WO2012043138A1 - Power source system - Google Patents

Power source system Download PDF

Info

Publication number
WO2012043138A1
WO2012043138A1 PCT/JP2011/070018 JP2011070018W WO2012043138A1 WO 2012043138 A1 WO2012043138 A1 WO 2012043138A1 JP 2011070018 W JP2011070018 W JP 2011070018W WO 2012043138 A1 WO2012043138 A1 WO 2012043138A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
storage battery
power
voltage
Prior art date
Application number
PCT/JP2011/070018
Other languages
French (fr)
Japanese (ja)
Inventor
久保 守
太田垣 和久
福田 康宏
正寛 牧野
文生 米田
俊之 平田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012536296A priority Critical patent/JPWO2012043138A1/en
Publication of WO2012043138A1 publication Critical patent/WO2012043138A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the present invention relates to a power supply system, and more particularly to a power supply system having a bidirectional power control circuit.
  • a secondary battery such as a lithium ion battery or a lead battery is used as a storage battery, and a power supply system that supplies electric power to a load using electric charges charged in the storage battery has been used.
  • the conventional power supply system includes a bidirectional power converter 100 including a step-up / down circuit 100a and an inverter circuit 100b.
  • the switching element SW2 of the step-up / step-down circuit 100a is controlled to open and close, and the switching element SW1 is kept closed to boost the output of the battery unit 102 and supply it to the inverter circuit 100b.
  • the inverter circuit 100b the DC power from the step-up / step-down circuit 100a is converted into AC power and supplied to the load 104 by opening / closing control of the switching elements SW3, SW4, SW5, and SW6.
  • the inverter circuit 100b closes all the switching elements SW3, SW4, SW5 and SW6, and full-wave rectifies the snubber diodes arranged in parallel with these switching elements.
  • the AC power is rectified and smoothed by the capacitor C2, it is supplied to the step-up / down circuit 100a.
  • the step-up / down circuit 100a controls the opening / closing of the switching element SW1 and keeps the switching element SW2 in the closed state. Is lowered and supplied to the battery unit 102.
  • the switching elements SW3, SW4, SW5 and SW6 of the inverter circuit 100b are all closed and the inverter circuit 100b is used as a diode bridge circuit. Use the rectification.
  • the system power supply 106 is used.
  • the input current Ia shows an impulse-like waveform on which harmonic components are superimposed.
  • Such a harmonic component of the input current Ia may cause noise and the like, which may cause the operation of the power supply system to become unstable.
  • An object of the present invention is to provide a power supply system that can reduce the harmonic component of the input current Ia.
  • One aspect of the present invention is a step-up / step-down circuit for stepping up and stepping down the voltage of DC power, and an upper arm and a lower arm each composed of a parallel connection of a switching element and a diode, and the upper arm and the lower arm are connected in series.
  • a bidirectional power control circuit including at least two inverter circuits connected in parallel, and the storage battery and the AC power supply can be connected by bidirectionally converting DC power and AC power connected to the inverter circuit.
  • a target input current signal of an alternating current flowing from the alternating current power source to the inverter circuit which is set according to a charging current of the storage battery, when charging the storage battery from the alternating current power source, ON / OFF of the switching element included in the inverter circuit is controlled according to a difference between the measured value of the AC current and the actual value.
  • a pulse width modulation circuit that generates a periodic pulse-shaped control signal having an on-duty pulse width according to a difference between the target input current signal of the alternating current and the measured value of the alternating current, It is preferable that the switching element included in the inverter circuit is controlled by a control signal generated in the pulse width modulation circuit.
  • a target value of an intermediate voltage between the step-up / step-down circuit and the inverter circuit is set according to a charging current of the storage battery, and the alternating current is based on a difference between the target value and the measured value of the intermediate voltage. It is preferable to set the amplitude of the target input current signal.
  • a series of arm circuits in which two circuits are connected in series up and down in a parallel circuit composed of a switching element that responds to a control signal and a diode connected in parallel to the switching element in the opposite direction and a capacitor.
  • a parallel circuit composed of a switching element that responds to a control signal and a diode connected in parallel to the switching element in the opposite direction and a capacitor.
  • a storage battery is connected via a reactor to the connection point between the upper and lower two parallel circuits of the third arm circuit so that the storage battery can be charged from a system power supply, and the electric charge stored in the storage battery is converted into AC power.
  • the output of the storage battery is supplied to a third arm circuit.
  • the DC power boosted by turning on and off the switching elements of the lower parallel circuit connected to the negative electrode side of the capacitor is stored in the capacitor, and the electric charge stored in the capacitor is stored between the first arm circuit and the second arm circuit.
  • the switching elements forming the respective parallel circuits are turned on / off based on a PWM (pulse width modulation) method to generate a pseudo sine wave, and when charging the storage battery, the charge stored in the capacitor is replaced with a third charge.
  • the switching element of the upper parallel circuit connected to the positive side of the capacitor of the arm circuit is turned ON / OFF to step down and charge the storage battery according to at least a predetermined constant current or a predetermined constant voltage, and the first arm circuit and the second
  • Each switching element forming a parallel circuit of the arm circuit is synchronized with the system power supply and on the positive side of the capacitor.
  • an ON / OFF signal obtained by modulating a carrier wave of a predetermined frequency by a difference between a sine wave having an amplitude based on a voltage and a target voltage and a current waveform flowing into the LP filter from the system power supply It is a power supply system.
  • the switching element of the parallel circuit above the third arm circuit is controlled to be in the OFF state, and when charging the storage battery, the parallel circuit below the third arm circuit It is preferable to control the switching element in the OFF state.
  • the storage battery is formed by connecting a plurality of lead storage batteries in series, and it is preferable to set the set voltage higher than the rated voltage of the storage battery.
  • a bidirectional power control circuit in a power supply system including a bidirectional power control circuit, it is possible to reduce harmonic components of the input current when charging the battery unit.
  • the power supply system includes a bidirectional power conversion unit 200, a battery unit 202, a system power supply 204, and a control unit 206, as shown in FIG.
  • the bidirectional power converter 200 is connected to a battery unit 202 that is a DC power source and an AC system power source 204.
  • a load 208 is connected to the system power supply 204, and AC power is supplied from the system power supply 204 to the load 208.
  • the battery unit 202 is connected to the load 208 via the bidirectional power conversion unit 200, and DC power from the battery unit 202 is converted into AC power by the bidirectional power conversion unit 200 and supplied to the load 208.
  • the battery unit 202 includes a storage battery that is a secondary battery.
  • the battery unit 202 is configured by connecting storage battery cells such as a lithium ion battery and a lead battery in series and parallel, and a lithium battery having a DC open voltage of about 200 V is employed.
  • the battery unit 202 is configured to include a plurality of battery packs configured by connecting 13 lithium ion battery storage battery cells connected in parallel and further connecting 13 sets in series.
  • the battery unit 202 is configured by connecting, for example, four battery pack rows in which five battery packs are connected in series.
  • the battery unit 202 is provided with a voltage detection sensor, a current detection sensor, and a temperature detection sensor, and outputs the output voltage, charge / discharge current, and temperature of the battery unit 202 to the control unit 206.
  • the battery of 6 cells 12V will be comprised in 48V by making 4 series.
  • the system power source 204 is, for example, an AC commercial power source.
  • system power supply 204 is a single-phase 200V AC power supply, but is not limited to this.
  • the AC power supply may be supplied to the load 208 as a single-phase 100V AC power supply.
  • the bidirectional power converter 200 converts the DC power output from the battery unit 202 into AC power and supplies it to the load 208, and converts AC power from the system power supply 204 into DC power. Used to charge the battery unit 202.
  • the battery unit 202 is charged with AC power from the system power supply 204 during a time period when power usage is low, and is discharged from the battery unit 202 and supplied from the system power supply 204 during a time period when power consumption by the load 208 is large. Is supplied to the load 208 in superposition with the electric power generated. Thereby, the amount of power supplied from the system power supply 204 can be averaged, and the peak of power consumption can be reduced. Further, the power supply system can be used as a standby power supply by operating it independently at the time of power failure of the system power supply 204.
  • the bidirectional power converter 200 includes a step-up / down circuit 200a, an inverter circuit 200b, and a control circuit 200c.
  • the bidirectional power conversion unit 200 is connected to the control unit 206, and the step-up / step-down circuit 200a and the inverter circuit 200b are controlled by the control circuit 200c that receives the control signal from the control unit 206.
  • the step-up / step-down circuit 200a realizes a function of boosting the voltage output from the battery unit 202 and supplying it to the inverter circuit 200b, and a function of stepping down the voltage output from the inverter circuit 200b and supplying it to the battery unit 202. To do.
  • the step-up / down circuit 200a includes a capacitor C1, an inductor L1, and switching elements SW1 and SW2.
  • the positive line connected to the positive output terminal of the battery unit 202 and the negative line connected to the negative output terminal are connected to the step-up / down circuit 200a.
  • a capacitor C1 is connected between the positive and negative lines.
  • the positive line is connected to a connection point between the two switching elements SW1 and SW2 via the coil L1.
  • the switching elements SW1 and SW2 are each composed of an N-type transistor and a free-wheeling diode connected in parallel.
  • a power transistor that flows a large current such as an IGBT, is employed. When the transistor is turned on, a current flows from the positive side (collector) to the negative side (emitter). Current is sent from the positive side to the positive side (collector side of the transistor).
  • the switching elements SW1 and SW2 can also be configured using semiconductor elements such as FETs.
  • Switching element SW1 has its collector connected to the positive bus of inverter circuit 200b and its emitter connected to the collector of switching element SW2.
  • the emitter of the switching element SW2 is connected to the negative line.
  • the gates of the switching elements SW1 and SW2 are connected to the control circuit 200c, and the control circuit 200c controls on / off of the transistors of the switching elements SW1 and SW2. That is, a full-arm DC converter is configured by the coil L1 and the switching elements SW1 and SW2, and the switching circuit SW1 is kept off by the control circuit 200c, and the switching element SW2 is turned on / off to control the inverter circuit 200b.
  • a DC voltage obtained by boosting the output voltage from the battery unit 202 can be obtained on the positive bus side.
  • the power supplied from the battery unit 202 of the step-up / down circuit 200a to the inverter circuit 200b and the battery unit 202 from the inverter circuit 200b are controlled by changing the voltage by controlling the ON / OFF duty ratio of the switching elements SW1 and SW2. It is possible to control the power transfer of the power supplied to.
  • the intermediate voltage Vm is lowered to an arbitrary voltage by maintaining the switching element SW2 in a closed (off) state, periodically turning the switching element SW1 on and off, and changing the on-duty ratio. Can be applied to the terminal of the capacitor C1. Therefore, the on-duty of the switching element SW1 can be feedback controlled based on the terminal voltage of the capacitor C1 and the target voltage.
  • the battery unit 202 can be charged at a constant voltage with the target voltage. Further, the current charged in the battery unit 202 can be obtained from the sensor S1, and the on-duty of the switching element SW1 can be feedback controlled based on the current value and the target current value. That is, the battery unit 202 can be charged with a constant current at a target current, and the battery unit 202 can be charged by switching between the constant current charging and the low voltage charging.
  • the discharge is determined based on the discharge current and the end-of-discharge voltage (not shown), and the end of the discharge of the battery unit 202 is determined. Is used as a voltage for determining the end of discharge.
  • the lead battery of the rating 48V (105Ah) was used for the battery unit 202, it is not restricted to this, You may comprise so that a desired rating value may be obtained by connecting several lead batteries in series / parallel. Each target voltage and target current is appropriately changed.
  • the control unit 206 receives information on the power supplied from the system power supply 204 obtained by the sensor S4 and obtains power supplied from the battery unit 202 to the load 208, that is, power superimposed from the battery unit 202 to the system power supply 204. (For example, the power to be superimposed on the system power supply 204 is calculated so that the amount of power supplied from the system power supply 204 does not exceed a certain value.
  • Outputs to the control circuit 200c a control signal instructing that the determined power is supplied from the battery unit 202.
  • the control circuit 200c uses the sensor S1 to detect the voltage Vd and charge / discharge current Id of the battery unit 202 and the sensor S2.
  • the on / off duty ratios of the switching elements SW1 and SW2 are controlled so as to achieve a desired power transfer.
  • the negative bus of the inverter circuit 200b to which the emitter of the switching element SW2 is connected, and the switch A capacitor C2 is connected between the positive buses of the inverter circuit 200b to which the collector of the switching element SW1 is connected to smooth the voltage between the positive and negative buses.
  • the voltage at the connection point between the switching elements SW1 and SW2 appears on the positive bus of the capacitor C2 via a freewheeling diode connected in parallel to the switching element SW1.
  • the intermediate voltage Vm between the positive and negative buses of the inverter circuit 200b is controlled to be higher than the output voltage Vd of the battery unit 202.
  • the voltage Vd of the battery unit 202 is higher than the intermediate voltage Vm, it is only necessary to provide a step-up / down circuit that can increase the voltage from the intermediate voltage Vm to the battery unit 202 side to supply power and transport the power.
  • the inverter circuit 200b includes switching elements SW3, SW4, SW5, and SW6.
  • the switching elements SW3, SW4, SW5, and SW6 are each composed of an N-type transistor and a free-wheeling diode connected in parallel.
  • a power transistor such as an IGBT that allows a large current to flow is adopted.
  • the switching elements SW3 and SW5 constitute the upper arm of the inverter circuit 200b, and the switching elements SW4 and SW6 constitute the lower arm of the inverter circuit 200b.
  • These switching elements SW4 to SW6 may be configured using FETs similarly to the switching elements SW1 and SW2.
  • two arms of a series connection of switching elements SW3 and SW4 and a series connection of switching elements SW5 and SW6 are connected between the positive and negative buses of the inverter circuit 200b.
  • the collectors of switching elements SW3 and SW5 are connected to the positive bus, respectively, and the emitters are connected to the collectors of switching elements SW4 and SW6.
  • the emitters of the switching elements SW4 and SW6 are connected to the negative bus.
  • the single-phase inverter circuit 200b is configured by the switching elements SW3, SW4, SW5, and SW6.
  • the switching elements SW1 to SW6 are composed of diodes connected in parallel in the opposite direction to semiconductor elements such as IGBT and FET, and the second arm circuit is connected by connecting the switching elements SW3 and SW4 up and down.
  • the switching elements SW5 and SW6 are connected up and down to form a first arm circuit, and the switching elements SW1 and SW2 are connected up and down to form a third arm circuit.
  • connection point of the switching elements SW3 and SW4 is an AC output terminal connected to one end of the system power supply 204 via the coil L2 (reactor), and the connection point of the switching elements SW5 and SW6 is the coil L3 (reactor).
  • the AC output terminal is connected to the other end of the system power supply 204 via the reactor).
  • a capacitor C3 is connected between the AC output end sides of the coil L2 and the coil L3 to form an LPF (low pass filter).
  • the coils L2 and L3 and the capacitor C3 are required for the function of removing high frequency components generated in the alternating current of the inverter circuit 200b and the function of bringing the phase of the alternating current close to the phase of the alternating voltage.
  • the switching elements SW3, SW4, SW5 and SW6 are on / off controlled by the control circuit 200c.
  • the DC power supplied from the step-up / down circuit 200a is converted into an inverter when the battery unit 202 is discharged, that is, during the period when power is supplied from the battery unit 202 to the load 208.
  • the circuit 200b After being converted into a pseudo sine wave by the circuit 200b, it is converted into converted AC power through the LPF and supplied to the load 208.
  • the control circuit 200c receives the input voltage Va and the input / output current Ia to the inverter circuit 200b measured by the sensor S3, detects the zero cross point from these signals, and is supplied from the system power supply 204 to the load 208.
  • On / off of the switching elements SW3, SW4, SW5 and SW6 is controlled based on the PWM method so that AC power synchronized with the voltage phase of the power to be output is output from the inverter circuit 200b.
  • AC power can be supplied to the load 208 from both the system power supply 204 and the battery unit 202.
  • the bidirectional power conversion unit 200 causes the inverter circuit 200b to function as an active filter during charging of the battery unit 202, that is, during a period in which power is supplied from the system power supply 204 to the battery unit 202.
  • the switching elements SW3, SW4, SW5, and SW6 of the inverter circuit 200b are all turned off, and the bridge circuit of the freewheeling diodes included in the switching elements SW3, SW4, SW5, and SW6
  • the AC power from the system power supply 204 is rectified and supplied to the step-up / step-down circuit 200a only by the above action.
  • the inverter circuit 200b by making the inverter circuit 200b function as an active filter, the input / output current Ia of the inverter circuit 200b can be formed into a sine wave, and the harmonics superimposed on the input / output current Ia. Reduce ingredients.
  • the battery unit 202 is charged in the constant current mode (CC mode) until the voltage Vd of the battery unit 202 reaches a predetermined value Vth.
  • the constant voltage mode CV Mode
  • the inverter circuit 200b functions as an active filter at least during charging in the constant current mode.
  • the control circuit 200c acquires the measured value of the charging current Id from the sensor S1 to the battery unit 202 so that the DC charging current Id becomes a constant charging current and the AC charging current Ia becomes a predetermined value. Therefore, a target input current signal that is a target of the input current Ia to the inverter circuit 200b is set. Then, the control circuit 200c obtains a difference between the actually measured value of the input current Ia measured by the sensor S3 and the set target input current signal, and the switching elements SW3, SW4, SW5 and so on to reduce the difference. SW6 is turned on / off.
  • feedback control can be performed such that the input current Ia flowing into the inverter circuit 200b matches the target input current signal.
  • the target input current signal a sine wave (or cosine wave)
  • the actual input current Ia can be controlled to be a sine wave (or cosine wave), and is included in the input current Ia. Harmonics can be reduced.
  • a pulse width modulation circuit (PWM circuit) 200d is provided in the control circuit 200c, and the switching elements SW3, SW4, SW5, and SW6 are controlled by a pulse signal output from the pulse width modulation circuit 200d.
  • the on / off control may be performed.
  • the control circuit 200c fixes the switching element SW2 to OFF and controls the ON / OFF duty ratio of the switching element SW1 to step down the intermediate voltage Vm that is the charging voltage of the capacitor C2, thereby charging the battery unit 202 with a charging current. Control is performed so that Id becomes a set value in charging in the constant current mode. At this time, the control circuit 200c receives the measured value of the charging current Id, and calculates the target value of the intermediate voltage Vm necessary for maintaining the value at the set value in charging in the constant current mode. Then, the amplitude of the target input current signal is set according to the difference between the actually measured value of the intermediate voltage Vm measured by the sensor S2 and the target value of the intermediate voltage Vm.
  • the amplitude of the sine wave of the target input current signal is set to be larger than the current value. If the measured value of the intermediate voltage Vm is larger than the target value, the target input current signal is set. The amplitude of the sine wave is set to be smaller than the current value.
  • the PWM circuit 200d can be configured to include a subtractor 20, a PID calculator 22, a triangular wave (carrier wave) generator 24, and a comparator 26.
  • the difference unit 20 calculates the difference between the target input current signal set as described above and the actual value of the input current Ia measured by the sensor S3 and outputs the difference to the PID calculator 22.
  • the PID calculator 22 outputs a PID value indicating the difference between the actual input current Ia and the target input current value according to the absolute value of the input value, the temporal integral value, and the temporal differential value.
  • the comparator 26 compares the PID value from the PID calculator 22 with the triangular wave generated by the triangular wave generator 24 and outputs a PWM pulse signal whose pulse width is modulated according to the magnitude relationship. For example, a PWM pulse signal that outputs a high level only during a period when the PID value from the PID calculator 22 is greater than the triangular wave generated by the triangular wave generator 24 and outputs a low level during other periods is output.
  • the on / off of the switching elements SW3, SW4, SW5 and SW6 is controlled by the PWM pulse signal thus generated.
  • the inverter circuit 200b can be controlled so that the target input current signal and the input current Ia match. That is, the active filter is operated so that the voltage (intermediate voltage Vm) of the capacitor C2 becomes constant at the target voltage corresponding to the charging current Id.
  • the inverter circuit 200b functions as an active filter when the battery unit 202 is charged.
  • the input current Ia flowing from the system power supply 204 into the inverter circuit 200b into a waveform that does not involve a steep change such as an impulse, the harmonic component contained in the input current Ia can be reduced.
  • the PWM circuit 200d is configured as described above, but the present invention is not limited to this.
  • the system power supply 204 is a three-phase AC power supply
  • the bidirectional power conversion unit 200 can be similarly processed by providing it in each of the u-phase, v-phase, and w-phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The disclosed power source system is provided with a bidirectional power control circuit (200) containing a buck-boost circuit (200a) and an inverter circuit (200b), connects a battery unit (202) and a system power source (204) by converting DC power and AC power in both directions, and, when charging the battery unit (202) from the system power source (204), allows the inverter circuit (200b) to function as an active filter by means of controlling the switching elements (SW3, SW4, SW5 and SW6) contained in the inverter circuit (200b) in accordance with the difference between the measured value of an alternating current (Ia) flowing to the inverter circuit (200b) from the system power source (204) and a target input current signal of the alternating current (Ia) set depending on the charging current of the battery unit (202).

Description

電源システムPower system
 本発明は、電源システムに関し、特に双方向の電力制御回路を有する電源システムに関する。 The present invention relates to a power supply system, and more particularly to a power supply system having a bidirectional power control circuit.
 近年、リチウムイオン電池、鉛電池等の二次電池を蓄電池とし、この蓄電池に充電された電荷を用いて負荷に電力を供給する電源システムが用いられるようになってきている。 In recent years, a secondary battery such as a lithium ion battery or a lead battery is used as a storage battery, and a power supply system that supplies electric power to a load using electric charges charged in the storage battery has been used.
 従来の電源システムでは、図4に示すように、昇降圧回路100a、インバータ回路100bを含む双方向電力変換部100を備える。電池ユニット102から負荷104へ電力を供給する際には、昇降圧回路100aのスイッチング素子SW2を開閉制御しスイッチング素子SW1を閉状態に保つことにより電池ユニット102の出力を昇圧しインバータ回路100bへ供給し、インバータ回路100bではスイッチング素子SW3,SW4,SW5及びSW6の開閉制御により昇降圧回路100aからの直流電力を交流電力に変換して負荷104へ供給する。一方、系統電源106から電池ユニット102へ充電を行う際には、インバータ回路100bではスイッチング素子SW3,SW4,SW5及びSW6を全て閉状態として、これらスイッチング素子に並設されたスナバダイオードを全波整流のブリッジ回路として作用させ、交流電力を整流しコンデンサC2で平滑した後、昇降圧回路100aへ供給し、昇降圧回路100aではスイッチング素子SW1の開閉を制御しスイッチング素子SW2を閉状態に保って電圧を降圧して電池ユニット102へ供給する。 As shown in FIG. 4, the conventional power supply system includes a bidirectional power converter 100 including a step-up / down circuit 100a and an inverter circuit 100b. When power is supplied from the battery unit 102 to the load 104, the switching element SW2 of the step-up / step-down circuit 100a is controlled to open and close, and the switching element SW1 is kept closed to boost the output of the battery unit 102 and supply it to the inverter circuit 100b. In the inverter circuit 100b, the DC power from the step-up / step-down circuit 100a is converted into AC power and supplied to the load 104 by opening / closing control of the switching elements SW3, SW4, SW5, and SW6. On the other hand, when charging the battery unit 102 from the system power supply 106, the inverter circuit 100b closes all the switching elements SW3, SW4, SW5 and SW6, and full-wave rectifies the snubber diodes arranged in parallel with these switching elements. After the AC power is rectified and smoothed by the capacitor C2, it is supplied to the step-up / down circuit 100a. The step-up / down circuit 100a controls the opening / closing of the switching element SW1 and keeps the switching element SW2 in the closed state. Is lowered and supplied to the battery unit 102.
特開2006-67673号公報JP 2006-67673 A 特開2002-315230号公報JP 2002-315230 A 特許第3255304号公報Japanese Patent No. 3255304
 ところで、従来の電源システムでは、系統電源106から電池ユニット102へ充電を行う際に、インバータ回路100bのスイッチング素子SW3,SW4,SW5及びSW6を総て閉状態としてインバータ回路100bをダイオードのブリッジ回路として利用して整流を行う。このとき、系統電源106からインバータ回路100bへ供給される電圧が昇降圧回路100aとインバータ回路100bとの間に設けられたコンデンサC2の負側母線に対する電圧Vmよりも高くなった期間のみ系統電源106からインバータ回路100bへ入力電流Iaが流れる。その結果、図5に示すように、入力電流Iaは高調波成分が重畳したインパルス状の波形を示す。 By the way, in the conventional power supply system, when charging the battery unit 102 from the system power supply 106, the switching elements SW3, SW4, SW5 and SW6 of the inverter circuit 100b are all closed and the inverter circuit 100b is used as a diode bridge circuit. Use the rectification. At this time, only when the voltage supplied from the system power supply 106 to the inverter circuit 100b is higher than the voltage Vm for the negative bus of the capacitor C2 provided between the step-up / step-down circuit 100a and the inverter circuit 100b, the system power supply 106 is used. To the inverter circuit 100b. As a result, as shown in FIG. 5, the input current Ia shows an impulse-like waveform on which harmonic components are superimposed.
 このような入力電流Iaの高調波成分はノイズ等の原因となり、電源システムの動作を不安定にする原因になるおそれがある。 Such a harmonic component of the input current Ia may cause noise and the like, which may cause the operation of the power supply system to become unstable.
 本発明は、このような入力電流Iaの高調波成分を低減することを可能とする電源システムを提供することを目的とする。 An object of the present invention is to provide a power supply system that can reduce the harmonic component of the input current Ia.
 本発明の1つの態様は、直流電力の電圧を昇圧及び降圧する昇降圧回路と、上アーム及び下アームがそれぞれスイッチング素子とダイオードとの並列接続からなり、前記上アーム及び前記下アームの直列接続を少なくとも2つ並列に接続したインバータ回路と、を含む双方向電力制御回路を備え、直流電力と前記インバータ回路に繋がる交流電力とを双方向に変換することによって蓄電池と交流電源との接続を可能にした電源システムであって、前記交流電源から前記蓄電池へ充電を行う際に、前記蓄電池の充電電流に応じて設定される前記交流電源から前記インバータ回路へ流れ込む交流電流の目標入力電流信号と、前記交流電流の実測値と、の差に応じて前記インバータ回路に含まれる前記スイッチング素子のオン/オフを制御することを特徴とする電源システムである。 One aspect of the present invention is a step-up / step-down circuit for stepping up and stepping down the voltage of DC power, and an upper arm and a lower arm each composed of a parallel connection of a switching element and a diode, and the upper arm and the lower arm are connected in series. And a bidirectional power control circuit including at least two inverter circuits connected in parallel, and the storage battery and the AC power supply can be connected by bidirectionally converting DC power and AC power connected to the inverter circuit. A target input current signal of an alternating current flowing from the alternating current power source to the inverter circuit, which is set according to a charging current of the storage battery, when charging the storage battery from the alternating current power source, ON / OFF of the switching element included in the inverter circuit is controlled according to a difference between the measured value of the AC current and the actual value. A power supply system according to claim.
 ここで、前記交流電流が系統電源に同期した正弦波に近づくように制御を行うことが好適である。 Here, it is preferable to perform control so that the alternating current approaches a sine wave synchronized with the system power supply.
 また、前記交流電流の目標入力電流信号と、前記交流電流の実測値と、の差に応じたパルス幅をオンデューティとする周期的なパルス状の制御信号を生成するパルス幅変調回路を備え、前記パルス幅変調回路において生成された制御信号により前記インバータ回路に含まれる前記スイッチング素子を制御することが好適である。 In addition, a pulse width modulation circuit that generates a periodic pulse-shaped control signal having an on-duty pulse width according to a difference between the target input current signal of the alternating current and the measured value of the alternating current, It is preferable that the switching element included in the inverter circuit is controlled by a control signal generated in the pulse width modulation circuit.
 また、前記昇降圧回路と前記インバータ回路との間の中間電圧の目標値を前記蓄電池の充電電流に応じて設定し、前記目標値と前記中間電圧の実測値との差に基づいて前記交流電流の目標入力電流信号の振幅を設定することが好適である。 In addition, a target value of an intermediate voltage between the step-up / step-down circuit and the inverter circuit is set according to a charging current of the storage battery, and the alternating current is based on a difference between the target value and the measured value of the intermediate voltage. It is preferable to set the amplitude of the target input current signal.
 本発明の別の態様は、制御信号に応答するスイッチング素子とこのスイッチング素子と並列に逆方向に接続されたダイオードとから成る並列回路を上下に2回路を直列接続したアーム回路を3列とコンデンサとを並列に接続して構成したブリッジ回路の第1のアーム回路と第2のアーム回路との上下2つの並列回路の夫々の接続点をLP(ローパス)フィルターを介して単相の系統電源に接続し第3のアーム回路の上下2つの並列回路の接続点にリアクタを介して蓄電池を接続して、この蓄電池を系統電源から充電可能に成すと共に前記蓄電池に蓄積された電荷を交流電力に変換して前記系統電源へ重畳もしくは単独出力を可能に成した電源システムにおいて、前記蓄電池の蓄積電荷を放電する際には、前記蓄電池の出力を第3のアーム回路の負極側へつながる下の並列回路のスイッチング素子をON/OFFさせて昇圧させた直流電力を前記コンデンサに蓄えると共にこのコンデンサに蓄積された電荷を第1のアーム回路と第2のアーム回路とのそれぞれの並列回路を成すスイッチング素子をPWM(パルス幅変調)方式に基づいてON/OFFして擬似正弦波を生成し、前記蓄電池を充電する際は、前記コンデンサに蓄積された電荷を第3のアーム回路の前記コンデンサの正極側へつながる上の並列回路のスイッチング素子をON/OFFさせて降圧し少なくとも所定の定電流又は所定の定電圧に従って前記蓄電池を充電すると共に第1のアーム回路及び第2のアーム回路の並列回路を成すそれぞれのスイッチング素子を前記系統電源と同期しかつ前記コンデンサの正極側の電圧と目標電圧とに基づく振幅を有する正弦波と前記LPフィルターに前記系統電源から流れ込む電流波形との差分で所定の周波数の搬送波を変調して得るON/OFF信号で駆動することを特徴とする電源システムである。 According to another aspect of the present invention, there are provided a series of arm circuits in which two circuits are connected in series up and down in a parallel circuit composed of a switching element that responds to a control signal and a diode connected in parallel to the switching element in the opposite direction and a capacitor. Are connected to each other in parallel by connecting each of the upper and lower parallel circuits of the first arm circuit and the second arm circuit of the bridge circuit to a single-phase system power supply via an LP (low pass) filter. A storage battery is connected via a reactor to the connection point between the upper and lower two parallel circuits of the third arm circuit so that the storage battery can be charged from a system power supply, and the electric charge stored in the storage battery is converted into AC power. Then, in a power supply system that enables superposition or single output to the system power supply, when discharging the stored charge of the storage battery, the output of the storage battery is supplied to a third arm circuit. The DC power boosted by turning on and off the switching elements of the lower parallel circuit connected to the negative electrode side of the capacitor is stored in the capacitor, and the electric charge stored in the capacitor is stored between the first arm circuit and the second arm circuit. The switching elements forming the respective parallel circuits are turned on / off based on a PWM (pulse width modulation) method to generate a pseudo sine wave, and when charging the storage battery, the charge stored in the capacitor is replaced with a third charge. The switching element of the upper parallel circuit connected to the positive side of the capacitor of the arm circuit is turned ON / OFF to step down and charge the storage battery according to at least a predetermined constant current or a predetermined constant voltage, and the first arm circuit and the second Each switching element forming a parallel circuit of the arm circuit is synchronized with the system power supply and on the positive side of the capacitor. Driven by an ON / OFF signal obtained by modulating a carrier wave of a predetermined frequency by a difference between a sine wave having an amplitude based on a voltage and a target voltage and a current waveform flowing into the LP filter from the system power supply It is a power supply system.
 ここで、前記蓄電池の蓄積電荷を放電する際は第3のアーム回路の上の並列回路のスイッチング素子をOFF状態に制御し、前記蓄電池を充電する際は第3のアーム回路の下の並列回路のスイッチング素子をOFF状態に制御することが好適である。 Here, when discharging the stored charge of the storage battery, the switching element of the parallel circuit above the third arm circuit is controlled to be in the OFF state, and when charging the storage battery, the parallel circuit below the third arm circuit It is preferable to control the switching element in the OFF state.
 また、前記蓄電池は鉛蓄電池を複数直列に接続して成したものであり、この蓄電池の定格電圧より前記設定電圧を高く設定することが好適である。 The storage battery is formed by connecting a plurality of lead storage batteries in series, and it is preferable to set the set voltage higher than the rated voltage of the storage battery.
 本発明によれば、双方向電力制御回路を含む電源システムにおいて、電池ユニットへの充電を行う際の入力電流の高調波成分を低減することができる。 According to the present invention, in a power supply system including a bidirectional power control circuit, it is possible to reduce harmonic components of the input current when charging the battery unit.
本発明の実施の形態における電源システムの構成を示す図である。It is a figure which shows the structure of the power supply system in embodiment of this invention. 本発明の実施の形態における電源システムの作用を示す図である。It is a figure which shows the effect | action of the power supply system in embodiment of this invention. 本発明の実施の形態における電源システムの構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the power supply system in embodiment of this invention. 従来の電源システムの構成を示す図である。It is a figure which shows the structure of the conventional power supply system. 従来の電源システムの充電期間における入力電流を示す図である。It is a figure which shows the input current in the charge period of the conventional power supply system.
 本発明の実施の形態における電源システムは、図1に示すように、双方向電力変換部200、電池ユニット202、系統電源204及び制御部206を含んで構成される。双方向電力変換部200には、直流電源である電池ユニット202と交流の系統電源204とが接続される。また、系統電源204には負荷208が接続されており、負荷208に対して系統電源204から交流電力が供給される。さらに、負荷208には双方向電力変換部200を介して電池ユニット202が接続されており、電池ユニット202からの直流電力が双方向電力変換部200において交流電力に変換されて負荷208に供給される。 The power supply system according to the embodiment of the present invention includes a bidirectional power conversion unit 200, a battery unit 202, a system power supply 204, and a control unit 206, as shown in FIG. The bidirectional power converter 200 is connected to a battery unit 202 that is a DC power source and an AC system power source 204. A load 208 is connected to the system power supply 204, and AC power is supplied from the system power supply 204 to the load 208. Further, the battery unit 202 is connected to the load 208 via the bidirectional power conversion unit 200, and DC power from the battery unit 202 is converted into AC power by the bidirectional power conversion unit 200 and supplied to the load 208. The
 電池ユニット202は、二次電池である蓄電池を含んで構成される。電池ユニット202は、例えば、リチウムイオン電池、鉛電池などの蓄電池セルを直並列に接続して構成され、リチウム電池であれば直流の開放電圧が200V程度のものが採用される。電池ユニット202は、リチウムイオン電池の蓄電池セルを24個並列に接続したものを、さらに直列に13組接続して構成された電池パックを複数含んで構成される。電池ユニット202は、例えば、電池パックを5個直列に接続した電池パック列を4個並列に接続して構成される。電池ユニット202には、電圧検知センサ、電流検知センサ及び温度検知センサが設けられ、電池ユニット202の出力電圧、充放電電流、温度を制御部206へ出力する。
 また、鉛電池であれば、6セル12Vの電池を4直列として48Vに構成する。
The battery unit 202 includes a storage battery that is a secondary battery. The battery unit 202 is configured by connecting storage battery cells such as a lithium ion battery and a lead battery in series and parallel, and a lithium battery having a DC open voltage of about 200 V is employed. The battery unit 202 is configured to include a plurality of battery packs configured by connecting 13 lithium ion battery storage battery cells connected in parallel and further connecting 13 sets in series. The battery unit 202 is configured by connecting, for example, four battery pack rows in which five battery packs are connected in series. The battery unit 202 is provided with a voltage detection sensor, a current detection sensor, and a temperature detection sensor, and outputs the output voltage, charge / discharge current, and temperature of the battery unit 202 to the control unit 206.
Moreover, if it is a lead battery, the battery of 6 cells 12V will be comprised in 48V by making 4 series.
 系統電源204は、例えば、交流商用電源である。本実施の形態では、系統電源204は、単相200V交流電源とするが、これに限定されるものではない。系統電源204への接続を切り離し電源システムを独立運転させる場合は単相100Vの交流電源として負荷208へ交流電源を供給してもよい。 The system power source 204 is, for example, an AC commercial power source. In the present embodiment, system power supply 204 is a single-phase 200V AC power supply, but is not limited to this. When the connection to the system power supply 204 is disconnected and the power supply system is operated independently, the AC power supply may be supplied to the load 208 as a single-phase 100V AC power supply.
 双方向電力変換部200は、上記のように、電池ユニット202から出力される直流電力を交流電力へ変換して負荷208へ供給すると共に、系統電源204からの交流電力を直流電力に変換して電池ユニット202の充電を行うために用いられる。 As described above, the bidirectional power converter 200 converts the DC power output from the battery unit 202 into AC power and supplies it to the load 208, and converts AC power from the system power supply 204 into DC power. Used to charge the battery unit 202.
 例えば、電力の使用が少ない時間帯において系統電源204からの交流電力によって電池ユニット202を充電し、負荷208による電力消費が大きい時間帯において電池ユニット202から放電してその電力を系統電源204から供給される電力に重畳して負荷208に供給する。これにより、系統電源204から供給される電力量の平均化を図ることができ、電力消費のピークの低減化を図ることができる。また、電源システムを系統電源204の停電時に独立運転させることによって、予備電源として活用することができる。 For example, the battery unit 202 is charged with AC power from the system power supply 204 during a time period when power usage is low, and is discharged from the battery unit 202 and supplied from the system power supply 204 during a time period when power consumption by the load 208 is large. Is supplied to the load 208 in superposition with the electric power generated. Thereby, the amount of power supplied from the system power supply 204 can be averaged, and the peak of power consumption can be reduced. Further, the power supply system can be used as a standby power supply by operating it independently at the time of power failure of the system power supply 204.
 次に、双方向電力変換部200について説明する。図1に示すように、双方向電力変換部200は、昇降圧回路200a、インバータ回路200b及び制御回路200cを含んで構成される。双方向電力変換部200は、制御部206と接続され、制御部206からの制御信号を受けた制御回路200cによって昇降圧回路200a及びインバータ回路200bが制御される。 Next, the bidirectional power conversion unit 200 will be described. As shown in FIG. 1, the bidirectional power converter 200 includes a step-up / down circuit 200a, an inverter circuit 200b, and a control circuit 200c. The bidirectional power conversion unit 200 is connected to the control unit 206, and the step-up / step-down circuit 200a and the inverter circuit 200b are controlled by the control circuit 200c that receives the control signal from the control unit 206.
 昇降圧回路200aは、電池ユニット202から出力される電圧を昇圧してインバータ回路200bへ供給する機能と、インバータ回路200bから出力される電圧を降圧して電池ユニット202へ供給する機能と、を実現する。昇降圧回路200aは、コンデンサC1、インダクタL1及びスイッチング素子SW1,SW2を含んで構成される。 The step-up / step-down circuit 200a realizes a function of boosting the voltage output from the battery unit 202 and supplying it to the inverter circuit 200b, and a function of stepping down the voltage output from the inverter circuit 200b and supplying it to the battery unit 202. To do. The step-up / down circuit 200a includes a capacitor C1, an inductor L1, and switching elements SW1 and SW2.
 電池ユニット202の正側出力端に接続される正側ラインと、負側出力端に接続される負側ラインが昇降圧回路200aに接続される。この正負側ライン間には、コンデンサC1が接続されている。また、正側ラインは、コイルL1を介し、2つのスイッチング素子SW1,SW2の接続点に接続されている。ここで、スイッチング素子SW1,SW2は、それぞれN型のトランジスタと還流ダイオードの並列接続からなる。スイッチング素子SW1,SW2のトランジスタには例えばIGBTなど大電流を流すパワートランジスタが採用されオン時に正側(コレクタ)から負側(エミッタ)に電流を流し、還流ダイオードは負側(トランジスタのエミッタ側)から正側(トランジスタのコレクタ側)に電流を流す。なお、スイッチング素子SW1,SW2は、FET等の半導体素子を用いて構成することも可能である。 The positive line connected to the positive output terminal of the battery unit 202 and the negative line connected to the negative output terminal are connected to the step-up / down circuit 200a. A capacitor C1 is connected between the positive and negative lines. The positive line is connected to a connection point between the two switching elements SW1 and SW2 via the coil L1. Here, the switching elements SW1 and SW2 are each composed of an N-type transistor and a free-wheeling diode connected in parallel. As the transistors of the switching elements SW1 and SW2, for example, a power transistor that flows a large current, such as an IGBT, is employed. When the transistor is turned on, a current flows from the positive side (collector) to the negative side (emitter). Current is sent from the positive side to the positive side (collector side of the transistor). Note that the switching elements SW1 and SW2 can also be configured using semiconductor elements such as FETs.
 スイッチング素子SW1は、そのコレクタがインバータ回路200bの正側母線に接続され、エミッタはスイッチング素子SW2のコレクタに接続される。スイッチング素子SW2のエミッタは負側ラインに接続される。そして、スイッチング素子SW1,SW2のゲートは、制御回路200cに接続され、制御回路200cがスイッチング素子SW1,SW2のトランジスタのオン/オフを制御する。すなわち、コイルL1、スイッチング素子SW1,SW2によりフルアームのDCコンバータが構成されており、制御回路200cによりスイッチング素子SW1をオフに維持し、スイッチング素子SW2をオン/オフ制御することによって、インバータ回路200bの正側母線側に電池ユニット202からの出力電圧を昇圧した直流電圧を得ることができる。また、スイッチング素子SW2をオフに維持し、スイッチング素子SW1のオン/オフ制御によってインバータ回路200bの正側母線の電圧を降圧した直流電圧を電池ユニット202の正側出力端に得ることが可能となる。 Switching element SW1 has its collector connected to the positive bus of inverter circuit 200b and its emitter connected to the collector of switching element SW2. The emitter of the switching element SW2 is connected to the negative line. The gates of the switching elements SW1 and SW2 are connected to the control circuit 200c, and the control circuit 200c controls on / off of the transistors of the switching elements SW1 and SW2. That is, a full-arm DC converter is configured by the coil L1 and the switching elements SW1 and SW2, and the switching circuit SW1 is kept off by the control circuit 200c, and the switching element SW2 is turned on / off to control the inverter circuit 200b. A DC voltage obtained by boosting the output voltage from the battery unit 202 can be obtained on the positive bus side. Further, it is possible to obtain a DC voltage obtained by stepping down the voltage of the positive bus of the inverter circuit 200b at the positive output terminal of the battery unit 202 by keeping the switching element SW2 off and controlling the on / off of the switching element SW1. .
 このとき、スイッチング素子SW1、SW2のオン/オフのデューティ比を制御して電圧を変えることによって、昇降圧回路200aの電池ユニット202からインバータ回路200bへ供給される電力及びインバータ回路200bから電池ユニット202へ供給される電力の電力移動を制御することができる。
 電池ユニット202を充電する際はスイッチング素子SW2を閉(オフ)状態に維持しスイッチング素子SW1を周期的にオン/オフさせこのオンデューティ比を変えることによって、中間電圧Vmを任意の電圧に降圧してコンデンサC1の端子に印加させて行うことができる。従って、このコンデンサC1の端子電圧と目標電圧とに基づいてスイッチング素子SW1のオンデューティをフィードバック制御することができる。すなわち、電池ユニット202を目標電圧で定電圧充電することができる。また電池ユニット202に充電される電流をセンサS1から得て、この電流値と目標電流値とに基づいてスイッチング素子SW1のオンデューティをフィードバック制御することができる。すなわち、電池ユニット202を目標電流で定電流充電することができるものであり、この定電流充電と低電圧充電とを切り替えて電池ユニット202の充電を行うことができるものである。
 例えば、電池ユニット202に定格48V(105Ah)の鉛電池を用いた場合は、目標電流値を0.1C(10.5A)の定電流充電を開始し、コンデンサC1(電池ユニット202)の端子電圧が58.8V(=48×1.225)に至った時から目標電圧を58.8Vの定電圧充電に切り替えて電池ユニット202の充電を行うものである。放電は放電電流と放電終止電圧(図示せず)に基づき電池ユニット202の放電終了を判断するがこの際過放電保護を考慮して放電終了電圧より所定値(10%~20%)程度高い値を放電終了を判断する電圧として用いる。
 尚、電池ユニット202に定格48V(105Ah)の鉛電池を用いたがこれに限るものではなく鉛電池を直列/並列に複数を接続して所望の定格値を得るように構成してもよいものであり、それぞれの目標電圧、目標電流は適に変更する。
At this time, the power supplied from the battery unit 202 of the step-up / down circuit 200a to the inverter circuit 200b and the battery unit 202 from the inverter circuit 200b are controlled by changing the voltage by controlling the ON / OFF duty ratio of the switching elements SW1 and SW2. It is possible to control the power transfer of the power supplied to.
When charging the battery unit 202, the intermediate voltage Vm is lowered to an arbitrary voltage by maintaining the switching element SW2 in a closed (off) state, periodically turning the switching element SW1 on and off, and changing the on-duty ratio. Can be applied to the terminal of the capacitor C1. Therefore, the on-duty of the switching element SW1 can be feedback controlled based on the terminal voltage of the capacitor C1 and the target voltage. That is, the battery unit 202 can be charged at a constant voltage with the target voltage. Further, the current charged in the battery unit 202 can be obtained from the sensor S1, and the on-duty of the switching element SW1 can be feedback controlled based on the current value and the target current value. That is, the battery unit 202 can be charged with a constant current at a target current, and the battery unit 202 can be charged by switching between the constant current charging and the low voltage charging.
For example, when a lead battery having a rating of 48 V (105 Ah) is used for the battery unit 202, constant current charging with a target current value of 0.1 C (10.5 A) is started, and the terminal voltage of the capacitor C1 (battery unit 202) When the battery voltage reaches 58.8 V (= 48 × 1.225), the target voltage is switched to constant voltage charging of 58.8 V to charge the battery unit 202. The discharge is determined based on the discharge current and the end-of-discharge voltage (not shown), and the end of the discharge of the battery unit 202 is determined. Is used as a voltage for determining the end of discharge.
In addition, although the lead battery of the rating 48V (105Ah) was used for the battery unit 202, it is not restricted to this, You may comprise so that a desired rating value may be obtained by connecting several lead batteries in series / parallel. Each target voltage and target current is appropriately changed.
 制御部206は、センサS4によって得られる系統電源204からの供給電力の情報を受けて、電池ユニット202から負荷208へ供給する電力、すなわち電池ユニット202から系統電源204へ重畳する電力を求める。(例えば、系統電源204から供給される電力量が一定値を超えないように系統電源204への重畳する電力を求める。尚、この電力は時間帯によって変えるなどのスケジュールを設けても制御部206は、求められた電力が電池ユニット202から供給されるように指示する制御信号を制御回路200cへ出力する。制御回路200cは、センサS1によって電池ユニット202の電圧Vd及び充放電電流IdとセンサS2によって測定される中間電圧Vmとを受けて、これらの値及び制御部206から受けた制御信号に基づいて所望の電力移動となるようにスイッチング素子SW1、SW2のオン/オフのデューティ比を制御する。なお、スイッチング素子SW2のエミッタが接続されるインバータ回路200bの負側母線と、スイッチング素子SW1のコレクタが接続されるインバータ回路200bの正側母線の間には、コンデンサC2が接続され、正負母線間の電圧を平滑化している。このコンデンサC2の負側母線に対する端子電圧を中間電圧Vmとする。なお、スイッチング素子SW1とSW2との接続点の電圧がスイッチング素子SW1に並列に接続された環流ダイオードを介してコンデンサC2の正側母線に表われている。 The control unit 206 receives information on the power supplied from the system power supply 204 obtained by the sensor S4 and obtains power supplied from the battery unit 202 to the load 208, that is, power superimposed from the battery unit 202 to the system power supply 204. (For example, the power to be superimposed on the system power supply 204 is calculated so that the amount of power supplied from the system power supply 204 does not exceed a certain value. Outputs to the control circuit 200c a control signal instructing that the determined power is supplied from the battery unit 202. The control circuit 200c uses the sensor S1 to detect the voltage Vd and charge / discharge current Id of the battery unit 202 and the sensor S2. On the basis of these values and the control signal received from the control unit 206, the on / off duty ratios of the switching elements SW1 and SW2 are controlled so as to achieve a desired power transfer. The negative bus of the inverter circuit 200b to which the emitter of the switching element SW2 is connected, and the switch A capacitor C2 is connected between the positive buses of the inverter circuit 200b to which the collector of the switching element SW1 is connected to smooth the voltage between the positive and negative buses. The voltage at the connection point between the switching elements SW1 and SW2 appears on the positive bus of the capacitor C2 via a freewheeling diode connected in parallel to the switching element SW1.
 一般的に、インバータ回路200bの正負母線間の中間電圧Vmは、電池ユニット202の出力電圧Vdに比べ高い電圧に制御される。ただし、電池ユニット202の電圧Vdが中間電圧Vmより高い場合には、中間電圧Vmから電池ユニット202側に昇圧して電力を供給できる昇降圧回路を設け、電力を輸送すればよい。 Generally, the intermediate voltage Vm between the positive and negative buses of the inverter circuit 200b is controlled to be higher than the output voltage Vd of the battery unit 202. However, when the voltage Vd of the battery unit 202 is higher than the intermediate voltage Vm, it is only necessary to provide a step-up / down circuit that can increase the voltage from the intermediate voltage Vm to the battery unit 202 side to supply power and transport the power.
 インバータ回路200bは、スイッチング素子SW3,SW4,SW5及びSW6を含んで構成される。スイッチング素子SW3,SW4,SW5及びSW6は、それぞれN型のトランジスタと還流ダイオードの並列接続からなる。スイッチング素子SW3,SW4,SW5及びSW6のトランジスタには例えばIGBTなど大電流を流すパワートランジスタが採用されオン時に正側(コレクタ)から負側(エミッタ)に電流を流し、還流ダイオードは負側(トランジスタのエミッタ側)から正側(トランジスタのコレクタ側)に電流を流す。スイッチング素子SW3及びSW5はインバータ回路200bの上アームを構成し、スイッチング素子SW4及びSW6はインバータ回路200bの下アームを構成する。これらのスイッチング素子SW4~SW6は、スイッチング素子SW1,SW2と同様にFETを用いて構成してもよい。 The inverter circuit 200b includes switching elements SW3, SW4, SW5, and SW6. The switching elements SW3, SW4, SW5, and SW6 are each composed of an N-type transistor and a free-wheeling diode connected in parallel. For the transistors of the switching elements SW3, SW4, SW5, and SW6, for example, a power transistor such as an IGBT that allows a large current to flow is adopted. When the transistor is turned on, a current flows from the positive side (collector) to the negative side (emitter). Current flows from the emitter side to the positive side (collector side of the transistor). The switching elements SW3 and SW5 constitute the upper arm of the inverter circuit 200b, and the switching elements SW4 and SW6 constitute the lower arm of the inverter circuit 200b. These switching elements SW4 to SW6 may be configured using FETs similarly to the switching elements SW1 and SW2.
 すなわち、インバータ回路200bの正負母線間には、スイッチング素子SW3及びSW4の直列接続およびスイッチング素子SW5及びSW6の直列接続の2本のアームが接続される。スイッチング素子SW3,SW5のコレクタが正側母線にそれぞれ接続され、エミッタがスイッチング素子SW4,SW6のコレクタに接続される。また、スイッチング素子SW4,SW6のエミッタは、負極母線に接続される。このようにして、スイッチング素子SW3,SW4,SW5及びSW6により単相のインバータ回路200bが構成されている。いいかえると、スイッチング素子SW1乃至スイッチング素子SW6は、IGBT、FET等の半導体素子と逆方向に並列に接続されたダイオードとからなり、スイッチング素子SW3、SW4を上下に接続して第2のアーム回路を構成し、スイッチング素子SW5、SW6を上下に接続して第1のアーム回路を構成し、スイッチング素子SW1、SW2を上下に接続して第3のアーム回路を構成する。 That is, two arms of a series connection of switching elements SW3 and SW4 and a series connection of switching elements SW5 and SW6 are connected between the positive and negative buses of the inverter circuit 200b. The collectors of switching elements SW3 and SW5 are connected to the positive bus, respectively, and the emitters are connected to the collectors of switching elements SW4 and SW6. The emitters of the switching elements SW4 and SW6 are connected to the negative bus. In this way, the single-phase inverter circuit 200b is configured by the switching elements SW3, SW4, SW5, and SW6. In other words, the switching elements SW1 to SW6 are composed of diodes connected in parallel in the opposite direction to semiconductor elements such as IGBT and FET, and the second arm circuit is connected by connecting the switching elements SW3 and SW4 up and down. The switching elements SW5 and SW6 are connected up and down to form a first arm circuit, and the switching elements SW1 and SW2 are connected up and down to form a third arm circuit.
 また、スイッチング素子SW3,SW4の接続点は、コイルL2(リアクタ)を介し、系統電源204の一端に接続される交流出力端になっており、スイッチング素子SW5,SW6の接続点は、コイルL3(リアクタ)を介し、系統電源204の他端に接続される交流出力端になっている。コイルL2およびコイルL3の交流出力端側間には、コンデンサC3が接続されてLPF(ローパスフィルター)を構成している。コイルL2,L3及びコンデンサC3は、インバータ回路200bの交流電流に生じる高周波成分の除去と、交流電流の位相を交流電圧の位相に近づける機能のために必要となる。 The connection point of the switching elements SW3 and SW4 is an AC output terminal connected to one end of the system power supply 204 via the coil L2 (reactor), and the connection point of the switching elements SW5 and SW6 is the coil L3 (reactor). The AC output terminal is connected to the other end of the system power supply 204 via the reactor). A capacitor C3 is connected between the AC output end sides of the coil L2 and the coil L3 to form an LPF (low pass filter). The coils L2 and L3 and the capacitor C3 are required for the function of removing high frequency components generated in the alternating current of the inverter circuit 200b and the function of bringing the phase of the alternating current close to the phase of the alternating voltage.
 スイッチング素子SW3,SW4,SW5及びSW6は、制御回路200cによってオン/オフ制御される。スイッチング素子SW3,SW4,SW5及びSW6のオン/オフ制御によって、電池ユニット202の放電時、すなわち電池ユニット202から負荷208へ電力を供給する期間においては昇降圧回路200aから供給される直流電力がインバータ回路200bによって擬似正弦波に変換された後、LPFを経て、変換交流電力に変換されて負荷208へ供給される。具体的には、スイッチング素子SW3,SW6をオン及びスイッチング素子SW4,SW5をオフにすることでコイルL2側の交流出力端が正となる出力が得られ、スイッチング素子SW3,SW6をオフ及びスイッチング素子SW4,SW5をオンにすることでコイルL3側の交流出力端が正となる出力が得られる。ここで、制御回路200cは、センサS3によって測定されるインバータ回路200bへの入力電圧Va及び入出力電流Iaを受けて、これらの信号からゼロクロス点を検出して系統電源204から負荷208へ供給される電力の電圧位相と同期した交流電力がインバータ回路200bから出力されるようにスイッチング素子SW3,SW4,SW5及びSW6のオン/オフをPWM方式に基づいて制御する。 The switching elements SW3, SW4, SW5 and SW6 are on / off controlled by the control circuit 200c. By the on / off control of the switching elements SW3, SW4, SW5, and SW6, the DC power supplied from the step-up / down circuit 200a is converted into an inverter when the battery unit 202 is discharged, that is, during the period when power is supplied from the battery unit 202 to the load 208. After being converted into a pseudo sine wave by the circuit 200b, it is converted into converted AC power through the LPF and supplied to the load 208. Specifically, by turning on the switching elements SW3 and SW6 and turning off the switching elements SW4 and SW5, an output in which the AC output terminal on the coil L2 side is positive is obtained, and the switching elements SW3 and SW6 are turned off and the switching elements By turning on SW4 and SW5, an output in which the AC output terminal on the coil L3 side is positive is obtained. Here, the control circuit 200c receives the input voltage Va and the input / output current Ia to the inverter circuit 200b measured by the sensor S3, detects the zero cross point from these signals, and is supplied from the system power supply 204 to the load 208. On / off of the switching elements SW3, SW4, SW5 and SW6 is controlled based on the PWM method so that AC power synchronized with the voltage phase of the power to be output is output from the inverter circuit 200b.
 これにより、負荷208へ系統電源204及び電池ユニット202の両方から交流電力を供給することが可能になる。 Thereby, AC power can be supplied to the load 208 from both the system power supply 204 and the battery unit 202.
 一方、本実施の形態における双方向電力変換部200では、電池ユニット202の充電時、すなわち系統電源204から電池ユニット202へ電力を供給する期間においてはインバータ回路200bをアクティブフィルタとして機能させる。 On the other hand, the bidirectional power conversion unit 200 according to the present embodiment causes the inverter circuit 200b to function as an active filter during charging of the battery unit 202, that is, during a period in which power is supplied from the system power supply 204 to the battery unit 202.
 従来の双方向電力変換部では、電池ユニット202の充電時にはインバータ回路200bのスイッチング素子SW3,SW4,SW5及びSW6は総てオフとしてスイッチング素子SW3,SW4,SW5及びSW6に含まれる環流ダイオードのブリッジ回路の作用のみによって系統電源204からの交流電力を整流して昇降圧回路200aへ供給していた。これに対して、本実施の形態では、インバータ回路200bをアクティブフィルタとして機能させることによって、インバータ回路200bの入出力電流Iaを正弦波に成形することができ、入出力電流Iaに重畳する高調波成分を低減する。 In the conventional bidirectional power converter, when the battery unit 202 is charged, the switching elements SW3, SW4, SW5, and SW6 of the inverter circuit 200b are all turned off, and the bridge circuit of the freewheeling diodes included in the switching elements SW3, SW4, SW5, and SW6 The AC power from the system power supply 204 is rectified and supplied to the step-up / step-down circuit 200a only by the above action. On the other hand, in this embodiment, by making the inverter circuit 200b function as an active filter, the input / output current Ia of the inverter circuit 200b can be formed into a sine wave, and the harmonics superimposed on the input / output current Ia. Reduce ingredients.
 電池ユニット202への充電は、図2に示すように、電池ユニット202の電圧Vdが所定値Vthとなるまで定電流モード(CCモード)で行われ、所定値Vthに到達すると定電圧モード(CVモード)に切り替えられる。インバータ回路200bは、少なくとも定電流モードでの充電時においてアクティブフィルタとして機能する。 As shown in FIG. 2, the battery unit 202 is charged in the constant current mode (CC mode) until the voltage Vd of the battery unit 202 reaches a predetermined value Vth. When the voltage Vd reaches the predetermined value Vth, the constant voltage mode (CV Mode). The inverter circuit 200b functions as an active filter at least during charging in the constant current mode.
 制御回路200cは、センサS1から電池ユニット202への充電電流Idの計測値を取得し、直流側の充電電流Idが一定の充電電流となると共に交流側の充電電流Iaが所定の値となるように制御するために、インバータ回路200bへの入力電流Iaの目標となる目標入力電流信号を設定する。そして、制御回路200cは、センサS3で測定される入力電流Iaの実測値と、設定された目標入力電流信号と、の差を求め、その差を小さくするようにスイッチング素子SW3,SW4,SW5及びSW6をオン/オフ制御する。 The control circuit 200c acquires the measured value of the charging current Id from the sensor S1 to the battery unit 202 so that the DC charging current Id becomes a constant charging current and the AC charging current Ia becomes a predetermined value. Therefore, a target input current signal that is a target of the input current Ia to the inverter circuit 200b is set. Then, the control circuit 200c obtains a difference between the actually measured value of the input current Ia measured by the sensor S3 and the set target input current signal, and the switching elements SW3, SW4, SW5 and so on to reduce the difference. SW6 is turned on / off.
 これによって、インバータ回路200bへ流れ込む入力電流Iaが目標入力電流信号と一致するようなフィードバック制御ができる。例えば、目標入力電流信号を正弦波(又は、余弦波)とすることによって、実際の入力電流Iaが正弦波(又は、余弦波)となるように制御することができ、入力電流Iaに含まれる高調波を低減することができる。 Thus, feedback control can be performed such that the input current Ia flowing into the inverter circuit 200b matches the target input current signal. For example, by making the target input current signal a sine wave (or cosine wave), the actual input current Ia can be controlled to be a sine wave (or cosine wave), and is included in the input current Ia. Harmonics can be reduced.
 具体的には、図3に示すように、制御回路200cにパルス幅変調回路(PWM回路)200dを設け、パルス幅変調回路200dから出力されるパルス信号によってスイッチング素子SW3,SW4,SW5及びSW6をオン/オフ制御すればよい。 Specifically, as shown in FIG. 3, a pulse width modulation circuit (PWM circuit) 200d is provided in the control circuit 200c, and the switching elements SW3, SW4, SW5, and SW6 are controlled by a pulse signal output from the pulse width modulation circuit 200d. The on / off control may be performed.
 制御回路200cは、スイッチング素子SW2をオフに固定し、スイッチング素子SW1のオン/オフのデューティ比を制御することによってコンデンサC2の充電電圧である中間電圧Vmを降圧し、電池ユニット202への充電電流Idが定電流モードの充電における設定値となるように制御を行う。このとき、制御回路200cは、充電電流Idの実測値を受けて、その値を定電流モードの充電における設定値に維持するために必要な中間電圧Vmの目標値を算出する。そして、センサS2で測定される中間電圧Vmの実測値と中間電圧Vmの目標値との差に応じて目標入力電流信号の振幅を設定する。すなわち、中間電圧Vmの実測値が目標値より小さければ目標入力電流信号の正弦波の振幅を現在値より大きくするように設定し、中間電圧Vmの実測値が目標値より大きければ目標入力電流信号の正弦波の振幅を現在値より小さくするように設定する。 The control circuit 200c fixes the switching element SW2 to OFF and controls the ON / OFF duty ratio of the switching element SW1 to step down the intermediate voltage Vm that is the charging voltage of the capacitor C2, thereby charging the battery unit 202 with a charging current. Control is performed so that Id becomes a set value in charging in the constant current mode. At this time, the control circuit 200c receives the measured value of the charging current Id, and calculates the target value of the intermediate voltage Vm necessary for maintaining the value at the set value in charging in the constant current mode. Then, the amplitude of the target input current signal is set according to the difference between the actually measured value of the intermediate voltage Vm measured by the sensor S2 and the target value of the intermediate voltage Vm. That is, if the measured value of the intermediate voltage Vm is smaller than the target value, the amplitude of the sine wave of the target input current signal is set to be larger than the current value. If the measured value of the intermediate voltage Vm is larger than the target value, the target input current signal is set. The amplitude of the sine wave is set to be smaller than the current value.
 PWM回路200dは、差分器20、PID演算器22、三角波(搬送波)発生部24及び比較器26を含んで構成することができる。差分器20は、上記のように設定された目標入力電流信号とセンサS3によって測定された入力電流Iaの実測値との差分を算出してPID演算器22へ出力する。PID演算器22は、入力値の絶対値、時間的積分値及び時間的微分値に応じて、実際の入力電流Iaと目標入力電流値との差を示すPID値を出力する。比較器26は、PID演算器22からのPID値と三角波発生部24において生成された三角波とを比較し、その大小関係に応じてパルス幅が変調されたPWMパルス信号を出力する。例えば、PID演算器22からのPID値が三角波発生部24において生成された三角波より大きい期間のみハイレベルとし、そうでない期間はローレベルとするPWMパルス信号を出力する。 The PWM circuit 200d can be configured to include a subtractor 20, a PID calculator 22, a triangular wave (carrier wave) generator 24, and a comparator 26. The difference unit 20 calculates the difference between the target input current signal set as described above and the actual value of the input current Ia measured by the sensor S3 and outputs the difference to the PID calculator 22. The PID calculator 22 outputs a PID value indicating the difference between the actual input current Ia and the target input current value according to the absolute value of the input value, the temporal integral value, and the temporal differential value. The comparator 26 compares the PID value from the PID calculator 22 with the triangular wave generated by the triangular wave generator 24 and outputs a PWM pulse signal whose pulse width is modulated according to the magnitude relationship. For example, a PWM pulse signal that outputs a high level only during a period when the PID value from the PID calculator 22 is greater than the triangular wave generated by the triangular wave generator 24 and outputs a low level during other periods is output.
 このように生成されたPWMパルス信号によってスイッチング素子SW3,SW4,SW5及びSW6のオン/オフを制御する。これによって、目標入力電流信号と入力電流Iaとが一致するようにインバータ回路200bを制御することができる。すなわち、コンデンサC2の電圧(中間電圧Vm)を充電電流Idに対応する目標電圧で一定になるようにアクティブフィルタを作動させているものである。 The on / off of the switching elements SW3, SW4, SW5 and SW6 is controlled by the PWM pulse signal thus generated. Thus, the inverter circuit 200b can be controlled so that the target input current signal and the input current Ia match. That is, the active filter is operated so that the voltage (intermediate voltage Vm) of the capacitor C2 becomes constant at the target voltage corresponding to the charging current Id.
 このようにして、電池ユニット202の充電時においてインバータ回路200bをアクティブフィルタとして機能させる。系統電源204からインバータ回路200bへ流れ込む入力電流Iaがインパルス等の急峻変化を伴わない波形となるようにすることによって、入力電流Iaに含まれる高調波成分を低減することができる。 In this way, the inverter circuit 200b functions as an active filter when the battery unit 202 is charged. By making the input current Ia flowing from the system power supply 204 into the inverter circuit 200b into a waveform that does not involve a steep change such as an impulse, the harmonic component contained in the input current Ia can be reduced.
 なお、本実施の形態では、PWM回路200dを上記のように構成したがこれに限定されるものではない。また、系統電源204が3相交流電源であれば、双方向電力変換部200をu相,v相,w相の各相にそれぞれ設けることによって同様に処理することができる。 In this embodiment, the PWM circuit 200d is configured as described above, but the present invention is not limited to this. In addition, if the system power supply 204 is a three-phase AC power supply, the bidirectional power conversion unit 200 can be similarly processed by providing it in each of the u-phase, v-phase, and w-phase.
 10 昇降圧回路、12 インバータ回路、20 差分器、22 PID演算器、24 三角波発生部、26 比較器、102 電池ユニット、106 系統電源、200 双方向電力変換部、200a 昇降圧回路、200b インバータ回路、200c 制御回路、200d パルス幅変調回路、202 電池ユニット、204 系統電源、206 制御部、208 負荷。 10 Buck-Boost Circuit, 12 Inverter Circuit, 20 Differencer, 22 PID Calculator, 24 Triangular Wave Generator, 26 Comparator, 102 Battery Unit, 106 System Power Supply, 200 Bidirectional Power Converter, 200a Buck-Boost Circuit, 200b Inverter Circuit , 200c control circuit, 200d pulse width modulation circuit, 202 battery unit, 204 system power supply, 206 control unit, 208 load.

Claims (7)

  1.  直流電力の電圧を昇圧及び降圧する昇降圧回路と、
     上アーム及び下アームがそれぞれスイッチング素子とダイオードとの並列接続からなり、前記上アーム及び前記下アームの直列接続を少なくとも2つ並列に接続したインバータ回路と、
    を含む双方向電力制御回路を備え、直流電力と前記インバータ回路に繋がる交流電力とを双方向に変換することによって蓄電池と交流電源との接続を可能にした電源システムであって、
     前記交流電源から前記蓄電池へ充電を行う際に、前記蓄電池の充電電流に応じて設定される前記交流電源から前記インバータ回路へ流れ込む交流電流の目標入力電流信号と、前記交流電流の実測値と、の差に応じて前記インバータ回路に含まれる前記スイッチング素子のオン/オフを制御することを特徴とする電源システム。
    A step-up / step-down circuit for stepping up and stepping down the voltage of the DC power;
    An inverter circuit in which an upper arm and a lower arm are each composed of a parallel connection of a switching element and a diode, and at least two series connections of the upper arm and the lower arm are connected in parallel;
    Including a bidirectional power control circuit including: a power system that enables connection between a storage battery and an AC power source by bidirectionally converting DC power and AC power connected to the inverter circuit,
    When charging the storage battery from the AC power supply, the target input current signal of the alternating current flowing from the AC power supply to the inverter circuit set according to the charging current of the storage battery, the actual value of the alternating current, A power supply system that controls on / off of the switching element included in the inverter circuit in accordance with a difference between them.
  2.  請求項1に記載の電源システムであって、
     前記交流電流が系統電源に同期した正弦波に近づくように制御を行うことを特徴とする電源システム。
    The power supply system according to claim 1,
    A power supply system that performs control so that the alternating current approaches a sine wave synchronized with a system power supply.
  3.  請求項1又は2に記載の電源システムであって、
     前記交流電流の目標入力電流信号と、前記交流電流の実測値と、の差に応じたパルス幅をオンデューティとする周期的なパルス状の制御信号を生成するパルス幅変調回路を備え、
     前記パルス幅変調回路において生成された制御信号により前記インバータ回路に含まれる前記スイッチング素子を制御することを特徴とする電源システム。
    The power supply system according to claim 1 or 2,
    A pulse width modulation circuit that generates a periodic pulse-shaped control signal with an on-duty pulse width corresponding to the difference between the target input current signal of the alternating current and the actual value of the alternating current;
    A power supply system, wherein the switching element included in the inverter circuit is controlled by a control signal generated in the pulse width modulation circuit.
  4.  請求項1~3のいずれか1項に記載の電源システムであって、
     前記昇降圧回路と前記インバータ回路との間の中間電圧の目標値を前記蓄電池の充電電流に応じて設定し、前記目標値と前記中間電圧の実測値との差に基づいて前記交流電流の目標入力電流信号の振幅を設定することを特徴とする電源システム。
    The power supply system according to any one of claims 1 to 3,
    A target value of the intermediate voltage between the step-up / step-down circuit and the inverter circuit is set according to the charging current of the storage battery, and the target of the alternating current is based on the difference between the target value and the measured value of the intermediate voltage A power supply system that sets an amplitude of an input current signal.
  5.  制御信号に応答するスイッチング素子とこのスイッチング素子と並列に逆方向に接続されたダイオードとから成る並列回路を上下に2回路を直列接続したアーム回路を3列とコンデンサとを並列に接続して構成したブリッジ回路の第1のアーム回路と第2のアーム回路との上下2つの並列回路の夫々の接続点をLP(ローパス)フィルターを介して単相の系統電源に接続し第3のアーム回路の上下2つの並列回路の接続点にリアクタを介して蓄電池を接続して、この蓄電池を系統電源から充電可能に成すと共に前記蓄電池に蓄積された電荷を交流電力に変換して前記系統電源へ重畳もしくは単独出力を可能に成した電源システムにおいて、
     前記蓄電池の蓄積電荷を放電する際には、前記蓄電池の出力を第3のアーム回路の負極側へつながる下の並列回路のスイッチング素子をON/OFFさせて昇圧させた直流電力を前記コンデンサに蓄えると共にこのコンデンサに蓄積された電荷を第1のアーム回路と第2のアーム回路とのそれぞれの並列回路を成すスイッチング素子をPWM(パルス幅変調)方式に基づいてON/OFFして擬似正弦波を生成し、前記蓄電池を充電する際は、前記コンデンサに蓄積された電荷を第3のアーム回路の前記コンデンサの正極側へつながる上の並列回路のスイッチング素子をON/OFFさせて降圧し少なくとも所定の定電流又は所定の定電圧に従って前記蓄電池を充電すると共に第1のアーム回路及び第2のアーム回路の並列回路を成すそれぞれのスイッチング素子を前記系統電源と同期しかつ前記コンデンサの正極側の電圧と目標電圧とに基づく振幅を有する正弦波と前記LPフィルターに前記系統電源から流れ込む電流波形との差分で所定の周波数の搬送波を変調して得るON/OFF信号で駆動することを特徴とする電源システム。
    A parallel circuit composed of a switching element that responds to a control signal and a diode connected in parallel with the switching element in the opposite direction is composed of an arm circuit in which two circuits are connected in series up and down and three rows and a capacitor are connected in parallel. The connection points of the upper and lower two parallel circuits of the first arm circuit and the second arm circuit of the bridge circuit are connected to a single-phase system power supply via an LP (low pass) filter, and the third arm circuit A storage battery is connected to the connection point of the upper and lower two parallel circuits via a reactor, and the storage battery is made chargeable from a system power supply, and the electric charge stored in the storage battery is converted into AC power and superimposed on the system power supply or In a power supply system that enables single output,
    When discharging the stored charge of the storage battery, the DC power boosted by turning on / off the switching element of the lower parallel circuit that connects the output of the storage battery to the negative side of the third arm circuit is stored in the capacitor. At the same time, the charge accumulated in this capacitor is turned on / off based on the PWM (pulse width modulation) method for the switching elements forming the parallel circuits of the first arm circuit and the second arm circuit to generate a pseudo sine wave. When generating and charging the storage battery, the switching element of the upper parallel circuit that connects the charge stored in the capacitor to the positive side of the capacitor of the third arm circuit is turned on / off to lower the voltage, and at least a predetermined amount The storage battery is charged according to a constant current or a predetermined constant voltage, and a parallel circuit of the first arm circuit and the second arm circuit is formed. The switching element is synchronized with the system power supply, and a carrier wave having a predetermined frequency is a difference between a sine wave having an amplitude based on the voltage on the positive side of the capacitor and a target voltage and a current waveform flowing from the system power supply into the LP filter It is driven by an ON / OFF signal obtained by modulating the power.
  6.  前記蓄電池の蓄積電荷を放電する際は第3のアーム回路の上の並列回路のスイッチング素子をOFF状態に制御し、前記蓄電池を充電する際は第3のアーム回路の下の並列回路のスイッチング素子をOFF状態に制御することを特徴とする請求項5に記載の電源システム。 When discharging the stored charge of the storage battery, the switching element of the parallel circuit above the third arm circuit is controlled to be in the OFF state, and when charging the storage battery, the switching element of the parallel circuit below the third arm circuit The power supply system according to claim 5, wherein the power supply system is controlled to be in an OFF state.
  7.  前記蓄電池は鉛蓄電池を複数直列に接続して成したものであり、この蓄電池の定格電圧より前記設定電圧を高く設定することを特徴とする請求項6に記載の電源システム。
     
     
    The power storage system according to claim 6, wherein the storage battery is formed by connecting a plurality of lead storage batteries in series, and the set voltage is set higher than a rated voltage of the storage battery.

PCT/JP2011/070018 2010-09-29 2011-09-02 Power source system WO2012043138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536296A JPWO2012043138A1 (en) 2010-09-29 2011-09-02 Power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-218583 2010-09-29
JP2010218583 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043138A1 true WO2012043138A1 (en) 2012-04-05

Family

ID=45892611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070018 WO2012043138A1 (en) 2010-09-29 2011-09-02 Power source system

Country Status (2)

Country Link
JP (1) JPWO2012043138A1 (en)
WO (1) WO2012043138A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888014A (en) * 2012-12-21 2014-06-25 丰郅(上海)新能源科技有限公司 Bidirectional inverter topology
CN103929087A (en) * 2014-04-01 2014-07-16 陕西科技大学 High-efficiency high-power-factor two-way AC/DC converter
JP2014166047A (en) * 2013-02-26 2014-09-08 Nec Corp Converter, controller, and power conversion method
FR3006521A1 (en) * 2013-05-29 2014-12-05 Renault Sa CHARGE TRANSFER SYSTEM BETWEEN A MOTOR VEHICLE BATTERY AND AN ELECTRIC POWER SUPPLY NETWORK AND CORRESPONDING CONTROL METHOD
JP2015082882A (en) * 2013-10-22 2015-04-27 東芝三菱電機産業システム株式会社 Power conversion device
JPWO2013118336A1 (en) * 2012-02-08 2015-05-11 三菱電機株式会社 Power converter
CN106059350A (en) * 2016-05-31 2016-10-26 东莞市思普电子有限公司 AC wide-frequency conversion power supply
CN109039038A (en) * 2018-07-04 2018-12-18 天津大学 Capacitor energy storage type single-phase rectifier secondary ripple wave suppressing method based on virtual impedance
CN110870198A (en) * 2017-07-31 2020-03-06 日本电产株式会社 Drive device, control method, and program
CN114123424A (en) * 2021-12-03 2022-03-01 香港理工大学深圳研究院 Reliable and rapid battery depolarization charging and discharging control operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133565A (en) * 1992-10-15 1994-05-13 Yuasa Corp Control circuit for bidirectional power converter
JP2002315230A (en) * 2001-04-04 2002-10-25 Nissin Electric Co Ltd Power source apparatus for uninterruptible power construction work
JP2006067673A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Power supply apparatus
WO2010084077A1 (en) * 2009-01-20 2010-07-29 Abb Schweiz Ag Method for operating a converter circuit, and apparatus for carrying out the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133565A (en) * 1992-10-15 1994-05-13 Yuasa Corp Control circuit for bidirectional power converter
JP2002315230A (en) * 2001-04-04 2002-10-25 Nissin Electric Co Ltd Power source apparatus for uninterruptible power construction work
JP2006067673A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Power supply apparatus
WO2010084077A1 (en) * 2009-01-20 2010-07-29 Abb Schweiz Ag Method for operating a converter circuit, and apparatus for carrying out the method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013118336A1 (en) * 2012-02-08 2015-05-11 三菱電機株式会社 Power converter
CN103888014A (en) * 2012-12-21 2014-06-25 丰郅(上海)新能源科技有限公司 Bidirectional inverter topology
JP2014166047A (en) * 2013-02-26 2014-09-08 Nec Corp Converter, controller, and power conversion method
FR3006521A1 (en) * 2013-05-29 2014-12-05 Renault Sa CHARGE TRANSFER SYSTEM BETWEEN A MOTOR VEHICLE BATTERY AND AN ELECTRIC POWER SUPPLY NETWORK AND CORRESPONDING CONTROL METHOD
JP2015082882A (en) * 2013-10-22 2015-04-27 東芝三菱電機産業システム株式会社 Power conversion device
CN103929087A (en) * 2014-04-01 2014-07-16 陕西科技大学 High-efficiency high-power-factor two-way AC/DC converter
CN106059350A (en) * 2016-05-31 2016-10-26 东莞市思普电子有限公司 AC wide-frequency conversion power supply
CN110870198A (en) * 2017-07-31 2020-03-06 日本电产株式会社 Drive device, control method, and program
CN109039038A (en) * 2018-07-04 2018-12-18 天津大学 Capacitor energy storage type single-phase rectifier secondary ripple wave suppressing method based on virtual impedance
CN109039038B (en) * 2018-07-04 2021-06-01 天津大学 Secondary ripple suppression method of capacitive energy storage type single-phase rectifier based on virtual impedance
CN114123424A (en) * 2021-12-03 2022-03-01 香港理工大学深圳研究院 Reliable and rapid battery depolarization charging and discharging control operation method
CN114123424B (en) * 2021-12-03 2023-09-05 香港理工大学深圳研究院 Reliable and rapid battery depolarized charge and discharge control operation method

Also Published As

Publication number Publication date
JPWO2012043138A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012043138A1 (en) Power source system
US11114883B2 (en) Method for controlling a charging device on board an electric or hybrid vehicle
CA2965488C (en) Multi-mode energy router
Soeiro et al. Three-phase high power factor mains interface concepts for electric vehicle battery charging systems
CN102985281B (en) Charging device for electromotive vehicle
RU2381610C1 (en) Power controller and vehicle incorporating power controller
JP5958531B2 (en) Inverter device
US20120229061A1 (en) Voltage converter and voltage converter system including voltage converter
WO2011090210A1 (en) Power conversion apparatus, grid connection apparatus, and grid connection system
US20110188270A1 (en) Circuit
EP3063854A1 (en) Power supply control
JP2014512168A (en) Battery charger for electric vehicles
US8830701B2 (en) DC-DC converter
US11632056B2 (en) Off-grid phase splitter and inverter system
Singh et al. An EV battery charger with power factor corrected bridgeless zeta converter topology
KR20120010631A (en) Power converter unit
US9887643B2 (en) Bidirectional electrical signal converter
Komeda et al. An Isolated Single-Phase AC-DC Converter basedon a Dual Active Bridge Converter and an Active Energy Buffer Circuit
TWI551024B (en) Ac-dc power conversion device and control method thereof
Liu et al. A bidirectional dual buck-boost voltage balancer with direct coupling based on a burst-mode control scheme for low-voltage bipolar-type DC microgrids
Sharma et al. A generalised double integral sliding mode control for bidirectional charger of light electric vehicle
Kaneko et al. Switching-frequency ripple current reduction of DC-link capacitor for a single-phase charger
Chaurasiya et al. A Home Charging System for EVs Using Vienna Based Modified Cuk Converter and LLC Resonant Converter
Shi et al. Modified dual inverter drive enabling on-board fast charging of electric vehicles
JP2011188600A (en) Charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536296

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828699

Country of ref document: EP

Kind code of ref document: A1