shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode) and the substrate are aligned.
  • magnesium and silver are formed on the surface of the electron injection layer in a desired pattern by co-evaporation at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec, respectively, by a vacuum evaporation method (thickness: 1 nm) )did.
  • indium-zinc oxide IZO
  • IZO indium-zinc oxide
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
  • a red phosphor layer and a green phosphor layer were formed on a 0.7 mm glass substrate to produce a phosphor substrate.
  • a second reflective film made of silver was formed to a thickness of 200 nm on the substrate.
  • a low reflection layer on a trapezoid made of chromium was formed with a width of 20 ⁇ m, a film thickness of 500 nm and a pitch of 200 ⁇ m.
  • red phosphor layer In the formation of the red phosphor layer, first, 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar and mixed well, then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface. K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  • the green phosphor layer was formed by adding 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane to 0.16 g of aerosil having an average particle diameter of 5 nm and stirring for 1 hour at an open system room temperature.
  • This mixture and 20 g of green phosphor Ba 2 SiO 4 : Eu 2+ were transferred to a mortar and mixed well, and then heated in a 70 ° C. oven for 2 hours and further in a 120 ° C. oven for 2 hours to modify the surface.
  • Ba 2 SiO 4 : Eu 2+ was obtained.
  • the active drive type organic EL element substrate and the phosphor substrate produced as described above were aligned using an alignment marker formed outside the display unit.
  • the thermosetting resin was previously apply
  • the above bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
  • a polarizing plate was bonded to the substrate in the light extraction direction to complete an active drive type organic EL.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver
  • the terminal formed on the long side is connected to the external power supply via the gate driver
  • an 80 mm ⁇ 80 mm display unit is formed.
  • An active drive organic EL display is completed.
  • the blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched, and the red phosphor layer and the green phosphor layer emit light from blue light to red and green, respectively. It is possible to obtain isotropic emission of red and green by conversion, and through the blue scattering layer, it is possible to obtain isotropic blue emission, enabling full color display, good image, and viewing angle. An image with good characteristics could be obtained.
  • High-efficiency (high luminance) light-emitting devices, display devices, and electronic devices can be provided.
  • SYMBOLS 10 Light-emitting device, 11 ... Substrate, 12 ... Wavelength selective transmission reflective film, 13 ... Excitation light source element, 14 ... Sealing layer, 15 ... Adhesive layer, 16 ... Phosphor layer, 17 ... Sealing substrate, 19 ... Reflective layer .

Abstract

A light-emitting device provided with, at least: a substrate; an excitation light-source element that emits excitation light; and a phosphor layer that is excited by said excitation light and emits fluorescence. Said fluorescence is emitted outside the device in a direction opposite the direction in which the excitation light is incident upon the phosphor layer.

Description

発光デバイス、表示装置、及び電子機器LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
  本発明は、励起光によって蛍光を発する蛍光体層を備えた発光デバイス、表示装置、及び電子機器に関する。
 本願は、2010年10月6日に、日本に出願された特願2010-226739号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light-emitting device, a display device, and an electronic apparatus that include a phosphor layer that emits fluorescence by excitation light.
This application claims priority based on Japanese Patent Application No. 2010-226739 filed in Japan on October 6, 2010, the contents of which are incorporated herein by reference.
  一般に、エレクトロルミネッセンス(EL:Electro Luminescence)発光素子は自己発光性であるため視認性が高い。かつEL発光素子は、完全固体素子であるため、耐衝撃性に優れるとともに、取扱いが容易である。このことから、EL発光素子は各種表示装置における発光素子としての利用が注目されている。EL発光素子には、発光材料に無機化合物を用いた無機EL素子と、発光材料に有機化合物を用いた有機EL素子とがある。このうち、有機EL素子は、印加電圧を大幅に低くしうるため、その実用化研究が積極的になされている。 Generally, an electroluminescence (EL) light-emitting element has high visibility because it is self-luminous. Moreover, since the EL light emitting device is a completely solid device, it has excellent impact resistance and is easy to handle. For this reason, the EL light emitting element is attracting attention as a light emitting element in various display devices. The EL light emitting element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
 有機EL装置の場合、フルカラー表示化を行うために、シャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の画素を形成する方法が一般的である。しかし、こうした方法では、マスクの加工精度の向上、マスクのアライメント精度の向上、マスクの大型化が必要とされている。
 大型ディスプレイの製造においては、大型基板に対応したマスクの作製、加工が必要となり、マスクの大型化によるディスプレイの製造コストの増加に繋がる。このため、例えば、青色~青緑色発光する発光層を有する有機EL装置と、この有機EL装置から発した青色~青緑色発光を励起光として吸収し緑色を発光する蛍光体層からなる緑色画素と、赤色に発光する蛍光体層からなる赤色画素と、色純度を向上させる青色カラーフィルターからなる青色画素とを組み合わせることによって、フルカラー表示を実現する方式が提案されている(例えば、特許文献1参照)。
In the case of an organic EL device, in order to achieve full color display, a method of forming red, green, and blue pixels by coating an organic light emitting layer by a mask vapor deposition method using a shadow mask is generally used. However, such a method requires improvement in mask processing accuracy, mask alignment accuracy, and mask size.
In manufacturing a large display, it is necessary to manufacture and process a mask corresponding to a large substrate, which leads to an increase in display manufacturing cost due to an increase in the size of the mask. Therefore, for example, an organic EL device having a light emitting layer that emits blue to blue green light, and a green pixel that includes a phosphor layer that absorbs blue to blue green light emitted from the organic EL device as excitation light and emits green light, and A method for realizing full-color display by combining a red pixel composed of a phosphor layer emitting red light and a blue pixel composed of a blue color filter for improving color purity has been proposed (for example, see Patent Document 1). ).
  従来の有機EL装置は、例えば、図16に示す構成からなる。従来の有機EL素子1は、例えば、基板2の上に、反射膜3、励起光源素子4、封止層5、接着層6、蛍光体層7、および封止基板8が順に積層されている。こうした有機EL素子1は、励起光源素子4から出射した励起光L1が直接、ないし反射膜3に反射されて蛍光体層7に入射し、蛍光体層7を励起する。そして、励起された蛍光体層7から発した蛍光L2は、励起光L1が入射した方向と同じ方向から封止基板8を介して外部に出射される。 A conventional organic EL device has a configuration shown in FIG. 16, for example. In the conventional organic EL element 1, for example, a reflective film 3, an excitation light source element 4, a sealing layer 5, an adhesive layer 6, a phosphor layer 7, and a sealing substrate 8 are sequentially laminated on a substrate 2. . In such an organic EL element 1, the excitation light L 1 emitted from the excitation light source element 4 is reflected directly or reflected by the reflection film 3 and enters the phosphor layer 7 to excite the phosphor layer 7. Then, the fluorescence L2 emitted from the excited phosphor layer 7 is emitted to the outside through the sealing substrate 8 from the same direction as the direction in which the excitation light L1 is incident.
  そして、上述した構成の有機EL素子1を、例えば赤色、緑色、青色を発光する画素を1単位として並置する事によって、白色を代表とする様々な色を作り出すことでフルカラー表示化を行っている。 Then, the organic EL element 1 having the above-described configuration is arranged in a unit of pixels emitting red, green, and blue, for example, thereby producing various colors typified by white, thereby achieving full color display. .
特許第2795932号公報Japanese Patent No. 2795932
  しかしながら、特許文献1に記載された方法では、励起光の一部が蛍光体層を通り抜け、蛍光体層から発した蛍光と共に出射され、蛍光と、漏れ光である励起光とが混じり合って色純度が悪化する。また蛍光体層で十分に励起光が吸収されず、励起光の利用効率が低く、消費電力が上昇する。また、励起光の吸収を高めるため、蛍光体層の膜厚を厚くすると、蛍光体層により励起され、前方へ放出する光量が減少し、輝度の低下に繋がる。 However, in the method described in Patent Document 1, a part of the excitation light passes through the phosphor layer and is emitted together with the fluorescence emitted from the phosphor layer, and the fluorescence and the excitation light that is the leakage light are mixed and colored. Purity deteriorates. In addition, excitation light is not sufficiently absorbed by the phosphor layer, the use efficiency of excitation light is low, and power consumption increases. Further, when the thickness of the phosphor layer is increased in order to enhance absorption of excitation light, the amount of light that is excited by the phosphor layer and emitted forward decreases, leading to a decrease in luminance.
 本発明の態様は、このような従来の実情に鑑みてなされたものであり、高効率(高輝度)の発光デバイス、表示装置、及び電子機器を提供することを課題とする。 An aspect of the present invention has been made in view of such a conventional situation, and an object thereof is to provide a light-emitting device, a display device, and an electronic apparatus with high efficiency (high luminance).
  上記課題を解決するために、本発明のいくつかの態様は次のような発光デバイス、表示装置、及び電子機器を提供した。
  すなわち、本発明の一態様における発光デバイスは、基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光が外部に出射される。
In order to solve the above problems, some aspects of the present invention provide the following light-emitting device, display device, and electronic apparatus.
That is, the light-emitting device according to one embodiment of the present invention includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is applied to the phosphor layer. The fluorescence is emitted to the outside in a direction opposite to the direction of incidence.
 本発明の一態様における発光デバイスにおいて、前記励起光源素子は、前記基板と、前記蛍光体層との間に形成されていてもよい。 In the light emitting device according to one aspect of the present invention, the excitation light source element may be formed between the substrate and the phosphor layer.
 本発明の一態様における発光デバイスは、前記基板と、前記蛍光体層と、前記励起光源素子とが順に形成されていてもよい。 In the light-emitting device according to one embodiment of the present invention, the substrate, the phosphor layer, and the excitation light source element may be sequentially formed.
 本発明の一態様における発光デバイスは、前記励起光を反射または吸収するとともに前記蛍光を透過させる波長選択透過反射膜を更に備えてもよい。 The light-emitting device according to an aspect of the present invention may further include a wavelength selective transmission / reflection film that reflects or absorbs the excitation light and transmits the fluorescence.
 本発明の一態様における発光デバイスにおいて、前記波長選択透過反射膜は、誘電体多層膜からなっていてもよい。 In the light emitting device according to one aspect of the present invention, the wavelength selective transmission / reflection film may be formed of a dielectric multilayer film.
 本発明の一態様における発光デバイスにおいて、前記励起光源素子は、第1電極、少なくとも有機発光材料を含有する有機層、第2電極を含む有機EL素子であってもよい。 In the light emitting device according to one embodiment of the present invention, the excitation light source element may be a first electrode, an organic layer containing at least an organic light emitting material, and an organic EL element including a second electrode.
 本発明の一態様における発光デバイスは、前記励起光源素子を挟んで前記波長選択透過反射膜と対向して、少なくとも前記励起光の一部、および前記蛍光の一部を反射させる反射膜をさらに備えてもよい。 The light-emitting device according to an aspect of the present invention further includes a reflective film that reflects at least a part of the excitation light and a part of the fluorescence, facing the wavelength selective transmission / reflection film with the excitation light source element interposed therebetween. May be.
  本発明の一態様における表示装置は、基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、 前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光を外部に出射させるよう構成されている発光デバイスを備えている。 The display device according to one embodiment of the present invention includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is directed toward the phosphor layer. A light emitting device configured to emit the fluorescence to the outside in a direction opposite to the incident direction is provided.
 本発明の一態様における発光デバイスにおいて、前記励起光源素子をアクティブ駆動素子を用いて駆動してもよい。 In the light emitting device according to one embodiment of the present invention, the excitation light source element may be driven using an active drive element.
 本発明の一態様における発光デバイスにおいて、前記アクティブ駆動素子は前記基板に形成され、前記蛍光は前記基板とは反対側から出射されてもよい。 In the light-emitting device according to one aspect of the present invention, the active drive element may be formed on the substrate, and the fluorescence may be emitted from a side opposite to the substrate.
  本発明の一態様における電子機器は、基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、 前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光を外部に出射させるよう構成されている発光デバイスを備える表示装置を備えている。 An electronic device according to an aspect of the present invention includes at least a substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and the excitation light is directed toward the phosphor layer. A display device is provided that includes a light emitting device configured to emit the fluorescence to the outside in a direction opposite to the incident direction.
  本発明の態様によれば、高効率(高輝度)の発光デバイス、表示装置、及び電子機器を提供することができる。 According to an aspect of the present invention, a highly efficient (high luminance) light emitting device, display device, and electronic device can be provided.
本発明の第一実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係る発光デバイスを示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on 5th embodiment of this invention. 波長選択層の光反射特性、および光透過特性の一例を示すグラフである。It is a graph which shows an example of the light reflection characteristic of a wavelength selection layer, and a light transmission characteristic. 発光デバイスの製造工程を段階的に示した説明図である。It is explanatory drawing which showed the manufacturing process of the light-emitting device in steps. 発光デバイスを備えた表示装置の一例である、アクティブマトリックス駆動型の有機ELディスプレイを示す断面図である。It is sectional drawing which shows the active matrix drive type organic electroluminescent display which is an example of the display apparatus provided with the light emitting device. 表示装置の制御部分の構成例を示す概要図である。It is a schematic diagram which shows the structural example of the control part of a display apparatus. 本発明の有機EL装置の一適用例である携帯電話を示す外観図である。It is an external view which shows the mobile telephone which is one application example of the organic EL apparatus of this invention. 本発明の有機EL装置の一適用例である薄型テレビを示す外観図である。It is an external view which shows the thin television which is one application example of the organic EL apparatus of this invention. 本発明の有機EL装置の一適用例である携帯型ゲーム機を示す外観図である。It is an external view which shows the portable game machine which is one application example of the organic EL apparatus of this invention. 本発明の有機EL装置の一適用例であるノートパソコンを示す外観図である。It is an external view which shows the notebook personal computer which is an example of application of the organic EL apparatus of this invention. 本発明の有機EL装置の一適用例であるシーリングライトを示す外観図である。It is an external view which shows the ceiling light which is one example of application of the organic EL apparatus of this invention. 本発明の有機EL装置の一適用例である照明スタンドを示す外観図である。It is an external view which shows the illumination stand which is an example of application of the organic EL apparatus of this invention. 従来の有機EL素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional organic EL element.
 以下、図面を参照して、本発明の一態様に係る発光デバイス、表示装置、及び電子機器の一実施形態について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明の態様を限定するものではない。また、以下の説明で用いる図面は、本発明の一態様の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of a light-emitting device, a display device, and an electronic device according to one embodiment of the present invention will be described with reference to the drawings. The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the embodiments of the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the characteristics of one embodiment of the present invention easier to understand, a part that is a main part may be shown in an enlarged manner for convenience. It is not always the same as actual.
(第一実施形態)
  図1は本発明の第一実施形態に係る発光デバイスの一例を示す概略断面図である。
  発光デバイス10は、基板11と、この基板11の一面11aに順に積層された波長選択透過反射膜(波長選択膜)12、励起光源素子13、封止層14、接着層15、蛍光体層16、および封止基板17を備えている。また、基板11の一面11aには、アクティブ駆動素子18が形成されているのが好ましい。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing an example of a light-emitting device according to the first embodiment of the present invention.
The light emitting device 10 includes a substrate 11, a wavelength selective transmission / reflection film (wavelength selection film) 12, an excitation light source element 13, a sealing layer 14, an adhesive layer 15, and a phosphor layer 16 that are sequentially stacked on one surface 11 a of the substrate 11. , And a sealing substrate 17. Further, the active drive element 18 is preferably formed on the one surface 11 a of the substrate 11.
  波長選択透過反射膜12は、励起光源素子13から発した励起光(励起光となる波長帯の光)L1を反射させるとともに、この励起光によって励起され蛍光体層16から発した蛍光(蛍光となる波長帯の光)L2を透過させる機能膜である。 The wavelength selective transmission / reflection film 12 reflects the excitation light (light in the wavelength band to be excitation light) L1 emitted from the excitation light source element 13, and is also excited by the excitation light and emitted from the phosphor layer 16 (fluorescence and fluorescence). It is a functional film that transmits light L2 in the wavelength band.
  励起光源素子13は、励起光を発する素子、本実施形態では例えば有機EL素子が挙げられる。有機EL素子は、第一電極と第二電極との間に有機層(有機EL層)を挟んでなる。第一電極と第二電極との間に電圧を印加することで、有機層が励起光を発する。 The excitation light source element 13 is an element that emits excitation light, and in this embodiment, for example, an organic EL element. An organic EL element has an organic layer (organic EL layer) sandwiched between a first electrode and a second electrode. The organic layer emits excitation light by applying a voltage between the first electrode and the second electrode.
  蛍光体層16は、励起光源素子13で発した励起光L1によって励起され、蛍光L2を発する。こうした蛍光体層16は、本実施形態の発光デバイス10を、例えばフルカラー表示を行う表示装置などに用いる場合には、青色蛍光体層、緑色蛍光体層、赤色蛍光体層の三原色の蛍光体層から構成されればよい。 The phosphor layer 16 is excited by the excitation light L1 emitted from the excitation light source element 13 and emits fluorescence L2. When the light emitting device 10 of this embodiment is used for a display device that performs full-color display, for example, the phosphor layer 16 is a phosphor layer of three primary colors of a blue phosphor layer, a green phosphor layer, and a red phosphor layer. It should just be comprised from.
  封止層14、接着層15は、励起光源素子13が形成された基板11側と、蛍光体層16が形成された封止基板17とを、互いに封止、接着させる。
  アクティブ駆動素子18は、励起光源素子13を駆動させる素子であり、例えば、TFTであればよい。 
The sealing layer 14 and the adhesive layer 15 seal and bond the substrate 11 side on which the excitation light source element 13 is formed and the sealing substrate 17 on which the phosphor layer 16 is formed to each other.
The active drive element 18 is an element that drives the excitation light source element 13 and may be, for example, a TFT.
  以下、上述した本実施形態に係る発光デバイス10を構成する各構成部材及びその形成方法についてより詳細に説明するが、本実施形態はこれら構成部材及び形成方法に限定されるものではない。 Hereinafter, although each constituent member constituting the light emitting device 10 according to the present embodiment and the forming method thereof will be described in more detail, the present embodiment is not limited to these constituent members and the forming method.
  基板11としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。 As the substrate 11, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide or the like, an insulating substrate such as a ceramic substrate made of alumina, or the like, or aluminum (Al), iron The surface of a metal substrate made of (Fe) or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material or the like on the substrate, or a metal substrate made of Al or the like is anodized. Although the board | substrate etc. which performed the insulation process by the method are mentioned, this embodiment is not limited to these board | substrates.
  特に、ストレス無く湾曲部、折り曲げ部を形成することが可能となる為、前記プラスティック基板、もしくは、前記金属基板を用いる事が好ましい。更に、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板が更に好ましい。これにより、励起光源素子13として有機EL素子を用いた場合に生じ得る水分の透過(有機ELは、特に低量の水分に対しても劣化が起こることが知られている。)を解消する事が可能となる。 In particular, it is preferable to use the plastic substrate or the metal substrate because it is possible to form a bent portion or a bent portion without stress. Further, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. This eliminates moisture permeation that can occur when an organic EL element is used as the excitation light source element 13 (organic EL is known to deteriorate even with a particularly low amount of moisture). Is possible.
  また、励起光源素子13を有機EL素子とした際に、金属基板を有機ELの基板として用いた場合に生じ得る金属基板の突起によるリーク(ショート)(有機ELの膜厚は、100nm~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消する事が可能となる。 Further, when the excitation light source element 13 is an organic EL element, leakage (short) due to protrusions of the metal substrate that can occur when the metal substrate is used as the organic EL substrate (the film thickness of the organic EL is about 100 nm to 200 nm). Therefore, it is known that leakage (short-circuit) occurs in the current in the pixel portion due to the protrusion.
  また、励起光源素子13を駆動させるアクティブ駆動素子18を基板形成する場合には、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。例えば、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にアクティブ駆動素子を形成することが困難であるが、線膨張係数が1×10-5/ ℃以下の鉄- ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込む事で金属基板上にアクティブ駆動素子18を従来の生産装置を用いて安価に刑する事が可能となる。また、プラスティック基板の場合には、ガラス基板より耐熱温度が非常に低いため、ガラス基板上にアクティブ駆動素子18を形成した後、プラスティック基板にアクティブ駆動素子18を転写する事で、プラスティック基板上にアクティブ駆動素子を転写形成する事が可能である。 When the active drive element 18 that drives the excitation light source element 13 is formed on a substrate, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion. For example, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form an active driving element on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / By using a metal substrate that is an iron-nickel alloy at or below ℃ and matching the linear expansion coefficient to glass, it is possible to impose the active drive element 18 on the metal substrate at low cost using a conventional production device. Become. In the case of a plastic substrate, since the heat resistant temperature is much lower than that of a glass substrate, the active driving element 18 is formed on the glass substrate, and then transferred to the plastic substrate. An active drive element can be transferred and formed.
  また、蛍光体層16から発した蛍光L2を基板11と対向する封止基板17側から出射させる場合には基板の透明性に関する材質の制約はないが、蛍光体層17からから発した蛍光L2を基板11側から取り出す場合には、用いる基板として透明又は半透明の基板を用いる必要がある。 Further, when the fluorescence L2 emitted from the phosphor layer 16 is emitted from the sealing substrate 17 side facing the substrate 11, there is no restriction on the material related to the transparency of the substrate, but the fluorescence L2 emitted from the phosphor layer 17 is present. When taking out from the substrate 11 side, it is necessary to use a transparent or translucent substrate as a substrate to be used.
  励起光源素子13を駆動させるアクティブ駆動素子18を基板11に形成する場合、アクティブ駆動素子18は、励起光源素子13を形成する前に、予め基板11上に形成され、スイッチング用及び駆動用として機能する。アクティブ駆動素子18としては、例えば、公知のアクティブ駆動素子が挙げられる。また、アクティブ駆動素子18としては、薄膜トランジスタ(TFT)、金属-絶縁体-金属(MIM)ダイオード等を用いることができる。 When the active drive element 18 for driving the excitation light source element 13 is formed on the substrate 11, the active drive element 18 is formed on the substrate 11 in advance before the excitation light source element 13 is formed, and functions as a switching and a drive. To do. Examples of the active drive element 18 include known active drive elements. As the active drive element 18, a thin film transistor (TFT), a metal-insulator-metal (MIM) diode, or the like can be used.
  TFT(アクティブ駆動素子)は、公知の材料、構造及び形成方法を用いて形成することができる。TFTの活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。 TFT (active drive element) can be formed using a known material, structure and formation method. As the material of the active layer of TFT, for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- An oxide semiconductor material such as zinc oxide, or an organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene can be given. Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  TFT(アクティブ駆動素子)を構成する活性層の形成方法としては、以下の方法などが挙げられる。(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法又はSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法又はPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法。 Examples of a method for forming an active layer constituting a TFT (active drive element) include the following methods. (1) Method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD) method, (2) Amorphous by low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas After forming silicon and crystallizing amorphous silicon by solid phase growth to obtain polysilicon, ion doping by ion implantation, (3) LPCVD using Si 2 H 6 gas or SiH 4 gas Amorphous silicon is formed by the PECVD method used, annealed by a laser such as an excimer laser, and the amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process), (4) LPCVD method or PECVD A polysilicon layer is formed by the method 10 A gate insulating film formed by thermal oxidation at 0 ℃ above, thereon, a gate electrode of the n + polysilicon, then, a method of performing ion doping (high temperature process), (5) an organic semiconductor material (6) A method for obtaining a single crystal film of an organic semiconductor material.
  TFT(アクティブ駆動素子)のゲート絶縁膜としては、例えば、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiO又はポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、本実施形態で用いられるTFTの信号電極線、走査電極線、共通電極線、第1駆動電極及び第2駆動電極は、公知の材料を用いて形成することができ、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。本実施形態に係る表示装置は、上記のような構成で形成することができるが、これらの材料、構造及び形成方法に限定されるものではない。 As a gate insulating film of a TFT (active drive element), for example, a known material can be used. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. In addition, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT used in this embodiment can be formed using a known material, for example, tantalum (Ta ), Aluminum (Al), copper (Cu), and the like. The display device according to this embodiment can be formed with the above-described configuration, but is not limited to these materials, structures, and formation methods.
  励起光源素子13を駆動させるアクティブ駆動素子18を基板11に形成する場合、層間絶縁膜としては、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、又は、Si)、酸化タンタル(TaO、又は、Ta)等の無機材料、又は、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じてフォトリソグラフィー法等によりパターニングすることもできる。 When the active drive element 18 for driving the excitation light source element 13 is formed on the substrate 11, the interlayer insulating film can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN). Or an inorganic material such as Si 2 N 4 ) or tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  蛍光体層17からから発した蛍光L2を基板11側から取り出す場合、蛍光体層17からの蛍光L2が基板11上に形成されたTFT(アクティブ駆動素子)に入射して、TFT特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を用いることが好ましい。また、蛍光体層17からの蛍光L2を封止基板17側から取り出す場合には、外光が基板11上に形成されたTFTに入射して、TFT特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を用いることが好ましい。また、上記の絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。 When the fluorescence L2 emitted from the phosphor layer 17 is taken out from the substrate 11 side, the fluorescence L2 from the phosphor layer 17 enters a TFT (active drive element) formed on the substrate 11 and changes in TFT characteristics. For the purpose of preventing the occurrence, it is preferable to use a light-shielding insulating film having light-shielding properties. Further, when taking out the fluorescence L2 from the phosphor layer 17 from the sealing substrate 17 side, for the purpose of preventing external light from entering the TFT formed on the substrate 11 and changing the TFT characteristics, It is preferable to use a light-shielding insulating film having light-shielding properties. In addition, the above insulating film and a light-shielding insulating film can be used in combination.
  遮光性層間絶縁膜としては、フタロシアニン、キナクロドン等の顔料又は染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態はこれらの材料及び形成方法に限定されるものではない。 Examples of the light-shielding interlayer insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclone in polymer resins such as polyimide, color resists, black matrix materials, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4. Can be mentioned. However, this embodiment is not limited to these materials and forming methods.
  励起光源素子13を駆動させるアクティブ駆動素子18を基板11に形成する場合、その表面に凸凹が形成され、この凸凹によって励起光源素子13、例えば有機EL素子に、例えば、画素電極の欠損、有機EL層の欠損、対向電極の断線、画素電極と対向電極の短絡、耐圧の低下等の現象が発生するおそれがある。これらの現象を防止するために、層間絶縁膜上に平坦化膜を設けてもよい。 When the active drive element 18 for driving the excitation light source element 13 is formed on the substrate 11, irregularities are formed on the surface thereof, and this irregularity causes the excitation light source element 13, for example, an organic EL element, for example, a pixel electrode defect, organic EL There is a possibility that phenomena such as layer loss, disconnection of the counter electrode, short circuit between the pixel electrode and the counter electrode, and reduction in breakdown voltage may occur. In order to prevent these phenomena, a planarizing film may be provided on the interlayer insulating film.
  こうした平坦化膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本実施形態はこれらの材料及び形成方法に限定されるものではない。また、平坦化膜は、単層構造でも多層構造でもよい。 Such a planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is not limited to these materials and the forming method. Further, the planarization film may have a single layer structure or a multilayer structure.
  波長選択透過反射膜(波長選択透過膜)12としては、少なくとも励起光L1の一部を吸収、若しくは、反射し、かつ、蛍光体層16から発した蛍光L2の一部を透過させるものであればよい。
  波長選択透過反射膜12として少なくとも励起光L1の一部を反射し、かつ、蛍光体層16からの蛍光L2の一部を透過する波長選択透過反射膜を用いる事で、励起光源素子13からの励起光を反射させ、蛍光体層16に向けて入射させる事が可能となり、蛍光体層16へ入射する励起光L1を増加させる事が可能となり、その結果、蛍光体層16の発光効率を向上させる事が可能となる。
The wavelength selective transmission / reflection film (wavelength selective transmission film) 12 is one that absorbs or reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 emitted from the phosphor layer 16. That's fine.
By using a wavelength selective transmission / reflection film that reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 from the phosphor layer 16 as the wavelength selective transmission / reflection film 12, The excitation light can be reflected and incident on the phosphor layer 16, and the excitation light L1 incident on the phosphor layer 16 can be increased. As a result, the luminous efficiency of the phosphor layer 16 is improved. It is possible to make it.
  例えば、吸収特性を利用して励起光L1が外部に漏れる事を防止する原理に基づく場合、波長選択透過反射膜としては、色フィルター等を用いる事が可能であるが、本実施形態はこれらに限定されるものではない。
  色フィルターは、ドライプロセス、または、ウエットプロセスで形成する事が出来る。例えば、ドライプロセスとしては、例えば、ポルフィリン、亜鉛ポルフィリン、フタロシアニン、銅等の顔料を真空蒸着法により形成する事ができる。ウエットプロセスとしては、前記顔料をアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂等の透明樹脂等に分散し、前記顔料と透明樹脂からなる材料を有機溶剤等に溶解、分散し、スピンコート法、インクジョット法等で形成する事ができる。
For example, when based on the principle of preventing the excitation light L1 from leaking to the outside using the absorption characteristics, a color filter or the like can be used as the wavelength selective transmission / reflection film. It is not limited.
The color filter can be formed by a dry process or a wet process. For example, as a dry process, for example, a pigment such as porphyrin, zinc porphyrin, phthalocyanine, or copper can be formed by vacuum deposition. As the wet process, the pigment is dispersed in a transparent resin such as an acrylic resin, a polycarbonate resin, or a polystyrene resin, and the material composed of the pigment and the transparent resin is dissolved and dispersed in an organic solvent or the like. Etc. can be formed.
  特に、透明樹脂の代わりに、感光性透明樹脂を用いる事で、パターニングを行う事も可能である。感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の一種類又は複数種類の混合物を用いる事が可能である。 In particular, patterning can be performed by using a photosensitive transparent resin instead of the transparent resin. As the photosensitive resin, one or more types of photosensitive resin (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use a mixture of types.
  反射特性を利用して励起光L1が外部に漏れる事を防止する原理に基づく場合、波長選択透過反射膜としては、金属薄膜、誘電体多層膜等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。
  誘電体多層膜は、2種類の屈折率の異なる材料の薄膜を交互に積層することによって形成することができる。高屈折および低屈折の材料としては、TiO、SiO、ZnS、Ta、MgF 、Al等を用いることができる。誘電体多層膜は、例えば、高真空蒸着装置内に配置し、高屈折材料および低屈折材料を交互に所望の膜厚で蒸着させることにより形成することができる。
When based on the principle of preventing the excitation light L1 from leaking to the outside using the reflection characteristics, examples of the wavelength selective transmission / reflection film include a metal thin film and a dielectric multilayer film. It is not limited to.
The dielectric multilayer film can be formed by alternately laminating thin films of two kinds of materials having different refractive indexes. TiO 2 , SiO 2 , ZnS, Ta 2 O 5 , MgF 2 , Al 2 O 3, etc. can be used as the high refraction and low refraction materials. The dielectric multilayer film can be formed, for example, by placing it in a high vacuum deposition apparatus and alternately depositing a high refractive material and a low refractive material with a desired film thickness.
  ここで、膜厚は、所望の反射させたい波長、吸収させたい波長によって決定されるが、少なくとも励起光波長領域の一部を反射し、かつ、少なくとも蛍光体層16からの蛍光L2の波長領域(波長帯)の一部を透過する必要がある。つまり、青色の励起光を用い、緑色の蛍光体を発光させる場合には、波長選択透過反射膜としては、青色の波長領域を反射し、緑色の波長領域を透過するように誘電体多層膜中の高屈折材料と低屈折材料の膜厚を制御する必要がある。 Here, the film thickness is determined by the desired wavelength to be reflected and the wavelength to be absorbed, but reflects at least a part of the excitation light wavelength region and at least the wavelength region of the fluorescence L2 from the phosphor layer 16. It is necessary to transmit a part of (wavelength band). In other words, when blue excitation light is used and a green phosphor is emitted, the wavelength selective transmission / reflection film reflects the blue wavelength region and transmits the green wavelength region in the dielectric multilayer film. It is necessary to control the film thickness of the high refractive material and the low refractive material.
  波長選択透過反射膜12は、励起光の極大波長において50%以上の吸収率、若しくは、反射率を有することが好ましい。また、波長選択透過反射膜12は、蛍光体層の発光の極大波長において50%以上の透過率を有する事が好ましい。より好ましくは、波長選択透過反射膜12は、励起光の極大波長において80%以上の吸収率、若しくは、反射率を有することが好ましい。また、波長選択透過反射膜12は、蛍光体層からの発光の極大波長において80%以上の透過率を有することが好ましい。 The long-wavelength selective transmission / reflection film 12 preferably has an absorptance or reflectance of 50% or more at the maximum wavelength of the excitation light. Moreover, it is preferable that the wavelength selection transmission reflection film 12 has a transmittance of 50% or more at the maximum light emission wavelength of the phosphor layer. More preferably, the wavelength selective transmission / reflection film 12 preferably has an absorptance or reflectance of 80% or more at the maximum wavelength of the excitation light. Moreover, it is preferable that the wavelength selection transmission reflection film 12 has a transmittance of 80% or more at the maximum wavelength of light emission from the phosphor layer.
  励起光源素子(蛍光体層を励起する光源)13としては、紫外光、青色光を発光する素子が好ましい。例えば、公知の紫外LED、青色LED、紫外発光無機EL、青色発光無機EL、紫外発光有機EL、青色発光有機EL等が挙げられるが、本実施形態はこれらに限定されるものではない。例えば、蛍光体層16からの蛍光L2が外部に取出される前に、励起光源素子13を通過する場合、励起光源素子13としては蛍光体層16の発光波長領域において、透過率が高い方が良い。ここで、励起光源素子13は、蛍光体層16の蛍光L2の極大波長において50%以上の透過率を有する事が好ましい。より好ましくは、蛍光体層16からの蛍光L2の極大波長において80%以上の透過率を有することが好ましい。この点から、励起光源素子13として有機EL素子(紫外発光有機EL、青色発光有機EL)が、好ましい。 As the excitation light source element (light source for exciting the phosphor layer) 13, an element that emits ultraviolet light or blue light is preferable. For example, publicly known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL, blue light emitting inorganic EL, ultraviolet light emitting organic EL, blue light emitting organic EL, and the like can be mentioned, but this embodiment is not limited thereto. For example, when passing through the excitation light source element 13 before the fluorescence L2 from the phosphor layer 16 is extracted outside, the excitation light source element 13 should have a higher transmittance in the emission wavelength region of the phosphor layer 16. good. Here, the excitation light source element 13 preferably has a transmittance of 50% or more at the maximum wavelength of the fluorescence L2 of the phosphor layer 16. More preferably, it has a transmittance of 80% or more at the maximum wavelength of the fluorescence L2 from the phosphor layer 16. From this point, an organic EL element (ultraviolet light emitting organic EL, blue light emitting organic EL) is preferable as the excitation light source element 13.
  また、励起光源素子13は、公知の材料、公知の製造方法で作製する事が可能である。ここで、紫外光としては、主発光ピークが、360~410nmの発光が、好ましい。青色光としては、主発光ピークが410~470nmの発光が好ましい。
  また、これらの光源を直接スイッチングする事で、画像を表示する為の、発光のON/OFFをコントロールする事が可能である。
Moreover, the excitation light source element 13 can be manufactured with a well-known material and a well-known manufacturing method. Here, as the ultraviolet light, light having a main light emission peak of 360 to 410 nm is preferable. Blue light is preferably emitted with a main emission peak of 410 to 470 nm.
