WO2012042736A1 - 無線通信装置、無線通信システム、及び無線通信端末 - Google Patents

無線通信装置、無線通信システム、及び無線通信端末 Download PDF

Info

Publication number
WO2012042736A1
WO2012042736A1 PCT/JP2011/004673 JP2011004673W WO2012042736A1 WO 2012042736 A1 WO2012042736 A1 WO 2012042736A1 JP 2011004673 W JP2011004673 W JP 2011004673W WO 2012042736 A1 WO2012042736 A1 WO 2012042736A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
component carrier
timing
terminal
communication terminal
Prior art date
Application number
PCT/JP2011/004673
Other languages
English (en)
French (fr)
Inventor
尚志 田村
青山 高久
ヨヒム ロエール
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012042736A1 publication Critical patent/WO2012042736A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a wireless communication terminal that can communicate by using each component carrier of a plurality of communication cells simultaneously by carrier aggregation.
  • the standardization organization 3GPP (The 3rd Generation Generation Partnership Project) is promoting standardization of LTE (Long Term Term Evolution) as the next generation communication standard of W-CDMA (Wideband Code Division Multiple Access) (for example, Non-Patent Document 1). And 2).
  • a wireless communication base station (E-UTRAN NodeB (eNB)) of a network (Evolved Universal Terrestrial Radio Access Network (E-UTRAN)) has a plurality of communication cells.
  • a wireless communication terminal (User Equipment (UE)) belongs to one of the communication cells.
  • the radio communication base station eNB
  • base station the communication cell
  • cell the communication terminal
  • UE the radio communication terminal
  • LTE-Advanced Long Term Evolution Advanced: LTE-A
  • LTE-A Long Term Evolution Advanced
  • Carrier Aggregation in which a terminal simultaneously uses cells of a plurality of carrier frequencies is being studied. Note that the carrier aggregation is also called “band aggregation”.
  • FIG. 8A and FIG. 8B are diagrams showing examples of carrier aggregation. 8A and 8B, among the six component carriers whose carrier frequencies are f1, f2, f3, f4, f5, and f6, respectively, the carrier frequencies are f1, f2, f3, and f6, respectively.
  • An example in which a terminal uses four component carriers at the same time is shown. Thus, the use of a plurality of component carriers is expected to improve the throughput of communication between the terminal and the base station.
  • FIGS. 9A to 9E are schematic diagrams showing a plurality of cells managed by a base station as a network entity.
  • each component carrier of a plurality of cells is used at the same time, but there are various modes for combinations of a plurality of cells to be used.
  • one base station has three cells (cell 1, cell 2, cell 3) corresponding to the carrier frequency f1, and 3 corresponding to the carrier frequency f2.
  • One cell (cell 4, cell 5, cell 6) is managed.
  • FIG. 9D one base station manages three cells (cell 1, cell 2, cell 3) corresponding to the carrier frequency f1.
  • the base station manages three cells (cell 1, cell 2, cell 3) corresponding to the carrier frequency f1, and RRH (Remote Radio Head) corresponds to the carrier frequency f2.
  • Three cells (cell 4, cell 5, cell 6) are managed.
  • a plurality of component carriers having different carrier frequencies belonging to the same geographical area of the same base station can be used simultaneously.
  • component carriers having a plurality of different carrier frequencies belonging to different geographical areas of the same base station may be used at the same time.
  • carrier aggregation is possible even when managing cells of different geographical sizes at different carrier frequencies of the same base station.
  • FIG. 9D a plurality of component carriers having the same carrier frequency belonging to different geographical areas of the same base station may be used at the same time.
  • component carriers of different carrier frequencies of different network entities base station and RRH may be used at the same time.
  • the “network entity” includes a base station (eNB) and an RRH (Remote Radio Head) installed in an area away from the base station, as well as a relay node (relay node (Relay node) connected wirelessly from the base station. ) Or repeater) or femto base stations.
  • eNB base station
  • RRH Remote Radio Head
  • the network entity may be called a wireless communication device.
  • the RRH has the same function as the radio unit (Radio-Frequency unit: RF unit) of the base station, and is connected to the control unit of the base station by a wired cable.
  • FIGS. 9A to 9C a case where a plurality of component carriers having different carrier frequencies of the same network entity are used simultaneously as shown in FIGS. 9A to 9C, and a single network entity as shown in FIG.
  • FIG. 10 is a diagram illustrating an example when the terminal has a plurality of uplink synchronization timings in the aspect illustrated in FIG.
  • a base station and an RRH are provided as network entities to which a terminal can be connected.
  • the base station manages cell 1, cell 2 and cell 3 of carrier frequency f1.
  • RRH manages cell 4, cell 5 and cell 6 of carrier frequency f2.
  • the terminal performs carrier aggregation using the cell 2 of the carrier frequency f1 and the cell 6 of the carrier frequency f2.
  • FIG. 11 is a diagram illustrating an example when the terminal uses component carriers of a plurality of carrier frequencies. As shown in FIG. 11, the terminal uses two cells of carrier frequencies f1 and f2 managed by the base station and one cell of carrier frequency f3 managed by the RRH at the same time. For example, the terminal uses the same uplink timing for each component carrier of the carrier frequencies f1 and f2. That is, the terminal groups component carriers having the same uplink timing (see Non-Patent Document 3). At this time, the terminal may use uplink timing different from that of the component carriers of the carrier frequencies f1 and f2 for the component carrier of the carrier frequency f3.
  • each propagation delay is different. For this reason, when a packet is transmitted from the terminal to the base station and the RRH at the same timing, at least one of the base station and the RRH receives the packet at a timing different from the packet from the other terminal. Therefore, the terminal needs to manage the synchronization timing of a plurality of uplinks in order to transmit packets to the base station and the RRH at different timings.
  • FIGS. 9A to 9D when the terminal performs carrier aggregation within one network entity, the uplink timing may be different for each component carrier.
  • FIG. 9 (e) shows an example in which a base station and an RRH are provided as different network entities. However, when a base station and a relay node, a relay node and an RRH, or a relay node and a base station are provided, The same is true regardless of the combination.
  • FIG. 12 is a timing chart illustrating a procedure when a terminal that performs carrier aggregation establishes synchronization of an uplink to a network entity.
  • the terminal establishes uplink synchronization for two TA (Timing Alignment) groups 1 and 2 each including at least one component carrier having the same uplink timing.
  • transmission timing adjustment is performed by performing a random access procedure (RandomandAccess Procedure) for each TA group.
  • the terminal responds to a random access preamble (Random Access Preamble Assignment) transmitted from a network entity that provides a component carrier.
  • Access Preamble RA Preamble
  • the network entity sends a random access response (Random Access Response: RA Response) including a TA command (Timing Advanced Command) to the identifier “RA-RNTI ( Random Access Radio Network Temporary Identity) ”.
  • RA-RNTI Random Access Radio Network Temporary Identity
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the TA command included in the random access response includes a value for deriving a timing adjustment value based on the downlink reception timing corresponding to the uplink whose timing is synchronized. That is, if the actual timing adjustment value is included in the TA command, the amount of information increases. Therefore, the terminal calculates the actual timing adjustment value using a calculation formula.
  • the calculation formula is held in advance in the terminal.
  • Each parameter constituting the calculation formula is a fixed value and a selection value determined by a system mode (FDD: Frequency : Division Duplex) or TDD: Time Division Duplex).
  • the terminal inputs the value sent by the TA command into the calculation formula and calculates the actual timing adjustment value.
  • the terminal calculates a new uplink synchronization timing by subtracting the calculated timing adjustment value from the downlink reception timing.
  • the period of use of the synchronized uplink is counted by a timer called “Time Alignment Timer”.
  • the value counted by the timer is sent from the base station to the terminal.
  • the synchronized uplink is defined to be usable for a period from the time of synchronization to a predetermined time. That is, in principle, uplink synchronization is maintained during the timer count period. However, the uplink synchronization timing changes as the terminal moves. Therefore, in actuality, it is necessary to adjust uplink synchronization timing (Timing Alignment) as the terminal moves.
  • 3GPP TS36.331 v9.3.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC)” 3GPP TS36.300 v9.4.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2” 3GPP TS36.213 v9.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical layer procedures” 3GPP TS36.211 v9.1.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation 3GPP TS36.321 v9.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) Media Access Control (MAC) protocol specification 3GPP TSG-RAN WG2 Meeting # 67bis, R2-095815, “Different Timing Advance Impact on Carrier Aggregation”
  • MAC Media Access Control
  • the terminal when the terminal that performs carrier aggregation needs to manage the synchronization timing of a plurality of uplinks, the terminal performs uplink synchronization timing compared to the case of managing the synchronization timing of one uplink.
  • the frequency of adjustment is high.
  • a random access procedure Random Access Procedure
  • An object of the present invention is to provide a wireless communication device capable of quickly and efficiently performing processing for adjusting the synchronization timing when a wireless communication terminal performing carrier aggregation manages synchronization timing of a plurality of uplinks, A wireless communication system and a wireless communication terminal are provided.
  • the present invention is a wireless communication apparatus capable of communicating with a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells having different synchronization timings, and is in a plurality of component carriers used by the wireless communication terminal
  • the wireless communication terminal establishes uplink synchronization in a second component carrier associated with the first component carrier in a state where uplink synchronization is established in a reference first component carrier
  • the wireless communication Provided is a wireless communication device that transmits an individual control signal including an adjustment value of a transmission timing of the wireless communication terminal to the terminal using an identifier unique to the wireless communication terminal.
  • the present invention is a wireless communication system including a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells having different synchronization timings, and a wireless communication device that can communicate with the wireless communication terminal.
  • the wireless communication terminal In a state where uplink synchronization is established in a first component carrier serving as a reference among a plurality of component carriers used by the wireless communication terminal, the wireless communication terminal is connected to a second component carrier associated with the first component carrier.
  • a first wireless communication device that provides a communication cell of the first component carrier and a second wireless communication device that provides a communication cell of the second component carrier are each between the first component carrier and the second component carrier.
  • the wireless communication terminal uses the time difference of the downlink synchronization timing in each component carrier and the synchronization timing calculation information included in the individual control signal to determine the uplink synchronization timing and the first component carrier in the second component carrier.
  • An uplink timing difference which is a time difference in uplink synchronization timing in the first component carrier, is calculated, and based on the uplink synchronization timing and the uplink timing difference in the first component carrier, the uplink synchronization timing in the second component carrier
  • a wireless communication system for deriving data is provided.
  • the present invention is a wireless communication system comprising: a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells; and a wireless communication device that can communicate with the wireless communication terminal, wherein the mobile communication
  • a terminal is handed over from a first wireless communication apparatus that provides a first component carrier serving as a reference among a plurality of component carriers used by the wireless communication terminal to a second wireless communication apparatus, the first wireless communication apparatus and the The second wireless communication apparatus sets a reference timing common to the first component carrier and a second component carrier of a communication cell provided by the second wireless communication apparatus, and the first wireless communication apparatus includes the first component Information indicating the difference between the transmission / reception timing on the carrier and the reference timing Provided to a second wireless communication device, the second wireless communication device includes synchronization timing calculation information indicating a synchronization timing shift between the first component carrier and the second component carrier on each wireless communication device side
  • the individual control information related to the handover is transmitted to the radio communication terminal via the first radio communication device, and the radio communication
  • an uplink timing difference that is a time difference between an uplink synchronization timing in the second component carrier and an uplink synchronization timing in the first component carrier is calculated, and an uplink link in the first component carrier is calculated. Based on the synchronization timing and the uplink timing difference, to provide a wireless communication system for deriving a synchronization timing for the uplink in the second component carrier.
  • the present invention is a wireless communication apparatus capable of communicating with a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells having different synchronization timings, and is in a plurality of component carriers used by the wireless communication terminal
  • a control unit that provides a communication cell of a first component carrier serving as a reference or a communication cell of a second component carrier that accompanies the first component carrier, and the wireless communication terminal performs uplink synchronization in the first component carrier.
  • the present invention is a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells having different synchronization timings, and is a first component carrier that serves as a reference among the plurality of component carriers used by the wireless communication terminal
  • a time difference between downlink synchronization timings of each component carrier and the radio Synchronization timing calculation information indicating a difference in synchronization timing on the wireless communication device side between the first component carrier and the second component carrier, which is included in an individual control signal transmitted from a wireless communication device with which a communication terminal can communicate
  • An uplink timing difference calculating unit that calculates an uplink timing difference that is a time difference between an uplink synchronization timing in the second component carrier and an uplink synchronization timing in the first component carrier; and in the first component carrier
  • a wireless communication terminal comprising: a synchronization timing deriving unit that derives up
  • the present invention provides a wireless communication terminal that performs carrier aggregation using each component carrier of a plurality of communication cells, and provides a first component carrier that serves as a reference among the plurality of component carriers used by the wireless communication terminal.
  • the time difference between the downlink synchronization timings in each component carrier and the individual control sent from the second radio communication apparatus providing the communication cell of the second component carrier Based on synchronization timing calculation information indicating a shift in synchronization timing between the first component carrier and the second component carrier on each wireless communication device side included in the signal, the uplink component in the second component carrier Synchronization timing and An uplink timing difference calculating unit that calculates an uplink timing difference that is a time difference of uplink synchronization timing in the first component carrier, and based on the uplink synchronization timing and the uplink timing difference in the first component carrier.
  • a wireless communication terminal comprising a synchronization timing deriving unit for deriving uplink synchronization timing in the second component carrier
  • the wireless communication device when the wireless communication terminal that performs carrier aggregation manages the synchronization timing of a plurality of uplinks, the process for adjusting the synchronization timing is performed. It can be done quickly and efficiently.
  • a timing chart when a terminal establishes uplink synchronization for two TA (Timing Alignment) groups 1 and 2 each including at least one component carrier Block diagram of a terminal constituting the wireless communication system of the first embodiment Block diagram of a network entity constituting the wireless communication system of the first embodiment Timing chart showing a procedure performed between two network entities belonging to different TA groups in the wireless communication system according to the second embodiment.
  • the figure which shows the difference between the reference timing and the packet transmission / reception timing in the PCell of each network entity of the handover source and the handover destination, and the difference between the reference timing and the transmission / reception timing of the terminal (A) And (b) is a figure which shows the example of a carrier aggregation (A)-(e) is a schematic diagram showing a plurality of cells managed by a base station as a network entity
  • the figure which shows the example in case the terminal has a some uplink synchronous timing in the aspect shown in FIG.9 (e).
  • the figure which shows the example in case a terminal uses the component carrier of a some carrier frequency Timing chart showing the procedure for a carrier aggregation terminal to establish uplink synchronization to a network entity
  • a wireless communication system includes at least one wireless communication terminal and at least one network entity that can communicate with the wireless communication terminal via a wireless communication network.
  • the wireless communication terminal is simply referred to as “terminal”.
  • the terminal is, for example, a mobile phone.
  • the network entity is a radio communication base station (eNB), an RRH (Remote Radio Head) installed in an area away from the radio communication base station, a relay node (relay node) wirelessly connected to the radio communication base station, etc. Or a repeater), a femto base station, and the like, which is a node to which a terminal can connect wirelessly.
  • the RRH has the same function as the radio unit (Radio-Frequency unit: RF unit) of the radio communication base station, and is connected to the control unit of the radio communication base station by a wired cable.
  • RF unit Radio-Frequency unit
  • the wireless communication system uses LTE or LTE-A mobile communication technology standardized by 3GPP (The 3rd Generation Generation Partnership Project).
  • the mobile communication technology used by the wireless communication system is not limited to the above standards, and WiMAX (Worldwide Interoperability for Microwave Access) such as wireless LAN (Wireless Local Area Network), IEEE802.16, IEEE802.16e, IEEE802.16m, It may be 3GPP2, SAE (System Architecture Evolution), UMTS (Universal Mobile Telecommunications System), or the fourth generation mobile communication standard.
  • Each network entity constitutes at least one communication cell.
  • a communication cell refers to a radio network object that a terminal can uniquely identify based on an identifier assigned to a geographical area or a difference in frequency used in the geographical area. In the following description, a communication cell is simply referred to as a “cell”.
  • One network entity constitutes one or more cells for each of one or more carrier frequencies. Further, the terminal communicates using at least one communication cell configured by the network entity. The terminal can perform “carrier aggregation” described with reference to FIGS. 8A and 8B and FIGS. 9A to 9E in communication with the network entity. .
  • the carrier aggregation is composed of a combination of PCell (Primary Serving Cell) and SCell (Secondary Serving Cell).
  • PCell Primary Serving Cell
  • SCell Secondary Serving Cell
  • the PCell is a cell necessary for the terminal to maintain the connection with the network, and provides a reference component carrier.
  • SCell is a cell used by the terminal to increase the capacity of packet transmission / reception with the network or to distribute the packet transmission / reception traffic, and provides a component carrier associated with a reference component carrier.
  • PCell and SCell In the following embodiments, description will be made using PCell and SCell.
  • the present invention is not limited to carrier aggregation using one PCell and a plurality of SCells, but carrier aggregation using a plurality of PCells and a plurality of SCells. It can also be applied to. Furthermore, it can be applied to carrier aggregation that does not have the concept of PCell and SCell.
  • the wireless communication system according to the first embodiment includes the above-described terminals and network entities.
  • the terminal has a function of receiving a synchronization signal transmitted from the network entity for each cell in the downlink and synchronizing with the uplink of each cell.
  • the network entity also serves as an access point of a radio access network for terminals, and allocates and manages radio resources (for example, frequency bands in the frequency domain or time domain) for each terminal.
  • FIG. 1 shows a timing when a terminal establishes uplink synchronization for two TA (Timing Alignment) groups 1 and 2 each including at least one component carrier in the wireless communication system of the first embodiment. It is a chart. As shown in FIG. 1, when the terminal has not established uplink synchronization for any TA group, a random access procedure is performed between the TA group 1 including the PCell and the terminal.
  • TA Timing Alignment
  • a terminal uses a random access preamble (RandomandAccess) according to a random access preamble assignment (Random Access Preamble Assignment: RA Preamble Assignment) sent from a network entity that provides component carriers included in TA group 1.
  • Preamble: (RA) Preamble) is sent to the network entity.
  • the network entity sends a random access response (Random Access Response: RA Response) including a TA command (Timing Advanced Command) to the identifier “RA-RNTI” corresponding to the resource of the random access preamble sent by the terminal Use to send to the terminal.
  • RA-RNTI is an identifier common to a plurality of terminals.
  • the terminal refers to the identifier “RA-RNTI” to determine whether or not the random access response sent from the network entity is a response addressed to itself. In this way, the terminal establishes uplink synchronization with the network entities included in TA group 1 (transmission timing adjustment with TA group 1 (timing Alignment completed)). Note that one of the component carriers included in the TA group 1 is the PCell described above. In the random access procedure, the terminal may send a random access preamble without receiving a random access preamble assignment.
  • uplink synchronization when uplink synchronization is established with a group including a PCell, uplink synchronization to a network entity in which a terminal provides a component carrier included in the remaining group (TA group 2) is performed. Perform a procedure to establish In the procedure, instead of a random access response, a MACCE (Media Access Control Control Element) using an identifier “C-RNTI (Cell Radio Network Temporary Identity)” indicating a destination specific to a terminal under a specified cell is used. . Similar to the random access response, a TA command including a value for deriving an adjustment value based on the downlink reception timing corresponding to the uplink whose timing is synchronized is added to the MACCE.
  • C-RNTI Cell Radio Network Temporary Identity
  • the terminal can use MACCE because the base station identifies the terminal based on the transmission timing when the terminal transmits the random access preamble using the resource to which the base station has performed the random access preamble assignment. This is because it can.
  • the terminal needs to be able to transmit ACK and NACK, but uplink synchronization is established with TA group 1 including the PCell component carrier, and the terminal is ACK or NACK. This is because NACK can be sent.
  • the terminal needs to set in advance whether the control signal including the TA command is a random access response as in the background art or an individual control signal such as MACCE as in the present embodiment.
  • the setting method may be notified from the network entity to the terminal by 1 bit, or the terminal may determine according to the situation.
  • the terminal when receiving a TA command by MACCE, the terminal does not need to receive a random access response, and “RA-RNTI” is set in the downlink corresponding to the uplink that has transmitted the random access preamble. Since it is not necessary to monitor, the processing load of the terminal is reduced.
  • the terminal needs to monitor “RA-RNTI” even when a TA command is sent by MACCE.
  • the “individual control signal” is a control signal for one terminal, and includes, for example, “RRCCeonnection Reconfiguration” in addition to MACCE.
  • the timing at which the network entity transmits the random access response to the terminal is determined to be after a predetermined time (for example, 6 milliseconds) after the network entity receives the random access preamble.
  • the timing at which the network entity transmits the MACCE to the terminal is arbitrary. Accordingly, the network entity can create a MACCE including a TA command and immediately transmit the MACCE to the terminal. Therefore, the MACCE can send the TA command to the terminal earlier than the random access response. As a result, the terminal can quickly establish uplink synchronization with the TA group 2.
  • MACCE uses an identifier “RA-RNTI” indicating a common destination for a plurality of terminals.
  • MCS modulation / coding scheme
  • PDCCH Physical-Downlink-Control-CHannel (Physical Downlink Control Channel)
  • MACCE Physical Downlink Control Channel
  • FIG. 2 is a block diagram of terminals constituting the wireless communication system according to the first embodiment. As illustrated in FIG. 2, the terminal according to the first embodiment includes a reception unit 101, a control unit 103, and a transmission unit 105.
  • the receiving unit 101 receives broadcast information, individual control information, random access response, MACCE, or the like via the downlink of the cell being used by the terminal in response to an instruction from the control unit 103.
  • the receiving unit 101 outputs the received broadcast information, individual control information, random access response, MACCE, or the like to the control unit 103.
  • the control part 103 manages each component carrier of PCell and SCell which comprise a carrier aggregation based on alerting
  • the control unit 103 outputs information necessary for classifying the PCell and SCell into the TA group (for example, a group number) to the TA control unit 111 included in the control unit 103.
  • the TA control unit 111 includes a TA management unit 121 and a TA command analysis unit 123.
  • the TA management unit 121 manages the synchronization timing of the PCell and SCell for each TA group.
  • the TA command analysis unit 123 derives a value related to the synchronization timing in each component carrier from the random access response received by the reception unit 101 or the TA command included in the MACCE.
  • the TA command analysis unit 123 sets the derived value related to the synchronization timing in the TA management unit 121 for each TA group.
  • the transmission unit 105 transmits a random access preamble to a network entity in a predetermined cell in response to an instruction from the control unit 103.
  • FIG. 3 is a block diagram of network entities constituting the wireless communication system of the first embodiment.
  • the network entity according to the first embodiment includes a reception unit 201, a control unit 203, and a transmission unit 205.
  • the receiving unit 201 receives a random access preamble or a buffer status report transmitted from the terminal, and outputs it to the control unit 203. In addition, the reception unit 201 outputs information regarding the cell that has transmitted the received random access preamble to the control unit 203.
  • the control unit 203 manages each component carrier provided by the network entity.
  • the control unit 203 includes a TA management unit 211 and a TA command creation unit 213.
  • the TA management unit 211 manages whether synchronization is established in each component carrier provided by the network entity.
  • the TA command creation unit 213 creates a TA command to be added to the random access response or MACCE that the transmission unit 205 sends to the terminal.
  • the TA command includes a value for adjusting the uplink synchronization timing based on the downlink reception timing corresponding to the uplink to which the terminal has transmitted the random access preamble.
  • the transmission unit 205 transmits a random access response, MACCE, or the like to a terminal using a predetermined cell in response to an instruction from the control unit 203.
  • a network entity belonging to the TA group 2 uses an uplink to a terminal that does not transmit / receive a packet, the network entity assigns a random access preamble assignment to the terminal via a downlink of a component carrier (SCell) that constitutes carrier aggregation. Send to.
  • SCell component carrier
  • the control unit 103 instructs the transmitting unit 105 to transmit the random access preamble in the uplink of the cell scheduled by the random access preamble assignment.
  • the transmission unit 105 transmits the random access preamble to the network entity that has transmitted the random access preamble assignment according to the scheduling instructed by the control unit 103.
  • the transmission unit 105 outputs the cell that has transmitted the random access preamble and its transmission timing to the TA command analysis unit 123 of the control unit 103.
  • the TA command creation unit 213 of the control unit 203 determines that the random access preamble is in the TA group including the PCell component carrier. It is determined whether the signal is for adjusting the uplink synchronization timing or the signal for adjusting the uplink synchronization timing in the TA group not including the PCell component carrier. Since the present embodiment is the latter case, the TA command creation unit 213 confirms with the TA management unit 211 whether synchronization with the component carrier of the PCell is maintained.
  • the TA command creation unit 213 creates a MACCE including a TA command.
  • the TA command includes a value for adjusting the uplink synchronization timing, and the value is derived from the timing at which the random access preamble is received.
  • the TA command creation unit 213 instructs the transmission unit 205 to transmit the MACCE to the terminal in a cell corresponding to the cell that has received the random access preamble. In this way, even if the MACCE does not include TA group identification information, the terminal can determine which TA group the TA command is for from the received cell.
  • the TA command creation unit 213 may include TA group identification information, that is, information indicating the TA group 2 in the MACCE in this embodiment. In this case, the TA command creation unit 213 does not need to notify the transmission unit 205 of a cell for transmitting MACCE.
  • the TA group identification information is a TA group identifier, a cell identifier belonging to the TA group, or a cell index at the time of cell setting.
  • the transmission unit 205 transmits a MACCE including a TA command to the terminal in accordance with an instruction from the TA command creation unit 213.
  • the receiving unit 101 of the terminal When the receiving unit 101 of the terminal receives the MACCE, it outputs the MACCE to the control unit 103.
  • the reception unit 101 may output MACCE reception cell information indicating which cell received the MACCE to the control unit 103.
  • the receiving unit 101 may output a logical channel ID (Logical Channel ID: LCID) for MACCE to the control unit 103.
  • LCID Logical Channel ID
  • the control unit 103 outputs the MACCE to the TA command analysis unit 123.
  • the control unit 103 may output the MACCE received cell information to the TA command analysis unit 123. Further, the control unit 103 may output the LCID for the MACCE to the TA command analysis unit 123.
  • the TA command analysis unit 123 recognizes that the TA command included in the MACCE is a command related to the TA group indicated by the TA group identification information. On the other hand, when the TA group identification information is not included in the MACCE, the TA command analysis unit 123 recognizes that the TA command included in the MACCE is a TA command related to the TA group to which the cell receiving the MACCE belongs.
  • the TA command analysis unit 123 newly synchronizes the TA command included in the MACCE. Is determined to be a TA command (hereinafter referred to as a “new TA command”). On the other hand, when the TA group indicated by the TA command included in the MACCE does not match the TA group to which the cell to which the transmission unit 105 has transmitted the random access preamble does not match, the TA command included in the MACCE is synchronized. Is a TA command (hereinafter referred to as “TA command for updating”).
  • the MACCE LCID may be different depending on whether the MACCE includes an update TA command or a new TA command.
  • the TA command analysis unit 123 determines whether it is an update TA command or a new TA command based on the LCID for the MACCE.
  • the TA command analysis unit 123 determines that the TA command is a new TA command, uplink synchronization in the TA group to which the cell that has transmitted the random access preamble belongs, based on the transmission timing at which the random access preamble is transmitted and the TA command. Derived timing.
  • the TA command analysis unit 123 determines that the TA command is for update, the TA command analysis unit 123 requests the TA management unit 121 for information regarding the synchronization timing of the corresponding TA group.
  • the TA command analysis unit 123 derives a new synchronization timing based on the current synchronization timing of the corresponding TA group obtained from the TA management unit 121 and the update TA command.
  • the TA command analysis unit 123 sets the derived value related to the new synchronization timing in the TA management unit 121 together with the TA group information.
  • the TA command analysis unit 123 discards the information on the cell that has transmitted the random access preamble and its transmission timing after a certain period.
  • the certain period is a period during which MACCE for this random access preamble may be received.
  • the value of this period may be derived based on information obtained by the terminal from the network entity, or may be set in the terminal in advance.
  • the control unit 103 of the terminal determines retransmission of the random access preamble if no MACCE is input even after a certain period of time has passed since the random access preamble was transmitted to the network entity. Note that the retransmission scheduling of the random access preamble is defined by random access preamble assignment.
  • the control unit 103 instructs the transmission unit 105 to transmit the random access preamble in the uplink of the cell scheduled by the random access preamble assignment. Other operations are the same as those in the first embodiment.
  • the control unit 203 of the network entity determines that the uplink timing is not synchronized when the reception timing of the data transmitted from the terminal is shifted by a predetermined time or more from the original timing. At this time, the control unit 203 outputs information indicating the timing deviation and the corresponding TA group to the TA command creation unit 213.
  • the TA command creation unit 213 creates a TA command based on information indicating a timing shift, and creates a MACCE including the TA command. Other operations are the same as those in the first embodiment.
  • the present invention can also be applied in units of cells.
  • the wireless communication system according to the second embodiment includes a terminal and at least two network entities. Each configuration of the terminal and the network entity is the same as the configuration illustrated in FIGS. 2 and 3 described in the first embodiment.
  • FIG. 4 is a timing chart showing a procedure performed between two network entities belonging to different TA groups in the wireless communication system of the second embodiment.
  • FIG. 4 shows an example in which two network entities are a radio communication base station (eNB) and an RRH (Remote Radio Radio Head) that is connected to the base station via a wired cable and is installed in an area away from the base station. Indicates.
  • the procedure may be closed to one network entity or may be performed between a plurality of network entities.
  • the network entity types and combinations may be any combination. That is, for example, a combination of relay nodes, a combination of relay nodes and RRHs, or a combination of base stations and relay nodes may be used.
  • the terminal performs carrier aggregation using cells belonging to different TA groups provided by these two network entities. However, since each network entity belongs to a different TA group, the terminal needs to adjust the uplink synchronization timing for each.
  • each network entity when transmitting a packet to a subordinate terminal, each network entity desirably transmits the packet to all terminals at the same timing so as not to interfere with packet transmission to other terminals.
  • each network entity desirably receives packets from all terminals at the same timing so as not to interfere with reception of packets from other terminals when receiving packets from subordinate terminals. Accordingly, each network entity sets a reference timing (hereinafter referred to as “reference timing”) in synchronization with each other.
  • reference timing hereinafter referred to as “reference timing”
  • each network entity can calculate a difference between a packet transmission timing and a reference timing, and a difference between a packet reception timing and a reference timing.
  • This reference timing may be a GPS value, a transmission timing of one network entity, an absolute time, a clock timing, or anything that can be understood by the network entity.
  • the network entity simultaneously sets subframes for calculating the difference between the reference timing and the transmission / reception timing. At this time, the system frame number may be specified together.
  • FIG. 5 is a diagram showing the difference between the packet transmission / reception timing and the reference timing of each network entity, and the difference between the terminal transmission / reception timing and the reference timing.
  • FIG. 5 shows an example in which the terminal performs carrier aggregation by simultaneously using cells provided by the eNB and the RRH, respectively.
  • the difference in transmission / reception timing of the eNB, RRH, and UE with respect to the reference timing is represented by real values of a to f.
  • a positive value is taken on the right side of the reference timing, and a negative value is taken on the left side of the reference timing.
  • the difference between the timing at which the eNB transmits a packet to the terminal (UE) and the reference timing is “f”. Further, the difference between the timing at which the terminal (UE) receives a packet from the eNB and the reference timing is “d”. Further, the difference between the timing at which the eNB receives a packet from the terminal (UE) and the reference timing is “e”.
  • the difference between the timing at which the terminal (UE) transmits a packet to the eNB and the reference timing is “c”. Further, the difference between the timing when the RRH transmits a packet to the terminal (UE) and the reference timing is “h”. Further, the difference between the timing at which the terminal receives a packet from the RRH and the reference timing is “b”. The difference between the timing at which the RRH receives a packet from the terminal (UE) and the reference timing is “g”. Further, the difference between the timing at which the terminal (UE) transmits a packet to the RRH and the reference timing is “a”. Note that the subframes shown in FIG. 5 all have the same subframe number.
  • Each network entity (eNB and RRH) recognizes the difference between the reference timing and the transmission / reception timing of its own packet. As shown in FIG. 4, each network entity notifies the other network entity of a value indicating the difference between the reference timing and the transmission / reception timing of its own packet.
  • any means may be used as the notification method. For example, notification may be made using OAM (Operation And Maintenance), notification using “X2 interface”, or notification using “S1 interface”.
  • ⁇ Ac ⁇ shown on the left side of Equation (3) is equal to the period t2-t1 shown in FIG.
  • Time t1 is a timing at which the terminal (UE) transmits a packet to the eNB
  • time t2 is a timing at which the terminal (UE) transmits a packet to the RRH. Therefore, ⁇ ac ⁇ indicating the period t2-t1 is equal to the time difference between the uplink synchronization timing to the RRH and the uplink synchronization timing to the eNB.
  • the terminal Since the terminal (UE) can grasp the downlink synchronization timing of each network entity, it can calculate the value of ⁇ db ⁇ shown on the right side of Equation (3). Therefore, if the terminal obtains the value of ⁇ (h ⁇ f) + (ge) ⁇ shown on the right side of Equation (3), the terminal will be represented by ⁇ a ⁇ c shown on the left side of Equation (3). ⁇ Can be calculated.
  • Each network entity holds a value indicating a difference (e, f, g, h) between the reference timing and the packet transmission / reception timing of itself and the other network entity. Therefore, the network entity of this embodiment provides the terminal with a value of ⁇ (h ⁇ f) + (ge) ⁇ .
  • the terminal can calculate a time difference in uplink synchronization timing between network entities.
  • the downlink reference cell used to derive the uplink synchronization timing may be any cell in the TA group to which the uplink belongs.
  • the reference cell may be notified from the base station to the terminal in advance, or may be set in advance in the terminal.
  • the timing at which the network entity provides the value of ⁇ (hf) + (ge) ⁇ to the terminal is that the terminal performing carrier aggregation in a state where uplink synchronization with respect to one network entity has already been established. It is time to perform processing to establish uplink synchronization for the other network entity. Therefore, the network entity only needs to calculate the value of ⁇ (h ⁇ f) + (ge) ⁇ before transmitting the MACCE to the terminal.
  • MACCE can transmit any cell as long as the cell is monitoring the downlink by including information indicating which TA group the uplink adjustment is for in MACCE.
  • the uplink adjustment for which TA group may be a cell identifier, a TA group identifier, or a cell index at the time of cell setting.
  • MACCE includes a TA command including a value capable of calculating a value of ⁇ (h ⁇ f) + (ge) ⁇ .
  • the terminal calculates ⁇ a ⁇ c ⁇ from Expression (3) based on the value of ⁇ (h ⁇ f) + (ge) ⁇ and the downlink synchronization timing of each network entity. Further, the terminal derives the uplink synchronization timing for the other network entity by adding the value of ⁇ ac ⁇ to the uplink synchronization timing for the one network entity already established.
  • values indicating the difference between the reference timing and the transmission / reception timing of its own packet are mutually notified between the network entities (eNB and RRH), but ⁇ (h ⁇ f) + (g ⁇ e) ⁇ to the network entity that notifies the value that can be calculated, the other network entity only needs to notify the value indicating the difference between the reference timing and the transmission / reception timing of its own packet. That is, the network entity that notifies the terminal of a value that can calculate the value of ⁇ (h ⁇ f) + (ge) ⁇ indicates a value indicating the difference between the reference timing and the transmission / reception timing of its own packet. There is no need to notify the entity.
  • the uplink synchronization timing for the other network entity is established in the state in which the terminal performing carrier aggregation has already established the uplink synchronization for the one network entity.
  • the terminal can obtain a value of ⁇ (h ⁇ f) + (ge) ⁇ . Since the terminal can adjust the synchronization timing of other uplinks based on the synchronization timing of uplinks that are already synchronized, it is called “Time Alignment Timer” that counts the usage period of the other uplinks There is no need to provide a timer. Therefore, the hardware configuration of the terminal can be simplified. Further, since the terminal does not need to monitor the random access preamble assignment, it is possible to reduce the power consumption and simplify the hardware configuration.
  • the network entity A value of a difference (e, f, g, h) between the timing and the packet transmission / reception timing of the network entity itself and the other network entity is provided to the terminal.
  • the value that can be calculated as ⁇ (h ⁇ f) + (ge) ⁇ provided to the terminal by the network entity is ⁇ (h ⁇ f) + (ge) ⁇ in units of [ ⁇ seconds]. May be an absolute value represented by.
  • the value may be expressed by a narrow interval for a small value and a wide interval for a large value.
  • the value may be expressed in increments of 0.5 milliseconds, for example.
  • the value is represented by 3 bits, the first bit indicates the sign (+ or-) of the value, and the second to third bits are 0 ms, 0.5 ms, 1.0 ms, and 1.5 ms. Indicates one of the following. Note that a fine value of 0 to 0.5 milliseconds may be indicated by the fourth and subsequent bits.
  • the value of ⁇ (h ⁇ f) + (ge) ⁇ provided to the terminal by the network entity is the same as the difference in the subframe number with respect to the synchronization timing of the uplink that has already been synchronized. You may be comprised by the shift
  • the said several cell is provided by the same network entity. May be.
  • a value that can calculate the value of ⁇ (h ⁇ f) + (ge) ⁇ is included in the TA command of MACCE and provided to the terminal, but the random access response in the random access procedure is provided. May be included in the TA command included in the command. Further, when there are a plurality of terminals whose synchronization timing can be adjusted based on the value of ⁇ (hf) + (ge) ⁇ , the network entity may provide the value to all of the plurality of terminals. .
  • the present embodiment may be applied to a TA group serving as a reference for each TA group (for example, a TA group to which a PCell belongs).
  • This embodiment can also be applied when the synchronization timing is readjusted because the synchronization timing has shifted in the cells constituting the carrier aggregation.
  • the method of sending a TA command using MACCE is exemplified, but instead of using MACCE, when setting a cell, ⁇ (h ⁇ f) + (ge) for each TA group. ⁇ May be included. For example, it may be included in the “RRCCeonnectionReconfiguration message”. For example, it may be included in the “RRCConnectionSetup message”.
  • the terminal derives the uplink synchronization timing of another TA group without performing a random access procedure after the uplink synchronization timing of a cell (for example, PCell) serving as a reference for carrier aggregation is established. it can.
  • a value that can calculate a value of ⁇ (hf) + (ge) ⁇ is included. It does not have to be.
  • a value capable of calculating the value of ⁇ (h ⁇ f) + (ge) ⁇ is included for each TA group, only ⁇ (h ⁇ A value that can calculate the value of f) + (ge) ⁇ may be notified.
  • the terminal maintains uplink synchronization based on the uplink synchronization timing of the reference TA group (for example, the TA group to which the PCell belongs) only by sending it once when setting the cell. be able to.
  • the timing can be easily adjusted by notifying the terminal of the reset value. Therefore, timing update signaling can be reduced and radio resources can be used effectively.
  • the hardware configuration becomes easy. In addition, since the random access response is not monitored, the hardware configuration is facilitated and the power consumption can be reduced.
  • each network entity determines the difference between the reference timing and the transmission / reception timing of its own packet.
  • the transmission / reception timing difference may be calculated via another network entity or using information held by the other network entity.
  • the network entity that notifies the terminal of a value that can calculate the value of ⁇ (h ⁇ f) + (ge) ⁇ may be a network entity that provides a cell in which the terminal is monitoring the downlink.
  • each network entity determines the difference between the reference timing and the transmission / reception timing of its own packet.
  • the method of notifying the other network entity of the indicated value has been shown.
  • ⁇ (h ⁇ A value capable of calculating the value of f) + (ge) ⁇ may be transmitted.
  • the difference between the reference timing and the packet transmission / reception timing of the network entity itself and the other network entity for the network entity that transmits a value capable of calculating the value of ⁇ (h ⁇ f) + (ge) ⁇ to the terminal (
  • the values of e, f, g, h) may be transmitted.
  • the value of ⁇ (hf) + (ge) ⁇ can be calculated for a network entity that transmits a value capable of calculating the value of ⁇ (h ⁇ f) + (ge) ⁇ to the terminal.
  • An individual control signal including a value may be transmitted.
  • the uplink synchronization timing may be updated only for the reference TA group (for example, the TA group to which the PCell belongs).
  • the uplink synchronization timing is recalculated and updated in the same manner. To do. By doing so, it is not necessary to send information for updating the uplink synchronization timing for each TA group, so that radio resources can be used effectively. Further, since the MACCE for updating the synchronization timing is not used for each TA group, it is not necessary to expand the MACCE.
  • a method of synchronizing between different network entities and exchanging transmission / reception timing for each network entity has been described.
  • a terminal The transmission / reception timing is determined by the transmission / reception timing of the base station.
  • the uplink synchronization timing for the cell of the terminal is derived based on the transmission / reception timing of the cell at the base station. That is, the present invention can be applied by deriving ⁇ (h ⁇ f) + (ge) ⁇ using the transmission / reception timing of the cell at the base station.
  • the transmission timing of the reference TA group (for example, the TA group to which the PCell belongs) is used as the reference timing, ⁇ h + (ge) instead of ⁇ (h ⁇ f) + (ge) ⁇ ⁇ Is used.
  • the terminal does not need to know this.
  • the values of h, g, and e are independently notified to the terminal, it is possible to operate correctly if it is determined that the terminal is not included in the terminal.
  • the present invention can also be applied in units of cells.
  • the wireless communication system according to the third embodiment includes a terminal and at least two network entities. Each configuration of the terminal and the network entity is the same as the configuration illustrated in FIGS. 2 and 3 described in the first embodiment.
  • the third embodiment is an embodiment in which the procedure described in the second embodiment is applied to a handover procedure. Although this embodiment demonstrates the case where the terminal is performing the carrier aggregation, it is applicable also when not performing the carrier aggregation.
  • FIG. 6 is a timing chart showing a handover procedure in the wireless communication system of the third embodiment.
  • FIG. 6 shows a case where the terminal (UE) is connected to the source eNB and is handed over from the source eNB to the target eNB as the terminal moves.
  • FIG. 6 shows an example in which handover is performed to different network entities, but the present embodiment is also applicable to handover within the same network entity.
  • the source eNB and the target eNB set a reference timing (hereinafter referred to as “reference timing”) in synchronization with each other.
  • This reference timing may be a GPS value, a transmission timing of one network entity, an absolute time, a clock timing, or anything that can be understood by the network entity.
  • the network entity simultaneously sets subframes for calculating the difference between the reference timing and the transmission / reception timing. At this time, the system frame number may be specified together.
  • the source eNB receives a value indicating a difference “F” between the reference timing and the timing at which the source eNB transmits a packet to the terminal (UE), and the reference timing and the source eNB receives the packet from the terminal (UE).
  • the target eNB is notified of a value indicating a difference “E” from the timing to perform. Note that since the terminal is performing carrier aggregation, the source eNB notifies the target eNB of values indicating timing differences in the PCell.
  • FIG. 7 is a diagram showing the difference between the reference timing and the packet transmission / reception timing in the PCell of each handover source and handover destination network entity, and the difference between the reference timing and the terminal transmission / reception timing.
  • the handover source network entity is the source eNB
  • the handover destination network entity is the target eNB.
  • the transmission / reception timing differences of the source eNB, the target eNB, and the terminal (UE) with respect to the reference timing are represented by real values A to F.
  • a positive value is taken on the right side of the reference timing, and a negative value is taken on the left side of the reference timing.
  • the difference between the timing at which the source eNB transmits a packet to the terminal (UE) and the reference timing is “F”. Further, the difference between the timing at which the terminal (UE) receives a packet from the source eNB and the reference timing is “D”. Further, the difference between the timing at which the source eNB receives a packet from the terminal (UE) and the reference timing is “E”.
  • the difference between the timing at which the terminal (UE) transmits a packet to the source eNB and the reference timing is “C”. Further, the difference between the timing at which the target eNB transmits a packet to the terminal (UE) and the reference timing is “H”. Further, the difference between the timing at which the terminal receives a packet from the target eNB and the reference timing is “B”. Further, the difference between the timing at which the target eNB receives a packet from the terminal (UE) and the reference timing is “G”. Further, the difference between the timing at which the terminal (UE) transmits a packet to the target eNB and the reference timing is “A”. Note that the subframes shown in FIG. 7 all have the same subframe number.
  • ⁇ AC ⁇ shown on the left side of Equation (6) is equal to the period T2-T1 shown in FIG.
  • Time T1 is a timing at which the terminal (UE) transmits a packet to the source eNB
  • time T2 is a timing at which the terminal (UE) transmits a packet to the target eNB. Therefore, ⁇ AC ⁇ indicating the period T2-T1 is equal to the time difference between the uplink synchronization timing to the target eNB and the uplink synchronization timing to the source eNB in the PCell.
  • the source eNB When the source eNB decides to hand over the terminal (UE) to the target eNB, the source eNB transmits “Handover Preparation” to the target eNB.
  • the target eNB that has received the “Handover Preparation” sends the “Handover Command” including the value of ⁇ (HF) + (GE) ⁇ and the uplink usage permission (UL grant) of the target eNB to the source eNB Send to.
  • the source eNB transfers the received “Handover Command” to the terminal (UE) to be handed over.
  • the terminal can grasp the timing (each downlink synchronization timing in the PCell of the source eNB and the target eNB) of receiving each packet in the PCell from the source eNB and the target eNB, it is shown on the right side of the equation (6)
  • the value of ⁇ D ⁇ B ⁇ can be calculated. Therefore, if the terminal obtains the value of ⁇ (HF) + (GE) ⁇ shown on the right side of Equation (6), the terminal will be represented by ⁇ A ⁇ C shown on the left side of Equation (6).
  • the terminal (UE) that has received the “Handover Command” synchronizes the value of ⁇ (HF) + (GE) ⁇ included in the “Handover Command” with each downlink in the PCell of the source eNB and the target eNB. Based on the timing, ⁇ AC ⁇ is calculated from Equation (6). Further, the terminal derives the uplink synchronization timing of the TA group including the PCell of the target eNB by adding the value of ⁇ A ⁇ C ⁇ to the uplink synchronization timing of the TA group including the PCell of the source eNB. .
  • the target eNB calculates ⁇ (HF) + (GE) ⁇ from the transmission / reception timing of the PCell before handover and the transmission / reception timing for each TA group of the SCell for the SCell after handover.
  • the “Handover ⁇ Command ” may be notified to the terminal by including the value of ⁇ (HF) + (GE) ⁇ for each TA group.
  • the terminal derives the uplink synchronization timing for each TA group of the SCell from the downlink and uplink synchronization timings of the PCell and the value of ⁇ (HF) + (GE) ⁇ before the handover.
  • the target eNB calculates (HF) + (GE) ⁇ from the PCell transmission / reception timing after the handover and the transmission / reception timing for each TA group of the SCell.
  • “Command” may include the value of ⁇ (HF) + (GE) ⁇ for each TA group and notify the terminal.
  • the terminal derives the uplink synchronization timing for each TA group of the SCell from each downlink and uplink synchronization timing of the PCell after handover and the value of ⁇ (HF) + (GE) ⁇ .
  • the downlink reference cell used for deriving the uplink synchronization timing of the PCell and SCell may be any cell in the TA group to which the uplink belongs.
  • the reference cell may be notified from the base station to the terminal in advance, or may be set in advance in the terminal.
  • the terminal sends “Handover complete” to the target eNB based on the uplink use permission (UL grant) of the target eNB included in the “Handover Command”.
  • the terminal uses the synchronization timing of the uplink of the PCell of the source eNB and the synchronization timing of the uplink of the PCell of the target eNB according to a value derived based on the information sent from the source eNB. Can be determined.
  • the target eNB A value of a difference (E, F, G, H) between the timing and the packet transmission / reception timing of itself and the target eNB is provided to the terminal.
  • “Handover Command” includes the value ⁇ (HF) + (GE) ⁇ , but the value ⁇ (HF) + (GE) ⁇ Only in the case of 0, the terminal may calculate the synchronization timing of the uplink PCell of the target eNB from the synchronization timing of the uplink PCell of the source eNB. In this case, it is represented by 1 bit in “Handover Command”, and the “Handover Command” instructs the terminal to calculate the synchronization timing of the PCell uplink of the target eNB from the synchronization timing of the PCell of the source eNB. May be.
  • the random access preamble may not be used as long as the uplink synchronization timing of the target eNB PCell can be derived from the synchronization timing of the PCell uplink of the source eNB. For this reason, a terminal can synchronize with a target eNB early. In addition, radio resources can be used efficiently.
  • the present invention can also be applied in units of cells. Further, although the case has been described with the present embodiment where a terminal uses a plurality of uplink synchronization timings, the present embodiment is also applicable to a case where there is only one uplink synchronization timing.
  • the base station may have a function of notifying which method is used to synchronize the uplink to the terminal. Further, the terminal may have a function of determining which method is used to synchronize the uplink according to the notification from the base station. Note that the terminal may determine a method for automatically synchronizing the uplink from the received information.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • An antenna port refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna or the like composed of a plurality of antennas.
  • LTE Long Term Evolution
  • An antenna port may be defined as a minimum unit for multiplying a weight of a precoding vector.
  • the wireless communication apparatus and the wireless communication terminal according to the present invention are useful as a network entity, a wireless communication terminal, and the like that can communicate by using each component carrier of a plurality of communication cells simultaneously by carrier aggregation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と通信可能な無線通信装置は、無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、第1コンポーネントキャリアに付随する第2コンポーネントキャリアで無線通信端末がアップリンクの同期を確立する際、無線通信端末に当該無線通信端末に固有の識別子を用いて無線通信端末の送信タイミングの調整値を含む個別制御信号を送信する。したがって、キャリアアグリゲーションを行う無線通信端末が複数のアップリンクの同期タイミングを管理する際に、当該同期タイミングを調整するための処理を無線通信装置が迅速かつ効率的に行うことができる。

Description

無線通信装置、無線通信システム、及び無線通信端末
 本発明は、キャリアアグリゲーションによって、複数の通信セルの各コンポーネントキャリアを同時に使用して通信可能な無線通信装置、無線通信システム及び無線通信端末に関する。
 標準化団体3GPP(The 3rd Generation Partnership Project)は、W-CDMA(Wideband Code Division Multiple Access)方式の次世代の通信規格として、LTE(Long Term Evolution)の標準化を進めている(例えば、非特許文献1及び2参照)。
 LTEでは、ネットワーク(Evolved Universal Terrestrial Radio Access Network(E-UTRAN))の無線通信基地局(E-UTRAN NodeB(eNB))は、複数の通信セルを有する。無線通信端末(User Equipment(UE))は、そのうちの1つの通信セルに属する。以下、無線通信基地局(eNB)を単に「基地局」といい、通信セルを単に「セル」といい、無線通信端末(UE)を単に「端末」という。
 標準化団体3GPPは、LTEと互換性のある次世代の無線通信規格として、LTE-Advanced(Long Term Evolution Advanced:LTE-A)の標準化を進めている。LTE-Aは、端末が複数のキャリア周波数のセルを同時に使用する「キャリアアグリゲーション(Carrier Aggregation)」の導入が検討されている。なお、キャリアアグリゲーションは、「バンドアグリゲーション(Band Aggregation)」とも呼ばれる。
 図8(a)及び図8(b)は、キャリアアグリゲーションの例を示す図である。図8(a)及び図8(b)には、キャリア周波数がそれぞれf1、f2、f3、f4、f5、f6である6つのコンポーネントキャリアのうち、キャリア周波数がそれぞれf1、f2、f3、f6である4つのコンポーネントキャリアを端末が同時に使用する例が示されている。このように、複数のコンポーネントキャリアを使用することにより、端末と基地局との間の通信のスループットの向上が期待されている。
 図9(a)~図9(e)は、ネットワークエンティティとしての基地局が管理する複数のセルを示す模式図である。キャリアアグリゲーションでは、複数のセルの各コンポーネントキャリアが同時に使用されるが、使用される複数のセルの組み合わせには種々の態様がある。図9(a)~図9(c)に示した例では、1つの基地局がキャリア周波数f1に対応する3つのセル(セル1、セル2、セル3)と、キャリア周波数f2に対応する3つのセル(セル4、セル5、セル6)とを管理する。図9(d)に示した例では、1つの基地局がキャリア周波数f1に対応する3つのセル(セル1、セル2、セル3)を管理する。図9(e)に示した例では、基地局がキャリア周波数f1に対応する3つのセル(セル1、セル2、セル3)を管理し、RRH(Remote Radio Head)がキャリア周波数f2に対応する3つのセル(セル4、セル5、セル6)を管理する。
 同じ基地局に属する複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する態様としては、図9(a)のように、同じ基地局の同じ地理的エリアに属する複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する場合もあれば、図9(b)のように、同じ基地局の異なる地理的エリアに属する複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する場合もある。また、図9(c)に示すように、同じ基地局の異なるキャリア周波数において異なる地理的サイズのセルを管理する場合においても、キャリアアグリゲーションが可能である。さらに、図9(d)のように、同じ基地局の異なる地理的エリアに属する複数の同じキャリア周波数のコンポーネントキャリアを同時に使用する場合もある。さらに、図9(e)のように、異なるネットワークエンティティ(基地局及びRRH)の複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する場合もある。
 なお、「ネットワークエンティティ」には、基地局(eNB)や基地局から離れたエリアに設置されるRRH(Remote Radio Head)の他、基地局から無線で接続される中継ノード(リレーノード(Relay Node)又はリピーター(Repeater))やフェムト基地局等が含まれる。なお、ネットワークエンティティのことを無線通信装置と呼んでもよい。なお、RRHは、基地局の無線部(Radio Frequency部:RF部)と同様の機能を有し、有線ケーブルで基地局の制御部に接続されている。
 本明細書では、図9(a)~図9(c)のように同じネットワークエンティティの複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する場合と、図9(d)のように一つのネットワークエンティティの同じキャリア周波数の複数のコンポーネントキャリアを同時に使用する場合と、図9(e)のように異なるネットワークエンティティの複数の異なるキャリア周波数のコンポーネントキャリアを同時に使用する場合とを含めて「キャリアアグリゲーション」という。
 図10は、図9(e)に示した態様において、端末が複数のアップリンクの同期タイミングを持つ場合の例を示す図である。図10に示す例では、端末が接続可能なネットワークエンティティとして、基地局及びRRH(Remote Radio Head)が設けられている。基地局は、キャリア周波数f1のセル1、セル2及びセル3を管理している。RRHは、キャリア周波数f2のセル4、セル5及びセル6を管理している。端末は、キャリア周波数f1のセル2とキャリア周波数f2のセル6を用いたキャリアアグリゲーションを行う。
 各ネットワークエンティティは、当該ネットワークエンティティに接続している各端末からアップリンクで送られるパケットが端末間で干渉しないよう、当該ネットワークエンティティに接続している全端末から同じタイミングでパケットを受信する必要がある。図11は、端末が複数のキャリア周波数のコンポーネントキャリアを使用する場合の例を示す図である。図11に示すように、端末は、基地局が管理するキャリア周波数f1、f2の2つのセルと、RRHが管理するキャリア周波数f3の1つのセルとを同時に使用する。例えば、端末は、キャリア周波数f1、f2の各コンポーネントキャリアに対しては、同じアップリンクのタイミングを使用する。すなわち、端末は、アップリンクのタイミングが同じコンポーネントキャリアをグループ化する(非特許文献3参照)。この際、端末は、キャリア周波数f3のコンポーネントキャリアに対しては、キャリア周波数f1、f2のコンポーネントキャリアとは異なるアップリンクのタイミングを使用する場合がある。
 なぜなら、端末と基地局の間の距離と端末とRRHの間の距離は異なるため、それぞれの伝搬遅延は異なる。このため、端末から基地局とRRHに対して同じタイミングでパケットを送信すると、基地局及びRRHの少なくともいずれか一方は、他の端末からのパケットとは異なるタイミングでパケットを受信する。したがって、端末は、基地局とRRHに異なるタイミングでパケットを送信するために、複数のアップリンクの同期タイミングを管理する必要がある。
 なお、図9(a)~図9(d)のように、端末が1つのネットワークエンティティ内でキャリアアグリゲーションを行うときにも、コンポーネントキャリア毎にアップリンクのタイミングが異なる場合がある。また、図9(e)は、異なるネットワークエンティティとして基地局とRRHが設けられた例を示すが、基地局と中継ノード、中継ノードとRRH、又は中継ノードと基地局が設けられた場合など、組み合わせによらず同様である。
 以下、キャリアアグリゲーションを行う端末がネットワークエンティティへのアップリンクの同期を確立する際のプロシージャーについて説明する。図12は、キャリアアグリゲーションを行う端末がネットワークエンティティへのアップリンクの同期を確立する際のプロシージャーを示すタイミングチャートである。なお、図12に示した例では、それぞれがアップリンクのタイミングが同じコンポーネントキャリアを少なくとも1つ含む2つのTA(Timing Alignment)グループ1,2に対して端末がそれぞれアップリンクの同期を確立する。なお、アップリンクの同期を確立するためには、TAグループ毎にランダムアクセスプロシージャー(Random Access Procedure)を行うことによって送信タイミングの調整(Timing Alignment)が行われる。
 図12に示すように、端末は、TAグループ毎に、コンポーネントキャリアを提供するネットワークエンティティから送られたランダムアクセスプリアンブルアサインメント(Random Access Preamble Assignment:RA Preamble Assignment)に応じて、ランダムアクセスプリアンブル(Random Access Preamble: RA Preamble)をネットワークエンティティに送る。ネットワークエンティティは、ランダムアクセスプリアンブルに対する応答として、TAコマンド(Timing Advanced Command)を含むランダムアクセス応答(Random Access Response: RA Response)を、端末が送るランダムアクセスプリアンブルのリソースに応じた識別子「RA-RNTI(Random Access Radio Network Temporary Identity)」を使用して端末に送る。ここで、「RA-RNTI」は、ランダムアクセスプリアンブルのタイミングに応じた識別子となるため、同じタイミングで送信する複数の端末に共通の識別子となり、端末に固有の識別子ではない。端末は、識別子「RA-RNTI」を参照することで、ネットワークエンティティから送られたランダムアクセス応答が自分宛の応答か否かを判別する。
 なお、端末は、ランダムアクセスプリアンブルアサインメントをもらわずに、ランダムアクセスプリアンブルを送る場合もある。
 ランダムアクセス応答に含まれるTAコマンドは、タイミングを同期するアップリンクに対応するダウンリンクの受信タイミングを基準としたタイミング調整値を導出するための値が含まれている。すなわち、実際のタイミング調整値を当該TAコマンドに含めると情報量が大きくなるため、端末は、計算式を用いて実際のタイミング調整値を算出する。なお、計算式は、端末に予め保持されている。また、計算式を構成する各パラメータは、固定値及びシステムのモード(FDD:Frequency Division Duplex)又はTDD:Time Division Duplex)によって決定される選択値である。端末は、TAコマンドで送られてきた値を計算式に入力して、実際のタイミング調整値を算出する。端末は、算出したタイミング調整値をダウンリンクの受信タイミングから減算することで、新しいアップリンクの同期タイミングを算出する。
 同期したアップリンクの使用期間は「Time Alignment Timer」と呼ばれるタイマーによってカウントされる。当該タイマーがカウントする値は、基地局から端末に送られる。同期したアップリンクは、同期したときから所定時間までの期間は使用可能であると規定されている。すなわち、タイマーのカウント期間中は、原則、アップリンクの同期が維持される。但し、端末の移動に伴い、アップリンクの同期タイミングは変わる。このため、実際には、端末の移動に伴い、アップリンクの同期タイミングの調整(Timing Alignment)が必要となる。
 上記説明したように、キャリアアグリゲーションを行う端末が複数のアップリンクの同期タイミングを管理する必要があると、1つのアップリンクの同期タイミングを管理する場合と比較して、端末がアップリンクの同期タイミング調整をする頻度は高い。なお、上述したように、端末がアップリンクの同期タイミングを調整する際には、端末とネットワークエンティティの間でランダムアクセスプロシージャー(Random Access Procedure)が行われる。このため、端末がネットワークエンティティの提供するコンポーネントキャリアを利用可能な状態になるための処理を迅速かつ効率的に行うためには、1回のプロシージャーに要する時間は短い方が望ましい。
 本発明の目的は、キャリアアグリゲーションを行う無線通信端末が複数のアップリンクの同期タイミングを管理する際に、当該同期タイミングを調整するための処理を迅速かつ効率的に行うことができる無線通信装置、無線通信システム及び無線通信端末を提供することである。
 本発明は、同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と通信可能な無線通信装置であって、前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する際、前記無線通信端末に当該無線通信端末に固有の識別子を用いて前記無線通信端末の送信タイミングの調整値を含む個別制御信号を送信する無線通信装置を提供する。
 本発明は、同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と、当該無線通信端末と通信可能な無線通信装置と、を備えた無線通信システムであって、
 前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する際、
 前記第1コンポーネントキャリアの通信セルを提供する第1無線通信装置及び前記第2コンポーネントキャリアの通信セルを提供する第2無線通信装置は、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含む個別制御信号を前記無線通信端末に送信し、
 前記無線通信端末は、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差及び前記個別制御信号に含まれる同期タイミング算出情報に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出し、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する無線通信システムを提供する。
 本発明は、複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と、当該無線通信端末と通信可能な無線通信装置と、を備えた無線通信システムであって、前記移動通信端末が、前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアを提供する第1無線通信装置から第2無線通信装置にハンドオーバする際、前記第1無線通信装置及び前記第2無線通信装置は、前記第1コンポーネントキャリア及び前記第2無線通信装置が提供する通信セルの第2コンポーネントキャリアに共通する基準タイミングを設定し、前記第1無線通信装置は、前記第1コンポーネントキャリアにおける送受信タイミングと前記基準タイミングとの差を示す情報を前記第2無線通信装置に提供し、前記第2無線通信装置は、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含むハンドオーバに関する個別制御情報を、前記第1無線通信装置を介して前記無線通信端末に送信し、前記無線通信端末は、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差及び前記個別制御信号に含まれる同期タイミング算出情報に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出し、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する無線通信システムを提供する。
 本発明は、同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と通信可能な無線通信装置であって、前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアの通信セル、又は前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアの通信セルを提供する制御部と、前記無線通信端末が前記第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する場合に、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含む個別制御信号を前記無線通信端末に送信する送信部を有する無線通信装置を提供する。
 本発明は、同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末であって、当該無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアでアップリンクの同期を確立する際、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差と、当該無線通信端末が通信可能な無線通信装置から送られた個別制御信号に含まれる、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報とに基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出するアップリンクタイミング差算出部と、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する同期タイミング導出部と、を備えた無線通信端末を提供する。
 本発明は、複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末であって、当該無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアを提供する第1無線通信装置から第2無線通信装置にハンドオーバする際、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差と、第2コンポーネントキャリアの通信セルを提供する前記第2無線通信装置から送られた個別制御信号に含まれる、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報とに基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出するアップリンクタイミング差算出部と、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する同期タイミング導出部と、を備えた無線通信端末を提供する。
 本発明に係る無線通信装置、無線通信システム及び無線通信端末によれば、キャリアアグリゲーションを行う無線通信端末が複数のアップリンクの同期タイミングを管理する際に、当該同期タイミングを調整するための処理を迅速かつ効率的に行うことができる。
第1の実施形態の無線通信システムにおいて、それぞれが少なくとも1つのコンポーネントキャリアを含む2つのTA(Timing Alignment)グループ1,2に対して端末がアップリンクの同期を確立する際のタイミングチャート 第1の実施形態の無線通信システムを構成する端末のブロック図 第1の実施形態の無線通信システムを構成するネットワークエンティティのブロック図 第2の実施形態の無線通信システムにおいて、それぞれ異なるTAグループに属する2つのネットワークエンティティ間で行われるプロシージャーを示すタイミングチャート 基準タイミングと各ネットワークエンティティのパケットの送受信タイミングとの差、及び基準タイミングと端末の送受信タイミングとの差を示す図 第3の実施形態の無線通信システムにおけるハンドオーバプロシージャーを示すタイミングチャート 基準タイミングとハンドオーバ元及びハンドオーバ先の各ネットワークエンティティのPCellにおけるパケットの送受信タイミングとの差、及び基準タイミングと端末の送受信タイミングとの差を示す図 (a)及び(b)はキャリアアグリゲーションの例を示す図 (a)~(e)はネットワークエンティティとしての基地局が管理する複数のセルを示す模式図 図9(e)に示した態様において、端末が複数のアップリンクの同期タイミングを持つ場合の例を示す図 端末が複数のキャリア周波数のコンポーネントキャリアを使用する場合の例を示す図 キャリアアグリゲーションを行う端末がネットワークエンティティへのアップリンクの同期を確立する際のプロシージャーを示すタイミングチャート
 本発明に係る無線通信システムの実施の形態について、図面を参照して詳細に説明する。以下説明する実施形態の無線通信システムは、少なくとも1つの無線通信端末と、無線通信ネットワークを介して無線通信端末と通信可能な少なくとも1つのネットワークエンティティとから構成される。以下の説明では、無線通信端末を単に「端末」という。端末は、例えば携帯電話機である。また、ネットワークエンティティとは、無線通信基地局(eNB)、無線通信基地局から離れたエリアに設置されるRRH(Remote Radio Head)、無線通信基地局などと無線で接続される中継ノード(リレーノード又はリピーター)、及びフェムト基地局等を総称した、端末が無線で接続可能なノードである。なお、RRHは、無線通信基地局の無線部(Radio Frequency部:RF部)と同様の機能を有し、有線ケーブルで無線通信基地局の制御部に接続されている。
 無線通信システムは、3GPP(The 3rd Generation Partnership Project)で規格化されているLTE又はLTE-Aの移動通信技術を利用する。但し、無線通信システムが利用する移動通信技術は、上記規格に限られず、無線LAN(Wireless Local Area Network)、IEEE802.16、IEEE802.16e若しくはIEEE802.16m等のWiMAX(Worldwide Interoperability for Microwave Access)、3GPP2、SAE(System Architecture Evolution)、UMTS(Universal Mobile Telecommunications System)、又は第四世代移動通信規格であっても良い。
 各ネットワークエンティティは、少なくとも1つの通信セルを構成する。通信セルとは、地理的エリアに対して割り当てられた識別子又は当該地理的エリアで用いられる周波数の相違に基づいて、端末がユニークに識別できる無線ネットワークオブジェクトをいう。以下の説明では、通信セルを単に「セル」という。1つのネットワークエンティティによって、1つ以上のキャリア周波数の各々につき、1つ以上のセルが構成される。また、端末は、ネットワークエンティティが構成する少なくとも1つの通信セルを利用して通信する。端末は、ネットワークエンティティとの通信において、図8(a)及び図8(b)、並びに、図9(a)~図9(e)を例示して説明した「キャリアアグリゲーション」を行うことができる。
 なお、キャリアアグリゲーションは、PCell(Primary Serving Cell)とSCell(Secondary Serving Cell)の組み合わせにより構成される。PCellは、端末がネットワークとの接続を維持するために必要なセルであり、基準となるコンポーネントキャリアを提供する。SCellは、端末がネットワークとのパケットの送受信の容量を増やすため、又は、パケットの送受信のトラフィックを分散させるために使用されるセルであり、基準となるコンポーネントキャリアに付随するコンポーネントキャリアを提供する。
 なお、以下の実施形態においては、PCellとSCellを用いた説明を行うが、本発明は、一つのPCellと複数のSCellを用いるキャリアアグリゲーションに限らず、複数のPCellと複数のSCellを用いるキャリアアグリゲーションにも適用することができる。さらには、PCellとSCellの概念を持たないキャリアアグリゲーションにも適用することができる。
 以下、第1~第3の実施形態の無線通信システムについて順に説明する。なお、第1~第3の実施形態において、同一機能を有する構成には同一符号を付し、重複する説明は省略する。
(第1の実施形態)
 第1の実施形態の無線通信システムについて説明する。第1の実施形態の無線通信システムは、上記説明した端末及びネットワークエンティティから構成される。端末は、ダウンリンクでネットワークエンティティからセル毎に送信された同期信号を受信し、各セルのアップリンクに同期する機能を備える。また、ネットワークエンティティは、端末のための無線アクセスネットワークのアクセスポイントの役割を有し、各端末に対して無線リソース(例えば、周波数領域又は時間領域での周波数帯域)の割り当て及び管理を行う。
 図1は、第1の実施形態の無線通信システムにおいて、それぞれが少なくとも1つのコンポーネントキャリアを含む2つのTA(Timing Alignment)グループ1、2に対して端末がアップリンクの同期を確立する際のタイミングチャートである。図1に示すように、端末がどのTAグループに対してもアップリンクの同期を確立していない場合、PCellを含むTAグループ1と端末の間でランダムアクセスプロシージャーが行われる。
 ランダムアクセスプロシージャーでは、端末が、TAグループ1に含まれるコンポーネントキャリアを提供するネットワークエンティティから送られたランダムアクセスプリアンブルアサインメント(Random Access Preamble Assignment:RA Preamble Assignment)に応じて、ランダムアクセスプリアンブル(Random Access Preamble: RA Preamble)をネットワークエンティティに送る。ネットワークエンティティは、ランダムアクセスプリアンブルに対する応答として、TAコマンド(Timing Advanced Command)を含むランダムアクセス応答(Random Access Response: RA Response)を、端末が送るランダムアクセスプリアンブルのリソースに応じた識別子「RA-RNTI」を使用して端末に送る。「RA-RNTI」は、複数の端末に共通の識別子となる。端末は、識別子「RA-RNTI」を参照することで、ネットワークエンティティから送られたランダムアクセス応答が自分宛の応答か否かを判別する。このようにして、端末は、TAグループ1に含まれるネットワークエンティティへのアップリンクの同期を確立する(TAグループ1との送信タイミングの調整(Timing Alignment)完了))。なお、TAグループ1に含まれるコンポーネントキャリアの1つは、上記説明したPCellである。なお、ランダムアクセスプロシージャーは、端末がランダムアクセスプリアンブルアサインメントをもらわずに、ランダムアクセスプリアンブルを送る場合もある。
 本実施形態では、PCellを含むグループとの間でアップリンクの同期が確立しているとき、端末が残りのグループ(TAグループ2)に含まれるコンポーネントキャリアを提供するネットワークエンティティへのアップリンクの同期を確立するためのプロシージャーを行う。当該プロシージャーでは、ランダムアクセス応答の代わりに、指定したセル配下の端末に固有の宛先を示す識別子「C-RNTI(Cell  Radio Network Temporary Identity)」を使用したMACCE(Media Access Control Control Element)が用いられる。なお、ランダムアクセス応答と同様に、MACCEにも、タイミングを同期するアップリンクに対応するダウンリンクの受信タイミングを基準とした調整値を導出するための値を含むTAコマンドが付加されている。なお、端末がMACCEを用いることができるのは、基地局がランダムアクセスプリアンブルアサインメントを行ったリソースを使って、端末がランダムアクセスプリアンブルを送ることで、その送信タイミングに基づき基地局が端末を識別できるためである。また、MACCEを用いるためには端末がACK,NACKの送信をできることが必要であるが、PCellのコンポーネントキャリアを含むTAグループ1との間でアップリンクの同期が確立しており、端末がACK又はNACKを送ることができるためである。但し、端末は、TAコマンドを含む制御信号が、背景技術のようにランダムアクセス応答であるか、本実施形態のようにMACCE等の個別制御信号であるかを予め設定されている必要がある。設定方法は、ネットワークエンティティから端末に1ビットで通知してもよいし、端末が状況に応じて判断してもよい。このようにすることで、端末は、MACCEによりTAコマンドを受信する場合、ランダムアクセス応答を受信する必要がなく、ランダムアクセスプリアンブルを送信したアップリンクに対応するダウンリンクにおいて、「RA-RNTI」をモニタしなくてすむため、端末の処理負荷が軽減される。設定されない場合、MACCEによりTAコマンドが送られる場合も端末は「RA-RNTI」をモニタする必要がある。
 ここで「個別制御信号」とは、1つの端末に対する制御信号であって、例えばMACCEの他に「RRCCeonnectionReconfiguration」等が含まれる。
 ネットワークエンティティがランダムアクセス応答を端末に送信するタイミングは、当該ネットワークエンティティがランダムアクセスプリアンブルを受信して所定時間後(例えば、6m秒後)と決められている。一方、ネットワークエンティティがMACCEを端末に送信するタイミングは自由である。したがって、ネットワークエンティティは、TAコマンドを含むMACCEを作成してすぐに当該MACCEを端末に送信することができる。したがって、ランダムアクセス応答と比較して、MACCEの方が早くTAコマンドを端末に送ることができる。その結果、端末はTAグループ2とのアップリンクの同期を早く確立できる。
 また、ランダムアクセス応答は、複数の端末に共通の宛先を示す識別子「RA-RNTI」を使用するため、当該複数の端末に共通の変調・符号化方式(Modulation and Coding Scheme:MCS)が割り当てられる。一方、MACCEは、セル配下の端末に固有の宛先を示す識別子「C-RNTI」を使用するため、特定の端末の状況に適したMCSが割り当てられる。したがって、本実施形態のようにMACCEを利用することによって効率的な送信が可能となる。
 さらに、ランダムアクセス応答を利用する場合、端末宛のデータを送信するためにはPDCCH(Physical Downlink Control CHannel(物理ダウンリンク制御チャネル))を割り当てる必要がある。一方、MACCEを利用すれば、端末宛のデータを共に送信することができる。このように、MACCEを利用することでリソースを節約することができる。
[第1の実施形態の端末の構成]
 図2は、第1の実施形態の無線通信システムを構成する端末のブロック図である。図2に示すように、第1の実施形態の端末は、受信部101と、制御部103と、送信部105とを備える。
 受信部101は、制御部103からの指示に応じて、端末が使用中のセルのダウンリンクを介して、報知情報、個別制御情報、ランダムアクセス応答又はMACCE等を受信する。受信部101は、受信した報知情報、個別制御情報、ランダムアクセス応答又はMACCE等を制御部103へ出力する。
 制御部103は、報知情報、共通制御情報又は個別制御情報に基づいて、キャリアアグリゲーションを構成するPCell及びSCellの各コンポーネントキャリアを管理する。したがって、制御部103は、PCell及びSCellの各コンポーネントキャリアがそれぞれどのTAグループに属しているかを知ることができる。なお、PCell及びSCellの各コンポーネントキャリアがそれぞれ属するTAグループは、端末が報知情報、セルの受信電力又は受信タイミングから推測しても良いし、ネットワークエンティティから送られる制御情報によって指示しても良い。制御部103は、PCell及びSCellをTAグループに分類するために必要な情報(例えばグループ番号等)を、制御部103が有するTA制御部111に出力する。
 TA制御部111は、TA管理部121及びTAコマンド解析部123を有する。TA管理部121は、PCell及びSCellの各同期タイミングをTAグループ毎に管理する。TAコマンド解析部123は、受信部101が受信したランダムアクセス応答又はMACCEに含まれるTAコマンドから、各コンポーネントキャリアにおける同期タイミングに関する値を導出する。TAコマンド解析部123は、導出した同期タイミングに関する値を、TAグループ毎にTA管理部121に設定する。
 送信部105は、制御部103からの指示に応じて、ランダムアクセスプリアンブルを所定のセルでネットワークエンティティに送信する。
[第1の実施形態のネットワークエンティティの構成]
 図3は、第1の実施形態の無線通信システムを構成するネットワークエンティティのブロック図である。図3に示すように、第1の実施形態のネットワークエンティティは、受信部201と、制御部203と、送信部205とを備える。
 受信部201は、端末が送信したランダムアクセスプリアンブル又はバッファステータスレポート等を受信し、制御部203へ出力する。また、受信部201は、受信したランダムアクセスプリアンブルを送信したセルに関する情報を制御部203へ出力する。
 制御部203は、ネットワークエンティティが提供する各コンポーネントキャリアを管理する。制御部203は、TA管理部211及びTAコマンド作成部213を有する。TA管理部211は、ネットワークエンティティが提供する各コンポーネントキャリアにおいて同期が確立しているかを管理する。TAコマンド作成部213は、送信部205が端末に送るランダムアクセス応答又はMACCEに付加するTAコマンドを作成する。なお、TAコマンドには、端末がランダムアクセスプリアンブルを送信したアップリンクに対応するダウンリンクの受信タイミングを基準としたアップリンクの同期タイミングを調整するための値が含まれる。
 送信部205は、制御部203からの指示に応じて、ランダムアクセス応答又はMACCE等を所定のセルで端末に送信する。
 以下、図1に示したタイミングチャートにおいて、PCellを含むTAグループ1へのアップリンクの同期が確立した後に行われる、TAグループ2へのアップリンクの同期を確立するために行われるプロシージャーの実施例について詳細に説明する。
(第1実施例)
 TAグループ2に属するネットワークエンティティは、パケットの送受信を行っていない端末にアップリンクを使用させる場合、キャリアアグリゲーションを構成するコンポーネントキャリア(SCell)のダウンリンクを介して、ランダムアクセスプリアンブルアサインメントを当該端末に送信する。
 端末の受信部101が、ランダムアクセスプリアンブルアサインメントを受信すると、制御部103は、そのランダムアクセスプリアンブルアサインメントでスケジュールされたセルのアップリンクにおけるランダムアクセスプリアンブルの送信を送信部105に指示する。送信部105は、制御部103から指示されたスケジューリングに従って、ランダムアクセスプリアンブルアサインメントを送信したネットワークエンティティにランダムアクセスプリアンブルを送信する。このとき、送信部105は、制御部103のTAコマンド解析部123に、ランダムアクセスプリアンブルを送信したセル及びその送信タイミングを出力する。
 ランダムアクセスプリアンブルアサインメントを端末に送信したネットワークエンティティの受信部201がランダムアクセスプリアンブルを受信すると、制御部203のTAコマンド作成部213は、当該ランダムアクセスプリアンブルが、PCellのコンポーネントキャリアを含むTAグループにおけるアップリンクの同期タイミングを調整するための信号か、PCellのコンポーネントキャリアを含まないTAグループにおけるアップリンクの同期タイミングを調整するための信号かを判定する。本実施例は後者の場合であるため、TAコマンド作成部213は、PCellのコンポーネントキャリアとの同期が維持されているかをTA管理部211に確認する。
 本実施例ではPCellのコンポーネントキャリアとの同期が維持されているため、TAコマンド作成部213は、TAコマンドを含むMACCEを作成する。なお、TAコマンドには、アップリンクの同期タイミングを調整するための値が含まれ、当該値は、ランダムアクセスプリアンブルを受信したタイミングから導出される。TAコマンド作成部213は、ランダムアクセスプリアンブルを受信したセルに対応したセルでMACCEを端末に送信するよう送信部205に指示する。このようにすることで、MACCEにTAグループ識別情報を含まなくても、端末は受信したセルからどのTAグループに対するTAコマンドかを判別することができる。
 但し、TAコマンド作成部213は、TAグループ識別情報、すなわち、本実施例ではTAグループ2を示す情報をMACCEに含めても良い。この場合、TAコマンド作成部213は、MACCEを送信するセルを送信部205に通知しなくても良い。なお、TAグループ識別情報は、TAグループの識別子、TAグループに属するセルの識別子、又はセル設定時のセルインデックスである。送信部205は、TAコマンド作成部213からの指示に従って、端末にTAコマンドが含まれるMACCEを送信する。
 端末の受信部101がMACCEを受信すると、制御部103にMACCEを出力する。なお、受信部101は、制御部103にMACCEを出力する際に、どのセルでMACCEを受信したかを示すMACCE受信セル情報を制御部103に出力しても良い。また、受信部101は、MACCEに対する論理チャネルID(Logical Channel ID:LCID)を制御部103に出力しても良い。制御部103は、MACCEにTAコマンドが付加されている場合、MACCEをTAコマンド解析部123に出力する。なお、制御部103は、MACCE受信セル情報をTAコマンド解析部123に出力しても良い。また、制御部103は、MACCEに対するLCIDをTAコマンド解析部123に出力しても良い。
 MACCEにTAグループ識別情報が含まれている場合、TAコマンド解析部123は、MACCEに含まれるTAコマンドはそのTAグループ識別情報が示すTAグループに関するコマンドであると認識する。一方、MACCEにTAグループ識別情報が含まれない場合、TAコマンド解析部123は、MACCEに含まれるTAコマンドは当該MACCEを受信したセルが属するTAグループに関するTAコマンドであると認識する。
 TAコマンド解析部123は、MACCEに含まれるTAコマンドが示すTAグループが、送信部105がランダムアクセスプリアンブルを送信したセルが属するTAグループと一致する場合、当該MACCEに含まれるTAコマンドは新規に同期を確立するためのTAコマンド(以下「新規用のTAコマンド」という)であると判断する。一方、TAコマンド解析部123は、MACCEに含まれるTAコマンドが示すTAグループが、送信部105がランダムアクセスプリアンブルを送信したセルが属するTAグループと一致しない場合、当該MACCEに含まれるTAコマンドは同期を更新するためのTAコマンド(以下)「更新用のTAコマンド」という)であると判断する。なお、MACCEに更新用のTAコマンドが含まれる場合と新規用のTAコマンドが含まれる場合とで、MACCEのLCIDが異なっても良い。この場合、TAコマンド解析部123は、MACCEに対するLCIDに基づいて、更新用のTAコマンドか新規用のTAコマンドかを判定する。
 TAコマンド解析部123は、新規用のTAコマンドであると判定すると、ランダムアクセスプリアンブルを送信した送信タイミングとTAコマンドに基づいて、ランダムアクセスプリアンブルを送信したセルが属するTAグループでのアップリンクの同期タイミングを導出する。一方、TAコマンド解析部123は、更新用のTAコマンドであると判定すると、該当するTAグループの同期タイミングに関する情報をTA管理部121に要請する。TAコマンド解析部123は、TA管理部121から得られた該当するTAグループの現在の同期タイミングと、更新用のTAコマンドとに基づいて、新しい同期タイミングを導出する。TAコマンド解析部123は、導出した新しい同期タイミングに関する値を、TAグループの情報と共にTA管理部121に設定する。
 なお、TAコマンド解析部123は、ランダムアクセスプリアンブルを送信したセル及びその送信タイミングに関する情報を一定期間後に破棄する。一定期間とは、このランダムアクセスプリアンブルに対するMACCEを受信する可能性のある期間である。この期間の値は、端末がネットワークエンティティから得られる情報に基づいて導出しても、予め端末に設定されていても良い。
(第2実施例)
 第2の実施例では、ネットワークエンティティが送信したMACCEを端末が受信に失敗したときの端末の動作について説明する。端末の制御部103は、ランダムアクセスプリアンブルをネットワークエンティティに送信してから一定期間経過してもMACCEが入力されない場合、ランダムアクセスプリアンブルの再送を決定する。なお、ランダムアクセスプリアンブルの再送のスケジューリングは、ランダムアクセスプリアンブルアサインメントによって定義されている。制御部103は、ランダムアクセスプリアンブルアサインメントでスケジュールされたセルのアップリンクにおけるランダムアクセスプリアンブルの送信を送信部105に指示する。その他の動作は第1実施例と同様である。
(第3実施例)
 第3の実施例では、端末から送信されたデータをネットワークエンティティが受信したタイミングがずれているときのネットワークエンティティの動作について説明する。ネットワークエンティティの制御部203は、端末から送信されたデータの受信タイミングが本来のタイミングよりも所定時間以上ずれているとき、アップリンクのタイミングが同期していないと判断する。このとき、制御部203は、当該タイミングのずれを示す情報及び対応するTAグループをTAコマンド作成部213に出力する。TAコマンド作成部213は、タイミングのずれを示す情報に基づいてTAコマンドを作成し、当該TAコマンドを含むMACCEを作成する。その他の動作は第1実施例と同様である。
 なお、本実施形態では、端末が複数のアップリンクの同期タイミングを用いる場合において、TAグループを用いる場合について説明したが、セル単位でも適用可能である。
(第2の実施形態)
 第2の実施形態の無線通信システムについて説明する。なお、第2の実施形態の無線通信システムは、端末及び少なくとも2つのネットワークエンティティから構成される。端末及びネットワークエンティティの各構成は、第1の実施形態で説明した図2及び図3に示した構成と同様である。
 図4は、第2の実施形態の無線通信システムにおいて、それぞれ異なるTAグループに属する2つのネットワークエンティティ間で行われるプロシージャーを示すタイミングチャートである。なお、図4は、2つのネットワークエンティティが、無線通信基地局(eNB)、及び当該基地局と有線ケーブルで接続され当該基地局から離れたエリアに設置されたRRH(Remote Radio Head)である例を示す。なお、当該プロシージャーは、一つのネットワークエンティティに閉じていてもよいし、複数のネットワークエンティティ間で行われてもよい。ネットワークエンティティの種類、および、組み合わせはどの組み合わせでもよい。すなわち、例えば、中継ノード同士の組み合わせでもよいし、中継ノードとRRHの組み合わせでもよいし、基地局と中継ノードの組み合わせでもよい。
 端末は、これら2つのネットワークエンティティがそれぞれ提供する異なるTAグループに属するセルを用いてキャリアアグリゲーションを行う。但し、各ネットワークエンティティは異なるTAグループに属しているため、端末はそれぞれに対してアップリンクの同期タイミングを調整する必要がある。また、各ネットワークエンティティは、配下の端末にパケットを送信する際、他の端末へのパケット送信と干渉しないように、全ての端末に対して同じタイミングでパケットを送信することが望ましい。また、各ネットワークエンティティは、配下の端末からパケットを受信する際、他の端末からのパケット受信と干渉しないように、全ての端末から同じタイミングでパケットを受信することが望ましい。したがって、各ネットワークエンティティは、それぞれ同期して、基準となるタイミング(以下「基準タイミング」という)を設定する。ネットワークエンティティ間で共通の基準タイミングを設定することで、各ネットワークエンティティは、パケットの送信タイミングと基準タイミングとの差、及びパケットの受信タイミングと基準タイミングとの差を計算することができる。この基準タイミングは、GPSの値でもよいし、一方のネットワークエンティティの送信タイミングでもよいし、絶対時間でもよいし、クロックタイミングでもよいし、ネットワークエンティティが理解できるものであればよい。また、ネットワークエンティティは基準タイミングと送受信タイミングの差を計算するサブフレームを同時に設定する。このとき、システムフレーム番号も一緒に指定してもよい。
 図5は、各ネットワークエンティティのパケットの送受信タイミングと基準タイミングとの差、及び端末の送受信タイミングと基準タイミングとの差を示す図である。図5は、端末はeNBとRRHがそれぞれ提供するセルを同時に使用してキャリアアグリゲーションを行っている場合の例を示す。
 図5に示した例は、基準タイミングに対するeNB、RRH、UEの送受信タイミングの差をa~fの実数値で表している。基準タイミングより右側の場合は正の値をとり、基準タイミングより左側の場合は負の値をとる。eNBが端末(UE)にパケットを送信するタイミングと基準タイミングとの差は「f」である。また、端末(UE)がeNBからパケットを受信するタイミングと基準タイミングとの差は「d」である。また、eNBが端末(UE)からパケットを受信するタイミングと基準タイミングとの差は「e」である。また、端末(UE)がeNBにパケットを送信するタイミングと基準タイミングとの差は「c」である。また、RRHが端末(UE)にパケットを送信するタイミングと基準タイミングとの差は「h」である。また、端末がRRHからパケットを受信するタイミングと基準タイミングとの差は「b」である。また、RRHが端末(UE)からパケットを受信するタイミングと基準タイミングとの差は「g」である。また、端末(UE)がRRHにパケットを送信するタイミングと基準タイミングとの差は「a」である。なお、図5に示すサブフレームは、全て同じサブフレーム番号である。
 各ネットワークエンティティ(eNB及びRRH)は、基準タイミングと自身のパケットの送受信タイミングとの差は認識している。図4に示すように、各ネットワークエンティティは、基準タイミングと自身のパケットの送受信タイミングとの差を示す値を他方のネットワークエンティティに通知する。なお、通知方法はどのような手段を用いてもよい。例えば、OAM(Operation And Maintenance)を用いて通知してもよいし、「X2 interface」を用いて通知してもよいし、「S1 interface」を用いて通知してもよい。
 以下、各ネットワークエンティティ及び端末におけるダウンリンク及びアップリンクの各タイミングから導出可能な関係式について説明する。ネットワークエンティティと端末間の伝搬遅延は、アップリンクとダウンリンクで同じである。このため、以下に示す式(1)及び式(2)が成り立つ。さらに、式(1)-式(2)より、式(3)が成り立つ。
e-c=d-f …(1)
g-a=b-h …(2)
a-c=(d-b)+(h-f)+(g-e) …(3)
 式(3)の左辺に示される{a-c}は、図5に示される期間t2-t1に等しい。時間t1は、端末(UE)がeNBにパケットを送信するタイミングであり、時間t2は、端末(UE)がRRHにパケットを送信するタイミングである。したがって、期間t2-t1を示す{a-c}は、RRHへのアップリンクの同期タイミングとeNBへのアップリンクの同期タイミングの時間差に等しい。
 端末(UE)は、各ネットワークエンティティのダウンリンクの同期タイミングを把握できるため、式(3)の右辺に示される{d-b}の値を算出できる。したがって、端末が式(3)の右辺に示される{(h-f)+(g-e)}の値を得られれば、当該端末は、式(3)の左辺に示される{a-c}を算出できる。各ネットワークエンティティは、基準タイミングと自身及び他方のネットワークエンティティのパケットの送受信タイミングとの差(e,f,g,h)を示す値を保持する。したがって、本実施形態のネットワークエンティティが{(h-f)+(g-e)}の値を端末に提供する。その結果、端末は、ネットワークエンティティ間のアップリンクの同期タイミングの時間差を算出できる。なお、アップリンクの同期タイミングを導出するために使用するダウンリンクの参照セルは、アップリンクが属するTAグループ内のセルであればどれでもよい。また、当該参照セルは、基地局から端末に予め通知してもよいし、端末に予め設定しておいてもよい。
 ネットワークエンティティが{(h-f)+(g-e)}の値を端末に提供するタイミングは、一方のネットワークエンティティに対するアップリンクの同期が既に確立されている状態で、キャリアアグリゲーションを行う端末が他方のネットワークエンティティに対するアップリンクの同期を確立するための処理を行うときである。したがって、ネットワークエンティティは、端末にMACCEを送信するまでに{(h-f)+(g-e)}の値を算出すれば良い。
 図1に本実施形態を適用する場合、TAグループ2から送信されるMACCEによって{(h-f)+(g-e)}の値を算出できる値が端末に提供される。但し、本実施形態では、MACCEを送信する前に端末とTAグループ2の間でランダムアクセスプリアンブルアサインメント及びランダムアクセスプリアンブル応答を送受信する必要はない。なお、MACCEは、MACCEにどのTAグループに対するアップリンクの調整かを示す情報を含めることで、端末がダウンリンクをモニタしているセルであればどのセルでも送信することができる。どのTAグループに対するアップリンクの調整かは、セルの識別子でもよいし、TAグループの識別子でもよいし、セル設定時のセルインデックスでもよい。
 MACCEには、{(h-f)+(g-e)}の値を算出できる値を含むTAコマンドが含まれる。端末は、{(h-f)+(g-e)}の値及び各ネットワークエンティティのダウンリンクの同期タイミングに基づいて、式(3)から{a-c}を算出する。さらに、端末は、既に確立されている前記一方のネットワークエンティティに対するアップリンクの同期タイミングに{a-c}の値を加算することにより、前記他方のネットワークエンティティに対するアップリンクの同期タイミングを導出する。
 なお、図4では、ネットワークエンティティ(eNB及びRRH)間で基準タイミングと自身のパケットの送受信タイミングとの差を示す値を互いに通知しているが、端末に{(h-f)+(g-e)}の値を算出できる値を通知するネットワークエンティティに対して、他のネットワークエンティティが基準タイミングと自身のパケットの送受信タイミングとの差を示す値を通知するだけで良い。すなわち、前記端末に{(h-f)+(g-e)}の値を算出できる値を通知するネットワークエンティティは、基準タイミングと自身のパケットの送受信タイミングとの差を示す値を他のネットワークエンティティに通知する必要がない。
 以上説明したように、本実施形態によれば、キャリアアグリゲーションを行う端末が、一方のネットワークエンティティに対するアップリンクの同期が既に確立されている状態で、他方のネットワークエンティティに対してアップリンクの同期タイミングを調整する際に、端末は{(h-f)+(g-e)}の値を得ることができる。当該端末は、既に同期しているアップリンクの同期タイミングを基に他のアップリンクの同期タイミングを調整することができるため、前記他のアップリンクの使用期間をカウントする「Time Alignment Timer」と呼ばれるタイマーを備える必要がない。したがって、端末のハードウェア構成を簡易にできる。また、端末は、ランダムアクセスプリアンブルアサインメントをモニタする必要がないため、消費電力を抑えることができることに加え、ハードウェアの構成を簡易にできる。
 なお、端末が{(h-f)+(g-e)}の値を算出するための計算式を保持しており、ネットワークエンティティが当該計算式による算出を行わない場合、ネットワークエンティティは、基準タイミングと自身及び他方のネットワークエンティティのパケットの送受信タイミングとの差(e,f,g,h)の値を端末に提供する。
 また、ネットワークエンティティが端末に提供する{(h-f)+(g-e)}の値を算出できる値は、{(h-f)+(g-e)}を[μ秒]の単位で表す絶対値でもよい。
 また、ネットワークエンティティが端末に提供する{(h-f)+(g-e)}の値を算出できる値は、{(h-f)+(g-e)}を計算する計算式を端末に予め設定することにより、少ないビット数で端末に調整させることができる。非特許文献3には、{実際の値=(通知する値×16)×Ts}で通知する方法が開示されている。なお、非特許文献4には、Ts=1/(30720)[m秒]と定義されている。この方法を適用することが可能である。
 しかしながら、従来よりもネットワークエンティティ間での差が大きいため、ビット数が多くなる場合が存在する。そこで、当該値は、小さい値に関しては狭い間隔で表し、大きい値に関しては広い間隔で表す方法を用いてもよい。当該値は、例えば0.5m秒刻みで表されても良い。このとき、当該値は3ビットによって表され、1ビット目は値の符号(+又は-)を示し、2~3ビット目は0m秒、0.5m秒、1.0m秒、1.5m秒のいずれかを示す。なお、4ビット目以降によって0~0.5m秒の細かい値を示しても良い。
 また、ネットワークエンティティが端末に提供する{(h-f)+(g-e)}の値を算出できる値は、既に同期をしているアップリンクの同期タイミングに対するサブフレーム番号の差および、同じサブフレーム番号でのタイミングのずれにより構成されていてもよい。このようにすることで、送るビット数を少なくすることができる。このとき、システムフレーム番号の差も通知してもよい。
 また、本実施形態では、キャリアアグリゲーションのために端末が用いる複数のセルをeNB及びRRHといった異なるネットワークエンティティがそれぞれ提供する例に基づいて説明したが、当該複数のセルが同じネットワークエンティティによって提供されていても良い。
 また、本実施形態では、{(h-f)+(g-e)}の値を算出できる値はMACCEのTAコマンドに含めて端末に提供されているが、ランダムアクセスプロシージャー中のランダムアクセス応答に含まれるTAコマンドに含めて提供されても良い。また、{(h-f)+(g-e)}の値に基づいて同期タイミングを調整可能な端末が複数ある場合、ネットワークエンティティは、当該複数の端末の全てに当該値を提供すれば良い。
 また、本実施形態では、2つのTAグループを用いる場合を例に挙げたが、TAグループの数はいくつでも適用することができる。すなわち、TAグループごとに基準となるTAグループ(例えば、PCellの属するTAグループ)に対して、本実施形態を適用すればよい。
 本実施形態は、キャリアアグリゲーションを構成するセルにおいて同期タイミングがずれたため同期タイミングを再調整する際にも適用可能である。
 また、本実施形態では、MACCEを用いてTAコマンドを送る方法を例示したが、MACCEを用いる代わりに、セルを設定するときに、TAグループ毎に{(h-f)+(g-e)}の値を算出できる値を含めても良い。例えば、「RRCCeonnectionReconfigurationメッセージ」に含めてもよい。また、例えば、「RRCConnectionSetupメッセージ」に含めてもよい。こうすることで、端末は、キャリアアグリゲーションの基準となるセル(例えば、PCell)のアップリンクの同期タイミングが確立後、他のTAグループのアップリンクの同期タイミングを、ランダムアクセスプロシージャーを行うことなく導出できる。なお、基準となるセルのアップリンクの同期タイミングを維持するTAグループ(例えば、PCellの属するTAグループ)に関しては、{(h-f)+(g-e)}の値を算出できる値を含めなくてもよい。また、なお、TAグループ毎に{(h-f)+(g-e)}の値を算出できる値を含める場合、TAグループに属するセルの内、1つのセルに対してのみ{(h-f)+(g-e)}の値を算出できる値を通知しても良い。
 このようにすることで、セルを設定する時に一度送るだけで、端末は基準となるTAグループ(例えば、PCellの属するTAグループ)のアップリンクの同期タイミングを基に、アップリンクの同期を維持することができる。また、ネットワーク側でのタイミングの変更の際には、端末に再設定値を通知することにより、容易にタイミングを調整することができる。そのため、タイミング更新のシグナリングを低減し、無線リソースを有効活用することができる。また、ランダムアクセスプロシージャーを使用しないため、ハードウェア構成が容易になる。また、ランダムアクセス応答をモニタしないため、ハードウェア構成が容易になることに加え、消費電力も低減できる。
 また、本実施形態は、端末が基準となるTAグループを管理するネットワークエンティティとアップリンクのタイミングを調整するネットワークエンティティ間で、各ネットワークエンティティは、基準タイミングと自身のパケットの送受信タイミングとの差を示す値を他方のネットワークエンティティに通知する方法を示したが、他のネットワークエンティティを介して、あるいは、他のネットワークエンティティが保持している情報を用いて、送受信タイミング差を算出してもよい。
 また、端末に{(h-f)+(g-e)}の値を算出できる値を通知するネットワークエンティティは、端末がダウンリンクをモニタしているセルを提供するネットワークエンティティであればよい。
 また、本実施形態は、端末が基準となるTAグループを管理するネットワークエンティティとアップリンクのタイミングを調整するネットワークエンティティ間で、各ネットワークエンティティは、基準タイミングと自身のパケットの送受信タイミングとの差を示す値を他方のネットワークエンティティに通知する方法を示したが、端末に{(h-f)+(g-e)}の値を算出できる値を送信するネットワークエンティティに対して、{(h-f)+(g-e)}の値を算出できる値を送信してもよい。また、端末に{(h-f)+(g-e)}の値を算出できる値を送信するネットワークエンティティに対して、基準タイミングと自身及び他方のネットワークエンティティのパケットの送受信タイミングとの差(e,f,g,h)の値を送信してもよい。また、端末に{(h-f)+(g-e)}の値を算出できる値を送信するネットワークエンティティに対して、{(h-f)+(g-e)}の値を算出できる値を含めた個別制御信号を送信してもよい。
 本実施形態の方法を用いて、アップリンクの同期タイミングの更新は、基準となるTAグループ(例えば、PCellの属するTAグループ)に対してのみ行ってもよい。他のTAグループに関しては、ダウンリンクの同期タイミングがずれた場合又は基準となるTAグループでのアップリンクの同期タイミングを更新する場合に、アップリンクの同期タイミングを同様の方法で再計算して更新する。こうすることで、TAグループ毎にアップリンクの同期タイミングを更新するための情報を送る必要がないため、無線リソースを有効活用できる。さらに、TAグループ毎に同期タイミングの更新用のMACCEを使わないため、MACCEを拡張する必要がない。
 また、本実施形態では、異なるネットワークエンティティ間で同期し、ネットワークエンティティ毎の送受信タイミングを交換する方法を示したが、基地局が管理しているセルをリピータ(ブースタ)などにより拡張する場合、端末の送受信タイミングは、基地局の送受信タイミングにより決定される。この場合、端末のそのセルに対するアップリンクの同期タイミングは、基地局でのそのセルの送受信タイミングを基に導出される。すなわち、前記{(h-f)+(g-e)}を、基地局でのそのセルの送受信タイミングを利用して導出することで、本発明を適用することができる。
 なお、基準タイミングに基準となるTAグループ(例えば、PCellの属するTAグループ)の送信タイミングを用いる場合、{(h-f)+(g-e)}の代わりに、{h+(g-e)}が使用される。ただし、端末はこのことを知らなくてもよい。h、g、eの値をそれぞれ独立に端末に通知する場合、端末は含まれないものは0であると判断すれば、正確に動作することができる。
 なお、本実施形態では、端末が複数のアップリンクの同期タイミングを用いる場合において、TAグループを用いる場合について説明したが、セル単位でも適用可能である。
(第3の実施形態)
 第3の実施形態の無線通信システムについて説明する。第3の実施の形態の無線通信システムは、端末及び少なくとも2つのネットワークエンティティから構成される。端末及びネットワークエンティティの各構成は、第1の実施形態で説明した図2及び図3に示した構成と同様である。なお、第3の実施形態は、第2の実施形態で説明したプロシージャーをハンドオーバプロシージャーに適用した実施形態である。本実施形態は、端末がキャリアアグリゲーションを行っている場合について説明するが、キャリアアグリゲーションを行っていない場合にも適用可能である。
 図6は、第3の実施形態の無線通信システムにおけるハンドオーバプロシージャーを示すタイミングチャートである。図6は、端末(UE)がソースeNBに接続しており、端末の移動に伴い、ソースeNBからターゲットeNBにハンドオーバする場合を示す。このように、図6には異なるネットワークエンティティにハンドオーバする例が示されているが、本実施形態は同じネットワークエンティティ内でのハンドオーバにも適用可能である。
 図6に示すように、ソースeNB及びターゲットeNBは、それぞれ同期して、基準となるタイミング(以下「基準タイミング」という)を設定する。この基準タイミングは、GPSの値でもよいし、一方のネットワークエンティティの送信タイミングでもよいし、絶対時間でもよいし、クロックタイミングでもよいし、ネットワークエンティティが理解できるものであればよい。また、ネットワークエンティティは基準タイミングと送受信タイミングの差を計算するサブフレームを同時に設定する。このとき、システムフレーム番号も一緒に指定してもよい。
 次に、ソースeNBは、基準タイミングと当該ソースeNBが端末(UE)にパケットを送信するタイミングとの差「F」を示す値、及び基準タイミングと当該ソースeNBが端末(UE)からパケットを受信するタイミングとの差「E」を示す値をターゲットeNBに通知する。なお、端末はキャリアアグリゲーションを行っているため、ソースeNBは、PCellでの各タイミング差を示す値をターゲットeNBに通知する。
 図7は、基準タイミングとハンドオーバ元及びハンドオーバ先の各ネットワークエンティティのPCellにおけるパケットの送受信タイミングとの差、及び基準タイミングと端末の送受信タイミングとの差を示す図である。図7において、ハンドオーバ元のネットワークエンティティがソースeNBであり、ハンドオーバ先のネットワークエンティティがターゲットeNBである。
 図7に示した例は、基準タイミングに対するソースeNB、ターゲットeNB、端末(UE)の送受信タイミングの差をA~Fの実数値で表している。基準タイミングより右側の場合は正の値をとり、基準タイミングより左側の場合は負の値をとる。ソースeNBが端末(UE)にパケットを送信するタイミングと基準タイミングとの差は「F」である。また、端末(UE)がソースeNBからパケットを受信するタイミングと基準タイミングとの差は「D」である。また、ソースeNBが端末(UE)からパケットを受信するタイミングと基準タイミングとの差は「E」である。また、端末(UE)がソースeNBにパケットを送信するタイミングと基準タイミングとの差は「C」である。また、ターゲットeNBが端末(UE)にパケットを送信するタイミングと基準タイミングとの差は「H」である。また、端末がターゲットeNBからパケットを受信するタイミングと基準タイミングとの差は「B」である。また、ターゲットeNBが端末(UE)からパケットを受信するタイミングと基準タイミングとの差は「G」である。また、端末(UE)がターゲットeNBにパケットを送信するタイミングと基準タイミングとの差は「A」である。なお、図7に示すサブフレームは、全て同じサブフレーム番号である。
 ネットワークエンティティ(ソースeNB及びターゲットeNB)と端末(UE)間の伝搬遅延は、アップリンクとダウンリンクで同じである。このため、以下に示す式(4)及び式(5)が成り立つ。さらに、式(4)-式(5)より、式(6)が成り立つ。
E-C=D-F …(4)
G-A=B-H …(5)
A-C=(D-B)+(H-F)+(G-E) …(6)
 式(6)の左辺に示される{A-C}は、図7に示される期間T2-T1に等しい。時間T1は、端末(UE)がソースeNBにパケットを送信するタイミングであり、時間T2は、端末(UE)がターゲットeNBにパケットを送信するタイミングである。したがって、期間T2-T1を示す{A-C}は、PCellにおけるターゲットeNBへのアップリンクの同期タイミングとソースeNBへのアップリンクの同期タイミングの時間差に等しい。
 ソースeNBは、端末(UE)をターゲットeNBにハンドオーバさせることを決定すると、ターゲットeNBに「Handover Preparation」を送信する。「Handover Preparation」を受け取ったターゲットeNBは、{(H-F)+(G-E)}の値と、ターゲットeNBのアップリンクの利用許可(UL grant)とを含む「Handover Command」をソースeNBに送信する。ソースeNBは、受信した「Handover Command」を、ハンドオーバさせる端末(UE)に転送する。
 端末(UE)は、ソースeNB及びターゲットeNBからPCellで各パケットを受信するタイミング(ソースeNB及びターゲットeNBのPCellにおける各ダウンリンクの同期タイミング)を把握できるため、式(6)の右辺に示される{D-B}の値を算出できる。したがって、端末が式(6)の右辺に示される{(H-F)+(G-E)}の値を得られれば、当該端末は、式(6)の左辺に示される{A-C}を算出できる。
 「Handover Command」を受信した端末(UE)は、「Handover Command」に含まれる{(H-F)+(G-E)}の値と、ソースeNB及びターゲットeNBのPCellにおける各ダウンリンクの同期タイミングとに基づいて、式(6)から{A-C}を算出する。さらに、端末は、ソースeNBのPCellを含むTAグループのアップリンクの同期タイミングに{A-C}の値を加算することにより、ターゲットeNBのPCellを含むTAグループのアップリンクの同期タイミングを導出する。
 なお、ターゲットeNBは、ハンドオーバ後のSCellに対しても同様に、ハンドオーバ前のPCellの送受信タイミングとSCellのTAグループ毎の送受信タイミングから、{(H-F)+(G-E)}を計算し、「Handover Command」にTAグループ毎に{(H-F)+(G-E)}の値を含めて端末に通知してもよい。端末は、ハンドオーバ前のPCellのダウンリンク及びアップリンクの各同期タイミング及び{(H-F)+(G-E)}の値から、SCellのTAグループ毎のアップリンクの同期タイミングを導出する。
 また、ターゲットeNBは、ハンドオーバ後のSCellに対しては、ハンドオーバ後のPCellの送受信タイミングとSCellのTAグループ毎の送受信タイミングから(H-F)+(G-E)}を計算し、「Handover Command」にTAグループ毎に{(H-F)+(G-E)}の値を含めて端末に通知してもよい。端末は、ハンドオーバ後のPCellのダウンリンク及びアップリンクの各同期タイミング及び{(H-F)+(G-E)}の値から、SCellのTAグループ毎にアップリンクの同期タイミングを導出する。このようにハンドオーバ時に、PCell及びSCellのアップリンクの同期をランダムアクセスプロシージャーを用いずに行うことができるため、早く行うことができる。
 このようにすることで、ターゲットeNBのPCellのタイミングが更新されたとき、又は、PCellのダウンリンクのタイミングとSCellのダウンリンクのタイミングがずれたときに、タイミング更新のシグナリングなしでSCellのアップリンクの同期タイミングを更新することができる。なお、PCellとSCellのアップリンクの同期タイミングを導出するために使用するダウンリンクの参照セルは、アップリンクが属するTAグループ内のセルであればどれでもよい。また、当該参照セルは、基地局から端末に予め通知してもよいし、端末に予め設定しておいてもよい。
 最後に、端末は、「Handover Command」に含まれたターゲットeNBのアップリンクの利用許可(UL grant)に基づいて、「Handover complete」をターゲットeNBに送る。
 このように、式(6)に示した関係はハンドオーバの際にも成り立つ。したがって、ハンドオーバプロシージャーが行われる際に、端末は、ソースeNBのPCellのアップリンクの同期タイミング、及びソースeNBから送られた情報に基づいて導出した値によって、ターゲットeNBのPCellのアップリンクの同期タイミングを決定することができる。
 なお、端末が{(H-F)+(G-E)}の値を算出するための計算式を保持しており、ソースeNBが当該計算式による算出を行わない場合、ターゲットeNBは、基準タイミングと自身及びターゲットeNBのパケットの送受信タイミングとの差(E,F,G,H)の値を端末に提供する。
 なお、本実施形態では、「Handover Command」に{(H-F)+(G-E)}の値が含まれているが、{(H-F)+(G-E)}の値が0の場合にのみ、端末が、ソースeNBのPCellのアップリンクの同期タイミングからターゲットeNBのPCellのアップリンクの同期タイミングを計算しても良い。この場合、「Handover Command」において1ビットで表し、当該「Handover Command」によって、ソースeNBのPCellのアップリンクの同期タイミングからターゲットeNBのPCellのアップリンクの同期タイミングを計算することを端末に指示しても良い。また、「Handover Command」に従来含まれているランダムアクセスプリアンブルアサインメントを含めないことにより、ソースeNBのPCellのアップリンクの同期タイミングからターゲットeNBのPCellのアップリンクの同期タイミングを計算することを指示しても良い。この場合、ソースeNBのPCellのアップリンクの同期タイミングからターゲットeNBのPCellのアップリンクの同期タイミングを導出できればランダムアクセスプリアンブルを使用しなくても良い。このため、端末は、早くターゲットeNBに同期することができる。また、無線リソースを効率的に使用することができる。
 なお、本実施形態では、端末が複数のアップリンクの同期タイミングを用いる場合において、TAグループを用いる場合について説明したが、セル単位でも適用可能である。また、本実施の形態は、端末が複数のアップリンクの同期タイミングを用いる場合について説明したが、一つのアップリンクの同期タイミングしか持たない場合においても適用可能である。
 上記各実施形態において、基地局は、端末にどの方法を用いてアップリンクを同期するかを通知する機能を有していてもよい。また、端末は、基地局からの通知に応じてどの方法を用いてアップリンクを同期するかを判断する機能を有していてもよい。なお、端末は、受信した情報から自動的にアップリンクを同期する方法を判断してもよい。
 上記各実施形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 なお、図2及び図3に示されたアンテナはアンテナポートでも良い。アンテナポート(Antenna port)とは、1本又は複数の物理アンテナから構成される論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えばLTE(Long Term Evolution)においては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照新号(Reference signal)を送信できる最小単位として規定されている。また、アンテナポートは、プリコーディング・ベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年9月30日出願の日本特許出願(特願2010-222764)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る無線通信装置及び無線通信端末は、キャリアアグリゲーションによって、複数の通信セルの各コンポーネントキャリアを同時に使用して通信可能なネットワークエンティティ及び無線通信端末等として有用である。
101 受信部
103 制御部
105 送信部
111 TA制御部
121 TA管理部
123 TAコマンド解析部
201 受信部
203 制御部
205 送信部
211 TA管理部
213 TAコマンド作成部

Claims (22)

  1.  同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と通信可能な無線通信装置であって、
     前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する際、前記無線通信端末に当該無線通信端末に固有の識別子を用いて前記無線通信端末の送信タイミングの調整値を含む個別制御信号を送信することを特徴とする無線通信装置。
  2.  請求項1に記載の無線通信装置であって、
     前記複数の通信セルのコンポーネントキャリアは、同一の同期タイミングで運用されているコンポーネントキャリア毎にグループ分けされ、コンポーネントキャリアにおけるアップリンクの同期を確立するための処理をグループ単位で行うことを特徴とする無線通信装置。
  3.  請求項1又は2に記載の無線通信装置であって、
     前記個別制御信号は、MACCE(Media Access Control Control Element)であることを特徴とする無線通信装置。
  4.  請求項1~3のいずれか一項に記載の無線通信装置であって、
     前記無線通信端末に前記個別制御信号を送信する無線通信装置は、前記第2コンポーネントキャリアの通信セルを提供する無線通信装置であることを特徴とする無線通信装置。
  5.  同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と、当該無線通信端末と通信可能な無線通信装置と、を備えた無線通信システムであって、
     前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する際、
     前記第1コンポーネントキャリアの通信セルを提供する第1無線通信装置及び前記第2コンポーネントキャリアの通信セルを提供する第2無線通信装置は、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含む個別制御信号を前記無線通信端末に送信し、
     前記無線通信端末は、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差及び前記個別制御信号に含まれる同期タイミング算出情報に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出し、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出することを特徴とする無線通信システム。
  6.  請求項5に記載の無線通信システムであって、
     前記第1コンポーネントキャリアの通信セルを提供する第1無線通信装置及び前記第2コンポーネントキャリアの通信セルを提供する第2無線通信装置は、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアに共通する基準タイミングを設定し、
     前記同期タイミング算出情報は、
     前記無線通信端末と通信可能な無線通信装置により、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアにおける送受信タイミングと前記基準タイミングとの差を示す情報に基づいて算出されることを特徴とする無線通信システム。
  7.  請求項5に記載の無線通信システムであって、
     前記無線通信端末と通信可能な無線通信装置は、前記第1無線通信装置若しくは第2無線通信装置又はその他の前記無線通信端末が通信可能な無線通信装置であることを特徴とする無線通信システム。
  8.  請求項6に記載の無線通信システムであって、
     前記第2無線通信装置は、前記第2コンポーネントキャリアにおける送受信タイミングと前記基準タイミングとの差を示す情報を前記第1無線通信装置に提供することを特徴とする無線通信システム。
  9.  請求項6に記載の無線通信システムであって、
     前記第1無線通信装置は、前記第1コンポーネントキャリアにおける送受信タイミングと前記基準タイミングとの差を示す情報を前記第2無線通信装置に提供することを特徴とする無線通信システム。
  10.  請求項7に記載の無線通信システムであって、
     前記第1無線通信装置又は前記第2無線通信装置は、前記その他の前記無線通信端末が通信可能な無線通信装置に、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を提供することを特徴とする無線通信システム。
  11.  請求項5に記載の無線通信システムであって、
     前記第2無線通信装置は、前記無線通信端末に当該無線通信端末に固有の識別子を用いて前記個別制御信号を送信することを特徴とする無線通信システム。
  12.  複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と、当該無線通信端末と通信可能な無線通信装置と、を備えた無線通信システムであって、
     前記移動通信端末が、前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアを提供する第1無線通信装置から別のエンティティである第2無線通信装置にハンドオーバする際、
     前記第1無線通信装置及び前記第2無線通信装置は、前記第1コンポーネントキャリア及び前記第2無線通信装置が提供する通信セルの第2コンポーネントキャリアに共通する基準タイミングを設定し、
     前記第1無線通信装置は、前記第1コンポーネントキャリアにおける送受信タイミングと前記基準タイミングとの差を示す情報を前記第2無線通信装置に提供し、
     前記第2無線通信装置は、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含むハンドオーバに関する個別制御情報を、前記第1無線通信装置を介して前記無線通信端末に送信し、
     前記無線通信端末は、各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差及び前記個別制御信号に含まれる同期タイミング算出情報に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出し、前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出することを特徴とする無線通信システム。
  13.  請求項12に記載の無線通信システムであって、
     前記第2無線通信装置は、前記第1コンポーネントキャリアにおける送受信タイミングを基にして、同一の同期タイミングで運用されたコンポーネントキャリア毎に、前記第2コンポーネントキャリアに付随する第3コンポーネントキャリアに対して、前記同期タイミング算出情報を含む前記個別制御情報を、前記第1無線通信装置を介して前記無線通信端末に送信し、
     前記無線通信端末は、前記第1コンポーネントキャリアのアップリンク及びダウンリンクの同期タイミングに基づいて、前記第3コンポーネントキャリアにおけるアップリンクの同期タイミングを導出することを特徴とする無線通信システム。
  14.  請求項12に記載の無線通信システムであって、
     前記第2無線通信装置は、前記第2コンポーネントキャリアにおける送受信タイミングを基にして、同一の同期タイミングで運用されたコンポーネントキャリア毎、前記第2コンポーネントキャリアに付随する第3コンポーネントキャリアに対して、前記同期タイミング算出情報を含む前記個別制御情報を、前記第1無線通信装置を介して前記無線通信端末に送信し、
     前記無線通信端末は、前記第2コンポーネントキャリアのアップリンク及びダウンリンクの同期タイミングに基づいて、前記第3コンポーネントキャリアにおけるアップリンクの同期タイミングを導出することを特徴とする無線通信システム。
  15.  請求項5~14のいずれか一項に記載の無線通信システムであって、
     前記同期タイミング算出情報が示す同期タイミングのずれは、
     前記第2コンポーネントキャリア及び前記第1コンポーネントキャリアにおける各送信タイミングの時間差を示すキャリア間送信タイミング差と、前記第2コンポーネントキャリア及び前記第1コンポーネントキャリアにおける各受信タイミングの時間差を示すキャリア間受信タイミング差との合計であることを特徴とする無線通信システム。
  16.  請求項15に記載の無線通信システムであって、
     前記キャリア間送信タイミング差は、各コンポーネントキャリアと前記基準タイミングにおける送信タイミングの差であり、
     前記キャリア間受信タイミング差は、各コンポーネントキャリアと前記基準タイミングにおける受信タイミングの差であることを特徴とする無線通信システム。
  17.  同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末と通信可能な無線通信装置であって、
     前記無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアの通信セル、又は前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアの通信セルを提供する制御部と、
     前記無線通信端末が前記第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第2コンポーネントキャリアで前記無線通信端末がアップリンクの同期を確立する場合に、
     前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報を含む個別制御信号を前記無線通信端末に送信する送信部を有する、
     ことを特徴とする無線通信装置。
  18.  同期タイミングが異なる複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末であって、
     当該無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアにおいてアップリンクの同期が確立している状態で、前記第1コンポーネントキャリアに付随する第2コンポーネントキャリアでアップリンクの同期を確立する際、
     各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差と、当該無線通信端末が通信可能な無線通信装置から送られた個別制御信号に含まれる、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報とに基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出するアップリンクタイミング差算出部と、
     前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する同期タイミング導出部と、
    を備えたことを特徴とする無線通信端末。
  19.  請求項18に記載の無線通信端末であって、
     当該無線通信端末が通信可能な無線通信装置は、前記第1コンポーネントキャリアの通信セルを提供する無線通信装置若しくは前記第2コンポーネントキャリアの通信セルを提供する無線通信装置又はその他の当該無線通信端末が通信可能な無線通信装置であることを特徴とする無線通信端末。
  20.  複数の通信セルの各コンポーネントキャリアを用いてキャリアアグリゲーションを行う無線通信端末であって、
     当該無線通信端末が使用する複数のコンポーネントキャリア中で基準となる第1コンポーネントキャリアを提供する第1無線通信装置から別のエンティティである第2無線通信装置にハンドオーバする際、
     各コンポーネントキャリアにおけるダウンリンクの同期タイミングの時間差と、第2コンポーネントキャリアの通信セルを提供する前記第2無線通信装置から送られた個別制御信号に含まれる、前記第1コンポーネントキャリアと前記第2コンポーネントキャリアの間の各無線通信装置側での同期タイミングのずれを示す同期タイミング算出情報とに基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングと前記第1コンポーネントキャリアにおけるアップリンクの同期タイミングの時間差であるアップリンクタイミング差を算出するアップリンクタイミング差算出部と、
     前記第1コンポーネントキャリアにおけるアップリンクの同期タイミング及び前記アップリンクタイミング差に基づいて、前記第2コンポーネントキャリアにおけるアップリンクの同期タイミングを導出する同期タイミング導出部と、
    を備えたことを特徴とする無線通信端末。
  21.  請求項18~20のいずれか一項に記載の無線通信端末であって、
     前記同期タイミング算出情報が示す同期タイミングのずれは、
     前記第2コンポーネントキャリア及び前記第1コンポーネントキャリアにおける各送信タイミングの時間差を示すキャリア間送信タイミング差と、前記第2コンポーネントキャリア及び前記第1コンポーネントキャリアにおける各受信タイミングの時間差を示すキャリア間受信タイミング差との合計であることを特徴とする無線通信端末。
  22.  請求項21に記載の無線通信端末であって、
     前記キャリア間送信タイミング差は、各コンポーネントキャリアにおける送信タイミングと前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアに共通する基準タイミングとの差であり、
     前記キャリア間受信タイミング差は、各コンポーネントキャリアにおける受信タイミングと前記基準タイミングとの差であることを特徴とする無線通信端末。
PCT/JP2011/004673 2010-09-30 2011-08-23 無線通信装置、無線通信システム、及び無線通信端末 WO2012042736A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-222764 2010-09-30
JP2010222764 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012042736A1 true WO2012042736A1 (ja) 2012-04-05

Family

ID=44630552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004673 WO2012042736A1 (ja) 2010-09-30 2011-08-23 無線通信装置、無線通信システム、及び無線通信端末

Country Status (1)

Country Link
WO (1) WO2012042736A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231517A (ja) * 2012-07-03 2012-11-22 Nec Corp 異なる無線アクセス方式間のハンドオーバ方法および無線通信システム
WO2013168533A1 (ja) * 2012-05-10 2013-11-14 株式会社エヌ・ティ・ティ・ドコモ 移動局及び無線基地局
WO2014020990A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及びtag変更方法
JP2014510501A (ja) * 2011-04-02 2014-04-24 アルカテル−ルーセント ランダムアクセスのための方法
RU2598466C1 (ru) * 2012-08-06 2016-09-27 Нтт Докомо, Инк. Мобильная станция
JP2017513375A (ja) * 2014-03-21 2017-05-25 アルカテル−ルーセント デュアル接続のための、オフ状態のスモール・セル上での測定改善の方法
JP2020524463A (ja) * 2017-08-11 2020-08-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンクタイミングを調整する方法、及びこのための装置
US20210360554A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Reference timing for multiple transmission and reception points in multi-radio dual connectivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287663A (ja) * 2005-03-31 2006-10-19 Ntt Docomo Inc 無線通信システム、基地局、移動局、及び無線通信方法
JP2010161793A (ja) * 2007-05-24 2010-07-22 Sharp Corp 移動通信システム
WO2010087105A1 (ja) * 2009-01-27 2010-08-05 シャープ株式会社 接続処理方法、及びリレー局装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287663A (ja) * 2005-03-31 2006-10-19 Ntt Docomo Inc 無線通信システム、基地局、移動局、及び無線通信方法
JP2010161793A (ja) * 2007-05-24 2010-07-22 Sharp Corp 移動通信システム
WO2010087105A1 (ja) * 2009-01-27 2010-08-05 シャープ株式会社 接続処理方法、及びリレー局装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "DifferentTiming Advance Impact Carrier Aggregation", R2-095815, 3GPP TSG-RAN WG2 MEETING #67BIS, 16 October 2009 (2009-10-16) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775175B2 (en) 2011-04-02 2017-09-26 Alcatel Lucent Method for random access
JP2014510501A (ja) * 2011-04-02 2014-04-24 アルカテル−ルーセント ランダムアクセスのための方法
WO2013168533A1 (ja) * 2012-05-10 2013-11-14 株式会社エヌ・ティ・ティ・ドコモ 移動局及び無線基地局
JP2013236314A (ja) * 2012-05-10 2013-11-21 Ntt Docomo Inc 移動局及び無線基地局
JP2012231517A (ja) * 2012-07-03 2012-11-22 Nec Corp 異なる無線アクセス方式間のハンドオーバ方法および無線通信システム
WO2014020990A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及びtag変更方法
RU2598466C1 (ru) * 2012-08-06 2016-09-27 Нтт Докомо, Инк. Мобильная станция
US9673955B2 (en) 2012-08-06 2017-06-06 Ntt Docomo, Inc. Mobile station
JP2017513375A (ja) * 2014-03-21 2017-05-25 アルカテル−ルーセント デュアル接続のための、オフ状態のスモール・セル上での測定改善の方法
JP2020524463A (ja) * 2017-08-11 2020-08-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンクタイミングを調整する方法、及びこのための装置
US11259262B2 (en) 2017-08-11 2022-02-22 Lg Electronics Inc. Method and apparatus for adjusting uplink timing in a wireless communication system
US11558842B2 (en) 2017-08-11 2023-01-17 Lg Electronics Inc. Method and apparatus for adjusting uplink timing in a wireless communication system
US20210360554A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Reference timing for multiple transmission and reception points in multi-radio dual connectivity
US11792750B2 (en) * 2020-05-15 2023-10-17 Qualcomm Incorporated Reference timing for multiple transmission and reception points in multi-radio dual connectivity

Similar Documents

Publication Publication Date Title
US10454649B2 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
EP2897428B1 (en) Method of handling uplink synchronization and related communication device
US9591545B2 (en) Handover control method, wireless communication terminal, and wireless communication device
WO2012042736A1 (ja) 無線通信装置、無線通信システム、及び無線通信端末
KR101764284B1 (ko) 통신 방법, 기지국 및 사용자 장치
JP5922296B2 (ja) 移動通信システム、ユーザ端末及びプロセッサ
US10833820B2 (en) User terminal and radio base station
KR20110081086A (ko) 무선 통신 시스템에서 시간 동기를 수신하는 방법 및 장치
US10154518B2 (en) Communication control method, base station, and user terminal
US20160057689A1 (en) Base station
US10129804B2 (en) Base station
KR102003273B1 (ko) 이중연결을 지원하는 무선 통신 시스템에서 단말 식별자 구성 방법 및 그 장치
WO2016112715A1 (zh) 一种辅服务小区的资源的控制、管理方法和装置
JP2023145753A (ja) 通信システム、基地局および通信端末
WO2013094111A1 (ja) 無線通信端末、無線通信装置及び送信制御方法
WO2015043659A1 (en) Apparatus and method of determining resources for a cell
US20160227527A1 (en) Base station and user terminal
WO2023013750A1 (ja) 通信装置及び通信方法
WO2023013744A1 (ja) 通信装置、基地局及び通信方法
US20240178954A1 (en) Communication apparatus, base station, and communication method
US20240179748A1 (en) Communication apparatus, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP