WO2012046595A1 - Counter electrode for dye-sensitized solar cell, solar cell device, and method for manufacturing same - Google Patents

Counter electrode for dye-sensitized solar cell, solar cell device, and method for manufacturing same Download PDF

Info

Publication number
WO2012046595A1
WO2012046595A1 PCT/JP2011/072087 JP2011072087W WO2012046595A1 WO 2012046595 A1 WO2012046595 A1 WO 2012046595A1 JP 2011072087 W JP2011072087 W JP 2011072087W WO 2012046595 A1 WO2012046595 A1 WO 2012046595A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
dye
counter electrode
carbon nanotube
mwnt
Prior art date
Application number
PCT/JP2011/072087
Other languages
French (fr)
Japanese (ja)
Inventor
麗萍 趙
勇進 李
博 清水
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2012537645A priority Critical patent/JP5569947B2/en
Publication of WO2012046595A1 publication Critical patent/WO2012046595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell.
  • the present invention relates to a counter electrode for a dye-sensitized solar cell, a solar cell device using the counter electrode, and a manufacturing method thereof.
  • the dye-sensitized solar cell is a new type that uses an oxide semiconductor and a dye instead of a pn junction, and converts light energy into electric energy not by the semiconductor itself but by a dye applied to the surface of the semiconductor.
  • a typical dye-sensitized solar cell is a type called a Gretzell type (wet solar cell), in which a titanium dioxide layer adsorbing a trace amount of a dye such as a ruthenium complex and an electrolyte are sandwiched between two electrodes. It has a simple structure.
  • Organic thin-film solar cells are a type that uses a combination of conductive polymers, fullerenes, etc., and are considered to have a simpler structure and manufacturing method than the dye-sensitized solar cells described above, and do not use an electrolyte. In addition, it is more flexible and has a great merit in terms of improving the service life. However, since this type of solar cell has low photoelectric conversion efficiency, materials are currently being actively searched for to improve photoelectric conversion efficiency.
  • Quantum dot type photovoltaic power generation cells use quantum effects. For example, a structure in which quantum dot structures of about several nanometers are regularly arranged in one layer of a cell having a pin structure has been proposed. . If these structural constructions are realized, extremely high photoelectric conversion efficiency can be realized, but at present, development of a fine processing process is urgently required, and realization takes time.
  • Platinum (Pt) used for the counter electrode of the dye-sensitized solar cell is a rare metal, and its production since its history is only over 4000 tons, only 1/30 of gold, and only 1 ton of raw ore. The fact that only 3 g can be collected also raises the scarcity value, and the price of platinum is more expensive than gold.
  • worldwide demand for platinum has been increasing rapidly for automobile catalysts and fuel cells, and there is concern that the supply-demand balance may be disrupted. Therefore, from the viewpoint of resource saving and cost reduction, the development of a counter electrode material that can replace platinum is an urgent issue.
  • Patent Document 1 a material that can be used as a counter electrode material of a solar cell device by using a binary material of a mixture of multi-walled carbon nanotubes and a conductive polymer has been reported.
  • Patent Document 1 achieve photoelectric conversion efficiency comparable to platinum, the material constituting the counter electrode (mixture of multi-walled carbon nanotubes and conductive polymer) is dispersible in various solutions. However, since it is in a powder-like state, when a film is formed, a non-uniform film structure is formed, which hinders an increase in the area of the counter electrode material.
  • Patent Document 2 reports a material that is used as a counter electrode material of a solar cell device by a combination of a conductive material having a three-dimensional network structure and a catalytic substance mainly composed of a conductive polymer.
  • Patent Document 2 when the material in Patent Document 2 is used for a solar cell counter electrode material, the photoelectric conversion efficiency surpassing that of platinum is realized.
  • the counter electrode material when the counter electrode material is formed, an electrode is provided in advance to electroconductive the conductive monomer. A process of oxidizing the conductive polymer by polymerizing the conductive polymer is essential. Therefore, in this process, when the area is increased, it is difficult to uniformly form a conductive polymer layer produced by electrolytic polymerization, and it cannot be said that the process is suitable for practical use, so it is not an attractive technique.
  • the present inventors set various materials systems such as carbon nanotubes (CNT) and conductive polymers as well as developing a highly conductive counter electrode material that can replace platinum.
  • CNT carbon nanotubes
  • the present invention is a counter electrode for a dye-sensitized solar cell, which can be manufactured by an inexpensive material that can replace platinum, which is an expensive rare metal, and a simple manufacturing method, and has a photoelectric conversion efficiency equivalent to that of platinum. It aims at providing the counter electrode for sensitive solar cells.
  • another object of the present invention is to provide a method for producing the electrode by a material structure capable of reducing the weight and area of a solar cell and a process that is simple and excellent in operability in producing the counter electrode. It is to be.
  • the carbon nanotube includes 100 wt%
  • the ionic liquid includes 50 wt% to 500 wt%
  • the conductive polymer includes 50 wt% to 200 wt%.
  • a counter electrode for a dye-sensitized solar cell comprising a ternary conductive carbon nanotube composition characterized by forming a core-shell structure in which a mixture with an ionic liquid is a nucleus and the conductive polymer is a shell Is provided.
  • the carbon nanotubes may be single-walled or multi-walled carbon nanotubes having the same diameter and length.
  • the ionic liquid may contain two hydroxyl groups.
  • the ionic liquid containing two hydroxyl groups may be 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide.
  • the conductive polymer may have a thiophene skeleton and be hydrophilic with the sulfonate.
  • the conductive polymer may be poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS).
  • the carbon nanotube and the ionic liquid are mechanically kneaded in a mortar for a predetermined time to prepare a mixture, and the mixture is washed with a solution to remove the unadsorbed ionic liquid. And then centrifuging, adding a predetermined amount of a conductive polymer aqueous solution to the residue, ultrasonically dispersing the dispersion, and centrifuging the dispersion.
  • a method for producing a counter electrode for a dye-sensitized solar cell comprising a conductive carbon nanotube composition is provided.
  • the ionic liquid may be mixed by 50% or more and 500% or less, and the predetermined time may be 10 minutes or more and 240 minutes or less.
  • the conductive polymer in an aqueous solution of 0.005 wt% or more and 5 wt% or less may be added to the residue.
  • a solar cell device in which the ternary conductive carbon nanotube composition is manufactured by the manufacturing method and then applied and formed as a counter electrode of a dye-sensitized solar cell. .
  • a method for manufacturing a solar cell device in which the ternary conductive carbon nanotube composition is formed as a counter electrode of a dye-sensitized solar cell.
  • the carbon nanotube (CNT) is 100% by weight
  • the ionic liquid (IL) is 50% by weight to 500% by weight
  • the conductive polymer (CP) is 50% by weight to 200% by weight.
  • a ternary conductive carbon nanotube composition (IL-CNT / CP) characterized by forming a core-shell structure in which a mixture of CNT and IL forms a core and CP forms a shell
  • Jsc short-circuit current density
  • Voc open-circuit voltage
  • FF fill factor
  • the energy conversion efficiency ( ⁇ ) succeeded in obtaining a result almost equivalent to that obtained when platinum was used as a counter electrode.
  • a conductive material that can replace platinum such as a counter electrode material for a dye-sensitized solar cell and various electrode materials.
  • the method for producing the ternary conductive carbon nanotube composition (IL-CNT / CP) according to the present invention is very simple and not only reduces the production cost, but also increases the area and mass production of materials and electrodes. Is possible.
  • IL is 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide
  • multi-wall CNT as CNT
  • ternary conductive carbon nanotube composition IL-MWNT / PEDOT: PSS
  • MWNT MWNT
  • PEDOT polystyrenesulfonium
  • the IL may be an ionic liquid having a hydroxyl group
  • the CNT may be a single-walled CNT having the same diameter and length of the tube.
  • CP may be polyaniline or polypyrrole, CP that exhibits hydrophilicity when paired with sulfonate is desirable.
  • IL-MWNT ternary conductive carbon nanotube composition
  • A shows a process for producing IL-MWNT by binding ionic liquid (IL) to MWNT
  • B shows three processes formed by adding and dispersing a conductive polymer PEDOT: PSS to IL-MWNT.
  • FIG. 3 is a TEM image of IL-MWNT / PEDOT: PSS in which a core-shell structure according to an embodiment of the present invention is formed.
  • the portion 40 indicates a PEDOT: PSS layer. It is a TEM image of MWNT / PEDOT: PSS, and the arrow in a figure shows particulate PEDOT: PSS50.
  • Photoelectric conversion characteristics: a and c are photocurrent-voltage characteristics, and b and d are incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics as a solar cell.
  • a counter electrode for a dye-sensitized solar cell a solar cell device, and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
  • the counter electrode for a dye-sensitized solar cell, the solar cell device, and the manufacturing method thereof of the present invention are not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.
  • the core-shell structure ternary conductive carbon nanotube composition according to the present invention will be described with reference to a counter electrode for a dye-sensitized solar cell and a solar cell device, but is not limited thereto. It can be widely applied as an alternative to platinum electrodes.
  • MWNT multiwall carbon nanotube
  • a core-shell structure ternary conductive carbon nanotube composition with improved conductivity, IL-MWNT / PEDOT: PSS is used as a counter electrode of a dye-sensitized solar cell.
  • the present invention succeeded in obtaining characteristics equivalent to those of a platinum electrode, and succeeded in significantly improving photoelectric conversion efficiency that could not be achieved by the binary carbon nanotube composition.
  • FIG. 1 is a configuration diagram of a dye-sensitized solar cell device 1000 according to an embodiment of the present invention.
  • the dye-sensitized solar cell device 1000 includes, for example, a transparent substrate 1, a transparent conductive film 2, a porous metal oxide semiconductor layer 3, a sensitizing dye layer 4, an electrolytic solution layer 5, a counter electrode (or a counter electrode) 6, and A substrate 7 is provided.
  • IL-MWNT / PEDOT: PSS according to the embodiment of the present invention is a material used for the counter electrode 6.
  • FIG. 2 shows a schematic diagram of a ternary conductive carbon nanotube composition according to this embodiment and a dye-sensitized solar cell device using the same as a counter electrode.
  • FIG. 2 (a) is a diagram showing a core-shell structure of a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS), and
  • FIG. 2 (b) is a ternary conductive carbon nanotube. It is a figure which shows the structure of the dye-sensitized solar cell device which made the nanotube composition the counter electrode.
  • the ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) has poly (3,4-ethylenedioxythiophene) on the outer peripheral surface of the core formed by MWNT and ionic liquid (IL). ): Polystyrenesulfonium (PEDOT: PSS) is bonded to form a shell.
  • IL-MWNT Binary carbon nanotube composition
  • FIG. 3 is a transmission electron microscope (TEM) image of a binary carbon nanotube composition, IL-MWNT.
  • TEM transmission electron microscope
  • IL-MWNT is a binary carbon nanotube composition obtained by kneading MWNT and ionic liquid (IL), and ionic liquid (IL) is produced by the interaction of ⁇ electrons on the outer surface of MWNT and ionic liquid (IL).
  • the medium itself is also arranged on the outer surface of the MWNT, and as a result, it is assumed that the medium is physically cross-linked and gelled. By such gelation, it is considered that MWNTs become hydrophilic, thereby reducing van der Waals force and improving dispersibility of MWNTs.
  • poly (3,4-ethylenedioxythiophene) polystyrenesulfonium (PEDOT) having a conductive polymer, in particular, a thiophene skeleton, and having a hydrophilic property when paired with a sulfonate as a conductive substance. : PSS), it was found that good photoelectric conversion efficiency can be obtained.
  • PEDOT polystyrenesulfonium
  • IL-MWNT / PEDOT: PSS When PEDOT: PSS is bonded to IL-MWNT, a ternary conductive carbon nanotube composition having a core-shell structure shown in FIG. 2A, IL-MWNT / PEDOT: PSS, is formed.
  • IL-MWNT / PEDOT: PSS has poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT) on the outer peripheral surface of the core (core) formed by MWNT and ionic liquid (IL). : PSS) combine to form a shell.
  • the IL-MWNT / PEDOT: PSS thus obtained has excellent dispersibility and excellent conductivity, and when used as a counter electrode as shown in Examples described later, the dye-sensitized solar cell 1000 Can be made equivalent to the platinum electrode.
  • the dye of the sensitizing dye layer 4 is excited by light energy from the outside, and the transparent conductive film is passed through the porous metal oxide semiconductor layer 3. Electron (e ⁇ ) migration to 2 occurs. At the same time, an oxidation-reduction reaction occurs with ions in the electrolyte layer 5.
  • IL-MWNT / PEDOT: PSS since IL-MWNT / PEDOT: PSS according to the present embodiment is excellent in dispersibility, a layer of IL-MWNT / PEDOT: PSS can be uniformly formed on the counter electrode 6, so that electrons can be uniformly formed from the counter electrode 6. (E ⁇ ) can be released to the electrolyte layer 5. Further, in IL-MWNT / PEDOT: PSS, since PEDOT: PSS imparting conductivity to the outer surface of IL-MWNT forms a shell, the electrons (e ⁇ ) of the electrolyte layer 5 High emission efficiency. For this reason, the dye-sensitized solar cell 1000 according to the present embodiment can provide photoelectric conversion efficiency equivalent to that of the platinum electrode.
  • FIG. 4A and FIG. 4B are schematic views showing a synthesis process of the ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) 100 according to the present embodiment.
  • the ionic liquid (1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide
  • the conductive polymer PEDOT: PSS a portion having a thiophene skeleton is indicated by PEDOT, and a portion of a sulfonate salt is indicated by PSS.
  • An ionic liquid (IL) is an ionic liquid containing two hydroxyl groups, specifically, 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide) Can be mentioned.
  • the conductive polymer according to the embodiment of the present invention may be a conductive polymer having a pyrrole or aniline skeleton and having a hydrophilic property in a pair with a sulfonate.
  • MWNT and ionic liquid are mixed.
  • the mixing method include a method in which both are dispersed in a solution and a method in which they are mixed mechanically.
  • mechanical kneading using a smoked mortar is preferable.
  • IL-MWNT is separated.
  • various alcohol solutions can be used as the cleaning liquid.
  • ethanol is preferable.
  • the separation of IL-MWNT can be carried out simply by using a centrifugal separation method.
  • a predetermined amount of an aqueous solution of PEDOT: PSS is added to the obtained IL-MWNT and then dispersed.
  • the dispersion method include stirring and ultrasonic treatment.
  • ultrasonic treatment is preferable.
  • IL-MWNT / PEDOT: PSS is obtained by sufficiently stirring IL-MWNT and binding PEDOT: PSS to IL-MWNT.
  • IL-MWNT / PEDOT: PSS can be separated from unbound PEDOT: PSS by centrifugation or the like.
  • IL-MWNT / PEDOT: PSS according to the present invention of the present embodiment has a high conductivity of an aqueous solution containing 0.005% by weight to 5% by weight of IL-MWNT in a temperature range of 5 ° C. to 50 ° C. Addition of molecules (CP), dispersion by ultrasonic dispersion, centrifuging this dispersion, ternary conductive carbon whose residue is a ternary conductive carbon nanotube composition (IL-MWNT / CP) A method for producing a nanotube composition is preferred.
  • the IL-MWNT / PEDOT: PSS according to the present embodiment of the present embodiment has an ionic liquid (IL) of 50 wt% to 500 wt% and a conductive polymer (CP) of 50 wt% with respect to 100 wt% of MWNT. It is preferable that the amount is not less than 200% by weight.
  • IL-MWNT / PEDOT: PSS according to the present invention of the present embodiment has an ionic liquid (IL) of 50% to 500% with respect to MWNT of 100% by weight in a temperature range of 5 ° C. to 50 ° C. % Or less, and mechanically kneaded in a mortar for 10 minutes to 240 minutes, and then the kneaded product is washed with ethanol to remove unadsorbed ionic liquid (IL), and then centrifuged.
  • IL-MWNT ionic liquid
  • the mixture of MWNT and ionic liquid (IL) is the core, and the conductive polymer (CP) is the shell.
  • a core-shell structure is formed.
  • the IL-MWNT / PEDOT: PSS according to the present embodiment has a very simple manufacturing method, and not only can reduce the manufacturing cost but also increase the area and mass production of materials and electrodes.
  • Example 1 A specific example is described about the manufacturing method of the ternary system conductive carbon nanotube composition concerning the present invention explained in the embodiment.
  • multi-wall carbon nanotubes made from Nikkiso Co., Ltd. having a tube diameter of 20 nm and a length of 15 ⁇ m were used.
  • ionic liquid IL
  • 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide manufactured by Aldrich was used.
  • PEDOT polystyrenesulfonium
  • Aldrich As the conductive polymer (CP), poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS) manufactured by Aldrich was used. PEDOT: PSS has an electrical conductivity of 1 S / cm in a 1.3 wt% aqueous solution.
  • IL-MWNT 10 mg of MWNT and equal weight of IL (1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide) are mixed and mechanically kneaded at room temperature for 30 minutes using a smoked mortar. did. Thereafter, the kneaded product was washed with ethanol to remove unadsorbed IL, and then centrifuged to obtain a residue (IL-MWNT). To IL-MWNT, 20 ml of 0.05% by weight aqueous solution of PEDOT: PSS was added and dispersed for 10 minutes using a low-power ultrasonic dispersion apparatus. The dispersed sample is sufficiently washed with water to remove unbound CP, and then centrifuged. As a residue, the final product is a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS). )
  • Comparative Example 1 a binary carbon nanotube composition, MWNT / PEDOT: PSS, in which MWNT and a 0.05 wt% aqueous solution of PEDOT: PSS were directly mixed and ultrasonically dispersed for 15 minutes was prepared.
  • This MWNT / PEDOT: PSS was extremely poor in dispersibility and could not be dispersed even by ultrasonic dispersion treatment for several hours.
  • FIG. 3 is a TEM photograph of IL-MWNT
  • FIG. 5 is a TEM photograph of IL-MWNT / PEDOT: PSS
  • FIG. 6 is a MWNT / PEDOT: PSS.
  • ionic liquid (IL) [dhmim] + is adsorbed on the outer surface of MWNT10 (diameter 20 nm), and the outer diameter of MWNT is thicker than the layer 20 adsorbed by [dhmim] + , at 25 nm. there were.
  • FIG. 5 it became thicker than FIG. 3, and the outer diameter was about 50 nm.
  • the shell layer 40 made of the conductive polymer PEDOT: PSS is formed outside the core (30) made of IL-MWNT, and the core-shell structure of IL-MWNT / PEDOT: PSS is formed.
  • PEDOT: PSS was not adsorbed on the outer surface of MWNT, but was dispersed in the form of particles (particles 50) around MWNT. For this reason, in MWNT / PEDOT: PSS, the diameter of MWNT hardly changes and remains about 20 nm.
  • Example 2 A ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) of Example 1 was applied onto a fluorine-doped tin oxide (FTO: Asahi Techno Glass) glass to prepare a counter electrode (electrode). . After application, the film was dried on a hot plate at 60 ° C. and then annealed at 200 ° C. for a whole day and night. The film thickness of the counter electrode at this time is controlled by the weight of MWNT, and the MWNT concentration of a typical coating film is 0.5 mg ⁇ cm ⁇ 2 .
  • FTO Asahi Techno Glass
  • Comparative Example 2 platinum (Pt) was deposited on FTO glass by magnetron sputtering to produce a counter electrode (electrode).
  • Comparative Example 3 Furthermore, as Comparative Example 3, MWNT / PEDOT: PSS was applied as a solution on FTO glass to produce a counter electrode (electrode).
  • Comparative Example 4 As Comparative Example 4, IL-MWNT of Comparative Example 2 was applied as a solution on FTO glass to produce a counter electrode (electrode).
  • Comparative Example 5 As Comparative Example 5, PEDOT: PSS simple substance was applied as a solution on FTO glass to produce a counter electrode (electrode).
  • Example 3 In order to evaluate the performance as a dye-sensitized solar cell, a dye-sensitized solar cell 1000 was produced using the counter electrode of Example 2. First, a transparent electrode on the light introduction side was produced as follows. A commercially available titanium dioxide (TiO 2 ) paste (Degussa P25) was applied on FTO glass and annealed at 500 ° C. for 1 hour. Subsequently, this was immersed in a 0.5 mmol ⁇ l ⁇ 1 N719 dye (Solaronix SA, Switzerland) in a 1: 1 solution of acetonitrile and tert-butanol for 12 hours to adsorb the dye onto titanium dioxide.
  • TiO 2 titanium dioxide
  • the electrolyte solution used here was acetonitrile composed of 0.1 M lithium iodide (LiI), 0.05 M iodine (I 2 ), 0.6 M dimethylpropylimidazolium iodide and 0.5 M tert-butylpyridine. It is a solution.
  • Photovoltaic characteristics of the solar cell produced above are voltage / current generator (R6246 manufactured by ADVANTEST) using AM1.5 solar simulator (Wacom WXS-80C3 equipped with 300W xenon lamp and AM filter) as a light source. ). In this measurement, the incident light intensity was calibrated using a standard solar cell made of crystalline silicon (manufactured and calibrated by the Japan Quality Assurance Association). Further, in order to avoid intrusion of diffused light, it was photovoltaic measured using a black mask hole area 0.2354cm 2.
  • FIGS. 7A and 7C show the results of the photocurrent-voltage characteristics of the dye-sensitized solar cell using five types of counter electrodes.
  • the incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics as a solar cell were measured by SM-250DAM manufactured by Spectrometer Co., Ltd.
  • the photovoltaic characteristics of the solar cell were measured with a voltage / current generator (Keithley 2400) using an AM1.5 solar simulator (PEC-L11 manufactured by Peccell Technologies) as a light source.
  • the incident light intensity was calibrated using a standard solar cell made of crystalline silicon (manufactured and calibrated by the Japan Quality Assurance Association).
  • FIGS. 7B and 7D show the incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics of the solar cell device, and show a good correlation with the current-voltage characteristics.
  • the photoelectric conversion characteristics of these devices include parameters such as short circuit current density (Jsc), open circuit voltage (Voc), fill factor (form factor: FF), and energy conversion efficiency ( ⁇ ), which are shown in Table 1.
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • energy conversion efficiency
  • Table 1 the characteristics of Example 2 using a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) as a counter electrode are platinum (Pt) as a counter electrode of a standard solar cell.
  • the characteristics are almost the same as those of Comparative Example 2 used, and it is confirmed that the ternary conductive carbon nanotube composition is an electrode material that can replace platinum.
  • PEDOT: PSS alone, or IL-MWNT or MWNT / PEDOT: PSS was used as the counter electrode, their photoelectric conversion characteristics could not exceed that of platinum.
  • the ternary conductive carbon nanotube composition according to the present invention has a photoelectric conversion characteristic equivalent to that of platinum. Therefore, the ternary conductive carbon nanotube composition according to the present invention is expected to be widely used in industry as an alternative material for platinum, which is a rare metal. Therefore, the ternary conductive carbon nanotube composition according to the present invention can be used in a wide range of fields such as electrode materials such as a counter electrode for dye-sensitized solar cells, various highly conductive materials, and electromagnetic wave absorbing materials.

Abstract

Provided is a counter electrode for a dye-sensitized solar cell that can be fabricated with an inexpensive material that can replace platinum and by a simple manufacturing method and that has a photoelectric conversion efficiency equivalent to platinum. Provided according to the present invention is a counter electrode for a dye-sensitized solar cell provided with a ternary conductive carbon nanotube composition characterized by containing 100 wt% carbon nanotubes, 50 - 500 wt% of an ionic liquid, and 50 - 200 wt% of a conductive polymer and forming a core-shell structure in which a mixture of the carbon nanotubes and ionic liquid form the core and the conductive polymer forms the shell.

Description

色素増感型太陽電池用対極、太陽電池デバイスおよびその製造方法Counter electrode for dye-sensitized solar cell, solar cell device and manufacturing method thereof
本発明は、太陽電池に関する。特に、色素増感型太陽電池用対極、それを用いた太陽電池デバイスおよびその製造方法に関する。 The present invention relates to a solar cell. In particular, the present invention relates to a counter electrode for a dye-sensitized solar cell, a solar cell device using the counter electrode, and a manufacturing method thereof.
太陽光発電セル材料もしくは太陽電池の開発においては、すでにシリコン(単結晶シリコン、多結晶シリコン、アモルファスシリコン等)を用いた太陽電池がすでに実用化され普及しているが、原材料のシリコンの供給が不足するのではないかという懸念が指摘されている。このような状況において、近年シリコン材料以外の材料開発が活発化している。例えば、太陽光のスペクトルに適合したGaAs系の化合物は、高い光電変換効率が期待されるため注目されている。一方、これらの材料に対して、有機系の材料は、製法が簡便であり、かつ生産コストを抑えることができ、軽量化・大面積化が可能で、さらには柔軟性を付与することができるなどの特徴を有することから、大きな注目を集めている。有機系の太陽電池としては、色素増感型、有機薄膜型、量子ドット型のセルが研究段階にある。 In the development of photovoltaic cell materials or solar cells, solar cells using silicon (single crystal silicon, polycrystalline silicon, amorphous silicon, etc.) have already been put into practical use, but the supply of raw silicon Concerns have been pointed out that there may be a shortage. Under such circumstances, development of materials other than silicon materials has recently been activated. For example, a GaAs compound suitable for the spectrum of sunlight is attracting attention because high photoelectric conversion efficiency is expected. On the other hand, in contrast to these materials, organic materials have a simple manufacturing method, can reduce production costs, can be reduced in weight and area, and can be given flexibility. It has attracted a great deal of attention because of its features. As organic solar cells, dye-sensitized, organic thin-film, and quantum dot-type cells are in the research stage.
色素増感型太陽電池は、pn接合の代わりに酸化物半導体と色素を用いて、半導体自体ではなく、その表面に塗った色素により光エネルギーを電気エネルギーに変換する新しいタイプのものである。代表的な色素増感型太陽電池はグレッツエル型(湿式太陽電池)と呼ばれる型式のもので、2枚の電極の間に微量のルテニウム錯体などの色素を吸着させた二酸化チタン層と電解質を挟み込んだ単純な構造を有している。 The dye-sensitized solar cell is a new type that uses an oxide semiconductor and a dye instead of a pn junction, and converts light energy into electric energy not by the semiconductor itself but by a dye applied to the surface of the semiconductor. A typical dye-sensitized solar cell is a type called a Gretzell type (wet solar cell), in which a titanium dioxide layer adsorbing a trace amount of a dye such as a ruthenium complex and an electrolyte are sandwiched between two electrodes. It has a simple structure.
有機薄膜系太陽電池は導電性高分子やフラーレンなどを組み合わせて用いるタイプのものであり、上記色素増感型太陽電池よりも構造や製法が簡便になると考えられており、電解液を用いないために、より柔軟性に優れ、寿命向上の面でも大きなメリットがある。しかしながら、このタイプの太陽電池では光電変換効率が低いため、現在積極的に光電変換効率向上に向けて材料探索が進められている。 Organic thin-film solar cells are a type that uses a combination of conductive polymers, fullerenes, etc., and are considered to have a simpler structure and manufacturing method than the dye-sensitized solar cells described above, and do not use an electrolyte. In addition, it is more flexible and has a great merit in terms of improving the service life. However, since this type of solar cell has low photoelectric conversion efficiency, materials are currently being actively searched for to improve photoelectric conversion efficiency.
量子ドット型太陽光発電セルは量子効果を利用するもので、例えばp-i-n構造を有するセルの1層中に数nm程度の量子ドット構造を規則的に並べた構造が提案されている。これらの構造構築が実現すれば極めて高い光電変換効率を実現できることになるが、現在は微細な加工プロセスの開発が急務となっており、実現化には時間を要する。 Quantum dot type photovoltaic power generation cells use quantum effects. For example, a structure in which quantum dot structures of about several nanometers are regularly arranged in one layer of a cell having a pin structure has been proposed. . If these structural constructions are realized, extremely high photoelectric conversion efficiency can be realized, but at present, development of a fine processing process is urgently required, and realization takes time.
本発明と関係の深い、色素増感型太陽電池の構成材料について再度触れる。通常、当該電池の製造は、まず二酸化チタン微粒子と分散剤を有機溶媒に均一に分散してペーストを作製し、このペーストを透明電極付きガラスに塗布する。塗布後、高温で焼結することにより二酸化チタンが多孔質構造となった電極を作製する。この多孔質電極に色素のエタノール溶液を還流させて色素吸着を行った後、白金(Pt)がコーティングされたガラスを対極として用い、隙間に電解液を注入し、エポキシ系封止剤等で封止してセルを作製する。 The constituent materials of the dye-sensitized solar cell that are closely related to the present invention will be described again. Usually, in the manufacture of the battery, first, titanium dioxide fine particles and a dispersant are uniformly dispersed in an organic solvent to prepare a paste, and this paste is applied to a glass with a transparent electrode. After application, an electrode having a porous structure of titanium dioxide is produced by sintering at a high temperature. After the dye was adsorbed by refluxing the ethanol solution of the dye to this porous electrode, the glass coated with platinum (Pt) was used as the counter electrode, the electrolyte was injected into the gap, and sealed with an epoxy sealant or the like. Stop and make the cell.
上記色素増感型太陽電池の対極に用いられている白金(Pt)はレアメタルであり、有史以来の生産量がわずか4000トン強で金の30分の1に過ぎず、原鉱石1トンからわずか3gしか採取できないという点も希少価値を高めており、白金の価格は金に比べても高価なものとなっている。近年、世界の白金需要は自動車の触媒用や燃料電池向けに急激に高まっており、需給バランスが崩れることが懸念されている。従って、省資源ならびにコスト低減化の観点から、白金に代替できる対極材料の開発が喫緊の課題となっている。 Platinum (Pt) used for the counter electrode of the dye-sensitized solar cell is a rare metal, and its production since its history is only over 4000 tons, only 1/30 of gold, and only 1 ton of raw ore. The fact that only 3 g can be collected also raises the scarcity value, and the price of platinum is more expensive than gold. In recent years, worldwide demand for platinum has been increasing rapidly for automobile catalysts and fuel cells, and there is concern that the supply-demand balance may be disrupted. Therefore, from the viewpoint of resource saving and cost reduction, the development of a counter electrode material that can replace platinum is an urgent issue.
このような技術的背景の下に、白金以外の材料、とりわけ有機系材料を用いて導電性や光電変換効率の改善の取り組みが行なわれている。例えば、多層カーボンナノチューブと導電性高分子との混合物という二元系材料を用いることにより、太陽電池デバイスの対極材料として用いることができる材料が報告されている(特許文献1)。 Under such a technical background, efforts have been made to improve conductivity and photoelectric conversion efficiency using materials other than platinum, particularly organic materials. For example, a material that can be used as a counter electrode material of a solar cell device by using a binary material of a mixture of multi-walled carbon nanotubes and a conductive polymer has been reported (Patent Document 1).
しかし、特許文献1の結果では、白金に匹敵する光電変換効率を実現しているが、対極を構成している材料(多層カーボンナノチューブと導電性高分子との混合物)は各種溶液への分散性が悪く、粉末様の状態であるため、膜形成をすると不均一な膜構造となり、対極材料の大面積化の障害となる。 However, although the results of Patent Document 1 achieve photoelectric conversion efficiency comparable to platinum, the material constituting the counter electrode (mixture of multi-walled carbon nanotubes and conductive polymer) is dispersible in various solutions. However, since it is in a powder-like state, when a film is formed, a non-uniform film structure is formed, which hinders an increase in the area of the counter electrode material.
また、特許文献2には、3次元網目構造を成す導電性材料と主に導電性高分子から成る触媒物質との組み合わせにより太陽電池デバイスの対極材料として利用する材料が報告されている。 Patent Document 2 reports a material that is used as a counter electrode material of a solar cell device by a combination of a conductive material having a three-dimensional network structure and a catalytic substance mainly composed of a conductive polymer.
しかし、特許文献2における材料を太陽電池対極材料に利用した場合、白金を凌ぐ光電変換効率を実現しているが、対極材料を構成する際に、事前に電極を設けて導電性モノマーを電気化学的に酸化させて導電性ポリマーを重合するプロセスが必須となっている。従って、このプロセスでは大面積化する際に電解重合により作製される導電性ポリマー層を均質に形成することが困難となり、実用化に適したプロセスとは言えないので、魅力ある技術とはならない。 However, when the material in Patent Document 2 is used for a solar cell counter electrode material, the photoelectric conversion efficiency surpassing that of platinum is realized. However, when the counter electrode material is formed, an electrode is provided in advance to electroconductive the conductive monomer. A process of oxidizing the conductive polymer by polymerizing the conductive polymer is essential. Therefore, in this process, when the area is increased, it is difficult to uniformly form a conductive polymer layer produced by electrolytic polymerization, and it cannot be said that the process is suitable for practical use, so it is not an attractive technique.
特開2006-147411号公報JP 2006-147411 A 特開2007-324080号公報JP 2007-32080 A
このような技術的背景の下に、本発明者らは、白金に代替できる高導電性対極材料の開発を主要な目標にしつつ、カーボンナノチューブ(CNT)や導電性高分子など多様な材料系ならびにその組み合わせについて探索し、白金に勝るとも劣らぬ性能を発現させることはできないか、ということに努力を傾注した。本発明は、色素増感型太陽電池用の対極であって、高価なレアメタルである白金に代替できる安価な材料および簡便な製造方法により作製でき、かつ白金と同等の光電変換効率を有する色素増感型太陽電池用対極を提供することを目的としている。 Under such a technical background, the present inventors set various materials systems such as carbon nanotubes (CNT) and conductive polymers as well as developing a highly conductive counter electrode material that can replace platinum. We searched for the combination, and concentrated our efforts on whether it would be possible to develop performance that is not inferior to platinum. The present invention is a counter electrode for a dye-sensitized solar cell, which can be manufactured by an inexpensive material that can replace platinum, which is an expensive rare metal, and a simple manufacturing method, and has a photoelectric conversion efficiency equivalent to that of platinum. It aims at providing the counter electrode for sensitive solar cells.
また、本発明の他の目的は、上記対極を製造するにあたって、太陽電池の軽量化、大面積化を可能にする材料構成と簡便かつ操作性に優れたプロセスにより該電極を製造する方法を提供することである。 In addition, another object of the present invention is to provide a method for producing the electrode by a material structure capable of reducing the weight and area of a solar cell and a process that is simple and excellent in operability in producing the counter electrode. It is to be.
本発明の一実施形態によると、カーボンナノチューブを100重量%、イオン液体を50重量%以上500重量%以下、且つ、導電性高分子を50重量%以上200重量%以下含み、前記カーボンナノチューブと前記イオン液体との混合物が核に、前記導電性高分子が殻になるコア・シェル型構造を形成することを特徴とする三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極が提供される。 According to an embodiment of the present invention, the carbon nanotube includes 100 wt%, the ionic liquid includes 50 wt% to 500 wt%, and the conductive polymer includes 50 wt% to 200 wt%. A counter electrode for a dye-sensitized solar cell comprising a ternary conductive carbon nanotube composition characterized by forming a core-shell structure in which a mixture with an ionic liquid is a nucleus and the conductive polymer is a shell Is provided.
前記カーボンナノチューブは単層又は多層で、チューブの直径と長さが共に揃ったカーボンナノチューブであってもよい。 The carbon nanotubes may be single-walled or multi-walled carbon nanotubes having the same diameter and length.
前記イオン液体は2つの水酸基を含んでもよい。 The ionic liquid may contain two hydroxyl groups.
前記2つの水酸基を含むイオン液体は、1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミドであってもよい。 The ionic liquid containing two hydroxyl groups may be 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide.
前記導電性高分子はチオフェン骨格を有し、スルホン酸塩と対になって親水性を示してもよい。 The conductive polymer may have a thiophene skeleton and be hydrophilic with the sulfonate.
前記導電性高分子は、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)であってもよい。 The conductive polymer may be poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS).
また、本発明の一実施形態によると、カーボンナノチューブとイオン液体とを乳鉢内で機械的に所定時間混練し混合物を作製し、前記混合物を溶液で洗浄して未吸着の前記イオン液体を取り除いた後、遠心分離し、その残渣に導電性高分子の水溶液を所定量添加し、超音波分散させ分散物を作製し、前記分散物を遠心分離する、ことを含むことを特徴とする三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極の製造方法が提供される。 According to an embodiment of the present invention, the carbon nanotube and the ionic liquid are mechanically kneaded in a mortar for a predetermined time to prepare a mixture, and the mixture is washed with a solution to remove the unadsorbed ionic liquid. And then centrifuging, adding a predetermined amount of a conductive polymer aqueous solution to the residue, ultrasonically dispersing the dispersion, and centrifuging the dispersion. A method for producing a counter electrode for a dye-sensitized solar cell comprising a conductive carbon nanotube composition is provided.
5℃以上50℃以下の温度範囲において、前記カーボンナノチューブを100重量%としたときに、前記イオン液体を50%以上500%以下混合し、前記所定時間を10分以上240分以下としてもよい。 In the temperature range of 5 ° C. or more and 50 ° C. or less, when the carbon nanotube is 100% by weight, the ionic liquid may be mixed by 50% or more and 500% or less, and the predetermined time may be 10 minutes or more and 240 minutes or less.
5℃以上50℃以下の温度範囲において、前記残渣に0.005重量%以上5重量%以下の水溶液の前記導電性高分子を添加してもよい。 In the temperature range of 5 ° C. or more and 50 ° C. or less, the conductive polymer in an aqueous solution of 0.005 wt% or more and 5 wt% or less may be added to the residue.
また、本発明の一実施形態によると、前記三元系導電性カーボンナノチューブ組成物を、前記製造方法により製造した後、色素増感型太陽電池の対極として塗布形成した太陽電池デバイスが提供される。 In addition, according to an embodiment of the present invention, there is provided a solar cell device in which the ternary conductive carbon nanotube composition is manufactured by the manufacturing method and then applied and formed as a counter electrode of a dye-sensitized solar cell. .
また、本発明の一実施形態によると、前記三元系導電性カーボンナノチューブ組成物が色素増感型太陽電池の対極として形成された太陽電池デバイスの製造方法が提供される。 In addition, according to an embodiment of the present invention, there is provided a method for manufacturing a solar cell device in which the ternary conductive carbon nanotube composition is formed as a counter electrode of a dye-sensitized solar cell.
本発明によれば、カーボンナノチューブ(CNT)の100重量%、イオン液体(IL)の50重量%以上500重量%以下、導電性高分子(CP)の50重量%以上200重量%以下、から成り、CNTとILの混合物が核(コア)に、CPが殻(シェル)となるコア・シェル型構造を形成することを特徴とする三元系導電性カーボンナノチューブ組成物(IL-CNT/CP)を作製し、これを色素増感型太陽電池の対極として用いた場合に、その光起電力特性である、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(形状因子:FF)、そしてエネルギー変換効率(η)が白金を対極として用いた場合とほぼ同等の結果を得ることに成功した。 According to the present invention, the carbon nanotube (CNT) is 100% by weight, the ionic liquid (IL) is 50% by weight to 500% by weight, and the conductive polymer (CP) is 50% by weight to 200% by weight. A ternary conductive carbon nanotube composition (IL-CNT / CP) characterized by forming a core-shell structure in which a mixture of CNT and IL forms a core and CP forms a shell When this is used as a counter electrode of a dye-sensitized solar cell, its photovoltaic characteristics are short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (form factor: FF), The energy conversion efficiency (η) succeeded in obtaining a result almost equivalent to that obtained when platinum was used as a counter electrode.
即ち、本発明により、色素増感型太陽電池用対極材料や各種電極材料等、白金に代替できる導電性材料の製造が可能となる。 That is, according to the present invention, it is possible to produce a conductive material that can replace platinum, such as a counter electrode material for a dye-sensitized solar cell and various electrode materials.
また、本発明に係る三元系導電性カーボンナノチューブ組成物(IL-CNT/CP)の製造方法は極めて簡便であり、製造コストを低減化できるだけでなく、材料ならびに電極の大面積化や大量生産が可能となる。 In addition, the method for producing the ternary conductive carbon nanotube composition (IL-CNT / CP) according to the present invention is very simple and not only reduces the production cost, but also increases the area and mass production of materials and electrodes. Is possible.
後記する実施例では、三元系導電性カーボンナノチューブ組成物(IL-CNT/CP)として、ILは1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド、CNTとして多層CNT(MWNT)、CPとしてポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)を選び作製した、三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)の例を示したが、これら以外のIL、CNT、CPを選んでも同様の結果を得ることができる。例えば、ILとしては水酸基を有するイオン液体であれば良く、CNTはチューブの直径と長さが共に揃っている単層CNTでも良い。また、CPとしてはポリアニリンやポリピロール系でも構わないが、これらが共にスルホン酸塩と対になって親水性を示すCPが望ましい。 In the examples described later, as the ternary conductive carbon nanotube composition (IL-CNT / CP), IL is 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide, and multi-wall CNT as CNT Example of ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) prepared by selecting (MWNT) and poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS) as CP However, similar results can be obtained by selecting other IL, CNT, and CP. For example, the IL may be an ionic liquid having a hydroxyl group, and the CNT may be a single-walled CNT having the same diameter and length of the tube. Further, although CP may be polyaniline or polypyrrole, CP that exhibits hydrophilicity when paired with sulfonate is desirable.
本発明の一実施形態に係る色素増感型太陽電池デバイス1000の構成図である。It is a block diagram of the dye-sensitized solar cell device 1000 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三元系導電性カーボンナノチューブ組成物及びこれを対極として用いた色素増感型太陽電池デバイスの模式図であり、(a)は三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)のコア・シェル構造を示し、(b)は三元系導電性カーボンナノチューブ組成物を対極とした色素増感型太陽電池デバイスの構成を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the ternary system conductive carbon nanotube composition which concerns on one Embodiment of this invention, and the dye-sensitized solar cell device using this as a counter electrode, (a) is a ternary system conductive carbon nanotube composition. The core-shell structure of (IL-MWNT / PEDOT: PSS) is shown, and (b) shows the configuration of a dye-sensitized solar cell device having a ternary conductive carbon nanotube composition as a counter electrode. 本発明の一実施形態に係るIL-MWNTの透過電子顕微鏡(TEM)像である。図において、MWNTは10であり、20はMWNTに結合したイオン液体(IL)を示す。It is a transmission electron microscope (TEM) image of IL-MWNT which concerns on one Embodiment of this invention. In the figure, MWNT is 10, and 20 indicates an ionic liquid (IL) bound to MWNT. 本発明の一実施形態に係る三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)100の合成過程を示す模式図である。(a)はMWNTにイオン液体(IL)を結合させIL-MWNTを作製する過程を示し、(b)はIL-MWNTに導電性高分子PEDOT:PSSを添加、分散させる過程により形成された三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)の内部構造(100)を示す。1 is a schematic view showing a synthesis process of a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) 100 according to an embodiment of the present invention. (A) shows a process for producing IL-MWNT by binding ionic liquid (IL) to MWNT, and (b) shows three processes formed by adding and dispersing a conductive polymer PEDOT: PSS to IL-MWNT. The internal structure (100) of a ternary system conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) is shown. 本発明の一実施形態に係るコア・シェル型構造を形成したIL-MWNT/PEDOT:PSSのTEM像であり、図において30はMWNT外表面にILが吸着された部分を示し、破線で示された部分40はPEDOT:PSS層を示す。FIG. 3 is a TEM image of IL-MWNT / PEDOT: PSS in which a core-shell structure according to an embodiment of the present invention is formed. In FIG. The portion 40 indicates a PEDOT: PSS layer. MWNT/PEDOT:PSSのTEM像であり、図中の矢印は、粒子状のPEDOT:PSS50を示す。It is a TEM image of MWNT / PEDOT: PSS, and the arrow in a figure shows particulate PEDOT: PSS50. 光電変換特性:aとcは光電流-電圧特性、bとdは太陽電池としての入射光子-電流変換効率(光電変換効率:ICPE)分光特性を示す。Photoelectric conversion characteristics: a and c are photocurrent-voltage characteristics, and b and d are incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics as a solar cell.
以下、図面を参照して本発明に係る色素増感型太陽電池用対極、太陽電池デバイスおよびその製造方法について説明する。但し、本発明の色素増感型太陽電池用対極用、太陽電池デバイスおよびその製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。また、本発明に係るコア・シェル型構造の三元系導電性カーボンナノチューブ組成物は、色素増感型太陽電池用対極、太陽電池デバイスを例に説明するが、これに限定されるものではなく、広く白金電極の代替物として応用可能である。 Hereinafter, a counter electrode for a dye-sensitized solar cell, a solar cell device, and a method for manufacturing the same according to the present invention will be described with reference to the drawings. However, the counter electrode for a dye-sensitized solar cell, the solar cell device, and the manufacturing method thereof of the present invention are not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted. The core-shell structure ternary conductive carbon nanotube composition according to the present invention will be described with reference to a counter electrode for a dye-sensitized solar cell and a solar cell device, but is not limited thereto. It can be widely applied as an alternative to platinum electrodes.
本発明者らは、以下の点を新たに見出して上記課題を解決した。多層カーボンナノチューブ(MWNT)を用いて太陽電池対極を形成しようとしてもMWNT単体では賦形性に欠けるので、何らかの基材高分子に分散させなければならない。しかしながら、MWNTは非常に凝集力が強く、有機溶媒を用いても分散は容易では無い。 The present inventors have newly found the following points and solved the above problems. Even if it is going to form a solar cell counter electrode using a multiwall carbon nanotube (MWNT), since MWNT single-piece | unit lacks a shaping property, it must be disperse | distributed to a certain base polymer. However, MWNT has a very strong cohesive force, and dispersion is not easy even using an organic solvent.
そこで、MWNTの分散性を向上させることを検討した。その結果、後述する二元系カーボンナノチューブ組成物、IL-MWNTを得るに至った。しかしながら、この二元系カーボンナノチューブ組成物、IL-MWNTを作製しただけでは、これを色素増感型太陽電池の対極に用いても光電変換効率は白金電極に及ばなかった。分散性に優れたIL-MWNTを用いて光電変換効率を向上させる方法についてさらに検討を行った。 Therefore, it was examined to improve the dispersibility of MWNT. As a result, a binary carbon nanotube composition, IL-MWNT, which will be described later, was obtained. However, only by producing this binary carbon nanotube composition, IL-MWNT, the photoelectric conversion efficiency did not reach that of the platinum electrode even when it was used as the counter electrode of the dye-sensitized solar cell. Further investigation was made on a method for improving photoelectric conversion efficiency using IL-MWNT having excellent dispersibility.
鋭意検討を行った結果、後述するように、導電性を向上させたコア・シェル型構造の三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSSを色素増感型太陽電池の対極に用いることにより、白金電極と同等の特性を得ることに成功し、上記二元系カーボンナノチューブ組成物では達成できなかった著しい光電変換効率の向上に成功した。 As a result of intensive studies, as will be described later, a core-shell structure ternary conductive carbon nanotube composition with improved conductivity, IL-MWNT / PEDOT: PSS is used as a counter electrode of a dye-sensitized solar cell. As a result, the present invention succeeded in obtaining characteristics equivalent to those of a platinum electrode, and succeeded in significantly improving photoelectric conversion efficiency that could not be achieved by the binary carbon nanotube composition.
(IL-MWNT/PEDOT:PSSの概要)
以下、二元系カーボンナノチューブ組成物、IL-MWNT及びコア・シェル型構造の三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSSについて、詳細に説明する。なお、以下の説明において、カーボンナノチューブの一例としてMWNTについて説明するが、本発明はMWNTに限定されるものではなく、単層CNT(SWNT)にも適用できる。以下では図1は、本発明の実施形態に係る色素増感型太陽電池デバイス1000の構成図である。色素増感型太陽電池デバイス1000は、例えば、透明基板1、透明導電膜2、多孔質金属酸化物半導体層3、増感色素層4、電解液層5、対極(あるいは対向電極)6、及び基板7を有する。本発明の実施形態に係るIL-MWNT/PEDOT:PSSは、対極6に用いる材料である。
(IL-MWNT / PEDOT: Outline of PSS)
Hereinafter, the binary carbon nanotube composition, IL-MWNT, and the core-shell type ternary conductive carbon nanotube composition, IL-MWNT / PEDOT: PSS will be described in detail. In the following description, MWNT is described as an example of a carbon nanotube, but the present invention is not limited to MWNT, and can be applied to single-walled CNT (SWNT). FIG. 1 is a configuration diagram of a dye-sensitized solar cell device 1000 according to an embodiment of the present invention. The dye-sensitized solar cell device 1000 includes, for example, a transparent substrate 1, a transparent conductive film 2, a porous metal oxide semiconductor layer 3, a sensitizing dye layer 4, an electrolytic solution layer 5, a counter electrode (or a counter electrode) 6, and A substrate 7 is provided. IL-MWNT / PEDOT: PSS according to the embodiment of the present invention is a material used for the counter electrode 6.
図2に本実施形態に係る三元系導電性カーボンナノチューブ組成物及びこれを対極として用いた色素増感型太陽電池デバイスの模式図を示す。ここで、図2(a)は三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)のコア・シェル構造を示す図であり、図2(b)は三元系導電性カーボンナノチューブ組成物を対極とした色素増感型太陽電池デバイスの構成を示す図である。三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)は、MWNTとイオン液体(IL)とが形成する核(コア)の外周面に、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)が結合して殻(シェル)を形成した構造を有する。 FIG. 2 shows a schematic diagram of a ternary conductive carbon nanotube composition according to this embodiment and a dye-sensitized solar cell device using the same as a counter electrode. Here, FIG. 2 (a) is a diagram showing a core-shell structure of a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS), and FIG. 2 (b) is a ternary conductive carbon nanotube. It is a figure which shows the structure of the dye-sensitized solar cell device which made the nanotube composition the counter electrode. The ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) has poly (3,4-ethylenedioxythiophene) on the outer peripheral surface of the core formed by MWNT and ionic liquid (IL). ): Polystyrenesulfonium (PEDOT: PSS) is bonded to form a shell.
(二元系カーボンナノチューブ組成物、IL-MWNT)
上述したように、MWNTを用いて太陽電池対極を形成するにはMWNTを溶媒中で高度に分散させる必要がある。各種溶媒を検討した結果、イオン液体(IL)、特に、水酸基を2つ含むイミダゾール系のイオン液体(IL)を用いることで、MWNTの分散性が向上することを見出した。
(Binary carbon nanotube composition, IL-MWNT)
As described above, in order to form a solar cell counter electrode using MWNT, it is necessary to highly disperse MWNT in a solvent. As a result of examining various solvents, it was found that dispersibility of MWNT is improved by using an ionic liquid (IL), in particular, an imidazole-based ionic liquid (IL) containing two hydroxyl groups.
また、MWNTに水酸基を2つ含むイミダゾール系のイオン液体(IL)を加えて機械的に混練すると、ゲル化する。ゲル化したMWNTとイオン液体(IL)との混合物を透過電子顕微鏡(TEM)で観察したところ、MWNT同士の凝集が解かれ、剥離分散していることが確認された。図3は、二元系カーボンナノチューブ組成物、IL-MWNTの透過電子顕微鏡(TEM)像である。図3において、破線で示された部分はイオン液体(IL)の溶質がMWNT10の外表面に吸着して形成された層20を示す。 Further, when an imidazole ionic liquid (IL) containing two hydroxyl groups is added to MWNT and mechanically kneaded, it gels. When a mixture of gelled MWNT and ionic liquid (IL) was observed with a transmission electron microscope (TEM), it was confirmed that the MWNTs were not aggregated and separated and dispersed. FIG. 3 is a transmission electron microscope (TEM) image of a binary carbon nanotube composition, IL-MWNT. In FIG. 3, a portion indicated by a broken line indicates a layer 20 formed by adsorbing a solute of ionic liquid (IL) on the outer surface of MWNT 10.
MWNTとイオン液体(IL)とを混練して得られる二元系カーボンナノチューブ組成物、IL-MWNTは、MWNT外表面のπ電子とイオン液体(IL)との相互作用により、イオン液体(IL)中の媒質自身もMWNTの外表面に配列し、その結果、物理的に架橋してゲル化すると推察される。このようなゲル化により、MWNTが親水性となることでファン・デル・ワールス力が低減し、MWNTの分散性が向上すると考えられる。 IL-MWNT is a binary carbon nanotube composition obtained by kneading MWNT and ionic liquid (IL), and ionic liquid (IL) is produced by the interaction of π electrons on the outer surface of MWNT and ionic liquid (IL). The medium itself is also arranged on the outer surface of the MWNT, and as a result, it is assumed that the medium is physically cross-linked and gelled. By such gelation, it is considered that MWNTs become hydrophilic, thereby reducing van der Waals force and improving dispersibility of MWNTs.
(三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSS)
分散性に優れたIL-MWNTを対極に用いて色素増感型太陽電池の作成したところ、後述する実施例に示すように、白金電極に比して光電変換効率が低くなった。このため、上述したように、IL-MWNTに導電性を付与することで色素増感型太陽電池の光電変換効率を向上させるべく検討した。その結果、導電性物質として、導電性高分子、特に、チオフェン骨格を有し、スルホン酸塩と対になって親水性を示す、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)を用いることで、良好な光電変換効率が得られることを見出した。
(Ternary conductive carbon nanotube composition, IL-MWNT / PEDOT: PSS)
When a dye-sensitized solar cell was prepared using IL-MWNT having excellent dispersibility as a counter electrode, the photoelectric conversion efficiency was lower than that of a platinum electrode, as shown in Examples described later. For this reason, as described above, studies were made to improve the photoelectric conversion efficiency of the dye-sensitized solar cell by imparting conductivity to IL-MWNT. As a result, poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT) having a conductive polymer, in particular, a thiophene skeleton, and having a hydrophilic property when paired with a sulfonate as a conductive substance. : PSS), it was found that good photoelectric conversion efficiency can be obtained.
IL-MWNTにPEDOT:PSSが結合すると、図2(a)に示したコア・シェル構造を有する三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSSが形成される。上述したように、IL-MWNT/PEDOT:PSSは、MWNTとイオン液体(IL)とが形成する核(コア)の外周面に、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)が結合して殻(シェル)を形成する。 When PEDOT: PSS is bonded to IL-MWNT, a ternary conductive carbon nanotube composition having a core-shell structure shown in FIG. 2A, IL-MWNT / PEDOT: PSS, is formed. As described above, IL-MWNT / PEDOT: PSS has poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT) on the outer peripheral surface of the core (core) formed by MWNT and ionic liquid (IL). : PSS) combine to form a shell.
このようにして得られたIL-MWNT/PEDOT:PSSは、優れた分散性と、優れた導電性を有し、後述の実施例に示すように対極に用いると、色素増感型太陽電池1000の光電変換効率を白金電極と同等にすることができる。図2(b)に示すように、色素増感型太陽電池1000において、外部からの光エネルギーにより増感色素層4の色素が励起され、多孔質金属酸化物半導体層3を介して透明導電膜2へ電子(e)の移動が起こる。これと同時に、電解液層5のイオンで酸化還元反応が生じる。このとき、本実施形態に係るIL-MWNT/PEDOT:PSSは分散性に優れるため、対極6に均一にIL-MWNT/PEDOT:PSSの層を形成することができるため、対極6から均一に電子(e)を電解液層5へ放出することができる。また、IL-MWNT/PEDOT:PSSは、IL-MWNTの外表面に導電性を付与するPEDOT:PSSが殻(シェル)を形成しているため、電解液層5への電子(e)の放出効率が高い。このため、本実施形態に係る色素増感型太陽電池1000は、白金電極と同等の光電変換効率を提供することができる。 The IL-MWNT / PEDOT: PSS thus obtained has excellent dispersibility and excellent conductivity, and when used as a counter electrode as shown in Examples described later, the dye-sensitized solar cell 1000 Can be made equivalent to the platinum electrode. As shown in FIG. 2 (b), in the dye-sensitized solar cell 1000, the dye of the sensitizing dye layer 4 is excited by light energy from the outside, and the transparent conductive film is passed through the porous metal oxide semiconductor layer 3. Electron (e ) migration to 2 occurs. At the same time, an oxidation-reduction reaction occurs with ions in the electrolyte layer 5. At this time, since IL-MWNT / PEDOT: PSS according to the present embodiment is excellent in dispersibility, a layer of IL-MWNT / PEDOT: PSS can be uniformly formed on the counter electrode 6, so that electrons can be uniformly formed from the counter electrode 6. (E ) can be released to the electrolyte layer 5. Further, in IL-MWNT / PEDOT: PSS, since PEDOT: PSS imparting conductivity to the outer surface of IL-MWNT forms a shell, the electrons (e ) of the electrolyte layer 5 High emission efficiency. For this reason, the dye-sensitized solar cell 1000 according to the present embodiment can provide photoelectric conversion efficiency equivalent to that of the platinum electrode.
(三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSSの製造方法)
三元系導電性カーボンナノチューブ組成物、IL-MWNT/PEDOT:PSSの製造方法について説明する。図4(a)と図4(b)は、本実施形態に係る三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)100の合成過程を示す模式図である。図4において、イオン液体(1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド)は[dhmim][TfN]で示す。また、導電性高分子PEDOT:PSSは、チオフェン骨格を有する部分をPEDOT、スルホン酸塩の部分をPSSで示す。
(Method for producing ternary conductive carbon nanotube composition, IL-MWNT / PEDOT: PSS)
A method for producing a ternary conductive carbon nanotube composition, IL-MWNT / PEDOT: PSS, will be described. FIG. 4A and FIG. 4B are schematic views showing a synthesis process of the ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) 100 according to the present embodiment. In FIG. 4, the ionic liquid (1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide) is indicated by [dhmim] [Tf 2 N]. Further, in the conductive polymer PEDOT: PSS, a portion having a thiophene skeleton is indicated by PEDOT, and a portion of a sulfonate salt is indicated by PSS.
本発明の実施形態に係るイオン液体(IL)は、2つの水酸基を含むイオン液体であり、具体的には、1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド)が挙げられる。また、本発明の実施形態に係る導電性高分子は、ピロールもしくはアニリン骨格を有し、スルホン酸塩と対になって親水性を示す導電性高分子を用いることができる。 An ionic liquid (IL) according to an embodiment of the present invention is an ionic liquid containing two hydroxyl groups, specifically, 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide) Can be mentioned. In addition, the conductive polymer according to the embodiment of the present invention may be a conductive polymer having a pyrrole or aniline skeleton and having a hydrophilic property in a pair with a sulfonate.
まず図4(a)に示されるように、MWNTと、イオン液体(IL)を混合する。混合方法としては、例えば、両者を溶液に分散した状態で混合する方法や機械的に混合する方法等が挙げられる。本実施形態に係る混合方法としては、瑪瑙製乳鉢を用いた機械的混練が好ましい。得られた混合物を洗浄後、IL-MWNTを分離する。洗浄液には、例えば、各種アルコール等の溶液を用いることができる。本実施形態に係る洗浄液としては、エタノールが好ましい。また、IL-MWNTの分離には遠心分離法を用い、簡便に分離することができる。 First, as shown in FIG. 4A, MWNT and ionic liquid (IL) are mixed. Examples of the mixing method include a method in which both are dispersed in a solution and a method in which they are mixed mechanically. As a mixing method according to the present embodiment, mechanical kneading using a smoked mortar is preferable. After washing the resulting mixture, IL-MWNT is separated. For example, various alcohol solutions can be used as the cleaning liquid. As the cleaning liquid according to this embodiment, ethanol is preferable. Further, the separation of IL-MWNT can be carried out simply by using a centrifugal separation method.
つづいて図4(b)に示されるように、得られたIL-MWNTにPEDOT:PSSの水溶液を所定量添加した後、分散させる。分散方法としては、例えば、撹拌や超音波処理が挙げられる。本実施形態に係る分散方法としては、超音波処理が好ましい。IL-MWNTを十分に撹拌させて、IL-MWNTにPEDOT:PSSを結合させることで、IL-MWNT/PEDOT:PSSを得る。IL-MWNT/PEDOT:PSSは、遠心分離法等により、未結合のPEDOT:PSSと分離することができる。 Subsequently, as shown in FIG. 4B, a predetermined amount of an aqueous solution of PEDOT: PSS is added to the obtained IL-MWNT and then dispersed. Examples of the dispersion method include stirring and ultrasonic treatment. As a dispersion method according to this embodiment, ultrasonic treatment is preferable. IL-MWNT / PEDOT: PSS is obtained by sufficiently stirring IL-MWNT and binding PEDOT: PSS to IL-MWNT. IL-MWNT / PEDOT: PSS can be separated from unbound PEDOT: PSS by centrifugation or the like.
また、本実施形態の本発明に係るIL-MWNT/PEDOT:PSSは、5℃以上50℃以下の温度範囲においてをIL-MWNTを0.005重量%以上5重量%以下の水溶液の導電性高分子(CP)を添加し、超音波分散により分散させ、この分散物を遠心分離し、その残渣が三元系導電性カーボンナノチューブ組成物(IL-MWNT/CP)である三元系導電性カーボンナノチューブ組成物の製造方法であることが好ましい。 In addition, IL-MWNT / PEDOT: PSS according to the present invention of the present embodiment has a high conductivity of an aqueous solution containing 0.005% by weight to 5% by weight of IL-MWNT in a temperature range of 5 ° C. to 50 ° C. Addition of molecules (CP), dispersion by ultrasonic dispersion, centrifuging this dispersion, ternary conductive carbon whose residue is a ternary conductive carbon nanotube composition (IL-MWNT / CP) A method for producing a nanotube composition is preferred.
本実施形態の本発明に係るIL-MWNT/PEDOT:PSSは、MWNTの100重量%に対して、イオン液体(IL)が50重量%以上500重量%以下、導電性高分子(CP)が50重量%以上200重量%以下となることが好ましい。 The IL-MWNT / PEDOT: PSS according to the present embodiment of the present embodiment has an ionic liquid (IL) of 50 wt% to 500 wt% and a conductive polymer (CP) of 50 wt% with respect to 100 wt% of MWNT. It is preferable that the amount is not less than 200% by weight.
また、本実施形態の本発明に係るIL-MWNT/PEDOT:PSSは、5℃以上50℃以下の温度範囲において、MWNTが100重量%に対して、イオン性液体(IL)が50%以上500%以下を混合し、10分以上240分以下、乳鉢内で機械的に混練し、その後、混練物をエタノールで洗浄して未吸着のイオン性液体(IL)を取り除いた後、遠心分離し、その残渣(IL-MWNT)を作製する三元系導電性カーボンナノチューブ組成物の製造方法であることが好ましい。 In addition, IL-MWNT / PEDOT: PSS according to the present invention of the present embodiment has an ionic liquid (IL) of 50% to 500% with respect to MWNT of 100% by weight in a temperature range of 5 ° C. to 50 ° C. % Or less, and mechanically kneaded in a mortar for 10 minutes to 240 minutes, and then the kneaded product is washed with ethanol to remove unadsorbed ionic liquid (IL), and then centrifuged. A method for producing a ternary conductive carbon nanotube composition for producing the residue (IL-MWNT) is preferred.
以上説明したように、本実施形態に係るIL-MWNT/PEDOT:PSSは、MWNTとイオン性液体(IL)の混合物が核(コア)に、導電性高分子(CP)が殻(シェル)となるコア・シェル型構造を形成する。これにより、MWNTの分散性に優れ、且つ、導電性も優れるため、色素増感型太陽電池デバイスの対極に用いた場合に白金と同程度の優れた光電変換効率を提供することができる。また、本実施形態に係るIL-MWNT/PEDOT:PSSは、製造方法は極めて簡便であり、製造コストを低減化できるだけでなく、材料ならびに電極の大面積化や大量生産が可能となる。 As described above, in the IL-MWNT / PEDOT: PSS according to the present embodiment, the mixture of MWNT and ionic liquid (IL) is the core, and the conductive polymer (CP) is the shell. A core-shell structure is formed. Thereby, since it is excellent in the dispersibility of MWNT and it is excellent also in electroconductivity, when it uses for the counter electrode of a dye-sensitized solar cell device, the photoelectric conversion efficiency as high as platinum can be provided. In addition, the IL-MWNT / PEDOT: PSS according to the present embodiment has a very simple manufacturing method, and not only can reduce the manufacturing cost but also increase the area and mass production of materials and electrodes.
(実施例1)
実施形態において説明した本発明に係る三元系導電性カーボンナノチューブ組成物の製造方法について具体的な実施例を説明する。本実施例では、原料の多層カーボンナノチューブ(MWNT)は日機装株式会社製のチューブ直径が20nm、長さが15μmに揃えられたものを使用した。イオン液体(IL)はAldrich社製の1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミドを用いた。
Example 1
A specific example is described about the manufacturing method of the ternary system conductive carbon nanotube composition concerning the present invention explained in the embodiment. In this example, multi-wall carbon nanotubes (MWNTs) made from Nikkiso Co., Ltd. having a tube diameter of 20 nm and a length of 15 μm were used. As the ionic liquid (IL), 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide manufactured by Aldrich was used.
導電性高分子(CP)はAldrich社製のポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)を用いた。PEDOT:PSSは1.3重量%水溶液の電気伝導度が1 S/cmである。 As the conductive polymer (CP), poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS) manufactured by Aldrich was used. PEDOT: PSS has an electrical conductivity of 1 S / cm in a 1.3 wt% aqueous solution.
10 mgのMWNTと等重量のIL(1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド)を混合し、さらに瑪瑙製乳鉢を用いて、室温で30分間機械的に混練した。その後、混練物をエタノールで洗浄して未吸着のILを取り除いた後、遠心分離し、残渣(IL-MWNT)を得た。IL-MWNTに、PEDOT:PSSの0.05重量%水溶液20mlを添加し、低出力の超音波分散装置を用いて10分間分散させた。分散した試料を十分に水で洗浄し、未結合のCPを除去した後、さらに遠心分離し、その残渣として最終生成物である三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)を得た。 10 mg of MWNT and equal weight of IL (1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide) are mixed and mechanically kneaded at room temperature for 30 minutes using a smoked mortar. did. Thereafter, the kneaded product was washed with ethanol to remove unadsorbed IL, and then centrifuged to obtain a residue (IL-MWNT). To IL-MWNT, 20 ml of 0.05% by weight aqueous solution of PEDOT: PSS was added and dispersed for 10 minutes using a low-power ultrasonic dispersion apparatus. The dispersed sample is sufficiently washed with water to remove unbound CP, and then centrifuged. As a residue, the final product is a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS). )
(比較例1)
比較例として、MWNTとPEDOT:PSSの0.05重量%水溶液とを直接混合し、15分間超音波分散させて沈殿した二元系カーボンナノチューブ組成物、MWNT/PEDOT:PSSを作製した。このMWNT/PEDOT:PSSは分散性が極めて悪く、数時間の超音波分散処理でも分散できなかった。
(Comparative Example 1)
As a comparative example, a binary carbon nanotube composition, MWNT / PEDOT: PSS, in which MWNT and a 0.05 wt% aqueous solution of PEDOT: PSS were directly mixed and ultrasonically dispersed for 15 minutes was prepared. This MWNT / PEDOT: PSS was extremely poor in dispersibility and could not be dispersed even by ultrasonic dispersion treatment for several hours.
(TEM観察)
作製した実施例1のIL-MWNT/PEDOT:PSS微細構造を観察するため、FEI社製透過電子顕微鏡(TECNAI G2-F20)を用いてTEM写真を撮影した。TEM写真を図3、図5及び図6に示す。図3はIL-MWNT、図5はIL-MWNT/PEDOT:PSS、図6はMWNT/PEDOT:PSSのTEM写真である。図3において、MWNT10(直径20nm)の外表面にイオン液体(IL)の[dhmim]が吸着しており、MWNTの外径が[dhmim]が吸着した層20の分太くなり、25nmであった。図5においては、図3よりもさらに太くなり、その外径は約50nmであった。この結果から、IL-MWNTによるコア(30)の外側に導電性高分子PEDOT:PSSによるシェル層40が形成され、IL-MWNT/PEDOT:PSSのコア・シェル構造が形成されと考えられる。ただし、図6のMWNT/PEDOT:PSSにおいては分散性が悪いため、PEDOT:PSSはMWNTの外表面には吸着せず、粒子状(粒子50)となってMWNT周囲に散らばっていた。このため、MWNT/PEDOT:PSSにおいては、MWNTの径はほとんど変化せず、約20nmのままである。
(TEM observation)
In order to observe the IL-MWNT / PEDOT: PSS microstructure of the produced Example 1, a TEM photograph was taken using a FEI transmission electron microscope (TECNAI G2-F20). TEM photographs are shown in FIG. 3, FIG. 5 and FIG. 3 is a TEM photograph of IL-MWNT, FIG. 5 is a TEM photograph of IL-MWNT / PEDOT: PSS, and FIG. 6 is a MWNT / PEDOT: PSS. In FIG. 3, ionic liquid (IL) [dhmim] + is adsorbed on the outer surface of MWNT10 (diameter 20 nm), and the outer diameter of MWNT is thicker than the layer 20 adsorbed by [dhmim] + , at 25 nm. there were. In FIG. 5, it became thicker than FIG. 3, and the outer diameter was about 50 nm. From this result, it is considered that the shell layer 40 made of the conductive polymer PEDOT: PSS is formed outside the core (30) made of IL-MWNT, and the core-shell structure of IL-MWNT / PEDOT: PSS is formed. However, in MWNT / PEDOT: PSS of FIG. 6, since the dispersibility was bad, PEDOT: PSS was not adsorbed on the outer surface of MWNT, but was dispersed in the form of particles (particles 50) around MWNT. For this reason, in MWNT / PEDOT: PSS, the diameter of MWNT hardly changes and remains about 20 nm.
(実施例2)
フッ素ドープしたティンオキサイド(FTO:旭テクノガラス製)ガラス上に実施例1の三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)を溶液塗布し、対極(電極)を作製した。塗布後、ホットプレート上60℃で乾燥した後、200℃で一昼夜アニーリングした。このときの対極のフィルム厚はMWNTの重量で制御し、典型的な塗布膜のMWNT濃度は、0.5 mg・cm-2である。
(Example 2)
A ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) of Example 1 was applied onto a fluorine-doped tin oxide (FTO: Asahi Techno Glass) glass to prepare a counter electrode (electrode). . After application, the film was dried on a hot plate at 60 ° C. and then annealed at 200 ° C. for a whole day and night. The film thickness of the counter electrode at this time is controlled by the weight of MWNT, and the MWNT concentration of a typical coating film is 0.5 mg · cm −2 .
(比較例2)
比較例2として、FTOガラス上にマグネトロンスパッタリングにより白金(Pt)を蒸着し、対極(電極)を作製した。
(Comparative Example 2)
As Comparative Example 2, platinum (Pt) was deposited on FTO glass by magnetron sputtering to produce a counter electrode (electrode).
(比較例3)
さらに、比較例3として、MWNT/PEDOT:PSSをFTOガラス上に溶液塗布し、対極(電極)を作製した。
(Comparative Example 3)
Furthermore, as Comparative Example 3, MWNT / PEDOT: PSS was applied as a solution on FTO glass to produce a counter electrode (electrode).
(比較例4)
比較例4として、比較例2のIL-MWNTをFTOガラス上に溶液塗布し、対極(電極)を作製した。
(Comparative Example 4)
As Comparative Example 4, IL-MWNT of Comparative Example 2 was applied as a solution on FTO glass to produce a counter electrode (electrode).
(比較例5)
比較例5として、PEDOT:PSS単体をFTOガラス上に溶液塗布し、対極(電極)を作製した。
(Comparative Example 5)
As Comparative Example 5, PEDOT: PSS simple substance was applied as a solution on FTO glass to produce a counter electrode (electrode).
(実施例3)
色素増感型太陽電池としての性能を評価するために、実施例2の対極を用いて色素増感型太陽電池1000を作製した。まず光導入側の透明電極を次のように作製した。FTOガラス上に市販の二酸化チタン(TiO)ペースト(Degussa P25)を塗布し、500℃で1時間アニーリングした。続いて、これをアセトニトリルとtert-ブタノールの1対1溶液中にて0.5 mmol・l-1のN719色素(Solaronix SA,スイス)に12時間浸漬し、二酸化チタンに色素を吸着させた。その後、FTOガラスを色素溶液から取り出し、エタノールで洗浄した後、窒素ガスを吹き付けて乾燥した。この基板の大きさを15×15mmに揃え、色素吸着させた陽極と実施例2で作製した対極との間に30μmのスペーサーを用いて電解質溶液を注入し、サンドイッチ型セルを構成し、太陽電池を作製した。ここで用いた電解質溶液は0.1Mのヨウ化リチウム(LiI)、0.05Mのヨウ素(I)、0.6Mのジメチルプロピルイミダゾリウムアイオダイド及び0.5Mのtert-ブチルピリジンから成るアセトニトリル溶液である。
(Example 3)
In order to evaluate the performance as a dye-sensitized solar cell, a dye-sensitized solar cell 1000 was produced using the counter electrode of Example 2. First, a transparent electrode on the light introduction side was produced as follows. A commercially available titanium dioxide (TiO 2 ) paste (Degussa P25) was applied on FTO glass and annealed at 500 ° C. for 1 hour. Subsequently, this was immersed in a 0.5 mmol·l −1 N719 dye (Solaronix SA, Switzerland) in a 1: 1 solution of acetonitrile and tert-butanol for 12 hours to adsorb the dye onto titanium dioxide. Thereafter, the FTO glass was taken out of the dye solution, washed with ethanol, and dried by blowing nitrogen gas. The size of this substrate was made 15 × 15 mm, and an electrolyte solution was injected between the anode adsorbed with the dye and the counter electrode produced in Example 2 using a 30 μm spacer to form a sandwich cell, Was made. The electrolyte solution used here was acetonitrile composed of 0.1 M lithium iodide (LiI), 0.05 M iodine (I 2 ), 0.6 M dimethylpropylimidazolium iodide and 0.5 M tert-butylpyridine. It is a solution.
(光起電力特性)
上記で作製した太陽電池の光起電力特性は光源としてAM1.5ソーラーシミュレーター(300WキセノンランプとAMフィルターが装着されたWacom製WXS-80C3)を用いて、電圧/電流発生器(ADVANTEST社製R6246)で測定した。本測定において、入射光強度は結晶性シリコンから成る標準太陽電池(日本品質保証協会で製造、較正)を用いて較正した。また、拡散光の侵入を避けるために、穴面積0.2354cmの黒マスクを用いて光起電力測定を行った。図7(a)と図7(c)は、5種類の対極を用いて色素増感型太陽電池の光電流-電圧特性の結果を示したものである。
(Photovoltaic characteristics)
Photovoltaic characteristics of the solar cell produced above are voltage / current generator (R6246 manufactured by ADVANTEST) using AM1.5 solar simulator (Wacom WXS-80C3 equipped with 300W xenon lamp and AM filter) as a light source. ). In this measurement, the incident light intensity was calibrated using a standard solar cell made of crystalline silicon (manufactured and calibrated by the Japan Quality Assurance Association). Further, in order to avoid intrusion of diffused light, it was photovoltaic measured using a black mask hole area 0.2354cm 2. FIGS. 7A and 7C show the results of the photocurrent-voltage characteristics of the dye-sensitized solar cell using five types of counter electrodes.
(光電変換特性評価)
太陽電池としての入射光子-電流変換効率(光電変換効率:ICPE)分光特性は分光計器株式会社製SM-250DAMにより測定した。太陽電池の光起電力特性は光源としてAM1.5ソーラーシミュレーター(Peccell Technologies社製PEC-L11)を用いて、電圧/電流発生器(Keithley 2400)で測定した。入射光強度は結晶性シリコンから成る標準太陽電池(日本品質保証協会で製造、較正)を用いて較正した。図7(b)と図7(d)は、太陽電池デバイスの入射光子-電流変換効率(光電変換効率:ICPE)分光特性を示し、電流-電圧特性との良い相関を示している。
(Photoelectric conversion characteristics evaluation)
The incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics as a solar cell were measured by SM-250DAM manufactured by Spectrometer Co., Ltd. The photovoltaic characteristics of the solar cell were measured with a voltage / current generator (Keithley 2400) using an AM1.5 solar simulator (PEC-L11 manufactured by Peccell Technologies) as a light source. The incident light intensity was calibrated using a standard solar cell made of crystalline silicon (manufactured and calibrated by the Japan Quality Assurance Association). FIGS. 7B and 7D show the incident photon-current conversion efficiency (photoelectric conversion efficiency: ICPE) spectral characteristics of the solar cell device, and show a good correlation with the current-voltage characteristics.
これらデバイスの光電変換特性には短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(形状因子:FF)、そしてエネルギー変換効率(η)などのパラメータがあり、これらを表1に示す。表1に示されるように、三元系導電性カーボンナノチューブ組成物(IL-MWNT/PEDOT:PSS)を対極として用いた実施例2の特性は、標準的太陽電池の対極として白金(Pt)を用いた比較例2の特性とほぼ同じであり、三元系導電性カーボンナノチューブ組成物が白金に代替できる電極材料であることを裏付けている。一方、PEDOT:PSS単体、もしくはIL-MWNTあるいはMWNT/PEDOT:PSSを対極に用いた場合には、それらの光電変換特性は白金を凌ぐことはできなかった。 The photoelectric conversion characteristics of these devices include parameters such as short circuit current density (Jsc), open circuit voltage (Voc), fill factor (form factor: FF), and energy conversion efficiency (η), which are shown in Table 1. As shown in Table 1, the characteristics of Example 2 using a ternary conductive carbon nanotube composition (IL-MWNT / PEDOT: PSS) as a counter electrode are platinum (Pt) as a counter electrode of a standard solar cell. The characteristics are almost the same as those of Comparative Example 2 used, and it is confirmed that the ternary conductive carbon nanotube composition is an electrode material that can replace platinum. On the other hand, when PEDOT: PSS alone, or IL-MWNT or MWNT / PEDOT: PSS was used as the counter electrode, their photoelectric conversion characteristics could not exceed that of platinum.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
上述したとおり、本発明に係る三元系導電性カーボンナノチューブ組成物は、白金と同等の光電変換特性を有する。従って、本発明に係る三元系導電性カーボンナノチューブ組成物は、レアメタルである白金の代替材料として広く産業界に利用されることが期待される。したがって、本発明に係る三元系導電性カーボンナノチューブ組成物は、色素増感型太陽電池用対極など電極材料、多様な高導電性材料、電磁波吸収材料等広範な分野で利用可能である。 As described above, the ternary conductive carbon nanotube composition according to the present invention has a photoelectric conversion characteristic equivalent to that of platinum. Therefore, the ternary conductive carbon nanotube composition according to the present invention is expected to be widely used in industry as an alternative material for platinum, which is a rare metal. Therefore, the ternary conductive carbon nanotube composition according to the present invention can be used in a wide range of fields such as electrode materials such as a counter electrode for dye-sensitized solar cells, various highly conductive materials, and electromagnetic wave absorbing materials.
 1 透明基板、2 透明導電膜、3 多孔質金属酸化物半導体層、4 増感色素層、5 電解液層、6 対極、7 基板、10 MWNT、20 IL層、30 IL-MWNT層、40 PEDOT:PSS層、50 PEDOT:PSS粒子、100 本発明に係る三元系導電性カーボンナノチューブ組成物、1000 本発明に係る色素増感型太陽電池デバイス 1 transparent substrate, 2 transparent conductive film, 3 porous metal oxide semiconductor layer, 4 sensitizing dye layer, 5 electrolyte layer, 6 counter electrode, 7 substrate, 10 MWNT, 20 IL layer, 30 IL-MWNT layer, 40 PEDOT : PSS layer, 50 PEDOT: PSS particles, 100 Ternary conductive carbon nanotube composition according to the present invention, 1000 Dye-sensitized solar cell device according to the present invention

Claims (11)

  1. カーボンナノチューブを100重量%、イオン液体を50重量%以上500重量%以下、且つ、導電性高分子を50重量%以上200重量%以下含み、
    前記カーボンナノチューブと前記イオン液体との混合物が核に、前記導電性高分子が殻になるコア・シェル型構造を形成することを特徴とする三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。
    100% by weight of carbon nanotubes, 50% by weight to 500% by weight of ionic liquid, and 50% by weight to 200% by weight of conductive polymer,
    A dye-sensitized dye comprising a ternary conductive carbon nanotube composition, wherein a mixture of the carbon nanotubes and the ionic liquid forms a core-shell type structure in which the conductive polymer is a shell. Type counter electrode for solar cell.
  2. 前記カーボンナノチューブは単層又は多層で、チューブの直径と長さが共に揃ったカーボンナノチューブであることを特徴とする請求項1に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。 The dye-sensitized type comprising the ternary conductive carbon nanotube composition according to claim 1, wherein the carbon nanotube is a single-walled or multi-walled carbon nanotube having both a diameter and a length of the tube. Counter electrode for solar cell.
  3. 前記イオン液体は2つの水酸基を含むことを特徴とする請求項1に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。 The counter electrode for a dye-sensitized solar cell comprising the ternary conductive carbon nanotube composition according to claim 1, wherein the ionic liquid contains two hydroxyl groups.
  4. 前記2つの水酸基を含むイオン液体は、1,3-ジヒドロキシ-2-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミドであることを特徴とする請求項3に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。 4. The ternary conductive carbon nanotube composition according to claim 3, wherein the ionic liquid containing two hydroxyl groups is 1,3-dihydroxy-2-methylimidazolium bis (trifluoromethylsulfonyl) imide. Counter electrode for dye-sensitized solar cell comprising an object.
  5. 前記導電性高分子はチオフェン骨格を有し、スルホン酸塩と対になって親水性を示すことを特徴とする請求項1に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。 The dye-sensitized type comprising the ternary conductive carbon nanotube composition according to claim 1, wherein the conductive polymer has a thiophene skeleton and is hydrophilic with a sulfonate salt. Counter electrode for solar cell.
  6. 前記導電性高分子は、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホニウム(PEDOT:PSS)であることを特徴とする請求項5に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極。 The ternary conductive carbon nanotube composition according to claim 5, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene): polystyrenesulfonium (PEDOT: PSS). Counter electrode for dye-sensitized solar cell.
  7. カーボンナノチューブとイオン液体とを乳鉢内で機械的に所定時間混練し混合物を作製し、
    前記混合物を溶液で洗浄して未吸着の前記イオン液体を取り除いた後、遠心分離し、
    その残渣に導電性高分子の水溶液を所定量添加し、超音波分散させ分散物を作製し、
    前記分散物を遠心分離する、
    ことを含むことを特徴とする三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極の製造方法。
    Carbon nanotubes and ionic liquid are mechanically kneaded in a mortar for a predetermined time to produce a mixture,
    The mixture is washed with a solution to remove the unadsorbed ionic liquid, and then centrifuged.
    A predetermined amount of an aqueous solution of a conductive polymer is added to the residue, ultrasonically dispersed to produce a dispersion,
    Centrifuging the dispersion;
    The manufacturing method of the counter electrode for dye-sensitized solar cells provided with the ternary system conductive carbon nanotube composition characterized by the above-mentioned.
  8. 5℃以上50℃以下の温度範囲において、前記カーボンナノチューブを100重量%としたときに、前記イオン液体を50%以上500%以下混合し、
    前記所定時間を10分以上240分以下とすることを特徴とする請求項7に記載した三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極の製造方法。
    In the temperature range of 5 ° C. or more and 50 ° C. or less, when the carbon nanotube is 100% by weight, the ionic liquid is mixed by 50% or more and 500% or less,
    The method for producing a counter electrode for a dye-sensitized solar cell comprising the ternary conductive carbon nanotube composition according to claim 7, wherein the predetermined time is 10 minutes to 240 minutes.
  9. 5℃以上50℃以下の温度範囲において、前記残渣に0.005重量%以上5重量%以下の水溶液の前記導電性高分子を添加することを特徴とする請求項7に記載の三元系導電性カーボンナノチューブ組成物を備える色素増感型太陽電池用対極の製造方法。 The ternary conductive according to claim 7, wherein the conductive polymer in an aqueous solution of 0.005 wt% or more and 5 wt% or less is added to the residue in a temperature range of 5 ° C to 50 ° C. For producing a counter electrode for a dye-sensitized solar cell, comprising a conductive carbon nanotube composition.
  10. 請求項1に記載の三元系導電性カーボンナノチューブ組成物を、請求項7に記載の製造方法により製造した後、色素増感型太陽電池の対極として塗布形成した太陽電池デバイス。 A solar cell device, wherein the ternary conductive carbon nanotube composition according to claim 1 is produced by the production method according to claim 7 and then coated and formed as a counter electrode of a dye-sensitized solar cell.
  11. 請求項10記載の三元系導電性カーボンナノチューブ組成物が色素増感型太陽電池の対極として形成された太陽電池デバイスの製造方法。 The manufacturing method of the solar cell device in which the ternary system conductive carbon nanotube composition of Claim 10 was formed as a counter electrode of a dye-sensitized solar cell.
PCT/JP2011/072087 2010-10-05 2011-09-27 Counter electrode for dye-sensitized solar cell, solar cell device, and method for manufacturing same WO2012046595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012537645A JP5569947B2 (en) 2010-10-05 2011-09-27 Counter electrode for dye-sensitized solar cell, solar cell device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226108 2010-10-05
JP2010-226108 2010-10-05

Publications (1)

Publication Number Publication Date
WO2012046595A1 true WO2012046595A1 (en) 2012-04-12

Family

ID=45927590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072087 WO2012046595A1 (en) 2010-10-05 2011-09-27 Counter electrode for dye-sensitized solar cell, solar cell device, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5569947B2 (en)
WO (1) WO2012046595A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039905A1 (en) * 2012-09-06 2014-03-13 The Regents Of The University Of California Process and systems for stable operation of electroactive devices
WO2014148598A1 (en) * 2013-03-21 2014-09-25 日本ゼオン株式会社 Dye-sensitized solar-cell element
WO2016148252A1 (en) * 2015-03-18 2016-09-22 株式会社Adeka Liquid containing layered-substance and method for producing same
KR20190096948A (en) * 2016-12-19 2019-08-20 가부시키가이샤 아데카 Layered substance containing liquid and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071605A (en) * 2006-09-14 2008-03-27 Japan Carlit Co Ltd:The Counter electrode for dye-sensitized solar battery, and dye-sensitized solar battery equipped with it
JP2010097794A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Conductive thin film constituted of carbon nanotube with high aspect ratio and ionic liquid, and actuator element
JP2010168678A (en) * 2009-01-21 2010-08-05 National Institute Of Advanced Industrial Science & Technology Carbon nano tube/ion liquid composite yarn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071605A (en) * 2006-09-14 2008-03-27 Japan Carlit Co Ltd:The Counter electrode for dye-sensitized solar battery, and dye-sensitized solar battery equipped with it
JP2010097794A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Conductive thin film constituted of carbon nanotube with high aspect ratio and ionic liquid, and actuator element
JP2010168678A (en) * 2009-01-21 2010-08-05 National Institute Of Advanced Industrial Science & Technology Carbon nano tube/ion liquid composite yarn

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI SHIMIZU: "Creation of polymer/CNT-based nanocomposites (3) Utilization of surfactants", PLASTICS AGE, vol. 57, 1 September 2011 (2011-09-01), pages 89 - 92 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039905A1 (en) * 2012-09-06 2014-03-13 The Regents Of The University Of California Process and systems for stable operation of electroactive devices
JPWO2014148598A1 (en) * 2013-03-21 2017-02-16 日本ゼオン株式会社 Dye-sensitized solar cell element
WO2014148598A1 (en) * 2013-03-21 2014-09-25 日本ゼオン株式会社 Dye-sensitized solar-cell element
CN105164775A (en) * 2013-03-21 2015-12-16 日本瑞翁株式会社 Dye-sensitized solar-cell element
CN107429070A (en) * 2015-03-18 2017-12-01 株式会社Adeka Bedded substance contains liquid and its manufacture method
KR20170129111A (en) * 2015-03-18 2017-11-24 가부시키가이샤 아데카 Liquid containing layered-substance and method for producing same
WO2016148252A1 (en) * 2015-03-18 2016-09-22 株式会社Adeka Liquid containing layered-substance and method for producing same
JPWO2016148252A1 (en) * 2015-03-18 2017-12-28 株式会社Adeka Layered substance-containing liquid and method for producing the same
US10946360B2 (en) 2015-03-18 2021-03-16 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
TWI733662B (en) * 2015-03-18 2021-07-21 日商艾迪科股份有限公司 Manufacturing method of layered-substance-containing liquid
KR102409656B1 (en) * 2015-03-18 2022-06-16 가부시키가이샤 아데카 Liquid containing layered-substance and method for producing same
KR20190096948A (en) * 2016-12-19 2019-08-20 가부시키가이샤 아데카 Layered substance containing liquid and manufacturing method thereof
KR102455147B1 (en) * 2016-12-19 2022-10-17 가부시키가이샤 아데카 Layered substance-containing liquid and its manufacturing method

Also Published As

Publication number Publication date
JP5569947B2 (en) 2014-08-13
JPWO2012046595A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
Li et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells
Joshi et al. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells
Miao et al. Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells
Zhang et al. Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials
Duan et al. CoS2–graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell
Shahpari et al. The influence of morphology of hematite (α-Fe2O3) counter electrodes on the efficiency of dye-sensitized solar cells
Theerthagiri et al. Synthesis of various carbon incorporated flower-like MoS 2 microspheres as counter electrode for dye-sensitized solar cells
Arbab et al. A novel activated-charcoal-doped multiwalled carbon nanotube hybrid for quasi-solid-state dye-sensitized solar cell outperforming Pt electrode
Jiang et al. Cobalt-nickel based ternary selenides as high-efficiency counter electrode materials for dye-sensitized solar cells
Munkhbayar et al. Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods
Dong et al. Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO-and Pt-free flexible cathode for application in solar cells
Wei et al. Expanded graphite/pencil-lead as counter electrode for dye-sensitized solar cells
Yue et al. Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells
EP3157027B1 (en) Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell, and solar cell module
Roy et al. Plasma modified flexible bucky paper as an efficient counter electrode in dye sensitized solar cells
Huang et al. Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells
Sun et al. A PVdF-based electrolyte membrane for a carbon counter electrode in dye-sensitized solar cells
Chen et al. One-step synthesis of Pt nanoparticles/reduced graphene oxide composite with enhanced electrochemical catalytic activity
Li et al. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells
Yue et al. Carbon nanotubes hybrid carbon counter electrode for high efficiency dye-sensitized solar cells
Chew et al. Performance studies of ZnO and multi walled carbon nanotubes-based counter electrodes with gel polymer electrolyte for dye-sensitized solar cell
JP5569947B2 (en) Counter electrode for dye-sensitized solar cell, solar cell device and manufacturing method thereof
Raj Kumar et al. Ni–Co bimetallic nanoparticles anchored reduced graphene oxide as an efficient counter electrode for the application of dye sensitized solar cells
Sun et al. Solution processed NixSy films: composition, morphology and crystallinity tuning via Ni/S-ratio-control and application in dye-sensitized solar cells
KR101417996B1 (en) nano carbon materials having multiple hydrogen bonding motifs for counter electrode in dye sensitized sola cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830528

Country of ref document: EP

Kind code of ref document: A1