WO2012043015A1 - 画像形成装置及び画像形成方法 - Google Patents

画像形成装置及び画像形成方法 Download PDF

Info

Publication number
WO2012043015A1
WO2012043015A1 PCT/JP2011/066042 JP2011066042W WO2012043015A1 WO 2012043015 A1 WO2012043015 A1 WO 2012043015A1 JP 2011066042 W JP2011066042 W JP 2011066042W WO 2012043015 A1 WO2012043015 A1 WO 2012043015A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
sheet
head
lenticular
unit
Prior art date
Application number
PCT/JP2011/066042
Other languages
English (en)
French (fr)
Inventor
和也 真弓
亮 今井
吉田 直樹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2012536261A priority Critical patent/JPWO2012043015A1/ja
Priority to CN2011800474623A priority patent/CN103140353A/zh
Priority to EP11828576.6A priority patent/EP2623325A4/en
Publication of WO2012043015A1 publication Critical patent/WO2012043015A1/ja
Priority to US13/853,797 priority patent/US20130215164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/14Printing apparatus specially adapted for conversion between different types of record
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B25/00Viewers, other than projection viewers, giving motion-picture effects by persistence of vision, e.g. zoetrope
    • G03B25/02Viewers, other than projection viewers, giving motion-picture effects by persistence of vision, e.g. zoetrope with interposed lenticular or line screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines

Definitions

  • the present invention relates to an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image by matching the longitudinal direction of a lenticular lens with the longitudinal direction of a linear image constituting a stereoscopic image.
  • an image forming apparatus that forms a stereoscopic image by printing a plurality of viewpoint images on a lenticular sheet in which a plurality of substantially semi-cylindrical lenticular lenses are arranged. Specifically, a lenticular sheet is conveyed, and a linear image of each viewpoint image is printed for each lenticular lens using a line head on the back of the lenticular sheet. For example, when printing six viewpoint images, six linear images are printed for each lenticular lens.
  • Patent Document 1 discloses a configuration in which a test pattern is printed and then read by a photosensor, and a movement amount from the printing position to the reading position of the photosensor is detected.
  • Patent Document 2 discloses a configuration in which a relative position of a lenticular lens with respect to a head is detected by an optical sensor provided in the head.
  • Patent Document 3 discloses a configuration in which the inclination angle of a lenticular lens is calculated by reading a lenticular sheet and calculating the inclination of a valley of the lenticular lens (convex lens) with respect to a reference parallel line.
  • JP-A-8-137034 Japanese Patent Laid-Open No. 2003-21878 JP 2007-127521 A
  • Patent Document 1 In the configuration described in Patent Document 1, only the amount of movement from the printing position to the reading position of the photosensor is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. In the configuration described in Patent Document 2, only the relative position of the lenticular lens with respect to the head is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. With the configuration described in Patent Document 3, it is possible to detect the tilt angle of the lenticular lens, but if the tilt angle is large with respect to the lens pitch, erroneous detection of the tilt angle occurs. In addition, none of Patent Documents 1 to 3 describes correction for head tilt.
  • the present invention has been made in view of such circumstances, and provides an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image even when the lenticular lens and the head are inclined. Objective.
  • the present invention provides a conveyance unit that conveys a lenticular sheet in which a plurality of lenticular lenses are arranged on the surface along the sub-scanning direction in the sub-scanning direction, and a conveyance path for the lenticular sheet.
  • a plurality of detection sensors including a first detection sensor and a second detection sensor disposed on a reference line in a main scanning direction orthogonal to the sub-scanning direction, and based on detection signals of the plurality of detection sensors
  • a lens inclination calculating unit for calculating an inclination angle of the lenticular lens with respect to a reference line; and a plurality of lenticular lenses disposed on a back surface of the lenticular sheet, arranged along a longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet.
  • a head a storage unit that stores an inclination angle of the head in the longitudinal direction with respect to the reference line, an inclination angle of the lenticular lens calculated by the lens inclination calculation unit, and an inclination angle of the head stored in the storage unit
  • an inclination correction control unit that matches the inclination angle of the lenticular lens with the inclination angle of the head. That is, by using the virtual line connecting the first detection sensor and the second detection sensor as a reference line and performing angle correction to match the tilt angle of the lenticular lens with the tilt angle of the head, it is possible to form a highly accurate stereoscopic image. Become.
  • a holding unit that holds the lenticular sheet conveyed on the conveyance path by the conveyance unit is provided, and the inclination correction control unit makes the holding unit perpendicular to the conveyance surface of the lenticular sheet.
  • the tilt angle of the lenticular lens is changed by rotating it around a certain axis.
  • a reference sheet having an end surface intersecting with the sub-scanning direction and having a line parallel to the end surface is conveyed by the conveying unit, and the reference sheet is held by the holding unit.
  • the line of the reference sheet is detected by the plurality of detection sensors, and a line inclination measurement unit that calculates an inclination angle of the line of the reference sheet with respect to the reference line based on detection signals of the plurality of detection sensors
  • the inclination correction control unit is configured such that the line of the reference sheet is detected by the first detection sensor and the second detection sensor based on an inclination angle of the line of the reference sheet calculated by the line inclination measurement unit.
  • the holding portion is rotated so as to be parallel to the reference line connecting the two.
  • the plurality of detection sensors include a third detection sensor that is allowed to be displaced from the reference line that connects the first detection sensor and the second detection sensor. And a sensor positional deviation amount calculation unit that calculates a positional deviation amount of the third detection sensor from the reference line based on detection signals of the plurality of detection sensors that detect the line of the reference sheet,
  • the storage unit stores a displacement amount of the third detection sensor calculated by the sensor positional deviation amount calculation unit, and the lens inclination calculation unit stores the position of the third detection sensor stored in the storage unit.
  • the tilt angle of the lenticular lens is calculated by correcting the detection signal of the third detection sensor based on the shift amount. That is, even when the third detection sensor is displaced from the reference line, the amount of positional deviation is measured and the detection signal is corrected to accurately correct the tilt angle of the lenticular lens to form a highly accurate stereoscopic image. Is possible.
  • the peak of the detection signal of the first detection sensor and the peak of the detection signal of the second detection sensor are in phase, and the first detection sensor and the second detection sensor
  • the time difference between the detection signal peak and the detection signal peak of the third detection sensor corresponds to the displacement amount stored in the storage unit, the plurality of viewpoint images are recorded on the lenticular sheet.
  • the detection pattern printing for detecting a detection pattern for detecting the tilt angle of the head with respect to the reference line by conveying the detection sheet by the conveyance unit on the detection sheet.
  • the control unit detects the detection pattern with the plurality of detection sensors, calculates an inclination angle of the detection pattern with respect to the reference line based on detection signals of the plurality of detection sensors, and calculates the inclination angle of the head.
  • a head tilt angle measuring unit stored in the storage unit as an tilt angle.
  • a head rotation unit that rotates the head about an axis perpendicular to the conveyance surface of the lenticular sheet is provided, and the tilt correction control unit rotates the head by the head rotation unit. Move.
  • the present invention is provided in a transport unit that transports a lenticular sheet in which a plurality of lenticular lenses are arranged on the surface along the sub-scanning direction in the sub-scanning direction, and a transport path of the lenticular sheet.
  • a plurality of detection sensors including first and second detection sensors arranged on a reference line in the main scanning direction orthogonal to the scanning direction, and an inclination of the lenticular lens with respect to the reference line based on detection signals of the plurality of detection sensors
  • a lens inclination calculating unit that calculates an angle, and a longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet, and a plurality of lenticular lenses corresponding to each of the plurality of lenticular lenses on the back surface of the lenticular sheet
  • a storage unit that stores an inclination angle in the longitudinal direction of the recording head, and an abutting surface against which the lenticular sheet conveyed on the conveying path by the conveying unit abuts, and the lenticular sheet is abutted against the abutting surface Based on the tilt angle of the head stored in the storage unit with
  • a reference sheet having an end surface intersecting with the sub-scanning direction and having a line parallel to the end surface is transported by the transport unit, and the reference sheet is pushed by the protrusion of the holding unit.
  • the line of the reference sheet is detected by the plurality of detection sensors in a state of being abutted against the contact surface and held by the holding unit, and the reference sheet of the reference sheet with respect to the reference line is detected based on detection signals of the plurality of detection sensors.
  • a line inclination measuring unit that calculates an inclination angle of the line, wherein the inclination correction control unit is configured to determine the line of the reference sheet based on the inclination angle of the line of the reference sheet calculated by the line inclination measuring unit.
  • a bending amount storage unit that stores a bending amount in the longitudinal direction of the head, and a bending distortion of the viewpoint image formed on the lenticular sheet due to the bending of the head are canceled.
  • an image correction unit that corrects the curvature of the viewpoint image in accordance with the amount of curvature stored in the storage unit.
  • a detection pattern in which a detection sheet is conveyed by the conveyance unit and a detection pattern for detecting an inclination angle of the head with respect to the reference line is printed on the detection sheet by the head.
  • the inclination detection pattern is detected by the print control unit and the plurality of detection sensors, the inclination angle of the detection pattern with respect to the reference line is calculated based on detection signals of the plurality of detection sensors, and the inclination angle is The amount of bending with respect to the longitudinal direction of the head based on detection signals of a head inclination angle measuring unit stored in the storage unit as a head inclination angle and the detection sensors detecting the detection patterns of the detection sheet And a bending amount measuring unit that stores the calculated amount in the storage unit.
  • a detection sensor for detecting the bending amount is arranged at the center between the first detection sensor and the second detection sensor.
  • four or more detection sensors are arranged as the plurality of detection sensors.
  • the plurality of detection sensors are arranged such that at least one of the intervals of the plurality of detection sensors in the main scanning direction is different from any other interval.
  • the present invention is provided in a transport unit that transports a lenticular sheet formed by arranging a plurality of lenticular lenses on the surface along the sub-scanning direction in the sub-scanning direction, and a transport path of the lenticular lens,
  • a plurality of detection sensors including a first detection sensor and a second detection sensor arranged on a reference line in the main scanning direction orthogonal to the scanning direction, and along a longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet
  • a head that is disposed and records a plurality of viewpoint images on the lenticular sheet by recording a plurality of linear images corresponding to each of the plurality of lenticular lenses on the back surface of the lenticular sheet, and a storage unit.
  • a high-quality stereoscopic image can be formed by matching the longitudinal direction of the lenticular lens with the longitudinal direction of the linear image.
  • FIG. 1 Schematic of an image forming apparatus to which the present invention is applied Perspective view of lenticular sheet Top view of angle detector Side view of angle detector Illustration of detection signal
  • the perspective view which shows a clamp unit and its periphery 1 is a block diagram showing the configuration of a printer control system in a first embodiment.
  • the flowchart which shows the flow of the example of an initial measurement process in 1st Embodiment.
  • Explanatory drawing showing the state of feeding the lenticular sheet
  • Explanatory drawing which shows the example of the detection signal of a detection sensor
  • Explanatory drawing which shows the state which made the inclination of a head correspond to the inclination of the abutting surface of a clamper
  • the block diagram which shows the structure of the control system of the printer in 2nd Embodiment.
  • the flowchart which shows the flow of the example of an initial measurement process in 2nd Embodiment.
  • Explanatory drawing which shows the state which printed the detection pattern for detecting a head inclination and the curvature amount.
  • Explanatory drawing which shows a mode that the detection pattern is detecting with the detection sensor
  • Explanatory drawing used for explanation of measurement of head bending amount
  • the flowchart which shows the flow of the example of the stereo image formation process in 2nd Embodiment.
  • Explanatory drawing showing viewpoint images before and after image correction
  • FIG. 1 is a schematic configuration diagram showing a printer 2 to which the present invention is applied.
  • the printer 2 records a parallax image on the back surface of the lenticular sheet 3.
  • the lenticular sheet 3 has a large number of substantially semi-cylindrical lenticular lenses 4 (hereinafter sometimes simply referred to as “lenses”) arranged on the surface, and the back surface is flat.
  • the lenticular lens 4 is formed of a cylindrical lens and has a surface shape that forms a part of a cylinder.
  • the “lenticular lens” in the present invention is not limited to the shape shown in FIG. 2, and includes other cylindrical lenses.
  • a large number of lenses 4 are formed on the surface of the lenticular sheet 3 along the sub-scanning direction y (conveying direction), and the lenticular sheet 3 is in a state where the longitudinal direction of the lens 4 is substantially parallel to the main scanning direction x. Be transported.
  • an image area 5 is virtually divided for each lens 4, and one image area 5 corresponds to one lens 4.
  • Each image region 5 is virtually divided into a plurality of rows of minute regions 5a to 5f in the arrangement direction of the lens 4 corresponding to the number of viewpoints (six viewpoints in this example) for displaying a stereoscopic image, and parallax images
  • a linear image obtained by dividing the line is recorded in each of the plurality of minute areas 5a to 5f. For example, a first viewpoint parallax image is printed in the first minute region 5a.
  • the printer 2 is provided with a conveyance path 12 through which the lenticular sheet 3 supplied from the conveyance port 11 is conveyed.
  • a feed roller pair 15, a head 16 and a platen roller 17, an inclination angle detection unit 18, and a clamp unit 19 are arranged in the transport path 12 in order from the upstream side in the transport direction.
  • the clamp unit 19 is a clamper that switches between a clamper 23 as a holding unit that releasably clamps (holds) the tip of the lenticular sheet 3, and a closed state in which the lenticular sheet 3 is clamped and an open state in which the lenticular sheet 3 is unclamped.
  • An opening / closing mechanism 24 and a clamper driving mechanism 25 that reciprocates the clamper 23 along the transport path 12 are configured.
  • the clamper 23 is moved by the clamper driving mechanism 25 between a clamp position for clamping and releasing the tip of the lenticular sheet 3 fed by the feed roller pair 15 and a terminal position downstream of the clamp position.
  • the lenticular sheet 3 clamped by the clamper 23 reciprocates in the sub-scanning direction orthogonal to the main scanning direction. Further, the clamper driving mechanism 25 rotates the clamper 23 around an axis perpendicular to the transport surface of the transport path 12. That is, the lenticular sheet 3 can be rotated at an arbitrary angle around an axis perpendicular to the conveyance surface.
  • the transport path 12 near the upstream side of the platen roller 17 is provided with a return transport path 12a that extends obliquely downward toward the upstream side.
  • a discharge port (not shown) for discharging the recorded lenticular sheet 3 outside the printer 2 is provided at the tip of the return conveyance path 12a.
  • the head 16 and the platen roller 17 are disposed so as to sandwich the conveyance path 12.
  • a recording element array in which a large number of heating elements (recording elements 16a) are arranged in a line in a plurality of rows is formed below the head 16 in the main scanning direction.
  • the head 16 moves between a pressing position where the recording film is pressed against the back surface of the lenticular sheet 3 on the platen roller 17 and a retracted position where the recording film is retracted upward from the pressing position.
  • an image receiving layer film 27, an ink film 28, and a back layer film 29 are attached to a film exchange mechanism 30.
  • the image receiving layer film 27 is heated by the head 16 while being superimposed on the back surface of the lenticular sheet 3, the transparent image receiving layer to which the color ink from the ink film 28 is attached is transferred to the back surface of the lenticular sheet 3.
  • the ink film 28 is a sublimation type ink film, and when heated by the head 16 in a state of being superimposed on the image receiving layer on the back surface of the lenticular sheet 3, yellow, magenta, and cyan inks are sublimated to adhere to the image receiving layer. .
  • the back layer film 29 transfers the white back layer onto the image when heated by the head 16 in a state of being superimposed on the image recorded on the lenticular sheet 3.
  • the head driving unit 32 drives the head 16.
  • the head driving unit 32 simultaneously generates heat generation amounts necessary for the transfer in the respective heating elements, and when recording an image using the ink film 28, the head driving unit 32 is based on the parallax image data. Each heating element generates heat.
  • the tilt angle detector 18 optically detects the tilt angle ⁇ L of the lens 4 of the lenticular sheet 3 conveyed by the clamp unit 19.
  • the tilt angle ⁇ L of the lens 4 is an angle formed by the longitudinal direction of the lens 4 and the main scanning direction.
  • the tilt angle detection unit 18 includes first to third detection sensors 34, 35, and 36.
  • the first detection sensor 34 (S1) is disposed at a position facing one side end of the lenticular sheet 3.
  • the second detection sensor 36 (S2) is disposed at a position facing the other side end of the lenticular sheet 3.
  • the third detection sensor 35 (S3) is disposed closer to the first detection sensor 34 (S1) than the center of the first detection sensor 34 (S1) and the second detection sensor 36 (S2). That is, the interval L23 between the second detection sensor 36 (S2) and the third detection sensor 35 (S3) is larger than the interval L13 between the first detection sensor 34 and the third detection sensor 35.
  • Reference numeral L12 indicates a distance between the first detection sensor 34 (S1) and the second detection sensor 36 (S2).
  • all the detection sensors S1, S2, and S3 are arranged on a straight line in the main scanning direction, but in actuality, they are arranged so as to deviate from the straight line. In some cases, correction as described below is necessary.
  • the head 16 has a plurality of recording elements 16 a arranged along the longitudinal direction of the head 16. As shown in FIG. 3, it is preferable that the longitudinal direction of the head 16 is parallel to the main scanning direction. However, in practice, the head 16 may be inclined with respect to the main scanning direction. Such correction is necessary.
  • the three detection sensors 34, 35, and 36 provided in the conveyance path of the lenticular sheet 3 are arranged along the main scanning direction so that at least one of the intervals is different from any of the other intervals. Therefore, the inclination angle ⁇ L of the lens 4 can be accurately obtained based on the detection signals output from the detection sensors 34, 35, and 36.
  • each of the detection sensors 34 to 36 includes a light emitting diode (hereinafter referred to as “LED”) 38 and a photo sensor 39 that are arranged to face each other across the conveyance surface of the lenticular sheet 3. .
  • a slit plate 40 is disposed between the photo sensor 39 and the conveyance surface of the lenticular sheet 3.
  • the slit plate 40 is formed with a slit hole 40a set to a width through which almost one light of the lens 4 passes.
  • the detection range is limited by the slit hole 40 a and is received by the photosensor 39.
  • the photo sensor 39 outputs a detection signal corresponding to the amount of received light.
  • the amount of light received by the photosensor 39 changes according to the position of the lens 4 with respect to each of the detection sensors 34 to 36, and the magnitude of the detection signal also changes.
  • the detection signal in this example increases until it reaches the maximum when the boundary between the lenses 4 faces each of the detection sensors 34 to 36 until the vertex of the lens 4 faces, then decreases, and the boundary between the lenses 4 becomes smaller. When facing each other, it starts to increase again.
  • FIG. 5 is a perspective view showing the clamp unit 19 and its surroundings.
  • the clamper 23 includes a fixed plate 42 and a movable plate 43.
  • the fixed plate 42 is a flat plate whose length in the longitudinal direction is larger than the width of the lenticular sheet 3, and is arranged in parallel with the transport surface.
  • the movable plate 43 rotates between a holding position for holding the lenticular sheet 3 between the movable plate 43 and a holding release position for releasing the holding.
  • a spring (not shown) is disposed between the fixed plate 42 and the movable plate 43, and the movable plate 43 is urged toward the holding position by this spring.
  • the clamper opening / closing mechanism 24 includes a cam shaft 45 that rotates the movable plate 43 and a clamp release motor 46 that rotates the cam shaft 45.
  • the cam shaft 45 is disposed in the vicinity of the clamper 23 at the clamp position. By rotating the cam shaft 45 by the clamp release motor 46 and displacing the movable plate 43 between the holding position and the holding release position by the cam 45a attached to the cam shaft 45, the clamper 23 is opened and closed. Switch between states.
  • the clamper driving mechanism 25 includes a left motor 49 and a right motor 50, a left pulley 51 and a right pulley 52 attached to a rotating shaft, a left belt 53 hung on the left motor 49 and the left pulley 51, and a right motor. 50 and a right belt 54 hung on the right pulley 52.
  • Both ends of the clamper 23 are attached to the left and right belts 53 and 54 so as to be rotatable around an axis perpendicular to the conveying surface.
  • the left and right belts 53 and 54 move the clamper 23 in the sub-scanning direction.
  • the left motor 49 and the right motor 50 rotate in opposite directions, or when only one of them rotates, the left and right belts 53 and 54 rotate the clamper 23 around an axis perpendicular to the conveyance surface.
  • the clamper drive mechanism 25 includes a left guide rail 55 and a right guide rail 56 that guide the clamper 23 in the sub-scanning direction.
  • a left skew regulation guide 57 and a right skew regulation guide 58 are disposed inside the left and right guide rails 55 and 56.
  • the left and right skew regulation guides 57 and 58 regulate the skew angle of the lenticular sheet 3 fed from the feed roller pair 15 to the clamp unit 19 to be a predetermined angle or less.
  • FIG. 6 is a block diagram showing the configuration of the control system of the printer 2 in the first embodiment.
  • the elements shown in FIGS. 1 to 5 are given the same reference numerals.
  • the CPU 60 controls each part of the printer 2 in an integrated manner.
  • the memory 61 stores a program and data for controlling the printer 2.
  • the motor driver 62 rotates and stops the feed roller pair 15 by the motor 21 according to the control of the CPU 60.
  • the head retracting mechanism 64 moves the head 16 to the press contact position or the retracted position under the control of the CPU 60.
  • the tip detection sensor 65 (see FIG. 5) is disposed upstream of the clamp position, and outputs a tip detection signal to the CPU 60 when it detects passage of the tip of the lenticular sheet 3.
  • the head drive control unit 68 controls the drive of the head 16 by the head drive unit 32.
  • the clamper drive control unit 69 switches between a closed state and an open state of the clamper 23 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 controls the movement of the clamper 23 in the sub-scanning direction and the rotation of the clamper 23 by the clamper drive mechanism 25.
  • the clamper drive control unit 69 of this example controls holding and releasing of the sheet such as the lenticular sheet 3 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 of this example adjusts the tilt angle of the lens 4 of the lenticular sheet 3 by the clamper drive mechanism 25.
  • the tilt correction control unit 70 performs tilt correction control by rotating the clamper 23 via the clamper drive control unit 69. Details of the tilt correction control will be described later.
  • the line inclination measuring unit 71 conveys the reference sheet 81 shown in FIG. 8 by the feeding roller pair 15 and the like, and the reference sheet 81 is abutted against the abutting surface 23a of the clamper 23 and clamped by the clamper 23.
  • 81 reference lines Lr are detected by the first detection sensor S1 and the second detection sensor S2, and a reference sheet for the reference line Lb (main scanning direction x) based on the detection signals of the first detection sensor S1 and the second detection sensor S2.
  • the inclination angle ⁇ r of the 81 reference line Lr is calculated. Thereby, the inclination angle ⁇ c of the abutting surface 23a of the clamper 23 is acquired.
  • the reference sheet 81 has an end surface Lc that abuts against the abutting surface 23a of the clamper 23, and a reference line Lr parallel to the end surface Lc is formed.
  • the reference line Lb is an imaginary straight line connecting the first detection sensor S1 and the second detection sensor S2, and coincides with the main scanning direction x.
  • the detection pattern printing control unit 72 conveys the transparent sheet 82 by the feeding roller pair 15 and the like, abuts against the abutting surface 23a of the clamper 23, and clamps the transparent sheet 82 by the clamper 23.
  • the detection pattern 83 for detecting the tilt angle of the head 16 is printed on the transparent sheet 82 by the head 16.
  • the head inclination measurement unit 73 detects the detection pattern 83 of the transparent sheet 82 by the first detection sensor S1 and the second detection sensor S2, as shown in FIG. 10B, and detects the first detection sensor S1 and the second detection sensor S2. Based on the signal, the inclination angle ⁇ p of the detection pattern 83 with respect to the reference line Lb (main scanning direction x) is calculated, and the inclination angle ⁇ p is stored in the memory 61 as the inclination angle ⁇ h of the head 16.
  • the lens tilt measuring unit 74 is configured to tilt the lenticular lens 4 of the lenticular sheet 3 with respect to the reference line Lb (main scanning direction x) based on the detection signals of the plurality of detection sensors S1, S2, and S3 and the distance between the detection sensors. Measure the angle.
  • the above-described tilt correction control unit 70 performs various tilt corrections based on the measurement results of the line tilt measuring unit 71, the head tilt measuring unit 73, and the lens tilt measuring unit 74.
  • the inclination correction control unit 70 of the present example is based on the inclination angle ⁇ r of the reference line Lr of the reference sheet 81 so that the reference line Lr of the reference sheet 81 is parallel to the reference line Lb.
  • tilt correction control for rotating the clamper 23 is performed.
  • the tilt correction control unit 70 of the present example includes the tilt angle ⁇ of the lenticular lens 4 calculated by the lens tilt measuring unit 74 and the head tilt calculated by the head tilt measuring unit 73 and stored in the memory 61. Based on the angle, tilt correction control is performed to match the tilt angle of the lenticular lens 4 with the tilt angle of the head 16 with respect to the reference line Lb (main scanning direction).
  • the tilt correction control unit 70 of the present example performs tilt correction control for changing the tilt angle of the lenticular lens 4 by rotating the clamper 23 about an axis perpendicular to the conveying surface of the lenticular sheet 3.
  • the sensor positional deviation amount measurement unit 75 calculates the positional deviation amount of each of the detection sensors S1 to S3 in the sub-scanning direction, and stores the calculated positional deviation amount in the memory 61.
  • the third detection sensor S3 is allowed to be displaced from the reference line Lb connecting the first detection sensor S1 and the second detection sensor S2.
  • the sensor positional deviation amount measuring unit 75 calculates the positional deviation amount of the third detection sensor S3 from the reference line Lb based on the detection signals of the detection sensors S1, S2, and S3 that detect the reference line Lr of the reference sheet 81. .
  • the lens inclination measurement unit 74 corrects the detection signal of the third detection sensor S3 based on the positional deviation amount of the third detection sensor S3 stored in the memory 61 calculated by the sensor positional deviation amount measurement unit 75 to correct the lenticular.
  • the tilt angle of the lens 4 is calculated.
  • the data converter 76 reads out the two viewpoint parallax images from the memory 61 and converts them into multi-viewpoint (for example, six viewpoints) parallax images.
  • the stereoscopic image recording control unit 77 drives the head 16 with the multi-viewpoint parallax image generated by the data conversion unit 76 via the head drive control unit 68 and the head drive unit 32, and the head 16 is placed behind the lenticular sheet 3. Thus, a stereoscopic image (a multi-view parallax image) is recorded.
  • FIG. 7 is a flowchart showing an exemplary flow of the initial measurement process in the first embodiment. This process is executed by the CPU 60 according to a program.
  • the reference line Lb connecting the first detection sensor S1 and the second detection sensor S2 is a straight line
  • this is used as a reference line along the main scanning direction x.
  • the position of the third detection sensor S3 is displaced from the reference line Lb.
  • the abutting surface 23a of the clamper 23 is not parallel to the reference line Lb.
  • the longitudinal direction of the head 16 is not parallel to the reference line Lb. Therefore, it is necessary to correct these.
  • the line inclination measuring unit 71 conveys the reference sheet 81 on which the reference line Lr is formed by the feed roller pair 15, and an end surface Lc that intersects the sub-scanning direction y of the reference sheet 81 to the abutting surface 23 a of the clamper 23.
  • the reference sheet 81 is clamped (held) by the clamper 23 (step S11).
  • the reference line Lr is a straight line that is guaranteed to be parallel to the end face Lc of the reference sheet 81, and is drawn in advance on one surface (upper surface) of the reference sheet 81.
  • the abutting surface 23a of the clamper 23 is inclined by ⁇ c with respect to the reference line Lb.
  • the end surface Lc of the reference sheet 81 that is abutted against the abutting surface 23a is also inclined by ⁇ c with respect to the reference line Lb.
  • the end surface Lc of the reference sheet 81 is abutted against the abutting surface 23a of the clamper 23.
  • the lenticular sheet is prevented so that the reference sheet 81 does not rotate.
  • the moving speeds of the left and right ends of 3 may be matched.
  • the line inclination measuring unit 71 drives the belts 53 and 54 in a state where the reference sheet 81 is clamped by the clamper 23, so that the reference line Lr of the reference sheet 81 is detected by the first detection sensor S1 and the second detection sensor. Detection is performed by S2 (step S12).
  • the line inclination measuring unit 71 calculates the inclination angle ⁇ r of the reference line Lr with respect to the reference line Lb based on the detection signals of the first detection sensor S1 and the second detection sensor S2 (step S13). Since the reference line Lr is formed in parallel with the sheet end surface Lc, ⁇ r is the same as the inclination angle ⁇ c in the longitudinal direction of the clamper 23.
  • the positional deviation amount of the third detection sensor S3 from the reference line Lb in the sub-scanning direction y. D3 is calculated and stored in the memory 61 (step S15). That is, since the first to third detection sensors S1, S2, and S3 are not necessarily arranged in a line on the reference line Lb, the positional deviation amount D3 is acquired. Since the detection signal of the third detection sensor S3 has a peak position shifted from the detection signals of the detection sensors S1 and S2 on the reference line Lb, a positional shift amount D3 is calculated based on the shift amount of the peak position.
  • the detection pattern printing control unit 72 conveys an unprinted transparent sheet 82 (detection sheet) by the feeding roller pair 15 and hits the abutting surface 23 a of the clamper 23.
  • the transparent sheet 82 is clamped by the clamper 23 (step S17), and the detection pattern 83 for detecting the tilt angle of the head 16 is detected while the transparent sheet 82 is moved in the sub-scanning direction y by driving the belts 53 and 54. 16 is printed on the transparent sheet 82 (step S18).
  • the head inclination measuring unit 73 drives the belts 53 and 54 to move the transparent sheet 82 in the sub-scanning direction with the transparent sheet 82 printed with the detection pattern 83 clamped by the clamper 23. While being moved at y, the detection pattern 83 on the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 (step S19).
  • the head inclination measuring unit 73 is configured to use a reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 based on the detection signals of the first detection sensor S1 and the second detection sensor S2. ) And the calculated inclination angle ⁇ p is stored in the memory 61 as the inclination angle ⁇ h of the head 16 with respect to the reference line Lb (step S20).
  • the distance between the first detection sensor S1 and the second detection sensor S2 is L12
  • the detection position deviation amount of the detection pattern 83 between the first detection sensor S1 and the second detection sensor S2 is DH.
  • FIG. 11 is a flowchart showing a flow of an example of the stereoscopic image forming process in the first embodiment. This process is executed by the CPU 60 according to a program.
  • the tilt angle ⁇ h of the head 16 is acquired from the memory 61 (step S31).
  • the lenticular sheet 3 is conveyed by the pair of feed rollers 15 to abut against the abutting surface 23a of the clamper 23, and the lenticular sheet 3 is clamped by the clamper 23 (step S32).
  • the lenticular lens 4 of the lenticular sheet 3 is detected by the first to third detection sensors S1, S2, and S3 (step S33).
  • the detection signal peaks of the first detection sensor S1 and the second detection sensor S2 are matched, and the detection signal peak of the third detection sensor S3 is D3 (see FIG. 12). Reference) If the lens position is considerably shifted, it can be determined that the correct lens position has been detected. If the peak difference of the detection signal of the third detection sensor S3 is not equivalent to D3, the clamper 23 is rotated and adjusted.
  • the clamper drive mechanism 25 rotates the clamper 23 by the tilt angle ⁇ h (step S34).
  • a stereoscopic image (a plurality of viewpoint images) is formed on the lenticular sheet 3 (step S35).
  • the lenticular sheet 3 on which a plurality of viewpoint images are recorded as a stereoscopic image is discharged (step S36).
  • the reference line Lb and the lenticular lens 4 are In the case where it is guaranteed that they are parallel, the clamper 23 may be rotated based only on the tilt angle of the head 16.
  • the tilt correction control unit 70 makes the clamper driving mechanism 25 based on the tilt angle ⁇ h of the head 16 stored in the memory 61 with the abutting surface 23a of the clamper 23 being parallel to the reference line Lb.
  • the parallel state of the reference line Lb and the lenticular lens 4 may be set by performing steps S11 to S14 in FIG. 7 using the reference sheet 81 as described with reference to FIGS. 8 and 9, for example.
  • FIG. 15 is a block diagram showing the configuration of the control system of the printer 2 in the second embodiment.
  • the elements shown in FIGS. 1 to 6 are denoted by the same reference numerals, and description of matters already described in the first embodiment will be omitted below.
  • the head bending amount measuring unit 78 calculates the bending amount with respect to the longitudinal direction of the head 16 based on the detection signals of the plurality of detection sensors S1, S2, and S3 that detect the detection pattern 83 of the transparent sheet 82 (detection sheet). And stored in the memory 61.
  • the image correction unit 79 corrects the viewpoint image according to the amount of curvature of the head 16 acquired from the memory 61 so as to cancel the distortion of the viewpoint image formed on the lenticular sheet 3 due to the curvature of the head 16.
  • FIG. 16 is a flowchart showing an exemplary flow of measurement processing in the second embodiment. This process is executed by the CPU 60 according to a program. Note that steps S41 to S50 are the same as steps S11 to S20 in the first embodiment shown in the drawing, and the description thereof will be omitted.
  • FIG. 17A shows a state in which the detection pattern 83 is printed on the transparent sheet 82 with the curved head 16 in step S48. Since the head 16 is curved, the detection pattern 83 printed on the transparent sheet by the head 16 is also curved.
  • the curvature of the head 16 is exaggerated for easy understanding of the invention. Actually, the curvature of the head 16 is minute, but in the example shown in FIG. 2, a linear image is printed by dividing the lenticular lens 4 into six minute areas 5a to 5f. If the amount of curvature of the head 16 is large with respect to the width of the regions 5a to 5f, an image that is difficult to view stereoscopically will be formed.
  • FIG. 17B shows a state where the detection pattern 83 on the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 in step S49.
  • step S51 the head bending amount measuring unit 78 causes the clamper driving mechanism 25 to rotate the clamper 23 in the direction opposite to the tilt direction of the head 16 by the tilt angle ⁇ h, thereby detecting the detection sensor S1 and the detection sensor S2. Match the peak of the detection signal. As a result, the amount of bending can be accurately calculated.
  • the head bending amount measuring unit 78 calculates the bending amount Dc of the head 16 based on the detection signals of the detection sensors S1, S2, and S3, and stores it in the memory 61.
  • DH3 is the distance between the third detection sensor S3 and the image end of the detection pattern 83
  • D3 is the amount of displacement of the third detection sensor S3 from the reference line Lb (see FIG. 9).
  • D3 is calculated in step S45 and stored in the memory 61.
  • step S53 the transparent sheet 82 is discharged.
  • FIG. 19 is a flowchart showing a flow of an example of the stereoscopic image forming process. Steps S61 to S64 are the same as the respective steps of the stereoscopic image forming process in the first embodiment shown in FIG.
  • step S65 the image correction unit 79 acquires the bending amount Dc of the head 16 from the memory 61.
  • step S67 based on the corrected viewpoint image, the head 16 prints a plurality of linear images for each lenticular lens 4 on the back surface of the lenticular sheet 3, so that a three-dimensional image (a plurality of images is displayed on the lenticular sheet 3). Viewpoint image).
  • step S68 the lenticular sheet 3 on which the stereoscopic image is recorded is discharged.
  • the three detection sensors S1, S2, and S3 are provided in the conveyance path.
  • the number of detection sensors may be increased, and four or more detection sensors may be arranged on the conveyance path.
  • the present invention is not limited to such a case.
  • a head rotating means for rotating the head 16 around an axis perpendicular to the conveying surface of the lenticular sheet 3 may be provided.
  • the inclination correction control unit 70 rotates the head 16 by the head rotating means.
  • the present invention is not limited to such a case.
  • the moving speeds of the left and right ends of the lenticular sheet 3 may be matched to convey the lenticular sheet 3 in the sub-scanning direction so that the lenticular sheet 3 does not rotate.
  • the holding means for holding the lenticular sheet 3 is not particularly limited to the clamper 23.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Ink Jet (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

 複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1検出センサ及び第2検出センサを含む複数の検出センサと、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き算出部と、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、前記レンズ傾き算出部により算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、を備えた画像形成装置。

Description

画像形成装置及び画像形成方法
 本発明は、レンチキュラレンズの長手方向と立体画像を構成する線状画像の長手方向とを一致させて高品質の立体画像を形成することができる画像形成装置及び画像形成方法に関する。
 略半円柱状のレンチキュラレンズを複数並べたレンチキュラシートに複数の視点画像を印画することで、立体画像を形成する画像形成装置が知られている。具体的には、レンチキュラシートを搬送し、そのレンチキュラシートの背面に、ラインヘッドを用いてレンチキュラレンズごとに各視点画像の線状画像を印画する。例えば、6視点画像を印画する場合、レンチキュラレンズごとに、6本の線状画像を印画する。
 このような画像形成を行なう際に、立体画像の品質を向上させるためには、レンチキュラレンズと、各視点画像を構成する線状画像との位置合わせを精度良く行う必要がある。
 特許文献1には、テストパターンを印字した後、フォトセンサで読み取り、印字位置からフォトセンサの読み取り位置までの移動量を検出する構成が開示されている。
 特許文献2には、ヘッドに併設した光学センサにより、ヘッドに対するレンチキュラレンズの相対位置を検出する構成が開示されている。
 特許文献3には、レンチキュラシートの読み取りを行い、基準平行線に対するレンチキュラレンズ(凸レンズ)の谷の傾斜を算出することで、レンチキュラレンズの傾斜角度の算出を行なう構成が開示されている。
特開平8-137034号公報 特開2003-21878号公報 特開2007-127521号公報
 高品質の立体画像を形成するためには、レンチキュラレンズの長手方向に対して、印画する線状画像の長手方向を正確に位置合わせする必要がある。即ち、レンチキュラレンズ及びヘッドの傾きを正確に検出するとともに、検出されたレンチキュラレンズ及びヘッドの傾きに基づいてレンチキュラレンズの長手方向と線状画像の長手方向とを一致させる必要がある。
 特許文献1記載の構成では、印字位置からフォトセンサの読み取り位置までの移動量を検出しているだけであり、レンチキュラレンズ及びヘッドの傾きを正確に検出することができない。特許文献2記載の構成では、ヘッドに対するレンチキュラレンズの相対位置を検出しているだけであり、レンチキュラレンズ及びヘッドの傾きを正確に検出することができない。特許文献3記載の構成では、レンチキュラレンズの傾斜角度を検出することは可能だが、レンズピッチに対して傾斜角度が大きい場合には傾斜角度の誤検出が発生する。また、特許文献1~3のいずれも、ヘッドの傾きに対する補正に関して記載されていない。
 本発明はこのような事情に鑑みてなされたもので、レンチキュラレンズ及びヘッドの傾きが存在する場合でも、高品質の立体画像を形成することができる画像形成装置及び画像形成方法を提供することを目的とする。
 前記目的を達成するために、本発明は、複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1検出センサ及び第2検出センサを含む複数の検出センサと、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き算出部と、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、前記レンズ傾き算出部により算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、を備えた画像形成装置を提供する。即ち、第1検出センサと第2検出センサとを結ぶ仮想ラインを基準線として、レンチキュラレンズの傾き角度をヘッドの傾き角度と一致させる角度補正を行うことにより、高精度の立体画像形成が可能になる。
 本発明の一実施形態にて、前記搬送部により前記搬送路上を搬送された前記レンチキュラシートを保持する保持部を備え、前記傾き補正制御部は、前記保持部を前記レンチキュラシートの搬送面に垂直な軸周りに回動させることで、前記レンチキュラレンズの傾き角度を変化させる。
 本発明の一実施形態にて、前記副走査方向に交わる端面を有するとともに該端面に対し平行なラインが形成されたリファレンスシートを前記搬送部により搬送し、前記リファレンスシートを前記保持部により保持した状態で、前記リファレンスシートの前記ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記リファレンスシートの前記ラインの傾き角度を算出するライン傾き測定部を備え、前記傾き補正制御部は、前記ライン傾き測定部により算出された前記リファレンスシートの前記ラインの傾き角度に基づいて、前記リファレンスシートの前記ラインが前記第1検出センサと前記第2検出センサとを結ぶ前記基準線と平行になるように前記保持部を回動する。
 本発明の一実施形態にて、前記複数の検出センサは、前記第1検出センサと前記第2検出センサとを結ぶ前記基準線から位置ずれしていることが許容された第3検出センサを含んでおり、前記リファレンスシートの前記ラインを検出した前記複数の検出センサの検出信号に基づいて、前記基準線からの前記第3検出センサの位置ずれ量を算出するセンサ位置ズレ量算出部を備え、前記記憶部は、前記センサ位置ズレ量算出部により算出された前記第3検出センサの位置ずれ量を記憶し、前記レンズ傾き算出部は、前記記憶部に記憶された前記第3検出センサの位置ずれ量に基づいて前記第3検出センサの検出信号を補正して前記レンチキュラレンズの傾き角度を算出する。即ち、第3検出センサが基準線から位置ズレしていても位置ズレ量を測定して検出信号を補正することでレンチキュラレンズの傾き角度を的確に補正して高精度の立体画像を形成することが可能である。
 本発明の一実施形態にて、前記第1検出センサの検出信号のピークと前記第2検出センサの検出信号のピークとが同位相であって、前記第1検出センサおよび前記第2検出センサの検出信号のピークと前記第3検出センサの検出信号のピークとの時間差が前記記憶部に記憶された前記位置ずれ量に対応しているとき、前記レンチキュラシートに前記複数の視点画像を記録する。
 本発明の一実施形態にて、前記搬送部により検出用シートを搬送して前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、前記複数の検出センサにより前記検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、を備えた。
 本発明の一実施形態にて、前記ヘッドを前記レンチキュラシートの搬送面に垂直な軸周りに回動させるヘッド回動部を備え、前記傾き補正制御部は前記ヘッド回動部により前記ヘッドを回動させる。
 また、本発明は、複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き算出部と、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、前記搬送部により前記搬送路上を搬送された前記レンチキュラシートが突き当たる突き当て面を有し、前記突き当て面に前記レンチキュラシートが突き当てられた状態で前記レンチキュラシートを保持する保持部と、前記保持部の前記突き当て面を前記基準線と平行にした状態で、前記記憶部に記憶された前記ヘッドの傾き角度に基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、を備えた画像形成装置を提供する。
 本発明の一実施形態にて、前記副走査方向に交わる端面を有するとともに該端面に対し平行なラインが形成されたリファレンスシートを前記搬送部により搬送し、前記リファレンスシートを前記保持部の前記突き当て面に突き当てて前記保持部により保持した状態で、前記リファレンスシートの前記ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記リファレンスシートの前記ラインの傾き角度を算出するライン傾き測定部を備え、前記傾き補正制御部は、前記ライン傾き測定部により算出された前記リファレンスシートの前記ラインの傾き角度に基づいて、前記リファレンスシートの前記ラインが前記第1検出センサと前記第2検出センサとを結ぶ前記基準線と平行になるように前記保持部を回動する。即ち、第1検出センサと第2検出センサとを結ぶ仮想ラインを基準線として、保持部の突き当て面の傾き角度を容易に取得できる。
 本発明の一実施形態にて、前記ヘッドの長手方向における湾曲量を記憶する湾曲量記憶部と、前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、を備えた。
 本発明の一実施形態にて、前記搬送部により検出用シートを搬送して、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、前記複数の検出センサにより前記傾き検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、前記検出用シートの前記検出パターンを検出した前記複数の検出センサの検出信号に基づいて、前記ヘッドの長手方向に対する前記湾曲量を算出し、前記記憶部に記憶させる湾曲量測定部と、を備えた。
 本発明の一実施形態にて、前記第1検出センサと前記第2検出センサとの中央に前記湾曲量を検出するための検出センサを配置した。
 本発明の一実施形態にて、前記複数の検出センサとして4個以上の検出センサを配置した。
 本発明の一実施形態にて、前記複数の検出センサは、前記主走査方向における前記複数の検出センサの各々の間隔のうち少なくともひとつの間隔が他のいずれかの間隔と異なり配列されている。
 また、本発明は、複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラレンズの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1検出センサ及び第2検出センサを含む複数の検出センサと、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、記憶部と、を備えた画像形成装置が、前記基準線に対する前記ヘッドの長手方向の傾き角度を前記記憶部に記憶させておくステップと、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するステップと、算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させるステップと、前記レンチキュラシートの背面に、前記ヘッドにより前記複数の視点画像を記録するステップと、を実行する画像形成方法を提供する。
 本発明によれば、レンチキュラレンズの長手方向と線状画像の長手方向とを一致させることで、高品質の立体画像を形成することができる。
本発明を適用した画像形成装置の概略図 レンチキュラシートの斜視図 角度検出部の上面図 角度検出部の側面図 検出信号の説明図 クランプユニット及びその周辺を示す斜視図 第1実施形態におけるプリンタの制御系の構成を示すブロック図 第1実施形態における初期測定処理例の流れを示すフローチャート 基準線に対しクランパの突き当て面及びヘッドが傾いた状態を示す説明図 基準線に対しクランパの突き当て面を平行にした状態を示す説明図 ヘッド傾きを検出するための検出パターンを印画した状態を示す説明図 その検出パターンを検出センサで検出している様子を示す説明図 第1実施形態における立体画像形成処理例の流れを示すフローチャート レンチキュラシートを給送した状態を示す説明図 検出センサの検出信号の例を示す説明図 ヘッドの傾きとクランパの突き当て面の傾きとを一致させた状態を示す説明図 第2実施形態におけるプリンタの制御系の構成を示すブロック図 第2実施形態における初期測定処理例の流れを示すフローチャート ヘッド傾き及び湾曲量を検出するための検出パターンを印画した状態を示す説明図 その検出パターンを検出センサで検出している様子を示す説明図 ヘッドの湾曲量の測定の説明に用いる説明図 第2実施形態における立体画像形成処理例の流れを示すフローチャート 画像補正前後の視点画像を示す説明図
 以下、添付図面に従って、本発明の実施形態について、詳細に説明する。
 図1は、本発明を適用したプリンタ2を示す概略構成図である。このプリンタ2は、レンチキュラシート3の背面に視差画像を記録する。
 レンチキュラシート3は、図2に示すように、表面に略半円柱状のレンチキュラレンズ4(以下単に「レンズ」ということもある)が多数配列され、背面が平面になっている。レンチキュラレンズ4は、シリンドリカルレンズからなり、円筒の一部をなす面形状を有する。なお、本発明における「レンチキュラレンズ」は、図2に示した形状のものに限定されず、他のシリンドリカルレンズを含む。
 レンチキュラシート3の表面にて多数のレンズ4は副走査方向y(搬送方向)に沿って並べて形成されており、レンチキュラシート3はレンズ4の長手方向を主走査方向xと略平行にした状態で搬送される。
 レンチキュラシート3の背面は、レンズ4ごとに画像領域5が仮想的に区画されており、ひとつのレンズ4に対してひとつの画像領域5が対応する。各画像領域5は、立体視画像を表示するための視点数(本例では6視点)に対応してレンズ4の配列方向に複数列の微小領域5a~5fに仮想的に区画され、視差画像を線状に分割した線状画像が複数の微小領域5a~5fの各々に記録される。例えば、第1微小領域5aには第1視点の視差画像が印画される。
 図1に示すように、プリンタ2には、搬送口11から供給されたレンチキュラシート3が搬送される搬送路12が設けられている。搬送路12には、搬送方向上流側から順に、給送ローラ対15と、ヘッド16及びプラテンローラ17と、傾き角度検出部18と、クランプユニット19とが配置されている。
 クランプユニット19は、レンチキュラシート3の先端を解除可能にクランプ(保持)する保持手段としてのクランパ23と、レンチキュラシート3をクランプした閉状態及びレンチキュラシート3のクランプを解除した開状態とを切り替えるクランパ開閉機構24と、クランパ23を搬送路12に沿って往復動させるクランパ駆動機構25とで構成されている。クランパ23は、クランパ駆動機構25により、給送ローラ対15により給送されるレンチキュラシート3の先端のクランプ及び解除を行なうクランプ位置と、クランプ位置よりも下流の終端位置との間で移動する。即ち、クランパ23にクランプされたレンチキュラシート3は、主走査方向と直交する副走査方向に往復動する。また、クランパ駆動機構25は、クランパ23を搬送路12の搬送面に垂直な軸周りに回動させる。即ち、レンチキュラシート3を搬送面に垂直な軸周りに任意の角度で回動させることが可能である。
 プラテンローラ17の上流側近傍の搬送路12には、上流側に向かって斜め下方に伸びる戻し搬送路12aが設けられている。戻し搬送路12aの先端には、プリンタ2の外に記録済みのレンチキュラシート3を排出するための排出口(図示せず)が設けられている。
 ヘッド16とプラテンローラ17は、搬送路12を挟み込むように配置されている。ヘッド16の下部には、主走査方向に多数の発熱素子(記録素子16a)を複数列でライン状に配列した記録素子アレイが形成されている。ヘッド16は、プラテンローラ17上のレンチキュラシート3の背面に記録用フィルムを圧接する圧接位置と、圧接位置から上方に退避した退避位置との間で移動する。
 記録フィルムとして、受像層フィルム27、インクフィルム28、バック層フィルム29がある。各フィルム27~29は、フィルム交換機構30に取り付けられている。受像層フィルム27は、レンチキュラシート3の背面に重ね合わされた状態でヘッド16により加熱されたときに、インクフィルム28からのカラーインクを付着させる透明な受像層をレンチキュラシート3の背面に転写する。インクフィルム28は、昇華型のインクフィルムであり、レンチキュラシート3の背面の受像層に重ね合わされた状態でヘッド16により加熱されたときに、イエロー、マゼンタ、シアンのインクを昇華させて受像層に付着させる。バック層フィルム29は、レンチキュラシート3に記録された画像に重ね合わされた状態でヘッド16により加熱されたときに、白色のバック層を画像上に転写する。
 ヘッド駆動部32は、ヘッド16を駆動する。ヘッド駆動部32は、受像層、バック層を形成するときには、それらの転写に必要な発熱量を各発熱素子に同時に発生させ、インクフィルム28を用いて画像を記録するときには、視差画像データに基づいて各発熱素子を発熱させる。
 傾き角度検出部18は、クランプユニット19により搬送されるレンチキュラシート3のレンズ4の傾き角度θLを光学的に検出する。レンズ4の傾き角度θLは、レンズ4の長手方向と主走査方向とがなす角度である。
 図3に示すように、傾き角度検出部18は、第1~第3検出センサ34、35、36からなる。第1検出センサ34(S1)は、レンチキュラシート3の一方の側端部に対向する位置に配置されている。第2検出センサ36(S2)は、レンチキュラシート3の他の側端部に対向する位置に配置されている。第3検出センサ35(S3)は、第1検出センサ34(S1)と第2検出センサ36(S2)との中央よりも第1検出センサ34(S1)寄りに配置されている。即ち、第1検出センサ34と第3検出センサ35との間隔L13よりも、第2検出センサ36(S2)と第3検出センサ35(S3)との間隔L23の方が大きい。符号L12は、第1検出センサ34(S1)と第2検出センサ36(S2)との間隔を示している。
 なお、図3に示したように、全ての検出センサS1、S2、S3が主走査方向の一直線上に配列されていることが好ましいが、実際には、直線から外れた位置にずれて配設されている場合があるので、後述のような補正が必要である。
 ヘッド16は、ヘッド16の長手方向に沿って配列された複数の記録素子16aを有する。なお、図3に示したように、ヘッド16の長手方向は主走査方向と平行であることが好ましいが、実際には主走査方向に対して傾いて配設されている場合があるので、後述のような補正が必要である。
 即ち、レンチキュラシート3の搬送路に設けられた3個の検出センサ34、35、36を、各々の間隔のうち少なくとも1つの間隔が他のいずれかの間隔と異なるように、主走査方向に沿って一列に配列したので、各検出センサ34、35、36から出力される検出信号に基づき、レンズ4の傾き角度θLを正確に求めることができる。
 図4Aに示すように、各検出センサ34~36は、レンチキュラシート3の搬送面を挟んで互いに対向して配置された発光ダイオード(以下「LED」という)38及びフォトセンサ39によって構成されている。フォトセンサ39とレンチキュラシート3の搬送面との間にはスリット板40が配置されている。スリット板40には、レンズ4のほぼ1個分の光が通過する幅に設定されたスリット孔40aが形成されている。LED38からレンチキュラシート3に向けて照射された光は、レンチキュラシート3を透過すると、スリット孔40aにより検出範囲が制限されて、フォトセンサ39により受光される。フォトセンサ39は受光量に応じた検出信号を出力する。
 図4Bに示すように、各検出センサ34~36に対するレンズ4の位置に応じてフォトセンサ39の受光量が変わり、検出信号の大きさも変化する。本例の検出信号は、各検出センサ34~36にレンズ4間の境界が対向してからレンズ4の頂点が対向するまで増加して極大となり、その後は減少して、レンズ4間の境界が対向すると再び増加に転じる。
 図5は、クランプユニット19及びその周辺を示す斜視図である。図5に示すように、クランパ23は、固定板42及び可動板43を含んで構成されている。固定板42は、長手方向の長さがレンチキュラシート3の幅よりも大きな平板であり、搬送面と平行に配置されている。可動板43は、固定板42との間でレンチキュラシート3を狭持する狭持位置と、狭持を解除する狭持解除位置との間で回動する。固定板42と可動板43との間にはバネ(図示を省略)が配置され、このバネにより可動板43は狭持位置に向けて付勢されている。
 クランパ開閉機構24は、可動板43を回動させるカム軸45と、カム軸45を回動させるクランプ解除モータ46とから構成されている。カム軸45は、クランプ位置にあるクランパ23の近傍に配置されている。クランプ解除モータ46でカム軸45を回動させて、カム軸45に取り付けられたカム45aにより可動板43を狭持位置と狭持解除位置とに変位させることで、クランパ23の開状態と閉状態とを切り替える。
 クランパ駆動機構25は、左モータ49及び右モータ50と、回転軸に取り付けられている左プーリ51及び右プーリ52と、左モータ49と左プーリ51とに掛けられた左ベルト53と、右モータ50と右プーリ52とに掛けられた右ベルト54とを備える。
 左右ベルト53、54には、クランパ23の両端がそれぞれ搬送面に垂直な軸周りに回動自在に取り付けられている。左モータ49と右モータ50とが同方向に回転した場合には、左右ベルト53、54によりクランパ23が副走査方向に移動する。また、左モータ49と右モータ50とが逆方向に回転した場合、あるいは両者の一方だけが回転した場合には、左右ベルト53、54によりクランパ23が搬送面に垂直な軸周りに回動する。
 また、クランパ駆動機構25は、クランパ23を副走査方向にガイドする左ガイドレール55及び右ガイドレール56を備える。左右ガイドレール55、56の内側には、左斜行規制ガイド57、右斜行規制ガイド58が配置されている。左右斜行規制ガイド57、58は、給送ローラ対15からクランプユニット19へ給送されるレンチキュラシート3の斜行角度が所定角度以下になるように規制する。
 <第1実施形態>
 図6は、第1実施形態におけるプリンタ2の制御系の構成を示すブロック図である。なお、図1~5に示した要素には同じ符号を付してある。
 図6において、CPU60は、プリンタ2の各部を統括的に制御する。メモリ61は、プリンタ2を制御するためのプログラム及びデータを記憶する。モータドライバ62は、CPU60の制御に従って、モータ21により給送ローラ対15を回転及び停止させる。ヘッド退避機構64は、CPU60の制御に従って、ヘッド16を圧接位置または退避位置に移動させる。先端検出センサ65(図5を参照)は、クランプ位置の上流に配置されており、レンチキュラシート3の先端の通過を検知したとき、CPU60に対し、先端検出信号を出力する。
 ヘッド駆動制御部68は、ヘッド駆動部32によりヘッド16の駆動を制御する。
 クランパ駆動制御部69は、クランパ開閉機構24により、クランパ23の閉状態及び開状態を切り替える。また、クランパ駆動制御部69は、クランパ駆動機構25により、クランパ23の副走査方向の移動及びクランパ23の回動を制御する。本例のクランパ駆動制御部69は、クランパ開閉機構24により、レンチキュラシート3等のシートの保持および保持解消を制御する。また、本例のクランパ駆動制御部69は、クランパ駆動機構25により、レンチキュラシート3のレンズ4の傾き角度を調整する。
 傾き補正制御部70は、クランパ駆動制御部69を介してクランパ23を回動させることにより傾き補正制御を行う。傾き補正制御の詳細は後述する。
 ライン傾き測定部71は、図8に示すリファレンスシート81を給送ローラ対15等により搬送し、リファレンスシート81をクランパ23の突き当て面23aに突き当ててクランパ23によりクランプした状態で、リファレンスシート81のリファレンスラインLrを第1検出センサS1及び第2検出センサS2により検出し、第1検出センサS1及び第2検出センサS2の検出信号に基づいて基準線Lb(主走査方向x)に対するリファレンスシート81のリファレンスラインLrの傾き角度θrを算出する。これによりクランパ23の突き当て面23aの傾き角度θcが取得される。リファレンスシート81は、クランパ23の突き当て面23aに突き当たる端面Lcを有し、その端面Lcに対し平行なリファレンスラインLrが形成されている。基準線Lbは、第1検出センサS1と第2検出センサS2とを結ぶ仮想的な直線であり、主走査方向xに一致している。
 検出パターン印画制御部72は、図10Aに示すように透明シート82を給送ローラ対15等により搬送してクランパ23の突き当て面23aに突き当て、クランパ23により透明シート82をクランプした状態で、ヘッド16の傾き角度を検出するための検出パターン83をヘッド16により透明シート82に印画する。
 ヘッド傾き測定部73は、第1検出センサS1及び第2検出センサS2により図10Bに示すように透明シート82の検出パターン83を検出して、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、基準線Lb(主走査方向x)に対する検出パターン83の傾き角度θpを算出し、その傾き角度θpをヘッド16の傾き角度θhとしてメモリ61に記憶させる。
 レンズ傾き測定部74は、複数の検出センサS1、S2、S3の検出信号と、検出センサ間の距離とに基づいて、基準線Lb(主走査方向x)に対するレンチキュラシート3のレンチキュラレンズ4の傾き角度を測定する。
 前述の傾き補正制御部70は、ライン傾き測定部71、ヘッド傾き測定部73、および、レンズ傾き測定部74の測定結果に基づいて、各種の傾き補正を実行する。
 本例の傾き補正制御部70は、第1に、リファレンスシート81のリファレンスラインLrの傾き角度θrに基づいて、リファレンスシート81のリファレンスラインLrが基準線Lbと平行になるようにクランパ駆動機構25によりクランパ23を回動させる傾き補正制御を行う。
 本例の傾き補正制御部70は、第2に、レンズ傾き測定部74により算出されたレンチキュラレンズ4の傾き角度θと、ヘッド傾き測定部73により算出されてメモリ61に記憶されたヘッドの傾き角度とに基づいて、基準線Lb(主走査方向)に対するレンチキュラレンズ4の傾き角度とヘッド16の傾き角度とを一致させる傾き補正制御を行う。
 本例の傾き補正制御部70は、第3に、クランパ23をレンチキュラシート3の搬送面に垂直な軸周りに回動させることで、レンチキュラレンズ4の傾き角度を変化させる傾き補正制御を行う。
 センサ位置ずれ量測定部75は、副走査方向における各検出センサS1~S3の位置ずれ量を算出し、算出された位置ずれ量をメモリ61に記憶する。本実施形態では、図8に示すように、第3検出センサS3は第1検出センサS1と第2検出センサS2とを結ぶ基準線Lbから位置ずれしていることが許容されている。センサ位置ずれ量測定部75は、リファレンスシート81のリファレンスラインLrを検出した検出センサS1、S2、S3の検出信号に基づいて、基準線Lbからの第3検出センサS3の位置ずれ量を算出する。レンズ傾き測定部74は、センサ位置ずれ量測定部75により算出されたメモリ61に記憶された第3検出センサS3の位置ずれ量に基づいて、第3検出センサS3の検出信号を補正してレンチキュラレンズ4の傾き角度を算出する。
 データ変換部76は、メモリ61から2視点の視差画像を読み出して多視点(例えば6視点)の視差画像に変換する。
 立体画像記録制御部77は、データ変換部76により生成された多視点の視差画像を、ヘッド駆動制御部68及びヘッド駆動部32を介してヘッド16を駆動し、レンチキュラシート3の背面にヘッド16により立体画像(多視点の視差画像)を記録する。
 図7は、第1実施形態における初期測定処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。
 なお、図8に示すように、第1検出センサS1と第2検出センサS2とを結ぶ基準線Lbは直線であることが保証できるので、これを主走査方向xに沿った基準線とする。第3検出センサS3の位置は基準線Lbから位置ズレしているものとする。クランパ23の突き当て面23aは基準線Lbに対して平行ではないものとする。ヘッド16の長手方向も基準線Lbに対して平行ではないものとする。よって、これらを補正する必要がある。
 まず、ライン傾き測定部71は、リファレンスラインLrが形成されたリファレンスシート81を給送ローラ対15により搬送し、リファレンスシート81の副走査方向yと交わる端面Lcをクランパ23の突き当て面23aに突き当てて、クランパ23によりリファレンスシート81をクランプ(保持)する(ステップS11)。リファレンスラインLrは、リファレンスシート81の端面Lcに対し平行であることが保証された直線状のラインであり、予めリファレンスシート81の一方の面(上面)に描かれている。クランパ23の突き当て面23aは、基準線Lbに対しθcだけ傾いている。従って、突き当て面23aに突き当てられたリファレンスシート81の端面Lcも基準線Lbに対しθcだけ傾いている。なお、本例では、リファレンスシート81の端面Lcをクランパ23の突き当て面23aに突き当てているが、このような突き当てを行なわない場合には、リファレンスシート81が回動しないようにレンチキュラシート3の左右両端の移動速度を一致させてもよい。
 次に、ライン傾き測定部71は、リファレンスシート81がクランパ23によりクランプされた状態で、ベルト53、54を駆動して、リファレンスシート81のリファレンスラインLrを第1検出センサS1及び第2検出センサS2により検出する(ステップS12)。
 次に、ライン傾き測定部71は、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、基準線Lbに対するリファレンスラインLrの傾き角度θrを算出する(ステップS13)。なお、リファレンスラインLrはシート端面Lcと平行に形成されているので、θrはクランパ23の長手方向の傾き角度θcと同じである。
 次に、クランパ駆動制御部69により、図9に示すように、リファレンスシート81のリファレンスラインLrが基準線Lbと平行となるようにクランパ駆動機構25によりクランパ23をθr(=θc)だけ回動する(ステップS14)。これにより、LbとLrとLcとが平行となって、クランパ23の突き当て面23aのLbに対する平行が確保される。
 また、センサ位置ずれ量測定部75により、リファレンスラインLrを検出した検出センサS1、S2、S3の検出信号に基づいて、基準線Lbからの第3検出センサS3の副走査方向yにおける位置ずれ量D3を算出し、メモリ61に記憶させる(ステップS15)。即ち、第1~第3検出センサS1、S2、S3は基準ラインLb上に一列に配列されているとは限らないため、位置ずれ量D3を取得しておく。第3検出センサS3の検出信号は、基準線Lb上の検出センサS1、S2の検出信号に対しピーク位置がずれるため、そのピーク位置のずれ量に基づいて、位置ずれ量D3が算出される。
 次に、リファレンスシートを排出する(ステップS16)。
 次に、検出パターン印画制御部72は、図10Aに示すように、給送ローラ対15により未印画の透明シート82(検出用シート)を搬送してクランパ23の突き当て面23aに突き当て、クランパ23により透明シート82をクランプし(ステップS17)、ベルト53、54の駆動により透明シート82を副走査方向yにて移動させながら、ヘッド16の傾き角度を検出するための検出パターン83をヘッド16により透明シート82に印画する(ステップS18)。
 次に、ヘッド傾き測定部73は、図10Bに示すように、検出パターン83が印画された透明シート82をクランパ23でクランプした状態で、ベルト53、54の駆動により透明シート82を副走査方向yにて移動させながら、第1検出センサS1及び第2検出センサS2により、透明シート82上の検出パターン83を検出する(ステップS19)。
 次に、ヘッド傾き測定部73は、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、第1検出センサS1と第2検出センサS2とを結ぶ基準線Lb(主走査方向x)に対する検出パターン83の傾き角度θpを算出し、算出された傾き角度θpを基準線Lbに対するヘッド16の傾き角度θhとしてメモリ61に記憶させる(ステップS20)。図10Bにて、第1検出センサS1と第2検出センサS2との距離をL12、第1検出センサS1と第2検出センサS2との検出パターン83の画端に対する検出位置ずれ量をDHとしたとき、傾き角度θp(=θh)はL12およびDHにより算出できる。即ち、θh=tan-1(DH/L12)である。
 次に、透明シートを排出する(ステップS21)。
 図11は、第1実施形態における立体画像形成処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。
 まず、ヘッド16の傾き角度θhをメモリ61から取得する(ステップS31)。
 次に、図12に示すように、レンチキュラシート3を給送ローラ対15により搬送してクランパ23の突き当て面23aに突き当てて、クランパ23によりレンチキュラシート3をクランプする(ステップS32)。
 次に、第1~第3検出センサS1、S2、S3により、レンチキュラシート3のレンチキュラレンズ4を検出する(ステップS33)。図13に示すように、第1検出センサS1と第2検出センサS2とで検出信号のピークを一致させ、これらのピークに対して第3検出センサS3の検出信号のピークがD3(図12を参照)相当ずれていたら正しいレンズ位置を検出できていると判断することができる。もしも第3検出センサS3の検出信号のピーク差がD3相当でない場合には、クランパ23を回動させて調整する。
 次に、図14に示すように、クランパ駆動機構25により、傾き角度θhだけクランパ23を回動する(ステップS34)。
 次に、第1~第3検出センサにより、レンチキュラレンズの頂点および境界を検出しながら、ヘッド16により、レンチキュラシート3の背面に対しレンチキュラレンズ4ごとに6つずつ線状画像を印画することで、レンチキュラシート3に立体画像(複数の視点画像)を形成する(ステップS35)。
 立体画像として複数の視点画像が記録されたレンチキュラシート3を排出する(ステップS36)。
 なお、レンズ傾き測定部74により算出されたレンチキュラレンズ4の傾き角度を用いて、レンチキュラレンズ4およびヘッド16の傾き角度を一致させる場合を例に説明したが、基準線Lbとレンチキュラレンズ4とが平行であることが保証されている場合には、ヘッド16の傾き角度のみに基づいてクランパ23を回動させてもよい。具体的には、傾き補正制御部70は、クランパ23の突き当て面23aを基準線Lbと平行にした状態で、メモリ61に記憶されたヘッド16の傾き角度θhに基づいて、クランパ駆動機構25によりクランパ23を回動させることで、レンチキュラレンズ4の傾き角度とヘッド16の傾き角度とを一致させる。基準線Lbとレンチキュラレンズ4との平行状態は、例えば図8および図9を用いて説明したようにリファレンスシート81を用いて、図7のステップS11~S14を行なう事で、設定すればよい。
 <第2実施形態>
 図15は、第2実施形態におけるプリンタ2の制御系の構成を示すブロック図である。なお、図1~6に示した要素には同じ符号を付してあり、第1実施形態にて既に記載した事項については以下では説明を省略する。
 ヘッド湾曲量測定部78は、透明シート82(検出用シート)の検出パターン83を検出した複数の検出センサS1、S2、S3の検出信号に基づいて、ヘッド16の長手方向に対する湾曲量を算出し、メモリ61に記憶させる。
 画像補正部79は、ヘッド16の湾曲に因りレンチキュラシート3に形成される視点画像の湾曲歪みをキャンセルするように、メモリ61から取得したヘッド16の湾曲量に応じて視点画像を湾曲補正する。
 図16は、第2実施形態における測定処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。なお、ステップS41~S50は、図に示した第1実施形態におけるステップS11~S20とそれぞれ同様であり、説明を省略する。
 図17Aは、ステップS48にて、湾曲したヘッド16で透明シート82に検出パターン83を印画した状態を示す。ヘッド16は湾曲しているので、そのヘッド16で透明シート上に印画した検出パターン83も湾曲している。なお、図17Aでは発明の理解を容易にするためヘッド16の湾曲を誇張して描いてある。実際には、ヘッド16の湾曲は微小であるが、図2に示した例では一つのレンチキュラレンズ4に対して6つの微小領域5a~5fに分割して線状画像を印画しており、微小領域5a~5fの幅に対してヘッド16の湾曲量が大きければ、立体視困難な画像を形成してしまうことになる。また、図17Bは、ステップS49にて第1検出センサS1及び第2検出センサS2により、透明シート82上の検出パターン83を検出している様子を示す。
 ステップS51にて、ヘッド湾曲量測定部78は、クランパ駆動機構25により、傾き角度θhだけヘッド16の傾き方向とは逆方向にクランパ23を回動することで、検出センサS1及び検出センサS2の検出信号のピークを合わせる。これにより、湾曲量を正確に算出することが可能になる。
 ステップS52にて、ヘッド湾曲量測定部78は、検出センサS1、S2、S3の検出信号に基づいてヘッド16の湾曲量Dcを算出して、メモリ61に記憶する。湾曲量Dcは、数式Dc=DH3-D3により算出できる。ここで、DH3は、第3検出センサS3と検出パターン83の画端との距離、D3は第3検出センサS3の基準線Lbからの位置ズレ量(図9を参照)である。D3は、ステップS45にて算出されメモリ61に記憶されている。
 ステップS53にて、透明シート82を排出する。
 図19は、立体画像形成処理の一例の流れを示すフローチャートである。なお、ステップS61~S64は、図11に示した第1実施形態における立体画像形成処理の各ステップとそれぞれ同じであり、説明を省略する。
 ステップS65にて、画像補正部79は、ヘッド16の湾曲量Dcをメモリ61から取得する。
 ステップS66にて、画像補正部79は、ヘッド16の湾曲に因りレンチキュラシート3に形成される画像の湾曲歪みをキャンセルするように、メモリ61から取得した湾曲量Dcに応じて複数の視点画像を湾曲補正する。即ち、図20に示すように、ヘッド湾曲量測定部78により算出された湾曲量Dc(=DH3-D3)に基づいて、複数の視点画像の補正量(Dc相当)を算出し、ヘッド16の湾曲とは逆方向に湾曲した視点画像を作成する。
 ステップS67にて、補正された視点画像に基づいて、ヘッド16により、レンチキュラシート3の背面に対しレンチキュラレンズ4ごとに複数の線状画像を印画することで、レンチキュラシート3に立体画像(複数の視点画像)を形成する。
 ステップS68にて、立体画像が記録されたレンチキュラシート3を排出する。
 なお、搬送路に3つの検出センサS1、S2、S3を設けた場合を例に説明したが、湾曲量をより高精度に検出してヘッド16の歪みをより高精度に補正するためには、検出センサの個数を増やし、搬送路に4個以上の検出センサを配置してもよい。
 特に、少ないセンサ数でヘッド16の湾曲量をなるべく正確に検出するためには、主走査方向において第1検出センサS1と第2検出センサS2との中央に、湾曲量Dcを検出するための検出センサを配置することが、好ましい。
 また、第1および第2実施形態にて、クランパ23により傾き角度を調整する場合を例に説明したが、このような場合に本発明は限定されない。
 ヘッド16をレンチキュラシート3の搬送面に垂直な軸周りに回動させるヘッド回動手段を設けてもよい。この場合、傾き補正制御部70は、ヘッド回動手段によりヘッド16を回動させる。
 また、第1および第2実施形態にて、レンチキュラシート3をクランパ23の突当面23aに突き当てる場合を例に説明したが、本発明はこのような場合には限定されない。例えば、レンチキュラシート3の左右両端の移動速度を一致させ、レンチキュラシート3が回動しないようにレンチキュラシート3を副走査方向に搬送するようにしてもよい。
 また、第1および第2実施形態にて、クランパ23によりレンチキュラシート3を保持する場合を例に説明したが、レンチキュラシート3を保持する保持手段は、クランパ23には特に限定されない。
  本発明は、本明細書において説明した例や図面に図示された例には限定されず、本発明の要旨を逸脱しない範囲において、各種の設計変更や改良を行ってよいのはもちろんである。
 2…プリンタ、3…レンチキュラシート、4…レンチキュラレンズ、15…給送ローラ対、16…ヘッド、19…クランプユニット、23…クランパ、24…クランパ開閉機構、25…クランパ駆動機構、34…第1検出センサ(S1)、35…第2検出センサ(S2)、36…第3検出センサ(S3)、60…CPU、61…メモリ、70…傾き補正制御部、71…ライン傾き測定部、72…検出パターン印画制御部、73…ヘッド傾き測定部、74…レンズ傾き測定部、75…センサ位置ずれ量測定部、78…ヘッド湾曲量測定部、79…画像補正部、81…リファレンスシート、82…透明シート(検出用シート)

Claims (21)

  1.  複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、
     前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1検出センサ及び第2検出センサを含む複数の検出センサと、
     前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き算出部と、
     前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、
     前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、
     前記レンズ傾き算出部により算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、
     を備えた画像形成装置。
  2.  前記搬送部により前記搬送路上を搬送された前記レンチキュラシートを保持する保持部を備え、
     前記傾き補正制御部は、前記保持部を前記レンチキュラシートの搬送面に垂直な軸周りに回動させることで、前記レンチキュラレンズの傾き角度を変化させる請求項1に記載の画像形成装置。
  3.  前記副走査方向に交わる端面を有するとともに該端面に対し平行なラインが形成されたリファレンスシートを前記搬送部により搬送し、前記リファレンスシートを前記保持部により保持した状態で、前記リファレンスシートの前記ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記リファレンスシートの前記ラインの傾き角度を算出するライン傾き測定部を備え、
     前記傾き補正制御部は、前記ライン傾き測定部により算出された前記リファレンスシートの前記ラインの傾き角度に基づいて、前記リファレンスシートの前記ラインが前記第1検出センサと前記第2検出センサとを結ぶ前記基準線と平行になるように前記保持部を回動する請求項2に記載の画像形成装置。
  4.  前記複数の検出センサは、前記第1検出センサと前記第2検出センサとを結ぶ前記基準線から位置ずれしていることが許容された第3検出センサを含んでおり、
     前記リファレンスシートの前記ラインを検出した前記複数の検出センサの検出信号に基づいて、前記基準線からの前記第3検出センサの位置ずれ量を算出するセンサ位置ズレ量算出部を備え、
     前記記憶部は、前記センサ位置ズレ量算出部により算出された前記第3検出センサの位置ずれ量を記憶し、
     前記レンズ傾き算出部は、前記記憶部に記憶された前記第3検出センサの位置ずれ量に基づいて前記第3検出センサの検出信号を補正して前記レンチキュラレンズの傾き角度を算出する請求項3に記載の画像形成装置。
  5.  前記第1検出センサの検出信号のピークと前記第2検出センサの検出信号のピークとが同位相であって、前記第1検出センサおよび前記第2検出センサの検出信号のピークと前記第3検出センサの検出信号のピークとの時間差が前記記憶部に記憶された前記位置ずれ量に対応しているとき、前記レンチキュラシートに前記複数の視点画像を記録する請求項4に記載の画像形成装置。
  6.  前記搬送部により検出用シートを搬送して前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、
     前記複数の検出センサにより前記検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、
     を備えた請求項1ないし5のうちいずれか1項に記載の画像形成装置。
  7.  前記ヘッドを前記レンチキュラシートの搬送面に垂直な軸周りに回動させるヘッド回動部を備え、
     前記傾き補正制御部は前記ヘッド回動部により前記ヘッドを回動させる請求項1に記載の画像形成装置。
  8.  複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、
     前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、
     前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き算出部と、
     前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、
     前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、
     前記搬送部により前記搬送路上を搬送された前記レンチキュラシートが突き当たる突き当て面を有し、前記突き当て面に前記レンチキュラシートが突き当てられた状態で前記レンチキュラシートを保持する保持部と、
     前記保持部の前記突き当て面を前記基準線と平行にした状態で、前記記憶部に記憶された前記ヘッドの傾き角度に基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、
     を備えた画像形成装置。
  9.  前記副走査方向に交わる端面を有するとともに該端面に対し平行なラインが形成されたリファレンスシートを前記搬送部により搬送し、前記リファレンスシートを前記保持部の前記突き当て面に突き当てて前記保持部により保持した状態で、前記リファレンスシートの前記ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記リファレンスシートの前記ラインの傾き角度を算出するライン傾き測定部を備え、
     前記傾き補正制御部は、前記ライン傾き測定部により算出された前記リファレンスシートの前記ラインの傾き角度に基づいて、前記リファレンスシートの前記ラインが前記第1検出センサと前記第2検出センサとを結ぶ前記基準線と平行になるように前記保持部を回動する請求項8に記載の画像形成装置。
  10.  前記ヘッドの長手方向における湾曲量を記憶する湾曲量記憶部と、
     前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、
     を備えた請求項1ないし9のうちいずれか1項に記載の画像形成装置
  11.  前記搬送部により検出用シートを搬送して、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、
     前記複数の検出センサにより前記傾き検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、
     前記検出用シートの前記検出パターンを検出した前記複数の検出センサの検出信号に基づいて、前記ヘッドの長手方向に対する前記湾曲量を算出し、前記記憶部に記憶させる湾曲量測定部と、
    を備えた請求項10に記載の画像形成装置。
  12.  前記第1検出センサと前記第2検出センサとの中央に前記湾曲量を検出するための検出センサを配置した請求項11に記載の画像形成装置。
  13.  前記複数の検出センサとして4個以上の検出センサを配置した請求項11または12に記載の画像形成装置。
  14.  前記複数の検出センサは、前記主走査方向における前記複数の検出センサの各々の間隔のうち少なくともひとつの間隔が他のいずれかの間隔と異なり配列されている請求項1ないし13のうちいずれか1項に記載の画像形成装置。
  15.  複数のレンチキュラレンズが表面にて副走査方向に沿って並べて形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラレンズの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1検出センサ及び第2検出センサを含む複数の検出センサと、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの背面に前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、記憶部と、を備えた画像形成装置が、
     前記基準線に対する前記ヘッドの長手方向の傾き角度を前記記憶部に記憶させておくステップと、
     前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するステップと、
     算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させるステップと、
     前記レンチキュラシートの背面に、前記ヘッドにより前記複数の視点画像を記録するステップと、
     を実行する画像形成方法。
  16.  前記搬送部により前記搬送路上を搬送された前記レンチキュラシートを保持する保持部を備えた前記画像形成装置が、前記保持部を前記レンチキュラシートの搬送面に垂直な軸周りに回動させることで、前記基準線に対する前記レンチキュラレンズの前記傾き角度を変化させる請求項15に記載の画像形成方法。
  17.  前記副走査方向に交わる端面を有するとともに該端面に対し平行なラインが形成されたリファレンスシートを前記搬送部により搬送し、前記リファレンスシートを前記保持部により保持するステップと、
     前記リファレンスシートが保持された状態で、前記リファレンスシートの前記ラインを前記複数の検出センサにより検出するステップと、
     前記複数の検出センサの検出信号に基づいて前記基準線に対する前記リファレンスシートの前記ラインの傾き角度を算出するステップと、
     算出された前記リファレンスシートの前記ラインの傾き角度に基づいて、前記リファレンスシートの前記ラインが前記第1検出センサと前記第2検出センサとを結ぶ前記基準線と平行になるように前記保持部を回動するステップと、
     を実行する請求項16に記載の画像形成方法。
  18.  前記複数の検出センサは、前記第1検出センサと前記第2検出センサとを結ぶ前記基準線から位置ずれしていることが許容された第3検出センサを含んでおり、
     前記リファレンスシートの前記ラインを検出した前記複数の検出センサの検出信号に基づいて、前記基準線からの前記第3検出センサの位置ずれ量を算出し、該位置ずれ量を前記記憶部に記憶するステップと、
     前記記憶部に記憶された前記第3検出センサの位置ずれ量に基づいて前記第3検出センサの検出信号を補正して前記レンチキュラレンズの傾き角度を算出するステップと、
     を実行する請求項17に記載の画像形成方法。
  19.  前記第1検出センサの検出信号のピークと前記第2検出センサの検出信号のピークとが同位相であって、前記第1検出センサおよび前記第2検出センサの検出信号のピークと前記第3検出センサの検出信号のピークとの時間差が前記記憶部に記憶された前記位置ずれ量に対応しているとき、前記レンチキュラシートに前記複数の視点画像を記録するステップを実行する請求項18に記載の画像形成方法。
  20.  前記搬送部により検出用シートを搬送して前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画するステップと、
     前記複数の検出センサにより前記検出パターンを検出するステップと、
     前記複数の検出センサの検出信号に基づいて、前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるステップと、
     を実行する請求項15ないし19のうちいずれか1項に記載の画像形成方法。
  21.  前記ヘッドの長手方向に対する湾曲量を前記記憶部に記憶させておくステップと、
     前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部から取得した前記湾曲量に応じて前記視点画像を湾曲補正するステップと、
     を実行する請求項15ないし20のうちいずれか1項に記載の画像形成方法。
PCT/JP2011/066042 2010-09-30 2011-07-14 画像形成装置及び画像形成方法 WO2012043015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012536261A JPWO2012043015A1 (ja) 2010-09-30 2011-07-14 画像形成装置及び画像形成方法
CN2011800474623A CN103140353A (zh) 2010-09-30 2011-07-14 图像形成装置和图像形成方法
EP11828576.6A EP2623325A4 (en) 2010-09-30 2011-07-14 Image-forming device and image-forming method
US13/853,797 US20130215164A1 (en) 2010-09-30 2013-03-29 Image-forming device and image-forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222561 2010-09-30
JP2010-222561 2010-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/853,797 Continuation US20130215164A1 (en) 2010-09-30 2013-03-29 Image-forming device and image-forming method

Publications (1)

Publication Number Publication Date
WO2012043015A1 true WO2012043015A1 (ja) 2012-04-05

Family

ID=45892493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066042 WO2012043015A1 (ja) 2010-09-30 2011-07-14 画像形成装置及び画像形成方法

Country Status (5)

Country Link
US (1) US20130215164A1 (ja)
EP (1) EP2623325A4 (ja)
JP (1) JPWO2012043015A1 (ja)
CN (1) CN103140353A (ja)
WO (1) WO2012043015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228836A (ja) * 2013-05-27 2014-12-08 富士ゼロックス株式会社 レンズアレイ製造装置及びレンズアレイ製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811932A (zh) * 2011-03-23 2012-12-05 富士胶片株式会社 夹持装置和打印机
WO2017010988A1 (en) * 2015-07-13 2017-01-19 Hewlett-Packard Development Company, L.P. Skewing print medium
CN106364173A (zh) * 2016-08-29 2017-02-01 安徽奥斯博医疗仪器设备有限公司 医学影像胶片的打印过塑***
ES2914226T3 (es) 2018-08-14 2022-06-08 Bobst Mex Sa Máquina de impresión de chorro de tinta para imprimir hojas individuales

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891633A (ja) * 1994-07-26 1996-04-09 Mitsubishi Electric Corp シート搬送装置
JPH08137034A (ja) 1994-11-10 1996-05-31 Canon Inc レンチキュラープレートへの画像記録方法、インクジェット記録装置および情報処理システム
JP2003021878A (ja) 2001-07-05 2003-01-24 Seiko Epson Corp 立体画像形成装置および立体画像形成方法
JP2007127521A (ja) 2005-11-04 2007-05-24 Seiko Epson Corp レンズシート計測装置、このレンズシート計測装置を備える印刷装置およびレンズシート計測方法
JP2007196602A (ja) * 2006-01-30 2007-08-09 Seiko Epson Corp プリンタ
JP2009096122A (ja) * 2007-10-18 2009-05-07 Seiko Epson Corp 移動区間決定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310858B2 (ja) * 1995-05-11 2002-08-05 松下電器産業株式会社 画像データを印刷する装置
US7187399B2 (en) * 2003-07-31 2007-03-06 Fuji Photo Film Co., Ltd. Exposure head with spatial light modulator
JP4828803B2 (ja) * 2004-05-28 2011-11-30 富士ゼロックス株式会社 画像形成装置
JP5194671B2 (ja) * 2007-09-25 2013-05-08 セイコーエプソン株式会社 記録装置
US8136938B2 (en) * 2009-05-19 2012-03-20 William Karszes System and method for printing on lenticular sheets
JP2011075791A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp プリンタ及びプリント方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891633A (ja) * 1994-07-26 1996-04-09 Mitsubishi Electric Corp シート搬送装置
JPH08137034A (ja) 1994-11-10 1996-05-31 Canon Inc レンチキュラープレートへの画像記録方法、インクジェット記録装置および情報処理システム
JP2003021878A (ja) 2001-07-05 2003-01-24 Seiko Epson Corp 立体画像形成装置および立体画像形成方法
JP2007127521A (ja) 2005-11-04 2007-05-24 Seiko Epson Corp レンズシート計測装置、このレンズシート計測装置を備える印刷装置およびレンズシート計測方法
JP2007196602A (ja) * 2006-01-30 2007-08-09 Seiko Epson Corp プリンタ
JP2009096122A (ja) * 2007-10-18 2009-05-07 Seiko Epson Corp 移動区間決定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623325A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228836A (ja) * 2013-05-27 2014-12-08 富士ゼロックス株式会社 レンズアレイ製造装置及びレンズアレイ製造方法

Also Published As

Publication number Publication date
EP2623325A1 (en) 2013-08-07
EP2623325A4 (en) 2018-01-10
JPWO2012043015A1 (ja) 2014-02-06
CN103140353A (zh) 2013-06-05
US20130215164A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US8400487B2 (en) Printer and printing method
US20090323094A1 (en) Conveying apparatus and printing apparatus
WO2012043015A1 (ja) 画像形成装置及び画像形成方法
EP2199092B1 (en) Printing apparatus
WO2012127731A1 (ja) クランプ装置及びプリンタ
JP5441618B2 (ja) 移動検出装置、移動検出方法および記録装置
US8405698B2 (en) Printer and printing method
JP4774474B1 (ja) プリンタ
CN110315849B (zh) 记录装置
JP7004238B2 (ja) 搬送装置、及び、画像形成装置
JP2011158627A (ja) 印画用シートの製造方法、印画用シート及びプリント装置
US9010924B2 (en) System and method for aligning duplex images using alignment marks
JP2011154300A (ja) 画像記録装置、画像処理装置及び画像処理方法
JP5656418B2 (ja) 補正情報決定方法および記録装置
JP7022370B2 (ja) 搬送装置、及び、画像形成装置
WO2012043016A1 (ja) 画像形成装置及び画像形成方法
JP5404318B2 (ja) 移動検出装置および記録装置
JP2011126206A (ja) 画像記録装置及び記録ヘッドの傾き調整方法
JP7380137B2 (ja) 画像形成装置、及び画像形成方法
US20230202786A1 (en) Sheet registration device for non-rectangular sheets
JP2011153018A (ja) プリンタ
JP2003220729A (ja) 画像記録装置
JP2011156709A (ja) 画像記録装置
JP2006347050A (ja) 熱転写式プリンタ
JP2009113947A (ja) 補正値取得方法、及び、液体吐出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047462.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828576

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012536261

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011828576

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE