WO2012041120A1 - 一种***帧号更新方法及*** - Google Patents

一种***帧号更新方法及*** Download PDF

Info

Publication number
WO2012041120A1
WO2012041120A1 PCT/CN2011/077735 CN2011077735W WO2012041120A1 WO 2012041120 A1 WO2012041120 A1 WO 2012041120A1 CN 2011077735 W CN2011077735 W CN 2011077735W WO 2012041120 A1 WO2012041120 A1 WO 2012041120A1
Authority
WO
WIPO (PCT)
Prior art keywords
sfn
denb
value
dedicated signaling
rrc dedicated
Prior art date
Application number
PCT/CN2011/077735
Other languages
English (en)
French (fr)
Inventor
王昕�
王冠宙
陈思
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012041120A1 publication Critical patent/WO2012041120A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a system frame number (SFN) updating method and system.
  • SFN system frame number
  • FIG. 1 is a schematic diagram of a network structure using a wireless relay technology. As shown in FIG.
  • a relay node is added between an original base station DeNB and a UE, and these newly added RNs and DeNBs are connected through a wireless connection. There is no wired connection between the network and the transport network.
  • the downlink data first arrives at the DeNB and then transmits to the RN, which then transmits to the UE, and vice versa. This method narrows the distance between the antenna and the UE, which can improve the quality of the UE link, thereby improving the spectrum efficiency and user data rate of the system.
  • the UE obtains the network side information through the system broadcast information, and the system broadcast information is also an important means for the network side to configure the UE.
  • the system broadcast information is divided into three parts: a Master Information Block (MIB), a System Information Block 1 and other system information blocks, wherein the MIB further includes a downlink system bandwidth and a physical hybrid automatic request retransmission indication.
  • MIB Master Information Block
  • SFN Session Initiation Protocol
  • the method by which the UE learns the SFN is to read the MIB in the system message.
  • the SFN has 10 bits, the MIB explicitly defines its 8 most significant bits, and the remaining 2 least significant bits are obtained from the decoding of the Physical Broadcast CHannel (PBCH). That is, in the case that the UE and the eNB are synchronized, the UE knows the frame number, period duration, and boundary of the radio frame, and in the 40 ms PBCH transmission time interval, the 1 to 4 radio frames are respectively counted as 00, 01. , 10 and 11. Therefore, the 8 most significant bits of the SFN are explicitly obtained from the MIB content, and the 2 low significant bits are obtained from the transmission position of the radio frame.
  • PBCH Physical Broadcast CHannel
  • the RN provides functions and services similar to those of the ordinary eNB for the UE accessing the cell.
  • the wireless interface between the two is called an access link (Using Link Link), which is also called a Uu interface.
  • the RN accesses an eNB serving it in a manner similar to a normal UE through a radio interface.
  • the eNB serving the RN is called a Donor eNB, referred to as a DeNB, and the radio interface between the RN and the DeNB is called a backhaul link (Backhaul Link). ), also known as Un port.
  • the RN can be divided into two modes: "Inband” and "Outband".
  • the Inband Relay means that the RN uses the same frequency on the Un port and the Uu port.
  • the Outband Relay means that the RN uses different frequencies on the Un port and the Uu port.
  • the DeNB-Relay link uses the same uplink and downlink frequency as the Relay-UE link, which means that the Relay cannot send (or receive) the Uu port while receiving (or transmitting) the wireless signal on the Un interface. wireless signal.
  • the wireless signals from the Un and Uu interfaces interfere with each other unless Relay can isolate the incoming and outgoing wireless signals through a specific antenna technology.
  • the scheme for solving the self-interference problem of the Inband Relay is that the RN adopts a pseudo broadcast single frequency network subframe (f a ke MBSFN) scheme on the Un port and the Uu port.
  • This scheme refers to defining some subframes in the Un port.
  • the Uu interface downlink subframe corresponding to the Un downlink subframes is set to the MBSFN subframe at the Uu port.
  • the Un downlink subframe receives the Down data of the Un interface, thereby implementing downlink time division work and avoiding interference between the uplink and downlink at the same frequency. Therefore, the Un-interface downlink subframe must correspond to the MBSFN subframe.
  • subframes with subframe numbers 0, 4, 5, and 9 need to transmit MIB, system information block 1 and paging messages, and the UE needs to receive all symbols in these subframes. Therefore, these subframes cannot It is configured as an MBSFN subframe, and correspondingly, these subframes cannot be configured as Un downlink subframes at the Un interface.
  • the RN when the system frame number of the DeNB is hopping, the RN cannot obtain the change of the system frame number by reading the system information broadcast. If the RN cannot update its own system frame number, when the RN needs to restart to initiate random access as the normal UE, it cannot read the system message marked by the SF broadcast by the eNB, that is, the random access cannot be obtained. Access to the required resources leads to failure. Therefore, for Inband Relay, the DeNB needs to deliver updated system information to the RN through other applicable signaling.
  • the main object of the present invention is to provide a method and system for updating a system frame number.
  • the DeNB can accurately instruct the RN to perform system frame number update, thereby ensuring system stability. .
  • a system frame number SFN update method including:
  • the DeNB controls the RRC through the radio resource.
  • the dedicated signaling sends the offset value before or after the SFN hopping or the hopped SFN value to the relay node RN for SFN update of the RN.
  • the RRC dedicated signaling further carries a flag bit indicating that the offset value is positive or negative.
  • the RRC dedicated signaling further carries a flag indicating that the valid bit of the SFN is transmitted.
  • the method further includes: after receiving the RRC dedicated signaling, the RN uses the sum of the current SFN value and the offset value carried in the RRC dedicated signaling as the updated SFN value.
  • the method further includes: after receiving the RRC dedicated signaling, the RN updates the SFN value to the SFN value carried in the RRC dedicated signaling.
  • An SFN update system including: a DeNB and an RN; wherein
  • the DeNB is configured to, when the system frame number is hopped, transmit the offset value before or after the SFN hopping or the hopped SFN value to the RN through the RRC dedicated signaling.
  • the RRC dedicated signaling When the DeNB sends the offset value before and after the SFN hopping to the RN through the RRC dedicated signaling, the RRC dedicated signaling further carries a flag indicating that the offset value is positive or negative.
  • the RRC dedicated signaling further carries a flag indicating that the valid bit of the SFN is transmitted.
  • the RN is further configured to use, as the updated SFN value, the sum of the current SFN value and the offset value carried in the RRC dedicated signaling after receiving the RRC dedicated signaling from the DeNB.
  • the RN is further configured to: after receiving the RRC dedicated signaling from the DeNB, update the SFN value to be an SFN value carried in the RRC dedicated signaling.
  • the DeNB when the system frame number of the DeNB is hopped, the DeNB sends a deviation value or a transition before and after the SFN hopping to the RN through radio resource control (RRC) dedicated signaling. Subsequent SFN value for SFN update of the RN, Therefore, the RN can accurately and reliably implement the update of the SFN to ensure system stability.
  • RRC radio resource control
  • FIG. 1 is a schematic diagram of a network structure using a wireless relay technology
  • FIG. 2 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 5 of the present invention. detailed description
  • the DeNB When the system frame number of the DeNB is hopping, the DeNB transmits the offset value before or after the SFN hopping or the hopped SFN value to the RN through the RRC dedicated signaling, and is used for the SFN update of the RN.
  • the RN when the RN is powered on or restored after the radio link failure (RLF), the RN receives the MIB as the UE, thereby acquiring the SFN, where the complete SFN is known, and between the RN and the DeNB. Synced.
  • the RN operates as the RN, if the SFN value hops, the macro cell DeNB will notify the RN of the SFN hopping through RRC signaling.
  • the RNN hopping condition is notified to the RN through RRC dedicated signaling in the following two ways:
  • the RRC dedicated signaling carries the offset value before and after the SFN hopping.
  • the difference between the SFN and the original SFN is transmitted to the RN through RRC dedicated signaling.
  • the value may be positive or negative according to the specific situation.
  • the RRC dedicated signaling is required. Carrying a flag indicating that the deviation value is positive or negative.
  • the RN receives the RRC dedicated signaling indicating the SFN update in a certain radio frame, and displays the updated result in the next radio frame. This method is more flexible and reliable.
  • the RN uses the sum of the current SFN value and the offset value carried in the RRC dedicated signaling as the updated SFN value.
  • the RRC dedicated signaling carries the SFN value (ie, the absolute value) after the transition.
  • the DeNB may transmit the 8 active bits of the SFN or the 10 valid bits of the complete SFN to the RN according to the specific hopping situation.
  • the RRC dedicated signaling needs to carry the indication transmission.
  • the RN receives the RRC dedicated signaling indicating the SFN update in a certain radio frame, and displays the updated result in the next radio frame.
  • the RN updates the SFN value to the SFN value carried in the RRC dedicated signaling.
  • the DeNB indicates other system information (SI) update through RRC signaling. At this time, the item indicating the SFN in the signaling is set to an invalid value.
  • SI system information
  • the present invention also provides a system frame number update system, the system comprising: a DeNB and an RN;
  • the DeNB is configured to, when the system frame number is hopped, transmit the offset value before or after the SFN hopping or the hopped SFN value to the RN through the RRC dedicated signaling.
  • the RRC dedicated signaling When the DeNB sends the offset value before and after the SFN hopping to the RN through the RRC dedicated signaling, the RRC dedicated signaling further carries a flag indicating that the offset value is positive or negative.
  • the RN is further configured to use, after receiving the RRC dedicated signaling from the DeNB, the sum of the current SFN value and the offset value carried in the RRC dedicated signaling as the updated SFN value.
  • the RRC dedicated signaling further carries a flag indicating that the valid bit of the SFN is transmitted.
  • the RN is further configured to receive the RRC dedicated signaling from the DeNB. After that, the SFN value is updated to be the SFN value carried in the RRC dedicated signaling.
  • the DeNB When the DeNB synchronizes with the RN, the SFNs of the two correspond to the same.
  • the SFN on the DeNB side hops, it transmits the changed offset value and flag bit to the RN through RRC dedicated signaling.
  • the flag is an optional cell of 2 bits length contained in the RRC dedicated signaling.
  • FIG. 2 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 1 of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 The DeNB is directly synchronized with the RN.
  • the SFN of the two radio frames is 549, the SFN of the next radio frame should be incremented to 550 in time series, but the SFN on the DeNB side is changed to 1000.
  • Step 203 After successfully receiving the RRC signaling, the RN returns an ACK to the DeNB.
  • FIG. 3 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 2 of the present invention. As shown in FIG. 3, the method includes:
  • Step 301 The DeNB is directly synchronized with the RN.
  • the SFN of the two radio frames is 549, the SFN of the next radio frame should be incremented to 550 in time series, but the SFN on the DeNB side is changed to 300.
  • This embodiment transmits the absolute value of the SFN.
  • the RN After receiving the RRC dedicated signaling, the RN returns an acknowledgment to the DeNB, and displays the updated result in the next radio frame, where the 8 high bits of the SFNRN are updated according to the received value, and the 2 lower bits are still followed.
  • the timing count is incremented by one, and the complete SFN is resynchronized with the DeNB.
  • the DeNB If the DeNB does not receive an acknowledgment of the RN reply, it will retransmit the RRC dedicated signaling indicating that the SFN is correctly updated. In addition, the RN performs the update according to the signaling indication after receiving the RRC dedicated signaling, and does not need to perform the reply message to the DeNB.
  • FIG. 4 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 3 of the present invention. As shown in FIG. 4, the method includes:
  • the absolute value should be the value that the RN should update when receiving the signaling, and is not updated by the DeNB. That one SFN.
  • Step 403 After successfully receiving the RRC signaling, the RN returns an ACK to the DeNB.
  • the SFNs of the two correspond to the same. If the SFN on the DeNB side hops at a certain time (the high and low bits are hopping), as described above, based on the time when the DeNB can know that the transmission signaling arrives at the RN, it indicates in the RRC dedicated signaling that is sent.
  • the value that the RN should update after receiving the signaling further includes a flag, indicating that the complete lObits absolute value of the SFN is sent in the signaling.
  • the RN After receiving the RRC dedicated signaling, the RN replies to the DeNB and performs the update according to the value indicated in the signaling. The result will be displayed in the next radio frame and resynchronized with the DeNB.
  • FIG. 5 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 4 of the present invention. As shown in FIG. 5, the method includes:
  • Step 503 After successfully receiving the RRC signaling, the RN returns an ACK to the DeNB.
  • the RN Before receiving the RRC signaling (including the radio frame receiving the signaling), the RN still uses the original
  • the DeNB If the DeNB does not receive a reply from the RN, it will retransmit the RRC signaling with the HARQ mechanism.
  • the value indicated in the signaling at this time should be the update result displayed in the next radio frame after the RN receives the RRC dedicated signaling, and the signaling flag flag 11 is also included in the signaling.
  • the RN performs the update according to the signaling indication after receiving the RRC dedicated signaling, and does not need to perform the reply message to the DeNB.
  • Example 5
  • the DeNB needs to send RRC dedicated signaling to the RN to indicate other SI information updates at a certain time, if the information unit indicating the SFN update is configured as an option, it may be omitted at this time. ; but if this information element is configured as mandatory, Set it to an invalid value, such as 0, and do not need to include the flag.
  • FIG. 6 is a schematic flowchart of a method for updating a frame number of a system according to Embodiment 5 of the present invention. As shown in FIG. 6, the method includes:
  • Step 602 After receiving the RRC signaling, the RN learns that the SFN on the DeNB side does not change but still increments according to the timing. If the receiving succeeds, the eNB returns an ACK, and the DeNB receives the ACK to know that the RN successfully receives the RRC signaling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种***帧号(SFN)更新方法,包括:DeNB的***帧号发生跳变的情况下,DeNB通过无线资源控制RRC专用信令向中继节点RN发送SFN跳变前后的偏差值或跳变后的SFN值,设置为RN的SFN更新。本发明还相应地公开了一种SFN更新***。通过本发明,能够使RN准确可靠地实现SFN的更新,保证***稳定性。

Description

一种***帧号更新方法及*** 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种***帧号( System Frame Number, SFN ) 更新方法及***。 背景技术
为了满足日益增长的大带宽高速移动接入的需求, 第三代伙伴组织计 划 ( Third Generation Partnership Projects , 3GPP ) 推出高级长期演进 ( Long-Term Evolution advance, LTE- Advanced )标准。 LTE- Advanced对于 长期演进(Long-Term Evolution, LTE )的演进保留了 LTE的核心, 并在此 基础上采用一系列技术对频域、 空域进行了扩充, 以达到提高频谱利用率、 增加***容量等目的。 扩展小区的覆盖范围、 减少通信中的死角地区、 平衡负载、 转移热点地区 的业务和节省用户终端(User Equipment, UE )的发射功率。 图 1为利用无 线中继技术的网络结构示意图, 如图 1所示, 在原有的基站 DeNB和 UE 之间增加一些中继节点( Relay Node, RN ), 这些新增的 RN和 DeNB通过 无线连接, 和传输网络之间没有有线连接。 下行数据先到达 DeNB , 然后传 输给 RN, RN再传输至 UE, 上行则反之。 这种方法拉近了天线和 UE间的 距离, 可以改善 UE链路质量, 从而提高***的频谱效率和用户数据率。
UE通过***广播信息获取网络侧信息, ***广播信息也是网络侧对 UE进行配置的重要手段。 在 LTE***中, ***广播信息分为三个部分: 主 信息块( Master Information Block, MIB ),***信息块 1和其它***信息块, 其中 MIB又包含下行***带宽、 物理混合自动请求重传指示信道配置信息 和 SFN三个部分。
UE获知 SFN的方法是读取***消息中的 MIB。 MIB的周期为 40ms , 在 SFN mod 4 = 0的无线帧的子帧 #0上首传, 在一个周期内的所有其他无 线帧的子帧 #0里重传。 SFN共有 10个比特位, MIB显式定义了它的 8个 高有效位, 其余的 2 个低有效位从物理广播信道 (Physical Broadcast CHannel, PBCH ) 的解码中获得。 也就是说, 在 UE和 eNB已同步的情况 下, UE已知无线帧的帧号、 周期时长和边界等, 在这 40ms的 PBCH传输 时间间隔中, 1 ~ 4无线帧分别计为 00、 01、 10和 11。 因此, SFN的 8个 高有效位由 MIB内容显式获得, 2个低有效位从无线帧的传输位置获得。
在配置了 RN的网络中, RN对接入其小区的 UE提供与普通 eNB类似 的功能和服务, 两者间的无线接口称之为接入链路( Access Link ), 也称为 Uu接口。 RN通过无线接口以类似于普通 UE的方式接入一个服务于它的 eNB, 服务于 RN的 eNB称为 Donor eNB, 简称 DeNB, RN与 DeNB间的 无线接口称之为回传链路 ( Backhaul Link ), 也称为 Un口。
根据 RN在 Un口与 Uu口使用的中心频率是否相同,可将 RN分为 "带 内 (Inband )" 和 "带外 (Outband )" 两种工作模式。 Inband Relay指的是 RN在 Un口和 Uu口使用相同的频率, Outband Relay是指 RN在 Un口和 Uu口使用不同的频率。对于 Inband Relay来说, DeNB - Relay链路与 Relay - UE链路使用相同的上下行频率,这就意味着 Relay不能在 Un接口接收(或 发送)无线信号的同时在 Uu口发送(或接收)无线信号。 除非 Relay能通 过特定的天线技术对收发无线信号进行隔离, 否则 Un和 Uu接口的无线信 号收发会互相干扰。
解决 Inband Relay自干扰问题的方案是, RN在 Un口和 Uu口采用伪 多媒体广播单频网子帧 ( fake MBSFN (Multimedia Broadcast Single Frequency Network) subframe )方案。 该方案是指在 Un口定义一些子帧作 为 Un下行子帧,这些 Un下行子帧对应的 Uu口下行子帧在 Uu口被设置为 MBSFN子帧。 由于 UE在 MBSFN子帧内除了在开始的 2个符号内接收控 制信号,在剩余的符号内并不接收单播数据, 因此 RN就可以在这段时间内 停止发送下行信号, 转而在对应的 Un下行子帧接收 Un口下行数据, 从而 实现了下行时分工作, 避免上下行相同频率间的干扰。 因此, Un口下行子 帧必须对应 MBSFN子帧。 在标准中, 子帧号为 0、 4、 5、 9的子帧需传输 MIB、***信息块 1及寻呼消息, UE则需要在这些子帧中接收所有的符号, 因此, 这些子帧不能被配置为 MBSFN子帧, 相应地, 在 Un口这些子帧也 不能被配置为 Un下行子帧。
可以看出, 对于 Inband Relay, 当 DeNB的***帧号发生跳变时, RN 无法通过读取***信息广播来获得***帧号的变化情况。如果 RN无法更新 自身的***帧号,那么当 RN—旦需要重启而以普通 UE的身份发起随机接 入时, 它就无法读取 eNB广播的以 SFN标识的***消息, 也即是无法获取 随机接入所需要的资源而导致失败。 因此, 对于 Inband Relay, DeNB需要 通过其他适用的信令向 RN传递更新的***信息。 此外, 由于 SFN是随着 时间的推移不断递增的, 而且, 从 DeNB发送信令到 RN接收信令之间的 延迟是不定的, 即很难保证 RN在接收到的该信令时, 其中的 SFN值与真 正的 DeNB小区 SFN是一致的, 从而可能影响***稳定性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种***帧号更新方法及***, 在 DeNB的***帧号发生跳变的情况下, DeNB能够准确指示 RN进行*** 帧号更新, 从而保证***稳定性。
为达到上述目的, 本发明的技术方案是这样实现的:
一种***帧号 SFN更新方法, 包括:
DeNB 的***帧号发生跳变的情况下, DeNB通过无线资源控制 RRC 专用信令向中继节点 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值, 用于 RN的 SFN更新。
所述 DeNB通过 RRC专用信令向 RN发送 SFN跳变前后的偏差值的情 况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示所述偏差值的 正负。
所述 DeNB通过 RRC专用信令向 RN发送跳变后的 SFN值的情况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示传输 SFN的有效位。
该方法还包括: 所述 RN在收到所述 RRC专用信令后, 以当前 SFN值 与 RRC专用信令中所携带偏差值之和作为更新后的 SFN值。
该方法还包括: 所述 RN在收到所述 RRC专用信令后, 更新 SFN值为 RRC专用信令中携带的 SFN值。
一种 SFN更新***, 包括: DeNB和 RN; 其中,
所述 DeNB, 设置为在***帧号发生跳变的情况下, 通过 RRC专用信 令向 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值。
DeNB通过 RRC专用信令向 RN发送 SFN跳变前后的偏差值的情况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示所述偏差值的正负。
所述 DeNB通过 RRC专用信令向 RN发送跳变后的 SFN值的情况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示传输 SFN的有效位。
所述 RN, 还设置为在收到所述来自 DeNB的 RRC专用信令后, 以当 前 SFN值与 RRC专用信令中所携带偏差值之和作为更新后的 SFN值。
所述 RN, 还设置为在收到所述来自 DeNB的 RRC专用信令后, 更新 SFN值为 RRC专用信令中携带的 SFN值。
本发明***帧号更新方法及***, DeNB 的***帧号发生跳变的情况 下, DeNB通过无线资源控制 ( Radio Resource Control, RRC )专用信令向 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值,用于 RN的 SFN更新, 从而能够使 RN准确可靠地实现 SFN的更新, 保证***稳定性。 附图说明
图 1为利用无线中继技术的网络结构示意图;
图 2为本发明实施例 1***帧号更新方法流程示意图;
图 3为本发明实施例 2***帧号更新方法流程示意图;
图 4为本发明实施例 3***帧号更新方法流程示意图;
图 5为本发明实施例 4***帧号更新方法流程示意图;
图 6为本发明实施例 5***帧号更新方法流程示意图。 具体实施方式
本发明的基本思想是: DeNB的***帧号发生跳变的情况下, DeNB通 过 RRC专用信令向 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值, 用于 RN的 SFN更新。
需要说明的是, 当 RN上电、或在无线链路失败(RLF )后进行恢复时, RN以 UE的身份接收 MIB, 从而获取 SFN, 此时完整的 SFN为已知, 且 RN与 DeNB间已同步。当该 RN以 RN的身份工作时,若 SFN值发生跳变, 则宏小区 DeNB将通过 RRC信令将 SFN跳变情况通知给 RN。
具体的,通过 RRC专用信令将 SFN跳变情况通知给 RN有以下两种实 现方式:
1 ) RRC专用信令携带 SFN跳变前后的偏差值。
DeNB侧的 SFN发生跳变后,将与原 SFN值相比变化的差值通过 RRC 专用信令传输给 RN, 此值根据具体情况可正可负, 此时, 所述 RRC专用 信令还需要携带指示所述偏差值正负的标志位。 RN在某无线帧内接收到指 示 SFN更新的 RRC专用信令,在下一无线帧显示更新的结果。这种方法比 较灵活、 可靠。 相应的, RN在收到该 RRC专用信令后, 以当前 SFN值与 RRC专用 信令中所携带偏差值之和作为更新后的 SFN值。
2 ) RRC专用信令携带跳变后的 SFN值(即绝对值)。
DeNB侧的 SFN发生跳变后, 根据具体跳变情况, DeNB可传输 SFN 的 8个高有效位或完整 SFN的 10个有效位给 RN, 此时, 所述 RRC专用 信令还需要携带指示传输 SFN的有效位的标志位。 RN在某无线帧内接收 到指示 SFN更新的 RRC专用信令, 在下一无线帧显示更新的结果。
相应的, RN在收到该 RRC专用信令后, 更新 SFN值为 RRC专用信 令中携带的 SFN值。
需要说明的是, 若 DeNB小区的 SFN没有发生跳变, 而指示 SFN的信 息单元在 RRC信令中被设置为必选项, 那么在 DeNB通过 RRC信令指示 其他***信息 (System Information, SI ) 更新时, 将信令中指示 SFN的这 一项置为无效值。
本发明还提出一种***帧号更新***, 该***包括: DeNB和 RN; 其 中,
所述 DeNB, 设置为在***帧号发生跳变的情况下, 通过 RRC专用信 令向 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值。
DeNB通过 RRC专用信令向 RN发送 SFN跳变前后的偏差值的情况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示所述偏差值的正负。
相应的, 所述 RN , 还设置为在收到所述来自 DeNB的 RRC专用信令 后,以当前 SFN值与 RRC专用信令中所携带偏差值之和作为更新后的 SFN 值。
所述 DeNB通过 RRC专用信令向 RN发送跳变后的 SFN值的情况下, 所述 RRC专用信令还携带一标志位, 所述标志位指示传输 SFN的有效位。
相应的, 所述 RN, 还设置为在收到所述来自 DeNB的 RRC专用信令 后, 更新 SFN值为 RRC专用信令中携带的 SFN值。
下面结合附图及具体实施例对本发明进行详细说明。 实施例 1
当 DeNB与 RN同步后, 两者的 SFN对应相同。 当 DeNB侧的 SFN发 生跳变时, 它将改变的偏差值及标志位通过 RRC专用信令传送给 RN, 当 RN在某无线帧中接收到该信令时,向 DeNB回复确认并更新 SFN =原 SFN +偏差值, 变更结果在下一无线帧中显示 (实施例中 SFN以十进制数值说 明)。
标志位 Flag是包含在 RRC专用信令中的一个 2 bits长度的可选信元,
Flag = 00代表发送的是 SFN跳变的正偏差值; Flag = 01代表发送的是 SFN 跳变的负偏差值; Flag = 10代表发送的是 SFN的 8个高位绝对值; Flag =11 代表发送的是 SFN完整的 lObits绝对值。
图 2为本发明实施例 1***帧号更新方法流程示意图, 如图 2所示, 该方法包括:
步驟 201: DeNB与 RN—直同步, 当两者无线帧的 SFN = 549时, 下 一个无线帧的 SFN本应按时序递增为 550,但 DeNB侧的 SFN跳变为 1000。
步驟 202: DeNB侧的 SFN发生了跳变,则其将跳变前后的相对偏差值 Value = 1000 - 550 = 450、 以及标志位 Flag = 00 (如上所述, 指示发送的是 SFN正相对值 )通过 RRC SI Update信令传输给 RN。
步驟 203: RN成功接收到该 RRC信令后向 DeNB回复 ACK。
DeNB接收到 ACK即知道 RN侧信令接收成功,而在接收到该 RRC信 令之前(包括接收到该信令的无线帧), RN仍以原 SFN的值按时序计数(如 SFNRN = 549 ~ SFNRN = 550 )。 若 DeNB没有接收到 RN回复的确认, 则会 重传携带这一偏差值及标志位的 RRC信令。 另外, RN在接到 RRC信令后 即按照信令指示来执行更新, 而不必在向 DeNB回复确认消息之后才进行。 步驟 204: 假定 RN在 SFNRN = 550的无线帧接收到这一 RRC信令, 获知 DeNB的 SFN跳变增加了 450。 RN在下一个无线帧中的 SFN本应依 时序递增为 551 (此时 SFNDeNB由更新后的值按时序递增为 1001 ), 但根据 接收到的偏差值及标志位更新为 SFN = 551 + 450 = 1001 , 则与 DeNB重新 同步了。 实施例 2
本实施例与实施例 1 类似, 只是此例中的变更量为负值, 相应的标志 位则有所改变。 图 3为本发明实施例 2***帧号更新方法流程示意图, 如 图 3所示, 该方法包括:
步驟 301 : DeNB与 RN—直同步, 当两者无线帧的 SFN = 549时, 下 一个无线帧的 SFN本应按时序递增为 550,但 DeNB侧的 SFN跳变为 300。
步驟 302: DeNB侧的 SFN发生了跳变,则其将跳变前后的相对偏差值 Value = 300 - 550 = - 250,及标志位 Flag = 01(指示发送的是 SFN负相对值) 通过 RRC SI Update信令传输给 RN。
步驟 303: RN成功接收到该 RRC信令后向 DeNB回复 ACK, DeNB 接收到 ACK即知道 RN侧信令接收成功,而在接收到该 RRC信令之前(包 括接收到该信令的无线帧), RN仍以原 SFN的值按时序计数(如 SFNRN = 549 ~ SFNRN = 550 ), 若 DeNB没有接收到 RN回复的确认, 则会重传携带 这一偏差值及标志位的 RRC信令。 另外, RN在接到 RRC信令后即按照信 令指示来执行更新, 而不必在向 DeNB回复确认消息之后才进行。
步驟 304: 假定 RN在 SFNRN = 550的无线帧接收到这一 RRC信令, 获知 DeNB的 SFN跳变减少了 250。 RN在下一个无线帧中的 SFN本应依 时序变为 551 (此时 SFNDeNB由更新后的值按时序递增为 301 ),但根据接收 到的偏差值及标志位更新为 SFN = 551 + (- 250) = 301 , 则与 DeNB重新同 步了。 实施例 3
本实施例传输 SFN的绝对值。 如前所述, 每个无线帧的 SFN的 2个低 有效位可由无线帧位按时序依次递增得出, 若 DeNB侧 SFN的 8个高位在 某个时刻发生了跳变 , 基于 HARQ机制及其时序 HARQ RTT Time = 8ms, DeNB可有能力获知传输信令到达 RN的时间( DeNB侧知道重传发生的次 数),它即在发送 RRC专用信令中指示 RN在接收到该信令时应该更新的值。
RN在某个无线帧接收到该 RRC专用信令后向 DeNB回复确认, 并将 在下一个无线帧中显示更新的结果, 其中 SFNRN的 8个高位按照接收到的 值进行更新, 2个低位仍然按照时序计数加 1 ,则完整的 SFN与 DeNB重新 同步了。
若 DeNB没有接收到 RN回复的确认, 则会重传指示 SFN正确更新值 的 RRC专用信令。 另外, RN在接到 RRC专用信令后即按照信令指示来执 行更新, 而不必在向 DeNB回复确认消息之后才进行。
图 4为本发明实施例 3***帧号更新方法流程示意图, 如图 4所示, 该方法包括:
步驟 401: DeNB与 RN—直同步,但在 SFN = 0000 1111 00无线帧后, SFNDeNB的 8个高有效位跳变为 1111 0000, 2个低有效位按照时序递增为 01 , 则 SFNDeNB = 1111 0000 01。
步驟 402: DeNB向 RN发送 RRC SI Update消息, 其中 SFN信元值为 新的 SFN高 8位值, 即 1111 0000。 还包括标志位 Flag = 10, 表示发送的 SFN值为高 8位绝对值。
需要说明的是, 如果 DeNB在 SFNDeNB发生跳变后, 当前没有适用的 信道资源来发送这一 RRC专用信令, 而需要等到有可用资源时才能发送。 且如前所述, 基于 HARQ时序及 DeNB的能力 , 其可知 RN在哪个无线帧 才能接收到这一信令。 若当 RN成功接收时, DeNB侧的 SFN 已从更新的 1111 0000 01递增为 1111 0001 00, 即 8个高位在更新后已有了进位, 那么 DeNB给 RN发送的 RRC专用信令中就应该指示 SFN8 = 1111 0001。
也就是说,当 DeNB向 RN发送的 RRC专用信令中携带的是 SFN绝对 值时,这一绝对值应该是 RN在接收到该信令的时刻应该更新的值, 而并不 是 DeNB发生更新的那一个 SFN。
步驟 403: RN成功接收到该 RRC信令后回复 ACK给 DeNB。
在接收到该 RRC信令之前 (包括接收到该信令的无线帧), RN仍以原 SFN的值按时序计数 (如 SFNRN =0000 1111 00 ~ SFNRN = 0000 1111 10 ), DeNB接收到 ACK即知道 RN侧信令接收成功。
步驟 404: RN在 SFNRN = 0000 1111 10时接收到 RRC专用信令, 获知
DeNB在这一时刻指示它应更新的高位值为 SFN8 = 1111 0000, 则 RN按照 指示更新它的 8个高位, 低 2位仍按照时序计数为 11 , 由此下一个无线帧 的 SFN为 SFNRN = 1111 1100 11 , 即与 DeNB重新同步了。 实施例 4
当 DeNB与 RN同步后, 两者的 SFN对应相同。 若 DeNB侧的 SFN在 某个时刻发生了跳变(高、 低位都有跳变), 如前所述, 基于 DeNB可知传 输信令到达 RN的时间, 它即在发送的 RRC专用信令中指示 RN在接收到 该信令后应该更新的值,还包括一个标志位 Flag,指示信令中发送的是 SFN 的完整 lObits绝对值。
RN在某个无线帧接收到该 RRC专用信令后向 DeNB回复确认, 并完 全按照信令中指示的值执行更新, 结果将显示在下一个无线帧中, 则与 DeNB重新同步了。
图 5为本发明实施例 4***帧号更新方法流程示意图, 如图 5所示, 该方法包括:
步驟 501 : DeNB与 RN—直同步, 但在 SFN = 0000 1111 00的无线帧 后, SFNDeNB跳变为 1111 0000 11 , 即高低位都发生了跳变, 此时 RN侧的 SFN正常按时序递增为 0000 1111 01。
步驟 502: DeNB向 RN发送 RRC SI Update消息, 其中 SFN信元值为 RN接收到该信令后应该更新的 SFN值。 基于 HARQ时序及 DeNB能力, 其获知 RN侧会在 SFNRN = 0000 1111 10时接收到这个信令(此时 DeNB侧 的 SFN已从更新后的值按时序递增为 1111 0001 00 ), 并将在下一帧中显示 更新的结果, 因此 DeNB在 RRC信令中指示 SFN = 1111 0001 01。 信令中 还包括 Flag = 11 , 表示发送的 SFN为完整的 lObits绝对值。
步驟 503: RN成功接收到该 RRC信令后向 DeNB回复 ACK。
在接收到该 RRC信令之前(包括接收到该信令的无线帧), RN仍以原
SFN的值按时序计数 (如 SFNRN =0000 1111 00 ~ SFNRN = 0000 1111 10 ), DeNB接收到 ACK即知道此次 RN侧信令接收成功。
如果 DeNB没有接收到 RN的回复,它将以 HARQ机制重传 RRC信令。 此时信令中指示的值应该是 RN接收到该 RRC专用信令后在下一个无线帧 中显示的更新结果,信令中还包括标志位 Flag = 11。 另外, RN在接到 RRC 专用信令后即按照信令指示来执行更新, 而不必在向 DeNB 回复确认消息 之后才进行。
步驟 504: RN在 SFNRN = 0000 1111 10时接收到该 RRC专用信令, 信 令中包括的是 SFN完整的 10个比特位及 Flag, 即获知 DeNB指示它在下 一帧中应更新为 1111 0001 01 , 则 RN按照指示在下一无线帧即为 SFNRN = 1111 0001 01 , 与 DeNB重新同步了。 实施例 5
若 SFNDeNB并未发生跳变, 但在某个时刻 DeNB需要向 RN发送 RRC 专用信令以指示其他 SI信息更新,如果指示 SFN更新的信息单元被配置为 可选项, 则此时可以将其省略; 但若这一信息单元被配置为必选项, 则可 将其设置为无效值, 比如 0, 且无需包含标志位 Flag。
图 6为本发明实施例 5***帧号更新方法流程示意图, 如图 6所示, 该方法包括:
步驟 601: DeNB与 RN—直是严格同步的, 若当无线帧的 SFN递增到 550时, DeNB侧需要向 RN发送 RRC信令来指示 SI更新,但此时 SFNDeNB 并未发生跳变。若指示 SFN更新的信息单元在 RRC信令中被配置为必选项, 则 DeNB在 SFN = 550时向 RN发送的 RRC专用信令中指示 Value = 0。
步驟 602: RN接收到这一 RRC信令则获知 DeNB侧的 SFN未发生跳 变而是仍然按照时序递增 , 接收成功则向 DeNB回复 ACK, DeNB接收到 ACK则知道 RN成功接收到 RRC信令。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种***帧号 SFN更新方法, 其中, 该方法包括:
DeNB 的***帧号发生跳变的情况下, DeNB通过无线资源控制 RRC 专用信令向中继节点 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值, 用于 RN的 SFN更新。
2、根据权利要求 1所述的 SFN更新方法,其中,所述 DeNB通过 RRC 专用信令向 RN发送 SFN跳变前后的偏差值的情况下,所述 RRC专用信令 还携带一标志位, 所述标志位指示所述偏差值的正负。
3、根据权利要求 1所述的 SFN更新方法,其中,所述 DeNB通过 RRC 专用信令向 RN发送跳变后的 SFN值的情况下,所述 RRC专用信令还携带 一标志位, 所述标志位指示传输 SFN的有效位。
4、 根据权利要求 2所述的 SFN更新方法, 其中, 该方法还包括: 所述 RN在收到所述 RRC专用信令后, 以当前 SFN值与 RRC专用信令中所携 带偏差值之和作为更新后的 SFN值。
5、 根据权利要求 3所述的 SFN更新方法, 其中, 该方法还包括: 所述 RN在收到所述 RRC专用信令后, 更新 SFN值为 RRC专用信令中携带的 SFN值。
6、 一种 SFN更新***, 其中, 该***包括: DeNB和 RN; 其中, 所述 DeNB, 设置为在***帧号发生跳变的情况下, 通过 RRC专用信 令向 RN发送 SFN跳变前后的偏差值或跳变后的 SFN值。
7、 根据权利要求 6所述的 SFN更新***, 其中, DeNB通过 RRC专 用信令向 RN发送 SFN跳变前后的偏差值的情况下,所述 RRC专用信令还 携带一标志位, 所述标志位指示所述偏差值的正负。
8、根据权利要求 6所述的 SFN更新***,其中,所述 DeNB通过 RRC 专用信令向 RN发送跳变后的 SFN值的情况下,所述 RRC专用信令还携带 一标志位, 所述标志位指示传输 SFN的有效位。
9、 根据权利要求 7所述的 SFN更新***, 其中,
所述 RN, 还设置为在收到所述来自 DeNB的 RRC专用信令后, 以当 前 SFN值与 RRC专用信令中所携带偏差值之和作为更新后的 SFN值。
10、 根据权利要求 8所述的 SFN更新***, 其中,
所述 RN, 还设置为在收到所述来自 DeNB的 RRC专用信令后, 更新 SFN值为 RRC专用信令中携带的 SFN值。
PCT/CN2011/077735 2010-09-28 2011-07-28 一种***帧号更新方法及*** WO2012041120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010297949.4 2010-09-28
CN201010297949.4A CN102421087B (zh) 2010-09-28 2010-09-28 一种***帧号更新方法及***

Publications (1)

Publication Number Publication Date
WO2012041120A1 true WO2012041120A1 (zh) 2012-04-05

Family

ID=45891897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077735 WO2012041120A1 (zh) 2010-09-28 2011-07-28 一种***帧号更新方法及***

Country Status (2)

Country Link
CN (1) CN102421087B (zh)
WO (1) WO2012041120A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079392B (zh) * 2013-03-29 2019-01-04 中兴通讯股份有限公司 一种传输***帧序号信息的方法、设备及***
EP3407663B1 (en) * 2014-02-10 2020-08-05 Telefonaktiebolaget LM Ericsson (publ) User equipment, network node and methods therein for handling preamble transmissions on a random access channel in a radio communciations network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022641A (zh) * 2007-03-01 2007-08-22 中兴通讯股份有限公司 一种crnc获取小区sfn的方法及***
CN101094507A (zh) * 2006-06-23 2007-12-26 普天信息技术研究院 时分-同步码分多址移动通信***中的接力切换方法
CN101384019A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 实现基站同步的方法、装置和一种基站
CN101465745A (zh) * 2007-12-19 2009-06-24 华为技术有限公司 多播组播业务数据的发送方法、装置及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076425A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for resource management
CN101483903B (zh) * 2008-01-08 2011-06-08 华为技术有限公司 ***信息调度方法、装置及一种终端
CN102377476B (zh) * 2010-08-23 2014-03-19 电信科学技术研究院 一种***帧号跳变时的处理方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094507A (zh) * 2006-06-23 2007-12-26 普天信息技术研究院 时分-同步码分多址移动通信***中的接力切换方法
CN101022641A (zh) * 2007-03-01 2007-08-22 中兴通讯股份有限公司 一种crnc获取小区sfn的方法及***
CN101384019A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 实现基站同步的方法、装置和一种基站
CN101465745A (zh) * 2007-12-19 2009-06-24 华为技术有限公司 多播组播业务数据的发送方法、装置及***

Also Published As

Publication number Publication date
CN102421087B (zh) 2015-10-21
CN102421087A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
US10868610B2 (en) Communications device, communications apparatus operating as a relay node, infrastructure equipment and methods
EP3358773B1 (en) Hybrid-arq mechanism for cooperative base stations uplink
TWI572223B (zh) 在鏈結錨與增幅器網路中之資料重傳技術
US9148900B2 (en) Signal processing method in wireless communication system and device therefor
JP5290248B2 (ja) 移動局装置
JP5355788B2 (ja) 中継ノードとのハンドオーバを実施するための方法および装置
CA2765860C (en) Mechanisms for data handling during a relay handover with s1 termination at evolved universal terrestrial radio access network access node
CN107612662B (zh) 用于数据包中继的***和方法
TWI486018B (zh) 無線中繼轉傳系統的傳送方法及其中繼台
US10314068B2 (en) Communication control method and user terminal
TW202008806A (zh) 用於交遞增強的方法和裝置
US10834785B2 (en) Radio terminal and base station for controlling direct communication between radio terminals
WO2014065167A1 (ja) 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
WO2011050747A1 (zh) 一种子帧定时的方法及***
WO2012041088A1 (zh) 一种时分双工***及其中继链路的下行反馈方法
CN116420366A (zh) 用于中继通信的方法和装置
CN115580380B (zh) 无线通信的方法及装置
WO2012041120A1 (zh) 一种***帧号更新方法及***
WO2015170765A1 (ja) ユーザ端末及びプロセッサ
WO2011079718A1 (zh) 基站、中继节点、中继子帧配置信息的通知方法及***
WO2022077451A1 (zh) 无线通信的方法和终端设备
WO2012130005A1 (zh) Tdd***中回程链路上行反馈信息的处理方法与***
WO2023082919A1 (zh) 一种通信方法和通信装置
WO2023056844A1 (zh) 传输数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828016

Country of ref document: EP

Kind code of ref document: A1