WO2012039351A1 - Oxide sintered compact and sputtering target - Google Patents

Oxide sintered compact and sputtering target Download PDF

Info

Publication number
WO2012039351A1
WO2012039351A1 PCT/JP2011/071195 JP2011071195W WO2012039351A1 WO 2012039351 A1 WO2012039351 A1 WO 2012039351A1 JP 2011071195 W JP2011071195 W JP 2011071195W WO 2012039351 A1 WO2012039351 A1 WO 2012039351A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
metal
oxide
oxide sintered
experimental example
Prior art date
Application number
PCT/JP2011/071195
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 裕史
祐紀 岩崎
中井 淳一
陽一郎 米田
得平 雅也
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Publication of WO2012039351A1 publication Critical patent/WO2012039351A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to an oxide sintered body and a sputtering target used when an oxide semiconductor thin film of a thin film transistor (TFT) used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method.
  • TFT thin film transistor
  • Amorphous (amorphous) oxide semiconductors used for TFTs have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance.
  • a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered. In-plane uniformity of component composition and film thickness in the film surface direction (in the film surface) is smaller in the thin film formed by sputtering compared to thin films formed by ion plating, vacuum evaporation, and electron beam evaporation. This is because it has the advantage that a thin film having the same composition as the sputtering target can be formed.
  • the sputtering target is usually formed by mixing and sintering oxide powder and machining.
  • an In-containing amorphous oxide semiconductor (In—Ga—Zn—O, In—Zn—O, etc.) can be cited, but the rare metal In is used. Therefore, there is a concern that material costs will increase in mass production processes. Therefore, a ZTO-based oxide semiconductor that has been made amorphous by adding Sn to Zn has been proposed as an oxide semiconductor that does not contain expensive In and can reduce material costs and is suitable for mass production.
  • No. 4 discloses an oxide sintered body and a sputtering target useful for producing the ZTO-based oxide semiconductor film.
  • Patent Document 1 proposes a method of suppressing the occurrence of abnormal discharge and cracking during sputtering by performing long-time baking and controlling the structure so as not to contain a tin oxide phase.
  • Patent Document 2 also suppresses abnormal discharge during sputtering by increasing the density of the ZTO-based sintered body by performing a two-step process of a low-temperature calcined powder manufacturing process at 900 to 1300 ° C. and a main baking process.
  • a method has been proposed.
  • Patent Document 3 proposes a method of improving the conductivity and increasing the density by including a spinel-type AB 2 O 4 compound.
  • Patent Document 4 proposes a method of obtaining a dense ZTO-based sintered body by performing two steps of a low-temperature calcined powder manufacturing process at 900 to 1100 ° C. and a main baking process.
  • a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have excellent conductivity and a high relative density.
  • a sputtering target that can be manufactured not by a high frequency (RF) sputtering method but by a direct current sputtering method that facilitates high-speed film formation.
  • Patent Document 1 described above has not been studied from the viewpoint of increasing the density, and is insufficient to stably and continuously perform DC discharge.
  • Patent Document 2 has not been studied from the viewpoint of improving the conductivity of the oxide sintered body, and is still insufficient for stable and continuous DC discharge.
  • Patent Document 3 described above has been studied from the viewpoints of higher density and higher conductivity, but contains a highly insulating Ga 2 O 3 phase in the sputtering target, and the semiconductor characteristics of the thin film. Therefore, it was insufficient to ensure homogeneity and film quality stability within the sputtering target plane.
  • Patent Document 4 is premised on an RF sputtering method that is inferior in productivity, and is difficult to apply to mass production on a large glass substrate.
  • the present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body and a sputtering target that are suitably used for manufacturing an oxide semiconductor film for a display device, and have high conductivity and relative density.
  • the object is to provide an oxide sintered body and a sputtering target having both of the above.
  • the oxide sintered body of the present invention that has solved the above problems is at least one selected from the group consisting of zinc oxide; tin oxide; Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements And an oxide sintered body obtained by mixing and sintering the metal (M metal) oxide powder, and when the oxide sintered body is X-ray diffracted, a Zn 2 SnO 4 compound Is detected, but the ZnM X O y phase and M X O y phase (x and y are arbitrary integers) are not detected.
  • the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [ The ratio of [Zn] to Sn] + [M metal] is 0.35 or more and 0.75 or less.
  • the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [M metal] is 0.01 or more and 0.30 or less.
  • the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [M metal] is 0.01 or more and 0.30 or less.
  • the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [M metal] is not less than 0.01 and not more than 0.30, and the ratio of [M metal] to [Zn] + [Sn] + [M metal] is It is 0.01 or more and 0.30 or less.
  • the oxide sintered body according to any one of the above has a relative density of 90% or more and a specific resistance of 1 ⁇ cm or less.
  • the sputtering target of the present invention that has solved the above problems is a sputtering target obtained using the oxide sintered body according to any of the above, and has a relative density of 90% or more and a specific resistance of 1 ⁇ cm or less. It has a gist at some point.
  • an oxide sintered body and a sputtering target that are excellent in conductivity and have a high relative density can be obtained. Further, according to the present invention, a sputtering target having excellent direct current discharge stability, excellent in-plane uniformity and film quality stability can be obtained.
  • an oxide semiconductor film can be formed at low cost by a direct current sputtering method that facilitates high-speed film formation, so that productivity is improved.
  • FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention.
  • the present inventors have disclosed at least one metal (M metal) selected from the group consisting of zinc oxide (ZnO); tin oxide (SnO); Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements.
  • M metal selected from the group consisting of zinc oxide (ZnO); tin oxide (SnO); Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements.
  • Oxide oxide (M metal oxide) and an oxide sintered body obtained by mixing and sintering hereinafter sometimes abbreviated as M metal-containing ZTO oxide sintered body.
  • M metal exists as a ZnM X O y phase and M X O y phase (x and y are arbitrary integers) which are spinel type compounds.
  • M metal is contained in Zn 2 SnO 4 (in addition, when one or both of SnO 2 and ZnO are present, they are contained in Zn 2 SnO 4 or in SnO 2 and in ZnO.
  • the M metal-containing ZTO-based oxide sintered body of the present invention will be described in detail.
  • a Zn 2 SnO 4 compound is detected, but a ZnM X O y phase and a M X O y phase (x , Y is an arbitrary integer), and is characterized in that it is an oxide sintered body having such a structure that it is not detected.
  • the X-ray diffraction conditions in the present invention are as follows. Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous firing measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • the Zn 2 SnO 4 compound (phase) is formed by bonding ZnO and SnO 2 constituting the oxide sintered body of the present invention.
  • This compound is a so-called spinel-type compound, which is rich in physical properties as an electronic material and has the characteristics that the physical properties change as the crystal structure changes.
  • SnO 2 or ZnO may be included slightly.
  • the composition ratio of Zn and Sn there is a case where SnO 2 or ZnO as well Zn 2 SnO 4 compound is detected, the above SnO 2 or ZnO is a DC discharge stability of the sputtering if trace amount This is because there is no adverse effect.
  • the ZnM X O y phase and the M X O y phase are spinels that can be formed by combining M metal constituting the oxide sintered body of the present invention with oxygen (O).
  • O oxygen
  • the present invention is characterized in that these compounds are not detected when the X-ray diffraction is performed. Since these compounds (for example, Ta 2 O 5 and Al 2 O 3 ) have high insulation properties, if an oxide of M metal is contained in an oxide sintered body or sputtering target, Al that protrudes in a cluster shape.
  • oxides and Ta oxides are mixed into the film, so that the semiconductor characteristics of the thin film are deteriorated and the carrier mobility is lowered.
  • an oxide phase of M element is prevented from being formed in the oxide sintered body under the sintering conditions described later, and the M element is dissolved in the Zn 2 SnO 4 phase, etc. The characteristics can be stabilized and a decrease in carrier mobility can be prevented.
  • M metal is at least one metal selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements, as will be described later.
  • M metal is Al
  • ZnAl 2 O 4 and Al 2 O 3 are not detected. “Not detected” means below the detection limit when the above-mentioned X-ray diffraction conditions are performed. It has been confirmed that all or most of the added M metal is dissolved in the Zn 2 SnO 4 compound. The remaining M metal that is not dissolved in the Zn 2 SnO 4 compound is presumed to be dissolved in SnO 2 or ZnO that can be generated by the composition of the oxide sintered body or segregated at the grain boundaries.
  • the oxide sintered body of the present invention comprises zinc oxide, tin oxide, and at least one metal (M metal) selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements. It is obtained by mixing and sintering each powder of oxide.
  • M metal metal selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements. It is obtained by mixing and sintering each powder of oxide.
  • oxides of ZnO and SnO are compounds that form a semiconductor by controlling the carrier concentration, and change the properties from insulating to semiconductor and conductive depending on the oxygen content in the oxide. Can do. This is because it is known that oxygen vacancies are intentionally generated in the oxide, and the surplus electrons become carriers, and when there are a relatively small number of carriers, it becomes a semiconductor, and when there are a large number of carriers, it degenerates and becomes a conductor. It has been.
  • M metal used in the present invention is an element useful for improving the characteristics of a film formed by sputtering, and was applied to a ZTO-based oxide in the present invention.
  • M metal is selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements and may be used alone or in combination of two or more.
  • the “rare earth element” is an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La of atomic number 57 to Lu of atomic number 71 in the periodic table).
  • one or more rare earth elements can be used.
  • the rare earth elements Gd, Nd, La, and Y are preferable from the viewpoint of semiconductor characteristics, and La and Y are more preferable.
  • Al, Nb, Ti, La, and Mg are preferable from the viewpoint of semiconductor characteristics, and Al, Nb, and La are more preferable.
  • Zn ratio when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [Sn] + [ [Zn] to [M metal] ratio [[Zn] / ([Zn] + [Sn] + [M metal]), hereinafter may be abbreviated as Zn ratio.
  • Zn ratio Is preferably 0.35 or more and 0.75 or less.
  • the Zn ratio is less than 0.35, fine processing (processing with high accuracy) of a thin film formed by sputtering is difficult, and etching residues are likely to occur.
  • the Zn ratio exceeds 0.75, the carrier mobility of the thin film decreases and falls below the desired level of 5 cm 2 / Vs. More preferably, it is 0.5 or more and 0.7 or less.
  • the oxide sintered body of the present invention and the sputtering target obtained using the oxide sintered body are characterized in that the relative density is 90% or more and the specific resistance is 1 ⁇ cm or less.
  • the oxide sintered body of the present invention has a very high relative density, preferably 90% or more, and more preferably 95% or more.
  • a high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.
  • a ZTO-based oxide it is preferable that it is composed only of a Zn 2 SnO 4 single phase from the viewpoint of increasing the density of the sintered body, and by adding an M metal oxide powder, a ZnM X O y phase
  • a ZnM X O y phase it is known that when a plurality of phases other than Zn 2 SnO 4 are formed by forming an M x O y phase or the like, the relative density tends to decrease.
  • these ZnM X O y phases and M X O y phases are not included, the relative density is not lowered, and 90% or more of the desired level can be secured.
  • the oxide sintered body of the present invention exists as a single phase in which all or most of the M metal is dissolved in Zn 2 SnO 4 , and may contain ZnO or SnO 2 to some extent. However, such a phase structure does not hinder densification of the oxide sintered body and does not adversely affect the properties of the thin film.
  • the oxide sintered body of the present invention has a small specific resistance, preferably 1 ⁇ cm or less, more preferably 0.1 ⁇ cm or less. Accordingly, film formation by a direct current sputtering method using plasma discharge using a direct current power source is possible, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.
  • the oxide sintered body of the present invention comprises zinc oxide, tin oxide, and at least one metal (M metal) selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements.
  • FIG. 1 shows a basic process from a raw material powder to a sputtering target, which is an oxide sintered body obtained by mixing and sintering oxide powders.
  • oxide powder is mixed and pulverized, dried and granulated, molded, subjected to atmospheric pressure sintering, heat-treated, and then the oxide sintered body is processed and bonded to obtain a sputtering target.
  • the basic process is shown.
  • the present invention is characterized in that the sintering conditions and the subsequent heat treatment conditions are appropriately controlled as described in detail below, and the other steps are not particularly limited, and the normally used steps are appropriately selected. You can choose.
  • this invention is not the meaning limited to this.
  • zinc oxide powder, tin oxide powder, and M metal oxide powder are mixed in a predetermined ratio, mixed and pulverized.
  • the purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film.
  • the blending ratio of each raw material powder is preferably controlled so that the ratio of Zn and M metal falls within the above-described range.
  • Mixing and pulverization are preferably performed by using a pot mill and adding the raw material powder together with water.
  • the balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
  • the mixed powder obtained in the above step is dried and granulated, and then molded.
  • the powder after drying and granulation is filled in a metal mold of a predetermined size, pre-molded by a mold press, and then molded by CIP (cold isostatic pressing) or the like.
  • CIP cold isostatic pressing
  • the molded body thus obtained is fired at normal pressure.
  • the firing temperature is about 1450 ° C. to 1600 ° C.
  • the holding time is about 8 hours or more.
  • the firing atmosphere is preferably a non-reducing atmosphere. For example, it is preferable to adjust the atmosphere by introducing oxygen gas into the furnace.
  • heat treatment is performed on the sintered body to obtain the oxide sintered body of the present invention.
  • the heat treatment temperature about 1000 ° C. or more and the holding time: about 8 hours or more in order to enable plasma discharge with a DC power source.
  • the specific resistance of the sintered body is generally improved from 100 ⁇ cm to 0.1 ⁇ cm.
  • the firing temperature is about 1100 ° C. or more, and the holding time is about 10 hours or more.
  • the firing temperature exceeds 1300 ° C., Zn evaporates and component fluctuations occur, so it is preferable to set it to 1300 ° C. or lower.
  • the holding time is preferably controlled to be approximately 30 hours or less in consideration of cost reduction and the like.
  • the heat treatment atmosphere is preferably a reducing atmosphere.
  • the sputtering target of the present invention can be obtained by processing and bonding according to a conventional method.
  • the relative density and specific resistance of the sputtering target thus obtained are also very good, like the oxide sintered body, and the preferable relative density is approximately 90% or more, and the preferable specific resistance is approximately 1 ⁇ cm or less. It is.
  • Zinc oxide powder JIS 1 type, purity 99.99%
  • granulating a mixed powder obtained in the above step was preformed molding pressure 0.5tonf / cm 2 at a die press, were present molding at a molding pressure of 3tonf / cm 2 at CIP .
  • the molded body thus obtained was sintered by holding at 1500 ° C. for 7 hours at normal pressure.
  • Oxygen gas was introduced into the sintering furnace and sintered in an oxygen atmosphere.
  • it was introduced into a heat treatment furnace and heat treated at 1200 ° C. for 10 hours.
  • Nitrogen gas was introduced into the heat treatment furnace and heat treatment was performed in a reducing atmosphere.
  • FIG. 2 and Table 1 show the results of analyzing the oxide sintered body (Ta—ZTO sintered body) thus obtained by X-ray diffraction analysis under the conditions described above. As shown in FIG. 2, although the oxide sintered body contains Zn 2 SnO 4 , no Ta oxide (Ta 2 O 5 or the like) was detected.
  • the sintered body was processed into a shape of 4 inches ⁇ and 5 mmt and bonded to a backing plate to obtain a sputtering target.
  • the sputtering target thus obtained was attached to a sputtering apparatus, and DC (direct current) magnetron sputtering was performed.
  • the sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. As a result, no abnormal discharge (arcing) was observed, and it was confirmed that the discharge was stable.
  • the relative density of the sputtering target thus obtained was measured by Archimedes method and found to be 90% or more. Moreover, when the specific resistance of the said sputtering target was measured by the four probe method, it was 1 ohm-cm or less, and all obtained the favorable result.
  • the oxide sintered body contained Zn 2 SnO 4, but no Al oxide (Al 2 O 3 or the like) was detected.
  • the oxide sintered body contains Zn 2 SnO 4, but no Ga oxide (Ga 2 O 3 or the like) was detected.
  • the oxide sintered body contained Zn 2 SnO 4, but no oxide of Hf (such as HfO 2 ) was detected.
  • the oxide sintered body contained Zn 2 SnO 4, but no Ti oxide (TiO 2 or the like) was detected.
  • the oxide sintered body contained Zn 2 SnO 4, but no Mg oxide (such as MgO) was detected.
  • the oxide sintered body contained Zn 2 SnO 4, but no Ga oxide (Ga 2 O 3 or the like) was detected.
  • the oxide sintered body contained Zn 2 SnO 4, but no La oxide (such as La 2 O 3 ) was detected.
  • the oxide sintered body contained Zn 2 SnO 4 .
  • the columns of “M metal oxide”, “ZnM X O y ”, and “M X O y phase” in Table 1 are “-(none)”.
  • the ZTO oxide sintered body containing M metal used in the present invention as a result of X-ray diffraction, separated the Mn metal oxide ZnM X O y phase and M X O y phase. It was confirmed that it did not form. As a result, it was found that the oxide sintered body of the present invention and the sputtering target obtained using the sintered body have a high relative density and a low specific resistance, and have extremely good characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

Provided is an oxide sintered compact that has both high conductivity and relative density and is ideal for the forming of an oxide semiconductor film for a display device. The oxide sintered compact of the present invention is obtained by mixing and sintering, each in powder form, zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group comprising Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements, wherein, when the oxide sintered compact is subjected to X-ray diffraction, a Zn2SnO4 compound is detected but spinel compounds in the form of a ZnMxOy phase or an MxO­y phase (where x and y are arbitrary integers) are not detected.

Description

酸化物焼結体およびスパッタリングターゲットOxide sintered body and sputtering target
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体およびスパッタリングターゲットに関するものである。 The present invention relates to an oxide sintered body and a sputtering target used when an oxide semiconductor thin film of a thin film transistor (TFT) used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method.
 TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。上記酸化物半導体(膜)の形成に当たっては、当該膜と同じ材料のスパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法で形成された薄膜は、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚などの面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるという長所を有しているからである。スパッタリングターゲットは、通常、酸化物粉末を混合、焼結し、機械加工を経て形成されている。 Amorphous (amorphous) oxide semiconductors used for TFTs have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance. In forming the oxide semiconductor (film), a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered. In-plane uniformity of component composition and film thickness in the film surface direction (in the film surface) is smaller in the thin film formed by sputtering compared to thin films formed by ion plating, vacuum evaporation, and electron beam evaporation. This is because it has the advantage that a thin film having the same composition as the sputtering target can be formed. The sputtering target is usually formed by mixing and sintering oxide powder and machining.
 表示装置に用いられる酸化物半導体の組成として、例えばIn含有の非晶質酸化物半導体(In-Ga-Zn-O、In-Zn-Oなど)が挙げられるが、希少金属であるInを使用しており、大量生産プロセスでは材料コストの上昇が懸念される。そこで、高価なInを含まず材料コストを低減でき、大量生産に適した酸化物半導体として、ZnにSnを添加してアモルファス化したZTO系の酸化物半導体が提案されており、特許文献1~4には、当該ZTO系酸化物半導体膜の製造に有用な酸化物焼結体およびスパッタリングターゲットが開示されている。 As the composition of the oxide semiconductor used for the display device, for example, an In-containing amorphous oxide semiconductor (In—Ga—Zn—O, In—Zn—O, etc.) can be cited, but the rare metal In is used. Therefore, there is a concern that material costs will increase in mass production processes. Therefore, a ZTO-based oxide semiconductor that has been made amorphous by adding Sn to Zn has been proposed as an oxide semiconductor that does not contain expensive In and can reduce material costs and is suitable for mass production. No. 4 discloses an oxide sintered body and a sputtering target useful for producing the ZTO-based oxide semiconductor film.
 このうち特許文献1には、長時間の焼成を行なって酸化スズ相を含有しないように組織を制御することにより、スパッタリング中の異常放電や割れの発生を抑制する方法が提案されている。また特許文献2には、900~1300℃の低温の仮焼粉末製造工程と本焼成工程の2段階工程を行なってZTO系焼結体を高密度化することにより、スパッタリング中の異常放電を抑制する方法が提案されている。特許文献3は、スピネル型のAB24化合物を含有させることによって導電性を向上させ、かつ高密度化する方法が提案されている。また、特許文献4には、900~1100℃の低温の仮焼粉末製造工程と本焼成工程の2段階の工程を行なって緻密なZTO系焼結体を得る方法が提案されている。 Among these, Patent Document 1 proposes a method of suppressing the occurrence of abnormal discharge and cracking during sputtering by performing long-time baking and controlling the structure so as not to contain a tin oxide phase. Patent Document 2 also suppresses abnormal discharge during sputtering by increasing the density of the ZTO-based sintered body by performing a two-step process of a low-temperature calcined powder manufacturing process at 900 to 1300 ° C. and a main baking process. A method has been proposed. Patent Document 3 proposes a method of improving the conductivity and increasing the density by including a spinel-type AB 2 O 4 compound. Patent Document 4 proposes a method of obtaining a dense ZTO-based sintered body by performing two steps of a low-temperature calcined powder manufacturing process at 900 to 1100 ° C. and a main baking process.
特開2007-277075号公報JP 2007-277075 A 特開2008-63214号公報JP 2008-63214 A 特開2010-18457号公報JP 2010-18457 A 特開2010-37161号公報JP 2010-37161 A
 表示装置用酸化物半導体膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体は、導電性に優れ、且つ高い相対密度を有していることが望まれる。また生産性や製造コストなどを考慮すると、高周波(RF)スパッタリング法でなく、高速成膜が容易な直流スパッタリング法で製造可能なスパッタリングターゲットの提供が望まれている。 It is desired that a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have excellent conductivity and a high relative density. In consideration of productivity, manufacturing cost, and the like, it is desired to provide a sputtering target that can be manufactured not by a high frequency (RF) sputtering method but by a direct current sputtering method that facilitates high-speed film formation.
 しかしながら、前述した特許文献1は高密度化という観点から検討されたものではなく、直流放電を安定・継続して実施するには不十分であった。また特許文献2は、酸化物焼結体の導電性を向上するという観点から検討されたものではなく、やはり、直流放電を安定・継続して実施するには不十分であった。 However, Patent Document 1 described above has not been studied from the viewpoint of increasing the density, and is insufficient to stably and continuously perform DC discharge. Further, Patent Document 2 has not been studied from the viewpoint of improving the conductivity of the oxide sintered body, and is still insufficient for stable and continuous DC discharge.
 一方、前述した特許文献3は、高密度化および高導電性の観点から検討されたものであるが、絶縁性の高いGa23相をスパッタリングターゲット中に含有しており、薄膜の半導体特性が損なわれるため、スパッタリングターゲット面内での均質性、および膜質安定性を確保するには不十分であった。また、特許文献4は、生産性に劣るRFスパッタリング法を前提としたものであり、大型ガラス基板上などの大量生産への適用は困難である。 On the other hand, Patent Document 3 described above has been studied from the viewpoints of higher density and higher conductivity, but contains a highly insulating Ga 2 O 3 phase in the sputtering target, and the semiconductor characteristics of the thin film. Therefore, it was insufficient to ensure homogeneity and film quality stability within the sputtering target plane. Patent Document 4 is premised on an RF sputtering method that is inferior in productivity, and is difficult to apply to mass production on a large glass substrate.
 本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体およびスパッタリングターゲットであって、高い導電性と相対密度を兼ね備えた酸化物焼結体およびスパッタリングターゲットを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body and a sputtering target that are suitably used for manufacturing an oxide semiconductor film for a display device, and have high conductivity and relative density. The object is to provide an oxide sintered body and a sputtering target having both of the above.
 上記課題を解決し得た本発明の酸化物焼結体は、酸化亜鉛と;酸化スズと;Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であって、前記酸化物焼結体をX線回折したとき、Zn2SnO4化合物は検出されるが、ZnMXy相およびMXy相(x、yは任意の整数である)は検出されないものであるところに要旨を有するものである。 The oxide sintered body of the present invention that has solved the above problems is at least one selected from the group consisting of zinc oxide; tin oxide; Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements And an oxide sintered body obtained by mixing and sintering the metal (M metal) oxide powder, and when the oxide sintered body is X-ray diffracted, a Zn 2 SnO 4 compound Is detected, but the ZnM X O y phase and M X O y phase (x and y are arbitrary integers) are not detected.
 本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[Zn]の比は、0.35以上0.75以下である。 In a preferred embodiment of the present invention, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [ The ratio of [Zn] to Sn] + [M metal] is 0.35 or more and 0.75 or less.
 本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下である。 In a preferred embodiment of the present invention, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [ The ratio of [M metal] to [Sn] + [M metal] is 0.01 or more and 0.30 or less.
 本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下である。 In a preferred embodiment of the present invention, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [ The ratio of [M metal] to [Sn] + [M metal] is 0.01 or more and 0.30 or less.
 本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下であり、且つ、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下である。 In a preferred embodiment of the present invention, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [ The ratio of [M metal] to [Sn] + [M metal] is not less than 0.01 and not more than 0.30, and the ratio of [M metal] to [Zn] + [Sn] + [M metal] is It is 0.01 or more and 0.30 or less.
 本発明の好ましい実施形態において、上記のいずれかに記載の酸化物焼結体の相対密度は90%以上であり、比抵抗は1Ωcm以下である。 In a preferred embodiment of the present invention, the oxide sintered body according to any one of the above has a relative density of 90% or more and a specific resistance of 1 Ωcm or less.
 また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度90%以上、比抵抗1Ωcm以下であるところに要旨を有するものである。 Moreover, the sputtering target of the present invention that has solved the above problems is a sputtering target obtained using the oxide sintered body according to any of the above, and has a relative density of 90% or more and a specific resistance of 1 Ωcm or less. It has a gist at some point.
 本発明によれば、導電性に優れ、且つ高い相対密度を有する酸化物焼結体およびスパッタリングターゲットが得られる。また、本発明によれば、直流放電安定性に優れ、面内の均質性および膜質安定性に優れたスパッタリングターゲットが得られる。本発明のスパッタリングターゲットを用いれば、高速成膜が容易な直流スパッタリング法により酸化物半導体膜を安価に成膜できるため、生産性が向上する。 According to the present invention, an oxide sintered body and a sputtering target that are excellent in conductivity and have a high relative density can be obtained. Further, according to the present invention, a sputtering target having excellent direct current discharge stability, excellent in-plane uniformity and film quality stability can be obtained. When the sputtering target of the present invention is used, an oxide semiconductor film can be formed at low cost by a direct current sputtering method that facilitates high-speed film formation, so that productivity is improved.
図1は、本発明の酸化物焼結体およびスパッタリングターゲットを製造するための基本的な工程を示す図である。FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention. 図2は、実験例1における本発明例の酸化物焼結体(Ta含有ZTO、Ta比=0.03)のX線回折結果を示すグラフである。FIG. 2 is a graph showing an X-ray diffraction result of the oxide sintered body (Ta-containing ZTO, Ta ratio = 0.03) of the example of the present invention in Experimental Example 1. 図3は、実験例2における本発明例の酸化物焼結体(Al含有ZTO、Al比=0.05)のX線回折結果を示すグラフである。FIG. 3 is a graph showing an X-ray diffraction result of an oxide sintered body (Al-containing ZTO, Al ratio = 0.05) of an example of the present invention in Experimental Example 2. 図4は、実験例3における本発明例の酸化物焼結体(Ga含有ZTO、Ga比=0.1)のX線回折結果を示すグラフである。FIG. 4 is a graph showing an X-ray diffraction result of the oxide sintered body (Ga-containing ZTO, Ga ratio = 0.1) of Example of the present invention in Experimental Example 3. 図5は、実験例4における比較例の酸化物焼結体(Al含有ZTO、Al比=0.35)のX線回折結果を示すグラフである。FIG. 5 is a graph showing an X-ray diffraction result of a comparative oxide sintered body (Al-containing ZTO, Al ratio = 0.35) in Experimental Example 4.
 本発明者らは、酸化亜鉛(ZnO)と;酸化スズ(SnO)と;Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属(M金属)の酸化物(M金属酸化物)の各粉末と、を混合および焼結して得られる酸化物焼結体(以下、M金属含有ZTO系酸化物焼結体と略記する場合がある。)について、高い導電性と高い相対密度を有しており、直流スパッタリング法を適用可能なスパッタリングターゲット用酸化物焼結体を提供するため、検討を重ねてきた。その結果、上記M金属含有ZTO系酸化物焼結体をX線回折したとき、Zn2SnO4化合物は検出されるが、スピネル型化合物であるZnMXy相およびMXy相(x、yは任意の整数である)は検出されないような構成としたときに所期の目的が達成されることを見出した。 The present inventors have disclosed at least one metal (M metal) selected from the group consisting of zinc oxide (ZnO); tin oxide (SnO); Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements. ) Oxide oxide (M metal oxide) and an oxide sintered body obtained by mixing and sintering (hereinafter sometimes abbreviated as M metal-containing ZTO oxide sintered body). In order to provide an oxide sintered body for a sputtering target, which has high conductivity and high relative density and can be applied with a direct current sputtering method, has been studied repeatedly. As a result, when the M metal-containing ZTO-based oxide sintered body is X-ray diffracted, Zn 2 SnO 4 compound is detected, but the ZnM X O y phase and M X O y phase (x , Y is an arbitrary integer), and it was found that the intended purpose is achieved when the configuration is such that it is not detected.
 詳細には、上記M金属含有ZTO系酸化物焼結体をX線回折したときの相構成について、(ア)ZnOとSnOは、これらが結合してZn2SnO4化合物として存在し、更にSnO2とまたはZnOとして存在しても良く、(イ)一方、M金属は、スピネル型化合物であるZnMXy相およびMXy相(x、yは任意の整数である)として存在せず、M金属の全部または少なくとも一部は、Zn2SnO4中(更に、SnO2、ZnOのいずれか一方または両方が存在するときは、Zn2SnO4中、またはSnO2中、ZnO中のいずれか一方または両方)に固溶した状態で存在する場合に上記目的を達成し得ること、
(ウ)そして、このような相構成を有する本発明のM金属含有ZTO系酸化物焼結体を得るためには、所定の焼結条件(好ましくは非還元性雰囲気下にて、1350~1650℃の温度で5時間以上焼成する)を行なえば良いこと、を突き止めた。更に、直流電源によるプラズマ放電などの、直流スパッタリング法の適用を可能にするためには、(エ)上記焼結後の熱処理条件を、例えば還元性雰囲気下にて、1000℃以上で8時間以上に制御して行なうことが好ましく、これにより、酸化物焼結体の導電性が一層向上することも見出し、本発明を完成した。
Specifically, with respect to the phase structure when the M metal-containing ZTO-based oxide sintered body is subjected to X-ray diffraction, (a) ZnO and SnO are bonded together to exist as a Zn 2 SnO 4 compound, and SnO 2 or ZnO, (b) On the other hand, M metal exists as a ZnM X O y phase and M X O y phase (x and y are arbitrary integers) which are spinel type compounds. In addition, all or at least a part of the M metal is contained in Zn 2 SnO 4 (in addition, when one or both of SnO 2 and ZnO are present, they are contained in Zn 2 SnO 4 or in SnO 2 and in ZnO. The above-mentioned purpose can be achieved when it exists in a solid solution state in either one or both),
(C) In order to obtain the M metal-containing ZTO-based oxide sintered body of the present invention having such a phase structure, 1350 to 1650 under predetermined sintering conditions (preferably in a non-reducing atmosphere). It has been found that it may be carried out at a temperature of ° C. for 5 hours or more. Furthermore, in order to make it possible to apply a direct current sputtering method such as plasma discharge with a direct current power source, (d) the heat treatment conditions after sintering are, for example, 1000 ° C. or higher and 8 hours or longer in a reducing atmosphere. It has been found that the conductivity of the oxide sintered body is further improved, and the present invention has been completed.
 まず、本発明のM金属含有ZTO系酸化物焼結体について詳しく説明する。上述したように本発明は、上記酸化物焼結体をX線回折したとき、Zn2SnO4化合物は検出されるが、スピネル型化合物であるZnMXy相およびMXy相(x、yは任意の整数である)は検出されないような構成の酸化物焼結体としたところに特徴がある。 First, the M metal-containing ZTO-based oxide sintered body of the present invention will be described in detail. As described above, according to the present invention, when the oxide sintered body is X-ray diffracted, a Zn 2 SnO 4 compound is detected, but a ZnM X O y phase and a M X O y phase (x , Y is an arbitrary integer), and is characterized in that it is an oxide sintered body having such a structure that it is not detected.
 本発明におけるX線回折条件は、以下のとおりである。
 分析装置:理学電機製「X線回折装置RINT-1500」
 分析条件
  ターゲット:Cu
  単色化:モノクロメートを使用(Kα)
  ターゲット出力:40kV-200mA
  (連続焼測定)θ/2θ走査
  スリット:発散1/2°、散乱1/2°、受光0.15mm
  モノクロメータ受光スリット:0.6mm
  走査速度:2°/min
  サンプリング幅:0.02°
  測定角度(2θ):5~90°
The X-ray diffraction conditions in the present invention are as follows.
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous firing measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °
 次に上記X線回折によって検出される化合物、または検出されない化合物について詳しく説明する。 Next, the compound detected by the X-ray diffraction or the compound not detected will be described in detail.
 (Zn2SnO4化合物について)
 Zn2SnO4化合物(相)は、本発明の酸化物焼結体を構成するZnOとSnO2が結合して形成されるものである。この化合物は所謂スピネル型化合物であり、電子材料として物性に富み、結晶構造の変化に伴って物性が変化するといった特徴を持つ。
(About Zn 2 SnO 4 compound)
The Zn 2 SnO 4 compound (phase) is formed by bonding ZnO and SnO 2 constituting the oxide sintered body of the present invention. This compound is a so-called spinel-type compound, which is rich in physical properties as an electronic material and has the characteristics that the physical properties change as the crystal structure changes.
 本発明では、Zn2SnO4化合物(相)のほか、SnO2やZnOが若干含まれていても良い。ZnとSnの組成比によっては、Zn2SnO4化合物だけでなくSnO2やZnOが検出される場合もあるが、上記のSnO2やZnOは、微量であればスパッタリングの直流放電安定性には悪影響を及ぼさないからである。例えば、2×[Zn]=[Sn]の場合、全てのZnとSnが複合化合物を形成すれば、Zn2SnO4化合物相のみ検出されるが、2×[Zn]>[Sn]の場合は、上記化合物の形成に寄与しなかった微量のZnOが検出され、一方、2×[Zn]<[Sn]の場合は微量のSnO2が検出される場合がある。 In the present invention, in addition to the Zn 2 SnO 4 compound (phase), SnO 2 or ZnO may be included slightly. The composition ratio of Zn and Sn, there is a case where SnO 2 or ZnO as well Zn 2 SnO 4 compound is detected, the above SnO 2 or ZnO is a DC discharge stability of the sputtering if trace amount This is because there is no adverse effect. For example, when 2 × [Zn] = [Sn], if all Zn and Sn form a composite compound, only the Zn 2 SnO 4 compound phase is detected, but when 2 × [Zn]> [Sn] Detects a trace amount of ZnO that did not contribute to the formation of the above compound, whereas a trace amount of SnO 2 may be detected when 2 × [Zn] <[Sn].
 (ZnMXy相およびMXy相)
 ZnMXy相およびMXy相(x、yは任意の整数である)は、本発明の酸化物焼結体を構成するM金属が酸素(O)と結合して形成し得るスピネル型化合物であるが、本発明では、上記のX線回折を行なったとき、これらの化合物が検出されないところに特徴がある。これらの化合物(例えばTa25やAl23など)は絶縁性が高いため、M金属の酸化物が酸化物焼結体やスパッタリングターゲットに含まれていると、クラスター状に飛び出したAl酸化物やTa酸化物が膜に混入して、薄膜の半導体特性が劣化し、キャリア移動度が低下するからである。本発明では、後記する焼結条件によって酸化物焼結体中にM元素の酸化物相が形成するのを防止し、Zn2SnO4相などにM元素を固溶させることにより、薄膜の膜特性を安定させ、キャリア移動度の低下を防ぐことができる。
(ZnM X O y phase and M X O y phase)
The ZnM X O y phase and the M X O y phase (x and y are arbitrary integers) are spinels that can be formed by combining M metal constituting the oxide sintered body of the present invention with oxygen (O). Although it is a type compound, the present invention is characterized in that these compounds are not detected when the X-ray diffraction is performed. Since these compounds (for example, Ta 2 O 5 and Al 2 O 3 ) have high insulation properties, if an oxide of M metal is contained in an oxide sintered body or sputtering target, Al that protrudes in a cluster shape. This is because oxides and Ta oxides are mixed into the film, so that the semiconductor characteristics of the thin film are deteriorated and the carrier mobility is lowered. In the present invention, an oxide phase of M element is prevented from being formed in the oxide sintered body under the sintering conditions described later, and the M element is dissolved in the Zn 2 SnO 4 phase, etc. The characteristics can be stabilized and a decrease in carrier mobility can be prevented.
 本発明において、M金属とは後記するように、Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属であり、例えばM金属がAlの場合、ZnAl24やAl23の化合物が検出されないことを意味する。なお、「検出されない」とは、上記のX線回折条件を行なったときに検出限界以下であることを意味する。添加されたM金属の全部またはその大部分は、Zn2SnO4化合物中に固溶していることを確認している。なお、Zn2SnO4化合物中に固溶していない残りのM金属は、酸化物焼結体の組成によって生成し得るSnO2やZnOに固溶、もしくは粒界に偏析していると推察される。 In the present invention, M metal is at least one metal selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements, as will be described later. For example, when M metal is Al , ZnAl 2 O 4 and Al 2 O 3 are not detected. “Not detected” means below the detection limit when the above-mentioned X-ray diffraction conditions are performed. It has been confirmed that all or most of the added M metal is dissolved in the Zn 2 SnO 4 compound. The remaining M metal that is not dissolved in the Zn 2 SnO 4 compound is presumed to be dissolved in SnO 2 or ZnO that can be generated by the composition of the oxide sintered body or segregated at the grain boundaries. The
 次に、本発明の酸化物焼結体を構成する元素について詳しく説明する。本発明の酸化物焼結体は、酸化亜鉛と;酸化スズと;Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られるものである。 Next, the elements constituting the oxide sintered body of the present invention will be described in detail. The oxide sintered body of the present invention comprises zinc oxide, tin oxide, and at least one metal (M metal) selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements. It is obtained by mixing and sintering each powder of oxide.
 このうちZnOおよびSnOの酸化物は、キャリア濃度を制御することによって半導体を形成する化合物であり、酸化物中の酸素含有量に応じて絶縁性から半導体、そして導電性へと性質を変化させることができる。これは、酸化物のなかに酸素欠損を故意に生じさせることによって余った電子がキャリアとなり、キャリアが比較的少数の場合は半導体に、キャリアが多量になれば縮退して導体化することが知られている。 Among these, oxides of ZnO and SnO are compounds that form a semiconductor by controlling the carrier concentration, and change the properties from insulating to semiconductor and conductive depending on the oxygen content in the oxide. Can do. This is because it is known that oxygen vacancies are intentionally generated in the oxide, and the surplus electrons become carriers, and when there are a relatively small number of carriers, it becomes a semiconductor, and when there are a large number of carriers, it degenerates and becomes a conductor. It has been.
 本発明に用いられるM金属は、スパッタリングによって形成した膜特性の向上に有用な元素であり、本発明でZTO系酸化物に適用した。M金属の添加により、例えば、キャリア移動度の向上、膜欠陥に起因すると考えられる内部準位の低減化が図られると考えられる。M金属は、Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択され、単独で用いても良いし、2種以上を併用しても良い。ここで「希土類元素」とは、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群を意味し、希土類元素は1種または2種以上を用いることができる。上記希土類元素のうち、半導体特性の観点から好ましいのはGd、Nd、La、Yであり、より好ましくはLa、Yである。 M metal used in the present invention is an element useful for improving the characteristics of a film formed by sputtering, and was applied to a ZTO-based oxide in the present invention. By adding M metal, it is considered that, for example, the carrier mobility is improved and the internal level, which is considered to be caused by film defects, can be reduced. The M metal is selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements and may be used alone or in combination of two or more. Here, the “rare earth element” is an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La of atomic number 57 to Lu of atomic number 71 in the periodic table). And one or more rare earth elements can be used. Among the rare earth elements, Gd, Nd, La, and Y are preferable from the viewpoint of semiconductor characteristics, and La and Y are more preferable.
 また、上記M金属全般について、半導体特性の観点などから好ましいのは、Al、Nb、Ti、La、Mgであり、より好ましくはAl、Nb、Laである。 Further, with respect to the above M metals in general, Al, Nb, Ti, La, and Mg are preferable from the viewpoint of semiconductor characteristics, and Al, Nb, and La are more preferable.
 本発明において、上記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[Zn]の比[[Zn]/([Zn]+[Sn]+[M金属])、以下、Zn比と略記する場合がある。]は、0.35以上0.75以下であることが好ましい。上記Zn比が0.35未満の場合、スパッタリングによって形成された薄膜の微細加工(精度良く加工すること)が難しく、エッチング残渣が生じ易い。一方、上記Zn比が0.75を超える場合は、薄膜のキャリア移動度が低下して所望レベルの5cm2/Vsを下回る。より好ましくは0.5以上0.7以下である。 In the present invention, when the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [Sn] + [ [Zn] to [M metal] ratio [[Zn] / ([Zn] + [Sn] + [M metal]), hereinafter may be abbreviated as Zn ratio. ] Is preferably 0.35 or more and 0.75 or less. When the Zn ratio is less than 0.35, fine processing (processing with high accuracy) of a thin film formed by sputtering is difficult, and etching residues are likely to occur. On the other hand, when the Zn ratio exceeds 0.75, the carrier mobility of the thin film decreases and falls below the desired level of 5 cm 2 / Vs. More preferably, it is 0.5 or more and 0.7 or less.
 また本発明において、[Zn]+[Sn]+[M金属]に対する[M金属]の比[[M金属]/([Zn]+[Sn]+[M金属])、以下、M金属比と略記する場合がある。]は、0.01以上0.30以下であることが好ましい。上記M金属比が0.01未満の場合、添加の効果が得られない。一方、上記M金属比が0.30を超える場合は、焼結性が悪化して製造が困難になり、直流放電安定性が不安定になる。より好ましくは0.03以上0.10以下である。後記する実施例では、M金属の種類に応じて、例えばM金属=Taの場合は、Ta比と略記する場合がある。 In the present invention, the ratio of [M metal] to [Zn] + [Sn] + [M metal] [[M metal] / ([Zn] + [Sn] + [M metal]), hereinafter, the M metal ratio May be abbreviated. ] Is preferably 0.01 or more and 0.30 or less. When the M metal ratio is less than 0.01, the effect of addition cannot be obtained. On the other hand, when the M metal ratio exceeds 0.30, the sinterability deteriorates, making the production difficult, and the DC discharge stability becomes unstable. More preferably, it is 0.03 or more and 0.10 or less. In the examples described later, depending on the type of M metal, for example, when M metal = Ta, the Ta ratio may be abbreviated.
 本発明の酸化物焼結体、更には当該酸化物焼結体を用いて得られるスパッタリングターゲットは、相対密度90%以上、比抵抗1Ωcm以下であるところに特徴がある。 The oxide sintered body of the present invention and the sputtering target obtained using the oxide sintered body are characterized in that the relative density is 90% or more and the specific resistance is 1 Ωcm or less.
 (相対密度90%以上)
 本発明の酸化物焼結体は、相対密度が非常に高く、好ましくは90%以上であり、より好ましくは95%以上である。高い相対密度は、スパッタリング中での割れやノジュールの発生を防止し得るだけでなく、安定した放電をターゲットライフまで連続して維持するなどの利点をもたらす。
(Relative density 90% or more)
The oxide sintered body of the present invention has a very high relative density, preferably 90% or more, and more preferably 95% or more. A high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.
 なお、一般にZTO系酸化物の場合、Zn2SnO4単相のみで構成されている方が焼結体の高密度化の観点からは好ましく、M金属酸化物粉末の添加によってZnMXy相やMXy相などが形成されてZn2SnO4以外の複数の相を形成すると相対密度の低下が生じ易くなることが知られている。これに対し本発明では、これらのZnMXy相やMXy相は含まれないため、相対密度の低下は見られず、所望レベルの90%以上を確保することができる。また本発明の酸化物焼結体は、M金属の全部またはその大部分がZn2SnO4に固溶した単相として存在しており、多少ではあるがZnOやSnO2も含み得るものであるが、このような相構成は、酸化物焼結体の緻密化を阻害するものではなく、薄膜の特性にも悪影響を及ぼすものでもない。 In general, in the case of a ZTO-based oxide, it is preferable that it is composed only of a Zn 2 SnO 4 single phase from the viewpoint of increasing the density of the sintered body, and by adding an M metal oxide powder, a ZnM X O y phase It is known that when a plurality of phases other than Zn 2 SnO 4 are formed by forming an M x O y phase or the like, the relative density tends to decrease. On the other hand, in the present invention, since these ZnM X O y phases and M X O y phases are not included, the relative density is not lowered, and 90% or more of the desired level can be secured. The oxide sintered body of the present invention exists as a single phase in which all or most of the M metal is dissolved in Zn 2 SnO 4 , and may contain ZnO or SnO 2 to some extent. However, such a phase structure does not hinder densification of the oxide sintered body and does not adversely affect the properties of the thin film.
 (比抵抗1Ωcm以下)
 本発明の酸化物焼結体は、比抵抗が小さく、1Ωcm以下であることが好ましく、より好ましくは0.1Ωcm以下である。これにより、直流電源を用いたプラズマ放電などによる直流スパッタリング法による成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。
(Specific resistance 1Ωcm or less)
The oxide sintered body of the present invention has a small specific resistance, preferably 1 Ωcm or less, more preferably 0.1 Ωcm or less. Accordingly, film formation by a direct current sputtering method using plasma discharge using a direct current power source is possible, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.
 次に、本発明の酸化物焼結体を製造する方法について説明する。 Next, a method for producing the oxide sintered body of the present invention will be described.
 本発明の酸化物焼結体は、酸化亜鉛と;酸化スズと;Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であり、原料粉末からスパッタリングターゲットまでの基本工程を図1に示す。図1には、酸化物の粉末を混合・粉砕→乾燥・造粒→成形→常圧焼結→熱処理して得られた酸化物焼結体を、加工→ボンディグしてスパッタリングターゲットを得るまでの基本工程を示している。上記工程のうち本発明では、以下に詳述するように焼結条件およびその後の熱処理条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。 The oxide sintered body of the present invention comprises zinc oxide, tin oxide, and at least one metal (M metal) selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and rare earth elements. FIG. 1 shows a basic process from a raw material powder to a sputtering target, which is an oxide sintered body obtained by mixing and sintering oxide powders. In FIG. 1, oxide powder is mixed and pulverized, dried and granulated, molded, subjected to atmospheric pressure sintering, heat-treated, and then the oxide sintered body is processed and bonded to obtain a sputtering target. The basic process is shown. Among the above steps, the present invention is characterized in that the sintering conditions and the subsequent heat treatment conditions are appropriately controlled as described in detail below, and the other steps are not particularly limited, and the normally used steps are appropriately selected. You can choose. Hereinafter, although each process is demonstrated, this invention is not the meaning limited to this.
 まず、酸化亜鉛粉末、酸化スズ粉末、およびM金属の酸化物粉末を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、ZnおよびM金属の比率が前述した範囲内となるように制御することが好ましい。 First, zinc oxide powder, tin oxide powder, and M metal oxide powder are mixed in a predetermined ratio, mixed and pulverized. The purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film. The blending ratio of each raw material powder is preferably controlled so that the ratio of Zn and M metal falls within the above-described range.
 混合および粉砕はポットミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。 Mixing and pulverization are preferably performed by using a pot mill and adding the raw material powder together with water. The balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
 次に、上記工程で得られた混合粉末を乾燥し造粒した後、成形する。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形した後、CIP(冷間静水圧プレス)などによって成形することが好ましい。焼結体の相対密度を上昇させるためには、予備成形の成形圧力を約0.2tonf/cm2以上に制御することが好ましく、成形時の圧力は約1.2tonf/cm2以上に制御することが好ましい。 Next, the mixed powder obtained in the above step is dried and granulated, and then molded. In the molding, it is preferable that the powder after drying and granulation is filled in a metal mold of a predetermined size, pre-molded by a mold press, and then molded by CIP (cold isostatic pressing) or the like. In order to increase the relative density of the sintered body, it is preferable to control the molding pressure for preforming to about 0.2 tonf / cm 2 or more, and the pressure at the time of molding to about 1.2 tonf / cm 2 or more. It is preferable.
 次に、このようにして得られた成形体に対し、常圧にて焼成を行う。本発明では、所望の化合物相構成とし、相対密度を高めるためには、焼成温度:約1350℃~1650℃、保持時間:約5時間以上で焼結を行なうことが好ましい。焼成温度が高いほど焼結体の相対密度が向上し易く、かつ短時間で処理できるため好ましいが、温度が高くなり過ぎると焼結体が分解し易くなるため、焼成条件は上記の範囲とするのが好ましい。より好ましくは、焼成温度:約1450℃~1600℃、保持時間:約8時間以上である。なお、焼成雰囲気は非還元性雰囲気が好ましく、例えば炉内に酸素ガスを導入することによって雰囲気を調整することが好ましい。 Next, the molded body thus obtained is fired at normal pressure. In the present invention, it is preferable to perform sintering at a firing temperature of about 1350 ° C. to 1650 ° C. and a holding time of about 5 hours or more in order to obtain a desired compound phase structure and increase the relative density. The higher the firing temperature is, the easier it is to improve the relative density of the sintered body, and it can be processed in a short time, but it is preferable because the sintered body is easily decomposed when the temperature is too high. Is preferred. More preferably, the firing temperature is about 1450 ° C. to 1600 ° C., and the holding time is about 8 hours or more. The firing atmosphere is preferably a non-reducing atmosphere. For example, it is preferable to adjust the atmosphere by introducing oxygen gas into the furnace.
 次に、焼結体に対して熱処理を行い、本発明の酸化物焼結体を得る。本発明では、直流電源によるプラズマ放電を可能にするため、熱処理温度:約1000℃以上、保持時間:約8時間以上に制御することが好ましい。これにより、焼結体の比抵抗が、おおむね100Ωcmから0.1Ωcmまで向上するようになる。より好ましくは、焼成温度:約1100℃以上、保持時間:約10時間以上である。一方、上記焼成温度が1300℃を超えると、Znが蒸発し、成分変動が発生するため、1300℃以下に設定することが好ましい。また、上記保持時間は、コスト低減などを考慮すると、おおむね、30時間以下に制御することが好ましい。熱処理雰囲気は還元性雰囲気が好ましく、例えば炉内に窒素ガスを導入することによって雰囲気を調整することが好ましい。具体的には、M金属の種類などによって適切に制御することが好ましい。 Next, heat treatment is performed on the sintered body to obtain the oxide sintered body of the present invention. In the present invention, it is preferable to control the heat treatment temperature: about 1000 ° C. or more and the holding time: about 8 hours or more in order to enable plasma discharge with a DC power source. Thereby, the specific resistance of the sintered body is generally improved from 100 Ωcm to 0.1 Ωcm. More preferably, the firing temperature is about 1100 ° C. or more, and the holding time is about 10 hours or more. On the other hand, if the firing temperature exceeds 1300 ° C., Zn evaporates and component fluctuations occur, so it is preferable to set it to 1300 ° C. or lower. The holding time is preferably controlled to be approximately 30 hours or less in consideration of cost reduction and the like. The heat treatment atmosphere is preferably a reducing atmosphere. For example, it is preferable to adjust the atmosphere by introducing nitrogen gas into the furnace. Specifically, it is preferable to appropriately control depending on the type of M metal.
 上記のようにして所望の酸化物焼結体を得た後、常法により、加工→ボンディングを行なうと本発明のスパッタリングターゲットが得られる。このようにして得られるスパッタリングターゲットの相対密度および比抵抗も、酸化物焼結体と同様、非常に良好なものであり、好ましい相対密度はおおむね90%以上であり、好ましい比抵抗はおおむね1Ωcm以下である。 After obtaining the desired oxide sintered body as described above, the sputtering target of the present invention can be obtained by processing and bonding according to a conventional method. The relative density and specific resistance of the sputtering target thus obtained are also very good, like the oxide sintered body, and the preferable relative density is approximately 90% or more, and the preferable specific resistance is approximately 1 Ωcm or less. It is.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.
 (実験例1)
 本実験例1では、M金属としてTaを含むTa-ZTO焼結体(Ta比=0.03)を以下の方法により製造した。
(Experimental example 1)
In Experimental Example 1, a Ta—ZTO sintered body (Ta ratio = 0.03) containing Ta as an M metal was manufactured by the following method.
 酸化亜鉛粉末(JIS1種、純度99.99%)、純度99.99%の酸化スズ粉末、および純度99.99%の酸化タンタル粉末を[Zn]:[Sn]:[Ta]=64.7:32.3:3.0の比率で配合し、ナイロンボールミルで20時間混合した。次に、上記工程で得られた混合粉末を造粒し、金型プレスにて成形圧力0.5tonf/cm2で予備成形した後、CIPにて成形圧力3tonf/cm2で本成形を行った。 Zinc oxide powder (JIS 1 type, purity 99.99%), tin oxide powder of purity 99.99%, and tantalum oxide powder of purity 99.99% were [Zn]: [Sn]: [Ta] = 64.7. : 32.3: 3.0 and blended with a nylon ball mill for 20 hours. Next, granulating a mixed powder obtained in the above step was preformed molding pressure 0.5tonf / cm 2 at a die press, were present molding at a molding pressure of 3tonf / cm 2 at CIP .
 このようにして得られた成形体を、常圧にて1500℃で7時間保持して焼結を行なった。焼結炉内には酸素ガスを導入し、酸素雰囲気下で焼結した。次いで熱処理炉内に導入し、1200℃で10時間熱処理した。熱処理炉内には窒素ガスを導入し、還元性雰囲気で熱処理した。 The molded body thus obtained was sintered by holding at 1500 ° C. for 7 hours at normal pressure. Oxygen gas was introduced into the sintering furnace and sintered in an oxygen atmosphere. Next, it was introduced into a heat treatment furnace and heat treated at 1200 ° C. for 10 hours. Nitrogen gas was introduced into the heat treatment furnace and heat treatment was performed in a reducing atmosphere.
 このようにして得られた酸化物焼結体(Ta-ZTO焼結体)を、前述した条件でX線回折による解析を行った結果を図2および表1に示す。図2に示すように、上記酸化物焼結体にはZn2SnO4が含まれているが、Taの酸化物(Ta25など)は検出されなかった。 FIG. 2 and Table 1 show the results of analyzing the oxide sintered body (Ta—ZTO sintered body) thus obtained by X-ray diffraction analysis under the conditions described above. As shown in FIG. 2, although the oxide sintered body contains Zn 2 SnO 4 , no Ta oxide (Ta 2 O 5 or the like) was detected.
 更に、上記の焼結体を4インチφ、5mmtの形状に加工し、バッキングプレートにボンディングしてスパッタリングターゲットを得た。このようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリングを行なった。スパッタリング条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとした。その結果、異常放電(アーキング)の発生は見られず、安定して放電することが確認された。 Further, the sintered body was processed into a shape of 4 inches φ and 5 mmt and bonded to a backing plate to obtain a sputtering target. The sputtering target thus obtained was attached to a sputtering apparatus, and DC (direct current) magnetron sputtering was performed. The sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. As a result, no abnormal discharge (arcing) was observed, and it was confirmed that the discharge was stable.
 また、このようにして得られたスパッタリングターゲットの相対密度をアルキメデス法で測定したところ90%以上であった。また上記スパッタリングターゲットの比抵抗を四端子法によって測定したところ、1Ωcm以下であり、いずれも良好な結果が得られた。 Further, the relative density of the sputtering target thus obtained was measured by Archimedes method and found to be 90% or more. Moreover, when the specific resistance of the said sputtering target was measured by the four probe method, it was 1 ohm-cm or less, and all obtained the favorable result.
 (実験例2)
 本実験例2では、M金属としてAl含むAl-ZTO焼結体(Al比=0.05)を以下の方法により製造した。
(Experimental example 2)
In Experimental Example 2, an Al—ZTO sintered body containing Al as the M metal (Al ratio = 0.05) was produced by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化アルミニウム粉末とを[Zn]:[Sn]:[Al]=63.3:31.7:5.0の比率で配合し、成形体を1550℃で5時間保持して焼結した後、1150℃で14時間熱処理したこと以外は、上記実験例1と同様にしてAl-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as in Experimental Example 1 described above and an aluminum oxide powder with a purity of 99.99% were [Zn]: [Sn]: [Al] = 63.3: 31.7: 5. The Al—ZTO sintered body was prepared in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0.0 and sintered at 1550 ° C. for 5 hours and then heat-treated at 1150 ° C. for 14 hours. Obtained.
 これらの結果を図3および表1に示す。図3に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Alの酸化物(Al23など)は検出されなかった。 These results are shown in FIG. As shown in FIG. 3, the oxide sintered body contained Zn 2 SnO 4, but no Al oxide (Al 2 O 3 or the like) was detected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 (実験例3)
 本実験例3では、M金属としてGa含むGa-ZTO焼結体(Ga比=0.1)を以下の方法により製造した。
(Experimental example 3)
In Experimental Example 3, a Ga—ZTO sintered body containing Ga as an M metal (Ga ratio = 0.1) was produced by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化ガリウム粉末を[Zn]:[Sn]:[Ga]=60.0:30.0:10.0の比率で配合し、成形体を1600℃で8時間保持して焼結した後、1200℃で16時間熱処理したこと以外は、上記実験例1と同様にしてGa-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as those of Experimental Example 1 described above and a gallium oxide powder having a purity of 99.99% were [Zn]: [Sn]: [Ga] = 60.0: 30.0: 10. A Ga—ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1600 ° C. for 8 hours and then heat treated at 1200 ° C. for 16 hours. It was.
 これらの結果を図4および表1に示す。図4に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Gaの酸化物(Ga23など)は検出されなかった。 These results are shown in FIG. As shown in FIG. 4, the oxide sintered body contains Zn 2 SnO 4, but no Ga oxide (Ga 2 O 3 or the like) was detected.
更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度93%、比抵抗3.6×10-2Ωcmであり、良好な結果が得られた。 Further, when the sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 93% and the specific resistance was 3.6 × 10 −2 Ωcm, which was good. Results were obtained.
 (実験例4)
 本実験例4では、M金属としてHfを含むHf-ZTO焼結体(Hf比=0.08)を以下の方法により製造した。
(Experimental example 4)
In Experimental Example 4, an Hf—ZTO sintered body (Hf ratio = 0.08) containing Hf as the M metal was manufactured by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化ハフニウム粉末を[Zn]:[Sn]:[Hf]=61.3:30.7:8.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1200℃で10時間熱処理したこと以外は、上記実験例1と同様にしてHf-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as in Experimental Example 1 described above and hafnium oxide powder with a purity of 99.99% were [Zn]: [Sn]: [Hf] = 61.3: 30.7: 8. The Hf-ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and then heat treated at 1200 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Hfの酸化物(HfO2など)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but no oxide of Hf (such as HfO 2 ) was detected.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 (実験例5)
 本実験例5では、M金属としてTiを含むTi-ZTO焼結体(Ti比=0.1)を以下の方法により製造した。
(Experimental example 5)
In Experimental Example 5, a Ti—ZTO sintered body (Ti ratio = 0.1) containing Ti as an M metal was manufactured by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化チタン粉末を[Zn]:[Sn]:[Ti]=60.0:30.0:10.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1200℃で10時間熱処理したこと以外は、上記実験例1と同様にしてTi-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as those of Experimental Example 1 described above and titanium oxide powder with a purity of 99.99% were [Zn]: [Sn]: [Ti] = 60.0: 30.0: 10. A Ti—ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and then heat treated at 1200 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Tiの酸化物(TiO2など)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but no Ti oxide (TiO 2 or the like) was detected.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 (実験例6)
 本実験例6では、M金属としてNbを含むNb-ZTO焼結体(Nb比=0.05)を以下の方法により製造した。
(Experimental example 6)
In Experimental Example 6, an Nb—ZTO sintered body (Nb ratio = 0.05) containing Nb as the M metal was manufactured by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化ニオブ粉末を[Zn]:[Sn]:[Nb]=63.3:31.7:5.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1200℃で10時間熱処理したこと以外は、上記実験例1と同様にしてNb-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as in Experimental Example 1 described above and niobium oxide powder with a purity of 99.99% were [Zn]: [Sn]: [Nb] = 63.3: 31.7: 5. The Nb-ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and then heat treated at 1200 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Nbの酸化物(Nb25など)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but Nb oxide (Nb 2 O 5 or the like) was not detected.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 (実験例7)
 本実験例7では、M金属としてMgを含むMg-ZTO焼結体(Mg比=0.05)を以下の方法により製造した。
(Experimental example 7)
In Experimental Example 7, a Mg—ZTO sintered body (Mg ratio = 0.05) containing Mg as the M metal was manufactured by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化マグネシウム粉末を[Zn]:[Sn]:[Mg]=63.3:31.7:5.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1500℃で10時間熱処理したこと以外は、上記実験例1と同様にしてMg-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as in Experimental Example 1 described above and a magnesium oxide powder with a purity of 99.99% [Zn]: [Sn]: [Mg] = 63.3: 31.7: 5. An Mg—ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and sintered and then heat-treated at 1500 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Mgの酸化物(MgOなど)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but no Mg oxide (such as MgO) was detected.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 (実験例8)
 本実験例8では、M金属としてGaを含むGa-ZTO焼結体(Ga比=0.20)を以下の方法により製造した。
(Experimental example 8)
In Experimental Example 8, a Ga—ZTO sintered body (Ga ratio = 0.20) containing Ga as an M metal was manufactured by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化ガリウム粉末を[Zn]:[Sn]:[Ga]=40.0:40.0:20.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1500℃で10時間熱処理したこと以外は、上記実験例1と同様にしてGa-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as those of Experimental Example 1 described above and a gallium oxide powder having a purity of 99.99% [Zn]: [Sn]: [Ga] = 40.0: 40.0: 20. A Ga—ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and then heat treated at 1500 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Gaの酸化物(Ga23など)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but no Ga oxide (Ga 2 O 3 or the like) was detected.
 (実験例9)
 本実験例9では、M金属としてLaを含むLa-ZTO焼結体(La比=0.05)を以下の方法により製造した。
(Experimental example 9)
In Experimental Example 9, a La—ZTO sintered body containing La as an M metal (La ratio = 0.05) was produced by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末と、純度99.99%の酸化ランタン粉末を[Zn]:[Sn]:[La]=63.3:31.7:5.0の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1500℃で10時間熱処理したこと以外は、上記実験例1と同様にしてLa-ZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as those of Experimental Example 1 described above and a lanthanum oxide powder having a purity of 99.99% were [Zn]: [Sn]: [La] = 63.3: 31.7: 5. A La-ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that the mixture was blended at a ratio of 0 and sintered at 1500 ° C. for 7 hours and then heat-treated at 1500 ° C. for 10 hours. It was.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれているが、Laの酸化物(La23など)は検出されなかった。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4, but no La oxide (such as La 2 O 3 ) was detected.
 (比較例1)
 本比較例1では、M金属としてAl含むAl-ZTO焼結体(Al比=0.35)を以下の方法により製造した。
(Comparative Example 1)
In this comparative example 1, an Al—ZTO sintered body (Al ratio = 0.35) containing Al as M metal was produced by the following method.
 まず、前述した実験例2と同じ酸化亜鉛粉末と酸化スズ粉末と酸化アルミニウム粉末とを、[Zn]:[Sn]:[Al]=43.3:21.7:35.0の比率で配合し、炉ZnMXy相およびMXy相を内に成形体を1300℃で5時間保持して焼結し、1200℃で10時間熱処理したこと以外は、上記実験例1と同様にしてAl-ZTO焼結体を得た。 First, the same zinc oxide powder, tin oxide powder and aluminum oxide powder as those of Experimental Example 2 described above were blended at a ratio of [Zn]: [Sn]: [Al] = 43.3: 21.7: 35.0. Then, in the same manner as in Experimental Example 1 except that the molded body was sintered at 1300 ° C. for 5 hours and heat treated at 1200 ° C. for 10 hours with the furnace ZnM X O y phase and M X O y phase inside. Thus, an Al—ZTO sintered body was obtained.
 これらの結果を図5に示す。図5に示すように、上記酸化物焼結体には、Zn2SnO4とZnOのほかに、Alの酸化物であるZnAl24が検出された。 These results are shown in FIG. As shown in FIG. 5, ZnAl 2 O 4 that is an oxide of Al was detected in the oxide sintered body in addition to Zn 2 SnO 4 and ZnO.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、スパッタリング中に異常放電が発生した。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度は67%と低く、比抵抗は100Ωcmであった。 Further, when the sintered body was sputtered in the same manner as in Experimental Example 1, abnormal discharge occurred during sputtering. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was as low as 67% and the specific resistance was 100 Ωcm.
 (参考例)
 本参考例では、M金属を含まないZTO焼結体を以下の方法により製造した。
(Reference example)
In this reference example, a ZTO sintered body containing no M metal was produced by the following method.
 まず、前述した実験例1と同じ酸化亜鉛粉末および酸化スズ粉末を、[Zn]:[Sn]=66.7:33.3の比率で配合し、成形体を1500℃で7時間保持して焼結した後、1200℃で10時間熱処理したこと以外は、上記実験例1と同様にしてZTO焼結体を得た。 First, the same zinc oxide powder and tin oxide powder as those of Experimental Example 1 described above were blended at a ratio of [Zn]: [Sn] = 66.7: 33.3, and the compact was held at 1500 ° C. for 7 hours. After sintering, a ZTO sintered body was obtained in the same manner as in Experimental Example 1 except that heat treatment was performed at 1200 ° C. for 10 hours.
 これらの結果を表1に示す。表1に示すように、上記酸化物焼結体には、Zn2SnO4が含まれていた。上記参考例ではM金属を添加していないため、表1中、「M金属酸化物」、「ZnMXy」および「MXy相」の欄は「-(なし)」となる。 These results are shown in Table 1. As shown in Table 1, the oxide sintered body contained Zn 2 SnO 4 . In the above reference example, since M metal is not added, the columns of “M metal oxide”, “ZnM X O y ”, and “M X O y phase” in Table 1 are “-(none)”.
 更に上記の焼結体を、上記実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗を、上記実験例1と同様にして測定したところ、相対密度90%以上、比抵抗1Ωcm以下であり、良好な結果が得られた。 Further, when the above sintered body was sputtered in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, when the relative density and specific resistance of the sputtering target thus obtained were measured in the same manner as in Experimental Example 1, the relative density was 90% or more and the specific resistance was 1 Ωcm or less, and good results were obtained. It was.
 以上の実験結果より、本発明に用いられるM金属を含むZTO系酸化物焼結体は、X線回折の結果、M金属の酸化物であるZnMXy相およびMXy相を分離形成しないことが確認された。その結果、本発明の酸化物焼結体および当該焼結体を用いて得られるスパッタリングターゲットは、高い相対密度および低い比抵抗を有しており、極めて良好な特性を有することが分かった。 From the above experimental results, the ZTO oxide sintered body containing M metal used in the present invention, as a result of X-ray diffraction, separated the Mn metal oxide ZnM X O y phase and M X O y phase. It was confirmed that it did not form. As a result, it was found that the oxide sintered body of the present invention and the sputtering target obtained using the sintered body have a high relative density and a low specific resistance, and have extremely good characteristics.

Claims (6)

  1.  酸化亜鉛と;酸化スズと;Al、Hf、Ta、Ti、Nb、Mg、Gaおよび希土類元素よりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であって、
     前記酸化物焼結体をX線回折したとき、Zn2SnO4化合物は検出されるが、ZnMXy相およびMXy相(x、yは任意の整数である)は検出されないものであることを特徴とする酸化物焼結体。
    Zinc oxide; tin oxide; and powders of oxides of at least one metal (M metal) selected from the group consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga and rare earth elements and An oxide sintered body obtained by sintering,
    When the oxide sintered body is subjected to X-ray diffraction, Zn 2 SnO 4 compound is detected, but ZnM X O y phase and M X O y phase (x and y are arbitrary integers) are not detected An oxide sintered body characterized by being:
  2.  前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[Zn]の比は、0.35以上0.75以下である請求項1に記載の酸化物焼結体。 When the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [Sn] + [M metal] 2. The oxide sintered body according to claim 1, wherein a ratio of [Zn] is 0.35 or more and 0.75 or less.
  3.  前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下である請求項1に記載の酸化物焼結体。 When the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [Sn] + [M metal] 2. The oxide sintered body according to claim 1, wherein a ratio of [M metal] is 0.01 or more and 0.30 or less.
  4.  前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[Sn]、[M金属]としたとき、[Zn]+[Sn]+[M金属]に対する[M金属]の比は、0.01以上0.30以下である請求項2に記載の酸化物焼結体。 When the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [Sn], and [M metal], respectively, [Zn] + [Sn] + [M metal] The oxide sintered body according to claim 2, wherein the ratio of [M metal] is 0.01 or more and 0.30 or less.
  5.  相対密度90%以上、比抵抗1Ωcm以下である請求項1~4のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 4, which has a relative density of 90% or more and a specific resistance of 1 Ωcm or less.
  6.  請求項1~4のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度90%以上、比抵抗1Ωcm以下であることを特徴とするスパッタリングターゲット。
     
     
    A sputtering target obtained by using the oxide sintered body according to any one of claims 1 to 4, wherein the relative density is 90% or more and the specific resistance is 1 Ωcm or less.

PCT/JP2011/071195 2010-09-24 2011-09-16 Oxide sintered compact and sputtering target WO2012039351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213353 2010-09-24
JP2010213353A JP2012066968A (en) 2010-09-24 2010-09-24 Oxide sintered compact and sputtering target

Publications (1)

Publication Number Publication Date
WO2012039351A1 true WO2012039351A1 (en) 2012-03-29

Family

ID=45873838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071195 WO2012039351A1 (en) 2010-09-24 2011-09-16 Oxide sintered compact and sputtering target

Country Status (3)

Country Link
JP (1) JP2012066968A (en)
TW (1) TW201229273A (en)
WO (1) WO2012039351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950490A (en) * 2017-05-25 2018-12-07 日立金属株式会社 Oxide target material and its manufacturing method
CN109477206A (en) * 2016-07-11 2019-03-15 株式会社半导体能源研究所 The manufacturing method of sputtering target material and the sputtering target material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141066A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Oxide semiconductor material and sputtering target
JP5983163B2 (en) 2012-08-07 2016-08-31 日立金属株式会社 Oxide semiconductor target, oxide semiconductor material, and semiconductor device manufacturing method using the same
JP6233233B2 (en) * 2013-08-06 2017-11-22 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
WO2017086016A1 (en) * 2015-11-20 2017-05-26 住友金属鉱山株式会社 SINTERED Sn-Zn-O OXIDE AND PROCESS FOR PRODUCING SAME
JP6677095B2 (en) * 2015-11-20 2020-04-08 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same
JP6551683B2 (en) * 2016-03-11 2019-07-31 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same
KR20200053469A (en) * 2017-09-14 2020-05-18 미쓰비시 마테리알 가부시키가이샤 Sputtering target
EP3992168A4 (en) 2019-06-27 2023-08-02 Idemitsu Kosan Co.,Ltd. Oxide sintered body
CN117396630A (en) * 2021-06-04 2024-01-12 Jx金属株式会社 Sputtering target and method for producing same
WO2023132144A1 (en) * 2022-01-05 2023-07-13 Jx金属株式会社 Oxide film and oxide sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2009161389A (en) * 2007-12-29 2009-07-23 Kanazawa Inst Of Technology Zinc oxide-based transparent conductive film
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2010070410A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Method for producing oxide sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2009161389A (en) * 2007-12-29 2009-07-23 Kanazawa Inst Of Technology Zinc oxide-based transparent conductive film
JP2010037161A (en) * 2008-08-06 2010-02-18 Hitachi Metals Ltd Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP2010070410A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Method for producing oxide sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477206A (en) * 2016-07-11 2019-03-15 株式会社半导体能源研究所 The manufacturing method of sputtering target material and the sputtering target material
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11735403B2 (en) 2016-07-11 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
CN108950490A (en) * 2017-05-25 2018-12-07 日立金属株式会社 Oxide target material and its manufacturing method

Also Published As

Publication number Publication date
TW201229273A (en) 2012-07-16
JP2012066968A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
WO2012039351A1 (en) Oxide sintered compact and sputtering target
JP5651095B2 (en) Oxide sintered body and sputtering target
WO2012096267A1 (en) Oxide sintered compact and sputtering target
WO2012118150A1 (en) Oxide sintered compact and sputtering target
WO2012118156A1 (en) Sintered oxide and sputtering target
JP5750063B2 (en) Oxide sintered body and sputtering target
JP5750065B2 (en) Oxide sintered body and sputtering target
JP5796812B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5952891B2 (en) Oxide sintered body and method for producing sputtering target
JP2019038735A (en) Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film
WO2013065786A1 (en) Oxide sintered compact and sputtering target, and method for producing same
WO2012096343A1 (en) Oxide sintered body and sputtering target
WO2013065784A1 (en) Oxide sintered compact and sputtering target, and method for producing same
KR20180117631A (en) The oxide-sintered body and the sputtering target
JP5750064B2 (en) Oxide sintered body and sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826796

Country of ref document: EP

Kind code of ref document: A1