WO2012040904A1 - 激活共存工作模式的方法及基站、用户设备和*** - Google Patents

激活共存工作模式的方法及基站、用户设备和*** Download PDF

Info

Publication number
WO2012040904A1
WO2012040904A1 PCT/CN2010/077405 CN2010077405W WO2012040904A1 WO 2012040904 A1 WO2012040904 A1 WO 2012040904A1 CN 2010077405 W CN2010077405 W CN 2010077405W WO 2012040904 A1 WO2012040904 A1 WO 2012040904A1
Authority
WO
WIPO (PCT)
Prior art keywords
coexistence
user equipment
mode
base station
activation
Prior art date
Application number
PCT/CN2010/077405
Other languages
English (en)
French (fr)
Inventor
张磊
徐海博
周华
王昕�
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2015016541A priority Critical patent/MX350971B/es
Priority to PCT/CN2010/077405 priority patent/WO2012040904A1/zh
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CA2812826A priority patent/CA2812826C/en
Priority to ES10857667T priority patent/ES2813299T3/es
Priority to JP2013530516A priority patent/JP5871003B2/ja
Priority to KR1020137010529A priority patent/KR101479886B1/ko
Priority to CA2931739A priority patent/CA2931739A1/en
Priority to MX2013003632A priority patent/MX2013003632A/es
Priority to BR112013007320A priority patent/BR112013007320A2/pt
Priority to CN201080068971.XA priority patent/CN103081523B/zh
Priority to RU2013113757/07A priority patent/RU2551456C2/ru
Priority to EP10857667.9A priority patent/EP2624613B1/en
Publication of WO2012040904A1 publication Critical patent/WO2012040904A1/zh
Priority to US13/845,816 priority patent/US9037144B2/en
Priority to US14/589,344 priority patent/US9560665B2/en
Priority to US15/387,212 priority patent/US9872331B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to the field of wireless communications, and in particular to an activation method for a coexistence working mode for enabling the same user equipment to simultaneously communicate with devices of two or more communication systems using different transmission resources and using the same Base station, user equipment, and communication system.
  • WLAN wireless local area network
  • ISM Industrial, Scientific and Medical, Industrial, Scientific, and Medical
  • the two types of communication may interfere with each other.
  • one of the A3 ⁇ 4 3G (Beyond IMT-2000) systems of the Long Term Evolution (LTE) system of the wireless communication system According to the LTE series of standards [36.101], the LTE system can operate in several frequency bands.
  • these bands are in close proximity to the ISM band, such as the frequency band 40, 2300MHz-2400MHz used to deploy LTE Time Division Duplexing (TDD) systems; for deploying LTE frequency division duplex (FDD, Frequency Division Duplexing)
  • the frequency band 7 of the system is 2500MHz-2570MHz upstream and 2620MHz-2670MHz downstream.
  • some are also in the multiplier of the GPS (Global Positioning System) system, for example, the frequency band 13 for deploying the LTE frequency division duplex system, the uplink 777MHz-787MHz, the downlink 746MHz -756MHz; and frequency band 14 for LTE frequency division duplex system, uplink 788MHz-798MHz, Downstream 758MHz-768MHz.
  • GPS Global Positioning System
  • the LTE system and the ISM system (WLAN system) operating in the adjacent frequency band in the user equipment due to leakage of the adjacent frequency band , Bluetooth systems, etc.) may interfere with each other, and may even cause communication failure due to excessive bit error rate. If the GPS system on the user equipment is activated at the same time, the GPS system may be interfered by the LTE system and cannot work normally.
  • a conventional solution to this problem is to use higher transmissions (e.g., LTE systems) for communication with base stations on the user equipment and/or transmitters (e.g., ISM systems) for communication with other devices on the user equipment.
  • the disadvantage of this approach is that it will significantly increase the cost of the user equipment.
  • Some embodiments of the present disclosure provide a method for establishing a coexistence mode of operation, by which a method can be quickly established such that two or more communication systems coexist in the same user equipment (ie, the user equipment uses different transmissions).
  • a coexistence mode of operation in which resources are simultaneously communicating with devices of two or more communication systems.
  • Some embodiments of the present disclosure also provide base stations, user equipment, and communication systems using such methods.
  • a method for activating a coexistence mode of operation comprising: transmitting, by a user equipment in a first communication system, to a base station in the first communication system for requesting entry into a coexistence operation a mode activation request, in the coexistence mode of operation, the user equipment performs a first communication with the base station using different transmission resources and a device different from the second communication system of the first communication system
  • the communication device activates the coexistence working mode according to the configuration information of the coexistence working mode, where the configuration information of the coexistence working mode is pre-configured by the base station for the user equipment, and is saved in In the user equipment.
  • a user equipment configured in the first communication system and has a device that performs first communication with a base station in the first communication system and a second communication system different from the first communication system by using different transmission resources Performing a coexistence working mode of the second communication, the user equipment includes: a storage device, configured to store configuration information of the coexistence working mode, where the configuration information is that the base station is pre-configured for the user equipment; Inward to the first communication The base station in the system sends an activation request for requesting the it ⁇ coexistence working mode; and the coexistence mode activating device is configured to activate the coexistence working mode according to the configuration information of the coexistence working mode.
  • a method for activating a coexistence mode of operation comprising: receiving, by a base station in a first communication system, a request from a user equipment for requesting entry to cause the user equipment to utilize a different transmission
  • the resource respectively performs a first communication with the base station and performs an activation request of a second communication coexistence working mode with a device different from the second communication system of the first communication system, in the coexistence working mode, the base station utilizes
  • the transmission resource different from the transmission resource used by the second communication is in communication with the user equipment, where the base station pre-configures configuration information of the coexistence working mode for the user equipment.
  • a base station configured in the first communication system, and may include: receiving means, configured to receive, from the user equipment, the request for entering, causing the user equipment to perform the first communication with the base station at the same time and different from the first communication system
  • the device of the second communication system performs an activation request of the coexistence working mode of the second communication, in the coexistence working mode, the base station utilizes a transmission resource different from the transmission resource used by the second communication, and the user equipment Communicating; and pre-configuring means for pre-configuring the configuration information of the coexistence working mode for the user equipment
  • a communication system including the above-described base station and user equipment is provided.
  • embodiments of the present disclosure also provide a computer program for implementing the above method.
  • embodiments of the present disclosure also provide a computer program product in the form of at least a computer readable medium having recorded thereon computer program code for implementing the above method.
  • FIG. 1A is a diagram showing a first communication between a user equipment and a base station in a time division multiplexing manner Schematic diagram of a second communication with a user device and other devices;
  • FIG. 1B is a schematic diagram showing a first communication of a user equipment and a base station and a second communication of a user equipment with other equipment in a frequency division multiplexing manner;
  • 2A is a schematic flow chart showing a method for a user equipment to activate a coexistence working mode according to an embodiment of the present invention
  • 2B is a schematic flow chart showing a method for a user equipment to activate a coexistence working mode according to another embodiment
  • FIG. 3A is a schematic flow chart showing a method for activating a coexistence mode of operation of a base station corresponding to the method of FIG. 2A;
  • FIG. 3B is a schematic flow chart showing a method for activating a coexistence working mode of a base station corresponding to the method of FIG. 2B;
  • FIG. 4 is a schematic diagram showing an example of a method in which a base station pre-configures configuration information of a coexistence working mode for a user equipment;
  • FIG. 5 is a schematic diagram showing another example of a method in which a base station pre-configures configuration information of a coexistence working mode for a user equipment;
  • FIG. 6 is a schematic diagram showing a method of establishing a coexistence working mode according to an example of the present disclosure
  • FIG. 7 is a schematic diagram showing a method of establishing a coexistence working mode according to another example of the opening.
  • FIG. 8 is a schematic block diagram showing a user equipment capable of establishing a coexistence mode of operation according to an embodiment of the present invention
  • FIG. 9 is a schematic block diagram showing a user equipment capable of establishing a coexistence mode of operation according to another embodiment of the present invention.
  • Figure 10 is a schematic block diagram showing a base station capable of establishing a coexistence mode of operation, according to an embodiment of the present invention
  • Figure 11 is a schematic block diagram showing a base station capable of establishing a coexistence mode of operation according to another embodiment of the invention.
  • FIG. 12 is an exemplary block diagram showing the structure of a computer for implementing the apparatus and method of the present disclosure. detailed description
  • the user equipment of the wireless communication system two kinds of communication may be simultaneously performed, one is communication between the user equipment and the base station (for convenience of description, this communication is hereinafter referred to as first communication, and the The communication system is called the primary communication system or the first communication system, and the other is the user equipment and the equipment in one or more other communication systems (for example, the access point (AP) of the WLAN system, the Bluetooth system Communication between devices or devices of the GPS system, etc. (for convenience of description, such communication is hereinafter referred to as second communication, and the communication system involved is referred to as an interference system or a second communication system).
  • first communication the communication between the user equipment and the base station
  • the base station for convenience of description, this communication is hereinafter referred to as first communication
  • the The communication system is called the primary communication system or the first communication system
  • the other is the user equipment and the equipment in one or more other communication systems (for example, the access point (AP) of the WLAN system, the Bluetooth system Communication between devices or devices of the GPS system, etc.
  • the frequency bands in which the system and the second communication system operate may be adjacent to each other or close to or in a multiplied relationship (such as an LTE communication system and an ISM system, an LTE system, a GPS system, etc.). In such a case, there is a leakage due to the adjacent channel. / or harmonic interference causes the two communication systems to interfere with each other.
  • FIG. 1A is a schematic diagram showing a situation in which a first communication and a second communication are performed in a time division multiplexing manner.
  • the first communication system and the second communication system work in a time-sharing manner.
  • the second communication with the device of the second communication system is prohibited during the period in which the user equipment performs the first communication with the device of the first communication system; and vice versa.
  • FIG. 1B is a schematic diagram showing a case where the first communication and the second communication are performed in a frequency division multiplexing manner.
  • the working frequency bands of the two communications can be made as far as possible and/or the working frequency bands of the two communications do not have a frequency multiplication relationship to reduce interference between each other.
  • using these methods allows more than two communication systems to coexist in the same user equipment. In the present disclosure, this is such that two or more communication systems coexist on the same user equipment, ie, the user equipment utilizes different time or frequency resources to perform first communication with the base station and with the equipment in the interference system, respectively.
  • the working mode of the second communication is called the coexistence working mode.
  • multiple coexistence modes of operation can be set to apply to these different types.
  • one or more coexistence modes based on time division multiplexing can be set up based on time division multiplexing.
  • the patterns used can have different Time resource allocation plan.
  • one or more coexistence mode of operation based on frequency division multiplexing may be set. These frequency division multiplexing based modes may have different frequency resource allocation schemes.
  • Embodiments of the present disclosure provide a method of quickly establishing (activating) the above-described coexistence working mode and a user equipment, a base station, and a system using the same.
  • FIG. 2A shows a schematic flow of a method for a user equipment of a first communication system to establish (activate) a coexistence mode of operation, in accordance with one embodiment.
  • the user equipment has a configuration information of a pre-configured coexistence working mode of the base station, and requests to activate the coexistence working mode when it is required to enter a coexistence working mode (eg, an interfering system is detected) .
  • a coexistence working mode eg, an interfering system is detected
  • the method can include steps 205 and 215.
  • step 205 when the user equipment needs a coexistence working mode (for example, after detecting a second communication system operating in a frequency band adjacent to an operating frequency band of the first communication system), the first communication is performed.
  • the base station of the system sends an activation request to request a coexistence mode of operation.
  • the base station may pre-configure a coexistence working mode and configuration information for the user equipment, in which case the coexistence working mode is a default coexistence working mode of the user equipment.
  • the base station may pre-configure two or more coexistence working modes and configuration information of each coexistence working mode for the user equipment, in which case one of the two may be set as the default coexistence working mode. .
  • the user equipment may select one of a plurality of coexisting modes of operation for which the base station is pre-configured.
  • the user equipment may also encapsulate the information indicating the selected mode (e.g., the plurality of pre-configured operating modes may be numbered such that the information may include the sequence number of the selected mode) in the activation request for transmission to the base station.
  • the information may not be included in the activation request, in which case, by default, the user device is requested to enter a pre-configured default coexistence mode of operation.
  • step 215 the user equipment activates the coexistence working mode according to the saved configuration information that the base station pre-configures.
  • the coexistence working mode to be activated may be a default coexistence working mode, and may also be a coexistence working mode selected by the user equipment (the base station has been notified by an activation request).
  • the user equipment may confirm whether the base station has successfully received the activation request based on information returned from the base station side. For example, if it is confirmed that the base station has successfully received the activation request (eg, received feedback from the base station side for representation) After the base station has successfully activated the requested acknowledgment signal (ie, the ACK signal), step 215 is performed. If the NACK signal returned from the base station side is received, it indicates that the activation request transmission fails, and if the maximum number of retransmissions is not reached, the user equipment may resend the activation request.
  • FIG. 3A shows a schematic flow chart of a method for establishing a coexistence working mode by a base station corresponding to the method shown in FIG. 2A.
  • the method can include steps 305 and 301.
  • Step 301 is a step in which the base station pre-configures the coexistence working mode and configuration information for the user equipment.
  • the step may occur in a process in which the base station establishes an RRC (Radio Resource Control) connection with the user equipment.
  • the step may occur in a process in which the base station and the user equipment perform RRC connection reconfiguration. in. Figures 4 and 5 show these two examples, respectively.
  • an RRC connection request is sent to the base station (E-UTRAN) 420 (as shown in step 401-1).
  • the base station encapsulates the configuration information of the coexistence working mode in the RRC connection setup message, and sends the configuration information to the user equipment (step 401-2).
  • the user equipment feeds back the RRC Connection Complete message to the base station (step 401-3), thereby confirming the reception of the configuration information.
  • the base station 520 detects that a network having an interference frequency band (such as ISM) is activated, thereby determining that the user equipment may need a coexistence working mode, the base station 520
  • the configuration information of the coexistence working mode is encapsulated in the RRC connection reconfiguration message and sent to the user equipment (step 501-4).
  • the user equipment may feed back an RRC Connection Reconfiguration Complete message to the base station (step 501-5), thereby confirming receipt of the configuration information.
  • Step 305 corresponds to step 205 described with reference to FIG. 2A.
  • the base station receives an activation request from the user equipment. After receiving the activation request, the base station can learn that the user equipment will activate the coexistence working mode, so that the resources required for communication with the user equipment can be configured accordingly.
  • the activation request may be included to indicate that the user equipment selects The information of the coexistence working mode, in this case, the base station knows that the user equipment will activate its selected mode, and can perform corresponding configuration according to the saved configuration information.
  • Such activation information may also not include such information, in which case the base station may determine that the user equipment will activate the pre-configured default mode of operation.
  • the base station After the base station successfully receives the activation request, it returns from the base station side to the user equipment whether the acknowledgment signal of the activation request has been correctly received, for example, if the activation request is successfully received, the ACK signal is returned; , returns the NACK signal.
  • 2B shows a schematic flow of a method for a user equipment of a first communication system to establish (activate) a coexistence mode of operation, in accordance with another embodiment.
  • the method can include steps 205, 209, and 215.
  • Step 205 similar to step 205, when the user equipment needs to enter the coexistence working mode (for example, after detecting the second communication system operating in a frequency band adjacent to the working frequency band of the first communication system),
  • the base station of the communication system sends an activation request to request a coexistence mode of operation.
  • the activation request may include information indicating a coexistence working mode selected by the user equipment, or may not include such information.
  • the user equipment receives an activation response from the base station.
  • the user equipment activates the coexistence working mode according to the saved configuration information that the base station preconfigures.
  • the coexistence mode of operation to be activated may be the default coexistence mode of operation.
  • the coexistence mode of operation to be activated may be a coexistence mode of operation selected by the user device (the base station has been notified by an activation request).
  • the activation response may include information indicating whether the base station allows the user equipment to coexist with the working mode.
  • the user equipment may determine, according to the activation response, whether the coexistence working mode can be activated, and if so, Then, the processing of step 215 is performed, otherwise, the coexistence working mode is not activated.
  • the activation response may include information indicating a coexistence mode of operation designated by the base station for the user equipment. In this case, the user equipment activates the coexistence mode of operation specified by the base station in accordance with the saved corresponding configuration information in step 215.
  • FIG. 3B shows a schematic flow chart of a method for establishing a coexistence working mode by a base station corresponding to the method shown in FIG. 2B.
  • the method can include steps 305, 309, and 301.
  • Step 301 The step of pre-configuring the coexistence working mode and the configuration information for the user equipment is similar to step 301, and is not repeated here.
  • Steps 305, and 309 corresponding to steps 205, and 209, respectively, described with reference to FIG. 2B.
  • the base station receives an activation request from the user equipment.
  • the activation request may include information indicating the mode selected by the user equipment, and may not include such information.
  • the base station feeds back an activation response to the user equipment.
  • the base station may determine whether to allow the system according to the current operating condition (such as the current resource usage status (such as the current resource usage status) and the user equipment status (such as the current service of the user equipment).
  • the user equipment enters a coexistence mode of operation, and if so, encapsulates information in the activation response indicating whether the user equipment is allowed to enter a coexistence mode of operation.
  • the base station may specify a coexistence mode of operation for the user equipment, and transmit information (e.g., encapsulated in the activation response) for indicating a coexistence mode of operation specified for the user equipment to the user equipment.
  • FIG. 6 shows a specific example in which the user equipment 610 and the base station 620 establish a coexistence mode of operation.
  • an activation request may be sent to the base station (step 605).
  • the base station 620 feeds back an ACK signal from the base station side to the user equipment 610.
  • the user equipment may further select one of the coexistence working modes before sending the activation request (step 604). ).
  • the user equipment can also encapsulate information indicating the selected mode, such as the sequence number of the mode, in the activation request.
  • the user equipment can select a coexistence working mode adapted to the interfering system according to information such as the type of the interference system, thereby optimizing communication in the coexistence working mode.
  • the information of the coexistence mode selected by the user equipment 610 may not be included in the activation request.
  • the user equipment 610 After receiving the ACK signal, the user equipment 610 can directly default to the total The working mode or the coexisting working mode selected in step 604 is stored. If the NACK signal is received, it can be determined that the activation request fails to be sent. If the maximum number of retransmissions has not been reached, the user equipment 610 resends the activation request.
  • the base station only needs to feed back an acknowledgment signal after receiving the activation request.
  • the user equipment After receiving the ACK signal from the base station, the user equipment directly activates the coexistence working mode. This approach greatly reduces the interaction between the base station and the user equipment, thus further reducing the time required to establish a coexistence mode of operation.
  • the activation request may include at least one bit.
  • the activation request may include only one bit, and when the bit is "1" or "0", it may indicate that the user equipment requests to enter the coexistence mode.
  • This bit can be encoded or modulated to be converted into multi-bit information or complex symbols.
  • user equipment 610 can send an activation request through the physical layer.
  • a new PUCCH (Physical Uplink Control Channel) method may be used to transmit the activation request based on the LTE standard.
  • This new method may be called PUCCH format 3.
  • the first communication system may allocate a region (PUCCH region) to PUCCH format 3 in advance.
  • the user equipment 610 After the user equipment 610 detects the interference system (ie, needs to enter the coexistence working mode), regardless of the first PUCCH allocated to the user equipment 610, what information is transmitted, the information is discarded and the information is discarded.
  • the PUCCH transmits the activation request (eg, the activation request may include 1 bit).
  • the user equipment 610 may transmit the activation request through a MAC (Media Access Control) layer.
  • a MAC control element CoEX MAC CE
  • CoEX MAC CE can be defined based on the LTE standard.
  • a new LCID value may be defined for the CoEX MAC CE, for example the LCID value may be "01011".
  • the following MAC subheader may be included in the MAC packet data unit (MAC PDU):
  • R is reserved for bits, which can be set to '0
  • E is an extended domain.
  • the extended field is an identifier that indicates whether there are other domains in the MAC frame header.
  • E is set to '1', it means there is at least one other R/R/E/LCID field.
  • E is set to '0', indicating that there is a MAC Service Data Unit (MAC SDU), a MAC Control element or a padding starts in the next byte.
  • MAC SDU MAC Service Data Unit
  • LCID 01011 indicates that the corresponding MAC Control Element (MAC CE) is CoEX MAC CE.
  • the length of the CoEX MAC CE corresponding to the MAC subframe header shown above is 0 bytes.
  • the coexistence mode of operation can be activated more quickly using MAC layer signaling than the method of activating the coexistence mode of operation through RRC layer signaling.
  • the MAC layer signaling also has a corresponding HARQ (Hybrid Automatic Retransmission Request) process, the reliability of the activation signaling of the coexistence mode can be well guaranteed.
  • HARQ Hybrid Automatic Retransmission Request
  • the configuration information of each coexistence working mode pre-configured by the base station 620 for the user equipment 610 may include information indicating a starting delay of the coexistence working mode.
  • the user equipment 610 can determine the start time of the coexistence mode of operation based on the time of receipt of the ACK signal and the initial delay (step 612).
  • the base station 620 can determine the time at which the user equipment initiates the coexistence mode of operation based on the time at which the ACK signal was transmitted and the initial delay (step 618).
  • the initial delay By setting the initial delay, the user equipment and the base station can accurately determine the time to enter the coexistence working mode. Setting the initial delay to the pre-configured configuration information can reduce the information interaction during the establishment of the coexistence working mode, thereby further accelerating the establishment of the coexistence working mode.
  • the configuration information of the coexistence working mode pre-configured by the base station 620 for the user equipment 610 may further include information indicating a transition time band of each coexistence mode.
  • the transition time zone of the coexistence mode of operation refers to the time period in which the previous mode of operation is maintained after the coexistence mode of operation is activated and ended.
  • the coexistence working mode is a time division multiplexing based mode
  • HARQ information may still need to be retransmitted.
  • the configuration information of the coexistence working mode pre-configured by the base station 620 for the user equipment 610 may include information indicating whether a transition time band is required, a length of the transition time band, and the like. In this case, the user equipment 610 can determine, based on the configuration information, whether a transition time band is required after activating the coexistence mode of operation (step 613).
  • the base station 620 can also determine, based on the configuration information, whether a transition time band is required after the user equipment activates the coexistence mode of operation (step 619).
  • the user equipment may further determine whether a transition time band is needed according to the configuration information of the coexistence working mode before ending the coexistence working mode.
  • the length of the transition time band can be determined according to the actual application scenario, which is not limited herein.
  • FIG. 7 shows another specific example in which the user equipment 610 and the base station 620 establish a coexistence mode of operation.
  • an activation request may be sent to the base station 620 (step 705). Similar to the example shown in FIG. 6, if the configuration information pre-configured by the base station for the user equipment involves two or more coexistence working modes, the user equipment 610 can select among the coexistence working modes before transmitting the activation request. One (step 704), and information indicating the selected mode can be encapsulated in an activation request. As another specific example, the information of the coexistence mode selected by the user equipment 710 may not be included in the activation request.
  • the base station 620 After receiving the activation request, the base station 620 determines whether the user equipment 610 is allowed to enter the coexistence working mode according to the system information (step 706), and then feeds back an activation response signal (step 709).
  • the activation response signal includes information indicating whether the user device 610 is allowed to enter a coexistence mode of operation.
  • the base station 620 can choose to adopt a default coexistence mode of operation or a coexistence mode of operation selected by the user equipment.
  • the base station 620 can re-select a coexistence mode of operation for the user equipment in the pre-configured coexistence mode of operation based on the system information and notify the user device 610 of the activation response.
  • an acknowledgment signal (such as an ACK signal) indicating that the user equipment has successfully received the activation response is returned from the user equipment side to the base station.
  • the user equipment 610 determines whether it is allowed to enter the coexistence working mode according to the activation response (step 711). If so, the step of activating the coexistence mode of operation can be performed (as shown in step 715), otherwise, the activation request is terminated.
  • the base station 620 determines whether to allow the user equipment 610 according to the current cell situation (such as the current resource usage status) and the user equipment situation (such as the current service of the user equipment). Entering the coexistence mode of operation, the user equipment 610 can determine whether to be allowed to enter the coexistence mode of operation based on the activation response. In the method of FIG. 7, the base station can judge whether to run the ⁇ coexistence working mode according to the actual running condition of the system, and therefore, the method can ensure the normal operation of the main communication system.
  • the base station 620 may re-select the optimal coexistence working mode according to the type of the interference system and the actual operation of the main communication system, compared with the method in which the user equipment itself selects the coexistence mode.
  • the coexistence mode of work chosen in this way is undoubtedly more suitable for the overall needs of the system.
  • user equipment 610 may utilize the RRC layer to transmit the activation request.
  • an RRC command can be added based on the LTE standard, and is represented by RRC-CoEX-Activition-Request.
  • the command can be in the following format:
  • model, mode2, mode3, ..., mode N respectively represent N kinds of coexistence working modes (N ⁇ 1) pre-configured by the base station for the user equipment.
  • Mode: (model, mode2, mode3, ..., modeN) indicates the serial number of the coexistence mode of operation selected by the user equipment.
  • the base station can feed back the activation response at the RRC layer.
  • An RRC command can be added based on the LTE standard. The command can be used.
  • RRC-CoEX-Activition-Response means that it can have the following format: State: (accept, reject)
  • Mode: (model, mode2, mode3, ..., modeN) indicates the coexistence working mode selected by the base station for the user equipment.
  • the configuration information of the coexistence working mode pre-configured by the base station 620 for the user equipment 610 may also include a start time for indicating the coexistence working mode. Deferred information.
  • the user equipment 610 can determine the start time of the coexistence mode of operation based on the time at which the activation response was successfully received (e.g., the time at which the acknowledgment signal indicating that the user equipment successfully received the activation response is transmitted) and the initial delay.
  • the base station 620 can determine the time when the user equipment starts the coexistence working mode according to the time when the acknowledgment signal for indicating that the user equipment successfully receives the activation response and the initial delay are received (step 718), thereby setting with the user. Keep in sync.
  • the user equipment 610 may determine, based on the configuration information, whether a transition time band is required after the coexistence mode of operation is activated (step 713).
  • the base station 620 can also determine, according to the configuration information, whether a transition time band is needed after the user equipment activates the coexistence working mode.
  • the user equipment may further determine, according to the configuration information of the coexistence working mode, whether a transition time band is needed before ending the coexistence working mode.
  • Figure 8 shows a schematic block diagram of a user device configured in a first communication system in accordance with one embodiment.
  • the device 810 can include a receiving device 812, a coexistence mode activation device 814, a transmitting device 816, and a storage device 818.
  • the storage device 818 is configured to store configuration information of a coexistence working mode pre-configured by the base station for the user equipment. Similar to the above embodiment/example, the storage device 818 may include one or more coexistence working modes preconfigured by the base station for the user equipment and configuration information thereof.
  • the transmitting device 816 is configured to send an activation request for requesting entry into the coexistence mode of operation to the base station when the user equipment needs to enter a coexistence mode of operation (eg, detecting an interfering system). Similar to the above embodiment/example, the transmitting device may transmit the activation request using the MAC layer or RRC layer signaling, which is not repeated here.
  • the receiving device 812 can receive an acknowledgment signal (as described above, an ACK signal or a NACK signal) returned by the base station side to indicate whether the base station has successfully received the activation request.
  • an acknowledgment signal as described above, an ACK signal or a NACK signal
  • the coexistence mode activation means 814 activates the coexistence mode of operation based on the configuration information stored in the storage means 818.
  • the NACK signal is received, it indicates that the activation request transmission has failed, and the coexistence mode activation means 814 does not activate the coexistence mode of operation.
  • the receiving device 812 can also receive an activation response message (such as the activation response described with reference to FIGS. 3A and 7) fed back from the base station, and the coexistence mode activation device 814 receives the response at the receiving device 812.
  • the activation response activates the coexistence mode of operation based on pre-configured information.
  • the activation response may include information indicating whether the user equipment is allowed to enter a coexistence working mode, and the coexistence mode activation device 814 may determine, according to the response message, whether the user equipment is allowed to activate coexistence. Working mode, no longer repeated here.
  • the activation response may further include information indicating a coexistence mode of operation specified by the base station, in which case the coexistence mode activation device 814 may further parse the activation response to obtain a coexistence operation specified by the base station. Mode, and activate the specified coexistence mode of operation.
  • the user equipment 810 is capable of coexisting the working mode quickly. Since the configuration information of the coexistence working mode is pre-configured, the time for activating the coexistence working mode can be greatly shortened, thereby improving the user experience.
  • device 9 shows a schematic block diagram of a user device configured in a first communication system according to another embodiment. Similar to device 810 shown in FIG. 8, device 910 also includes receiving device 912, coexistence mode activation device 914, transmitting device 916, and storage device 918. The difference is that the device 910 also includes a coexistence mode selection device 920.
  • the receiving device 912, the coexistence mode activating device 914, the transmitting device 916, and the storage device 918 have similar functions to the corresponding devices shown in FIG. 8, and are not repeated here.
  • the coexistence mode selecting means 920 is configured to select one of a plurality of coexisting working modes pre-configured by the base station for the user equipment based on the configuration information stored in the storage device 918 according to the type and configuration of the interference system. Information for indicating the selected coexistence mode of operation may be transmitted by the transmitting device 916 to the base station. As an example, the coexistence mode selection device 920 can encapsulate information indicating the selected coexistence mode of operation in an activation request.
  • the configuration information of the coexistence working mode pre-configured by the base station for the user equipment 810 or 910 may include information indicating a start delay of the coexistence working mode, in which case Similar to the method example/embodiment described above, the coexistence mode activation device 814 or 914 can be received according to the receiving device 812.
  • the time when the user equipment has successfully received the confirmation signal of the activation response and the initial delay to determine the start time of the coexistence working mode is not repeated here.
  • the configuration information of the coexistence working mode pre-configured by the base station for the user equipment 810 or 910 can also be used to indicate whether the transition time band information is needed after activating and ending each coexistence working mode. And information such as the length of the transition time band, in which case the coexistence mode activation means 814 or 914 can determine whether a transition time band is required after activating or ending the coexistence mode of operation based on the configuration information of the coexistence mode of operation.
  • FIG. 10 shows a schematic block diagram of a base station configured in a first communication system, in accordance with one embodiment.
  • the base station 1020 may include a receiving device 1022, a transmitting device 1024, and a transmitting device 1026.
  • the receiving device 1022 can receive an activation request from the user equipment. Similar to the above embodiment/example, the receiving device 1022 can use the MAC layer or the RRC layer to receive the activation request, which is not repeated here.
  • the sending device 1024 may feed back, to the user equipment, an acknowledgment signal (such as ACK or NACK) for indicating whether the base station has successfully received the activation request when the receiving device 1022 receives the activation request. signal).
  • the transmitting device 1024 may also feed back a response signal to the activation response, also referred to as an activation response, to the user equipment when the receiving device 1022 receives the activation request.
  • the activation response may include information about whether the user equipment is allowed to activate the coexistence mode of operation (eg, with reference to the activation response shown in FIG. 7); as another example, the activation response may include indicating that the base station specifies for the user equipment Information on the coexistence of working patterns.
  • the transmitting device 1024 can transmit this active response using the Radio Resource Control Layer (RRC), which is not repeated here.
  • RRC Radio Resource Control Layer
  • the pre-configuration device 1026 is configured to pre-configure configuration information of the coexistence working mode for the user equipment.
  • the pre-configuration device 1026 may adopt the method illustrated in FIG. 4 or FIG. 5 to pre-configure configuration information of the coexistence working mode for the user equipment.
  • the provisioning device 1026 can pre-configure one or more coexistence modes of operation and configuration information for the user equipment. [100] Using the base station shown in FIG. 10, the user equipment can be quickly entered into the coexistence working mode. Since the configuration information of the coexistence working mode is pre-configured, the time for activating the coexistence working mode can be greatly shortened, thereby improving the user experience.
  • Figure 11 shows a schematic block diagram of a base station configured in a first communication system in accordance with another embodiment. Similar to the base station 1020 shown in FIG. 10, the base station 1120 also includes a receiving device 1122, a transmitting device 1124, and a pre-configured device 1126; the difference is that the base station 1120 further includes a mode control device 1128.
  • the receiving device 1122, the transmitting device 1124, and the transmitting device 1126 have similar functions to the corresponding devices described with reference to FIG. 10, and are not repeated here.
  • the mode control device 1128 is configured to determine, according to the system information, whether the user equipment is allowed to activate the coexistence working mode after the receiving device 1122 receives the activation request. Information about whether the user equipment is allowed to activate the coexistence mode of operation is fed back to the user equipment by the transmitting device 1126. As an example, mode control device 1128 may also reselect a coexistence mode of operation that allows user equipment to enter based on system information. Information indicating the selected coexistence mode of operation (e.g., encapsulated in the activation response) is fed back to the user equipment by the transmitting device 1126.
  • the configuration information of the coexistence working mode pre-configured by the pre-configuration device 1126 for the user equipment may include information indicating a start delay of the coexistence working mode, in which case The mode control means according to the time when the transmitting means 1126 transmits an acknowledgment signal for indicating that the base station has correctly received the activation request or the time when the receiving means 1122 receives the acknowledgment signal for indicating that the user equipment has successfully received the activation response The initial delay is used to determine the start time of the coexistence mode of operation, which is not repeated here.
  • the configuration information of the pre-configured device 1126 pre-configured coexistence mode of operation for the user equipment can also be used to indicate whether the transition time band information is needed after activating and ending each coexistence mode of operation. And information such as the length of the transition time band, in which case the mode control means can determine whether the user equipment needs a transition time band after activating or receiving the coexistence mode of operation based on the configuration information of the coexistence mode of operation.
  • configuration information for a coexisting mode of operation pre-configured by a base station e.g., pre-configured device 1126 for a user equipment are given below.
  • the configuration information pre-configured by the base station for the user equipment may include one or more of the following:
  • the second item and the third item are mutually exclusive, that is, if the base station configures the second item of information, the third item of information is not configured, and vice versa.
  • the starting delay of the coexistence mode of operation can be represented by the number of subframes. Taking the LTE system as the main communication system as an example, the length of one subframe is lms.
  • the user equipment can receive from the user equipment from the base station side to indicate that the base station has successfully received
  • the time at which the acknowledgment signal (such as the ACK signal) of the request is activated begins to calculate the delay, and the base station can calculate the delay from the time when the acknowledgment signal is sent.
  • the delay is a subframe (a ⁇ l) and the user equipment is The nth subframe (n>l) receives the ACK signal
  • the n+a+1th subframe is the first subframe in which the coexistence mode of operation is implemented, that is, the coexistence mode of operation starts at the n+a+1th subframe.
  • the user equipment may send a time delay from the user equipment to the base station to indicate an acknowledgment signal (such as an ACK signal) indicating that the user equipment has successfully received the activation response signal, The base station can calculate the delay from the time when the acknowledgment signal is received.
  • the n+a+1th subframe is Coexistence A first sub-frame mode, i.e., a coexistence operation mode at the start of the frame n + a + l th.
  • the initial delay of the coexistence mode can be represented by a sequence number.
  • multiple delay values i.e., the number of delayed subframes
  • these delay values are numbered in a certain order. In this way, in the configuration information or the actual transmission, it is only necessary to transmit the sequence number of the corresponding delay value.
  • a time period may be specified, each cycle having a first communication system (eg, LTE) working time and a second Communication system (such as ISM) working time (in one cycle, the working time of the first communication system may be discontinuous, and the working time of the second communication system may also be discontinuous).
  • first communication system eg, LTE
  • second Communication system such as ISM
  • the start delay of the coexistence mode of operation can be represented by 1 bit.
  • the starting delay of the coexistence mode of operation is Special 0 means that the coexistence mode can be started immediately; if the start delay of the coexistence mode is bit 1, it means to wait for the start of a new complete coexistence mode to start the coexistence mode.
  • the start delay of the coexistence mode is bit 0, the coexistence mode starts after the user equipment receives the ACK signal from the base station; if the start delay of the coexistence mode is Bit 1 , then the coexistence mode begins at the beginning of the first complete time period after the user equipment receives the ACK signal from the base station.
  • the configuration information of the mode may include one or more of the following:
  • the time period of the coexistence mode of operation (including the working time of the first communication and the working time of the second communication).
  • Uplink PUCCH transmission mode of the first communication system such as LTE
  • the configuration signal of each coexistence working mode may include: i. The serial number of the coexistence mode of operation.
  • the coexistence working mode sequence number is a sequence number of the coexistence working mode of the current configuration temporarily agreed by the base station and the user equipment in multiple possible coexistence modes.
  • the initial delay in the second example can take the form of the initial delay in the first example, and will not be repeated here.
  • Information indicating whether the coexistence mode of operation is based on time division multiplexing or frequency division multiplexing can be represented by 1 bit. For example, bit 0 indicates that time division multiplexing is used, and bit 1 uses frequency division multiplexing.
  • the configuration information may include information about the time period of the mode.
  • the LTE system is the first communication system
  • the ISM system is the second communication system.
  • One frame contains 10 subframes.
  • the information about the time period may include the length of the time period.
  • the length of the time period may be the number of subframes included in one time period or the number of frames included. If the length of the time period is an integer multiple of the frame, that is, an integer multiple of 10 subframes, it can be agreed that each time period defaults from the first subframe of one frame. As another example, a time period may not be calculated from the first subframe of the frame. Regardless of which subframe, the number of subframes corresponding to the length of the time period constitutes a time period.
  • the information of the time period based on the time division coexistence mode may further include the length of the period and the starting offset of the period.
  • the length of the period is the number of subframes included in one cycle or the number of frames included. If the length of the period is an integer multiple of the frame, that is, an integer multiple of 10 subframes, the starting offset of the period can be agreed, that is, each period starts from the first subframe of one frame.
  • the cycle length and cycle start offset of the coexistence mode can be represented by a specific number of subframes or a number of frames. Alternatively, several available conditions may be agreed in advance, and the cases may be numbered in a certain order, that is, the cycle length of the coexistence mode and the cycle start offset may be represented by a sequence number. [126] Proportion of working hours of two communication systems over a period of time
  • the ratio of the operating time of the first communication system to the operating time of the second communication system over a period of time can be represented by a specific ratio. This ratio can also be represented by the number of two sub-frames (i.e., the number of sub-frames used for the operating time of the two communication systems in each cycle).
  • the ratio of the working time of the first communication system to the working time of the second communication system may also be embodied as a sub-time for the working time of the first communication system in each cycle.
  • the ratio of the working hours of two communication systems can also be represented by a sequence number.
  • Several available scale values can be agreed upon first, and these scale values are numbered in a certain order.
  • the above ratio can be used to indicate the specific working time of the first communication system and the working time of the second communication system.
  • the so-called regular time allocation scheme means that the subframes constituting the working time of the first communication system in one time period are continuous with each other, and the subframes constituting the working time of the second communication system are also continuous with each other, that is, A cycle is regularly divided into 2 parts.
  • the working time of LTE in one cycle can be represented by 1 bit, which can indicate whether LTE should use the first rule working time or the second regular working time in one cycle. For example, when the bit is 0, it means that LTE works first and ISM works in one cycle. When bit is 1, it means that ISM works first and LTE works after one cycle.
  • the working time of LTE in one cycle can also be expressed in which subframes LTE works in one cycle.
  • the information may be represented in the form of a Bitmap. For example, "0110111000" may be used to indicate that the period length is 10 subframes, where the working subframe of LTE includes the first, second, fourth, fifth, and sixth subframes, and the subframe The remaining subframes in the period are ISM Working sub-frame. It is also possible to use a specific subframe number to indicate the working time of LTE in one time period.
  • the working time of LTE in one cycle can be represented by two values.
  • the first value can be a Boolean number, that is, bit 0 or bit 1 indicates whether LTE should use the first rule working time or the second rule working time in one cycle.
  • the second value may be the sequence number of the subframe, which is used to indicate the last subframe of the first rule working time or the first subframe of the second rule working time.
  • the working time of LTE in one cycle can also be represented by the subframe number, and the subframe number is used to Indicates the last subframe of the first rule's working time or the first subframe of the second rule's working time.
  • Information on whether a transition time band is required before and after the start of the coexistence mode of operation can be indicated by one or more bits.
  • bit 0 can indicate that no transition time band is required, that is, after entering the coexistence mode, all uncompleted data transmissions are directly terminated, waiting for the coexistence mode to be re-allocated. Or transmission; and bit 1 can indicate that a transition time band is required.
  • bit 1 can indicate that a transition time band is required.
  • bit 2 bits one bit can be used to indicate whether a transition time band is required before entering the coexistence mode, and another bit is used to indicate whether a transition time band is required after receiving the end coexistence mode command.
  • the LTE is still used as the first communication system. If the length of the transition time band is not agreed in advance by the LTE, the base station can pre-configure the transition time band length of the coexistence mode for the user equipment.
  • the transition time band length can be represented by one subframe number.
  • the length of the transition time band after the start of the coexistence mode may be equal to the length of the transition time band after the end of the coexistence mode.
  • the transition time band length can also be represented by two subframe numbers. That is, the length of the transition time band after the start of the coexistence mode may not be equal to the transition time band length after the end of the coexistence mode, which are respectively indicated by the number of two subframes.
  • the length of the transition time band may also be in the form of a sequence number.
  • the base station may pre-appoint several possible or common transition time band lengths with the user equipment, and number them in a certain order.
  • the first communication system and the second communication system refer to different communication systems coexisting on the user equipment.
  • the first communication system may be, for example, an LTE system, an LTE-A system, or other communication system.
  • the second communication system (or the interference system) may be a Bluetooth system, a WLAN system, or a GPS system configured on the user equipment. List one by one.
  • each step of the foregoing method and each component module and/or unit of the foregoing apparatus may be implemented as a base station (such as an eNodeB) of a first communication system or software, firmware, or a terminal node (such as a user equipment). Hardware or a combination thereof, and as part of a corresponding device of a base station or terminal node.
  • a base station such as an eNodeB
  • firmware such as a user equipment
  • a terminal node such as a user equipment
  • a program constituting the software may be installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1200 shown in FIG. 12), the computer When various programs are installed, various functions and the like can be performed.
  • the central processing unit (CPU) 1201 is based on read-only memory.
  • the program of (RAM) 1203 performs various processes.
  • data required when the CPU 1201 executes various processes and the like is also stored as needed.
  • the CPU 1201, the ROM 1202, and the RAM 1203 are linked to each other via a bus 1204.
  • Input/output interface 1205 is also linked to bus 1204.
  • Input section 1206 including keys
  • Disk including mouse, etc.
  • output portion 1207 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • storage portion 1208 including hard disk, etc.
  • communication portion 1209 including network interface Cards such as LAN cards, modems, etc.
  • the communication section 1209 performs communication processing via a network such as the Internet.
  • Driver 1210 can also be linked to input/output interface 1205 as needed.
  • a removable medium 1211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1210 as needed, so that the calculations read therefrom are installed into the storage portion 1208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1211.
  • such a storage medium is not limited to the removable medium 1211 shown in FIG. 12 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1211 include a magnetic disk (including a floppy disk (registered trademark):), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1202, a hard disk included in the storage portion 1208, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • a program product for storing an instruction code readable by a machine is also proposed.
  • the above-described method according to an embodiment of the present disclosure may be performed when the instruction code is read and executed by a machine.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.

Description

激活共存工作模式的方法及基站、 用户设备和***
技术领域
[01] 本发明涉及无线通信领域, 具体而言, 涉及用于使同一用户设 备采用不同的传输资源同时与两个或更多个通信***的设备进行通 信的共存工作模式的激活方法以及使用这种方法的基站、用户设备和 通信***。
背景技术
[02] 随着无线通信***的迅 it^展, 手机等用户设备(也称为终端 设备)在人们的生活中扮演着越来越重要的角色, 除通信功能以外, 用户设备中的其它功能被越来越多的使用, 例如, 利用用户设备接入 无线局域网 (WLAN, Wireless Local Area Network)等。此外, 为了方 便用户设备和其它设备进行通信链接和数据交换等, 红外、 蓝牙和 USE等接口已经渐渐成为用户设备的标准配置。特别是蓝牙耳机的使 用越来越广泛。 WLAN ***和蓝牙***等都工作在 ISM(Industrial, Scientific and Medical , 即工业、 科学和医学)频段。 例如, 频段 2400MHz-2483.5MHz是国际通用的 ISM 频段之一, 也是最常用的 ISM频段之一。
[03] 在用户设备与对应的基站之间的通信所基于的频段与用户设 备和其它设备间的通信所基于的频段接近、 或倍数频段的情况下, 两 种通信可能彼此干扰。例如,无线通信***长期演进方案 (LTE , Long Term Evolution)*** A¾ 3G(Beyond IMT-2000)***之一。依照 LTE 系列标准 [36.101], LTE***可以工作在若干频段。 在这些 LTE工作 频段中, ^些频段与 ISM频段紧邻,如用于部署 LTE时分双工 (TDD, Time Division Duplexing)***的频段 40, 2300MHz-2400MHz; 用于 部署 LTE频分双工 (FDD, Frequency Division Duplexing)***的频段 7,上行 2500MHz-2570MHz,下行 2620MHz-2670MHz。在这些 LTE 工作频段中, 还有些频段与处于 GPS (全球定位***, Global Positioning System ) ***的倍频处, 例如, 用于部署 LTE频分双工 ***的频段 13, 上行 777MHz-787MHz, 下行 746MHz-756MHz; 以 及用于部署 LTE频分双工***的频段 14, 上行 788MHz-798MHz, 下行 758MHz-768MHz。 如果某个 LTE用户设备工作在上述频段, 同时该用户设备上的 WLAN***或者蓝牙***处于激活状态, 那么 由于邻频段泄露, 该用户设备内工作在相邻频段的 LTE***和 ISM *** (WLAN***、蓝牙***等)可能会彼此干扰, 甚至可能由于误码 率过高而导致通信失败。如果同时该用户设备上的 GPS***被启动, GPS***可能受到 LTE***的谐频干扰, 而无法正常工作。
[04] 解决这个问题的常规办法是在用户设备上与基站的通信的发 射端 (例如 LTE***)和 /或用户设备上与其它设备的通信的发射端 (例 如 ISM***)中都采用更高性能的发射滤波器, 以尽可能降低邻频段 泄露和 /或抑制谐频干扰。 这个办法的缺点是会大幅提高用户设备的 成本。
发明内容
[05] 本公开的一些实施例提供了一种共存工作模式的建立方法, 利 用这种方法,能够快速建立使得两个或更多个通信***共存于同一用 户设备(即用户设备采用不同的传输资源同时与两个或更多个通信系 统的设备进行通信)的共存工作模式。 本公开的一些实施例还提供了 使用这种方法的基站、 用户设备和通信***。
[06] 根据本公开的一个方面, 提供了一种共存工作模式的激活方 法, 该方法包括: 第一通信***中的用户设备向所述第一通信***中 的基站发送用于请求进入共存工作模式的激活请求,在所述共存工作 模式下,所述用户设备利用不同的传输资源分别与所述基站进行第一 通信并与不同于所述第一通信***的第二通信***的设备进行第二 通信;所述用户设备根据所述共存工作模式的配置信息而激活所述共 存工作模式, 其中, 所述共存工作模式的配置信息是所述基站为所述 用户设备预先配置的, 并保存于所述用户设备中。
[07] 根据本公开的另一方面, 提供了一种用户设备。 该用户设备配 置于第一通信***中,并具有利用不同的传输资源分别与所述第一通 信***中的基站进行第一通信并与不同于所述第一通信***的第二 通信***的设备进行第二通信的共存工作模式, 该用户设备包括: 存 储装置, 用于存储所述共存工作模式的配置信息, 所述配置信息是所 述基站为所述用户设备预先配置的; 发送装置, 用于向所述第一通信 ***中的基站发送用于请求 it^共存工作模式的激活请求; 以及共存 模式激活装置,用于根据所述共存工作模式的配置信息而激活所述共 存工作模式。
[08] 根据本公开的另一方面, 提供了一种共存工作模式的激活方 法, 该方法包括: 第一通信***中的基站接收来自用户设备的用于请 求进入使该用户设备利用不同的传输资源分别与所述基站进行第一 通信并与不同于所述第一通信***的第二通信***的设备进行第二 通信共存工作模式的激活请求, 在所述共存工作模式下, 所述基站利 用与所述第二通信采用的传输资源不同的传输资源与所述用户设备 进行通信, 其中, 所述基站为所述用户设备预先配置有所述共存工作 模式的配置信息。
[09] 根据 开的另一方面, 提供了一种基站。 该基站配置于第一 通信***中, 并且可以包括: 接收装置, 用于接收来自用户设备的用 于请求进入使该用户设备同时与该基站进行第一通信并与不同于所 述第一通信***的第二通信***的设备进行第二通信的共存工作模 式的激活请求, 在所述共存工作模式下, 所述基站利用与所述第二通 信使用的传输资源不同的传输资源与所述用户设备进行通信; 以及预 配置装置,用于为所述用户设备预先配置所述共存工作模式的配置信
[10] 根据本公开的另一方面, 提供了包括上述基站和用户设备的通 信***。
[11] 另外, 本公开的实施例还提供了用于实现上述方法的计算机程 序。
[12] 此外, 本公开的实施例还提供了至少计算机可读介质形式的计 算机程序产品, 其上记录有用于实现上述方法的计算机程序代码。
附图说明
[13] 参照下面结合附图对本公开实施例的说明, 会更加容易地理解 开的以上和其它目的、特点和优点。 附图中的部件不是成比例绘 制的, 而只是为了示出 开的原理。 在附图中, 相同的或类似的技 术特征或部件将采用相同或类似的附图标记来表示。
[14] 图 1A是示出以时分复用方式进行用户设备与基站的第一通信 和用户设备与其它设备的第二通信的情形的示意图;
[15] 图 1B是示出以频分复用方式进行用户设备与基站的第一通信 和用户设备与其它设备的第二通信的情形的示意图;
[16] 图 2A是示出根据 开的一个实施例、 用户设备激活共存工 作模式方法的示意性流程图;
[17] 图 2B是示出根据 开的另一实施例、 用户设备激活共存工 作模式方法的示意性流程图;
[18] 图 3A是示出与图 2A的方法对应的、基站激活共存工作模式方 法的示意性流程图;
[19] 图 3B是示出与图 2B的方法对应的、基站激活共存工作模式方 法的示意性流程图;
[20] 图 4是示出基站为用户设备预配置共存工作模式的配置信息的 方法的一个示例的示意图;
[21] 图 5是示出基站为用户设备预配置共存工作模式的配置信息的 方法的另一示例的示意图;
[22] 图 6是示出才艮据本公开的一个示例的建立共存工作模式方法的 示意性图;
[23] 图 7是示出根据 开的另一示例的建立共存工作模式方法的 示意性图;
[24] 图 8是示出根据 开的一个实施例的能够建立共存工作模式 的用户设备的示意性框图;
[25] 图 9是示出根据 开的另一实施例的能够建立共存工作模式 的用户设备的示意性框图;
[26] 图 10是示出根据 开的一个实施例的能够建立共存工作模 式的基站的示意性框图;
[27] 图 11 是示出根据^ ^开的另一实施例的能够建立共存工作模 式的基站的示意性框图; 以及
[28] 图 12是示出用于实现本公开的设备和方法的计算机的结构的 示例性框图。 具体实施方式
[29] 下面参照附图来说明本公开的实施例。 在本公开的一个附图或 一种实施方式中描述的元素和特征可以与一个或更多个其它附图或 实施方式中示出的元素和特征相结合。 应当注意, 为了清楚的目的, 附图和说明中省略了与^开无关的、本领域普通技术人员已知的部 件和处理的表示和描述。
[30] 在无线通信***的用户设备中, 可能同时进行两种通信, 一种 是用户设备与基站间进行的通信 (为方便描述, 下文中将这种通信称 为第一通信, 并将该通信***称为主通信***或第一通信***), 另 一种是用户设备与一个或更多个其他通信***中的设备 (例如 WLAN ***的接入点(Access Point ( AP )、 蓝牙***的设备或 GPS***的 设备等)间进行的通信 (为了方便描述, 下文中将这种通信称为第二通 信, 并将所涉及的通信***称为干扰***或第二通信***)。 第一通 信***和第二通信***所工作的频段可能彼此相邻或者接近或为倍 频关系 (如 LTE通信***与 ISM***、 LTE***与 GPS***等)。 在这样的情况下, 存在由于邻道泄露和 /或谐频干扰而导致两个通信 ***之间彼此干扰的现象。
[31] 本公开的发明人认识到, 可以通过时分复用方式或者频分复用 方式进行第一通信和第二通信, 从而避免这样的干扰。 图 1A是示出 以时分复用方式进行第一通信和第二通信的情形的示意图。 如图 1A 所示, 在时域中, 第一通信***和第二通信***分时工作。 换言之, 在时分复用方式下,在用户设备与第一通信***的设备进行第一通信 的时段,禁止与第二通信***的设备进行第二通信;反之亦然。 图 1B 是示出了以频分复用方式进行第一通信和第二通信的情形的示意图。 如图 1B所示,可以使得两种通信的工作频段尽可能得远和 /或使得两 种通信的工作频段不具有倍频关系,以降低彼此间的干扰。依次类推, 采用这些方式可以使得多于两种的通信***在同一用户设备中共存。 在本公开中,将这种使得两个或更多个通信***在同一用户设备上共 存、即用户设备利用不同的时间或频率资源分别与基站进行第一通信 并与干扰***中的设备进行第二通信的工作模式, 称为共存工作模 式。根据主通信***与干扰***的不同类型, 可以设置多种共存工作 模式, 以适用于这些不同的类型, 例如, 可以设置一种或更多种基于 时分复用的共存工作模式,这些基于时分复用的模式可以具有不同的 时间资源分配方案。 又如, 还可以设置一种或多种基于频分复用的共 存工作模式,这些基于频分复用的模式可以具有不同的频率资源分配 方案。
[32] 本公开的实施例提供了快速建立(激活)上述共存工作模式的 方法以及使用这种方法的用户设备、 基站和***。
[33] 图 2A示出了根据一个实施例的、 第一通信***的用户设备建 立(激活)共存工作模式的方法的示意性流程。
[34] 在图 2A所示的方法中, 用户设备^ "有基站为其预先配置的 共存工作模式的配置信息, 并在需要进入共存工作模式(如检测到干 扰***) 时请求激活共存工作模式。
[35] 如图 2A所示, 该方法可以包括步骤 205和 215。
[36] 具体地, 在步骤 205中, 用户设备在需要 共存工作模式时 (例如在检测到工作于与第一通信***的工作频带相邻的频带的第 二通信***后), 向第一通信***的基站发送激活请求, 以请求 共存工作模式。
[37] 作为一个示例, 基站可以为该用户设备预先配置一种共存工作 模式及其配置信息, 在这种情况下, 该共存工作模式为该用户设备的 默认共存工作模式。作为另一示例, 基站可以为该用户设备预先配置 两种或更多种共存工作模式及每种共存工作模式的配置信息,在这种 情况下, 可以将其中的一种设置为默认共存工作模式。
[38] 作为一个示例, 用户设备可以在基站为其预先配置的多种共存 工作模式中选择一种。 用户设备还可以将用于指示所选模式的信息 (例如可以将所预先配置的多种工作模式编号,这样该信息可以包括 所选模式的序号)封装在该激活请求中发送给基站。 作为另一示例, 激活请求中也可以不包括这样的信息, 在这种情况下, 默认该用户设 备所请求进入的是预先配置的默认共存工作模式。
[39] 在步骤 215中, 用户设备根据所保存的所述基站为其预先配置 的配置信息来激活共存工作模式。要激活的共存工作模式可以是默认 共存工作模式, 还可以是该用户设备所选择的共存工作模式(已通过 激活请求通知到基站)。 作为一个示例, 用户设备可以根据从基站侧 返回的信息来确认基站是否已成功接收到所述激活请求。 例如, 如果 确认基站已成功接收到激活请求(如接收到从基站侧反馈的用于表示 基站已成功激活请求的确认信号(即 ACK信号)), 则执行步骤 215。 如果收到从基站侧返回的 NACK信号, 则表示激活请求传输失败, 在没有达到最大重传次数的情况下, 用户设备可以重新发送激活请 求。
[40] 图 3A示出了与图 2A所示的方法对应的、基站建立共存工作模 式的方法的示意性流程图。
[41] 如图 3所示, 该方法可以包括步骤 305和 301。
[42] 步骤 301是基站为用户设备预先配置共存工作模式及配置信息 的步骤。作为一个示例,该步骤可以发生于基站与用户设备建立 RRC (无线资源控制, Radio Resource Control )连接的过程中; 作为另 一示例, 该步骤可以发生于基站与用户设备进行 RRC连接重配置的 过程中。 图 4和图 5分别示出了这两个示例。
[43] 如图 4 所示, 当用户设备 ( UE ) 410 从 RRCjdle 进入到 RRC— Connected状态时, 向基站 ( E-UTRAN ) 420发送 RRC连接 请求(如步骤 401-1 所示)。 基站将共存工作模式的配置信息封装于 RRC连接建立消息中, 并发送给用户设备(步骤 401-2 )。 用户设备 向基站反馈 RRC连接完成消息(步骤 401-3 ), 从而确认配置信息的 接收。
[44] 如图 5所示, 当用户设备 510处于 RRC— Connected状态时, 如果基站 520检测到有干扰频段(如 ISM )的网络被激活、从而判断 用户设备可能需要共存工作模式,则基站 520将共存工作模式的配置 信息封装于 RRC 连接重配置消息中, 并发送给用户设备(步骤 501-4 )。 用户设备可以向基站反馈 RRC连接重配置完成消息(步骤 501-5 ), 从而确认配置信息的接收。
[45] 应理解, 上述进行共存工作模式预配置的方法仅仅是示例性 的, 不是穷尽性的, 可以采用任何其他适当的时机和方法来预配置这 些信息, 这里不 详述。
[46] 步骤 305与参考图 2A所描述的步骤 205对应。在步骤 305中, 基站接收来自用户设备的激活请求。基站在接收到该激活请求后, 即 可得知用户设备将激活共存工作模式,从而可以对与该用户设备的通 信所需要的资源进行相应的配置。
[47] 如上所述, 所述激活请求中可以包括用于指示用户设备所选的 共存工作模式的信息, 在这种情况下, 基站得知用户设备将激活其所 选的模式, 可以根据所保存的配置信息进行相应的配置。 所述激活请 求中也可以不包括这样的信息, 在这种情况下, 基站可以确定用户设 备将激活预先配置的默认工作模式。
[48] 作为一个示例, 当基站成功接收到激活请求后, 从基站侧向用 户设备返回是否已正确接收激活请求的确认信号, 例如, 如果成功接 收到所述激活请求, 则返回 ACK信号; 否则, 返回 NACK信号。
[49] 图 2B示出了根据另一实施例的、 第一通信***的用户设备建 立(激活)共存工作模式的方法的示意性流程。
[50] 在图 2B所示的方法中, 用户设备在向基站发送了激活请求之 后, 需要等待基站反馈的对所述激活请求的响应信号(也称为激活响 应), 并 4艮据该激活响应来激活共存工作模式。
[51] 如图 2B所示, 该方法可以包括步骤 205,、 209,和 215,。
[52] 步骤 205,与步骤 205相似, 用户设备在需要进入共存工作模式 时(例如在检测到工作于与第一通信***的工作频带相邻的频带的第 二通信***后), 向第一通信***的基站发送激活请求, 以请求 共存工作模式。 与上述实施例相似, 所述激活请求中可以包括用于指 示用户设备所选的共存工作模式的信息, 也可以不包括这样的信息。
[53] 在步骤 209,中,用户设备接收来自基站的激活响应。在步骤 215, 中,用户设备根据所保存的所述基站为其预先配置的配置信息来激活 共存工作模式。作为一个示例, 要激活的共存工作模式可以是默认共 存工作模式。作为另一示例, 要激活的共存工作模式可以是该用户设 备所选择的共存工作模式(已通过激活请求通知到基站)。 作为一个 示例,该激活响应中可以包括用于指示所述基站是否允许该用户设备 共存工作模式的信息, 在这种情况下, 用户设备可以根据激活响 应来判断是否可以激活共存工作模式,若是,则进行步骤 215,的处理, 否则, 则不激活共存工作模式。 作为另一示例, 所述激活响应中可以 包括用于指示基站为用户设备指定的共存工作模式的信息。在这种情 况下,用户设备在步骤 215,中根据所保存的相应配置信息来激活基站 所指定的共存工作模式。
[54] 图 3B示出了与图 2B所示的方法对应的、基站建立共存工作模 式的方法的示意性流程图。 [55] 如图 3所示, 该方法可以包括步骤 305,、 309,和 301,。
[56] 步骤 301, 站为用户设备预先配置共存工作模式及配置信息 的步骤, 与步骤 301相似, 这里不再重复。
[57] 步骤 305,和 309,分别与参考图 2B所描述的步骤 205,和 209,对 应。 在步骤 305,中, 基站接收来自用户设备的激活请求。 如上所述, 该激活请求中可以包括用于指示用户设备所选模式的信息,也可以不 包括这样的信息。 在步骤 309,中, 基站向用户设备反馈激活响应。
[58] 作为一个示例, 基站在收到激活请求后, 可以才艮据***运行状 况(当前小区情况(如当前的资源使用状况)以及用户设备情况(如 用户设备当前业务))来判断是否允许用户设备进入共存工作模式, 若是,则在该激活响应中封装用于指示是否允许该用户设备进入共存 工作模式的信息。作为另一示例, 基站可以为所述用户设备指定共存 工作模式, 将用于指示为用户设备指定的共存工作模式的信息(如封 装于所述激活响应中)发送给用户设备。
[59] 在上述方法中, 由于共存工作模式的配置信息是预先配置在用 户设备中的, 因此, 当用户设备需要 共存工作模式时, 不再需要 对共存工作模式进行配置, 能大大缩短激活共存工作模式所需时间, 使得用户设备能够快速进入共存工作模式, 从而提高用户的体验。
[60] 图 6示出了用户设备 610和基站 620建立共存工作模式的一个 具体示例。
[61] 如图 6所示, 当用户设备 610检测到干扰***(步骤 603 )时, 可以向基站发送激活请求 (步骤 605 )。基站 620正确接收到该激活请 求后, 从基站侧向用户设备 610反馈一个 ACK信号。 可选地, 如果 基站为用户设备预配置的配置信息涉及两种或更多种共存工作模式, 则在发送所述激活请求之前,用户设备还可以在这些共存工作模式中 选择一种(步骤 604 )。用户设备还可以将指示所选模式的信息(如该 模式的序号)封装在激活请求中。 采用这种方法, 在配置有多种共存 工作模式的情况下,用户设备可以根据干扰***的类型等信息选择一 种适应于该干扰***的共存工作模式,从而优化共存工作模式下的通 信。作为另一具体示例, 激活请求中也可以不包括用户设备 610选择 的共存模式的信息。
[62] 当接收到 ACK信号后, 用户设备 610可以直接 默认的共 存工作模式或者在步骤 604中选择的共存工作模式。如果收到 NACK 信号, 则可以判断激活请求发送失败, 在没有达到最大重传次数的情 况下, 用户设备 610重新发送激活请求。
[63] 在上述示例中, 基站在收到激活请求后只需反馈一个确认信 号。 用户设备在收到基站的 ACK信号后即直接激活共存工作模式。 这种方法大大减少了基站和用户设备之间的交互, 因此, 能够进一步 缩短建立共存工作模式所需时间。
[64] 所述激活请求可以包括至少一个比特。 作为一个示例, 激活请 求可以仅包括一个比特, 当该比特为 "1" 或 "0" 时, 可以表示用户 设备请求进入共存模式。 该比特可以被编码或调制, 从而变换成多比 特信息或者复符号。作为一个具体示例, 用户设备 610可以通过物理 层来发送激活请求。以第一通信***为 LTE***为例,可以基于 LTE 标准而采用一种新的 PUCCH(物理层上行控制信道, Physical Uplink Control Channel )方式来传输所述激活请求,这种新的方式可以称为 PUCCH format 3.例如,第一通信***可以事先为 PUCCH format 3 分配一个区域( PUCCH region )。在用户设备 610检测到干扰***(即 需要进入共存工作模式时)之后, 无论出现的第一个分配给该用户设 备 610的 PUCCH是用来传输什么信息的, 均放弃传输该信息, 而采 用该 PUCCH来传输所述激活请求(例如, 该激活请求可以包括 1比 特)。
[65] 作为另一具体示例, 用户设备 610可以通过 MAC (媒体访问 控制, Media Access Control )层来发送所述激活请求。 以 LTE*** 为第一通信***为例, 可以基于 LTE标准而定义一种新的 MAC控 制元素( MAC control element ), CoEX MAC CE。 作为一个具体示 例, 可以为该 CoEX MAC CE定义一个新的 LCID值, 例如该 LCID 值可以是 " 01011"。 当用户设备 610需要发送激活请求时, 可以将如 下的 MAC子帧头( MAC subheader )包括于 MAC包数据单元( MAC PDU ) 中:
Figure imgf000012_0001
其中:
R: 为保留比特, 可以设置为 '0,; E: 为扩展域。 扩展域是一个标识, 用来指示在 MAC 帧头中 是否有其它的域。 E设置为 ' 1,时,表示至少有一个其它的 R/R/E/LCID 域。 E设置为 '0,, 表示有一个 MAC服务数据单元( MAC SDU ), 一个 MAC控制元素或者表示补丁起始 ( padding starts )在下一个字 节。
LCID = 01011 表示相应的 MAC 控制元素(MAC CE )是 CoEX MAC CE。
[67] 上面所示的 MAC子帧头所对应的 CoEX MAC CE的长度为 0 字节。
[68] 当基站 620接收到 LCID=01011的 MAC子帧头时, 即可得知 用户设备请求激活共存工作模式。
[69] 相对于通过 RRC 层信令来激活共存工作模式的方法, 利用 MAC层信令能够更快地激活共存工作模式。 同时, 由于 MAC层信 令也具有相应的 HARQ ( Hybrid Automatic Retransmission Request, 混合自动重传请求)流程, 共存模式的激活信令的可靠性能够得到很 好的保障。
[70] 作为一个示例, 基站 620为用户设备 610预先配置的每种共存 工作模式的配置信息可以包括用于指示该共存工作模式的起始时延 的信息。 在这种情况下, 用户设备 610可以根据收到 ACK信号的时 间和所述起始时延来确定共存工作模式的开始时间(步骤 612 )。基站 620可以根据发送 ACK信号的时间和所述起始时延来确定用户设备 启动共存工作模式的时间(步骤 618 )。通过设置起始时延, 可以使得 用户设备与基站准确确定进入共存工作模式的时间。将起始时延设置 于预先配置的配置信息中,可以减少共存工作模式建立过程中的信息 交互, 从而进一步加快建立共存工作模式的速度。
[71] 作为一个示例, 基站 620为用户设备 610预先配置的共存工作 模式的配置信息还可以包括用于指示每种共存模式的过渡时间带的 信息。共存工作模式的过渡时间带是指在激活和结束该共存工作模式 之后仍保持之前的工作模式的时间段。 例如, 在共存工作模式为基于 时分复用的模式的情况下, 在进入共存工作模式之前, 可能有些依据 普通工作模式(用户设备仅与基站进行第一通信的工作模式)传输的 数据仍在交互 HARQ信息或者尚需重传。 因此, 可能需要在实行共 存工作模式之前设置一段过渡时间带,以允许这部分数据按照普通工 作模式完成传输。 同理, 在用户设备收到基站发送的结束共存工作模 式的命令之后, 可能有些依据共存工作模式传输的数据仍在交互
HARQ信息或者尚需重传,也需要在恢复为普通工作模式之前设置一 段过渡时间带, 允许这部分数据按照共存工作模式完成传输。 因此, 可以为每种共存工作模式设置一适当的过渡时间带。 作为具体示例, 基站 620为用户设备 610预先配置的共存工作模式的配置信息可以包 括用于指示是否需要过渡时间带的信息以及所述过渡时间带的长度 等。 在这种情况下, 用户设备 610可以根据这些配置信息来判断在激 活所述共存工作模式之后是否需要过渡时间带(步骤 613 )。基站 620 也可以根据这些配置信息来判断在用户设备激活所述共存工作模式 之后是否需要过渡时间带(步骤 619 )。可选地, 用户设备还可以在结 束共存工作模式之前根据共存工作模式的配置信息来判断是否需要 过渡时间带。应理解, 过渡时间带的长度可以根据实际应用场景来确 定, 这里不作限定。 通过设置每种共存工作模式的过渡时间带, 可以 确保工作模式转换过程中数据和信令的传输可靠性,从而保证工作模 式的平滑转换。将每种共存工作模式的过渡时间带信息设置于预先配 置的配置信息中, 可以减少共存工作模式激活过程中的信息交互, 从 而进一步加快激活共存工作模式的速度。
[72] 图 7示出了用户设备 610和基站 620建立共存工作模式的另一 具体示例。
[73] 如图 7所示, 当用户设备 610检测到干扰***(步骤 703 )时, 可以向基站 620发送激活请求(步骤 705 )。 与图 6所示的示例相似, 如果基站为用户设备预配置的配置信息涉及两种或更多种共存工作 模式, 则在发送所述激活请求之前, 用户设备 610可以在这些共存工 作模式中选择一种(步骤 704 ),并可以将指示所选模式的信息封装在 激活请求中。作为另一具体示例, 激活请求中也可以不包括用户设备 710选择的共存模式的信息。
[74] 基站 620接收到该激活请求后, 根据***信息来判断是否允许 用户设备 610进入共存工作模式(步骤 706 ),然后反馈一个激活响应 信号 (步骤 709 )。 该激活响应信号包括用于指示是否允许用户设备 610进入共存工作模式的信息。 作为一个示例, 基站 620可以选择采 用默认的共存工作模式或者采用用户设备自己选择的共存工作模式。 作为另一示例,基站 620可以根据***信息在预先配置的共存工作模 式中重新为用户设备选择一个共存工作模式,并通过所述激活响应通 知给用户设备 610。
[75] 在用户设备 610成功收到激活响应后, 从用户设备侧向基站返 回用户指示用户设备已成功接收激活响应的确认信号 (如 ACK 信 号)。
[76] 然后, 用户设备 610根据所述激活响应来判断是否被允许进入 共存工作模式(步骤 711 )。如果是, 则可以进行激活共存工作模式的 步骤(如步骤 715所示), 否则, 则结束本次激活请求。
[77] 在图 7所示的示例中, 基站 620在收到激活请求后根据当前小 区情况(如当前的资源使用状况)以及用户设备情况(如用户设备当 前业务)来判断是否允许用户设备 610进入共存工作模式, 而用户设 备 610可以根据所述激活响应来判断是否被允许进入共存工作模式。 在图 7的方法中,基站可以根据***的实际运行情况来判断是否运行 ^共存工作模式, 因此, 该方法能够确保主通信***的正常运行。 另外, 在一些具体示例中, 基站 620可以根据干扰***的种类, 并结 合主通信***的实际运行情况来重新选择最适宜的共存工作模式,与 单纯由用户设备自身选择共存模式的方法相比,这样选择的共存工作 模式无疑更适应***的总体需求。
[78] 作为一个具体示例, 用户设备 610可以利用 RRC层来发送所 述激活请求。
[79] 以 LTE***为主通信***为例, 可以基于 LTE标准而新增一 个 RRC命令, 用 RRC—CoEX—Activition— Request来表示。 该命令可 以是如下格式的:
RRC—CoEX—Activition— Request:
Mode: (model, mode2, mode3,...,modeN)
[80] 其中, model, mode2, mode3,...,mode N分别表示基站为用户 设备预先配置的 N种共存工作模式(N≥l )。 Mode:(model, mode2, mode3,...,modeN)表示用户设备所选择的共存工作模式的序号。
[81] 仍以 LTE***为主通信***为例, 基站可以在 RRC层反馈所 述激活响应。 可以基于 LTE标准新增一个 RRC命令, 该命令可以用
"RRC—CoEX—Activition— Response"来表示, 其可以具有如下格式: State: (accept, reject)
Mode: (model, mode2, mode3,...,modeN)
[82] 其中, State: (accept, reject)表示允许或拒绝用户设备进入共存 工作模式的信息; Mode:(model, mode2, mode3,...,modeN)表示基站 为用户设备选择的共存工作模式的序号。
[83] 与图 6所示的示例相似, 在图 7所示的示例中, 基站 620为用 户设备 610预先配置的共存工作模式的配置信息也可以包括用于指示 该共存工作模式的起始时延的信息。用户设备 610可以根据成功接收 到激活响应的时间(如发送用于指示用户设备成功接收到激活响应的 确认信号的时间)和所述起始时延来确定共存工作模式的开始时间
(步骤 712 )。基站 620可以才艮据接收到用于指示用户设备成功接收到 激活响应的确认信号的时间和所述起始时延来确定用户设备启动共 存工作模式的时间 (步骤 718 ), 从而与用户设 ^持同步。 可选地, 用户设备 610可以根据配置信息来判断在激活所述共存工作模式之后 是否需要过渡时间带(步骤 713 )。基站 620也可以根据这些配置信息 来判断在用户设备激活所述共存工作模式之后是否需要过渡时间带
(步骤 719 )。可选地,用户设备还可以在结束共存工作模式之前根据 共存工作模式的配置信息来判断是否需要过渡时间带。
[84] 图 8示出了才艮据一个实施例的配置于第一通信***中的用户设 备的示意性框图。 如图 8所示, 设备 810中可以包括接收装置 812、 共存模式激活装置 814、 发送装置 816和存储装置 818。
[85] 存储装置 818用于存储基站为该用户设备预先配置的共存工作 模式的配置信息。 与上述实施例 /示例中相似, 该存储装置 818 可以 包括基站为该用户设备预先配置的一种或更多种共存工作模式及其 配置信息。
[86] 发送装置 816用于在该用户设备需要进入共存工作模式(如检 测到干扰***) 时向基站发送用于请求进入共存工作模式的激活请 求。与上述实施例 /示例中相似,发送装置可以利用 MAC层或者 RRC 层信令来传输该激活请求, 这里不再重复。
[87] 在一个具体实施例中, 接收装置 812可以接 基站侧返回的 用于指示所述基站是否已成功接收所述激活请求的确认信号(如上所 述, 为 ACK信号或 NACK信号)。 在接收装置 812接收到 ACK信 号后,共存模式激活装置 814根据存储装置 818中保存的配置信息来 激活共存工作模式。 当收到 NACK信号时, 则表示激活请求传输失 败, 共存模式激活装置 814不激活共存工作模式。
[88] 在另一具体实施例中, 接收装置 812还可以接收从基站反馈的 激活响应消息(如参考图 3A和图 7所描述的激活响应),共存模式激 活装置 814在接收装置 812接收到该激活响应时根据预先配置的信息 来激活共存工作模式。
[89] 与上述方法示例相似, 该激活响应可以包括用于指示是否允许 所述用户设备进入共存工作模式的信息,共存模式激活装置 814可以 根据该响应消息来判断该用户设备是否被允许激活共存工作模式,这 里不再重复。作为另一示例, 所述激活响应还可以包括用于指示基站 指定的共存工作模式的信息, 在这种情况下, 共存模式激活装置 814 还可以解析所述激活响应, 从而得到基站指定的共存工作模式, 并激 活该指定的共存工作模式。
[90] 采用图 8所示的结构, 用户设备 810能够快速 共存工作模 式。 由于共存工作模式的配置信息是预先配置的, 因此, 可以大大缩 短激活共存工作模式的时间, 从而提高用户的体验。
[91] 图 9示出了才艮据另一实施例的配置于第一通信***中的用户设 备的示意性框图。 与图 8所示的设备 810相似, 设备 910也包括接收 装置 912、共存模式激活装置 914、发送装置 916和存储装置 918。 不 同之处在于, 设备 910还包括共存模式选择装置 920。
[92] 接收装置 912、 共存模式激活装置 914、 发送装置 916和存储 装置 918分别与图 8所示的相应装置具有相似的功能,这里不再重复。
[93] 共存模式选择装置 920用于根据干扰***的类型和配置, 基于 存储装置 918中保存的配置信息,从基站为该用户设备预先配置的多 种共存工作模式中选择一种。用于指示所选择的共存工作模式的信息 可以通过发送装置 916发送给基站。作为一个示例, 共存模式选择装 置 920可以将用于指示所选共存工作模式的信息封装在激活请求中。
[94] 与上述方法实施例 /示例相似,基站为用户设备 810或 910预先 配置的共存工作模式的配置信息可以包括用于指示共存工作模式的 起始时延的信息, 在这种情况下, 与上文所描述的方法示例 /实施例 相似,共存模式激活装置 814或 914可以根据接收装置 812接收到用 于指示所述基站已成功接收所述激活请求的确认信号的时间和所述 起始时延来确定所述共存工作模式的开始时间,或者可以根据发送装 置 816/916向基站返回用于指示所述用户装置已成功接收到所述激活 响应的确认信号的时间和所述起始时延来确定所述共存工作模式的 开始时间, 这里不再重复。
[95] 与上述方法实施例 /示例相似,基站为用户设备 810或 910预先 配置的共存工作模式的配置信息还可以用于指示在激活和结束每种 共存工作模式之后是否需要过渡时间带的信息以及过渡时间带的长 度等信息, 在这种情况下, 共存模式激活装置 814或 914可以根据共 存工作模式的配置信息来判断在激活或结束所述共存工作模式之后 是否需要过渡时间带。
[96] 图 10 示出了根据一个实施例的配置于第一通信***中的基站 的示意性框图。 如图 10所示, 基站 1020中可以包括接收装置 1022、 发送装置 1024和发送装置 1026。
[97] 接收装置 1022可以接收来自用户设备的激活请求。 与上述实 施例 /示例中相似, 接收装置 1022可以利用 MAC层或 RRC层来接 收该激活请求, 这里不再重复。
[98] 在一个具体实施例中, 发送装置 1024可以在接收装置 1022接 收到所述激活请求时,向用户设备反馈用于指示基站是否已成功接收 所述激活请求的确认信号(如 ACK或 NACK信号)。 作为另一具体 实施例, 发送装置 1024在接收装置 1022接收到所述激活请求时, 还 可以向用户设备反馈对该激活响应的响应信号, 也称为激活响应。作 为一个示例,该激活响应可以包括有关是否允许用户设备激活共存工 作模式的信息(如参考图 7所示的激活响应); 作为另一示例, 该激 活响应可以包括用于指示基站为用户设备指定的共存工作模式的信 息。 发送装置 1024可以利用无线资源控制层(RRC )来发送这种激 活响应, 这里也不再重复。
[99] 预配置装置 1026用于为所述用户设备预先配置所述共存工作 模式的配置信息。作为具体示例,预配置装置 1026可以采用参考图 4 或图 5所示的方法来为用户设备预先配置共存工作模式的配置信息。 另外, 预配置装置 1026可以为用户设备预先配置一种或者更多种共 存工作模式及其配置信息。 [100] 采用图 10 所示的基站, 能够使得用户设备快速进入共存工作 模式。 由于共存工作模式的配置信息是预先配置的, 因此, 可以大大 缩短激活共存工作模式的时间, 从而提高用户的体验。
[101] 图 11 示出了根据另一实施例的配置于第一通信***中的基站 的示意性框图。 与图 10所示的基站 1020相似, 基站 1120也包括接 收装置 1122、 发送装置 1124和预配置装置 1126; 不同之处在于, 基 站 1120还包括模式控制装置 1128。
[102] 接收装置 1122、发送装置 1124和发送装置 1126分别与参考图 10所描述的相应装置具有相似的功能, 这里不再重复。
[103] 模式控制装置 1128用于在接收装置 1122收到激活请求后, 根 据***信息来判断是否允许所述用户设备激活共存工作模式。 由发送 装置 1126将有关是否允许所述用户设备激活共存工作模式的信息反 馈给用户设备。 作为一个示例, 模式控制装置 1128还可以根据*** 信息来重新选择允许用户设备进入的共存工作模式。由发送装置 1126 将用于指示所选共存工作模式的信息(如封装于激活响应中)反馈给 用户设备。
[104] 与上述方法实施例 /示例相似, 预配置装置 1126为用户设备预 先配置的共存工作模式的配置信息可以包括用于指示共存工作模式 的起始时延的信息, 在这种情况下, 模式控制装置根据可以发送装置 1126发送用于指示所述基站已正确接收激活请求的确认信号的时间 或者接收装置 1122接收到用于指示所述用户设备已成功接收到激活 响应的确认信号的时间和所述起始时延来确定所述共存工作模式的 开始时间, 这里不再重复。
[105] 与上述方法实施例 /示例相似, 预配置装置 1126为用户设备预 先配置的共存工作模式的配置信息还可以用于指示在激活和结束每 种共存工作模式之后是否需要过渡时间带的信息以及过渡时间带的 长度等信息, 在这种情况下, 模式控制装置可以根据共存工作模式的 配置信息来确定用户设备在激活或接收共存工作模式之后是否需要 过渡时间带。
[106] 下文给出基站(如预配置装置 1126 )为用户设备预先配置的共 存工作模式的配置信息的一些具体示例。
[107] 第一示例 [108] 在该示例中, 基站为用户设备预先配置的配置信息可以包括以 下各项中的一个或更多个:
1. 共存模式起始时延,
2. 默认的共存工作模式的序号 (只配置一种默认共存工作模式 的情况), 以及
3. 允许用户设备所使用的所有可能的共存工作模式的序号。
[109] 在上述信息中, 第二项和第三项是互斥的, 即如果基站对第二 项信息进行配置, 就不会对第三项信息进行配置, 反之亦然。
[110] 作为一个具体示例, 共存工作模式的起始时延可以用子帧数来 表示。 以 LTE ***为主通信***为例, 一个子帧的长度是 lms„ 例 如, 在图 6所示的方法中, 用户设备可以从该用户设备收到来自基站 侧的用于指示基站已成功接收到激活请求的确认信号(如 ACK信号) 的时间开始计算时延,而基站可以从发送该确认信号的时间开始计算 时延。 例如, 假设时延为 a个子帧 (a≥l )且用户设备在第 n个子帧 ( n>l )收到 ACK信号, 则第 n+a+1个子帧为实行共存工作模式的 第一个子帧, 即共存工作模式在第 n+a+1个子帧开始。 又如, 在图 7 所示的方法中,用户设备可以从该用户设备向基站发送用于指示该用 户设备已成功接收到激活响应信号的确认信号(如 ACK信号)的时 间开始计算时延,而基站可以从接收到该确认信号的时间开始计算时 延。 例如, 假设预先配置的时延为 a个子帧, 且用户在第 n个子帧发 送 ACK信号,则第 n+a+1个子帧为实行共存工作模式的第一个子帧, 即共存工作模式在第 n+a+l个子帧开始。
[111] 作为另一具体示例, 共存模式的起始时延可以用序号表示。 例 如, 可以预先选择多个时延值(即延迟子帧数), 将这些时延值按照 某种顺序编号。 这样, 在配置信息或者实际传输中, 只需传输相应的 时延值的序号即可。
[112] 在共存工作模式基于时分复用且以时间周期的形式体现该时 分复用的情况下, 可以规定时间周期, 每个周期分别有第一通信*** (如 LTE )工作时间和一第二通信***(如 ISM )工作时间 (在一 个周期内, 第一通信***的工作时间可以是不连续的, 第二通信*** 的工作时间也可以是不连续的)。 在这种情况下, 共存工作模式的起 始时延可以用 1比特来表示。 例如, 若共存工作模式的起始时延为比 特 0, 则表示可以立即开始共存工作模式; 若共存工作模式的起始时 延为比特 1, 则表示要等待到一个新的完整的共存模式的时间周期开 始时再开始共存模式。 举例而言, 在图 6所示的方法中, 如果共存模 式的起始时延为比特 0,则共存模式从用户设备收到来自基站的 ACK 信号后开始; 如果共存模式的起始时延为比特 1 , 则共存模式从用户 设备收到来自基站的 ACK信号后的第一个完整的时间周期的起始处 开始。
[113] 第二示例
[114] 如果基站为用户设备预配置一种共存工作模式, 则该模式的配 置信息可以包括以下各项中的一个或多个:
1. 共存工作模式的起始时延。
2. 指示共存工作模式是基于时分复用还是基于频分复用的信 息。
3. 在该共存工作模式基于时分复用的情况下, 可以包含以下 信息中的一项或多项:
a. 共存工作模式的时间周期(包括第一通信的工作时间和 第二通信的工作时间)。
b . 一个时间周期内第一通信***的工作时间和第二通信系 统的工作时间的比例。
c 第一通信***在一个时间周期内的工作时间。
d. 共存工作模式的序号。
e. 指示共存工作模式开始前和结束后是否需要过渡时间带 的信息。
f. 过渡时间带的长度。
4. 在该共存工作模式基于频分复用的情况下,可以包含以下信 息中的一项或多项:
g. 第一通信***(如 LTE )的上行 PUCCH传输模式。 h . 频分共存工作模式的序号。
[115] 如果基站为用户设备预先配置允许该用户设备使用的多种可 能的共存工作模式, 则每种共存工作模式的配置信号中可以包括: i. 该共存工作模式的序号。
[116] 其中, 该共存工作模式序号为基站与用户设备临时约定的本次 配置的共存工作模式在多种可能的共存模式中的序号。
[117] 下面描述上述各种信息的具体示例。
[118] 起始时延
[119] 第二示例中的起始时延可以采用第一示例中的起始时延的格 式, 这里不再重复。
[120] 指示共存工作模式是基于时分复用还是基于频分复用的信息
[121] 指示共存工作模式是基于时分复用还是基于频分复用的信息 可以用 1比特来表示。 例如, 比特 0表示采用时分复用方式, 比特 1 采用频分复用方式。
[122] 时间周期
[123] 如果共存工作模式是基于时分复用的, 则配置信息可以包括有 关该模式的时间周期的信息。 仍以 LTE ***为第一通信***、 ISM ***为第二通信***为例, 1个帧 (frame)包含 10个子帧 (subframe)。 在这种情况下, 有关时间周期的信息可以包括时间周期的长度。 时间 周期的长度可以是一个时间周期所包含的子帧的数目或者所包含的 帧的数目。 如果时间周期的长度为帧的整数倍, 即为 10个子帧的整 数倍, 则可以约定每个时间周期默认从 1个帧的第一个子帧开始。作 为另一示例, 一个时间周期可以不从帧的第一个子帧开始计算。 无论 从哪个子帧开始,个数与时间周期的长度对应的多个子帧即构成一个 时间周期。
[124] 可选地, 基于时分的共存模式的时间周期的信息还可以包含周 期的长度和周期的起始偏移量。周期的长度为一个周期所包含的子帧 的数目或者所包含的帧的数目。 如果周期的长度为帧的整数倍, 即为 10个子帧的整数倍,则可以约定周期的起始偏移量, 即每周期都是从 一个帧的第几个子帧开始的。
[125] 在配置信息中, 共存模式的周期长度和周期起始偏移量可以用 具体的子帧数或者帧数来表示。可选地,可以事先约定几种可用情况, 并按照某种顺序为这几种情况编号,即共存模式的周期长度和周期起 始偏移量可以用序号来表示。 [126] 一个时间周期内两个通信***的工作时间的比例
[127] 一个时间周期内第一通信***的工作时间和第二通信***的 工作时间的比例可以用一个具体的比例数来表示。该比例也可以用两 个子帧数(即每个周期中分别用于两个通信***的工作时间的子帧 数)来表示。
[128] 在预先配置了周期的长度的情况下, 第一通信***的工作时间 和第二通信***的工作时间的比例也可以体现为每个周期中用于第 一通信***的工作时间的子帧数目。
[129] 两个通信***的工作时间的比例也可以用序号来表示。 可以事 先约定几种可用的比例值, 并按照某种顺序为这几种比例值编号。
[130] 如果第一通信***(如 LTE标准)中已经事先针对每一种比例 约定了一种基于时分复用的 LTE工作时间和工作 ISM时间的分配方 案, 则上述比例可以用来表示采用了那一种时分复用的分配方案。
[131] 如果第一通信***采用规则的时间分配方案且已经配置了每 个时间周期,则上述比例可以用来表示具体的第一通信***的工作时 间和第二通信***的工作时间。 这里, 所谓的规则的时间分配方案是 指:一个时间周期内组成第一通信***的工作时间的子帧彼此是连续 的, 且组成第二通信***的工作时间的子帧彼此也是连续的, 即一个 周期被规则地分成了 2部分。
[132] 第一通信***在一个周期内的工作时间
[133] 以 LTE为第一通信***、 ISM ***为第二通信***为例, 如 果 LTE***采用了规则的 LTE工作时间和 ISM工作时间的分配方 案, 并且已经配置一个时间周期内 LTE工作时间和 ISM工作时间的 比例, 则 LTE在一个周期内的工作时间可以用 1个比特来表示, 该 比特可以指示一个周期中 LTE应该使用第一个规则工作时间还是第 二个规则工作时间。 例如, 比特为 0时, 表示在一个周期中 LTE先 工作, ISM后工作; 比特为 1时,表示一个周期中 ISM先工作, LTE 后工作。
[134] LTE在一个周期内的工作时间也可以表现为在 1个周期内 LTE 具体在哪些子帧内工作。可以比特图( Bitmap )的形式来表示该信息, 如可以用 "0110111000" 来表示周期长度为 10个子帧, 其中 LTE的 工作子帧包括第 1、 2、 4、 5、 6子帧, 而该周期内的其余子帧为 ISM 的工作子帧。 还可以用具体的子帧号来表示 LTE在一个时间周期的 的工作时间。
[135] 如果 LTE采用了规则的 LTE时间和 ISM时间的分配方案,但 没有配置 LTE工作时间和 ISM工作时间的比例,则 LTE在一个周期 内的工作时间可以用两个数值来表示。 第一个数值可以是布尔数, 即 用比特 0或者比特 1指示一个周期中 LTE应该使用第一个规则工作 时间还是第二个规则工作时间。 第二个数值可以是子帧的序号, 用来 指示第一个规则工作时间的最后一个子帧或者第二个规则工作时间 的第一个子帧。 如果 LTE已经事先约定这种情况下 LTE会在第一个 规则时间或者第二个规则时间内工作, 则 LTE在一个周期内的工作 时间也可以用子帧序号来表示,该子帧序号用来指示第一个规则工作 时间的最后一个子帧或者第二个规则工作时间的第一个子帧。
[136] 指示共存工作模式开始前和结束后是否需要过渡时间带
[137] 用于共存工作模式开始前和结束后是否需要过渡时间带的信 息可用一个或更多个比特来指示。
[138] 例如, 在用 1个比特来表示的情况下, 比特 0可以表示不需要 过渡时间带, 即进入共存模式后, 所有尚未完成的数据传输都直接终 止, 等待进入共存模式后重新进行分配或者传输; 而比特 1可以表示 需要过渡时间带。 在用 2个比特来表示的情况下, 可以用一个比特来 表示在进入共存模式之前是否需要过渡时间带,而用另一个比特来表 示收到结束共存模式命令后是否需要过渡时间带。
[139] 过渡时间带的长度
[140] 仍以 LTE为第一通信***为例, 如果 LTE未事先约定过渡时 间带的长度,则基站可以为用户设备预先配置共存模式的过渡时间带 长度。
[141] 作为一个具体示例, 过渡时间带长度可以用一个子帧数来表 示。 在该示例中, 共存模式开始之后的过渡时间带的长度可以等于共 存模式结束之后的过渡时间带的长度。
[142] 作为另一具体示例, 过渡时间带长度还可以用两个子帧数来表 示。即共存模式开始之后的过渡时间带的长度可以不等于共存模式结 束之后的过渡时间带长度, 二者分别由两个子帧数来指示。
[143] 在其他具体示例中, 过渡时间带的长度还可以为序号的形式。 例如基站可以与用户设备事先约定几种可能或者常用的过渡时间带 长度, 并按照一定顺序为其编号。
[144] 本领域的普通技术人员应理解,在此所描述的实施例和 /或示例 的是示例性的, 而非穷举性的, 本公开并不局限于这些实施例和 /或 示例。
[145] 在上述实施例 /示例中,第一通信***和第二通信***是指共存 于用户设备上的不同通信***。例如, 第一通信***可以是例如 LTE ***、 LTE-A***或其他通信***等, 第二通信***(或干扰***) 可以是用户设备上配置的蓝牙***、 WLAN***或 GPS***等, 这 里不一一列举。
[146] 在本说明书中, "第一"、 "第二" 等表述是为了将所描述的特 征在文字上区分开, 以清楚地描述本公开。 因此, 不应将其视为具有 任何限定性的含义。
[147] 作为一个示例, 上述方法的各个步骤以及上述设备的各个组成 模块和 /或单元可以实施为第一通信***的基站(如 eNodeB )或者终 端节点(如用户设备)中的软件、 固件、 硬件或其组合, 并作为基站 或终端节点的相应设备中的一部分。 上述装置中各个组成模块、单元 通过软件、 固件、硬件或其组合的方式进行配置时可使用的具体手段 或方式为本领域技术人员所熟知, 在此不再赘述。
[148] 容易理解, 包含上述实施例的设备的***也应该被认为落入本 公开的保护范围内。
[149] 作为一个示例, 在通过软件或固件实现的情况下, 可以从存储 介质或网络向具有专用硬件结构的计算机(例如图 12所示的通用计 算机 1200 )安装构成该软件的程序, 该计算机在安装有各种程序时, 能够执行各种功能等。
[150] 在图 12 中, 中央处理单元(CPU)1201 根据只读存储器
(RAM)1203的程序执行各种处理。 在 RAM 1203中, 也根据需要存 储当 CPU 1201执行各种处理等等时所需的数据。 CPU 1201、 ROM 1202和 RAM 1203经由总线 1204彼此链路。 输入 /输出接口 1205也 链路到总线 1204。
[151] 下述部件链路到输入 /输出接口 1205: 输入部分 1206 (包括键 盘、鼠标等等)、输出部分 1207 (包括显示器,比如阴极射线管 (CRT)、 液晶显示器 (LCD)等, 和扬声器等)、 存储部分 1208 (包括硬盘等)、 通信部分 1209 (包括网络接口卡比如 LAN卡、 调制解调器等)。 通 信部分 1209经由网络比如因特网执行通信处理。 根据需要, 驱动器 1210也可链路到输入 /输出接口 1205。可拆卸介质 1211比如磁盘、光 盘、 磁光盘、 半导体存储器等等根据需要被安装在驱动器 1210上, 使得从中读出的计算才 1呈序根据需要被安装到存储部分 1208中。
[152] 在通过软件实现上述系列处理的情况下, 从网络比如因特网或 存储介质比如可拆卸介质 1211安装构成软件的程序。
[153] 本领域的技术人员应当理解, 这种存储介质不局限于图 12所 示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆 卸介质 1211。可拆卸介质 1211的例子包含磁盘 (包含软盘 (注册商标):)、 光盘 (包含光盘只读存储器 (CD-ROM)和数字通用盘 (DVD))、 磁光盘 (包含迷你盘 (MD)(注册商标))和半导体存储器。 或者, 存储介质可 以是 ROM 1202、存储部分 1208中包含的硬盘等等, 其中存有程序, 并且与包含它们的设备一起被分发给用户。
[154] 开还提出一种存储有机器可读取的指令代码的程序产品。 所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的 方法。
[155] 相应地, 用于承载上述存储有机器可读取的指令代码的程序产 品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于 软盘、 光盘、 磁光盘、 存储卡、 存储棒等等。
[156] 在上面对本公开具体实施例的描述中, 针对一种实施方式描述 和 /或示出的特征可以以相同或类似的方式在一个或更多个其它实施 方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式 中的特征。
[157] 应该强调, 术语"包括 /包含"在本文使用时指特征、要素、 步骤 或组件的存在, 但并不排除一个或更多个其它特征、 要素、 步骤或组 件的存在或附加。
[158] 此外, 本公开的方法不限于按照说明书中描述的时间顺序来执 行, 也可以按照其他的时间顺序地、 并行地或独立地执行。 因此, 本 说明书中描述的方法的执行顺序不对本公开的技术范围构成限制。 59] 尽管上面已经通过对本公开的具体实施例的描述对本公开进 行了披露, 但是, 应该理解, 本领域的技术人员可在所附权利要求的 精神和范围内设计对 开的各种修改、改进或者等同物。这些修改、 改进或者等同物也应当被认为包括在 开的保护范围内。

Claims

权利 要求 书
1. 一种共存工作模式的激活方法, 包括:
第一通信***中的用户设备向所述第一通信***中的基站发送 用于请求进入共存工作模式的激活请求, 在所述共存工作模式下, 所 述用户设备利用不同的传输资源分别与所述基站进行第一通信并与 不同于所述第一通信***的第二通信***的设备进行第二通信;
所述用户设备根据所述共存工作模式的配置信息而激活所述共 存工作模式, 其中,所述共存工作模式的配置信息是所述基站为所述用户设备 预先配置的, 并保存于所述用户设备中。
2. 如权利要求 1所述的方法,其中,向所述基站发送所述激活请 求包括:
利用媒体访问控制层信令向所述基站发送所述激活请求。
3. 如权利要求 1所述的方法,其中,所述基站为所述用户设备预 先配置了多种共存工作模式, 并且所述方法还包括:
所述用户设备根据第二通信***而从预先配置的多种共存工作 模式中选择一种,并将用于指示所选共存工作模式的信息封装于所述 激活请求中。
4. 如权利要求 1-3中的任一项所述的方法, 还包括:
所述用户设备接收所述基站反馈的对所述激活请求的激活响应, 其中,所述用户设备在接收到所述激活响应后激活所述共存工作 模式。
5. 如权利要求 4所述的方法,其中,所述激活响应包括有关是否 允许所述用户设备激活共存工作模式的信息, 并且所述方法还包括: 根据所述激活响应来判断所述基站是否允许其激活共存工作模 式, 若是, 则激活所述共存工作模式。
6. 如权利要求 4所述的方法,其中,所述激活响应包括用于指示 所述基站指定的共存工作模式的信息, 并且激活共存工作模式包括: 所述用户设备激活所述基站指定的共存工作模式。
7. 如权利要求 1-3中任一项所述的方法, 其中, 所述配置信息包 括用于指示共存工作模式的起始时延的信息, 并且所述方法还包括: 所述用户设备根据收到用于指示所述基站成功接收到所述激活 请求的确认信号的时间和所述起始时延来确定所述共存工作模式的 开始时间。
8. 如权利要求 4所述的方法,其中,所述配置信息包括用于指示 共存工作模式的起始时延的信息, 并且所述方法还包括:
所述用户设备根据向所述基站反馈用于指示所述用户设备正确 f确
存工作模式的开始时间
9. 如权利要求 1-3中任一项所述的方法, 其中, 所述基站为所述 用户设备预先配置的共存工作模式的配置信息包括:用于指示在激活 和结束每种共存工作模式之后是否需要仍保持之前的工作模式下的 数据传输的过渡时间带的信息以及所述过渡时间带的长度,并且所述 方法还包括:
根据共存工作模式的配置信息来判断在激活所述共存工作模式 之后是否需要过渡时间带。
10. 如权利要求 9所述的方法, 还包括:
在结束共存工作模式之前,根据所述共存工作模式的配置信息来 判断是否需要过渡时间带。
11. 如权利要求 1-3中任一项所述的方法, 其中, 所述基站为所 述用户设备预先配置的共存工作模式包括一种或更多种基于时分复 用的共存工作模式和 /或一种或更多种基于频分复用的共存工作模式 中的一种或更多种。
12. 如权利要求 1所述的方法, 其中, 向所述基站发送所述激活 请求包括:
利用无线资源控制层信令向所述基站发送所述激活请求。
13. 一种用户设备, 配置于第一通信***中, 并具有利用不同的 传输资源分别与所述第一通信***中的基站进行第一通信并与不同 于所述第一通信***的第二通信***的设备进行第二通信的共存工 作模式, 所述用户设备包括:
存储装置, 用于存储所述共存工作模式的配置信息, 所述配置信 息是所述基站为所述用户设备预先配置的;
发送装置,用于向所述第一通信***中的基站发送用于请求进入 共存工作模式的激活请求; 以及 共存模式激活装置,用于根据所述共存工作模式的配置信息而激 活所述共存工作模式。
14. 如权利要求 13所述的用户设备,其中,所述发送装置被配置 用于: 利用媒体访问控制层信令向所述基站发送所述激活请求。
15. 如权利要求 13所述的用户设备,其中,所述存 «殳备存储有 所述基站为所述用户设备预先配置的多种共存工作模式的配置信息, 并且所述用户设备还包括:
共存模式选择装置,用于根据第二通信***而从预先配置的多种 共存工作模式中选择一种,并将用于指示所选共存工作模式的信息封 装于所述激活请求中。
16. 如权利要求 13-15中的任一项所述的用户设备, 还包括: 接收装置, 用于接收所述基站反馈的对所述激活请求的激活响 应,
其中,所述共存模式激活装置在所述接收装置接收到所述激活响 应后激活所述共存工作模式。
17. 如权利要求 16所述的用户设备,
其中,所述激活响应包括有关是否允许所述用户设备激活共存工 作模式的信息, 并且所述共存模式激活装置还被配置用于:
根据所述激活响应来判断所述基站是否允许其激活共存工作模 式, 若是, 则激活所述共存工作模式。
18. 如权利要求 16所述的用户设备,其中,所述激活响应包括用 于指示所述基站指定的共存工作模式的信息,并且所述共存模式激活 装置被配置用于:
根据所述激活响应来激活所述基站指定的共存工作模式。
19. 如权利要求 13-15中任一项所述的用户设备, 其中, 所述配 置信息包括用于指示共存工作模式的起始时延的信息,并且所述共存 模式激活装置还被配置用于:
根据所述接收装置收到用于指示所述基站已成功接收所述激活 响应的确认信号的时间和所述起始时延来确定所述共存工作模式的 开始时间。
20. 如权利要求 16所述的用户设备,其中,所述配置信息包括用 于指示共存工作模式的起始时延的信息, 并且
所述发送装置还被配置用于: 向所述基站反馈用于指示所述用户 设备已正确接收所述激活响应的确认信号, 并且 所述共存模式激活装置还被配置用于:才艮据所述发送装置反馈所 述确认信号的时间和所述起始时延来确定所述共存工作模式的开始 时间。
21. 如权利要求 13-15中任一项所述的用户设备, 其中, 所述基 站为所述用户设备预先配置的共存工作模式的配置信息包括:用于指 示在激活和结束每种共存工作模式之后是否需要仍保持之前的工作 模式下的数据传输的过渡时间带的信息以及所述过渡时间带的长度, 并且所述共存模式激活装置还被配置用于:
根据共存工作模式的配置信息来判断在激活所述共存工作模式 之后是否需要过渡时间带。
22. 如权利要求 21所述的设备,其中,所述共存模式激活装置还 被配置用于:
在结束共存工作模式之前,根据所述共存工作模式的配置信息来 判断是否需要过渡时间带。
23. 如权利要求 13-15中任一项所述的用户设备, 其中, 所述基 站为所述用户设备预先配置的共存工作模式包括一种或更多种基于 时分复用的共存工作模式和 /或一种或更多种基于频分复用的共存工 作模式中的一种或更多种。
24. 如权利要求 13所述的用户设备,其中,所述发送装置被配置 用于: 利用无线资源控制层信令向所述基站发送所述激活请求。
25. 一种共存工作模式的激活方法, 包括:
第一通信***中的基站接收来自用户设备的用于请求进入使该 用户设备利用不同的传输资源分别与所述基站进行第一通信并与不 同于所述第一通信***的第二通信***的设备进行第二通信的共存 工作模式的激活请求, 其中,所述基站为所述用户设备预先配置有所述共存工作模式的 配置信息。
26.权利要求 25所述的方法, 还包括:
所述基站向所述用户设备反馈对所述激活请求的激活响应
27. 如权利要求 26所述的方法, 还包括:
所述基站在收到所述激活请求后,根据第一通信***的***信息 来判断是否允许所述用户设备激活共存工作模式; 以及
将有关是否允许所述用户设备激活共存工作模式的信息封装于 所述激活响应中。
28. 如权利要求 26或 27所述的方法, 还包括:
所述基站根据第一通信***的***信息来选择允许所述用户设 备进入的共存工作模式; 以及
将用于指示所选共存工作模式的信息反馈给所述用户设备。
29. 如权利要求 25所述的方法,其中,所述配置信息包括用于指 示共存工作模式的起始时延的信息, 所述方法还包括:
所述基站根据向所述用户设备返回用于指示所述基站已成功接 收所述激活请求的确认信号的时间以及所述起始时延来计算所述共 存工作模式的开始时间。
30. 如权利要求 26或 27所述的方法, 其中, 所述配置信息包括 用于指示共存工作模式的起始时延的信息, 所述方法还包括:
所述基站根据收到用于指示所述用户设备已成功接收所述激活 响应的确认信号的时间以及所述起始时延来计算所述共存工作模式 的开始时间。
31. 如权利要求 25-27中任一项所述的方法, 其中, 所述基站为 所述用户设备预先配置的共存工作模式的配置信息包括:用于指示在 激活和结束每种共存工作模式之后是否需要仍保持之前的工作模式 下的数据传输的过渡时间带的信息以及所述过渡时间带的长度。
32. 如权利要求 25-27中任一项所述的方法, 其中, 所述基站为 所述用户终端预先配置的共存工作模式包括一种或更多种基于时分 复用的共存工作模式和 /或一种或更多种基于频分复用的共存工作模 式中的一种或更多种。
33. 如权利要求 25-27中任一项所述的方法, 其中, 所述配置信 息是通过无线资源控制连接建立消息发送给所述用户设备的。
34. 如权利要求 25-27中任一项所述的方法, 其中, 所述配置信 息是通过无线资源控制连接重配置消息发送给所述用户设备的。
35. 如权利要求 26或 27所述的方法, 其中, 反馈所述激活响应 包括:
利用无线资源控制层信令来发送所述激活响应。
36. 一种基站, 配置于第一通信***中, 包括:
接收装置,用于接收来自用户设备的用于请求进入使该用户设备 利用不同的传输资源分别与该基站进行第一通信并与不同于所述第 一通信***的第二通信***的设备进行第二通信的共存工作模式的 激活请求; 以及
预配置装置,用于为所述用户设备预先配置所述共存工作模式的 配置信息。
37.权利要求 36所述的基站, 还包括:
发送装置, 用于在所述接收装置接收到所述激活请求之后, 向所 述用户设备反馈对所述激活请求的激活响应 ,
38. 如权利要求 37所述的基站, 还包括:
模式控制装置, 用于在所述接收装置收到所述激活请求后, 根据 第一通信***的***信息来判断是否允许所述用户设备激活共存工 作模式,并将有关是否允许所述用户设备激活共存工作模式的信息封 装于所述激活响应中。
39. 如权利要求 37或 38所述的基站, 其中, 所述模式控制装置 还被配置用于根据第一通信***的***信息来选择允许所述用户设 备进入的共存工作模式,
其中, 由所述发送装置将用于指示所选共存工作模式的信息反馈 给所述用户设备。
40. 如权利要求 36所述的基站,其中,所述配置信息包括用于指 示共存工作模式的起始时延的信息,并且所述模式控制装置还被配置 用于:
根据向所述用户设备返回用于指示所述基站已成功接收所述激 活请求的确认信号的时间以及所述起始时延来计算所述共存工作模 式的开始时间。
41. 如权利要求 37或 38所述的基站, 其中, 所述配置信息包括 用于指示共存工作模式的起始时延的信息, 并且
所述接收装置还被配置用于:接收从所述用户设备返回的用于指 示所述基站已正确接收所述激活响应的确认信号,
所述模式控制装置还被配置用于:根据所述接收装置收到所述确 认信号的时间以及所述起始时延来计算所述共存工作模式的开始时 间。
42. 如权利要求 36-38中任一项所述的基站, 其中, 所述预配置 装置为所述用户设备预先配置的共存工作模式的配置信息包括:用于 指示在激活和结束每种共存工作模式之后是否需要仍保持之前的工 作模式下的数据传输的过渡时间带的信息以及所述过渡时间带的长 度。
43. 如权利要求 36-38中任一项所述的基站, 其中, 所述预配置 装置为所述用户设备预先配置的共存工作模式包括一种或更多种基 于时分复用的共存工作模式和 /或一种或更多种基于频分复用的共存 工作模式中的一种或更多种。
44. 如权利要求 36-38中任一项所述的基站, 其中, 所述配置信 息是由所述发送装置通过无线资源控制连接建立消息发送给所述用 户设备的。
45. 如权利要求 36-38中任一项所述的基站, 其中, 所述配置信 息是由所述发送装置通过无线资源控制连接重配置消息发送给所述 用户设备的。
46. 如权利要求 37或 38所述的基站, 其中, 所 送装置被配 置用于: 利用无线资源控制层信令来发送所述激活响应。
47. 一种通信***,包括如权利要求中 13-24任一项所述的用户设 备以及如权利要求 36-46中任一项所述的基站。
PCT/CN2010/077405 2010-09-28 2010-09-28 激活共存工作模式的方法及基站、用户设备和*** WO2012040904A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
BR112013007320A BR112013007320A2 (pt) 2010-09-28 2010-09-28 método e estação de base, equipamento de usuário e sistema para ativar o modo de trabalho de coexistência
MX2013003632A MX2013003632A (es) 2010-09-28 2010-09-28 Metodo y estacion de base, equipo de usuario y sistema para activar el modo de trabajo de coexistencia.
CA2812826A CA2812826C (en) 2010-09-28 2010-09-28 Method and base station, user equipment and system for activating coexistence work mode
PCT/CN2010/077405 WO2012040904A1 (zh) 2010-09-28 2010-09-28 激活共存工作模式的方法及基站、用户设备和***
JP2013530516A JP5871003B2 (ja) 2010-09-28 2010-09-28 共存ワーキングモードをアクティブにする方法並びに基地局、ユーザ装置及びシステム
KR1020137010529A KR101479886B1 (ko) 2010-09-28 2010-09-28 공존 동작 모드를 활성화시키는 방법 및 기지국, 사용자 장비 및 시스템
CN201080068971.XA CN103081523B (zh) 2010-09-28 2010-09-28 激活共存工作模式的方法及基站、用户设备和***
MX2015016541A MX350971B (es) 2010-09-28 2010-09-28 Método y estación de base, equipo de usuario y sistema para activar el modo de trabajo de coexistencia.
ES10857667T ES2813299T3 (es) 2010-09-28 2010-09-28 Método, equipo de usuario y estación base para activar el modo de trabajo de coexistencia
CA2931739A CA2931739A1 (en) 2010-09-28 2010-09-28 Method and base station, user equipment and system for activating coexistence work mode
RU2013113757/07A RU2551456C2 (ru) 2010-09-28 2010-09-28 Способ и базовая станция, пользовательское устройство и система для активации режима совместной работы
EP10857667.9A EP2624613B1 (en) 2010-09-28 2010-09-28 Method, user equipment and base station for activating coexistence work mode
US13/845,816 US9037144B2 (en) 2010-09-28 2013-03-18 Method and base station, user equipment and system for activating coexistence work mode
US14/589,344 US9560665B2 (en) 2010-09-28 2015-01-05 Communication system, user equipment and base station
US15/387,212 US9872331B2 (en) 2010-09-28 2016-12-21 Communication system, user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077405 WO2012040904A1 (zh) 2010-09-28 2010-09-28 激活共存工作模式的方法及基站、用户设备和***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/845,816 Continuation US9037144B2 (en) 2010-09-28 2013-03-18 Method and base station, user equipment and system for activating coexistence work mode

Publications (1)

Publication Number Publication Date
WO2012040904A1 true WO2012040904A1 (zh) 2012-04-05

Family

ID=45891804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077405 WO2012040904A1 (zh) 2010-09-28 2010-09-28 激活共存工作模式的方法及基站、用户设备和***

Country Status (11)

Country Link
US (3) US9037144B2 (zh)
EP (1) EP2624613B1 (zh)
JP (1) JP5871003B2 (zh)
KR (1) KR101479886B1 (zh)
CN (1) CN103081523B (zh)
BR (1) BR112013007320A2 (zh)
CA (2) CA2812826C (zh)
ES (1) ES2813299T3 (zh)
MX (2) MX350971B (zh)
RU (1) RU2551456C2 (zh)
WO (1) WO2012040904A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104427622A (zh) * 2013-08-27 2015-03-18 马维尔国际贸易有限公司 用于减少设备内共存(idc)干扰的***和方法
WO2017106346A2 (en) 2015-12-15 2017-06-22 Gilead Sciences, Inc. Human immunodeficiency virus neutralizing antibodies
CN111345109A (zh) * 2017-11-07 2020-06-26 高通股份有限公司 用于无线通信中的低频带锚定高频带连接的技术

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754095A (zh) * 2013-12-30 2015-07-01 富泰华工业(深圳)有限公司 移动通信装置、通讯录管理***及方法
EP2903349B1 (en) * 2014-01-31 2017-04-12 Fujitsu Limited Access method of wireless communication network
US10044478B2 (en) * 2014-07-14 2018-08-07 Qualcomm Incorporated Pseudo randomization of unused resources at a medium access control (MAC) layer
US10548019B2 (en) * 2014-12-12 2020-01-28 Huawei Technologies Co., Ltd. Method and system for dynamic optimization of a time-domain frame structure
US9954668B2 (en) 2015-03-23 2018-04-24 Qualcomm Incorporated Co-existence system synchronization on a shared communication medium
EP3378186B1 (en) 2015-11-16 2021-02-24 LG Electronics Inc. Method for transmitting or receiving a mac pdu in a wireless communication system and a device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358003A (zh) * 2000-11-16 2002-07-10 讯宝科技公司 无线网络中的共存技术
CN101479994A (zh) * 2006-06-27 2009-07-08 Nxp股份有限公司 调度共存
GB2465650A (en) * 2009-07-27 2010-06-02 Cambridge Silicon Radio Ltd Improved coexistence between an IEEE 802.11 transceiver operating as an access point and a collocated Bluetooth transceiver

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039358B1 (en) * 2000-01-10 2006-05-02 Symbol Technologies, Inc. Coexistence techniques in wireless networks
US7698184B2 (en) * 2004-01-16 2010-04-13 Bgc Partners, Inc. System and method for trading a financial instrument indexed to entertainment revenue
US7653037B2 (en) 2005-09-28 2010-01-26 Qualcomm Incorporated System and method for distributing wireless network access parameters
MX2009005491A (es) * 2006-12-19 2009-06-03 Ericsson Telefon Ab L M Manejo de comandos de intervalo inactivo en un sistema de telecomunicacion.
JP4533413B2 (ja) * 2007-08-30 2010-09-01 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末、無線通信システム、及び周波数割当方法
US8699487B2 (en) * 2008-02-04 2014-04-15 Qualcomm Incorporated Uplink delay budget feedback
JP5050907B2 (ja) * 2008-02-19 2012-10-17 富士通株式会社 通信システム、移動体通信装置、制御装置および通信方法
US8619732B2 (en) 2008-02-28 2013-12-31 Broadcom Corporation Method and apparatus for enabling coexistence of plurality of communication technologies on communication device
US8072896B2 (en) * 2008-04-18 2011-12-06 Telefonaktiebolaget L M Ericsson (Publ) Adaptive coexistence between different wireless communication systems
US8085737B2 (en) 2008-05-06 2011-12-27 Intel Corporation Multi-transceiver mobile communication device and methods for negative scheduling
KR20100004766A (ko) * 2008-07-04 2010-01-13 엘지전자 주식회사 프레임 할당을 이용한 공존 통신 수행방법
EP2154921A1 (en) * 2008-08-11 2010-02-17 Nokia Siemens Networks OY Method for transferring a base station of a wireless communication network from a standby mode to a fully activated mode
KR101481586B1 (ko) * 2008-09-04 2015-01-12 엘지전자 주식회사 다중 무선 통신 구간 할당 방법
US8059622B2 (en) * 2008-09-04 2011-11-15 Intel Corporation Multi-radio platform and method for coordinating activities between a broadband wireless access network transceiver and co-located transceiver
US8730853B2 (en) * 2008-09-05 2014-05-20 Mediatek Inc. Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses capable of controlling multi-radio coexistence
US8451776B2 (en) * 2010-03-31 2013-05-28 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
MX354058B (es) * 2010-09-28 2018-02-09 Fujitsu Ltd Método de establecimiento de modo de trabajo coexistente, equipo de usuario, estación base y sistema.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358003A (zh) * 2000-11-16 2002-07-10 讯宝科技公司 无线网络中的共存技术
CN101479994A (zh) * 2006-06-27 2009-07-08 Nxp股份有限公司 调度共存
GB2465650A (en) * 2009-07-27 2010-06-02 Cambridge Silicon Radio Ltd Improved coexistence between an IEEE 802.11 transceiver operating as an access point and a collocated Bluetooth transceiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624613A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104427622A (zh) * 2013-08-27 2015-03-18 马维尔国际贸易有限公司 用于减少设备内共存(idc)干扰的***和方法
CN104427622B (zh) * 2013-08-27 2019-06-14 马维尔国际贸易有限公司 用于减少设备内共存干扰的***和方法
WO2017106346A2 (en) 2015-12-15 2017-06-22 Gilead Sciences, Inc. Human immunodeficiency virus neutralizing antibodies
EP3992206A1 (en) 2015-12-15 2022-05-04 Gilead Sciences, Inc. Human immunodeficiency virus neutralizing antibodies
CN111345109A (zh) * 2017-11-07 2020-06-26 高通股份有限公司 用于无线通信中的低频带锚定高频带连接的技术
CN111345109B (zh) * 2017-11-07 2023-10-24 高通股份有限公司 用于无线通信中的低频带锚定高频带连接的技术

Also Published As

Publication number Publication date
US9560665B2 (en) 2017-01-31
US20130217400A1 (en) 2013-08-22
US9037144B2 (en) 2015-05-19
US9872331B2 (en) 2018-01-16
BR112013007320A2 (pt) 2019-09-24
CA2812826C (en) 2016-07-19
ES2813299T3 (es) 2021-03-23
CA2812826A1 (en) 2012-04-05
KR20130096741A (ko) 2013-08-30
US20150110063A1 (en) 2015-04-23
CN103081523B (zh) 2016-06-08
CA2931739A1 (en) 2012-04-05
RU2551456C2 (ru) 2015-05-27
RU2013113757A (ru) 2014-11-10
MX2013003632A (es) 2013-05-20
KR101479886B1 (ko) 2015-01-06
US20170105244A1 (en) 2017-04-13
JP2013539305A (ja) 2013-10-17
EP2624613A1 (en) 2013-08-07
EP2624613B1 (en) 2020-06-10
JP5871003B2 (ja) 2016-03-01
CN103081523A (zh) 2013-05-01
EP2624613A4 (en) 2015-08-12
MX350971B (es) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6892912B2 (ja) アップリンクスケジュール指定の2段階シグナリング
WO2012040904A1 (zh) 激活共存工作模式的方法及基站、用户设备和***
JP6038880B2 (ja) キャリアアグリゲーションをサポートする無線通信システムで複数個のタイミングアドバンスグループを管理する方法及び装置
US11678401B2 (en) Transmission timing information sending method, transmission timing information receiving method, and apparatus
US9894676B2 (en) Coexistent working mode establishment method, user equipment, base station and system
JP2020509671A (ja) データ伝送方法、関連するデバイス、及びシステム
WO2013120458A1 (zh) 数据传输方法、基站及用户设备
WO2012097692A1 (zh) 半静态调度方法、用户设备及网络设备
WO2014059592A1 (zh) 混合自动重传确认信息的传输方法、装置、ue及基站
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
JP2018510548A (ja) Rlcデータパケットオフロード方法および基地局
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
RU2608559C2 (ru) Способ и базовая станция, пользовательское устройство и система для активации режима совместной работы
WO2023065316A1 (zh) 基于预配置资源的小数据传输方法、装置、设备及介质
WO2023066102A1 (zh) 一种无线通信的方法和装置
WO2021134151A1 (zh) 通信方法及装置
WO2018082534A1 (zh) 传输定时信息发送方法、接收方法及装置
WO2015109520A1 (zh) 上行控制信息的传输方法、装置以及通信***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068971.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010857667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2812826

Country of ref document: CA

Ref document number: 2013530516

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003632

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010529

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013113757

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007320

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007320

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327