WO2012039318A1 - 光ピックアップ装置及び光ディスク装置 - Google Patents

光ピックアップ装置及び光ディスク装置 Download PDF

Info

Publication number
WO2012039318A1
WO2012039318A1 PCT/JP2011/070811 JP2011070811W WO2012039318A1 WO 2012039318 A1 WO2012039318 A1 WO 2012039318A1 JP 2011070811 W JP2011070811 W JP 2011070811W WO 2012039318 A1 WO2012039318 A1 WO 2012039318A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
oscillation wavelength
laser light
pickup device
light
Prior art date
Application number
PCT/JP2011/070811
Other languages
English (en)
French (fr)
Inventor
宏勲 中原
俊哉 的崎
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012535002A priority Critical patent/JPWO2012039318A1/ja
Priority to CN201190000742.4U priority patent/CN203276837U/zh
Publication of WO2012039318A1 publication Critical patent/WO2012039318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors

Definitions

  • the present invention relates to a technique for reproducing recorded information from an optical disc.
  • Optical discs such as CD (Compact Disc), DVD (Digital Versatile Disc: Digital Versatile Disc) or BD (Blu-ray Disc; registered trademark) enable non-contact information recording / reproduction, and have a large capacity and are relatively inexpensive. Therefore, it is widely used from industrial use to consumer use.
  • the recording marks including pits and phase change marks
  • the lasers used for recording and reproduction are adjusted accordingly. This has been achieved by miniaturizing the focused spot size on the focal plane by shortening the wavelength of light and increasing the numerical aperture (NA) of the objective lens.
  • the thickness of a disk substrate serving as a light transmission layer is about 1.2 mm
  • the laser light wavelength is about 780 nm
  • the NA of the objective lens is 0.45
  • a capacity of 650 MB can be realized.
  • the thickness of a disk substrate serving as a light transmission layer is about 0.6 mm
  • the wavelength of a laser beam is about 650 nm
  • the NA is 0.6, so that a capacity of 4.7 GB can be realized.
  • the thickness of the protective layer which is a light transmission layer covering the optical recording layer, is reduced to about 0.1 mm, the laser beam wavelength is set to about 405 nm, and the NA is set to 0.85.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-102810
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-250123
  • JP 2010-102810 A (paragraph 0011 etc.) JP 2007-250123 A
  • an optical pickup device capable of reproducing information from a plurality of types of optical disks having different standards such as DVD and BD.
  • this type of optical pickup device multiple types of laser light sources (light emitting elements) with different oscillation wavelengths are mounted according to the type of optical disc, and optical components designed to correspond to the oscillation wavelengths of the laser light sources are mounted. Therefore, there is a problem that the number of optical parts increases.
  • Japanese Patent Application Laid-Open No. 2004-151561 discloses a technique for reducing the size of an optical pickup device by employing an optical integrated element. However, there is a limit to the size reduction of the device by this technique.
  • some optical components for example, an objective lens and a collimator lens
  • some optical components are shared for a plurality of types of laser light sources, so that the number of optical components is increased.
  • One way to reduce this is to consider.
  • the optical parts are shared, there is a problem that a desired reproduction performance can be obtained for some types of optical discs, but it is difficult to obtain a desired reproduction performance for other types of optical discs.
  • the object of the present invention is to mount a plurality of laser light sources having different oscillation wavelengths corresponding to a plurality of types of optical discs, even if some of the optical components are shared for these laser light sources. It is an object to provide an optical pickup device and an optical disc apparatus that can realize downsizing of the apparatus while ensuring good reproduction performance for various types of optical discs.
  • An optical pickup device includes a first optical integrated element including a first laser light source that emits laser light having a first oscillation wavelength and a first light receiving element, and the first oscillation wavelength.
  • a second optical integrated element that includes a second laser light source that emits laser light having a longer second oscillation wavelength and a second light receiving element, a first optical surface, a second optical surface, and a third optical surface
  • a beam splitter that guides the laser light having the second oscillation wavelength incident on the second optical surface from the second optical integrated element through the second optical path and emits the laser light from the third optical surface.
  • the first oscillation wavelength emitted from the third optical surface of the beam splitter A parallel optical system that converts laser light into first parallel light and converts laser light of the second oscillation wavelength emitted from the third optical surface into second parallel light; and A condensing optical system for condensing the emitted first parallel light on the optical disc and condensing the second parallel light emitted from the parallel optical system on the optical disc, and in the first optical path A negative lens having a negative refractive power that diverges the laser light having the first oscillation wavelength emitted from the first optical integrated device, and disposed in the first optical path.
  • a total reflection mirror that reflects the laser beam having the first oscillation wavelength emitted from the optical integrated element in the direction of the first optical surface, and the return light reflected by the optical disc is the condensing optical system and the The beam spring passes through a parallel optical system.
  • the beam splitter guides the laser light having the first oscillation wavelength out of the return light and emits the laser light from the first optical surface.
  • the laser beam having the second oscillation wavelength is guided and emitted from the second optical surface, and the first optical integrated element is emitted from the first optical surface and is emitted from the negative lens and the total reflection mirror.
  • the second optical integrated element receives the laser light having the second oscillation wavelength emitted from the second optical surface, and receives the parallel optical.
  • the focal length of the system is set to a value that minimizes the rim light intensity with respect to the laser light having the second oscillation wavelength within the first predetermined range, and the focal length of the negative lens is the same as that of the first oscillation wavelength. Rim light intensity against laser light is minimized within the second predetermined range
  • the first optical integrated element is disposed at an end of the first optical path bent by the total reflection mirror, and is disposed adjacent to the second optical integrated element. It is characterized by.
  • An optical disc apparatus includes the optical pickup device.
  • the present invention it is possible to reduce the size of the apparatus while ensuring good reproduction performance when using the first laser light source of the first optical integrated device.
  • FIG. 1 is a functional block diagram schematically showing a configuration of an optical disc device according to a first embodiment of the present invention.
  • (A), (B) is a figure which shows schematically the structure of the optical pick-up apparatus of Embodiment 1.
  • FIG. FIG. 3 is a diagram schematically showing an optical path of DVD / CD laser light in the optical pickup device of the first embodiment.
  • FIG. 3 is a diagram schematically showing an optical path of BD laser light in the optical pickup device of the first embodiment.
  • (A) to (C) are diagrams for explaining the beam divergence angle. It is a graph which shows the rim light intensity of the radial direction with respect to the focal distance of the optical system which consists of a combination of a collimator lens and a negative lens.
  • FIG. 6 is a diagram schematically showing an optical path of a DVD / CD laser beam in the optical pickup device of the second embodiment. 6 is a diagram schematically showing an optical path of a BD laser beam in the optical pickup device of Embodiment 2.
  • FIG. (A), (B) is a figure which shows schematically the structure of the optical pick-up apparatus of Embodiment 3 which concerns on this invention.
  • (A), (B) is a figure which shows roughly the structure of the optical pick-up apparatus of Embodiment 4 which concerns on this invention.
  • FIG. 1 is a functional block diagram schematically showing the configuration of the optical disc apparatus 1 according to the first embodiment of the present invention.
  • 2A and 2B are diagrams schematically showing a configuration of the optical pickup device 104 in the optical disc apparatus 1.
  • FIG. 1 is a functional block diagram schematically showing the configuration of the optical disc apparatus 1 according to the first embodiment of the present invention.
  • 2A and 2B are diagrams schematically showing a configuration of the optical pickup device 104 in the optical disc apparatus 1.
  • the optical disc apparatus 1 includes a turntable 102 on which an optical disc 101 is detachably mounted, a spindle motor 103 as a disc drive unit that rotationally drives the turntable 102, and recording information from the optical disc 101.
  • An optical pickup device 104 that reads the optical pickup device 104, and a sled drive mechanism 105 that shifts the optical pickup device 104 in the radial (radius) direction of the optical disc 101 and positions the optical pickup device 104.
  • the optical disc apparatus 1 also includes a matrix circuit 106, a signal reproduction circuit 107, a servo circuit 108, a spindle control circuit 109, a laser control circuit 110, a thread control circuit 111, and a controller 112.
  • the optical disc 101 is detachably mounted on a turntable 102 fixed to a drive shaft (spindle) of the spindle motor 103.
  • the optical disc 101 is a single layer disc having a single information recording layer or a multilayer disc having a plurality of information recording layers. Examples of the optical disc 101 include, but are not limited to, a CD (Compact Disc), a DVD (Digital Versatile Disc), and a BD (Blu-ray Disc).
  • the spindle motor 103 rotates the optical disc 101 under the control of the spindle control circuit 109.
  • the spindle control circuit 109 operates in accordance with a command from the controller 112, and executes a spindle servo so that the actual rotational speed matches the target rotational speed based on a pulse signal representing the actual rotational speed supplied from the spindle motor 103.
  • the optical pickup device 104 irradiates the optical disc 101 with laser light during information reproduction or recording, receives return light reflected by the information recording layer of the optical disc 101, generates a detection signal, and generates the detection signal as a matrix circuit.
  • 2A is a top view when the optical pickup device 104 is viewed from the normal direction perpendicular to the information recording surface of the optical disc 101 (Z-axis direction perpendicular to the X-axis and Y-axis).
  • FIG. 2B is a schematic diagram when a part of the optical pickup device 104 is viewed from the side (X-axis direction). As shown in FIGS.
  • the optical pickup device 104 has a casing CS having a long side along the radial direction of the optical disc 101. Further, the optical pickup device 104 includes optical integrated elements 201 and 202, a reflection mirror 203, a negative lens (concave lens) 204 having a negative refractive power, a dichroic prism 205 as a beam splitter, a collimator lens 206, an objective A lens actuator 209.
  • One optical integrated element 201 has a structure in which a semiconductor laser element emitting a BD laser beam (oscillation wavelength: about 405 nm) and a light receiving element are integrated on the same substrate, and the other optical integrated element 202 is: A two-wavelength semiconductor laser element that emits a laser beam for DVD (oscillation wavelength: about 650 nm) and a laser beam for CD (oscillation wavelength: about 780 nm) and a light receiving element are integrated on the same substrate.
  • the laser control circuit 110 can control the intensity of the laser light emitted from the optical pickup device 104 by individually driving these optical integrated elements 201 and 202.
  • the laser light emitted from the optical integrated element 201 is reflected by the reflection mirror 203, passes through the negative lens 204, and enters the dichroic prism 205.
  • the dichroic prism 205 reflects the laser light emitted from the negative lens 204 toward the collimator lens (parallel optical system) 206.
  • the laser light emitted from the integrated optical element 202 passes through the dichroic prism 205 and enters the light incident surface of the collimator lens 206.
  • the collimator lens 206 converts the laser light incident from the dichroic prism 205 into parallel light.
  • the collimator lens 206 is an optical component shared for the BD laser beam, the DVD laser beam, and the CD laser beam.
  • the rising mirror 208 converts the direction of the parallel light incident from the collimator lens 206 into the direction of the compatible objective lens (condensing optical system) 207 (Z-axis direction).
  • the compatible objective lens 207 condenses the light incident from the reflection surface of the rising mirror 208 on the optical disc 101.
  • the compatible objective lens 207 is also an optical component shared for the BD laser beam, the DVD laser beam, and the CD laser beam.
  • the optical surface (for example, the light incident surface on the light source side) of the compatible objective lens 207 has a diffraction grating structure having a wavelength selectivity (aperture limiting function) that selectively diffracts the incident light according to the wavelength range of the incident light.
  • NAs number of NAs (numerical apertures) can be formed according to the wavelength range of incident light.
  • the NA for the CD laser light is about 0.45
  • the NA for the DVD laser light is about 0.6
  • the NA for the BD laser light is about 0.85.
  • Table 1 below shows an example of the specification of the three-wavelength compatible objective lens 207 for BD / DVD / CD laser light.
  • the difference in the focal length of the objective lens is caused by the difference in the wavelength of the laser beam. Therefore, the difference in focal length due to the difference in laser light wavelength is small.
  • the NA of the objective lens is designed to satisfy the specifications of BD, DVD, and CD. In this specification, the NA of the objective lens increases as the wavelength of the laser beam is shorter. As a result, the ratio of the objective lens pupil diameter to the BD, DVD, and CD laser light is substantially the same as the ratio of NA to the BD, DVD, and CD laser light. The larger the NA, the larger the objective lens pupil diameter, the larger the amount of laser light captured, and the more efficient the use of the laser light.
  • the optical pickup device 104 further includes a collimator lens driving mechanism 210 for correcting optical aberration (mainly spherical aberration).
  • the collimator lens driving mechanism 210 can appropriately correct the optical aberration by shifting the collimator lens 206 in the optical axis direction in accordance with the control signal supplied from the servo circuit 108 or the controller 112.
  • the collimator lens driving mechanism 210 has a stepping motor (not shown) and a guide mechanism (not shown) for moving the collimator lens 206 in the optical axis direction.
  • the collimator lens driving mechanism 210 covers, for example, the thickness of a cover layer (layer that covers the information recording layer) corresponding to the type (DVD / CD / BD) of the optical disc 101, and a specific information recording layer in the multilayer disc.
  • the spherical aberration can be corrected by shifting the collimator lens 206 along the optical axis in accordance with the thickness of the cover layer or the manufacturing error of the thickness of the cover layer.
  • the matrix circuit 106 includes a matrix calculation circuit, an amplifier circuit, and the like, and performs a matrix calculation process on the detection signal supplied from the optical pickup device 104 to generate a reproduction RF signal that is a high-frequency signal. Further, servo control signals such as a focus error signal and a tracking error signal are generated.
  • the reproduction RF signal is supplied to the signal reproduction circuit 107, and the servo control signal is supplied to the servo circuit 108.
  • the signal reproduction circuit 107 performs binarization processing on the reproduction RF signal to generate a modulation signal, extracts a reproduction clock from the modulation signal, and performs demodulation processing, error correction, and decoding processing on the modulation signal to reproduce the reproduction data. Is generated.
  • the reproduction data is transferred to a host device (not shown) such as an audiovisual device or a personal computer.
  • the servo circuit 108 generates various servo drive signals for focus control and tracking control based on the servo control signals supplied from the matrix circuit 106, and uses these servo drive signals as the objective lens actuator of the optical pickup device 104. 209.
  • the objective lens actuator 209 includes a lens holder (movable part) 209L that holds the compatible objective lens 207, suspensions 209Sa and 209Sb that support the lens holder 209L, a magnetic circuit 209Ma, 209Mb.
  • the objective lens actuator 209 further includes a focus coil and a tracking coil (not shown).
  • the servo circuit 108 can shift the compatible objective lens 207 in the focus direction by supplying a servo drive signal (drive current) to the focus coil, and is compatible by supplying a servo drive signal (drive current) to the tracking coil.
  • the objective lens 207 can be shifted in the radial direction.
  • the optical pickup device 104 can position the optical pickup device 104 by shifting the optical pickup device 104 in the radial direction of the optical disc 101 by the sled driving mechanism 105. Thereby, the optical pickup device 104 can irradiate a desired recording track of the optical disc 101 with a laser beam for reproduction or recording.
  • the operations of the servo circuit 108, laser control circuit 110, thread control circuit 111, and spindle control circuit 109 are controlled by the controller 112.
  • the controller 112 is composed of a microcomputer and executes various control processes in accordance with commands from a host device (not shown).
  • FIG. 3 is a diagram schematically showing the optical path of the DVD / CD laser light in the optical pickup device 104.
  • the DVD / CD laser light La emitted from the optical integrated element 202 is incident on the optical surface 205b of the dichroic prism 205, passes through the dichroic prism 205, and is converted into parallel light by the collimator lens 206. Converted.
  • the rising mirror 208 reflects this parallel light in the direction of the compatible objective lens 207.
  • the compatible objective lens 207 condenses the light incident from the rising mirror 208 onto the optical disc 101 to form a condensing spot.
  • the return light reflected by the optical disk 101 passes through the compatible objective lens 207 and is reflected by the rising mirror 208 in the direction of the collimator lens 206. Thereafter, the return light passes through the collimator lens 206 and the dichroic prism 205 in this order, and then is received by a light receiving element (not shown) of the optical integrated element 202.
  • FIG. 4 is a diagram schematically showing the optical path of the BD laser beam in the optical pickup device 104.
  • the BD laser light Lb emitted from the optical integrated element 202 is reflected by the reflection mirror 203 and enters the negative lens 204.
  • the dichroic prism 205 reflects laser light incident on the optical surface 205 a from the negative lens 204 in the direction of the collimator lens 206.
  • the rising mirror 208 reflects the parallel light emitted from the collimator lens 206 in the direction of the compatible objective lens 207.
  • the compatible objective lens 207 condenses the light incident from the rising mirror 208 onto the optical disc 101 to form a condensing spot.
  • the return light reflected by the optical disk 101 is transmitted through the compatible objective lens 207 and then reflected by the rising mirror 208 in the direction of the collimator lens 206. Thereafter, the return light enters the optical surface 205 c of the dichroic prism 205, is reflected inside the dichroic prism 205, and enters the negative lens 204.
  • the reflection mirror 203 reflects the return light emitted from the negative lens 204 in the direction of the optical integrated element 201.
  • a light receiving element (not shown) of the optical integrated element 201 receives the return light.
  • an optical lens composed of a combination of a negative lens 204 and a collimator lens 206 is provided, in which a negative lens 204 having a negative refractive power is disposed in the optical path between the dichroic prism 205 and the reflecting mirror 203.
  • the combined focal length of the system is larger than the focal length of the collimator lens 206 alone. Thereby, even if the focal length of the common collimator lens 206 is shortened, a long combined focal length can be secured. As will be described later, by increasing the combined focal length, the diameter of the focused spot when using the BD laser beam Lb can be reduced, and deterioration in reproduction performance can be suppressed.
  • the focal length of the collimator lens 206 is f 1 and the focal length of the negative lens 204 is f 2
  • the combined focal length f C of the optical system is given by the following formula (1).
  • d is an optical distance between the second principal point of the collimator lens 206 and the first principal point of the negative lens 204.
  • d is 10 mm
  • fc 32 mm
  • f 1 25 mm
  • the focal length f 2 of the negative lens 204 is about ⁇ 69 mm.
  • the condensing spot diameter of the BD laser light Lb on the optical disk 101 cannot be made sufficiently small, crosstalk between adjacent tracks on the optical disk 101 increases, and a short recording mark Therefore, it is difficult to ensure the desired reproduction performance.
  • the negative lens 204 is provided, the light transmittance of the optical system in the optical pickup device 104 decreases.
  • the increase in the laser output power can compensate for the decrease in the light transmittance. For this reason, in the present embodiment, in order to ensure the reproduction performance, priority can be given to making the focused spot diameter sufficiently small.
  • the focused spot diameter is related to the rim light intensity, which is one of the standard evaluation conditions for optical discs.
  • the rim light intensity is related to the beam divergence angle of the semiconductor laser element.
  • An optical system for example, a collimator lens 206 or a collimator lens in which the beam divergence angle of laser light is ⁇ (unit: °), the pupil diameter (diameter) of the compatible objective lens 207 is ⁇ , and light is incident on the compatible objective lens 207.
  • the rim light intensity I RIM (unit: percent) is given by the following equation (2), where f is the focal length of the combination of 206 and the negative lens 204.
  • the beam divergence angle ⁇ has two types of values ⁇ v and ⁇ h.
  • the beam divergence angle ⁇ h is a light intensity distribution in the X ⁇ direction parallel to the light emitting end of the active layer, out of the light intensity distribution of the far field image (FFP) of the laser light Le emitted from the active layer of the semiconductor laser device 300.
  • the full width at half maximum (the angular width when the light intensity I X is 50% of the maximum value).
  • the beam divergence angle ⁇ v is, of the light intensity distribution of the far-field pattern of the emitted laser light Le from the active layer of the semiconductor laser element 300 (FFP), the light in the vertical Y theta direction to the light emitting end of the active layer It refers to the full width at half maximum of the intensity distribution (angle width when the light intensity I Y is 50% of the maximum value).
  • Table 2 below shows the specifications of the beam divergence angles ⁇ h and ⁇ v of the laser light.
  • the value for BD is smaller than the value for DVD, and regarding the beam divergence angle ⁇ h, the value for BD is almost the same as the value for DVD.
  • Table 3 below shows the reference range of the rim light intensity for satisfying the reproduction performance.
  • the minimum value (radial direction) of the rim light intensity is 55% in the case of BD, 60% in the case of DVD, and 50% in the case of CD. In order to obtain (reproduction performance in which the average symbol error rate is about 10 ⁇ 2 or less), it is desirable to set the rim light intensity to be equal to or higher than these minimum values.
  • FIG. 6 is a graph showing the rim light intensity in the radial direction with respect to the focal length f of the optical system composed of the collimator lens 206 or the combination of the collimator lens 206 and the negative lens 204.
  • a focal length of 32 mm or more is necessary in the case of BD.
  • a focal length of 25 mm or more is necessary.
  • the optical pickup device 104 is required to reduce the outer shape in both the radial direction and the tangential direction. Since the focal length of the collimator lens 206 directly affects the outer dimension in the radial direction, the focal length is preferably as short as possible. Therefore, in order to reduce the outer dimension in the radial direction, the focal length f 1 is set to 25 mm which minimizes the rim light intensity with respect to the DVD / CD laser beam, and the combined focal length f C is set as the rim light with respect to the BD laser beam. It is preferable to set it to 32 mm which minimizes the strength. At this time, the focal length f 2 of the negative lens 204 is about ⁇ 69 mm according to the above equation (1).
  • the optical pickup apparatus of this embodiment 104 has a negative lens 204
  • the optical pickup device 104 of the first embodiment even when the collimator lens 206 having a short focal length f 1 is shared to reduce the size of the optical system, the negative lens 204 is not employed. As compared with, the focused spot diameter can be reduced by increasing the rim light intensity. Therefore, it is possible to prevent deterioration in reproduction performance when using the BD laser beam. Further, the adoption of the negative lens 204 makes the total length of the optical path of the BD laser light longer than that of the DVD / CD laser light, but the optical path of the BD laser light is bent by the reflection mirror 203. . Therefore, the optical integrated element 201 and the optical integrated element 202 can be disposed adjacent to each other, and the external dimensions of the optical pickup device 104 in the tangential direction can be reduced.
  • the optical axis (optical center axis) of the optical integrated element 201 and the optical axis (optical central axis) of the optical integrated element 202 are adjusted to be parallel to each other. Miniaturization of the optical pickup device 104 is realized.
  • optical path difference between the optical path of the BD laser beam and the optical path of the DVD / CD laser beam.
  • This optical path difference can be prevented from affecting the spherical aberration correction.
  • the spherical aberration due to the optical path of the DVD / CD laser light can be corrected by optimizing the lens characteristics of the optical system in the optical path.
  • spherical aberration that occurs when the optical disc 101 is a BD can be corrected using the collimator lens driving mechanism 210.
  • FIG. 7A and 7B are diagrams schematically showing the configuration of the optical pickup device 104B of the second embodiment.
  • the configuration of the optical disk apparatus according to the present embodiment is the same as that of the optical disk apparatus 1 except that the optical pickup apparatus 104B shown in FIGS. 7A and 7B is provided instead of the optical pickup apparatus 104. .
  • FIG. 7A is a top view when the optical pickup device 104B is viewed from the normal direction perpendicular to the information recording surface of the optical disc 101 (Z-axis direction perpendicular to the X-axis and Y-axis).
  • FIG. 7B is a schematic view when a part of the optical pickup device 104B is viewed from the side (X-axis direction).
  • components having the same reference numerals have the same functions, and thus detailed description thereof is omitted.
  • the optical pickup device 104B includes optical integrated elements 201 and 202, a reflection mirror 203B, a negative lens (concave lens) 204B having negative refractive power, and a dichroic prism that is a beam splitter.
  • a collimator lens 206, an objective lens actuator 209, and a collimator lens driving mechanism 210 are provided.
  • FIG. 8 is a diagram schematically showing an optical path of a DVD / CD laser beam in the optical pickup device 104B.
  • the DVD / CD laser beam La emitted from the optical integrated element 202 is incident on the optical surface 205Bc of the dichroic prism 205B, reflected inside the dichroic prism 205B, and then reflected by the collimator lens 206. Converted to parallel light.
  • the rising mirror 208 reflects this parallel light in the direction of the compatible objective lens 207.
  • the compatible objective lens 207 condenses the light incident from the rising mirror 208 onto the optical disc 101 to form a condensing spot.
  • the return light reflected by the optical disk 101 passes through the compatible objective lens 207 and is reflected by the rising mirror 208 in the direction of the collimator lens 206. Thereafter, the return light passes through the collimator lens 206, enters the optical surface 205Bc of the dichroic prism 205B, is reflected inside the dichroic prism 205B, and then received by a light receiving element (not shown) of the optical integrated element 202. .
  • FIG. 9 is a diagram schematically showing an optical path of BD laser light in the optical pickup device 104B.
  • the BD laser light Lb emitted from the optical integrated element 201 is reflected by the reflection mirror 203B and enters the negative lens 204B.
  • the dichroic prism 205B transmits laser light incident on the optical surface 205Ba from the negative lens 204B in the direction of the collimator lens 206.
  • the rising mirror 208 reflects the parallel light emitted from the collimator lens 206 in the direction of the compatible objective lens 207.
  • the compatible objective lens 207 condenses the light incident from the rising mirror 208 onto the optical disc 101 to form a condensing spot.
  • the return light reflected by the optical disk 101 passes through the compatible objective lens 207 and is reflected by the rising mirror 208 in the direction of the collimator lens 206. Thereafter, the return light enters the optical surface 205Bc of the dichroic prism 205B and passes through the dichroic prism 205. Thereafter, the return light passes through the negative lens 204B and then enters the reflection mirror 203B.
  • the reflection mirror 203B reflects the return light emitted from the negative lens 204B in the direction of the optical integrated element 201.
  • a light receiving element (not shown) of the optical integrated element 201 receives the return light.
  • the collimator lens 206 having a short focal length f 1 is shared in order to reduce the size of the optical system.
  • the rim light intensity can be increased and the focused spot diameter can be reduced. Therefore, it is possible to prevent deterioration in reproduction performance when using the BD laser beam.
  • the adoption of the negative lens 204B makes the total length of the optical path of the BD laser light longer than that of the DVD / CD laser light, but the optical path is bent by the reflection mirror 203B. Therefore, the optical integrated device 201 and the optical integrated device 202 can be disposed adjacent to each other, and the radial dimension of the optical pickup device 104B can be reduced.
  • FIGS. 10A and 10B are diagrams schematically showing the configuration of the optical pickup device 104C of the third embodiment.
  • FIG. 10A is a top view when the optical pickup device 104C is viewed from a normal direction perpendicular to the information recording surface of the optical disc 101 (Z-axis direction perpendicular to the X-axis and Y-axis).
  • FIG. 10B is a schematic view when a part of the optical pickup device 104C is viewed from the side (X-axis direction).
  • the difference between the optical pickup device 104C of the third embodiment and the optical pickup device 104 of the first embodiment is that the component 201 is relative to the straight line A1 that connects the center point of the turntable 102 and the optical axis center of the compatible objective lens 207. ⁇ 206, 209, 210 are replaced with line symmetry. Therefore, the components of the optical pickup device 104C of the third embodiment and the components of the optical pickup device 104 of the first embodiment are arranged so as to be symmetrical with respect to the straight line A1. Therefore, also in the case of this embodiment, the same effect as in the case of Embodiment 1 can be obtained.
  • FIGS. 11A and 11B are diagrams schematically showing a configuration of the optical pickup device 104D of the fourth embodiment.
  • FIG. 11A is a top view when the optical pickup device 104D is viewed from the normal direction perpendicular to the information recording surface of the optical disc 101 (Z-axis direction perpendicular to the X-axis and Y-axis).
  • FIG. 11B is a schematic cross-sectional view of the optical pickup device 104D as viewed from the side (X-axis direction).
  • the difference between the optical pickup device 104D of the fourth embodiment and the optical pickup device 104B of the second embodiment is that the component 201 is relative to a straight line A2 connecting the center point of the turntable 102 and the optical axis center of the compatible objective lens 207. , 202, 203B, 204B, 205B, 206, 209, and 210 are replaced with line symmetry. Therefore, the components of the optical pickup device 104D according to the fourth embodiment and the components of the optical pickup device 104B according to the second embodiment are arranged so as to be symmetrical with respect to the straight line A2. Therefore, also in the case of the present embodiment, the same effect as in the case of the second embodiment can be obtained.
  • the optical pickup devices 104 and 104B to 104D have the optical integrated elements 201 and 202 that emit three types of laser beams having different oscillation wavelengths. Is not limited to three types.
  • 1 optical disk device 101 optical disk, 102 turntable, 103 spindle motor, 104 optical pickup device, 105 thread drive mechanism, 106 matrix circuit, 107 signal reproduction circuit, 108 servo circuit, 109 spindle control circuit, 110 laser control circuit, 111 thread Control circuit, 112 controller, 201, 202 integrated optical element, 203, 203B reflecting mirror, 204, 204B negative lens, 205, 205B dichroic prism (beam splitter), 206 collimator lens, 207 compatible objective lens, 208 reflecting mirror (start up) Mirror), 209 objective lens actuator, 210 collimator lens drive mechanism.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 光ピックアップ装置(104)は、第1発振波長のレーザ光を出力する第1の光集積素子(201)と、第2発振波長のレーザ光を出力する第2の光集積素子(202)と、ビームスプリッタ(205)と、平行光学系(206)と、集光光学系(207)とを備える。ビームスプリッタ(205)と第1の光集積素子(201)との間の第1の光路中には、負の屈折力を有する負レンズ(204)と全反射ミラー(203)とが配置されている。平行光学系(206)の焦点距離は、第2発振波長のレーザ光に対するリム光強度を第1の所定範囲内で最小にする値に設定され、負レンズ(204)の焦点距離は、第1発振波長のレーザ光に対するリム光強度を第2の所定範囲内で最小にする値に設定される。第1の光集積素子(201)は、全反射ミラー(203)により屈曲された第1の光路の端に配置され、且つ第2の光集積素子(202)と隣接して配置されている。

Description

光ピックアップ装置及び光ディスク装置
 本発明は、光ディスクから記録情報を再生する技術に関する。
 CD(Compact Disc)、DVD(Digtal Versatile Disc:デジタル多用途ディスク)あるいはBD(Blu-ray Disc;登録商標)といった光ディスクは、非接触での情報の記録再生を可能とし、大容量で比較的安価な情報記録媒体を実現可能とすることから、産業用から民生用まで幅広く使用されている。光ディスクの大容量化は、光ディスクのトラック状またはスパイラル状の記録トラックに形成された記録マーク(ピットや相変化マークを含む。)を微小化し、これに合わせて、記録や再生に使用されるレーザ光の短波長化と、対物レンズの開口数(NA:Numerical Aperture)の高値化とにより焦点面での集光スポットサイズを微小化することで達成されてきた。
 たとえば、CDでは、光透過層となるディスク基板の厚さが約1.2mm、レーザ光波長が約780nm、対物レンズのNAが0.45であり、650MBの容量を実現することができる。DVDでは、光透過層となるディスク基板の厚さが約0.6mm、レーザ光波長が約650nm、NAが0.6であり、4.7GBの容量を実現することができる。さらに高記録密度のBDでは、光学記録層を被覆する光透過層である保護層の厚さを約0.1mmと薄くし、レーザ光波長を約405nm、NAを0.85とすることで25GB以上の大容量化を実現することができる。
 また、光ディスクはその普及とともにさまざまな場面で利用されるようになっている。そのため、光ディスクから情報を再生する機器には、可搬性の向上や省スペース化のためにさらなる小型化が求められている。このような機器の小型化には、当該機器に搭載される光ピックアップ装置の小型化が必須である。たとえば、特開2010-102810号公報(特許文献1)と特開2007-250123号公報(特許文献2)とには、発光素子と受光素子とが一体化された光集積素子を用いて光ピックアップ装置の小型化を図る技術が開示されている。
特開2010-102810号公報(段落0011など) 特開2007-250123号公報
 近年、DVDやBDなどの規格の異なる複数種の光ディスクから情報を再生し得る光ピックアップ装置が提供されている。この種の光ピックアップ装置においては、光ディスクの種類に応じて発振波長の異なる複数種のレーザ光源(発光素子)が搭載され、レーザ光源の発振波長にそれぞれ対応するように設計された光学部品が搭載されているので、光学部品点数が多くなるという問題がある。特許文献1には、光集積素子を採用して光ピックアップ装置の小型化を図る技術が開示されているが、この技術による装置の小型化には限界があった。
 小型化のための他の方法として、特許文献2に記載されているように、複数種のレーザ光源について一部の光学部品(たとえば、対物レンズやコリメータレンズ)を共用化することで光学部品点数を減らすという方法が考えられる。しかしながら、光学部品を共用化すると、一部の種類の光ディスクについては所望の再生性能が得られるものの、他の種類の光ディスクについては所望の再生性能を得ることがむずかしいという問題がある。
 上記に鑑みて本発明の目的は、複数種の光ディスクに対応して発振波長が互いに異なる複数のレーザ光源を搭載する場合に、これらレーザ光源について光学部品の一部を共用化しても、全ての種類の光ディスクについて良好な再生性能を確保しつつ装置の小型化を実現することができる光ピックアップ装置及び光ディスク装置を提供することである。
 本発明の第1の態様による光ピックアップ装置は、第1発振波長のレーザ光を出射する第1のレーザ光源と第1の受光素子とを含む第1の光集積素子と、前記第1発振波長よりも長い第2発振波長のレーザ光を出射する第2のレーザ光源と第2の受光素子とを含む第2の光集積素子と、第1の光学面、第2の光学面及び第3の光学面を有し、前記第1の光集積素子から第1の光路を経て前記第1の光学面に入射する前記第1発振波長のレーザ光を導光して前記第3の光学面から出射するとともに、前記第2の光集積素子から第2の光路を経て前記第2の光学面に入射する前記第2発振波長のレーザ光を導光して前記第3の光学面から出射するビームスプリッタと、前記ビームスプリッタの前記第3の光学面から出射された前記第1発振波長のレーザ光を第1の平行光に変換するとともに、前記第3の光学面から出射された前記第2発振波長のレーザ光を第2の平行光に変換する平行光学系と、前記平行光学系から出射された前記第1の平行光を光ディスクに集光させるとともに、前記平行光学系から出射された前記第2の平行光を前記光ディスクに集光させる集光光学系と、前記第1の光路中に配置され、前記第1の光集積素子から出射された前記第1発振波長のレーザ光を発散させる負の屈折力を有する負レンズと、前記第1の光路中に配置され、前記第1の光集積素子から出射された前記第1発振波長のレーザ光を前記第1の光学面の方向に反射させる全反射ミラーとを備え、前記光ディスクで反射した戻り光は、前記集光光学系及び前記平行光学系を経て前記ビームスプリッタの前記第3の光学面に入射し、前記ビームスプリッタは、前記戻り光のうち前記第1発振波長のレーザ光を導光して前記第1の光学面から出射するとともに、前記戻り光のうち前記第2発振波長のレーザ光を導光して前記第2の光学面から出射し、前記第1の光集積素子は、前記第1の光学面から出射され前記負レンズ及び前記全反射ミラーを経て入射する前記第1発振波長のレーザ光を受光し、前記第2の光集積素子は、前記第2の光学面から出射された前記第2発振波長のレーザ光を受光し、前記平行光学系の焦点距離は、前記第2発振波長のレーザ光に対するリム光強度を第1の所定範囲内で最小にする値に設定されており、前記負レンズの焦点距離は、前記第1発振波長のレーザ光に対するリム光強度を第2の所定範囲内で最小にする値に設定されており、前記第1の光集積素子は、前記全反射ミラーにより屈曲された前記第1の光路の端に配置され、且つ前記第2の光集積素子と隣接して配置されていることを特徴とする。
 本発明の第2の態様による光ディスク装置は、前記光ピックアップ装置を備えることを特徴とする。
 本発明によれば、第1の光集積素子の第1のレーザ光源の使用時に良好な再生性能を確保しつつ装置の小型化を実現することができる。
本発明に係る実施の形態1の光ディスク装置の構成を概略的に示す機能ブロック図である。 (A),(B)は、実施の形態1の光ピックアップ装置の構成を概略的に示す図である。 実施の形態1の光ピックアップ装置におけるDVD/CD用レーザ光の光路を概略的に示す図である。 実施の形態1の光ピックアップ装置におけるBD用レーザ光の光路を概略的に示す図である。 (A)~(C)は、ビーム広がり角を説明するための図である。 コリメータレンズと負レンズとの組み合わせからなる光学系の焦点距離に対するラジアル方向のリム光強度を示すグラフである。 (A),(B)は、本発明に係る実施の形態2の光ピックアップ装置の構成を概略的に示す図である。 実施の形態2の光ピックアップ装置におけるDVD/CD用レーザ光の光路を概略的に示す図である。 実施の形態2の光ピックアップ装置におけるBD用レーザ光の光路を概略的に示す図である。 (A),(B)は、本発明に係る実施の形態3の光ピックアップ装置の構成を概略的に示す図である。 (A),(B)は、本発明に係る実施の形態4の光ピックアップ装置の構成を概略的に示す図である。
 以下、本発明に係る種々の実施の形態について図面を参照しつつ説明する。
実施の形態1.
 図1は、本発明に係る実施の形態1の光ディスク装置1の構成を概略的に示す機能ブロック図である。図2(A),(B)は、光ディスク装置1の中の光ピックアップ装置104の構成を概略的に示す図である。
 図1に示されるように、光ディスク装置1は、光ディスク101が着脱自在に装着されるターンテーブル102と、このターンテーブル102を回転駆動させるディスク駆動部としてのスピンドルモータ103と、光ディスク101から記録情報の読み出しを行なう光ピックアップ装置104と、この光ピックアップ装置104を光ディスク101のラジアル(半径)方向にシフトさせて位置付けするスレッド駆動機構105とを備える。また、光ディスク装置1は、マトリクス回路106、信号再生回路107、サーボ回路108、スピンドル制御回路109、レーザ制御回路110、スレッド制御回路111及びコントローラ112を備えている。
 光ディスク101は、スピンドルモータ103の駆動軸(スピンドル)に固定されたターンテーブル102に着脱自在に装着されている。光ディスク101は、単一の情報記録層を有する単層ディスク、あるいは、複数の情報記録層を有する多層ディスクである。光ディスク101としては、たとえば、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray Disc)を挙げることができるが、これらに限定されるものではない。スピンドルモータ103は、スピンドル制御回路109の制御を受けてこの光ディスク101を回転駆動する。スピンドル制御回路109は、コントローラ112からの命令に従って動作し、スピンドルモータ103から供給された実回転数を表すパルス信号に基づいて実回転数を目標回転数に一致させるようにスピンドルサーボを実行する機能を有する。
 光ピックアップ装置104は、情報の再生時または記録時に光ディスク101にレーザ光を照射し、光ディスク101の情報記録層で反射された戻り光を受光して検出信号を生成し、当該検出信号をマトリクス回路106に出力する機能を有する。図2(A)は、光ピックアップ装置104を光ディスク101の情報記録面に垂直な法線方向(X軸とY軸とに垂直なZ軸方向)から見たときの上面視図であり、図2(B)は、光ピックアップ装置104の一部を側方(X軸方向)から見たときの概略図である。図2(A),(B)に示されるように、光ピックアップ装置104は、光ディスク101のラジアル方向に沿った長辺を持つ筐体CSを有している。また、光ピックアップ装置104は、光集積素子201,202と、反射ミラー203と、負の屈折力を有する負レンズ(凹レンズ)204と、ビームスプリッタであるダイクロイックプリズム205と、コリメータレンズ206と、対物レンズアクチュエータ209とを有している。
 一方の光集積素子201は、BD用レーザ光(発振波長:約405nm)を出射する半導体レーザ素子と受光素子とが同一基板上に集積された構造を有し、他方の光集積素子202は、DVD用レーザ光(発振波長:約650nm)とCD用レーザ光(発振波長:約780nm)とを出射する2波長半導体レーザ素子と受光素子とが同一基板上に集積された構造を有するものである。レーザ制御回路110は、これら光集積素子201,202を個別に駆動して、光ピックアップ装置104から出射されるレーザ光の強度を制御することができる。
 光集積素子201から出射されたレーザ光は、反射ミラー203で反射され、負レンズ204を透過してダイクロイックプリズム205に入射する。ダイクロイックプリズム205は、負レンズ204から出射されたレーザ光をコリメータレンズ(平行光学系)206の方向に反射させる。一方、光集積素子202から出射されたレーザ光は、ダイクロイックプリズム205を透過してコリメータレンズ206の光入射面に入射する。図2(B)に示されるように、コリメータレンズ206は、ダイクロイックプリズム205から入射したレーザ光を平行光に変換する。このようにコリメータレンズ206は、BD用レーザ光、DVD用レーザ光及びCD用レーザ光について共用される光学部品である。
 立ち上げミラー208は、図2(B)に示されるように、コリメータレンズ206から入射した平行光の方向を互換対物レンズ(集光光学系)207の方向(Z軸方向)に変換する。そして、互換対物レンズ207は、立ち上げミラー208の反射面から入射した光を光ディスク101に集光させる。この互換対物レンズ207も、BD用レーザ光、DVD用レーザ光及びCD用レーザ光について共用される光学部品である。互換対物レンズ207の光学面(たとえば、光源側の光入射面)は、入射光の波長域に応じて当該入射光を選択的に回折させる波長選択性(開口制限機能)を持つ回折格子構造を有しており、これにより、入射光の波長域に応じて異なるNA(開口数)を形成することができる。本実施の形態では、CD用レーザ光に対するNAは約0.45であり、DVD用レーザ光に対するNAは約0.6であり、BD用レーザ光に対するNAは約0.85である。以下の表1に、BD/DVD/CD用レーザ光の3波長互換対物レンズ207の仕様の一例を示す。
Figure JPOXMLDOC01-appb-T000002
 互換対物レンズ207では、対物レンズ焦点距離の違いはレーザ光の波長の違いによって生じている。そのため、レーザ光の波長の違いによる焦点距離の差は小さい。また対物レンズのNAについては、BD、DVD及びCDのそれぞれの仕様を満たすように設計されている。この仕様ではレーザ光の波長が短いほど、対物レンズのNAは大きくなっている。その結果、BD、DVD及びCD用レーザ光に対する対物レンズ瞳径の比は、BD、DVD及びCD用レーザ光に対するNAの比とほぼ同じとなる。NAが大きいほど、対物レンズ瞳径は大きく、レーザ光の取り込み量が大きくなり、レーザ光の利用効率が増大する。
 光ピックアップ装置104は、さらに、光学収差(主に球面収差)補正用のコリメータレンズ駆動機構210を備えている。コリメータレンズ駆動機構210は、サーボ回路108またはコントローラ112から供給された制御信号に応じて、コリメータレンズ206を光軸方向にシフトさせて光学収差を適正に補正することができる。コリメータレンズ駆動機構210は、ステッピングモータ(図示せず)や、コリメータレンズ206を光軸方向に移動させるガイド機構(図示せず)を有している。コリメータレンズ駆動機構210は、たとえば、光ディスク101の種類(DVD/CD/BD)に対応するカバー層(情報記録層を被覆する層)の厚み、多層ディスクの中の特定の情報記録層を被覆するカバー層の厚み、あるいは、カバー層の厚みの製造誤差に応じて、コリメータレンズ206を光軸に沿ってシフトさせて球面収差を補正することができる。
 図1を参照すると、マトリクス回路106は、マトリクス演算回路及び増幅回路などを備えており、光ピックアップ装置104から供給された検出信号にマトリクス演算処理を施して、高周波信号である再生RF信号を生成し、さらにフォーカスエラー信号やトラッキングエラー信号などのサーボ制御用の信号を生成する。再生RF信号は信号再生回路107に、サーボ制御用の信号はサーボ回路108に、それぞれ供給される。
 信号再生回路107は、再生RF信号に2値化処理を施して変調信号を生成し、この変調信号から再生クロックを抽出するとともに、変調信号に復調処理や誤り訂正やデコード処理を施して再生データを生成する。再生データは、映像音響機器やパーソナルコンピュータなどのホスト機器(図示せず)に転送される。
 サーボ回路108は、マトリクス回路106から供給されたサーボ制御用の信号に基づいて、フォーカス制御及びトラッキング制御のための各種サーボドライブ信号を生成し、これらサーボドライブ信号を光ピックアップ装置104の対物レンズアクチュエータ209に供給する。
 対物レンズアクチュエータ209は、図2(A)に示されるように、互換対物レンズ207を保持するレンズホルダ(可動部)209Lと、このレンズホルダ209Lを支持するサスペンション209Sa,209Sbと、磁気回路209Ma,209Mbとを備える。対物レンズアクチュエータ209は、さらに、図示されないフォーカスコイルとトラッキングコイルとを備えている。サーボ回路108は、フォーカスコイルにサーボドライブ信号(駆動電流)を供給することにより互換対物レンズ207をフォーカス方向にシフトすることができ、トラッキングコイルにサーボドライブ信号(駆動電流)を供給することにより互換対物レンズ207をラジアル方向にシフトすることができる。
 図1のスレッド制御回路111は、スレッド駆動機構105によって光ピックアップ装置104を光ディスク101のラジアル方向にシフトさせて位置付けすることができる。これにより、光ピックアップ装置104は、光ディスク101の所望の記録トラックに再生用あるいは記録用のレーザ光を照射することができる。
 上記サーボ回路108、レーザ制御回路110、スレッド制御回路111及びスピンドル制御回路109の各動作は、コントローラ112によって制御される。コントローラ112は、マイクロコンピュータで構成されており、ホスト機器(図示せず)からのコマンドに応じて各種制御処理を実行する。
 図3は、光ピックアップ装置104におけるDVD/CD用レーザ光の光路を概略的に示す図である。図3に示されるように、光集積素子202から出射されたDVD/CD用レーザ光Laは、ダイクロイックプリズム205の光学面205bに入射し、ダイクロイックプリズム205を透過してコリメータレンズ206で平行光に変換される。立ち上げミラー208は、この平行光を互換対物レンズ207の方向に反射させる。そして、互換対物レンズ207は、立ち上げミラー208から入射した光を光ディスク101に集光させて集光スポットを形成する。一方、光ディスク101で反射した戻り光は、互換対物レンズ207を透過した後、立ち上げミラー208でコリメータレンズ206の方向に反射させられる。その後、戻り光は、コリメータレンズ206及びダイクロイックプリズム205をこの順で透過した後、光集積素子202の受光素子(図示せず)によって受光される。
 図4は、光ピックアップ装置104におけるBD用レーザ光の光路を概略的に示す図である。図4に示されるように、光集積素子202から出射されたBD用レーザ光Lbは、反射ミラー203で反射して負レンズ204に入射する。ダイクロイックプリズム205は、負レンズ204から光学面205aに入射するレーザ光をコリメータレンズ206の方向に反射させる。立ち上げミラー208は、コリメータレンズ206から出射された平行光を、互換対物レンズ207の方向に反射させる。そして、互換対物レンズ207は、立ち上げミラー208から入射した光を光ディスク101に集光させて集光スポットを形成する。一方、光ディスク101で反射した戻り光は、互換対物レンズ207を透過した後、立ち上げミラー208でコリメータレンズ206の方向に反射する。その後、戻り光は、ダイクロイックプリズム205の光学面205cに入射し、ダイクロイックプリズム205の内部で反射して負レンズ204に入射する。反射ミラー203は、負レンズ204から出射された戻り光を光集積素子201の方向に反射させる。そして、光集積素子201の受光素子(図示せず)は、戻り光を受光する。
 本実施の形態の特徴の1つは、ダイクロイックプリズム205と反射ミラー203との間の光路に負の屈折力を有する負レンズ204が配置され、負レンズ204とコリメータレンズ206との組み合わせからなる光学系の合成焦点距離がコリメータレンズ206単独の焦点距離よりも大きいことである。これにより、共用のコリメータレンズ206の焦点距離を短くしても長い合成焦点距離を確保することができる。後述するように、合成焦点距離を長くすることで、BD用レーザ光Lbの使用時の集光スポット径を小さくすることができ、再生性能の劣化を抑制することができる。コリメータレンズ206の焦点距離をfとし、負レンズ204の焦点距離をfとするとき、光学系の合成焦点距離fは、以下の式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 上式(1)中、dは、コリメータレンズ206の第2主点と負レンズ204の第1主点との間の光学距離である。たとえば、dを10mmとし、fc=32mm、f=25mmとすれば、負レンズ204の焦点距離fは約-69mmとなる。
 仮に負レンズ204を設けない場合には、BD用レーザ光Lbの光ディスク101における集光スポット径を十分に小さくすることができず、光ディスク101の隣接トラック間のクロストークが増大し、短い記録マークから再生される信号の品質も低下するので、所望の再生性能を確保することがむずかしい。一方、負レンズ204を設けた場合には、光ピックアップ装置104内の光学系の光透過率が減少する。しかしながら、半導体レーザ素子の技術進歩によって、レーザ出力パワーは年々増加しているので、そのレーザ出力パワーの増加分で光透過率の減少分を補うことができる。そのため、本実施の形態においては再生性能を確保するために、集光スポット径を十分に小さくすることを優先することができる。
 集光スポット径は、光ディスクについての標準評価条件の1つであるリム光強度と関係している。リム光強度とは、対物レンズの瞳における最大光強度(=Imax)に対する瞳端での光強度(=Ie)の比率(=Ie/Imax)をいう。リム光強度は、半導体レーザ素子のビーム広がり角と関係している。レーザ光のビーム広がり角をθ(単位:°)とし、互換対物レンズ207の瞳径(直径)をφとし、互換対物レンズ207に光を入射させる光学系(たとえば、コリメータレンズ206、あるいはコリメータレンズ206と負レンズ204との組み合わせ)の焦点距離をfとするとき、リム光強度IRIM(単位:パーセント)は、以下の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 比例係数Kを用いて上式(2)を整理すれば、以下の式(3)を得ることができる。
Figure JPOXMLDOC01-appb-M000005
 図5(A)~(C)は、ビーム広がり角θを説明するための図である。ビーム広がり角θには、2種類の値θv,θhがある。ビーム広がり角θhは、半導体レーザ素子300の活性層から出射されたレーザ光Leの遠視野像(FFP)の光強度分布のうち、活性層の光出射端に平行なXθ方向における光強度分布の半値全幅(光強度Iが最大値の50%になるときの角度幅)をいう。また、ビーム広がり角θvは、半導体レーザ素子300の活性層から出射されたレーザ光Leの遠視野像(FFP)の光強度分布のうち、活性層の光出射端に垂直なYθ方向における光強度分布の半値全幅(光強度Iが最大値の50%になるときの角度幅)をいう。
 以下の表2に、レーザ光のビーム広がり角θh,θvの仕様を示す。ビーム広がり角θvに関しては、BDの場合の値がDVDの場合の値よりも小さく、ビーム広がり角θhに関しては、BDの場合の値はDVDの場合の値とほぼ同じである。
Figure JPOXMLDOC01-appb-T000006
 また、再生性能を満たすためのリム光強度の基準範囲を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000007
 表3に示されるように、リム光強度の最小値(ラジアル方向)は、BDの場合で55%、DVDの場合で60%、CDの場合で50%であり、所定の再生性能(たとえば、平均シンボルエラーレートが約10-2以下となる再生性能)を得るためにはリム光強度はこれらの最小値以上に設定することが望ましい。
 図6は、コリメータレンズ206あるいはコリメータレンズ206と負レンズ204との組み合わせからなる光学系の焦点距離fに対するラジアル方向のリム光強度を示すグラフである。図6のグラフに示されるように、表3に示したリム光強度の最小値(ラジアル方向)以上にリム光強度を設定するためには、BDの場合で32mm以上の焦点距離が必要であり、DVDの場合で25mm以上の焦点距離が必要である。CDについてはグラフの横軸の数値範囲内全てでリム光強度の最小値(=50%)が十分に達成されている。よって、表3によれば、コリメータレンズ206の焦点距離fは、DVD用レーザ光(発振波長:約650nm)に対するリム光強度の最小値(=60%)を確保するために25mm以上の値に設定されることが望ましい。また、コリメータレンズ206と負レンズ204とからなる組み合わせの合成焦点距離fは、BD用レーザ光(発振波長:約405nm)に対するリム光強度の最小値(=55%)を確保するために32mm以上の値に設定されることが望ましい。以上のことから、BD、DVD及びCDの全ての場合でリム光強度の最小値を満足するためには、合成焦点距離fを32mm以上とすればよい。
 光ピックアップ装置104には、ラジアル方向及びタンジェンシャル方向ともにその外形を小型化することが求められる。コリメータレンズ206の焦点距離は、ラジアル方向の外形寸法に直接影響するため、その焦点距離はできるだけ短いほうが望ましい。そのためラジアル方向の外形寸法を小さくするために、その焦点距離fは、DVD/CD用レーザ光に対するリム光強度を最小にする25mmとし、合成焦点距離fは、BD用レーザ光に対するリム光強度を最小にする32mmとすることが好ましい。このとき、上式(1)により負レンズ204の焦点距離fは約-69mmとなる。
 負レンズ204が存在しない場合、光ピックアップ装置104のラジアル方向の外形寸法を小さくするためにコリメータレンズ206の焦点距離fを、DVD用レーザ光に対するリム光強度を最小(=60%)にする25mmに設定すれば、図6に示されるようにBD用レーザ光に対するリム光強度は、その基準範囲の最小値(=55%)を大幅に下回ることになるので、BD用レーザ光の使用時に所望の再生性能を確保することができない。これに対し、本実施の形態の光ピックアップ装置104は、負レンズ204を有し、この負レンズ204の焦点距離fがBD用レーザ光に対するリム光強度を最小(=55%)にする値に設定されるので、BD用レーザ光の使用時における再生性能の劣化を防止することができる。
 以上に説明したように、実施の形態1の光ピックアップ装置104によれば、光学系の小型化のために焦点距離fの短いコリメータレンズ206を共用する場合でも、負レンズ204を採用しない場合と比べて、リム光強度を増大させて集光スポット径を小さくすることができる。したがって、BD用レーザ光の使用時における再生性能の劣化を防ぐことができる。また、負レンズ204の採用によりBD用レーザ光の光路の全長は、DVD/CD用レーザ光の光路のそれよりも長くなるが、反射ミラー203によって当該BD用レーザ光の光路が折り曲げられている。したがって、光集積素子201と光集積素子202とを互いに隣接して配置することができ、光ピックアップ装置104のタンジェンシャル方向の外形寸法を小さくすることができる。
 また、図2に示されるように、光集積素子201の光軸(光学中心軸)と光集積素子202の光軸(光学中心軸)とは互いに平行となるように調整されるので、これにより光ピックアップ装置104の小型化が実現される。
 なお、BD用レーザ光の光路とDVD/CD用レーザ光の光路との間に光路差があるが、この光路差は、球面収差補正に影響を与えないようにすることができる。たとえば、DVD/CD用レーザ光の光路に起因する球面収差は、当該光路における光学系のレンズ特性を最適化することによって補正することができる。また、光ディスク101がBDである場合に発生する球面収差をコリメータレンズ駆動機構210を用いて補正することができる。
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。図7(A),(B)は、実施の形態2の光ピックアップ装置104Bの構成を概略的に示す図である。本実施の形態の光ディスク装置の構成は、上記光ピックアップ装置104に代えて図7(A),(B)の光ピックアップ装置104Bを有する点を除いて、上記光ディスク装置1の構成と同じである。
 図7(A)は、この光ピックアップ装置104Bを光ディスク101の情報記録面に垂直な法線方向(X軸とY軸とに垂直なZ軸方向)から見たときの上面視図であり、図7(B)は、光ピックアップ装置104Bの一部を側方(X軸方向)から見たときの概略図である。図7(A),(B)及び図2(A),(B)において、同一符号を付された構成要素は同一機能を有するので、その詳細な説明を省略する。
 図7(A)に示されるように、光ピックアップ装置104Bは、光集積素子201,202と、反射ミラー203Bと、負の屈折力を有する負レンズ(凹レンズ)204Bと、ビームスプリッタであるダイクロイックプリズム205Bと、コリメータレンズ206と、対物レンズアクチュエータ209と、コリメータレンズ駆動機構210とを備えている。
 図8は、光ピックアップ装置104BにおけるDVD/CD用レーザ光の光路を概略的に示す図である。図8に示されるように、光集積素子202から出射されたDVD/CD用レーザ光Laは、ダイクロイックプリズム205Bの光学面205Bcに入射し、ダイクロイックプリズム205Bの内部で反射した後、コリメータレンズ206で平行光に変換される。立ち上げミラー208は、この平行光を互換対物レンズ207の方向に反射させる。そして、互換対物レンズ207は、立ち上げミラー208から入射した光を光ディスク101に集光させて集光スポットを形成する。一方、光ディスク101で反射した戻り光は、互換対物レンズ207を透過した後、立ち上げミラー208でコリメータレンズ206の方向に反射させられる。その後、戻り光は、コリメータレンズ206を透過し、ダイクロイックプリズム205Bの光学面205Bcに入射し、ダイクロイックプリズム205Bの内部で反射した後、光集積素子202の受光素子(図示せず)によって受光される。
 図9は、光ピックアップ装置104BにおけるBD用レーザ光の光路を概略的に示す図である。図9に示されるように、光集積素子201から出射されたBD用レーザ光Lbは、反射ミラー203Bで反射して負レンズ204Bに入射する。ダイクロイックプリズム205Bは、負レンズ204Bから光学面205Baに入射するレーザ光をコリメータレンズ206の方向に透過させる。立ち上げミラー208は、コリメータレンズ206から出射された平行光を、互換対物レンズ207の方向に反射させる。そして、互換対物レンズ207は、立ち上げミラー208から入射した光を光ディスク101に集光させて集光スポットを形成する。一方、光ディスク101で反射した戻り光は、互換対物レンズ207を透過した後、立ち上げミラー208でコリメータレンズ206の方向に反射させられる。その後、戻り光は、ダイクロイックプリズム205Bの光学面205Bcに入射しダイクロイックプリズム205を透過する。その後、戻り光は、負レンズ204Bを透過した後に反射ミラー203Bに入射する。反射ミラー203Bは、負レンズ204Bから出射された戻り光を光集積素子201の方向に反射させる。そして、光集積素子201の受光素子(図示せず)は、戻り光を受光する。
 以上説明したように、実施の形態2の光ピックアップ装置104Bによれば、実施の形態1の場合と同様に、光学系の小型化のために焦点距離fの短いコリメータレンズ206を共用する場合でも、負レンズ204Bを採用しない場合と比べて、リム光強度を増大させて集光スポット径を小さくすることができる。したがって、BD用レーザ光の使用時における再生性能の劣化を防ぐことができる。また、負レンズ204Bの採用によりBD用レーザ光の光路の全長は、DVD/CD用レーザ光の光路のそれよりも長くなるが、反射ミラー203Bによって当該光路が折り曲げられている。したがって、光集積素子201と光集積素子202とを互いに隣接して配置することができ、光ピックアップ装置104Bのラジアル方向の寸法を小さくすることができる。
 また、図7に示されるように、光集積素子201の光軸と光集積素子202の光軸とは互いに平行となるように調整されるので、これにより光ピックアップ装置104Bの小型化が実現される。
実施の形態3.
 次に、上記実施の形態1の変形例である実施の形態3について説明する。図10(A),(B)は、実施の形態3の光ピックアップ装置104Cの構成を概略的に示す図である。図10(A)は、この光ピックアップ装置104Cを光ディスク101の情報記録面に垂直な法線方向(X軸とY軸とに垂直なZ軸方向)から見たときの上面視図であり、図10(B)は、光ピックアップ装置104Cの一部を側方(X軸方向)から見たときの概略図である。
 実施の形態3の光ピックアップ装置104Cと実施の形態1の光ピックアップ装置104との違いは、ターンテーブル102の中心点と互換対物レンズ207の光軸中心とを結ぶ直線A1に対して構成要素201~206,209,210が線対称に入れ替わっている点である。よって、実施の形態3の光ピックアップ装置104Cの構成要素と実施の形態1の光ピックアップ装置104の構成要素とは、直線A1に関して互いに線対称をなすように配置されている。したがって、本実施の形態の場合も、上記実施の形態1の場合と同様の効果を得ることができる。
実施の形態4.
 次に、上記実施の形態2の変形例である実施の形態4について説明する。図11(A),(B)は、実施の形態4の光ピックアップ装置104Dの構成を概略的に示す図である。図11(A)は、この光ピックアップ装置104Dを光ディスク101の情報記録面に垂直な法線方向(X軸とY軸とに垂直なZ軸方向)から見たときの上面視図であり、図11(B)は、光ピックアップ装置104Dを側方(X軸方向)から見たときの概略断面図である。
 実施の形態4の光ピックアップ装置104Dと実施の形態2の光ピックアップ装置104Bとの違いは、ターンテーブル102の中心点と互換対物レンズ207の光軸中心とを結ぶ直線A2に対して構成要素201,202,203B,204B,205B,206,209,210が線対称に入れ替わっている点である。よって、実施の形態4の光ピックアップ装置104Dの構成要素と実施の形態2の光ピックアップ装置104Bの構成要素とは、直線A2に関して互いに線対称をなすように配置されている。したがって、本実施の形態の場合も、上記実施の形態2の場合と同様の効果を得ることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上記実施の形態1~4では、光ピックアップ装置104,104B~104Dは、発振波長の異なる3種類のレーザ光を出射する光集積素子201,202を有しているが、レーザ光の種類は3種類に限定されるものではない。
 1 光ディスク装置、 101 光ディスク、 102 ターンテーブル、 103 スピンドルモータ、 104 光ピックアップ装置、 105 スレッド駆動機構、 106 マトリクス回路、 107 信号再生回路、 108 サーボ回路、 109 スピンドル制御回路、 110 レーザ制御回路、 111 スレッド制御回路、 112 コントローラ、 201,202 光集積素子、 203,203B 反射ミラー、 204,204B 負レンズ、 205,205B ダイクロイックプリズム(ビームスプリッタ)、 206 コリメータレンズ、 207 互換対物レンズ、 208 反射ミラー(立ち上げミラー)、 209 対物レンズアクチュエータ、 210 コリメータレンズ駆動機構。

Claims (10)

  1.  第1発振波長のレーザ光を出射する第1のレーザ光源と第1の受光素子とを含む第1の光集積素子と、
     前記第1発振波長よりも長い第2発振波長のレーザ光を出射する第2のレーザ光源と第2の受光素子とを含む第2の光集積素子と、
     第1の光学面、第2の光学面及び第3の光学面を有し、前記第1の光集積素子から第1の光路を経て前記第1の光学面に入射する前記第1発振波長のレーザ光を導光して前記第3の光学面から出射するとともに、前記第2の光集積素子から第2の光路を経て前記第2の光学面に入射する前記第2発振波長のレーザ光を導光して前記第3の光学面から出射するビームスプリッタと、
     前記ビームスプリッタの前記第3の光学面から出射された前記第1発振波長のレーザ光を第1の平行光に変換するとともに、前記第3の光学面から出射された前記第2発振波長のレーザ光を第2の平行光に変換する平行光学系と、
     前記平行光学系から出射された前記第1の平行光を光ディスクに集光させるとともに、前記平行光学系から出射された前記第2の平行光を前記光ディスクに集光させる集光光学系と、
     前記第1の光路中に配置され、前記第1の光集積素子から出射された前記第1発振波長のレーザ光を発散させる負の屈折力を有する負レンズと、
     前記第1の光路中に配置され、前記第1の光集積素子から出射された前記第1発振波長のレーザ光を前記第1の光学面の方向に反射させる全反射ミラーと
    を備え、
     前記光ディスクで反射した戻り光は、前記集光光学系及び前記平行光学系を経て前記ビームスプリッタの前記第3の光学面に入射し、
     前記ビームスプリッタは、前記戻り光のうち前記第1発振波長のレーザ光を導光して前記第1の光学面から出射するとともに、前記戻り光のうち前記第2発振波長のレーザ光を導光して前記第2の光学面から出射し、
     前記第1の光集積素子は、前記第1の光学面から出射され前記負レンズ及び前記全反射ミラーを経て入射する前記第1発振波長のレーザ光を受光し、
     前記第2の光集積素子は、前記第2の光学面から出射された前記第2発振波長のレーザ光を受光し、
     前記平行光学系の焦点距離は、前記第2発振波長のレーザ光に対するリム光強度を第1の所定範囲内で最小にする値に設定されており、
     前記負レンズの焦点距離は、前記第1発振波長のレーザ光に対するリム光強度を第2の所定範囲内で最小にする値に設定されており、
     前記第1の光集積素子は、前記全反射ミラーにより屈曲された前記第1の光路の端に配置され、且つ前記第2の光集積素子と隣接して配置されている
    ことを特徴とする光ピックアップ装置。
  2.  請求項1に記載の光ピックアップ装置であって、前記第1の光集積素子の光軸と前記第2の光集積素子の光軸とは互いに平行であることを特徴とする光ピックアップ装置。
  3.  請求項1または2に記載の光ピックアップ装置であって、前記第2発振波長のレーザ光に対するリム光強度をIRIMとし、前記集光光学系に光を入射させる前記平行光学系の焦点距離をfとし、前記第2のレーザ光源のビーム広がり角をθ(単位:°)とし、前記集光光学系の瞳径をφとし、比例係数をKとするとき、前記平行光学系の焦点距離fは、以下の式:
    Figure JPOXMLDOC01-appb-M000001
    に従って与えられることを特徴とする光ピックアップ装置。
  4.  請求項1から3のうちのいずれか1項に記載の光ピックアップ装置であって、
     前記第1の所定範囲内の最小値が55%であり、
     前記第2の所定範囲内の最小値が60%である
    ことを特徴とする光ピックアップ装置。
  5.  請求項1から4のうちのいずれか1項に記載の光ピックアップ装置であって、
     前記第1発振波長は、405nmであり、
     前記第2発振波長は、650nmである、
    ことを特徴とする光ピックアップ装置。
  6.  請求項1から5のうちのいずれか1項に記載の光ピックアップ装置であって、
     前記集光光学系は、前記第1発振波長のレーザ光と前記第2発振波長のレーザ光とについて共用の対物レンズを含み、
     前記対物レンズは、前記第1発振波長のレーザ光に対して第1の開口数を有し、且つ、前記第2発振波長のレーザ光に対して前記第1の開口数よりも小さい第2の開口数を有する
    ことを特徴とする光ピックアップ装置。
  7.  請求項1から6のうちのいずれか1項に記載の光ピックアップ装置であって、前記ビームスプリッタは、前記第1の光学面に入射する前記第1発振波長のレーザ光を前記平行光学系の方向に反射させ、前記第2の光学面に入射する前記第2発振波長のレーザ光を透過させることを特徴とする光ピックアップ装置。
  8.  請求項1から6のうちのいずれか1項に記載の光ピックアップ装置であって、前記ビームスプリッタは、前記第2の光学面に入射する前記第2発振波長のレーザ光を前記平行光学系の方向に反射させ、前記第1の光学面に入射する前記第1発振波長のレーザ光を透過させることを特徴とする光ピックアップ装置。
  9.  請求項1から8のうちのいずれか1項に記載の光ピックアップ装置を備えていることを特徴とする光ディスク装置。
  10.  請求項9に記載の光ディスク装置であって、前記光ピックアップ装置の第1の受光素子及び第2の受光素子のうちのいずれか一方から出力された検出信号に基づいて、前記光ディスクの記録情報を再生する信号再生回路をさらに備えることを特徴とする光ディスク装置。
PCT/JP2011/070811 2010-09-24 2011-09-13 光ピックアップ装置及び光ディスク装置 WO2012039318A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012535002A JPWO2012039318A1 (ja) 2010-09-24 2011-09-13 光ピックアップ装置及び光ディスク装置
CN201190000742.4U CN203276837U (zh) 2010-09-24 2011-09-13 光拾取装置以及光盘装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-214232 2010-09-24
JP2010214232 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039318A1 true WO2012039318A1 (ja) 2012-03-29

Family

ID=45873806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070811 WO2012039318A1 (ja) 2010-09-24 2011-09-13 光ピックアップ装置及び光ディスク装置

Country Status (3)

Country Link
JP (1) JPWO2012039318A1 (ja)
CN (1) CN203276837U (ja)
WO (1) WO2012039318A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184707A (ja) * 1999-12-28 2001-07-06 Sharp Corp 光ピックアップ及び光ディスクドライブ
JP2003123306A (ja) * 2001-10-11 2003-04-25 Ricoh Co Ltd 光ピックアップ装置
JP2003331456A (ja) * 2002-05-09 2003-11-21 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2005285150A (ja) * 2004-03-26 2005-10-13 Ricoh Co Ltd 光ピックアップ装置及びそれを搭載した光ディスクドライブ装置
JP2006202376A (ja) * 2005-01-19 2006-08-03 Ricoh Co Ltd 光ヘッドおよび光ディスクドライブ装置
WO2008044674A1 (fr) * 2006-10-11 2008-04-17 Panasonic Corporation Dispositif d'entraînement, tête optique et dispositif d'enregistrement/reproduction optique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184019A (ja) * 2000-12-15 2002-06-28 Olympus Optical Co Ltd 分離型光学ヘッド
JP2003331455A (ja) * 2002-05-09 2003-11-21 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2005093008A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 光ピックアップ装置および光ディスクドライブ装置
JP2007250123A (ja) * 2006-03-17 2007-09-27 Sharp Corp 光ピックアップ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184707A (ja) * 1999-12-28 2001-07-06 Sharp Corp 光ピックアップ及び光ディスクドライブ
JP2003123306A (ja) * 2001-10-11 2003-04-25 Ricoh Co Ltd 光ピックアップ装置
JP2003331456A (ja) * 2002-05-09 2003-11-21 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2005285150A (ja) * 2004-03-26 2005-10-13 Ricoh Co Ltd 光ピックアップ装置及びそれを搭載した光ディスクドライブ装置
JP2006202376A (ja) * 2005-01-19 2006-08-03 Ricoh Co Ltd 光ヘッドおよび光ディスクドライブ装置
WO2008044674A1 (fr) * 2006-10-11 2008-04-17 Panasonic Corporation Dispositif d'entraînement, tête optique et dispositif d'enregistrement/reproduction optique

Also Published As

Publication number Publication date
JPWO2012039318A1 (ja) 2014-02-03
CN203276837U (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
US20090059745A1 (en) Optical pickup device and information recording/playback apparatus
JP2004295983A (ja) 光ヘッド及びそれを用いた光記録再生装置
JP2008204517A (ja) 光ヘッドおよび光学的情報記録再生装置
JP5069893B2 (ja) 光ピックアップ及び光ディスクドライブ
WO2008075573A1 (ja) 光ピックアップ装置用の光学素子、光ピックアップ装置及び光ピックアップ装置の組み立て方法
JP2010157315A (ja) 非球面レンズ及びそれを対物レンズとして採用した光ピックアップ
JP2004146049A (ja) 互換型光ピックアップ装置、それを採用した光記録再生装置及び互換型光ピックアップ装置用アクチュエータ
US7859980B2 (en) Optical pickup device and information processor
JP5398924B2 (ja) 光ピックアップ装置及び光ディスク装置
JP4785767B2 (ja) 光ピックアップ装置
JP2004139709A (ja) 光ピックアップ及びディスクドライブ装置
WO2012039318A1 (ja) 光ピックアップ装置及び光ディスク装置
JP4314133B2 (ja) 光ピックアップ装置及びそれを搭載した光ディスクドライブ装置
JP2006331475A (ja) 光ピックアップ装置およびそれを用いた光学的情報再生装置ならびに光学的情報記録再生装置
JP2006510151A (ja) 光担体内に記憶されるデータの読み出し及び/又は書き込み用の光ヘッドを有する装置、及びこの装置に関する方法
JP6186923B2 (ja) 光ピックアップ装置
JP5954060B2 (ja) 光ピックアップ
JP2004206743A (ja) 光ピックアップ装置及び光ディスク装置
JP2006040432A (ja) 光ピックアップ装置およびそのような光ピックアップ装置を備えた情報処理装置
JP4448165B2 (ja) 光ピックアップ装置及び情報記録再生装置
JP2005149543A (ja) 光ピックアップ及びディスクドライブ装置
JP2012104183A (ja) 光ピックアップ
JP2006252739A (ja) 光ピックアップ及び光情報記録装置
JP2006260640A (ja) 光ピックアップおよび光ディスク装置
JP2006196054A (ja) 光ピックアップ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000742.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535002

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826764

Country of ref document: EP

Kind code of ref document: A1