Further, by directly switching these light sources, it is possible to control ON / OFF of light emission for displaying an image.
  励起光源素子13としてLEDを用いる場合、公知のLEDを用いる事が可能である。例えば、紫外発光無機LED、青色発光無機LED等を用いることができる。このようなLEDは、例えば、基板、バッファ層、n型コンタクト層、n型クラッド層、活性層、p型クラッド層、およびp型コンタクト層より構成されているが、これらに限定されるものではない。 When using an LED as the excitation light source element 13, a known LED can be used. For example, an ultraviolet light emitting inorganic LED, a blue light emitting inorganic LED, or the like can be used. Such an LED is composed of, for example, a substrate, a buffer layer, an n-type contact layer, an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type contact layer, but is not limited thereto. Absent.
  励起光源素子13としてLEDを用いる場合の活性層は、電子と正孔の再結合より発光を行う層である。活性層材料としては、LED用の公知の活性層材料を用いることができる。このような活性層材料としては、例えば、紫外活性層材料としては、AlGaN、InAlN、InaAlbGa1-a-bN(0≦a、0≦b、a+b≦1)、青色活性層材料としては、InzGa1-z N(0<z<1)等が挙げられるが、本実施形態はこれらに限定されるものではない。 The active layer in the case of using an LED as the excitation light source element 13 is a layer that emits light by recombination of electrons and holes. As the active layer material, a known active layer material for LED can be used. As such an active layer material, for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1), blue active layer material In z Ga 1 -z N (0 <z <1) and the like can be mentioned, but this embodiment is not limited to these.
  また、活性層としては、単一量子井戸構造または多重量子井戸構造のものである。量子井戸構造の活性層はn型、p型のいずれでもよいが、特にノンドープ(不純物無添加)とすることによりバンド間発光により発光波長の半値幅が狭くなり、色純度のよい発光が得られるため好ましい。また、活性層にドナー不純物および/またはアクセプター不純物をドープしてもよい。 Also, the active layer has a single quantum well structure or a multiple quantum well structure. The active layer of the quantum well structure may be either n-type or p-type. In particular, when it is non-doped (no impurity added), the half-value width of the emission wavelength is narrowed by band-to-band emission, and emission with good color purity is obtained. Therefore, it is preferable. Further, the active layer may be doped with donor impurities and / or acceptor impurities.
  不純物をドープした活性層の結晶性がノンドープと同じであれば、ドナー不純物をドープすると、ノンドープのものに比べてバンド間発光強度をさらに強くすることができる。アクセプター不純物をドープするとバンド間発光のピーク波長よりも約0.5eV低エネルギー側にピーク波長をシフトさせることができるが、半値幅は広くなる。アクセプター不純物とドナー不純物との両者をドープすると、アクセプター不純物のみをドープした活性層の発光強度に比べその発光強度をさらに大きくすることができる。特に、アクセプター不純物をドープした活性層を形成する場合、活性層の導電型はSi等のドナー不純物をもドープしてn型とすることが好ましい。 If the crystallinity of the active layer doped with impurities is the same as that of non-doped, doping with donor impurities can further increase the emission intensity between bands as compared with non-doped ones. When the acceptor impurity is doped, the peak wavelength can be shifted to a lower energy side by about 0.5 eV than the peak wavelength of interband light emission, but the full width at half maximum is increased. When both the acceptor impurity and the donor impurity are doped, the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity. In particular, when an active layer doped with an acceptor impurity is formed, the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
  n型クラッド層としては、LED用の公知のn型クラッド層材料を用いることができ、1層でも多層でも良い。活性層よりバンドギャップエネルギーが大きいn型半導体で形成される材料によりn型クラッド層を構成する事で、n型クラッド層と活性層の間には正孔に対する電位障壁ができ、正孔を活性層に閉じ込める事が可能となる。例えば、n型In Ga1-x N(0≦x<1)により形成する事が可能であるが、本実施形態は、これらに限定されるものではない。 As the n-type cladding layer, a known n-type cladding layer material for LED can be used, and it may be a single layer or a multilayer. By forming an n-type cladding layer with a material formed of an n-type semiconductor having a larger band gap energy than the active layer, a potential barrier against holes is created between the n-type cladding layer and the active layer, and the holes are activated. It becomes possible to confine in a layer. For example, it can be formed by n-type In x Ga 1-x N (0 ≦ x <1), but the present embodiment is not limited to these.
  p型クラッド層としては、LED用の公知のp型クラッド層材料を用いることができ、1層でも多層でも良い。活性層よりバンドギャップエネルギーが大きいp型半導体で形成される材料によりp型クラッド層を構成する事で、p型クラッド層と活性層の間には電子に対する電位障壁ができ、電子は活性層に閉じ込める事が可能となす。例えば、Al Ga1-y N(0≦y≦1)で形成する事が可能であるが、本実施形態は、これらに限定されるものではない。 As the p-type cladding layer, a known p-type cladding layer material for LED can be used, and it may be a single layer or a multilayer. By configuring the p-type cladding layer with a material formed of a p-type semiconductor having a larger band gap energy than the active layer, a potential barrier against electrons is formed between the p-type cladding layer and the active layer, and the electrons are in the active layer. It becomes possible to confine. For example, although it can be formed of Al y Ga 1-y N (0 ≦ y ≦ 1), the present embodiment is not limited to these.
  コンタクト層としては、LED用の公知のコンタクト層材料を用いることができる。例えば、n型クラッド層に接して電極を形成する層としてn型GaNよりなるn型コンタクト層を形成することが可能であり、p型クラッド層に接して電極を形成する層としてp型GaNよりなるp型コンタクト層を形成することが可能である。但し、このコンタクト層は、第2のn型クラッド層、第2のp型クラッド層をGaNで形成されていれば、特に形成する必要はなく、第2のクラッド層をコンタクト層とすることも可能である。 A known contact layer material for LED can be used as the contact layer. For example, it is possible to form an n-type contact layer made of n-type GaN as a layer for forming an electrode in contact with the n-type cladding layer, and from p-type GaN as a layer for forming an electrode in contact with the p-type cladding layer. It is possible to form a p-type contact layer. However, this contact layer need not be formed if the second n-type cladding layer and the second p-type cladding layer are formed of GaN, and the second cladding layer may be used as a contact layer. Is possible.
  励起光源素子13としてLEDを用いる場合の上記各層は、LED用の公知の成膜プロセスを用いる事が可能であるが、本実施形態は特にこれらに限定されるものではない。例えば、MOVPE(有機金属気相成長法)、MBE(分子線気相成長法)、HDVPE(ハイドライド気相成長法)等の気相成長法を用いて、例えばサファイア(C面、A面、R面を含む)、SiC(6H-SiC、4H-SiCも含む)、スピネル(MgAl、特にその(111)面)、ZnO、Si、GaAs、あるいは他の酸化物単結晶基板(NGO等)等の基板上に形成することが可能である。 For each of the above layers in the case where an LED is used as the excitation light source element 13, it is possible to use a known film forming process for LED, but this embodiment is not particularly limited thereto. For example, by using a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO) ) Or the like.
  励起光源素子13としては、無機EL素子を用いる事も可能である。無機EL素子の一例として、紫外発光無機EL、青色発光無機ELを用いることが可能である。無機EL素子は、例えば、基板、第1電極、第1誘電体層、発光層、第2誘電体層、および第2電極より構成されているが、これらに限定されるものではない。 無機 An inorganic EL element can be used as the excitation light source element 13. As an example of the inorganic EL element, an ultraviolet light emitting inorganic EL or a blue light emitting inorganic EL can be used. The inorganic EL element includes, for example, a substrate, a first electrode, a first dielectric layer, a light emitting layer, a second dielectric layer, and a second electrode, but is not limited thereto.
  励起光源素子13として無機EL素子を用いる場合の基板としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。 Examples of the substrate in the case of using an inorganic EL element as the excitation light source element 13 include insulation of an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc. Substrate, metal substrate made of aluminum (Al), iron (Fe), etc., or substrate coated with an insulator made of silicon oxide (SiO 2 ), organic insulating material, etc. on the substrate, Al, etc. Although the board | substrate etc. which performed the insulation process by the method of anodic oxidation etc. are mentioned for the surface of the metal substrate which consists of this embodiment, this embodiment is not limited to these board | substrates.
  しかし、ここで、ストレス無く湾曲部、折り曲げ部を形成することが可能となる為、前記プラスティック基板、もしくは、前記金属基板を用いる事が好ましい。更に、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板が更に好ましい。 However, it is preferable to use the plastic substrate or the metal substrate because a bent portion and a bent portion can be formed without stress. Further, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable.
  励起光源素子13として無機EL素子を用いる場合の第1電極及び第2電極としては、例えば、アルミニウム(Al)、金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられるが、本実施形態はこれらの材料に限定されるものではない。しかし、光を取り出す方向には、ITO等の透明電極が良く。光を取り出す方向と逆側には、アルミニウム等の反射膜を用いる事が好ましい。 As the first electrode and the second electrode when an inorganic EL element is used as the excitation light source element 13, for example, a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium Examples of the transparent electrode material include oxides (ITO) composed of (In) and tin (Sn), oxides (SnO 2 ) of tin (Sn), oxides (IZO) composed of indium (In) and zinc (Zn), and the like. However, the present embodiment is not limited to these materials. However, a transparent electrode such as ITO is better in the light extraction direction. A reflective film such as aluminum is preferably used on the side opposite to the light extraction direction.
  こうした第1電極及び第2電極は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The first electrode and the second electrode can be formed by using the above-mentioned materials by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, etc. It is not limited to the forming method. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  励起光源素子13として無機EL素子を用いる場合の第1及び第2誘電体層としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta25)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本実施形態はこれらに限定されるものではない。また、本実施形態の第1及び第2誘電体層は上記の誘電体材料のうちから選んだ1種類でも、2種類以上の材料を積層した構成でも良い。また、誘電体の膜厚は、200nm~500nm程度が、好ましい。 As the first and second dielectric layers when an inorganic EL element is used as the excitation light source element 13, a known dielectric material for inorganic EL can be used. Examples of such dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but this embodiment is not limited thereto. In addition, the first and second dielectric layers of the present embodiment may have one type selected from the above-mentioned dielectric materials or a structure in which two or more types of materials are laminated. The film thickness of the dielectric is preferably about 200 nm to 500 nm.
  励起光源素子13として無機EL素子を用いる場合の発光体層としては、無機EL用の公知の発光材料を用いることができる。このような発光材料としては、例えば、紫外発光材料としては、ZnF2:Gd、青色発光材料としては、BaAl24:Eu、CaAl24:Eu、ZnAl24:Eu、Ba2SiS4:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba,Mg)Al:Eu等が挙げられるが、本実施形態はこれらに限定されるものではない。また、発光層の膜厚は、300nm~1000nm程度が、好ましい As the light emitting layer when an inorganic EL element is used as the excitation light source element 13, a known light emitting material for inorganic EL can be used. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material. Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present embodiment is not limited thereto. . The film thickness of the light emitting layer is preferably about 300 nm to 1000 nm.
  励起光源素子13としては有機EL素子を用いることが好ましい。励起光源素子13として有機EL素子を用いる場合、有機EL素子は公知の有機EL素子を用いる事が可能で、例えば、第1電極と第2電極と第1電極と第2電極との間に少なくとも有機発光材料からなる有機発光層を有する有機層を含む有機EL層により構成されているが、これらに限定されるものではない。 It is preferable to use an organic EL element as the excitation light source element 13. When an organic EL element is used as the excitation light source element 13, a known organic EL element can be used as the organic EL element, for example, at least between the first electrode, the second electrode, the first electrode, and the second electrode. Although comprised by the organic electroluminescent layer containing the organic layer which has the organic light emitting layer which consists of organic luminescent materials, it is not limited to these.
  励起光源素子13として有機EL素子を用いる場合の第1電極及び第2電極は、有機EL素子の陽極又は陰極として対で機能する。つまり、第1電極を陽極とした場合には、第2電極は陰極となり、第1電極を陰極とした場合には、第2電極は陽極となる。以下に、具体的な化合物及び形成方法を例示するが、本実施形態はこれらの材料及び形成方法に限定されるものではない。 When the organic EL element is used as the excitation light source element 13, the first electrode and the second electrode function as a pair as an anode or a cathode of the organic EL element. That is, when the first electrode is an anode, the second electrode is a cathode, and when the first electrode is a cathode, the second electrode is an anode. Specific compounds and formation methods are exemplified below, but the present embodiment is not limited to these materials and formation methods.
  第1電極及び第2電極を形成する電極材料としては公知の電極材料を用いることができる。陽極である場合には、有機EL層への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、酸化モリブデン(Mo)、酸化バナジウム(V)等の酸化物、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等の透明電極材料、及びこれらの積層構造が挙げられる。また、陰極を形成する電極材料としては、有機EL層への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属薄膜、又は、これらの金属を含有するMg:Ag合金、Li:Al合金等の薄膜合金、前記金属薄膜と前記透明電極との積層構造等が挙げられる。 A known electrode material can be used as an electrode material for forming the first electrode and the second electrode. In the case of an anode, from the viewpoint of more efficiently injecting holes into the organic EL layer, a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more, Oxides such as molybdenum oxide (Mo 2 O 3 ) and vanadium oxide (V 2 O 5 ), indium (In) and tin (Sn) oxide (ITO), tin (Sn) oxide (SnO 2 ) Examples thereof include transparent electrode materials such as oxide (IZO) made of indium (In) and zinc (Zn), and a stacked structure thereof. Moreover, as an electrode material for forming the cathode, lithium (Li), calcium (Ca), cerium (Ce), a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer, Examples include metal thin films such as barium (Ba) and aluminum (Al), thin film alloys such as Mg: Ag alloys and Li: Al alloys containing these metals, and laminated structures of the metal thin films and the transparent electrodes. It is done.
  このような第1電極及び第2電極は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。 The first electrode and the second electrode can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. Is not limited to these forming methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  蛍光体層16からの蛍光L2は、外部に取出される(出射される)前に、励起光源素子13を通過する事から、励起光源素子13としては蛍光体層16の発光波長領域において、透過率が高い方が良く、第1電極、及び、第2電極としても、透過率が高い方が良い。その膜厚は、透明電極材料を用いた場合は、透明電極材料は、金属材料に比べて抵抗が高い為、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。また、金属材料を用いた場合は、金属材料は、透過率が非常に低い為、半透明電極にする必要があり、半透明電極を用いることが好ましい。 Since the fluorescence L2 from the phosphor layer 16 passes through the excitation light source element 13 before being taken out (emitted), the excitation light source element 13 is transmitted in the emission wavelength region of the phosphor layer 16. The higher the rate, the better the first electrode and the second electrode, the higher the transmittance. When the transparent electrode material is used, the film thickness is preferably 50 nm or more because the transparent electrode material has higher resistance than the metal material. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage. Further, when a metal material is used, the metal material has a very low transmittance, so it is necessary to use a translucent electrode, and it is preferable to use a translucent electrode.
  ここで用いる材料として、例えば、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いる事が可能である。半透明電極の膜厚は、5nm~30nmが好ましい。膜厚が5nm未満の場合には、抵抗が高くなり効率の低下、電荷が均一に係らなくなり発光ムラ等の問題が生じる。また、膜厚が30nmを超える場合には、光の透過率が急激に低下することから輝度、効率が低下するおそれがある。 As a material used here, for example, a metal semitransparent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used. The film thickness of the semitransparent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, the resistance becomes high, the efficiency is lowered, the charge is not uniformly related, and problems such as uneven light emission occur. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered.
  励起光源素子13として有機EL素子を用いる場合の有機EL層は、有機発光層の単層構造でも、有機発光層と電荷輸送層の多層構造でもよく、具体的には、下記の構成が挙げられるが、本実施形態はこれらにより限定されるものではない。
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
ここで、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層及び電子注入層の各層は、単層構造でも多層構造でもよい。
When the organic EL element is used as the excitation light source element 13, the organic EL layer may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the following configurations may be mentioned. However, the present embodiment is not limited to these.
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer where organic light emission layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron Each of the transport layer and the electron injection layer may have a single layer structure or a multilayer structure.
  有機発光層は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
 発光効率および寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
The organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, and an additive An agent (donor, acceptor, etc.) or the like may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material.
From the viewpoint of luminous efficiency and lifetime, a material in which a luminescent dopant is dispersed in a host material is preferable.
  有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いる事が好ましい。 公 知 As the organic light emitting material, a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  ここで、具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
  発光層に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、紫外発光材料としては、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6‘-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)等の燐光発光有機金属錯体等が挙げられる。
Here, although a specific compound is illustrated below, this embodiment is not limited to these materials.
As the light-emitting dopant optionally contained in the light-emitting layer, a known dopant material for organic EL can be used. As such a dopant material, for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl. Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr6).
  また、ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 Moreover, as a host material when using a dopant, a known host material for organic EL can be used. Examples of such host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類される。電荷注入層および電荷輸送層は、それぞれ以下に例示する電荷注入輸送材料のみから構成されていてもよく。電荷注入層および電荷輸送層は、それぞれ、以下に例示する電荷注入輸送材料に、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよい。電荷注入層および電荷輸送層は、それぞれ、以下に例示する電荷注入輸送材料等これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer). The charge injection layer and the charge transport layer may each be composed of only the charge injection / transport material exemplified below. Each of the charge injection layer and the charge transport layer may optionally contain an additive (donor, acceptor, etc.) or the like in the charge injection / transport material exemplified below. Each of the charge injection layer and the charge transport layer may have a structure in which these materials such as a charge injection transport material exemplified below are dispersed in a polymer material (binding resin) or an inorganic material.
  電荷注入輸送材料としては、有機EL用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料及び電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 As the charge injecting and transporting material, known charge transporting materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
 正孔注入輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of the hole injection transport material include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) ) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Compounds, low molecular weight materials such as hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS) ), Poly (triphenylamine) derivatives (Poly-TPD), polyvinylcarbazole (PVCz), Examples thereof include polymer materials such as poly (p-phenylene vinylene) (PPV) and poly (p-naphthalene vinylene) (PNV).
  また、陽極からの正孔の注入および輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が、高い材料を用いることが好ましい。 In addition, as a material used for the hole injection layer in terms of more efficient injection and transport of holes from the anode, the highest occupied molecular orbital (HOMO) is better than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  また、より正孔の注入性および輸送性を向上させるため、前記正孔注入・輸送材料にアクセプターをドープする事が好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
アクセプター材料としては、Au、Pt、W,Ir、POCl3 、AsF6 、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4 (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF4 、TCNE、HCNB、DDQ等のシアノ基を有する化合物がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
In order to further improve the hole injecting and transporting properties, the hole injecting / transporting material is preferably doped with an acceptor. As the acceptor, a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. And compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
 電子注入輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。 Examples of the electron injecting and transporting material include n-type semiconductor inorganic materials, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. Low molecular materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned. In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  電子の陰極からの注入および輸送をより効率よく行う点で、電子注入層として用いる材料としては、電子輸送層に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層として用いる材料としては、電子注入層に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。 The material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  また、より電子の注入性および輸送性を向上させるため、前記電子注入輸送材料にドナーをドープする事が好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 In addition, in order to further improve the electron injecting and transporting properties, it is preferable to dope the electron injecting and transporting material with a donor. As the donor, a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。この内特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。 Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), triphenyldia Compounds having an aromatic tertiary amine skeleton such as amines (N, N′-di- (4-methyl-phenyl) -N, N′-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene Organic materials such as condensed polycyclic compounds such as anthracene, tetracene and pentacene (however, the condensed polycyclic compound may have a substituent), TTF (tetrathiafulvalene), dibenzofuran, phenothiazine and carbazole. Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
  発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層等の有機EL層は、上記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機EL層を形成する場合には、有機EL層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 An organic EL layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer is spin-coated using a coating liquid for forming an organic EL layer in which the above materials are dissolved and dispersed in a solvent. Known wet methods such as coating methods, dipping methods, doctor blade methods, discharge coating methods, spray coating methods, etc., inkjet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as microgravure coating methods, etc. Process, known dry process such as resistance heating vapor deposition method, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor deposition (OVPD) method, or laser transfer method Or the like. In addition, when forming an organic EL layer by a wet process, the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  上記の各有機EL層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得られない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機EL層の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。 The thickness of each organic EL layer is usually about 1 nm to 1000 nm, but preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the physical properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
  励起光源素子13として有機EL素子を用いる場合、有機EL素子は、第1電極と第2電極との間に、基板側に形成された第1電極のエッジ部で、第1電極と第2電極間でリークを起こす事を防止する目的でエッジカバーを有することが好ましい。ここで、前記エッジカバーは、絶縁材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ及びウエット法のフォトリソグラフィー法によりパターン化をすることができるが、本実施形態はこれらの形成方法に限定されるものではない。 When an organic EL element is used as the excitation light source element 13, the organic EL element is an edge portion of the first electrode formed on the substrate side between the first electrode and the second electrode, and the first electrode and the second electrode. It is preferable to have an edge cover for the purpose of preventing leakage between the two. Here, the edge cover can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using an insulating material, and a known dry or wet photolithography. However, the present embodiment is not limited to these forming methods.
  また、絶縁層を構成する材料は、公知の材料を使用することができ、本実施形態では特に限定されないが、光を透過する必要があり、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。また、膜厚としては、100nm~2000nmが好ましい。膜厚が100nm以下であると、絶縁性が十分ではなく、第1電極と第2電極との間でリークが起こり、消費電力の上昇、非発光の原因となる。
 また、膜厚が2000nm以上であると、成膜プロセスに時間が係り生産性の悪化、エッジカバーでの第2電極の断線の原因となる。
In addition, a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light. For example, SiO, SiON, SiN, SiOC, SiC, HfSiON , ZrO, HfO, LaO and the like. The film thickness is preferably 100 nm to 2000 nm. When the film thickness is 100 nm or less, the insulation is not sufficient, and leakage occurs between the first electrode and the second electrode, resulting in an increase in power consumption and non-light emission.
On the other hand, if the film thickness is 2000 nm or more, the film forming process takes time, which causes deterioration in productivity and disconnection of the second electrode at the edge cover.
  ここで、有機EL素子は、陽極、陰極ともに、半透明電極を用いる事で、半透明電極間の干渉効果によるマイクロキャビティ構造(光微小共振器構造)を有する事が好ましい。半透明電極の透過率を異ならせることで、有機EL素子の発光を任意の方向に集光する(指向性を持たせる)事が可能となる。周囲に逃げる発光ロスを低減する事が可能となり、正面での発光効率を高める事が可能となる。
  これにより、より効率良く有機EL素子の発光層中で生じる発光エネルギーを蛍光体層へ伝搬する事が可能となり、また、正面輝度を高める事が可能となる。また、干渉効果により、発光スペクトルの調整も可能となり、所望の発光ピーク波長、半値幅に調整する事により発光スペクトルの調整が可能となる。したがって、赤色、緑色蛍光体をより効果的に励起することが可能なスペクトルに制御する事が、青色画素の色純度を向上させる事が可能となる。
Here, the organic EL element preferably has a microcavity structure (optical microresonator structure) due to an interference effect between the semitransparent electrodes by using a semitransparent electrode for both the anode and the cathode. By making the transmissivity of the semi-transparent electrodes different, it becomes possible to condense the light emitted from the organic EL element in an arbitrary direction (provide directivity). It is possible to reduce the light emission loss that escapes to the surroundings, and to increase the light emission efficiency in the front.
As a result, it is possible to more efficiently propagate light emission energy generated in the light emitting layer of the organic EL element to the phosphor layer, and to increase the front luminance. Further, the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Therefore, it is possible to improve the color purity of the blue pixel by controlling the spectrum so that the red and green phosphors can be excited more effectively.
  以上の詳細に説明したような構成の本発明の一実施形態に係る発光デバイスの作用について説明する。
  図1に示すように、励起光源素子13から発した励起光L1は等方的に放射する。こうした励起光L1のうち、蛍光体層16に向けて直接放射された励起光L1aは、蛍光体層16に直接入射し、蛍光体層16を励起させる。
The operation of the light emitting device according to the embodiment of the present invention having the configuration described in detail above will be described.
As shown in FIG. 1, the excitation light L1 emitted from the excitation light source element 13 isotropically radiates. Of such excitation light L1, excitation light L1a emitted directly toward the phosphor layer 16 is directly incident on the phosphor layer 16 and excites the phosphor layer 16.
  一方、励起光L1のうち、蛍光体層16とは反対側、即ち基板11側に向けて放射された励起光L1bは、基板11に形成された波長選択透過反射膜12に入射する。波長選択透過反射膜12は、少なくとも励起光L1の一部を吸収、若しくは、反射し、かつ、蛍光体層16から発した蛍光L2の一部を透過させるものであり、本実施形態では励起光L1の波長域の光を反射させる。このため、基板11側に向けて放射された励起光L1bは、波長選択透過反射膜12によって蛍光体層16に向けて反射される。 On the other hand, of the excitation light L1, the excitation light L1b radiated toward the side opposite to the phosphor layer 16, that is, toward the substrate 11 is incident on the wavelength selective transmission / reflection film 12 formed on the substrate 11. The wavelength selective transmission / reflection film 12 absorbs or reflects at least a part of the excitation light L1 and transmits a part of the fluorescence L2 emitted from the phosphor layer 16, and in this embodiment, the excitation light. The light in the wavelength region of L1 is reflected. For this reason, the excitation light L1b radiated toward the substrate 11 side is reflected toward the phosphor layer 16 by the wavelength selective transmission / reflection film 12.
  したがって、励起光L1のうち、蛍光体層16とは反対側に出射された励起光L1bも、蛍光体層16を励起させるために利用することが可能となる。これにより、蛍光体層16に吸収される励起光の光量を増加(蛍光量子収率の増加)させることができ、蛍光体層16から発する発光量自体を増やすことが可能になる。そして、励起光L1や蛍光L2のロス(損失)を低減し、出射される蛍光L2の光量の増大と、これに伴う消費電力の低減を実現することが可能となる。 Therefore, of the excitation light L1, the excitation light L1b emitted to the side opposite to the phosphor layer 16 can also be used to excite the phosphor layer 16. As a result, the amount of excitation light absorbed by the phosphor layer 16 can be increased (increase in fluorescence quantum yield), and the amount of light emitted from the phosphor layer 16 itself can be increased. Then, it is possible to reduce the loss (loss) of the excitation light L1 and the fluorescence L2, increase the amount of the emitted fluorescence L2, and reduce the power consumption associated therewith.
 図6は、こうした第一実施形態の発光デバイスに用いられる波長選択層の光反射特性、および光透過特性の一例を示すグラフである。
  こうしたグラフによれば、波長選択層は、波長450nmを中心にして±20nm程度の範囲の励起光の波長域をほぼ全て(97%以上)反射させ、この波長域で透過可能な光は3%以下に抑えられる。
FIG. 6 is a graph showing an example of light reflection characteristics and light transmission characteristics of the wavelength selection layer used in the light emitting device of the first embodiment.
According to these graphs, the wavelength selection layer reflects almost all (97% or more) of the excitation light wavelength range in the range of about ± 20 nm centered on the wavelength of 450 nm, and 3% of the light that can be transmitted in this wavelength range is 3%. It is suppressed to the following.
  一方、それ以外の波長域、例えば蛍光の波長域はほぼ全て(95%以上)透過可能であることが分かる。こうした光学特性を持つ波長選択層を形成することによって、蛍光体層とは反対側の波長選択透過反射膜に向けて出射された励起光を確実に蛍光体層に向けて反射させると共に、蛍光体層から発した蛍光を殆ど損失させること無く発光デバイスの外部に向けて出射させることが可能であることが分かる。 On the other hand, it can be seen that almost all other wavelength ranges, for example, the fluorescence wavelength range (95% or more) can be transmitted. By forming the wavelength selective layer having such optical characteristics, the excitation light emitted toward the wavelength selective transmission / reflection film opposite to the phosphor layer is reliably reflected toward the phosphor layer, and the phosphor It can be seen that the fluorescence emitted from the layer can be emitted toward the outside of the light emitting device with almost no loss.
(第二実施形態)
  図2は本発明の第二実施形態に係る発光デバイスの一例を示す概略断面図である。
  この発光デバイス20は、基板11と、この基板11の一面11aに順に積層された波長選択透過反射膜12、励起光源素子13、封止層14、接着層15、蛍光体層16、および封止基板17を備えている。
(Second embodiment)
FIG. 2 is a schematic cross-sectional view showing an example of a light emitting device according to the second embodiment of the present invention.
The light emitting device 20 includes a substrate 11, a wavelength selective transmission / reflection film 12, an excitation light source element 13, a sealing layer 14, an adhesive layer 15, a phosphor layer 16, and a sealing layer, which are sequentially stacked on one surface 11 a of the substrate 11. A substrate 17 is provided.
  また、この第二実施形態では、励起光源素子13を挟んで波長選択透過反射膜12と対向して、即ち、蛍光体層16と封止基板17との間に反射膜19が形成されている。この反射膜19は、少なくとも励起光L1の一部、および蛍光L2の一部を反射させる機能膜である。 In the second embodiment, the reflection film 19 is formed opposite to the wavelength selective transmission / reflection film 12 with the excitation light source element 13 interposed therebetween, that is, between the phosphor layer 16 and the sealing substrate 17. . The reflection film 19 is a functional film that reflects at least a part of the excitation light L1 and a part of the fluorescence L2.
  以下、上述した本実施形態に係る発光デバイス20を構成する各構成部材及びその形成方法についてより詳細に説明するが、本実施形態はこれら構成部材及び形成方法に限定されるものではない。 Hereinafter, although each structural member which comprises the light-emitting device 20 which concerns on this embodiment mentioned above, and its formation method are demonstrated in detail, this embodiment is not limited to these structural members and a formation method.
  励起光源素子13としては、例えば無機EL素子を用いる事が可能であり、例えば、紫外発光無機EL、青色発光無機ELは、例えば、基板、第1電極、第1誘電体層、発光層、第2誘電体層、および第2電極より構成されているが、これらに限定されるものではない。 As the excitation light source element 13, for example, an inorganic EL element can be used. For example, the ultraviolet light emitting inorganic EL and the blue light emitting inorganic EL include, for example, a substrate, a first electrode, a first dielectric layer, a light emitting layer, a first light emitting layer, Although composed of two dielectric layers and a second electrode, it is not limited to these.
  励起光源素子13として例えば無機EL素子を用いる場合、基板11としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。しかし、ここで、ストレス無く湾曲部、折り曲げ部を形成することが可能となる為、前記プラスティック基板、もしくは、前記金属基板を用いる事が好ましい。更に、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板が更に好ましい。 For example, when an inorganic EL element is used as the excitation light source element 13, examples of the substrate 11 include an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc. An insulating substrate, a metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like on the substrate, Although the board | substrate etc. which performed the insulation process by the methods, such as anodizing, the surface of the metal substrate which consists of Al etc. are mentioned, This embodiment is not limited to these board | substrates. However, since it becomes possible to form a bending part and a bending part without stress here, it is preferable to use the plastic substrate or the metal substrate. Further, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable.
  励起光源素子13として例えば無機EL素子を用いる場合、第1電極及び第2電極としては、アルミニウム(Al)、金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられるが、本実施形態はこれらの材料に限定されるものではない。しかし、光を取り出す方向には、ITO等の透明電極が良く、光を取り出す方向と逆側には、アルミニウム等の反射膜を用いる事が好ましい。 When, for example, an inorganic EL element is used as the excitation light source element 13, the first electrode and the second electrode include a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium ( Examples of the transparent electrode material include oxide (ITO) made of In) and tin (Sn), oxide of Sn (Sn) (SnO 2 ), oxide made of indium (In) and zinc (Zn) (IZO), and the like. However, this embodiment is not limited to these materials. However, a transparent electrode such as ITO is good in the light extraction direction, and it is preferable to use a reflective film such as aluminum on the side opposite to the light extraction direction.
  第1電極及び第2電極は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The first electrode and the second electrode can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. The forming method is not limited. Further, if necessary, the formed electrode can be patterned by a photolithography method or a laser peeling method, or a directly patterned electrode can be formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  励起光源素子13として例えば無機EL素子を用いる場合、第1及び第2誘電体層としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta25)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本実施形態はこれらに限定されるものではない。また、第1及び第2誘電体層は上記の誘電体材料のうちから選んだ1種類でも、2種類以上の材料を積層した構成でも良い。また、誘電体の膜厚は、200nm~500nm程度が、好ましい。 When an inorganic EL element is used as the excitation light source element 13, for example, a known dielectric material for inorganic EL can be used as the first and second dielectric layers. Examples of such dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but this embodiment is not limited thereto. Further, the first and second dielectric layers may be one type selected from the above-mentioned dielectric materials or a structure in which two or more types of materials are laminated. The film thickness of the dielectric is preferably about 200 nm to 500 nm.
  励起光源素子13として例えば無機EL素子を用いる場合、発光体としては、無機EL用の公知の発光材料を用いることができる。このような発光材料としては、例えば、紫外発光材料としては、ZnF2:Gd、青色発光材料としては、BaAl24:Eu、CaAl24:Eu、ZnAl24:Eu、Ba2SiS4:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba,Mg)Al:Eu等が挙げられるが、本実施形態はこれらに限定されるものではない。また、発光層の膜厚は、300nm~1000nm程度が、好ましい。 When an inorganic EL element is used as the excitation light source element 13, for example, a known light emitting material for inorganic EL can be used as the light emitter. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material. Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present embodiment is not limited thereto. . The thickness of the light emitting layer is preferably about 300 nm to 1000 nm.
  蛍光体層16は、紫外発光有機EL素子、青色発光有機EL素子、紫外発光LED、青色LED等の励起光を吸収し、青色、緑色、赤色に発光する青色蛍光体層、赤色蛍光体層、緑色蛍光体層等から構成されている。また、必要に応じて、シアン、イエローに発光する蛍光体を画素に加える事が好ましい。ここで、シアン、イエローに発光する画素のそれぞれの色純度を、色度図上での赤色、緑色、青色に発光する画素の色純度の点で結ばれる三角形より外側にすることで、赤色、緑色、青色の3原色を発光する画素を使用する表示装置より色再現範囲を更に広げる事が可能となる。 The phosphor layer 16 absorbs excitation light from an ultraviolet light emitting organic EL element, a blue light emitting organic EL element, an ultraviolet light emitting LED, a blue LED, etc., and emits blue, green, red light, a blue phosphor layer, a red phosphor layer, It is composed of a green phosphor layer and the like. Moreover, it is preferable to add phosphors emitting light of cyan and yellow to the pixels as necessary. Here, by setting the color purity of each pixel emitting light to cyan and yellow outside the triangle connected by the color purity points of red, green, and blue light emitting pixels on the chromaticity diagram, red, The color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of green and blue.
  蛍光体16層は、以下に例示する蛍光体材料のみから構成されていてもよく、任意に添加剤等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
  本実施形態の蛍光体材料としては、公知の蛍光体材料を用いることができる。このような蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
The phosphor 16 layer may be composed only of the phosphor materials exemplified below, and may optionally contain additives, etc., and these materials are in a polymer material (binding resin) or an inorganic material. The configuration may be distributed in a distributed manner.
A known phosphor material can be used as the phosphor material of the present embodiment. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  有機系蛍光体材料としては、紫外の励起光を、青色発光に変換する蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4‘-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。また、紫外、青色の励起光を、緑色発光に変換する蛍光色素として、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2′-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、3-(2′-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等が挙げられる。 Organic phosphor materials include, as fluorescent dyes that convert ultraviolet excitation light into blue light emission, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstil Benzene, coumarin dyes: 7-hydroxy-4-methylcoumarin and the like. Further, as a fluorescent dye that converts ultraviolet and blue excitation light into green light emission, coumarin dyes: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1 -Gh) Coumarin (coumarin 153), 3- (2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), na Phthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like.
  また、紫外、青色の励起光を、赤色の発光に変換する蛍光色素としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。 Further, as a fluorescent dye that converts ultraviolet and blue excitation light into red light emission, cyanine dyes: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine Dyes: 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
  また、無機系蛍光体材料としては、紫外の励起光を青色の発光に変換する蛍光体として、Sr227:Sn4+、Sr4Al1425:Eu2+、BaMgAl1017:Eu2+、SrGa24:Ce3+、CaGa24:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba2、0 Mg)10(PO46Cl2:Eu2+、BaAl2SiO8:Eu2+、Sr227:Eu2+、Sr5(PO43Cl:Eu2+、(Sr,Ca,Ba)5(PO43Cl:Eu2+、BaMg2Al1627:Eu2+、(Ba,Ca)5(PO43Cl:Eu2+、Ba3MgSi28:Eu2+、Sr3MgSi28:Eu2+等が挙げられる。 Further, as an inorganic phosphor material, as a phosphor that converts ultraviolet excitation light into blue light emission, Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , 0 Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ , BaMg 2 Al 16 O 27 : Eu 2+ , (Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 3 MgSi 2 O 8 : Eu 2+ and the like.
  また、紫外、青色の励起光を、緑色の発光に変換する蛍光体として、(BaMg)Al1627:Eu2+,Mn2+、Sr4Al1425:Eu2+、(SrBa)Al12Si28:Eu2+、(BaMg)2SiO4:Eu2+、Y2SiO5:Ce3+,Tb3+、Sr227-Sr225:Eu2+、(BaCaMg)5(PO43Cl:Eu2+、Sr2Si38-2SrCl2:Eu2+、Zr2SiO4、MgAl1119:Ce3+,Tb3+、Ba2SiO4:Eu2+、Sr2SiO4:Eu2+、(BaSr)SiO4:Eu2+等が挙げられる。 Further, as phosphors that convert ultraviolet and blue excitation light into green light emission, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 -Sr 2 B 2 O 5 : Eu 2+, (BaCaMg) 5 (PO 4) 3 Cl: Eu 2+, Sr 2 Si 3 O 8 -2SrCl 2: Eu 2+, Zr 2 SiO 4, MgAl 11 O 19: Ce 3+, Tb 3+, Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
  また、紫外、青色の励起光を、赤色の発光に変換する蛍光体としては、Y22S:Eu3+、YAlO3:Eu3+、Ca22(SiO46:Eu3+、LiY9(SiO462:Eu3+、YVO4:Eu3+、CaS:Eu3+、Gd23:Eu3+、Gd22S:Eu3+、Y(P,V)O4:Eu3+、Mg4GeO5.5F:Mn4+、Mg4GeO6:Mn4+、K5Eu2.5(WO46.25、Na5Eu2.5(WO46.25、K5Eu2.5(MoO46.25、Na5Eu2.5(MoO46.25等が挙げられる。 As phosphors for converting ultraviolet and blue excitation light into red light emission, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3 + , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y ( P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 Examples thereof include K 5 Eu 2.5 (MoO 4 ) 6.25 and Na 5 Eu 2.5 (MoO 4 ) 6.25 .
  また、上記無機系蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、更にそれらの併用によるもの等が挙げられる。
 励起光による劣化、発光による劣化等の安定性を考慮すると、無機材料を使用する方が好ましい。更に無機材料を用いる場合には、平均粒径(d50)が、0.5μm~50μmであることが好ましい。
In addition, the inorganic phosphor may be subjected to a surface modification treatment as necessary. As a method thereof, physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof.
In consideration of stability such as deterioration due to excitation light and deterioration due to light emission, it is preferable to use an inorganic material. Further, when an inorganic material is used, the average particle size (d 50 ) is preferably 0.5 μm to 50 μm.
  平均粒径が1μm以下であると、蛍光体の発光効率が急激に低下する。また、50μm以上であると、平坦な膜を形成する事が非常に困難となり、蛍光体層と、有機EL素子との間に空乏が出来てしまう(有機EL素子(屈折率:約1.7)と無機蛍光体層(屈折率:約2.3)の間に空乏(屈折率:1.0))。これにより有機EL素子からの光が効率よく無機蛍光層に届かず、蛍光体層の発光効率の低下が起こるという問題が生じる。 If the average particle size is 1 μm or less, the luminous efficiency of the phosphor is drastically reduced. On the other hand, if it is 50 μm or more, it becomes very difficult to form a flat film, and depletion occurs between the phosphor layer and the organic EL element (organic EL element (refractive index: about 1.7). ) And the inorganic phosphor layer (refractive index: about 2.3) depletion (refractive index: 1.0)). Thereby, the light from an organic EL element cannot reach an inorganic fluorescent layer efficiently, and the problem that the luminous efficiency of a fluorescent substance layer falls arises.
  また、蛍光体層16は、上記の蛍光体材料と樹脂材料を溶剤に溶解、分散させた蛍光体層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。 The phosphor layer 16 is prepared by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, Known wet processes such as coating methods such as spray coating, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, microgravure coating methods, and the like, and resistance heating vapor deposition method, electron beam ( EB) It can be formed by a known dry process such as a vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  また、蛍光体層16は、前記高分子樹脂として、感光性の樹脂を用いる事で、フォトリソグラフィー法により、パターン化が可能となる。
  ここで、感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の一種類又は複数種類の混合物を用いる事が可能である。
The phosphor layer 16 can be patterned by a photolithography method by using a photosensitive resin as the polymer resin.
Here, as the photosensitive resin, one of photosensitive resins (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use one kind or a mixture of plural kinds.
  また、前記、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法等ウエットプロセス、シャドーマスクを用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により蛍光体材料をダイレクトにパターニングする事も可能である。 Also, wet processes such as the ink jet method, relief printing method, intaglio printing method, screen printing method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method It is also possible to directly pattern the phosphor material by a known dry process such as an organic vapor deposition (OVPD) method or a laser transfer method.
  蛍光体層16の膜厚は、例えば、通常100nm~100μm程度であるが、1μm~100μmが好ましい。膜厚が100nm未満であると、有機ELからの青色発光を十分吸収することが不可能である為、発光効率の低下、必要とされる色に青色の透過光が混じる事による色純度の悪化といった問題が生じる。更にこの有機ELからの発光の吸収を高め、色純度の悪影響を及ぼさない程度に青色の透過光を低減する為には、膜厚として、1μm以上とする事が好ましい。また、膜厚が100μmを超えると有機EL素子からの青色発光を既に十分吸収する事から、効率の上昇には、繋がらず材料を消費するだけに留まり、材料コストのアップに繋がる。 The film thickness of the phosphor layer 16 is usually about 100 nm to 100 μm, for example, but preferably 1 μm to 100 μm. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the blue light emitted from the organic EL, so that the light emission efficiency is lowered, and the color purity is deteriorated by mixing blue transmitted light with the required color. Problems arise. Further, in order to increase absorption of light emitted from the organic EL and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 μm or more. Further, when the film thickness exceeds 100 μm, the blue light emission from the organic EL element is already sufficiently absorbed. Therefore, the efficiency is not increased, but only the material is consumed and the material cost is increased.
  また、ここで、同様に蛍光体層16の側面への発光を効率良く、反射層19により、外部に取り出す為に、本実施形態の蛍光体層16の断面形状は、光吸収層より上の部分でテーパー形状である事が好ましい。これにより、蛍光体層16の側面と光取り出し方向と逆側の面とに同時に効率良く、反射層19を形成する事が可能となる。 Here, similarly, the cross-sectional shape of the phosphor layer 16 of the present embodiment is higher than that of the light absorption layer in order to efficiently emit light to the side surface of the phosphor layer 16 and to take out to the outside by the reflective layer 19. It is preferable that the portion has a tapered shape. Thereby, the reflective layer 19 can be efficiently formed on the side surface of the phosphor layer 16 and the surface opposite to the light extraction direction at the same time.
  反射層19は、蛍光体層16と封止基板17との間に設けられ、少なくとも励起光L1の一部、および、蛍光体層16からの蛍光L2の一部を反射する特性を有していれば良い。反射層19としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。 The reflection layer 19 is provided between the phosphor layer 16 and the sealing substrate 17 and has a characteristic of reflecting at least a part of the excitation light L1 and a part of the fluorescence L2 from the phosphor layer 16. Just do it. Examples of the reflective layer 19 include reflective metals such as aluminum, silver, gold, an aluminum-lithium alloy, an aluminum-neodymium alloy, and an aluminum-silicon alloy, but this embodiment is limited to these substrates. It is not a thing.
  また、反射膜19は、例えば、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法等により形成することができる。
  ここで、反射膜19は、励起光L1の極大波長、および、蛍光L2の極大波長において50%以上の反射率を有する事が好ましい。より好ましくは、励起光L1の極大波長、および、蛍光L2の極大波長において80%以上の反射率を有することが好ましい。
The reflective film 19 can be formed by, for example, resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), or sputtering.
Here, it is preferable that the reflective film 19 has a reflectance of 50% or more at the maximum wavelength of the excitation light L1 and the maximum wavelength of the fluorescence L2. More preferably, it has a reflectance of 80% or more at the maximum wavelength of the excitation light L1 and the maximum wavelength of the fluorescence L2.
  発光デバイス20の基板11側、もしくは封止基板17と波長選択透過反射膜12との間、もしくは、封止基板17側には、カラーフィルターを設けることも好ましい。カラーフィルターとしては、従来のカラーフィルターを用いることが可能である。ここで、カラーフィルターを設けることによって、赤色、緑色、青色画素の色純度を高める事が可能となり、表示装置の色再現範囲を拡大する事ができる。 It is also preferable to provide a color filter on the substrate 11 side of the light emitting device 20, or between the sealing substrate 17 and the wavelength selective transmission / reflection film 12, or on the sealing substrate 17 side. As the color filter, a conventional color filter can be used. Here, by providing a color filter, the color purity of red, green, and blue pixels can be increased, and the color reproduction range of the display device can be expanded.
  封止基板17としては、基板11と同様のものを使用可能であり、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。 As the sealing substrate 17, the same substrate 11 can be used, for example, an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., a ceramic substrate made of alumina, etc. An insulating substrate such as aluminum, a metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate coated on the surface with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like Examples include a substrate obtained by subjecting the surface of a metal substrate made of Al or the like to insulation treatment by a method such as anodic oxidation, but the present embodiment is not limited to these substrates.
  封止層14、接着層15は、従来の封止層、接着層を用いる事が可能であり、本発明は特に限定されるものではない。また、封止層14に加えて更に保護膜を形成しても良い。
  例えば、封止層14、保護膜は、樹脂材料をスピンコート法、ODF、ラミレート法を用いて塗布する事によって封止膜とすることも可能であり、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を形成した後、更に、樹脂材料をスピンコート法、ODF、ラミレート法を用いて塗布する、又は、貼り合わせることによって封止層14とすることもできる。
The sealing layer 14 and the adhesive layer 15 can use conventional sealing layers and adhesive layers, and the present invention is not particularly limited. Further, a protective film may be further formed in addition to the sealing layer 14.
For example, the sealing layer 14 and the protective film can be formed as a sealing film by applying a resin material using a spin coating method, ODF, or a laminating method, such as plasma CVD, ion plating, After forming an inorganic film such as SiO, SiON, or SiN by a beam method, a sputtering method, or the like, a sealing material is further applied by applying or bonding a resin material using a spin coating method, an ODF, or a laminating method. 14 can also be used.
  こうした封止層14により、外部からの発光素子内への酸素や水分の混入を防止することができ、励起光源素子13の寿命を向上させることが可能となる。また、基板11と封止基板17とを接着させるときは、接着層15として、従来の紫外線硬化樹脂、熱硬化樹脂等で接着させる事が可能である。 Such a sealing layer 14 can prevent the entry of oxygen and moisture into the light emitting element from the outside, and the life of the excitation light source element 13 can be improved. Further, when the substrate 11 and the sealing substrate 17 are bonded, the bonding layer 15 can be bonded with a conventional ultraviolet curable resin, a thermosetting resin, or the like.
  また、基板11と封止基板17との間には、例えば、窒素ガス、アルゴンガス等の不活性ガスを充填させることも可能である。更に、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入する方がより水分による有機ELへの影響を効果的に低減できるため好ましい。本実施形態は、これらの部材や形成方法に限定されるものではない。また、基板11とは逆側、即ち封止基板17側から発光を取り出す場合は、封止層14、封止基板17共に光透過性の材料を使用する必要がある。 It is also possible to fill an inert gas such as nitrogen gas or argon gas between the substrate 11 and the sealing substrate 17. Furthermore, it is preferable to mix a moisture absorbent such as barium oxide in the enclosed inert gas because the influence of moisture on the organic EL can be effectively reduced. The present embodiment is not limited to these members and forming methods. When light emission is taken out from the side opposite to the substrate 11, that is, from the sealing substrate 17 side, it is necessary to use a light transmissive material for both the sealing layer 14 and the sealing substrate 17.
  発光デバイス20には、光取り出し側、即ち蛍光L2が外部に出射される側に、偏光板を更に設けることも好ましい。偏光板としては、従来の直線偏光板とλ/4板とを組み合わせたものを用いることが可能である。ここで、偏光板を設けることによって、電極からの外光反射、基板11もしくは封止基板17の表面での外光反射を防止する事が可能であり、表示装置のコントラストを向上させることができる。 The light emitting device 20 is preferably further provided with a polarizing plate on the light extraction side, that is, on the side where the fluorescence L2 is emitted to the outside. As the polarizing plate, a combination of a conventional linear polarizing plate and a λ / 4 plate can be used. Here, by providing the polarizing plate, it is possible to prevent external light reflection from the electrodes and external light reflection from the surface of the substrate 11 or the sealing substrate 17, and the contrast of the display device can be improved. .
  以下、本発明の態様に係る発光デバイスの構成例を複数列記する。
(第三実施形態)
  図3は本発明の第三実施形態に係る発光デバイスの一例を示す概略断面図である。
  発光デバイス30は、基板31と、この基板31に順に積層された蛍光体層36、励起光源素子33、波長選択透過反射膜32、封止層34、接着層35、および封止基板37を備えている。
Hereinafter, a plurality of configuration examples of light emitting devices according to aspects of the present invention will be listed.
(Third embodiment)
FIG. 3 is a schematic cross-sectional view showing an example of a light emitting device according to the third embodiment of the present invention.
The light emitting device 30 includes a substrate 31, a phosphor layer 36, an excitation light source element 33, a wavelength selective transmission / reflection film 32, a sealing layer 34, an adhesive layer 35, and a sealing substrate 37 that are sequentially stacked on the substrate 31. ing.
  励起光源素子33から発した励起光L1は等方的に放射する。こうした励起光L1のうち、蛍光体層36に向けて直接放射された励起光L1aは、蛍光体層36に直接入射し、蛍光体層36を励起させる。一方、励起光L1のうち、蛍光体層36とは反対側に向けて放射された励起光L1bは、波長選択透過反射膜32に入射する。励起光L1bは、波長選択透過反射膜32によって蛍光体層36に向けて反射される。したがって、励起光L1のうち、蛍光体層36とは反対側に向けて出射された励起光L1bも、蛍光体層36を励起させるために利用することが可能となる。 励 起 Excitation light L1 emitted from the excitation light source element 33 isotropically radiates. Of such excitation light L1, excitation light L1a emitted directly toward the phosphor layer 36 is directly incident on the phosphor layer 36 and excites the phosphor layer 36. On the other hand, of the excitation light L 1, the excitation light L 1 b radiated toward the side opposite to the phosphor layer 36 is incident on the wavelength selective transmission / reflection film 32. The excitation light L1b is reflected toward the phosphor layer 36 by the wavelength selective transmission / reflection film 32. Therefore, the excitation light L1b emitted toward the side opposite to the phosphor layer 36 in the excitation light L1 can also be used to excite the phosphor layer 36.
(第四実施形態)
  図4は本発明の第四実施形態に係る発光デバイスの一例を示す概略断面図である。
  発光デバイス40は、基板41と、この基板41に順に積層された反射膜49、蛍光体層46、励起光源素子43、波長選択透過反射膜42、封止層44、接着層45、および封止基板47を備えている。
(Fourth embodiment)
FIG. 4 is a schematic cross-sectional view showing an example of a light emitting device according to the fourth embodiment of the present invention.
The light emitting device 40 includes a substrate 41, a reflective film 49, a phosphor layer 46, an excitation light source element 43, a wavelength selective transmission reflective film 42, a sealing layer 44, an adhesive layer 45, and a sealing layer that are sequentially stacked on the substrate 41. A substrate 47 is provided.
  励起光源素子43から発した励起光L1は等方的に放射する。こうした励起光L1のうち、蛍光体層46に向けて直接放射された励起光L1aは、蛍光体層46に直接入射し、蛍光体層46を励起させる。一方、励起光L1のうち、蛍光体層46とは反対側に向けて放射された励起光L1bは、波長選択透過反射膜42に入射する。励起光L1bは、波長選択透過反射膜42によって蛍光体層46に向けて反射される。したがって、励起光L1のうち、蛍光体層46とは反対側に向けて出射された励起光L1bも、蛍光体層46を励起させるために利用することが可能となる。しかも、反射膜49を備えることによって、励起光L1を蛍光体層46に効率よく吸収させると共に、蛍光体層46で生じた蛍光L2を効率よく出射側である封止基板47に向けて反射させる。 励 起 Excitation light L1 emitted from the excitation light source element 43 is emitted isotropically. Of such excitation light L1, excitation light L1a directly emitted toward the phosphor layer 46 is directly incident on the phosphor layer 46 and excites the phosphor layer 46. On the other hand, of the excitation light L1, the excitation light L1b emitted toward the side opposite to the phosphor layer 46 is incident on the wavelength selective transmission / reflection film 42. The excitation light L1b is reflected toward the phosphor layer 46 by the wavelength selective transmission / reflection film 42. Therefore, the excitation light L1b emitted toward the side opposite to the phosphor layer 46 in the excitation light L1 can also be used to excite the phosphor layer 46. In addition, by providing the reflective film 49, the excitation light L1 is efficiently absorbed by the phosphor layer 46, and the fluorescence L2 generated in the phosphor layer 46 is efficiently reflected toward the sealing substrate 47 on the emission side. .
(第五実施形態)
  図5は本発明の第五実施形態に係る発光デバイスの一例を示す概略断面図である。
  発光デバイス50は、基板51と、この基板51に順に積層された波長選択透過反射膜52、励起光源素子53、封止層54、接着層55、蛍光体層56、および封止基板57を備えている。
(Fifth embodiment)
FIG. 5 is a schematic cross-sectional view showing an example of a light emitting device according to the fifth embodiment of the present invention.
The light emitting device 50 includes a substrate 51, a wavelength selective transmission / reflection film 52, an excitation light source element 53, a sealing layer 54, an adhesive layer 55, a phosphor layer 56, and a sealing substrate 57 that are sequentially stacked on the substrate 51. ing.
  励起光源素子53から発した励起光L1は等方的に放射する。こうした励起光L1のうち、蛍光体層56に向けて直接放射された励起光L1aは、蛍光体層56に直接入射し、蛍光体層56を励起させる。一方、励起光L1のうち、蛍光体層56とは反対側に向けて放射された励起光L1bは、波長選択透過反射膜52に入射する。励起光L1bは、波長選択透過反射膜52によって蛍光体層56に向けて反射される。 励 起 Excitation light L1 emitted from the excitation light source element 53 isotropically radiates. Of such excitation light L1, excitation light L1a directly emitted toward the phosphor layer 56 is directly incident on the phosphor layer 56 and excites the phosphor layer 56. On the other hand, of the excitation light L 1, the excitation light L 1 b radiated toward the side opposite to the phosphor layer 56 enters the wavelength selective transmission / reflection film 52. The excitation light L1b is reflected toward the phosphor layer 56 by the wavelength selective transmission / reflection film 52.
  したがって、励起光L1のうち、蛍光体層56とは反対側に向けて出射された励起光L1bも、蛍光体層56を励起させるために利用することが可能となる。しかも、この構成では、基板51側から入射した外光L3を波長選択透過反射膜52によって反射させ、蛍光体層56に外光L3を到達させない構成であるので、外光L3による蛍光体層56の発光を抑え、コントラストに優れ、色純度の高い蛍光L2を基板51側から出射させることができる。 Therefore, of the excitation light L1, the excitation light L1b emitted toward the opposite side of the phosphor layer 56 can also be used to excite the phosphor layer 56. In addition, in this configuration, the external light L3 incident from the substrate 51 side is reflected by the wavelength selective transmission / reflection film 52 so that the external light L3 does not reach the phosphor layer 56. Therefore, the phosphor layer 56 by the external light L3. The fluorescence L2 having excellent contrast and high color purity can be emitted from the substrate 51 side.
 次に、こうした本実施形態に係る発光デバイスの製造工程の一例を説明する。なお、具体的な製造例は後述する実施例にて説明し、ここでは大まかな製造の流れを簡単に説明する。
 図7は、本実施形態に係る発光デバイスの製造工程を段階的に示した説明図である。
  発光デバイス10を製造するにあたっては、まず、基板11を用意する(図7の(a))。次に、この基板11に波長選択透過反射膜12を形成する(図7の(b))。この波長選択透過反射膜12の上に励起光源素子13、例えば有機EL素子を形成する(図7の(c))。そして、励起光源素子13を封止層14で封止して、励起光源素子側の基板が完成する(図7の(d))。
Next, an example of the manufacturing process of the light emitting device according to this embodiment will be described. A specific manufacturing example will be described in an embodiment described later, and a rough manufacturing flow will be briefly described here.
FIG. 7 is an explanatory view showing stepwise the manufacturing process of the light emitting device according to this embodiment.
In manufacturing the light emitting device 10, first, the substrate 11 is prepared ((a) of FIG. 7). Next, the wavelength selective transmission / reflection film 12 is formed on the substrate 11 (FIG. 7B). An excitation light source element 13, for example, an organic EL element is formed on the wavelength selective transmission / reflection film 12 ((c) of FIG. 7). And the excitation light source element 13 is sealed with the sealing layer 14, and the board | substrate by the side of an excitation light source element is completed ((d) of FIG. 7).
  一方、励起光源素子側の基板と貼り合わせる封止基板17を用意する(図7の(e))。そして、この封止基板17を接着層15を介して励起光源素子13側の基板の封止層14と貼り合わせる(図7の(f))。こうした工程を経て、本実施形態に係る発光デバイス10を製造することができる。 Meanwhile, a sealing substrate 17 to be bonded to the substrate on the excitation light source element side is prepared ((e) in FIG. 7). And this sealing substrate 17 is bonded together with the sealing layer 14 of the board | substrate by the side of the excitation light source element 13 through the contact bonding layer 15 ((f) of FIG. 7). Through these steps, the light emitting device 10 according to this embodiment can be manufactured.
  図8は、本実施形態の発光デバイスを備えた表示装置の一例である、アクティブマトリックス駆動型の有機ELディスプレイを示す断面図である。
  この有機ELディスプレイ100は、基板101の一面に、ゲート電極126、ドレイン電極127、ソース電極108、ゲート絶縁膜129、配線131、スルーホール等からなるアクティブ駆動素子であるTFTが形成される。
FIG. 8 is a cross-sectional view showing an active matrix driving type organic EL display which is an example of a display device including the light emitting device of the present embodiment.
In the organic EL display 100, a TFT which is an active driving element including a gate electrode 126, a drain electrode 127, a source electrode 108, a gate insulating film 129, a wiring 131, a through hole, and the like is formed on one surface of a substrate 101.
  そして、このTFTに、層間絶縁膜132を間に挟んで、波長選択透過反射膜117が形成される。更に、励起光源素子118を構成する陽極102、エッジカバー122、正孔注入層103、正孔輸送層104、電子ブロッキング層105、発光層106、正孔ブロッキング層107、電子輸送層108、電子注入層109、陰極110が形成されている。 Then, a wavelength selective transmission / reflection film 117 is formed on the TFT with the interlayer insulating film 132 interposed therebetween. Furthermore, the anode 102, the edge cover 122, the hole injection layer 103, the hole transport layer 104, the electron blocking layer 105, the light emitting layer 106, the hole blocking layer 107, the electron transport layer 108, and the electron injection that constitute the excitation light source element 118. A layer 109 and a cathode 110 are formed.
  こうした励起光源素子118の上に、接着層112が形成される。一方、封止基板116側には、反射膜120、隔壁123で区画された赤色発光蛍光体層124、緑色発光蛍光体層125が形成されている。そして、封止基板116側と基板101側とが接着層112を介して接合されている。
  本実施形態の発光デバイスによると、励起光源素子118から射出された励起光は、封止基板116条に形成された赤色発光蛍光体層124、緑色発光蛍光体層125に向かって入射する。赤色発光蛍光体層124、緑色発光蛍光体層125に励起光が入射することにより発生した赤色の蛍光および緑色の蛍光は、励起光の入射方向とは逆方向に射出される。すなわち、発生した蛍光は、励起光源素子118および波長選択透過反射膜117を通過して、基板101から射出する。
  なお、本実施形態において、励起光源素子118の発光色は青色であるため、青色発光蛍光体層は設けていないが、本実施形態はこの構成に限られるものではない。また、励起光源素子118が発した青色光は蛍光体層に入射する必要がないため、青色光が射出する部分には、波長選択透過反射膜117を設ける必要がない。
An adhesive layer 112 is formed on the excitation light source element 118. On the other hand, on the sealing substrate 116 side, a red light emitting phosphor layer 124 and a green light emitting phosphor layer 125 defined by a reflective film 120, a partition wall 123 are formed. Then, the sealing substrate 116 side and the substrate 101 side are bonded via the adhesive layer 112.
According to the light emitting device of this embodiment, the excitation light emitted from the excitation light source element 118 is incident on the red light emitting phosphor layer 124 and the green light emitting phosphor layer 125 formed on the sealing substrate 116. Red fluorescence and green fluorescence generated by the excitation light entering the red light emitting phosphor layer 124 and the green light emitting phosphor layer 125 are emitted in a direction opposite to the incident direction of the excitation light. That is, the generated fluorescence passes through the excitation light source element 118 and the wavelength selective transmission / reflection film 117 and is emitted from the substrate 101.
In the present embodiment, since the emission color of the excitation light source element 118 is blue, the blue light emitting phosphor layer is not provided, but the present embodiment is not limited to this configuration. Further, since the blue light emitted from the excitation light source element 118 does not need to enter the phosphor layer, it is not necessary to provide the wavelength selective transmission / reflection film 117 in the portion where the blue light is emitted.
  図9は、表示装置の制御部分の構成例を示す概要図である。
  表示装置130は、第一基板131、画素部G、ゲート信号側駆動回路132、データ信号側駆動回路133、配線134、電流供給線135、第二基板(封止基板)136、FPC(Flexible printed circuits)137、および外部駆動回路138とを有している。
FIG. 9 is a schematic diagram illustrating a configuration example of a control portion of the display device.
The display device 130 includes a first substrate 131, a pixel portion G, a gate signal side driving circuit 132, a data signal side driving circuit 133, a wiring 134, a current supply line 135, a second substrate (sealing substrate) 136, and an FPC (Flexible printed). circuit) 137 and an external drive circuit 138.
  外部駆動回路138は、画素部Gの走査ライン(走査線)を順次ゲート信号側駆動回路132により選択し、選択されている走査ラインに沿って配置されている各画素素子に対し、データ信号側駆動回路133により画素データを書き込む。すなわち、ゲート信号側駆動回路132が走査線を順次駆動し、データ信号側駆動回路133がデータ線に画素データを出力することで、駆動された走査線とデータが出力されたデータ線との交差する位置に配置された画素素子が駆動される。 The external driving circuit 138 sequentially selects the scanning lines (scanning lines) of the pixel portion G by the gate signal side driving circuit 132, and the data signal side for each pixel element arranged along the selected scanning line. Pixel data is written by the drive circuit 133. That is, the gate signal side driving circuit 132 sequentially drives the scanning lines, and the data signal side driving circuit 133 outputs pixel data to the data lines, so that the driven scanning lines and the data lines from which the data is output intersect. The pixel element arranged at the position to be driven is driven.
  本発明の一実施形態に係る表示装置は、例えば、図10に示す携帯電話に適用できる。図10に示す携帯電話60は、音声入力部61、音声出力部62、アンテナ63、操作スイッチ64、表示部65、及び筐体66等を備えている。そして、表示部61として上述の実施形態の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置を携帯電話60の表示部65に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 The display device according to an embodiment of the present invention can be applied to, for example, the mobile phone shown in FIG. A cellular phone 60 shown in FIG. 10 includes an audio input unit 61, an audio output unit 62, an antenna 63, an operation switch 64, a display unit 65, a housing 66, and the like. And the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 61. FIG. By applying the display device according to an embodiment of the present invention to the display unit 65 of the mobile phone 60, it is possible to display a high contrast image with low power consumption.
  また、本発明の一実施形態に係る有機EL装置1は、例えば、図11に示す薄型テレビに適用できる。図11に示す薄型テレビ70は、表示部71、スピーカ72、キャビネット73、およびスタンド74等を備えている。そして、表示部71として上述の実施形態の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置を薄型テレビ70の表示部71に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 In addition, the organic EL device 1 according to an embodiment of the present invention can be applied to, for example, a flat-screen television shown in FIG. A thin television 70 shown in FIG. 11 includes a display unit 71, speakers 72, a cabinet 73, a stand 74, and the like. The display device of the above-described embodiment can be suitably applied as the display unit 71. By applying the display device according to the embodiment of the present invention to the display unit 71 of the flat-screen television 70, it is possible to display an image with high contrast with low power consumption.
  本発明の一実施形態に係る表示装置は、例えば、図12に示す携帯型ゲーム機に適用できる。図12に示す携帯型ゲーム機80は、操作ボタン81、82、外部接続端子83、表示部84、及び筐体85等を備えている。そして、表示部84として上述の実施形態の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置を携帯型ゲーム機80の表示部84に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 The display device according to an embodiment of the present invention can be applied to, for example, a portable game machine shown in FIG. A portable game machine 80 shown in FIG. 12 includes operation buttons 81 and 82, an external connection terminal 83, a display unit 84, a housing 85, and the like. And the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 84. FIG. By applying the display device according to the embodiment of the present invention to the display unit 84 of the portable game machine 80, it is possible to display a high contrast video with low power consumption.
  また、本発明の一実施形態に係る表示装置は、例えば、図13に示すノートパソコンに適用できる。図13に示すノートパソコン90は、表示部91、キーボード92、タッチパッド93、メインスイッチ94、カメラ95、記録媒体スロット96、および筐体97等を備えている。そして、このノートパソコン90の表示部91として上述の実施形態の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置をノートパソコン90の表示部91に適用することによって、少ない消費電力で高いコントラストの映像を表示することが可能なノートパソコン90を実現できる。 Also, the display device according to one embodiment of the present invention can be applied to, for example, a notebook computer shown in FIG. A notebook computer 90 shown in FIG. 13 includes a display unit 91, a keyboard 92, a touch pad 93, a main switch 94, a camera 95, a recording medium slot 96, a housing 97, and the like. And the display apparatus of the above-mentioned embodiment can be applied suitably as the display part 91 of this notebook personal computer 90. FIG. By applying the display device according to the embodiment of the present invention to the display unit 91 of the notebook computer 90, the notebook computer 90 capable of displaying a high contrast image with low power consumption can be realized.
  本発明の一実施形態に係る表示装置は、例えば、図14に示すシーリングライトに適用できる。図14に示すシーリングライト150は、発光部151、吊下線152、及び電源コード153等を備えている。そして、発光部151として上述の実施形態の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置をシーリングライト150の発光部151に適用することによって、少ない消費電力で自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 The display device according to an embodiment of the present invention can be applied to, for example, a ceiling light shown in FIG. The ceiling light 150 shown in FIG. 14 includes a light emitting unit 151, a hanging line 152, a power cord 153, and the like. And the display apparatus of the above-mentioned embodiment can be applied suitably as the light emission part 151. FIG. By applying the display device according to an embodiment of the present invention to the light emitting unit 151 of the ceiling light 150, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting device with high light performance. be able to. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  本発明の一実施形態に係る表示装置は、例えば、図15に示す照明スタンドに適用できる。図15に示す照明スタンド160は、発光部161、スタンド162、メインスイッチ163、及び電源コード164等を備えている。そして、発光部161として本発明の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置をシーリングライト160の発光部161に適用することによって、少ない消費電力で自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 The display device according to an embodiment of the present invention can be applied to, for example, a lighting stand shown in FIG. The illumination stand 160 shown in FIG. 15 includes a light emitting unit 161, a stand 162, a main switch 163, a power cord 164, and the like. The display device of the present invention can be suitably applied as the light emitting unit 161. By applying the display device according to an embodiment of the present invention to the light emitting unit 161 of the ceiling light 160, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. be able to. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  以下、本発明の実施例、および従来の比較例を詳細に説明するが、本発明はこれら一例によってなんら限定されるものではない。
  (実施例1)
 本実施例では、基板と、波長選択透過反射膜と、励起光源素子として有機EL素子と、蛍光体層と、封止基板を組み合わせた例について説明する。
  基板として、0.7mmのガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
 まず、9層のSiO(屈折率:1.4)および8層のTiO(屈折率:2.1)を交互に真空中で蒸着することにより、波長選択透過反射膜を形成した。ここで、各層の膜厚は、反射を行おうとする光の波長480nmの1/4である120nmに設定してある。この誘電体多層膜は、市販の分光光度計で測定したところ、480nm以下の波長域の光を96%反射し、波長640nmの光を95%透過した。
  次に、波長選択透過反射膜上に、インジウム-スズ酸化物(ITO)を、膜厚100nmとなるようスパッタ法により成膜し、第1電極として反射電極(陽極)を形成する。従来のフォトリソグラフィー法により、第1電極幅が160μm幅、200μmピッチで90本のストライプにパターニングした。
Examples of the present invention and conventional comparative examples will be described in detail below, but the present invention is not limited to these examples.
Example 1
In this embodiment, an example in which a substrate, a wavelength selective transmission / reflection film, an organic EL element as an excitation light source element, a phosphor layer, and a sealing substrate are combined will be described.
As the substrate, 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
First, nine layers of SiO 2 (refractive index: 1.4) and eight layers of TiO 2 (refractive index: 2.1) were alternately deposited in a vacuum to form a wavelength selective transmission / reflection film. Here, the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected. When measured with a commercially available spectrophotometer, this dielectric multilayer film reflected 96% of light having a wavelength region of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
Next, indium-tin oxide (ITO) is deposited on the wavelength selective transmission / reflection film by a sputtering method so as to have a film thickness of 100 nm, and a reflective electrode (anode) is formed as a first electrode. The first electrode was patterned into 90 stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第1電極上にSiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、第1電極のエッジ部のみを覆うように、パターン化する。ここでは、第1電極の端から10μmだけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、160℃にて1時間乾燥させた。 Next, SiO 2 is deposited to 200 nm on the first electrode by a sputtering method, and is patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode. Here, a short side of 10 μm from the end of the first electrode is covered with SiO 2 . This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 160 ° C. for 1 hour.
  次に、この基板を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、各有機層の成膜を行った。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
  次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
Next, this substrate was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less to form each organic layer.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
 次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第2電極として透明電極を形成した。まず、上記基板を金属蒸着用チャンバーに固定した。次に、第2電極形成用のシャドーマスク(前記第1電極のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第2電極を形成できるように開口部が空いているマスク)と前記基板をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。 Thereafter, a transparent electrode was formed as the second electrode. First, the substrate was fixed to a metal deposition chamber. Next, a shadow mask for forming a second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode) and the above-mentioned The substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 sec / sec and 0.9 sec / sec in a desired pattern (thickness) 1 nm).
  更にその上に、イオンプレーティング法により、第2電極での配線抵抗による電圧降下を防止する目的でインジウム-亜鉛酸化物(IZO)を10Å/secの蒸着速度で所望のパターンで形成(厚さ:100nm)した。これにより、第2電極が形成される。ここで、発光ピークを480nmに調整している。 Furthermore, indium-zinc oxide (IZO) is formed in a desired pattern at a deposition rate of 10 Å / sec (thickness) for the purpose of preventing voltage drop due to wiring resistance at the second electrode by ion plating. : 100 nm). Thereby, the second electrode is formed. Here, the emission peak is adjusted to 480 nm.
  次にプラズマCVD法により、3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した。
 前記工程と並行し、基板上に膜厚500μmの黄色蛍光体層を形成する事により蛍光体基板を作製した。
Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
In parallel with the above process, a phosphor substrate was produced by forming a yellow phosphor layer having a thickness of 500 μm on the substrate.
  黄色蛍光体層の形成は、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と黄色蛍光体Y5Al512を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したY5Al512を得た。 In the formation of the yellow phosphor layer, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, followed by stirring at room temperature for 1 hour. This mixture and 20 g of the yellow phosphor Y 5 Al 5 O 12 were transferred to a mortar and thoroughly mixed, and then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to surface-modify Y 5. Al 5 O 12 was obtained.
  次に表面改質を施したY5Al512 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した黄色蛍光体形成用塗液を作製した。以上作製した黄色色蛍光体形成用塗液を、スクリーン印刷法で塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚500μmの黄色蛍光体層を形成した。 Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 was added to 10 g of Y 5 Al 5 O 12 subjected to surface modification, and a yellow phosphor was formed by stirring with a disperser. A coating solution was prepared. The yellow phosphor forming coating solution prepared above was applied by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a yellow phosphor layer having a thickness of 500 μm.
  最後に、水分量、酸素量を1ppm以下に制御したグローブボックス内で、励起光源として有機EL素子が形成された基板と蛍光体基板とを既存のUV硬化樹脂を介して、密着させ、有機EL素子が形成されている方からUV光を露光する事で硬化させ発光デバイスを完成させた。 Finally, in a glove box in which the moisture content and oxygen content are controlled to 1 ppm or less, the substrate on which the organic EL element is formed as an excitation light source and the phosphor substrate are brought into close contact with each other through an existing UV curable resin. The light emitting device was completed by curing by exposing to UV light from the side where the element was formed.
  有機EL素子に、5Vの電圧を印加し、特性を評価した。発光としては、有機EL側からは、有機EL素子からの青色発光と蛍光体からの黄色発光が合わさった白色発光が観測された。また、蛍光体側からは、全く発光は観測されなかった。 A voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, white light emission in which blue light emission from the organic EL element and yellow light emission from the phosphor were combined was observed from the organic EL side. Further, no light emission was observed from the phosphor side.
  (実施例2)
 本実施例では、基板と、励起光源素子として有機EL素子と、波長選択透過反射膜と、封止基板とを組み合わせた例について説明する。
  基板として、0.7mmのガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
  まず、基板上に、黄色色蛍光体層を形成した。黄色蛍光体層の形成は、実施例1と同様とした。
  次に、蛍光体層上に、透明ポリイミドからなる平坦化膜を10μm形成した。
(Example 2)
In this embodiment, an example in which a substrate, an organic EL element as an excitation light source element, a wavelength selective transmission / reflection film, and a sealing substrate are combined will be described.
As the substrate, 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
First, a yellow phosphor layer was formed on a substrate. The formation of the yellow phosphor layer was the same as in Example 1.
Next, a 10 μm flattening film made of transparent polyimide was formed on the phosphor layer.
  次に、平坦化膜上に、前記実施例1と同様にして、第1電極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、第2電極からなる有機EL素子を形成した。
次にプラズマCVD法により、実施例1と同様にSiOからなる無機保護層を形成した。
 無機保護層上に、9層のSiO(屈折率:1.4)および8層のTiO(屈折率:2.1)を交互に真空中で蒸着することにより、波長選択透過反射膜を形成した。ここで、各層の膜厚は、反射を行おうとする光の波長480nmの1/4である120nmに設定してある。この誘電体多層膜は、市販の分光光度計で測定したところ、480nm以下の波長域の光を96%反射し、波長640nmの光を95%透過した。
  最後に、水分量、酸素量を1ppm以下に制御したグローブボックス内で、前記基板と封止基板とを既存のUV硬化樹脂を介して、密着させ、封止基板側からUV光を露光する事で硬化させ発光デバイスを完成させた。
Next, an organic EL comprising a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a second electrode on the planarizing film in the same manner as in Example 1. An element was formed.
Next, an inorganic protective layer made of SiO 2 was formed by plasma CVD as in Example 1.
On the inorganic protective layer, nine layers of SiO 2 (refractive index: 1.4) and eight layers of TiO 2 (refractive index: 2.1) are alternately deposited in a vacuum to form a wavelength selective transmission / reflection film. Formed. Here, the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected. When measured with a commercially available spectrophotometer, this dielectric multilayer film reflected 96% of light having a wavelength region of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
Finally, the substrate and the sealing substrate are brought into close contact with each other through an existing UV curable resin in a glove box whose moisture content and oxygen content are controlled to 1 ppm or less, and UV light is exposed from the sealing substrate side. The light emitting device was completed by curing.
  有機EL素子に、5Vの電圧を印加し、特性を評価した。発光としては、有機EL側からは、有機EL素子からの青色発光と蛍光体からの黄色発光が合わさった白色発光が観測された。また、蛍光体側からは、全く発光は観測されなかった。 A voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, white light emission in which blue light emission from the organic EL element and yellow light emission from the phosphor were combined was observed from the organic EL side. Further, no light emission was observed from the phosphor side.
  (実施例3)
 本実施例では、基板と、波長選択透過反射膜と、有機EL素子と、蛍光体層と、反射膜と、封止基板を組み合わせた例について説明する。
  基板として、0.7mmのガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
  まず、9層のSiO(屈折率:1.4)および8層のTiO(屈折率:2.1)を交互に真空中で蒸着することにより、波長選択透過反射膜を形成した。ここで、各層の膜厚は、反射を行おうとする光の波長480nmの1/4である120nmに設定してある。この誘電体多層膜は、市販の分光光度計で測定したところ、480nm以下の波長域の光を96%反射し、波長640nmの光を95%透過した。
(Example 3)
In this embodiment, an example in which a substrate, a wavelength selective transmission / reflection film, an organic EL element, a phosphor layer, a reflection film, and a sealing substrate are combined will be described.
As the substrate, 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
First, nine layers of SiO 2 (refractive index: 1.4) and eight layers of TiO 2 (refractive index: 2.1) were alternately deposited in a vacuum to form a wavelength selective transmission / reflection film. Here, the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected. When measured with a commercially available spectrophotometer, this dielectric multilayer film reflected 96% of light having a wavelength region of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
  次に、波長選択透過反射膜に、インジウム-スズ酸化物(ITO)を、膜厚100nmとなるようスパッタ法により成膜し、第1電極として反射電極(陽極)を形成した。従来のフォトリソグラフィー法により、第1電極幅が160μm幅、200μmピッチで90本のストライプにパターニングした。 Next, indium-tin oxide (ITO) was formed on the wavelength selective transmission / reflection film by a sputtering method so as to have a film thickness of 100 nm, and a reflection electrode (anode) was formed as the first electrode. The first electrode was patterned into 90 stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第1電極上にSiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、第1電極のエッジ部のみを覆うように、パターン化した。ここでは、第1電極の端から10μmだけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、160℃にて1時間乾燥させた。 Next, SiO 2 was deposited to 200 nm on the first electrode by a sputtering method, and was patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode. Here, a short side of 10 μm from the end of the first electrode is covered with SiO 2 . This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 160 ° C. for 1 hour.
  次に、この基板を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、各有機層の成膜を行った。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
Next, this substrate was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less to form each organic layer.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
  次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。 Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
  この後、第2電極として透明電極を形成した。まず、上記基板を金属蒸着用チャンバーに固定した。次に、第2電極形成用のシャドーマスク(前記第1電極のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第2電極を形成できるように開口部が空いているマスク)と前記基板をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
Thereafter, a transparent electrode was formed as the second electrode. First, the substrate was fixed to a metal deposition chamber. Next, a shadow mask for forming a second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode) and the above-mentioned The substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 sec / sec and 0.9 sec / sec in a desired pattern (thickness) 1 nm).
  更にその上に、イオンプレーティング法により、第2電極での配線抵抗による電圧降下を防止する目的でインジウム-亜鉛酸化物(IZO)を10Å/secの蒸着速度で所望のパターンで形成(厚さ:100nm)した。これにより、第2電極が形成された。ここで、発光ピークを480nmに調整している。 Furthermore, indium-zinc oxide (IZO) is formed in a desired pattern at a deposition rate of 10 Å / sec (thickness) for the purpose of preventing voltage drop due to wiring resistance at the second electrode by ion plating. : 100 nm). Thereby, the second electrode was formed. Here, the emission peak is adjusted to 480 nm.
  次にプラズマCVD法により、3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した。
  前記工程と並行し、基板上に膜厚50μmの赤色蛍光体層を形成する事により蛍光体基板を作製した。
Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
In parallel with the above-described process, a phosphor substrate having a thickness of 50 μm was formed on the substrate to produce a phosphor substrate.
  まず最初に反射膜として、EB蒸着法によりアルミニウムを500nm形成した。次に反射膜上に、赤色蛍光体層を形成した。
  赤色蛍光体層の形成は、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と赤色蛍光体K5Eu2.5(WO46.25を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したK5Eu2.5(WO46.25を得た。次に表面改質を施したK5Eu2.5(WO46.25 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した赤色蛍光体形成用塗液を作製した。
First, 500 nm of aluminum was formed as a reflective film by EB vapor deposition. Next, a red phosphor layer was formed on the reflective film.
In the formation of the red phosphor layer, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar and mixed well, then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface. K 5 Eu 2.5 (WO 4 ) 6.25 was obtained. Next, 30 g of polyvinyl alcohol dissolved in a mixed solution of water / dimethyl sulfoxide = 1/1 (300 g) was added to 10 g of K 5 Eu 2.5 (WO 4 ) 6.25 subjected to surface modification, and the mixture was stirred by a disperser. A phosphor forming coating solution was prepared.
  以上作製した赤色蛍光体形成用塗液を、スクリーン印刷法で、前記ガラス上の低反射層を形成していない領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの赤色蛍光体層を形成した。 The red phosphor-forming coating solution prepared above was applied to a region where the low reflection layer on the glass was not formed by a screen printing method. Subsequently, it was heated and dried in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a red phosphor layer having a thickness of 50 μm.
  最後に、水分量、酸素量を1ppm以下に制御したグローブボックス内で、励起光源として有機EL素子が形成された基板と蛍光体基板とを既存のUV硬化樹脂を介して、密着させ、有機EL素子が形成されている方からUV光を露光する事で硬化させ発光デバイスを完成させた。 Finally, in a glove box in which the moisture content and oxygen content are controlled to 1 ppm or less, the substrate on which the organic EL element is formed as an excitation light source and the phosphor substrate are brought into close contact with each other through an existing UV curable resin. The light emitting device was completed by curing by exposing to UV light from the side where the element was formed.
  有機EL素子に、5Vの電圧を印加し、特性を評価した。発光としては、波長選択透過反射膜からは、有機EL素子からの発光は全く観測されず、蛍光体からの赤色発光のみ観測された。また、反射膜側からは、全く発光は観測されなかった。 A voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, no light emission from the organic EL element was observed from the wavelength selective transmission / reflection film, and only red light emission from the phosphor was observed. Further, no light emission was observed from the reflective film side.
  (実施例4)
 本実施例では、基板と、反射膜と、蛍光体層と、有機EL素子と、波長選択透過反射膜と、封止基板とを組み合わせた例について説明する。
 基板として、0.7mmのガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
Example 4
In this embodiment, an example in which a substrate, a reflection film, a phosphor layer, an organic EL element, a wavelength selective transmission reflection film, and a sealing substrate are combined will be described.
As the substrate, 0.7 mm glass was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
  まず、最初に反射膜として、EB蒸着法によりアルミニウムを500nm形成した。
 次に第2反射膜上に、赤色蛍光体層を形成した。
 赤色蛍光体層の形成は、実施例3と同様とした。
First, 500 nm of aluminum was formed as a reflective film by EB vapor deposition.
Next, a red phosphor layer was formed on the second reflective film.
The red phosphor layer was formed in the same manner as in Example 3.
  次に、蛍光体層上に、透明ポリイミドからなる平坦化膜を10μm形成した。
  次に、平坦化膜上に、前記実施例1と同様にして、第1電極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、第2電極からなる有機EL素子を形成した。
  次にプラズマCVD法により、実施例1と同様にSiOからなる無機保護層を形成した。
Next, a 10 μm flattening film made of transparent polyimide was formed on the phosphor layer.
Next, an organic EL comprising a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a second electrode on the planarizing film in the same manner as in Example 1. An element was formed.
Next, an inorganic protective layer made of SiO 2 was formed by plasma CVD as in Example 1.
  次に、実施例3と同様にして、波長選択透過反射膜を形成した。
  最後に、水分量、酸素量を1ppm以下に制御したグローブボックス内で、前記基板と封止基板とを既存のUV硬化樹脂を介して、密着させ、封止基板側からUV光を露光する事で硬化させ発光デバイスを完成させた。
Next, a wavelength selective transmission / reflection film was formed in the same manner as in Example 3.
Finally, the substrate and the sealing substrate are brought into close contact with each other through an existing UV curable resin in a glove box whose moisture content and oxygen content are controlled to 1 ppm or less, and UV light is exposed from the sealing substrate side. The light emitting device was completed by curing.
  有機EL素子に、5Vの電圧を印加し、特性を評価した。発光としては、波長選択透過反射膜からは、有機EL素子からの発光は全く観測されず、蛍光体からの赤色発光のみ観測された。また、反射膜からは、全く発光は観測されなかった。 A voltage of 5V was applied to the organic EL element to evaluate the characteristics. As light emission, no light emission from the organic EL element was observed from the wavelength selective transmission / reflection film, and only red light emission from the phosphor was observed. Also, no light emission was observed from the reflective film.
  (実施例5)
 本実施例では、アクティブ駆動青色有機ELと蛍光体方式を組み合わせた例について説明する。
  100mm×100mm角のガラス基板上に、PECVD法を用いて、アモルファスシリコン半導体膜を形成した。続いて、結晶化処理を施すことにより多結晶シリコン半導体膜を形成した。次に、フォトリソグラフィー法を用いて多結晶シリコン半導体膜を複数の島状にパターンニングした。続いて、パターニングした多結晶シリコン半導体層の上にゲート絶縁膜及びゲート電極層をこの順番で形成し、フォトリソグラフィー法を用いてパターニングを行った。
(Example 5)
In this embodiment, an example in which an active drive blue organic EL and a phosphor system are combined will be described.
An amorphous silicon semiconductor film was formed on a 100 mm × 100 mm square glass substrate by PECVD. Subsequently, a polycrystalline silicon semiconductor film was formed by performing a crystallization treatment. Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by using a photolithography method. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed using a photolithography method.
  その後、パターニングした多結晶シリコン半導体膜にリン等の不純物元素をドーピングすることによりソース及びドレイン領域を形成し、TFT素子を作製した。その後、平坦化膜を形成した。平坦化膜としては、PECVD法で形成した窒化シリコン膜、スピンコーターでアクリル系樹脂層をこの順で積層し形成した。まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることによりソース及び/又はドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。 Thereafter, the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was fabricated. Thereafter, a planarizing film was formed. As the planarizing film, a silicon nitride film formed by PECVD and an acrylic resin layer were formed in this order using a spin coater. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source and / or drain region, and then a source wiring was formed.
  その後、アクリル系樹脂層を形成し、ゲート絶縁膜及び窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成することにより、アクティブマトリクス基板が完成した。平坦化膜としての機能は、アクリル系樹脂層で実現された。なお、TFTのゲート電位を定電位にするためのコンデンサーは、スイッチング用TFTのドレインと駆動用TFTのソースとの間に層間絶縁膜等の絶縁膜を介することで形成された。 After that, an active matrix substrate was completed by forming an acrylic resin layer and forming a contact hole leading to the drain region at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film. The function as a planarizing film was realized by an acrylic resin layer. The capacitor for setting the gate potential of the TFT to a constant potential is formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT.
  次に、9層のSiO(屈折率:1.4)および8層のTiO(屈折率:2.1)を交互に真空中で蒸着することにより、波長選択透過反射膜を形成した。ここで、各層の膜厚は、反射を行おうとする光の波長480nmの1/4である120nmに設定してある。波長選択透過反射膜である誘電体多層膜は、市販の分光光度計で測定したところ、480nm以下の波長域の光を96%反射し、波長640nmの光を95%透過した。 Next, 9 layers of SiO 2 (refractive index: 1.4) and 8 layers of TiO 2 (refractive index: 2.1) were alternately deposited in a vacuum to form a wavelength selective transmission / reflection film. Here, the film thickness of each layer is set to 120 nm which is a quarter of the wavelength 480 nm of light to be reflected. When measured with a commercially available spectrophotometer, the dielectric multilayer film, which is a wavelength selective transmission / reflection film, reflected 96% of light having a wavelength range of 480 nm or less and transmitted 95% of light having a wavelength of 640 nm.
  アクティブマトリクス基板上には、平坦化層、波長選択透過反射膜を貫通して駆動用TFTと、赤色発光有機EL素子の第1電極、緑色発光有機EL素子の第1電極、青色発光有機EL素子の第1電極とをそれぞれ電気的に接続するコンタクトホールを設けた。 On the active matrix substrate, the driving TFT, the first electrode of the red light emitting organic EL element, the first electrode of the green light emitting organic EL element, the blue light emitting organic EL element, penetrating the planarizing layer and the wavelength selective transmission / reflection film Contact holes for electrically connecting the first electrodes were provided.
  次に、各発光画素を駆動する為のTFTと接続した平坦化層を貫通して設けられたコンタクトホールに電気的に接続する用にスパッタ法により、各画素の第1電極(陽極)が形成された。第1電極は、IZO(酸化インジウム-酸化亜鉛)を150nmの膜厚で形成した。次に第1電極を各画素に対応した形状に従来のフォトリソグラフィー法でパターン化した。 Next, a first electrode (anode) of each pixel is formed by sputtering for electrical connection to a contact hole provided through a planarization layer connected to a TFT for driving each light emitting pixel. It was done. The first electrode was formed of IZO (indium oxide-zinc oxide) with a thickness of 150 nm. Next, the first electrode was patterned into a shape corresponding to each pixel by a conventional photolithography method.
  ここでは、第1電極の面積としては、300μm×160μmとした。また100mm×100mm角の基板に形成する、表示部は、80mm×80mmで、表示部の上下左右に設けている2mm幅の封止エリアが設けられており、短辺側には、更に封止エリアの外にそれぞれ2mmの端子取出し部が設けてある。長辺側は、折り曲げを行う方に、2mm端子取出し部が設けている。 Here, the area of the first electrode is 300 μm × 160 μm. The display unit formed on a 100 mm × 100 mm square substrate is 80 mm × 80 mm, and 2 mm wide sealing areas are provided on the top, bottom, left and right of the display unit, and further sealing is provided on the short side. A 2 mm terminal lead-out portion is provided outside the area. On the long side, a 2 mm terminal extraction part is provided on the side to be bent.
  次に第1電極のSiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、第1電極のエッジ部を覆うように、パターン化した。ここでは、第1電極の端から10μm分だけ4辺をSiOで覆う構造としエッジカバーとした。
  次に、前記アクティブ基板を洗浄した。アクティブ基板の洗浄としては、アセトン、IPAを用いて、超音波洗浄を10分間行い、次に、UV-オゾン洗浄を30分間行った。
Next, 200 nm of SiO 2 for the first electrode was laminated by sputtering, and patterned to cover the edge of the first electrode by conventional photolithography. Here, the edge cover is made to have a structure in which four sides are covered with SiO 2 by 10 μm from the end of the first electrode.
Next, the active substrate was cleaned. As cleaning of the active substrate, acetone and IPA were used for ultrasonic cleaning for 10 minutes, and then UV-ozone cleaning was performed for 30 minutes.
  次に、この基板をインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。各有機層の成膜を行った。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
Next, this substrate was fixed to a substrate holder in an in-line type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less. Each organic layer was formed.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
  次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。 Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第2電極として半透明電極を形成した。まず、上記基板を金属蒸着用チャンバーに固定した。次に、第2電極形成用のシャドーマスク(前記第1電極のストライプと対抗する向きに2mm幅のストライプ状に第2電極を形成できるように開口部が空いているマスク)と前記基板をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。 Thereafter, a semitransparent electrode was formed as the second electrode. First, the substrate was fixed to a metal deposition chamber. Next, the shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode) and the substrate are aligned. Then, magnesium and silver are formed on the surface of the electron injection layer in a desired pattern by co-evaporation at a deposition rate of 0.1 Å / sec and 0.9 Å / sec, respectively, by a vacuum evaporation method (thickness: 1 nm) )did.
  更にその上に、イオンプレーティング法により、第2電極での配線抵抗による電圧降下を防止する目的でインジウム-亜鉛酸化物(IZO)を10Å/secの蒸着速度で所望のパターンで形成(厚さ:100nm)した。これにより、第2電極が形成された。ここで、発光ピークを480nmに調整している。 Furthermore, indium-zinc oxide (IZO) is formed in a desired pattern at a deposition rate of 10 Å / sec (thickness) for the purpose of preventing voltage drop due to wiring resistance at the second electrode by ion plating. : 100 nm). Thereby, the second electrode was formed. Here, the emission peak is adjusted to 480 nm.
  次にプラズマCVD法により、3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した。
 前記工程と並行し、0.7mmのガラス基板上に、赤色蛍光体層、緑色蛍光体層を形成し、蛍光体基板を作製した。
Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
In parallel with the above process, a red phosphor layer and a green phosphor layer were formed on a 0.7 mm glass substrate to produce a phosphor substrate.
  基板上に、銀からなる第2反射膜を膜厚200nm形成した。
  次に、クロムからなる台形上の低反射層を幅20μm、膜厚500nmで、200μmピッチで形成した。
A second reflective film made of silver was formed to a thickness of 200 nm on the substrate.
Next, a low reflection layer on a trapezoid made of chromium was formed with a width of 20 μm, a film thickness of 500 nm and a pitch of 200 μm.
  赤色蛍光体層の形成は、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と赤色蛍光体K5Eu2.5(WO46.25を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したK5Eu2.5(WO46.25を得た。 In the formation of the red phosphor layer, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar and mixed well, then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface. K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  次に表面改質を施したK5Eu2.5(WO46.25 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した赤色蛍光体形成用塗液を作製した。以上作製した赤色蛍光体形成用塗液を、スクリーン印刷法で、前記ガラス上の低反射層を形成していない領域に塗布した。
 引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの赤色蛍光体層を形成した。
Next, 30 g of polyvinyl alcohol dissolved in a mixed solution of water / dimethyl sulfoxide = 1/1 (300 g) was added to 10 g of K 5 Eu 2.5 (WO 4 ) 6.25 subjected to surface modification, and the mixture was stirred by a disperser. A phosphor forming coating solution was prepared. The red phosphor-forming coating liquid prepared as described above was applied by screen printing to an area where the low reflection layer on the glass was not formed.
Subsequently, it was heated and dried in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a red phosphor layer having a thickness of 50 μm.
  次に、緑色蛍光体層の形成は、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と緑色蛍光体Ba2SiO4:Eu2+を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したBa2SiO4:Eu2+を得た。 Next, the green phosphor layer was formed by adding 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane to 0.16 g of aerosil having an average particle diameter of 5 nm and stirring for 1 hour at an open system room temperature. This mixture and 20 g of green phosphor Ba 2 SiO 4 : Eu 2+ were transferred to a mortar and mixed well, and then heated in a 70 ° C. oven for 2 hours and further in a 120 ° C. oven for 2 hours to modify the surface. Ba 2 SiO 4 : Eu 2+ was obtained.
  次に表面改質を施したBa2SiO4:Eu2+ 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した緑色蛍光体形成用塗液を作製した。以上作製した緑色蛍光体形成用塗液を、スクリーン印刷法で、前記ガラス上の低反射層を形成していない領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの緑色蛍光体層を形成した。
  以上により、蛍光体基板を作製した。
Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 was added to 10 g of Ba 2 SiO 4 : Eu 2+ subjected to surface modification, and the green fluorescence stirred by a disperser was added. A body-forming coating solution was prepared. The green phosphor-forming coating liquid prepared as described above was applied by screen printing to an area where the low reflection layer on the glass was not formed. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer having a thickness of 50 μm.
Thus, a phosphor substrate was produced.
  次に以上のようにして作製したアクティブ駆動型有機EL素子基板と蛍光体基板を、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。尚、事前に蛍光体基板には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着し、90℃、2時間加熱することで硬化を行った。尚、上記貼り合わせ工程は、有機ELの水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
 次に、光取り出し方向の基板に、偏光板を張り合わせ、アクティブ駆動型有機ELを完成させた。
Next, the active drive type organic EL element substrate and the phosphor substrate produced as described above were aligned using an alignment marker formed outside the display unit. In addition, the thermosetting resin was previously apply | coated to the fluorescent substance board | substrate, both board | substrates were closely_contact | adhered via the thermosetting resin, and it hardened | cured by heating at 90 degreeC for 2 hours. The above bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
Next, a polarizing plate was bonded to the substrate in the light extraction direction to complete an active drive type organic EL.
  最後に、短辺側に形成している端子をソースドライバを介して電源回路に、長辺側に形成している端子をゲートドライバを介して外部電源に接続し、80mm×80mmの表示部を持つアクティブ駆動型有機ELディスプレイが完成した。 Finally, the terminal formed on the short side is connected to the power supply circuit via the source driver, the terminal formed on the long side is connected to the external power supply via the gate driver, and an 80 mm × 80 mm display unit is formed. An active drive organic EL display is completed.
  ここで、外部電源により所望の電流を各画素に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし赤色蛍光体層、緑色蛍光体層で青色光から発光をそれぞれ赤色、緑色に変換し、赤色、緑色の等方発光が得られ、かつ、青色散乱層を介する事で、等方的な青色発光を得ることが可能であり、フルカラー表示が可能で、良好な画像、視野角特性の良い画像を得る事ができた。 Here, by applying a desired current to each pixel from an external power source, the blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched, and the red phosphor layer and the green phosphor layer emit light from blue light to red and green, respectively. It is possible to obtain isotropic emission of red and green by conversion, and through the blue scattering layer, it is possible to obtain isotropic blue emission, enabling full color display, good image, and viewing angle. An image with good characteristics could be obtained.
 高効率(高輝度)の発光デバイス、表示装置、及び電子機器を提供することが可能である。 High-efficiency (high luminance) light-emitting devices, display devices, and electronic devices can be provided.
10…発光デバイス、11…基板、12…波長選択透過反射膜、13…励起光源素子、14…封止層、15…接着層、16…蛍光体層、17…封止基板、19…反射層。 DESCRIPTION OF SYMBOLS 10 ... Light-emitting device, 11 ... Substrate, 12 ... Wavelength selective transmission reflective film, 13 ... Excitation light source element, 14 ... Sealing layer, 15 ... Adhesive layer, 16 ... Phosphor layer, 17 ... Sealing substrate, 19 ... Reflective layer .

Claims (11)

  1.   基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、
      前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光が外部に出射される発光デバイス。
    A substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light,
    A light emitting device in which the fluorescence is emitted to the outside in a direction opposite to a direction in which the excitation light is incident on the phosphor layer.
  2.  前記励起光源素子は、前記基板と前記蛍光体層との間に位置している請求項1記載の発光デバイス。 The light-emitting device according to claim 1, wherein the excitation light source element is located between the substrate and the phosphor layer.
  3.   前記基板と、前記蛍光体層と、前記励起光源素子とが順に形成されている請求項1記載の発光デバイス。 The light emitting device according to claim 1, wherein the substrate, the phosphor layer, and the excitation light source element are formed in order.
  4.   前記励起光を反射または吸収するとともに前記蛍光を透過させる波長選択透過反射膜を更に備えた請求項1に記載の発光デバイス。 The light emitting device according to claim 1, further comprising a wavelength selective transmission reflection film that reflects or absorbs the excitation light and transmits the fluorescence.
  5.   前記波長選択透過反射膜は、誘電体多層膜からなる請求項4記載の発光デバイス。 The light-emitting device according to claim 4, wherein the wavelength selective transmission / reflection film is made of a dielectric multilayer film.
  6.   前記励起光源素子は、第1電極、少なくとも有機発光材料を含有する有機層、第2電極を含む有機EL素子である請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the excitation light source element is an organic EL element including a first electrode, an organic layer containing at least an organic light emitting material, and a second electrode.
  7.   前記励起光源素子を挟んで前記波長選択透過反射膜と対向し、少なくとも前記励起光の一部、および前記蛍光の一部を反射させる反射膜をさらに備えた請求項2に記載の発光デバイス。 The light-emitting device according to claim 2, further comprising a reflective film that opposes the wavelength selective transmission reflective film across the excitation light source element and reflects at least a part of the excitation light and a part of the fluorescence.
  8.  基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、 前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光を外部に出射させるよう構成されている発光デバイスを備えている表示装置。 A substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and is directed in a direction opposite to the direction in which the excitation light is incident on the phosphor layer A display device comprising a light emitting device configured to emit the fluorescence to the outside.
  9.   前記励起光源素子をアクティブ駆動素子を用いて駆動する請求項8記載の表示装置。 The display device according to claim 8, wherein the excitation light source element is driven using an active drive element.
  10.   前記アクティブ駆動素子は前記基板に形成され、前記蛍光は前記基板とは反対側から出射される請求項9記載の表示装置。 10. The display device according to claim 9, wherein the active drive element is formed on the substrate, and the fluorescence is emitted from a side opposite to the substrate.
  11.  基板と、励起光を発する励起光源素子と、前記励起光によって励起され蛍光を発する蛍光体層と、を少なくとも備え、 前記励起光が蛍光体層に向けて入射する方向と反対の方向に向けて、前記蛍光を外部に出射させるよう構成されている発光デバイスを備える表示装置を備えている電子機器。 A substrate, an excitation light source element that emits excitation light, and a phosphor layer that emits fluorescence when excited by the excitation light, and is directed in a direction opposite to the direction in which the excitation light is incident on the phosphor layer An electronic device comprising a display device comprising a light emitting device configured to emit the fluorescence to the outside.
PCT/JP2011/072149 2010-10-06 2011-09-28 Light-emitting device, display apparatus, and electronic equipment WO2012046599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226739 2010-10-06
JP2010-226739 2010-10-06

Publications (1)

Publication Number Publication Date
WO2012046599A1 true WO2012046599A1 (en) 2012-04-12

Family

ID=45927594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072149 WO2012046599A1 (en) 2010-10-06 2011-09-28 Light-emitting device, display apparatus, and electronic equipment

Country Status (1)

Country Link
WO (1) WO2012046599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235192A (en) * 2012-05-10 2013-11-21 Nitto Kogaku Kk Color temperature change filter and optical module equipped with color temperature change filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139849A (en) * 2002-10-17 2004-05-13 Fuji Electric Holdings Co Ltd Color conversion light emitting device
JP2004207065A (en) * 2002-12-25 2004-07-22 Fuji Electric Holdings Co Ltd Color conversion light emitting device, its manufacturing method and display using color conversion light emitting device
WO2009093426A1 (en) * 2008-01-21 2009-07-30 Panasonic Corporation Light emitting element and display device
JP2009224245A (en) * 2008-03-18 2009-10-01 Sony Corp Light emitting fixture and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139849A (en) * 2002-10-17 2004-05-13 Fuji Electric Holdings Co Ltd Color conversion light emitting device
JP2004207065A (en) * 2002-12-25 2004-07-22 Fuji Electric Holdings Co Ltd Color conversion light emitting device, its manufacturing method and display using color conversion light emitting device
WO2009093426A1 (en) * 2008-01-21 2009-07-30 Panasonic Corporation Light emitting element and display device
JP2009224245A (en) * 2008-03-18 2009-10-01 Sony Corp Light emitting fixture and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235192A (en) * 2012-05-10 2013-11-21 Nitto Kogaku Kk Color temperature change filter and optical module equipped with color temperature change filter

Similar Documents

Publication Publication Date Title
US8908125B2 (en) Fluorescent substrate and method for producing the same, and display device
JP5538519B2 (en) Light emitting element, display and display device
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
WO2013021941A1 (en) Phosphor substrate, display device, and electronic device
WO2012026209A1 (en) Organic light emitting device and antistatic method for same
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
JP5858367B2 (en) ORGANIC EL DISPLAY UNIT, ORGANIC EL DISPLAY DEVICE, AND ORGANIC EL DISPLAY UNIT MANUFACTURING METHOD
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2012043611A1 (en) Organic el display device and method for manufacturing same
JP2013109907A (en) Phosphor substrate and display device
WO2011145418A1 (en) Phosphor display device, and phosphor layer
WO2012121372A1 (en) Display element and electronic device
JP2016143658A (en) Light emitting element and display device
US8547013B2 (en) Organic EL display device with a color converting layer
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
WO2011145358A1 (en) Phosphor substrate, light-emitting element, and display device using same
WO2012144426A1 (en) Fluorescent light body substrate and display device
WO2012017751A1 (en) Organic light emitting element, organic light emitting device, and color conversion method
WO2012121287A1 (en) Phosphor substrate and display device
WO2011102023A1 (en) Organic electroluminescent component and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP