WO2012043590A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2012043590A1
WO2012043590A1 PCT/JP2011/072124 JP2011072124W WO2012043590A1 WO 2012043590 A1 WO2012043590 A1 WO 2012043590A1 JP 2011072124 W JP2011072124 W JP 2011072124W WO 2012043590 A1 WO2012043590 A1 WO 2012043590A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
voltage
voltage detection
battery module
Prior art date
Application number
PCT/JP2011/072124
Other languages
English (en)
French (fr)
Inventor
征司 池田
矢野 準也
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012536491A priority Critical patent/JPWO2012043590A1/ja
Priority to US13/823,465 priority patent/US20130181514A1/en
Publication of WO2012043590A1 publication Critical patent/WO2012043590A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention mainly relates to a power supply device that drives a motor that drives an electric vehicle such as a hybrid car or an electric vehicle, and more particularly, to a power supply device that includes a voltage detection circuit that detects the voltages of battery modules connected in series with each other.
  • a power supply device that requires a large output for example, a power supply device that supplies power to a motor that runs an electric vehicle, increases the output voltage by connecting a large number of battery modules in series in order to increase the output.
  • the output voltage is increased to 200 V or higher to increase the power that can be supplied to the motor.
  • the power supply device includes a voltage detection circuit that detects the voltage of the battery module in order to prevent overcharge and overdischarge of the battery module, and controls the charge / discharge current of the battery module with the detected voltage.
  • the voltage detection circuit 93 detects the voltage of the battery module 92 from the difference in voltage at each connection point 97 of the battery module 92. Since the voltage detection circuit 93 detects the voltage at the connection point 97 of the battery module 92 with respect to the reference point 98, all the detection voltages become voltages with respect to the reference point 98. Therefore, as shown in the figure, the voltage at the connection point 97 can be detected by switching the connection point 97 of the battery module 92 with the multiplexer 94.
  • the voltage detection circuit 93 shown in FIG. 1 detects the voltage with respect to the reference point 98 and detects the voltage of each battery module 92.
  • the voltage detection circuit 9 detects the voltage of each battery module with a differential amplifier. You can also
  • the voltage detection circuit is connected to the positive and negative electrodes of each battery module via the voltage detection line.
  • the voltage detection line is composed of a lead wire and a connector, and one end is connected to the positive and negative electrodes of the battery module and the other end is connected to the input side of the voltage detection circuit.
  • the voltage detection line makes it impossible to accurately input the voltage of the battery module to the voltage detection circuit due to a failure such as disconnection of the lead wire or poor contact of the connector. If the voltage detection line fails and the voltage detection circuit cannot accurately detect the voltage of each battery module, charging / discharging of the battery module cannot be normally controlled. This is because it is impossible to detect overcharge or overdischarge of a battery module in which no voltage is detected.
  • FIG. 2 shows the disconnection detection circuit of Patent Document 1.
  • This disconnection detection circuit 80 has a diode 84 connected in parallel with the battery 82.
  • the diode 84 is connected in a direction not to discharge the battery 82. Therefore, the voltage of the battery 82 and the forward voltage of the diode 84 are opposite in polarity. That is, the positive side of the battery 82 is the negative side of the forward voltage of the diode 84.
  • a current is passed through the parallel circuit of the battery 82 and the diode 84 in the forward direction of the diode 84. In this state, the voltage across the diode becomes the voltage of the battery 82. This is because the batteries 82 are connected in parallel.
  • the disconnection detection circuit 80 can detect the disconnection of the voltage detection line 88 by detecting the voltage across the diode. When the voltage detection line 88 is not disconnected, the voltage of the battery 82 is detected. When the voltage detection line 88 is disconnected, the voltage of the battery 82 is not determined, and the forward voltage of the diode 84 is detected. is there.
  • This disconnection detection circuit 80 has a drawback that the circuit configuration becomes extremely complicated. In addition, there is a detection in which the operation for detecting the disconnection is complicated.
  • the disconnection detection circuit of Patent Document 2 is shown in FIG.
  • the disconnection detection circuit 70 is connected in parallel with the battery 72 to a Zener diode 74 having a Zener voltage higher than the voltage of the battery 72. Further, in this circuit, a resistor 76 and a switch 77 are connected in series in order to pass a current through the Zener diode 74.
  • the disconnection detection circuit 70 detects the disconnection of the voltage detection line 78 by turning on the switch 77 and detecting the voltage of the Zener diode 74. This is because the voltage across the Zener diode 74 changes when the voltage detection line 78 is disconnected.
  • This disconnection detection circuit 70 also has a complicated circuit configuration, and also has a drawback that operation is complicated because the voltage of the Zener diode 74 is detected to detect disconnection of the voltage detection line 78.
  • This disconnection detection circuit 60 also has a drawback that the circuit configuration is complicated and the operation is complicated because the disconnection of the voltage detection line 68 is detected by switching a large number of switches 67.
  • the present invention was developed for the purpose of eliminating the drawbacks of the disconnection detection circuit described above, has an extremely simple circuit configuration, and detects disconnection of all voltage detection lines simultaneously with simple operation.
  • An object of the present invention is to provide a power supply device that can determine whether or not the voltage of a battery module can be accurately detected and can charge and discharge the battery module while protecting it from overcharging and overdischarging.
  • the power supply device of the present invention is connected to a plurality of battery modules 2 connected in series with each other, and positive and negative electrode terminals of each battery module 2 via a voltage detection line 11. And a voltage detection circuit 3 for detecting a voltage.
  • a bypass capacitor 12 is connected to both ends of each voltage detection line 11 and connected to the adjacent voltage detection line 11 to connect each voltage detection line 11 in series to form a series connection line 10. is doing.
  • the power supply device connects the resistance element 13 between the bypass capacitor 12 connected to the battery module 2 side and the electrode terminal of the battery module 2, and connects one end of the voltage detection line 11 via the resistance element 13. It is connected to the electrode terminal of the battery module 2.
  • the power supply device is connected to a transmitter 14 for outputting a detection signal composed of an AC signal or a pulse signal at one end of a series connection line 10 connected in series via a bypass capacitor 12, and connected in series.
  • a signal detection circuit 15 that detects a detection signal output from the transmitter 14 is provided at the other end of the line 10.
  • the power supply device detects a failure in the voltage detection line 11 connected in series by detecting the detection signal output from the transmitter 14 with the signal detection circuit 15.
  • the above power supply device has an extremely simple circuit configuration and is capable of simultaneously detecting disconnection of all voltage detection lines with a simple operation. It connects all voltage detection lines in series via a bypass capacitor to form a series connection line through which alternating current passes, and supplies a detection signal consisting of an alternating current signal or a pulse signal to one end of this series connection line. This is because a detection signal is detected at the other end of the connection line to detect failures such as disconnection and poor connector contact. In a state where all the voltage detection lines can detect the voltage normally, the detection signal of the AC signal or the pulse signal is transmitted from one end of the series connection line to the other end.
  • the detection signal is not transmitted and the detection signal is not detected at the other end. Therefore, by supplying a detection signal to one end of the series connection line and detecting this signal at the other end, it is possible to determine a failure such as disconnection of the voltage detection line or poor connector contact.
  • the resistance element 13 can be a resistor or a coil.
  • a power supply device using a resistance element as a resistor can detect a failure of the voltage detection line by reducing the component cost, and a power supply device using a resistance element as a coil can detect the voltage of the battery module while accurately detecting the voltage of the battery detection line. A failure can be detected.
  • the transmitter 14 can be an AC transmitter having a frequency of 100 KHz to 100 MHz. Since the power supply device described above supplies the detection signal as an AC signal to the series connection line, a failure of the voltage detection line can be reliably detected.
  • the transmitter 14 can output a detection signal to the serial connection line 10 at a timing when the voltage detection circuit 3 does not detect the voltage of the battery module 2.
  • the power supply apparatus described above has a feature that can accurately detect the voltage of the battery module while detecting a failure of the voltage detection line. This is because the detection signal for detecting the failure of the voltage detection line is not supplied to the series connection line at the timing of detecting the voltage of the battery module, and therefore this detection signal does not affect the voltage detection of the battery module.
  • the power supply device of the present invention can make the impedance of the bypass capacitor 12 with respect to the detection signal output from the transmitter 14 smaller than the electrical resistance of the resistance element 13.
  • the above power supply device makes the impedance of the bypass capacitor smaller than the electric resistance of the resistance element, so that the influence of the battery module connected in parallel with the bypass capacitor is reduced and the detection signal is transmitted to the series connection line.
  • the feature is that the failure of the voltage detection line can be reliably detected.
  • the power supply device of the present invention can be a power supply device that supplies power to a motor that drives a vehicle.
  • the above power supply apparatus can be used while reliably detecting overcharge and overdischarge of each battery module while increasing the output voltage of a large number of battery modules.
  • the power supply device of the present invention can be a power supply device for vehicles.
  • the power supply device of the present invention can be a power storage device for power storage.
  • the power supply device shown in FIG. 5 is connected to a traveling battery 1 in which a plurality of battery modules 2 are connected in series, and positive and negative electrodes of each battery module 2 via a voltage detection line 11. And a circuit 9 for detecting a failure of the voltage detection line 11 connecting each battery module 2 to the voltage detection circuit 3.
  • This power supply device is mounted on an electric vehicle such as a hybrid car or an electric vehicle, and supplies power to a motor that runs the vehicle.
  • the power supply device mounted on the vehicle detects a failure of the voltage detection line 11 during the start-up processing period in which the ignition switch is switched on. However, the power supply device can also detect a failure in the voltage detection line even when the vehicle is running.
  • the voltage detection circuit 3 is a circuit provided in the power supply device for detecting the voltage of each battery module 2 and charging / discharging the battery module 2 while preventing overcharge and overdischarge. Therefore, this power supply device detects the voltage of the battery module 2 by detecting the voltage at the connection point 7 connecting the electrodes of the respective battery modules 2 in series.
  • the voltage detection circuit 3 can detect the voltages of all the connection points 7 to detect the voltages of all the battery modules 2. However, the voltage detection circuit does not necessarily need to detect the voltages at all the connection points.
  • the plurality of battery modules connected in series as one unit detects the voltages at the connection points between the units. It can also be detected as a voltage of one unit comprising the battery modules.
  • the voltages of all 50 battery modules are preferably detected independently by the voltage detection circuit, or two battery modules are regarded as one unit.
  • the voltage of 25 units can also be detected by using the total voltage of the two battery modules as the voltage of one unit.
  • the detected voltage of the battery module 2 is used to detect the remaining capacity of the battery module 2, or is used to correct the remaining capacity calculated by accumulating the charge / discharge current, or the remaining capacity is reduced to zero. In order to cut off the discharge current in the overdischarged state, detect that the battery is fully charged, and cut off the charging current in the overcharged state. used.
  • the traveling battery 1 in which a large number of battery modules 2 are connected in series is charged and discharged with the same current. Therefore, the charge amount and the discharge amount of all the battery modules 2 are the same.
  • the electrical characteristics of all the battery modules 2 do not necessarily change equally. In particular, when the number of charge / discharge cycles is increased, the degree of deterioration of each battery module 2 is different, and the capacity that can be fully charged changes. If it will be in this state, the battery module 2 in which the capacity
  • the battery module Since the battery module is remarkably deteriorated in electric characteristics due to overcharge and overdischarge, the battery module having a reduced capacity that can be fully charged is rapidly deteriorated when overcharged or overdischarged. For this reason, although the battery 1 for driving
  • Each battery module 2 has one or several secondary batteries connected in series or in parallel, or in series and parallel.
  • the number of secondary batteries connected in series differs depending on the type of secondary battery.
  • a battery module in which the secondary battery is a lithium ion battery is composed of one secondary battery
  • a battery module in which the secondary battery is a nickel metal hydride battery is composed of 4 to 6 secondary batteries connected in series.
  • a battery module composed of one lithium ion battery has 20 battery modules connected in series and an output voltage of about 74V.
  • a battery module in which five nickel-metal hydride batteries are connected in series is connected in series, and a total of 250 nickel-metal hydride batteries are connected in series, with an output voltage of 300V.
  • the voltage detection circuit 3 switches the connection point 7 of the battery module 2 with the multiplexer 4 and detects the voltage at each connection point 7 in order.
  • the voltage of each connection point 7 is detected, and the voltage of each battery module 2 is calculated from the detected voltage difference of the connection point 7.
  • Each connection point 7 is connected to the input side of the voltage detection circuit 3 via the voltage detection line 11.
  • the voltage detection line 11 has one end connected to the connection point 7 of the traveling battery 1 and the other end connected to the input terminal 3 a of the voltage detection circuit 3 via a lead wire or a connector 17.
  • the voltage of the battery module 2 is detected as a voltage difference between the connection points 7 connecting both ends of the battery module 2.
  • the voltage E2 of the battery module M2 is detected as V2-V1
  • the voltage E3 of the battery module M3 is detected as V3-V2.
  • the voltage detection circuit 3 in the figure has a voltage detection unit 5 connected to the output side of the multiplexer 4 and an A / D converter 8 connected to the output side of the voltage detection unit 5.
  • the voltage detection circuit 3 is switched by the multiplexer 4 and the voltage detection unit 5 detects the voltage at the connection point 7 in order, and the output of the voltage detection unit 5 is converted into a digital signal by the A / D converter 8 to control the control circuit 6.
  • the control circuit 6 calculates the voltage signal of the input digital signal and detects the voltage of the battery module 2.
  • the circuit 9 for detecting a failure of the voltage detection line 11 includes a bypass capacitor 12 that connects the voltage detection lines 11 in series to form a series connection line 10, and a bypass capacitor 12 and a battery that are connected to the battery module 2 side.
  • the resistance element 13 connected between the electrode terminals of the module 2, the transmitter 14 that outputs a detection signal composed of an AC signal or a pulse signal to one end of the series connection line 10, and the other end of the series connection line 10
  • a signal detection circuit 15 that detects a detection signal output from the transmitter 14.
  • the bypass capacitor 12 is connected to both ends of the voltage detection line 11, and the adjacent voltage detection line 11 is connected in series so as to be able to transmit alternating current to form a series connection line 10.
  • the bypass capacitor 12 does not pass direct current but allows alternating current to pass. Therefore, the adjacent voltage detection line 11 is connected in series so that the both ends thereof are connected by the bypass capacitor 12 in an alternating manner, in other words, an alternating current can be passed.
  • the bypass capacitor 12 is alternately connected to the opposite end of the adjacent voltage detection line 11, and all the voltage detection lines 11 are alternately connected in series to form a series connection line 10.
  • the bypass capacitor 12 connects the adjacent voltage detection lines 11 in series in an alternating manner, but has an electrical resistance to the alternating current, that is, a specific impedance.
  • the impedance with respect to alternating current is made low and it connects in series in the state which can pass alternating current easily.
  • the impedance of the bypass capacitor 12 with respect to the alternating current is proportional to the frequency of the transmitted signal and inversely proportional to the capacitance. Therefore, the bypass capacitor 12 can transmit the alternating current signal to the adjacent voltage detection line 11 with a small attenuation by increasing the frequency of the alternating current to be transmitted, increasing the capacitance and reducing the impedance.
  • the resistance element 13 prevents the voltage detection line 11 connected in series by the bypass capacitor 12 from being short-circuited on one side thereof, that is, on the battery module side.
  • the serial connection line 10 cannot transmit the detection signal supplied to one end to the other end. This is because each battery module 2 short-circuits one end of the adjacent voltage detection line 11 when the internal resistance of the battery module is considerably small and the resistance element 13 is not present.
  • the resistance element 13 is connected between the battery module 2 and the bypass capacitor 12 to prevent the bypass capacitor 12 from being short-circuited by the battery module 2.
  • the resistance element 13 is a resistor or a coil, or a series circuit of a resistor and a coil.
  • the resistor exhibits electrical resistance for both direct current and alternating current, and the coil has an impedance corresponding to the electrical resistance for the alternating current signal.
  • the resistance element 13 increases the electric resistance and impedance, so that the adjacent voltage detection line 11 is less short-circuited by the battery module 2.
  • the resistance element 13 can increase electrical resistance or impedance and reduce short-circuiting by the battery module 2.
  • the resistor increases the electric resistance
  • the coil increases the inductance to increase the impedance.
  • the impedance of the coil increases in proportion to the inductance. Further, it increases in proportion to the frequency of the detection signal supplied to the serial connection line 10.
  • the resistance element 13 can increase electrical resistance or impedance, and can effectively prevent a short circuit by the battery module 2. However, if the electric resistance of the resistance element 13 is too large, a voltage drop due to the resistance element 13 occurs when the voltage of the battery module 2 is detected. The voltage drop of the resistance element 13 can be substantially ignored by making the electrical resistance of the resistance element 13 sufficiently large compared to the input impedance of the voltage detection circuit 3. Moreover, since the voltage drop by the resistance element 13 is specified by the input impedance of the voltage detection circuit 3 and the electric resistance of the resistance element 13, it can correct
  • the electric resistance of the resistance element 13 is preferably set to 100 k ⁇ to 1 M ⁇ .
  • the electrical resistance of the resistance element is not limited to this range, and can be made smaller than this range so that the detection signal can be transmitted to the series connection line while preventing short-circuiting by the battery module.
  • the voltage of the battery module can also be detected.
  • the coil impedance is 10 k ⁇ to 1 M ⁇ for a detection signal.
  • the resistance element 13 is connected by the bypass capacitor 12 so as to efficiently transmit the detection signal to the adjacent voltage detection line 11.
  • the bypass capacitor 12 can efficiently transmit the detection signal by increasing the electrical resistance and impedance of the resistance element 13 and decreasing the impedance of the bypass capacitor 12.
  • the impedance of the bypass capacitor 12 with respect to the detection signal is made smaller than the electric resistance and impedance of the resistance element 13.
  • the impedance of the bypass capacitor with respect to the detection signal can be made larger than the electrical resistance of the resistance element and the detection signal can be transmitted via the bypass capacitor, the impedance of the bypass capacitor must always be smaller than the electrical resistance of the resistance element. There is no.
  • the transmitter 14 supplies an AC signal or a pulse signal detection signal to one end of the serial connection line 10.
  • the resistance element 13 in FIG. 5 connects the transmitter 14 to one end of the series connection line 10 via a switch 16. With the transmitter 14 outputting a detection signal, the switch 16 is turned on, and the detection signal is supplied to the series connection line 10.
  • the switch 16 detects the failure of the voltage detection line 11, for example, in the case of a power supply device for a vehicle, the ignition switch is turned on, and the switch 16 is turned on before running the vehicle. 11 faults are detected.
  • the signal detection circuit 15 detects a detection signal transmitted to the serial connection line 10 and detects a failure of all the voltage detection lines 11.
  • the detection signal supplied to one end of the series connection line 10 passes through the voltage detection line 11 and the bypass capacitor 12 connected in series and is transmitted to the other end. . Therefore, in this state, the signal detection circuit 15 can detect the detection signal at a predetermined level. However, if one of the voltage detection lines 11 is disconnected, the detection signal is not transmitted in the disconnected portion, and the signal detection circuit 15 cannot detect the detection signal. Therefore, the signal detection circuit 15 can detect the disconnection of the voltage detection line 11 by detecting the level of the detection signal in a state where the detection signal is output from the transmitter 14 to one end of the series connection line 10.
  • the power supply device may not be able to accurately detect the voltage of the battery module 2 due to the contact failure of the connector 17 without the voltage detection line 11 being disconnected.
  • This state can be determined by the signal level detected by the signal detection circuit 15. This is because if the contact resistance increases due to poor contact of the connector 17, the detection signal is attenuated and transmitted at this portion, so that the signal level of the detection signal is lower than in a normal state. Therefore, the power supply device in which the signal detection circuit 15 detects the detection signal and determines the failure of the voltage detection line 11 detects not only the disconnection of the voltage detection line 11 but also the contact failure of the connector 17 and the contact failure of the connection portion. it can. The contact failure occurs not only at the connector 17 but also at the connection portion connecting the lead wires.
  • the power supply device that can detect both poor contact and disconnection of the voltage detection line 11 has a feature that the voltage of the battery module 2 can always be accurately detected.
  • the power supply device charges and discharges so as to limit, for example, the output of the traveling battery 1, and causes the vehicle to travel while protecting the battery module 2. Further, in the hybrid car, when a failure of the voltage detection line 11 is detected, control is performed so as not to output the power from the power supply device to the motor so that the vehicle can run only by the engine or the vehicle cannot run. In particular, when the disconnection of the voltage detection line 11 is detected, traveling of the vehicle by the power supply device is stopped, and when the contact failure of the voltage detection line 11 is detected, the output of the traveling battery 1 is controlled. For example, it is possible to change the state of running the vehicle due to disconnection and poor contact.
  • FIG. 6 shows a power supply device used as a power storage facility.
  • This power supply device is a power source for solar power generation or midnight power, for example, as a household or factory power source, and discharges when necessary, or solar power during the day to charge at night It can be used as a power source for street lamps that discharge, a backup power source for traffic lights that are driven in the event of a power failure.
  • the power supply device 100 in this figure has a plurality of battery modules 2 connected in series.
  • a charging power supply CP and a load LD are connected via a charging switch CS and a discharging switch DS.
  • the power supply apparatus 100 is charged by the charging power supply CP and supplies power to the load LD via the DC / AC inverter 20. For this reason, the power supply device 100 controls the charge switch CS and the discharge switch DS via the controller 21 to switch between the charge mode and the discharge mode. On / off of the discharge switch DS and the charge switch CS is switched by the controller 21 based on a signal input from the power supply device 100. In the charging mode, the controller 21 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply device 100.
  • the charged power supply device 100 is fully charged, or the controller 21 turns on the discharge switch DS and supplies power to the load LD in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged. Supply.
  • the charging switch CS is controlled to be ON or OFF. By controlling both the charging switch CS and the discharging switch DS to ON, the power supply apparatus 100 supplies power to the load LD while being charged.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the controller 21 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET or a relay can be used. ON / OFF of the discharge switch DS is controlled by the controller 21.
  • the power supply device includes a communication interface (not shown) for communicating with an external device. The communication interface connects the power supply device to a load or a charging power source according to an existing communication protocol such as UART or RS-232C.
  • Switch 78 ... Voltage detection line 80 ... Disconnection detection circuit 82 ... Battery 84 ... Diode 88 ... Voltage detection line 92 ... Battery module 93 ... Voltage detection circuit 94 ... Multiplexer 97 ... Connection point 98 ... Reference point 100 ... Power supply device CP ... For charging Power supply LD ... Load CS ... Charge switch DS ... Discharge switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】簡単な回路構成で電圧検出ラインの故障を検出する。 【解決手段】電源装置は、直列に接続された複数の電池モジュール2と、各電池モジュール2の電圧を検出する電圧検出回路3とを備える。電源装置は、各電圧検出ライン11の両端部に、各電圧検出ライン11を直列に接続して直列接続ライン10とするバイパスコンデンサー12を接続している。電源装置は、電池モジュール2側に接続されたバイパスコンデンサー12と電池モジュール2の電極端子との間に抵抗素子13を接続し、電圧検出ライン11の一端を電池モジュール2に接続している。電源装置は、直列接続ライン10の一端に、交流信号又はパルス信号の検出信号を出力する発信器14を接続すると共に、直列接続ライン10の他端には信号検出回路15を設けており、発信器14から出力される検出信号を信号検出回路15で検出して、直列に接続してなる電圧検出ライン11の故障を検出している。

Description

電源装置
 本発明は、主としてハイブリッドカーや電気自動車等の電動車両を走行させるモータを駆動する電源装置に関し、とくに、互いに直列に接続している電池モジュールの電圧を検出する電圧検出回路を備える電源装置に関する。
 大出力が要求される電源装置、たとえば電動車両を走行させるモータに電力を供給する電源装置は、出力を大きくするために、多数の電池モジュールを直列に接続して出力電圧を高くしている。ハイブリッドカーや電気自動車を走行させる電源装置は、出力電圧を200V以上と高くして、モータに供給できる電力を大きくしている。
 多数の電池モジュールを直列に接続しているバッテリは、各々の電池モジュールの過充電と過放電を防止しながら充放電することが大切である。過充電と過放電が電池の電気性能を低下させると共に、劣化させて寿命を短くするからである。電源装置は、電池モジュールの過充電や過放電を防止するために、電池モジュールの電圧を検出する電圧検出回路を備えており、検出する電圧で電池モジュールの充放電の電流をコントロールしている。
 図1の電圧検出回路93は、電池モジュール92の中点電位付近の基準点98に対する各々の接続点97の電圧を検出して、各々の電池モジュールの電圧を演算する。この電圧検出回路93は、電池モジュール92の各接続点97の電圧の差から、電池モジュール92の電圧を検出する。この電圧検出回路93は、基準点98に対する電池モジュール92の接続点97の電圧を検出するので、全ての検出電圧が基準点98に対する電圧となる。したがって、図に示すように、マルチプレクサ94で電池モジュール92の接続点97を切り換えて、接続点97の電圧を検出できる。図1に示す電圧検出回路93は、基準点98に対する電圧を検出して、各々の電池モジュール92の電圧を検出するが、電圧検出回路9は、各々の電池モジュールの電圧を差動アンプで検出することもできる。
 電圧検出回路は、電圧検出ラインを介して各々の電池モジュールの正負の電極に接続される。電圧検出ラインはリード線やコネクタからなり、一端を電池モジュールの正負の電極に、他端を電圧検出回路の入力側に接続している。電圧検出ラインは、リード線の断線やコネクタの接触不良などの故障で、電池モジュールの電圧を正確に電圧検出回路に入力できなくする。電圧検出ラインが故障して、電圧検出回路が各々の電池モジュールの電圧を正確に検出できない状態になると、電池モジュールの充放電を正常にコントロールできない。電圧の検出されない電池モジュールの過充電や過放電を検出できなくなるからである。
 この弊害を防止するために、電圧検出回路を電池モジュールの正負の電極に接続するリード線の断線やコネクタの接触不良を検出する電源装置が開発されている。(特許文献1ないし3参照)
特開2009-95222号公報 特開2009-257923号公報 特開2009-288034号公報
 特許文献1の断線検出回路を図2に示している。この断線検出回路80は、電池82と並列にダイオード84を接続している。ダイオード84は、電池82を放電しない方向に接続している。したがって、電池82の電圧と、ダイオード84の順方向の電圧とは極性が反対となる。すなわち、電池82のプラス側は、ダイオード84の順方向の電圧のマイナス側となる。断線を検出する状態で、電池82とダイオード84の並列回路に、ダイオード84の順方向に電流を流している。この状態で、ダイオード両端の電圧は、電池82の電圧となる。電池82が並列に接続されるからである。ところが、ダイオード84と電池82との間の電圧検出ライン88が断線すると、電池82がダイオード84から切り離された状態となるので、ダイオード両端の電圧は、電池82の電圧と反転されて検出される。この断線検出回路80は、ダイオード両端の電圧を検出して、電圧検出ライン88の断線を検出できる。電圧検出ライン88が断線しない状態では、電池82の電圧が検出され、電圧検出ライン88が断線する状態では、電池82の電圧が判定されず、ダイオード84の順方向の電圧が検出されるからである。この断線検出回路80は、回路構成が極めて複雑になる欠点がある。また、断線を検出するための動作が複雑となる検出がある。
 特許文献2の断線検出回路を図3に示している。この断線検出回路70は、電池72と並列に、電池72の電圧よりもツェナー電圧の高いツェナーダイオード74を接続している。さらに、この回路は、ツェナーダイオード74に電流を流すために、抵抗76とスイッチ77とを直列に接続している。この断線検出回路70は、スイッチ77をオン状態として、ツェナーダイオード74の電圧を検出して電圧検出ライン78の断線を検出する。電圧検出ライン78が断線するとツェナーダイオード74の両端の電圧が変化するからである。この断線検出回路70も回路構成が複雑となり、また、ツェナーダイオード74の電圧を検出して電圧検出ライン78の断線を検出するので動作も複雑となる欠点がある。
 さらに、引用文献3の断線検出回路を図4に示している。この断線検出回路60も、多数のスイッチ67を切り換えて電圧検出ライン68の断線を検出するので、回路構成が複雑で動作も複雑になる欠点がある。
 本発明は、以上の断線検出回路が有する欠点を解消することを目的として開発されたもので、極めて簡単な回路構成とし、かつ簡単な動作で全ての電圧検出ラインの断線を同時に検出して、電池モジュールの電圧を正確に検出できるかどうかを判定して、電池モジュールを過充電や過放電から保護しながら充放電できる電源装置を提供することにある。
課題を解決するための手段および発明の効果
 本発明の電源装置は、互いに直列に接続してなる複数の電池モジュール2と、各々の電池モジュール2の正負の電極端子に、電圧検出ライン11を介して接続されて、各々の電池モジュール2の電圧を検出する電圧検出回路3とを備えている。電源装置は、各々の電圧検出ライン11の両端部に、隣の電圧検出ライン11に両端を接続して各々の電圧検出ライン11を直列に接続して直列接続ライン10とするバイパスコンデンサー12を接続している。さらに、電源装置は、電池モジュール2側に接続してなるバイパスコンデンサー12と電池モジュール2の電極端子との間に抵抗素子13を接続して、電圧検出ライン11の一端を抵抗素子13を介して電池モジュール2の電極端子に接続している。さらに、電源装置は、バイパスコンデンサー12を介して直列に接続してなる直列接続ライン10の一端には、交流信号又はパルス信号からなる検出信号を出力する発信器14を接続しており、直列接続ライン10の他端には、発信器14から出力される検出信号を検出する信号検出回路15を設けている。電源装置は、発信器14から出力される検出信号を信号検出回路15で検出して、直列に接続してなる電圧検出ライン11の故障を検出している。
 以上の電源装置は、極めて簡単な回路構成とし、かつ簡単な動作で全ての電圧検出ラインの断線を同時に検出できる特徴がある。それは、バイパスコンデンサーを介して、全ての電圧検出ラインを直列に接続して、交流の通過する直列接続ラインとし、この直列接続ラインの一端に交流信号やパルス信号からなる検出信号を供給し、直列接続ラインの他端で検出信号を検出して断線やコネクタの接触不良などの故障を検出するからである。全ての電圧検出ラインが正常に電圧を検出できる状態において、交流信号やパルス信号の検出信号は、直列接続ラインの一端から他端に伝送される。しかしながら、電圧検出ラインが断線し、あるいはコネクタが接触不良を起こすと、検出信号が伝送されなくなって、検出信号が他端で検出されなくなる。したがって、直列接続ラインの一端に検出信号を供給し、他端でこの信号を検出することで、電圧検出ラインの断線やコネクタの接触不良などの故障を判定できる。
 本発明の電源装置は、抵抗素子13を抵抗器又はコイルとすることができる。
 抵抗素子を抵抗器とする電源装置は、部品コストを低減して電圧検出ラインの故障を検出でき、抵抗素子をコイルとする電源装置は、電池モジュールの電圧を正確に検出しながら電圧検出ラインの故障を検出できる。
 本発明の電源装置は、発信器14を、周波数を100KHzないし100MHzとする交流の発信器とすることができる。
 以上の電源装置は、検出信号を交流信号として直列接続ラインに供給するので、電圧検出ラインの故障を確実に検出できる。
 本発明の電源装置は、電圧検出回路3が電池モジュール2の電圧を検出しないタイミングで、発信器14が直列接続ライン10に検出信号を出力することができる。
 以上の電源装置は、電圧検出ラインの故障を検出しながら、電池モジュールの電圧を正確に検出できる特徴がある。それは、電池モジュールの電圧を検出するタイミングに、電圧検出ラインの故障を検出する検出信号を直列接続ラインに供給しないので、この検出信号が電池モジュールの電圧検出に影響を与えないからである。
 本発明の電源装置は、発信器14が出力する検出信号に対するバイパスコンデンサー12のインピーダンスを、抵抗素子13の電気抵抗よりも小さくすることができる。
 以上の電源装置は、バイパスコンデンサーのインピーダンスを抵抗素子の電気抵抗よりも小さくするので、バイパスコンデンサーと並列に接続している電池モジュールの影響を少なくして、検出信号を直列接続ラインに伝送して、電圧検出ラインの故障を確実に検出できる特徴がある。
 本発明の電源装置は、車両を走行させるモータに電力を供給する電源装置とすることができる。
 以上の電源装置は、多数の電池モジュールで出力電圧を高くしながら、各々の電池モジュールの過充電や過放電を確実に検出しながら使用できる。
 本発明の電源装置は、車両用の電源装置とすることができる。
 本発明の電源装置は、蓄電用の電源装置とすることができる。
従来の電源装置の電圧検出回路を示す回路図である。 従来の電源装置の断線検出回路を示す回路図である。 従来の他の電源装置の断線検出回路を示す回路図である。 従来の他の電源装置の断線検出回路を示す回路図である。 本発明の一実施例にかかる電源装置の概略構成図である。 蓄電用として使用される電源装置のブロック図である。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段」の欄に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 図5に示す電源装置は、複数の電池モジュール2を直列に接続している走行用バッテリ1と、各々の電池モジュール2の正負の電極に電圧検出ライン11を介して接続されて、電池モジュール2の電圧を検出する電圧検出回路3と、各々の電池モジュール2を電圧検出回路3に接続している電圧検出ライン11の故障を検出する回路9とを備えている。この電源装置は、たとえば、ハイブリッドカーや電気自動車等の電動車両に搭載されて、車両を走行させるモータに電力を供給する。
 車両に搭載される電源装置は、イグニッションスイッチをオンに切り換えた起動処理期間中において電圧検出ライン11の故障を検出する。ただ、電源装置は、車両を走行させる状態においても電圧検出ラインの故障を検出することもできる。
 電圧検出回路3は、各々の電池モジュール2の電圧を検出して、電池モジュール2の過充電と過放電を防止しながら充放電するために、電源装置に装備される回路である。したがって、この電源装置は、各々の電池モジュール2の電極を直列に接続している接続点7の電圧を検出して、電池モジュール2の電圧を検出する。電圧検出回路3は、全ての接続点7の電圧を検出して、全ての電池モジュール2の電圧を検出することができる。ただ、電圧検出回路は、必ずしも全ての接続点の電圧を検出する必要はなく、直列に接続している複数の電池モジュールをひとつのユニットとして、ユニット間の接続点の電圧を検出して、複数の電池モジュールからなる1ユニットの電圧として検出することもできる。たとえば、50個の電池モジュールを直列に接続しているバッテリは、好ましくは50個の全ての電池モジュールの電圧を各々独立して電圧検出回路で検出し、あるいは2個の電池モジュールを1ユニットとし、2個の電池モジュールのトータル電圧を1ユニットの電圧として、25ユニットの電圧を検出することもできる。
 検出された電池モジュール2の電圧は、電池モジュール2の残容量の検出に使用され、あるいは充放電の電流を積算して演算される残容量の補正に使用され、あるいはまた、残容量が0になって完全に放電されたことを検出して、過放電される状態では放電電流を遮断し、さらに満充電されたことを検出して、過充電される状態になると充電電流を遮断するために使用される。
 多数の電池モジュール2を直列に接続している走行用バッテリ1は、同じ電流で充放電される。したがって、全ての電池モジュール2の充電量と放電量は同じになる。しかしながら、必ずしも全ての電池モジュール2の電気特性は等しく揃って変化するわけではない。とくに、充放電の繰り返し回数が多くなると、各々の電池モジュール2は劣化する程度が異なって、満充電できる容量が変化する。この状態になると、満充電できる容量の減少した電池モジュール2は、過充電されやすく、また過放電もされやすくなる。電池モジュールは、過充電と過放電で著しく電気特性が劣化するので、満充電できる容量が減少した電池モジュールが過充電や過放電されると急激に劣化してしまう。このため、走行用バッテリ1は、多数の電池モジュール2を直列に接続しているが、全ての電池モジュール2の過充電と過放電を防止しながら、すなわち、電池モジュール2を保護しながら充放電することが大切となる。全ての電池モジュール2を保護しながら充放電するために、電圧検出回路3は、電池モジュール2の電圧を検出している。
 各々の電池モジュール2は、1個ないし数個の二次電池を直列又は並列に、あるいは直列と並列に接続している。電池モジュール2は、二次電池の種類によって、直列に接続する二次電池の個数が異なる。たとえば、二次電池をリチウムイオン電池とする電池モジュールは1個の二次電池からなり、二次電池をニッケル水素電池とする電池モジュールは、4個ないし6個の二次電池を直列に接続している。1個のリチウムイオン電池からなる電池モジュールは、20個の電池モジュールを直列に接続して出力電圧が約74Vとなる。5個のニッケル水素電池を直列に接続している電池モジュールは、これを50個直列に接続して、全体で250個のニッケル水素電池を直列に接続して、出力電圧を300Vとしている。
 電圧検出回路3は、電池モジュール2の接続点7をマルチプレクサ4で切り換えて、各々の接続点7の電圧を順番に検出する。各々の接続点7の電圧を検出し、検出した接続点7の電圧差から各々の電池モジュール2の電圧を演算する。各々の接続点7は、電圧検出ライン11を介して電圧検出回路3の入力側に接続される。電圧検出ライン11は、リード線やコネクタ17を介して一端を走行用バッテリ1の接続点7に、他端を電圧検出回路3の入力端子3aに接続している。
 電池モジュール2の電圧は、電池モジュール2の両端を接続している接続点7の電圧差として検出される。たとえば、図5において電池モジュールM2の電圧E2は、V2-V1として検出され、電池モジュールM3の電圧E3は、V3-V2で検出される。
 図の電圧検出回路3は、マルチプレクサ4の出力側に電圧検出部5を接続し、電圧検出部5の出力側にA/Dコンバータ8を接続している。この電圧検出回路3は、マルチプレクサ4で切り換えて電圧検出部5で接続点7の電圧を順番に検出し、電圧検出部5の出力をA/Dコンバータ8でデジタル信号に変換して制御回路6に入力する。制御回路6は、入力されるデジタル信号の電圧信号を演算して、電池モジュール2の電圧を検出する。
 電圧検出ライン11の故障を検出する回路9は、各々の電圧検出ライン11を直列に接続して直列接続ライン10とするバイパスコンデンサー12と、電池モジュール2側に接続しているバイパスコンデンサー12と電池モジュール2の電極端子との間に接続している抵抗素子13と、直列接続ライン10の一端に、交流信号又はパルス信号からなる検出信号を出力する発信器14と、直列接続ライン10の他端に接続されて、発信器14から出力される検出信号を検出する信号検出回路15とを備える。
 バイパスコンデンサー12は、電圧検出ライン11の両端部に接続されて、隣の電圧検出ライン11を、交流を伝送できるように直列に接続して直列接続ライン10とする。バイパスコンデンサー12は、直流を通過させないが交流を通過させる。したがって、隣の電圧検出ライン11は、その両端をバイパスコンデンサー12で接続することで、交流的に、いいかえると交流を通過できるように直列に接続される。バイパスコンデンサー12は、交互に隣の電圧検出ライン11の反対側の端部に接続されて、全ての電圧検出ライン11を交互に直列に接続して直列接続ライン10とする。
 バイパスコンデンサー12は、隣の電圧検出ライン11を交流的に直列に接続するが、交流に対する電気抵抗、すなわち特定のインピーダンスを有する。交流に対するインピーダンスを低くして、交流を通過できやすい状態で直列に接続する。バイパスコンデンサー12の交流に対するインピーダンスは、伝送される信号の周波数に比例して、静電容量に反比例する。したがって、バイパスコンデンサー12は、伝送する交流の周波数を高く、静電容量を大きくしてインピーダンスを小さくして、交流信号を少ない減衰で隣の電圧検出ライン11に伝送できる。
 抵抗素子13は、バイパスコンデンサー12で直列に接続されている電圧検出ライン11が、その片側で、すなわち電池モジュール側で短絡されるのを防止する。隣の電圧検出ライン11が一端で短絡されると、直列接続ライン10は一端に供給される検出信号を他端まで伝送できなくなる。電池モジュールの内部抵抗が相当に小さく、抵抗素子13のない状態では、各々の電池モジュール2が隣の電圧検出ライン11の一端を短絡するからである。
 抵抗素子13は、電池モジュール2とバイパスコンデンサー12との間に接続されて、電池モジュール2でバイパスコンデンサー12が短絡されるのを防止する。抵抗素子13は、抵抗器又はコイル、あるいは抵抗器とコイルとの直列回路である。抵抗器は直流と交流の両方に対して電気抵抗を示し、コイルは交流信号に対して電気抵抗に相当するインピーダンスを有する。抵抗素子13は、電気抵抗やインピーダンスを大きくして、隣の電圧検出ライン11が電池モジュール2で短絡されるのをより少なくする。抵抗素子13は、電気抵抗又はインピーダンスを大きくして、電池モジュール2による短絡をより少なくできる。このことを実現するために、抵抗器は電気抵抗を大きく、コイルはインダクタンスを大きくしてインピーダンスを大きくする。コイルのインピーダンスは、インダクタンスに比例して大きくなる。また、直列接続ライン10に供給される検出信号の周波数に比例して大きくなる。
 抵抗素子13は、電気抵抗又はインピーダンスを大きくして、電池モジュール2による短絡をより効果的に防止できる。ただ、抵抗素子13の電気抵抗が大きすぎると、電池モジュール2の電圧を検出するときに、抵抗素子13による電圧降下が発生する。抵抗素子13の電圧降下は、電圧検出回路3の入力インピーダンスに比較し、抵抗素子13の電気抵抗を充分に大きくして実質的には無視できる。また、抵抗素子13による電圧降下は、電圧検出回路3の入力インピーダンスと抵抗素子13の電気抵抗で特定されるので、これを補正して電池モジュール2の電圧を正確に検出できる。電池モジュール2の短絡を防止し、かつ電池モジュール2の電圧をより正確に検出することから、抵抗素子13の電気抵抗は、好ましくは100kΩ~1MΩに設定される。ただし、抵抗素子の電気抵抗は、この範囲に特定することなく、これよりも小さくして、電池モジュールによる短絡を防止しながら検出信号を直列接続ラインに伝送でき、また、これよりも大きくして、電池モジュールの電圧を検出することもできる。抵抗素子をコイルとする電源装置にあっては、検出信号に対するコイルのインピーダンスが10kΩ~1MΩとなるインダクタンスとする。
 抵抗素子13は、2個が直列に接続されて、バイパスコンデンサー12と並列に接続される。抵抗素子13は、バイパスコンデンサー12で検出信号を効率よく隣の電圧検出ライン11に伝送するように接続される。バイパスコンデンサー12が検出信号を効率よく伝送するには、抵抗素子13の電気抵抗やインピーダンスを大きくして、バイパスコンデンサー12のインピーダンスを小さくすることで実現できる。このことを実現するために、好ましくは、検出信号に対するバイパスコンデンサー12のインピーダンスを抵抗素子13の電気抵抗やインピーダンスよりも小さくする。ただし、バイパスコンデンサーの検出信号に対するインピーダンスを抵抗素子の電気抵抗よりも大きくして、検出信号をバイパスコンデンサーを介して伝送できるので、バイパスコンデンサーのインピーダンスは、必ずしも抵抗素子の電気抵抗よりも小さくする必要はない。
 発信器14は、直列接続ライン10の一端に交流信号又はパルス信号の検出信号を供給する。図5の抵抗素子13は、スイッチ16を介して発信器14を直列接続ライン10の一端に接続している。発信器14が検出信号を出力する状態で、スイッチ16がオンに切り換えられて、検出信号は直列接続ライン10に供給される。スイッチ16は、電圧検出ライン11の故障を検出するタイミング、たとえば、車両用の電源装置にあっては、イグニッションスイッチをオンに切り換えて、車両を走行させる前にオンに切り換えられて、電圧検出ライン11の故障を検出する。
 信号検出回路15は、直列接続ライン10に伝送される検出信号を検出して、全ての電圧検出ライン11の故障を検出する。電圧検出ライン11が断線しない正常な状態において、直列接続ライン10の一端に供給される検出信号は、直列に接続している電圧検出ライン11とバイパスコンデンサー12を通過して他端に伝送される。したがって、この状態において、信号検出回路15は、検出信号を所定のレベルで検出することができる。しかしながら、いずれかの電圧検出ライン11が断線すると、断線された部分で検出信号が伝送されなくなって、信号検出回路15は検出信号を検出できなくなる。したがって、信号検出回路15は、直列接続ライン10の一端に発信器14から検出信号が出力される状態で、検出信号のレベルを検出して、電圧検出ライン11の断線を検出できる。
 さらに、電源装置は、電圧検出ライン11が断線されることなく、コネクタ17が接触不良を起こして電池モジュール2の電圧を正確に検出できなくなることがある。この状態は、信号検出回路15が検出する信号レベルで判定できる。コネクタ17の接触不良によって接触抵抗が大きくなると、この部分で検出信号が減衰して伝送されるので、正常な状態に比較して、検出信号の信号レベルが低下するからである。したがって、信号検出回路15が検出信号を検出して、電圧検出ライン11の故障を判定する電源装置は、電圧検出ライン11の断線のみでなく、コネクタ17の接触不良や接続部の接触不良も検出できる。接触不良は、コネクタ17のみでなく、リード線を接続する接続部においても発生する。電圧検出ライン11の一部に接触不良が発生すると、この部分の電気抵抗が大きくなって、電池モジュールの電圧検出の誤差となる。電圧検出ライン11の接触不良と断線の両方を検出できる電源装置は、常に電池モジュール2を電圧を正確に検出できる特徴がある。
 電源装置は、電圧検出ライン11の故障が検出されると、たとえば走行用バッテリ1の出力を制限するように充放電して、電池モジュール2を保護しながら、車両を走行させる。また、ハイブリッドカーにあっては、電圧検出ライン11の故障が検出されると、電源装置からモータに出力しないように制御してエンジンのみで走行できる状態とし、あるいは車両を走行できない状態とする。とくに、電圧検出ライン11の切断を検出する状態では、電源装置による車両の走行を停止し、電圧検出ライン11の接触不良を検出する状態では、走行用バッテリ1の出力を制限するように制御するなど、断線と接触不良とで車両を走行させる状態を変更することもできる。
(蓄電用電源装置)
 図6は、蓄電用設備として利用する電源装置を示している。この電源装置は、例えば家庭用、工場用の電源として、太陽光発電の電力や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光発電の電力を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等に利用できる。この図の電源装置100は、複数の電池モジュール2を直列に接続している。この電源装置100は、充電用電源CPと負荷LDとを、充電スイッチCSと放電スイッチDSを介して接続している。電源装置100は、充電用電源CPで充電されて、DC/ACインバータ20を介して負荷LDに電力を供給する。このため、電源装置100は、コントローラ21を介して充電スイッチCSと放電スイッチDSをコントロールして、充電モードと放電モードに切り換えている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100から入力される信号に基づいて、コントローラ21によって切り替えられる。充電モードにおいては、コントローラ21は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また、充電された電源装置100は、満充電になり、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、コントローラ21が放電スイッチDSをONにして負荷LDに電力を供給する。このとき、充電スイッチCSはON又はOFFに制御される。充電スイッチCSと放電スイッチDSの両方をONに制御して、電源装置100は、充電されながら負荷LDに電力を供給する。
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、コントローラ21が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子やリレーが利用できる。放電スイッチDSのON/OFFは、コントローラ21によって制御される。また、電源装置は、外部機器と通信するための通信インターフェースを備えている(図示せず)。通信インターフェースは、UARTやRS-232C等の既存の通信プロトコルに従い、電源装置を負荷や充電用電源に接続している。
  1…走行用バッテリ
  2…電池モジュール
  3…電圧検出回路         3a…入力端子
  4…マルチプレクサ
  5…電圧検出部
  6…制御回路
  7…接続点
  8…A/Dコンバータ
  9…回路
 10…直列接続ライン
 11…電圧検出ライン
 12…バイパスコンデンサー
 13…抵抗素子
 14…発信器 
 15…信号検出回路
 16…スイッチ
 17…コネクタ
 20…DC/ACインバータ
 21…コントローラ
 60…断線検出回路
 67…スイッチ
 68…電圧検出ライン
 70…断線検出回路
 72…電池
 74…ツェナーダイオード
 76…抵抗
 77…スイッチ
 78…電圧検出ライン
 80…断線検出回路
 82…電池
 84…ダイオード
 88…電圧検出ライン
 92…電池モジュール
 93…電圧検出回路
 94…マルチプレクサ
 97…接続点
 98…基準点
100…電源装置
 CP…充電用電源
 LD…負荷
 CS…充電スイッチ
 DS…放電スイッチ

Claims (8)

  1.  互いに直列に接続してなる複数の電池モジュール(2)と、各々の電池モジュール(2)の正負の電極端子に、電圧検出ライン(11)を介して接続されて、各々の電池モジュール(2)の電圧を検出する電圧検出回路(3)とを備える電源装置であって、
     各々の電圧検出ライン(11)の両端部には、隣の電圧検出ライン(11)に両端を接続して各々の電圧検出ライン(11)を直列に接続して直列接続ライン(10)とするバイパスコンデンサー(12)が接続され、
     さらに、電池モジュール(2)側に接続してなるバイパスコンデンサー(12)と電池モジュール(2)の電極端子との間には抵抗素子(13)が接続されて、電圧検出ライン(11)の一端を抵抗素子(13)を介して電池モジュール(2)の電極端子に接続しており、
     前記バイパスコンデンサー(12)を介して直列に接続してなる直列接続ライン(10)の一端には、交流信号又はパルス信号からなる検出信号を出力する発信器(14)が接続され、
     さらに、直列接続ライン(10)の他端には、前記発信器(14)から出力される検出信号を検出する信号検出回路(15)を設けており、
     前記発信器(14)から出力される検出信号を信号検出回路(15)で検出して、直列に接続してなる電圧検出ライン(11)の故障を検出するようにしてなる電源装置。
  2.  前記抵抗素子(13)が抵抗器又はコイルである請求項1に記載される電源装置。
  3.  前記発信器(14)が、周波数を100KHzないし100MHzとする交流の発信器である請求項1または2に記載される電源装置。
  4.  前記発信器(14)が、電圧検出回路(3)が電池モジュール(2)の電圧を検出しないタイミングで、前記直列接続ライン(10)に検出信号を出力する請求項1ないし3のいずれかに記載される電源装置。
  5.  前記発信器(14)が出力する検出信号に対するバイパスコンデンサー(12)のインピーダンスが、抵抗素子(13)の電気抵抗よりも小さい請求項1ないし4のいずれかに記載される電源装置。
  6.  車両を走行させるモータに電力を供給する電源装置である請求項1ないし5のいずれかに記載される電源装置。
  7.  前記電源装置が車両用の電源装置である請求項1ないし6のいずれかに記載される電源装置。
  8.  前記電源装置が蓄電用の電源装置である請求項1ないし6のいずれかに記載される電源装置。
PCT/JP2011/072124 2010-09-30 2011-09-27 電源装置 WO2012043590A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012536491A JPWO2012043590A1 (ja) 2010-09-30 2011-09-27 電源装置
US13/823,465 US20130181514A1 (en) 2010-09-30 2011-09-27 Power source apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010223160 2010-09-30
JP2010-223160 2010-09-30
JP2011-133633 2011-06-15
JP2011133633 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012043590A1 true WO2012043590A1 (ja) 2012-04-05

Family

ID=45893029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072124 WO2012043590A1 (ja) 2010-09-30 2011-09-27 電源装置

Country Status (3)

Country Link
US (1) US20130181514A1 (ja)
JP (1) JPWO2012043590A1 (ja)
WO (1) WO2012043590A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027775A (ja) * 2012-07-26 2014-02-06 Denso Corp 異常検出装置
JP2015070681A (ja) * 2013-09-27 2015-04-13 株式会社Gsユアサ 電池監視装置、蓄電装置および電池監視方法
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置
JP2020072508A (ja) * 2018-10-29 2020-05-07 株式会社デンソー 組電池の電池監視装置
US11913993B2 (en) 2018-09-26 2024-02-27 Gs Yuasa International Ltd. Detector and detection method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5989620B2 (ja) * 2013-09-17 2016-09-07 株式会社東芝 組電池モジュール及び断線検出方法
US11047919B2 (en) * 2018-09-27 2021-06-29 Nxp B.V. Open wire detection system and method therefor
JP7077204B2 (ja) * 2018-10-31 2022-05-30 株式会社豊田中央研究所 電源装置
CN110429352A (zh) * 2019-07-23 2019-11-08 广州供电局有限公司 恒流均衡模组及恒流均衡装置
CN114710140B (zh) * 2022-06-06 2022-09-16 山东鲁软数字科技有限公司智慧能源分公司 低压配电台区拓扑识别用特征电流发射电路及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036574U (ja) * 1989-06-05 1991-01-22
JP2007121102A (ja) * 2005-10-27 2007-05-17 Nissan Motor Co Ltd 電線・ケーブルの断線検出方法及び断線検出装置
JP2008175804A (ja) * 2006-12-18 2008-07-31 Nissan Motor Co Ltd 異常診断装置
JP2010032412A (ja) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd 車両用の電源装置
JP2010068558A (ja) * 2008-09-08 2010-03-25 Nippon Telegr & Teleph Corp <Ntt> 充電装置および充電方法
JP2010130768A (ja) * 2008-11-26 2010-06-10 Sanyo Electric Co Ltd バッテリシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW472426B (en) * 1998-10-06 2002-01-11 Hitachi Ltd Battery apparatus and control system therefor
JP2009042080A (ja) * 2007-08-09 2009-02-26 Panasonic Corp 電圧検出装置
JP5549121B2 (ja) * 2008-06-17 2014-07-16 三洋電機株式会社 組電池の電圧検出装置及びこれを具えたバッテリシステム
US8264200B2 (en) * 2009-05-15 2012-09-11 Texas Instruments Incorporated Multi-cell power system controller
US8704525B2 (en) * 2009-07-20 2014-04-22 Texas Instruments Incorporated Current based overvoltage and undervoltage detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036574U (ja) * 1989-06-05 1991-01-22
JP2007121102A (ja) * 2005-10-27 2007-05-17 Nissan Motor Co Ltd 電線・ケーブルの断線検出方法及び断線検出装置
JP2008175804A (ja) * 2006-12-18 2008-07-31 Nissan Motor Co Ltd 異常診断装置
JP2010032412A (ja) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd 車両用の電源装置
JP2010068558A (ja) * 2008-09-08 2010-03-25 Nippon Telegr & Teleph Corp <Ntt> 充電装置および充電方法
JP2010130768A (ja) * 2008-11-26 2010-06-10 Sanyo Electric Co Ltd バッテリシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027775A (ja) * 2012-07-26 2014-02-06 Denso Corp 異常検出装置
JP2015070681A (ja) * 2013-09-27 2015-04-13 株式会社Gsユアサ 電池監視装置、蓄電装置および電池監視方法
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置
US11913993B2 (en) 2018-09-26 2024-02-27 Gs Yuasa International Ltd. Detector and detection method
JP2020072508A (ja) * 2018-10-29 2020-05-07 株式会社デンソー 組電池の電池監視装置
JP7067416B2 (ja) 2018-10-29 2022-05-16 株式会社デンソー 組電池の電池監視装置

Also Published As

Publication number Publication date
US20130181514A1 (en) 2013-07-18
JPWO2012043590A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012043590A1 (ja) 電源装置
JP5911673B2 (ja) 電源装置
JP5789846B2 (ja) 車両用の電源装置とこの電源装置を備える車両
JP5535531B2 (ja) 断線検出装置
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
JP4381239B2 (ja) 車両用の電源装置
JP5974849B2 (ja) 電池監視装置
WO2015008509A1 (ja) 電源制御装置およびリレーの異常検出方法
JP2010127722A (ja) バッテリシステム
JP4583219B2 (ja) 車両用の電源装置
US20120001640A1 (en) Power supply device capable of detecting disconnection of ground line
JP2013094032A (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP6056581B2 (ja) 組電池の異常検出装置
KR20130081215A (ko) 전원 장치
JP4845756B2 (ja) 車両用の電源装置
CN113366691A (zh) 电池均衡装置
JP5362428B2 (ja) 断線検出装置
US9694698B2 (en) Power storage system and control device of power storage device
JP5661414B2 (ja) 電源装置
JP2014090635A (ja) 蓄電システム
WO2017043237A1 (ja) 電池管理装置
KR20160071207A (ko) 배터리 셀의 과충전 보호 장치 및 방법
KR20160059803A (ko) 배터리 관리 시스템의 단선 진단 장치 및 방법
JP5416491B2 (ja) 断線検出装置
KR101846200B1 (ko) 배터리 관리 시스템의 단선 검출 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13823465

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11829143

Country of ref document: EP

Kind code of ref document: A1