WO2012039249A1 - Rotary blade mechanism and power generation device using same - Google Patents

Rotary blade mechanism and power generation device using same Download PDF

Info

Publication number
WO2012039249A1
WO2012039249A1 PCT/JP2011/069812 JP2011069812W WO2012039249A1 WO 2012039249 A1 WO2012039249 A1 WO 2012039249A1 JP 2011069812 W JP2011069812 W JP 2011069812W WO 2012039249 A1 WO2012039249 A1 WO 2012039249A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprocket
blade
rotating
wind direction
wind
Prior art date
Application number
PCT/JP2011/069812
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 啓一
純 堤田
Original Assignee
有限会社グローバルリング
株式会社セルフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社グローバルリング, 株式会社セルフ filed Critical 有限会社グローバルリング
Publication of WO2012039249A1 publication Critical patent/WO2012039249A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/503Kinematic linkage, i.e. transmission of position using gears
    • F05B2260/5032Kinematic linkage, i.e. transmission of position using gears of the bevel or angled type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a rotating blade for generating a rotational force by using a fluid motion.
  • the present invention relates to a so-called vertical axis type rotary blade mechanism and a power generation apparatus using the same.
  • wind turbines having a rotation axis parallel to the wind direction have been put to practical use for wind power generation.
  • this windmill basically, huge blades rotate in a virtual plane orthogonal to the wind direction.
  • the following problems have been pointed out.
  • -Birds have the habit of flying toward the downstream of the wind in order to search for updrafts. Then, it is easy to collide with the blade
  • a parallel axis type windmill has a height of about 100 meters from the ground surface to the upper end of the blade in order to improve power generation efficiency.
  • a main object of the present invention is to provide a technique capable of making a rotor blade and a fluid flow direction parallel by utilizing a fluid flow when the fluid velocity is excessive.
  • the present invention can be expressed as the contents described in the following items.
  • (Item 1) Revolving shaft, rotating body, first rotating blade, second rotating blade, wind direction shaft, fixed sprocket, first movable sprocket, rotational force transmission mechanism, first key member, and second key member And a key drive mechanism,
  • the rotating body is rotatable around the revolution axis
  • the first rotating blade and the second rotating blade are attached to the rotating body, and thereby, each of these rotating blades is configured to revolve around the revolution axis
  • the first rotor blade includes a first rotating sprocket
  • the second rotor blade includes a second rotating sprocket
  • the wind direction axis is provided with a wind direction plate for receiving wind force, and the wind direction axis is rotatable with respect to the revolution axis according to the direction of the wind force to the wind direction plate
  • the fixed sprocket is fixed to the wind direction axis and is rotatable according to the rotation of the wind direction axis
  • the first movable sprocket is
  • the first movable sprocket includes a first engagement portion and a second engagement portion
  • the rotational force transmission mechanism is configured to transmit rotational force in the same direction between the fixed sprocket and the first rotating sprocket of the first rotating blade.
  • the first rotating sprocket is configured to rotate in the direction opposite to the revolution
  • the rotational force transmission mechanism is configured to transmit rotational force in the same direction between the first movable sprocket and the second rotating sprocket of the second rotary blade, whereby the second By the revolution of the rotation sprocket, the second rotation sprocket is rotated in the direction opposite to the revolution
  • the first key member is configured to be able to detachably engage with the first engagement portion to fix the first movable sprocket and the wind direction shaft, In the state where the first hook member is engaged with the first engaging portion, when the second rotating blade reaches the same revolution angle as the first rotating blade, the second rotating blade rotates.
  • the angle is substantially equal to the rotation angle of the first rotor blade
  • the second hook member is configured to be able to detachably engage with the second engagement portion to fix the first movable sprocket and the wind direction shaft, And in the state where the second key member is engaged with the second engagement portion, the second rotary blade is substantially parallel to the first rotary blade,
  • the key drive mechanism is configured to engage the first key member with the first engaging portion in a normal state and to engage the second key member with the second engaging portion in a strong wind. Characteristic rotary blade mechanism.
  • Item 2 In a state where the first key member is detached from the first engaging portion and the second key member is not engaged with the second engaging portion, the first movable sprocket is rotated in the second rotation.
  • Item 1 is configured to rotate by receiving the rotational force generated by the rotation of the blade through the rotational force transmission mechanism, whereby the second engagement portion reaches the position of the second key member.
  • the rotor blade mechanism according to 1.
  • a power generator that generates electric power by using the revolution force of the rotating body in the rotary blade mechanism according to any one of items 1 to 5 as a rotational force for power generation.
  • FIG. 1 is an overall cross-sectional view of a rotary blade mechanism according to a first embodiment of the present invention.
  • only two rotor blades are shown.
  • It is an enlarged view of the revolution shaft in a rotary blade mechanism.
  • It is a schematic explanatory drawing of the rotary body in a rotary blade mechanism.
  • only two rotor blades are shown.
  • It is a schematic top view for demonstrating the rotation angle of a rotary blade.
  • It is a cross-sectional view of a rotary blade. It is an enlarged view of a wind direction axis. It is an expanded sectional view about the principal part of a wind direction axis.
  • FIG. 10A shows a state in which the first key member is fitted into the first engagement portion.
  • FIG. 10B shows a state in which the second key member is fitted into the second engaging portion.
  • FIG. 3C shows a state in which the second key member is fitted into the second engaging portion of the first movable sprocket and subsequently fitted into the second engaging portion of the second movable sprocket. It is explanatory drawing for demonstrating schematically the state in which each rotary blade became parallel. It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 2nd Embodiment using planar view and longitudinal cross-sectional view.
  • Fig. (A) shows the use of 8 blades
  • Fig. (B) shows the use of 4 blades
  • Fig. (C) shows the use of 2 blades
  • Fig. (D) shows the state of not using all the blades.
  • FIG. 4A is an explanatory diagram for explaining the positional relationship between the first engagement portion and the second engagement portion in the fixed sprocket.
  • FIG. 5B is a schematic explanatory diagram for explaining the mutual positional relationship (angular relationship) between the first engaging portion and the second engaging portion in the seven movable sprockets and the one fixed sprocket. is there. It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 3rd Embodiment. It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 4th Embodiment.
  • FIG. 19A is a view corresponding to the plan view of FIG. Fig. (B) is an arrow view of the main part of the B direction in Fig. (A). It is a figure equivalent to the side view which fractured
  • the rotary blade mechanism of the present embodiment has a so-called vertical axis type structure.
  • gas ie, a wind force
  • a rotational force is used as an example of the fluid for obtaining a rotational force.
  • the rotating blade mechanism of the present embodiment includes a revolution shaft 1, a rotating body 2, a first rotating blade 3, a second rotating blade 4, a third rotating blade 5, a wind direction shaft 6, a fixed sprocket 7, A first movable sprocket 8, a second movable sprocket 9, a rotational force transmission mechanism 10, a first key member 11, a second key member 12, and a key drive mechanism 13 are provided (FIGS. 1 and 4). And FIG. 7).
  • the revolution shaft 1 is erected on a plane (for example, the ground) as shown in FIGS. 1 and 2. Inside the revolution shaft 1, a space 1a extending in the direction of the axis is formed.
  • Rotating body 2 is rotatable around the revolution axis 1. Specifically, the rotating body 2 is attached to the revolution shaft 1 via a bearing 2a (see FIG. 1), and thereby, rotation about the revolution shaft 1 is possible.
  • the rotating body 2 includes a lower support 2b and an upper support 2c for supporting each wind receiving blade (see FIG. 3).
  • the first to third rotor blades 3 to 5 are attached to the rotating body 2 so as to be able to rotate (see FIGS. 1 and 4).
  • FIG. 1 and FIG. 3 only two rotor blades are shown for simplicity of explanation.
  • the lower end of each rotor blade is rotatably supported by the lower support 2b, and the upper end of each rotor blade is rotatably supported by the upper support 2c.
  • a bearing can be used, for example.
  • each of these rotor blades can revolve around the revolution shaft 1.
  • the first to third rotating blades 3 to 5 are provided with first to third rotating sprockets 31 to 51 (see FIG. 4).
  • the rotating sprockets 31 to 51 are connected to the sprockets 7 to 9 (see FIG. 7) attached to the wind direction shaft 6 via the rotational force transmission mechanism 10 (described later).
  • Each rotor blade has a substantially flat plate shape as shown in FIG. Further, in the present embodiment, each rotor blade has a rising portion 32 or 42 that rises in the opposite direction to the rotation direction at both ends in the radial direction during rotation of each rotor blade (the ends in the left-right direction in FIG. 5). 52 (not shown in FIG. 4) are provided.
  • the wind direction shaft 6 includes a wind direction plate 61 for receiving wind force (see FIG. 6). Further, the wind direction axis 6 is rotatable with respect to the revolution axis 1 according to the direction of the wind force toward the wind direction plate 61. Specifically, the wind direction shaft 6 is inserted into a space 1a formed inside the revolution shaft 1, and is attached to the revolution shaft 1 via a bearing. Thereby, the wind direction axis
  • the fixed sprocket 7 is fixed to the outer surface of the wind direction shaft 6 and can be rotated according to the rotation of the wind direction shaft 6 (see FIG. 7).
  • the first movable sprocket 8 and the second movable sprocket 9 are attached to the outer surface of the wind direction shaft 6 and are rotatable about the wind direction shaft 6. As will be described later, at the normal time, the first and second movable sprockets 8 and 9 are fixed by the first hook member 11 so as to maintain a predetermined rotation angle with respect to the wind direction shaft 6.
  • Stoppers 14a and 14b for preventing the movement of these sprockets in the axial direction are arranged above the first movable sprocket 8 and below the second movable sprocket 9. These stoppers 14a and 14b are both fixed to the outer surface of the wind direction shaft 6 with screws. However, the means for fixing these stoppers is not particularly limited, and for example, an adhesive may be used. Note that these stoppers 14a and 14b themselves do not prevent the first and second movable sprockets 8 and 9 from rotating about the axis.
  • the first movable sprocket 8 includes a first engagement portion 81 and a second engagement portion 82 (see FIG. 7).
  • the positional relationship between the first engagement portion 81 and the second engagement portion 82 is shown in FIG.
  • the distance from the axis of the revolution shaft 1 to the second engagement portion 82 is different from the distance from the axis of the revolution shaft 1 to the first engagement portion 81.
  • the second engaging portion 82 is formed at a position of about 120 ° clockwise from the first engaging portion 81 in the drawing.
  • Grooves 81a and 82a are formed in the first engaging portion 81 and the second engaging portion 82 for smooth insertion operation of the first and second key members 11 and 12, which will be described later (see FIG. 10). ).
  • FIG. 10 schematically shows a state transition when the first and second hook members engage with the first and second engaging portions.
  • the second movable sprocket 9 also includes a first engagement portion 91 and a second engagement portion 92 (see FIG. 7). As will be described later, the second engaging portion 92 of the second movable sprocket 9 is disposed at a position (phase angle) different from the second engaging portion 82 of the first movable sprocket 8 in the initial state. However, in order to facilitate understanding, both are shown in FIG. The distance from the axis of the revolution shaft 1 to the second engagement portion 92 of the second movable sprocket 9 is substantially equal to the distance from the axis of the revolution shaft 1 to the second engagement portion 82 of the first movable sprocket 8. (See FIG.
  • FIG. 9 is for explaining the positional relationship between the respective engaging portions, the engaging portion that should be hidden behind the first movable sprocket 8 is also illustrated.
  • the second engaging portion 92 of the second movable sprocket 9 is formed at a position of about 240 ° clockwise from the first engaging portion 91 in the drawing. That is, in the state where the first engaging portion 81 and the first engaging portion 91 are matched (the state shown in FIG. 7), the first engaging portions 81 and 91, the second engaging portion 82, and the second engaging portion.
  • the intervals with the part 92 are all 120 ° (see FIG. 9).
  • the rotational force transmission mechanism 10 is constituted by chains 101, 102, and 103 (see FIG. 4) spanned between the fixed / movable sprockets 7, 8, and 9 and the respective rotating sprockets 31 to 51.
  • the chain 101 of the rotational force transmission mechanism 10 can transmit rotational force in the same direction (counterclockwise in FIG. 4) between the fixed sprocket 7 and the first rotating sprocket 31 of the first rotating blade 3. It has become a structure.
  • the rotational force transmission mechanism 10 causes the first rotation sprocket 31 to rotate in the opposite direction to the revolution (for example, clockwise in FIG. 4) by the revolution of the first rotation sprocket 31 (for example, counterclockwise rotation in FIG. 4). Is configured to rotate.
  • the chain 102 of the rotational force transmission mechanism 10 transmits rotational force in the same direction between the first movable sprocket 8 and the second rotating sprocket 41 of the second rotary blade 4. It has a configuration. Thereby, the rotational force transmission mechanism 10 is configured to rotate the second rotation sprocket 41 in the direction opposite to the rotation by the revolution of the second rotation sprocket 41.
  • the chain 103 of the rotational force transmission mechanism 10 also transmits rotational force in the same direction between the second movable sprocket 9 and the third rotating sprocket 51 of the third rotary blade 5 as in the case of the chain 101 described above. It has a configuration. Thereby, the rotational force transmission mechanism 10 is configured to rotate the third rotation sprocket 51 in the direction opposite to the rotation by the revolution of the third rotation sprocket 51. In FIG. 1, only one of the chains 102 and 103 is shown.
  • the first to third rotor blades 3 to 5 are configured to rotate by 1 ⁇ 2 rotation during one revolution around the wind direction axis 6. Specifically, the number of teeth of each of the rotating sprockets 31, 41, 51 is twice the number of teeth of the corresponding fixed sprocket 7 and movable sprocket 8, 9.
  • the first hook member 11 is detachably engaged with the first engaging portion 81 of the first movable sprocket 8 and the first engaging portion 91 of the second movable sprocket 9 so that the first and second movable sprockets are engaged.
  • the relative rotation angle between 8 and 9 and the wind direction axis 6 can be fixed.
  • the second hook member 12 is configured to be able to detachably engage with the second engaging portions 82 and 92 to fix the first and second movable sprockets 8 and 9 and the wind direction shaft 6.
  • the second and third rotor blades 4 and 5 are substantially parallel to the first rotor blade 3. It has become. This operation will be described later.
  • the key drive mechanism 13 has a configuration in which the first key member 11 is engaged with the first engaging portions 81 and 91 in a normal state and the second key member 12 is engaged with the second engaging portions 82 and 92 in a strong wind. ing.
  • the key drive mechanism 13 includes an operation unit 131 and a support unit 132 housed inside the wind direction shaft 6 (see FIG. 7).
  • the operation part 131 is extended below the wind direction axis 6 and can be moved up and down by appropriate drive means (not shown) or manually.
  • the support part 132 is attached to the tip (upper end in FIG. 7) of the operation part 131.
  • the first key member 11 and the second key member 12 are attached to the side surface of the support portion 132.
  • the first key member 11 and the second key member 12 fixed thereto are also lowered. Then, first, the first key member 11 is sequentially removed from the two first engaging portions 81 and 91. In a state where the first key member 11 is completely removed from the two first engaging portions 81 and 91, the first movable sprocket 8 and the second movable sprocket 9 can rotate about the axis relative to the wind direction axis 6. Become. On the other hand, since both the second rotor blade 4 and the third rotor blade 5 receive strong wind force, they rotate by this wind force, and the first and second movable sprockets 8 and 9 are connected via the chains 102 and 103. It rotates with respect to the wind direction axis 6.
  • the second key member 12 descends as the support portion 132 of the key drive mechanism 13 descends. And the front-end
  • the position of the second key member 12 eventually coincides with the position of the second engaging portion 92 in the second movable sprocket 9. . Then, the tip of the second key member 12 is fitted into the second engaging portion 92 (FIG. 10C).
  • the second hook member 12 can be engaged with the two second engaging portions 82 and 92, respectively.
  • the movable sprockets 8 and 9 are both fixed with respect to the wind direction shaft 6.
  • the second key member 12 is engaged with the two second engaging portions 82 and 92, respectively, as schematically shown in FIG. Is also parallel to the first rotor blade 3. This is because when the movable sprockets 8 and 9 rotate with respect to the wind direction axis 6, even if the revolution angles of the second and third rotor blades 4 and 5 remain unchanged, the rotation angles change.
  • the wind direction plate 61 of the wind direction axis 6 and each rotor blade are parallel to each other. That is, in the state where the wind direction plate 61 and the first rotary blade 3 are parallel, the second rotary blade 4 and the third rotary blade 5 are parallel to the first rotary blade 3 by the above-described operation.
  • the wind direction plate 61 and each rotary blade become parallel, the revolution force which each rotary blade receives at the time of a strong wind can be reduced. Thereby, the overrotation of the rotary body 2 can be prevented.
  • each rotary blade revolves along the direction of the wind direction plate 61. Further, if the rotor blades are installed at equal intervals, there is an advantage that the sum of the forces in the revolving direction acting on the rotor blades is almost zero even if there is an instantaneous change in the wind direction.
  • the reverse operation is performed. That is, the operation part 131 of the key drive mechanism 13 is operated to raise the support part 132. Then, the first hook member 11 can be sequentially engaged with the two first engaging portions 81 and 91 by utilizing the rotational force of the wind force by the reverse operation to the above. In this state, the rotation angle of each rotor blade returns to the initial state shown in FIG. When there is no wind power, each rotor blade is left as it is, but in this state, power generation is not possible in the first place, so this is not a problem in itself. Even if the rotary blades are parallel to each other, the initial position can be restored by a weak wind due to the effect of the rising portions (see FIG. 5) provided on the blades. Further, since the wind direction constantly fluctuates, it is considered that a rotational force can be applied to each blade along with the fluctuation.
  • the rotary blades can be made parallel only by moving the key drive mechanism 13 up and down, even when the key drive mechanism 13 is driven by electric power, power consumption can be reduced. For this reason, in the electric power generating apparatus using this rotary blade mechanism, there exists an advantage that there is little fall of power generation efficiency.
  • the rotary blade mechanism of the second embodiment includes first to eighth rotary blades 211 to 218, and these rotary blades rotate in the same manner as in the first embodiment.
  • a rotating sprocket (not shown) is attached.
  • a fixed sprocket and a movable sprocket are attached to the wind direction shaft 6 as in the first embodiment, but in the second embodiment, eight sprockets are used corresponding to the number of rotor blades. ing. That is, a fixed sprocket 220 and first to seventh movable sprockets 231 to 237 are attached to the wind direction shaft 6 in the second embodiment.
  • the fixed sprocket 220 is formed with a first engaging portion 221 and a second engaging portion 222 as in the case of the fixed sprocket 7 (see FIGS. 13 to 14).
  • first to seventh movable sprockets 231 to 237 are also formed with first engaging portions 2311 to 2371 and second engaging portions 2312 to 2372 (see FIGS. 13 to 14).
  • first engaging portions 2311 to 2371 and second engaging portions 2312 to 2372 see FIGS. 13 to 14.
  • FIG. 14 in order to show the positional relationship between the engaging portions, the engaging portions that should have been hidden are also shown by solid lines.
  • one key drive mechanism 13 is used.
  • this key drive mechanism is divided into a first key drive mechanism 3131 and a second key drive mechanism 3132. Use.
  • the first key drive mechanism 3131 is attached with the first key member 11
  • the second key drive mechanism 3132 is attached with the second key member 12 ( (See FIG. 12).
  • each rotor blade in this state is shown in FIG.
  • the first key member 11 of the first key driving mechanism 3131 is engaged with the first engaging portion 221 of the fixed sprocket 220 and the first engaging portions 2311 to 2371 of the first to seventh movable sprockets 231 to 237. It is inserted. Thereby, about each rotary blade, if it is the same revolution angle, it can be operated so that it may become the same autorotation angle.
  • the first to fourth rotor blades can be operated in parallel with the wind direction, and the other four rotor blades can be operated to have the same rotation angle at the same revolution angle (FIG. 12). (See (b)).
  • the operation in which the second key member 12 is fitted into the second engaging portion is the same as in the first embodiment described above, and a detailed description thereof will be omitted (see FIG. 13B). It is also possible to operate 5 to 7 rotating blades, but since the operation in that case can be understood from the above, detailed description thereof will be omitted.
  • the first to sixth rotor blades can be operated in parallel with the wind direction, and the other two rotor blades can be operated to have the same rotation angle if they have the same revolution angle (FIG. 12). (See (c)). Since the operation
  • the second key member 12 of the second key drive mechanism 3132 includes the second engaging portions 2312 to 2372 of the first to seventh movable sprockets 231 to 237 and the second engaging portion of the fixed sprocket 220. 222.
  • the first to eighth rotor blades can be in a state parallel to the wind direction (see FIG. 12D). Since the operation of fitting the second key member 12 into the second engaging portion is the same as that in the first embodiment described above, detailed description thereof will be omitted (see FIGS. 13A and 13C). Further, although it is possible to operate one rotary blade, the operation in that case can be understood from the above description, and detailed description thereof will be omitted.
  • the same reference numerals are used for members that are basically the same as those in the first embodiment described above, thereby simplifying the description.
  • the first key member 11 and the second key member 12 are driven by one key drive mechanism 13.
  • the first key member 11 is driven by the first key driving mechanism 3131 and the second key member 12 is driven by the second key driving mechanism 3132.
  • the second key member 12 is sequentially fitted into the second engaging portions 82 and 92. As a result, the same operation as in the first embodiment is possible.
  • the rotary blade mechanism of the fourth embodiment includes a support frame 400 for supporting the wind direction shaft 6.
  • the support frame 400 includes a base body 401 and a support column 402.
  • a bearing for supporting the wind direction shaft 6 so as to be rotatable is attached to a connection portion between the base body 401 and the wind direction shaft 6.
  • the rotary blade mechanism of the fifth embodiment includes an upper exhaust mechanism 500 for improving the discharge efficiency of the airflow that has passed through the rotary blade.
  • the upper exhaust mechanism 500 includes six struts 510, an upper rail 520, a guide plate 530, and a rotating frame 540.
  • the column 510 has a circular cross section (see FIG. 20), and is disposed outside the rotating body 2.
  • auxiliary struts 511 that support the struts 510 are also illustrated, but in FIG. 20, the description of the auxiliary struts is omitted.
  • the upper rail 520 has an annular shape and is attached to the upper end of the column 510 (see FIG. 18).
  • the guide plate 530 has a truncated cone shape that is convex downward, and its upper end is connected to the upper rail 520.
  • the rotation frame 540 is attached to the wind direction plate 61 of the wind direction shaft 6 and is configured to rotate together with the wind direction plate 61.
  • the rotating frame 540 is generally configured by an upper surface plate 541 and side surface plates 542 and 543.
  • a ventilation path 544 for allowing airflow to pass therethrough is formed inside the rotary frame 540.
  • the top plate 541 has a substantially fan shape and is fixed to the wind direction plate 61.
  • the upper surface plate 541 defines the upper surface of the ventilation path 544.
  • the side plates 542 and 543 are connected to the side portion of the top plate 541 and define the side surface of the ventilation path 544.
  • rollers 542a and 543a are attached to the lower portions of the side plates 542 and 543.
  • the rollers 542 a and 543 a can run on the upper surface of the upper rail 520, so that the rotating frame 540 can move together with the wind direction plate 61.
  • the airflow can flow in the direction of the wind direction plate 61 (that is, the direction toward the downstream side of the airflow).
  • the flow of the airflow around the rotor blade can be made smooth, and as a result, the airflow can be efficiently received by the rotor blade.
  • the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 are arranged around the wind direction axis 6.
  • these sprockets are arranged outside the wind direction shaft 6 and each sprocket is attached to the wind direction shaft 6 via a gear mechanism.
  • the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 are attached to the rotating shaft 600 so as to be able to rotate relative thereto.
  • the position of each sprocket is defined by the first key member 11 and the second key member 12.
  • the rotation shaft 600 is connected to the wind direction shaft 6 by a rotation transmission mechanism 650 using a bevel gear.
  • the same operation as in the second embodiment can be realized.
  • the fifth embodiment by adjusting the reduction ratio between the bevel gears, it is possible to realize a configuration in which each rotary blade rotates by half during one revolution. That is, in this embodiment, the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 can have the same pitch circle radius as that of the respective rotating sprockets. There is also an advantage that the 7 movable sprockets 231 to 237 can be downsized.
  • the rotary frame 2 is rotatably supported by a pedestal 100 erected on the ground, and each wing revolves around a virtual revolution shaft 1 (see FIGS. 21 and 22).
  • the rotary blade mechanism of the sixth embodiment includes a side exhaust mechanism 700 around the rotary body 2.
  • the side exhaust mechanism 700 includes six air guide blades 710 and a drive mechanism 720 (FIG. 26).
  • Each of the air guide blades 710 includes a thin plate-like main body 711 and a rotating shaft 712.
  • the main body 711 is attached at a position eccentric with respect to the rotation shaft 712 as shown in an enlarged view in FIG.
  • the upper end of the rotating shaft 712 is rotatably supported by a support frame 400 similar to that described in the fourth embodiment.
  • the lower end of the rotating shaft 712 is also rotatably supported by an appropriate base.
  • the drive mechanism 720 includes a motor 721, a transmission mechanism 722, a clutch mechanism 723, and a bevel gear 724 (see FIG. 26).
  • the motor 721 is controlled to rotate at a predetermined angle by a control means (not shown).
  • the transmission mechanism 722 is a mechanism for transmitting the rotational force of the motor 721 to the rotating shaft 712 of the wind guide blade 710 via the clutch mechanism 723 and the bevel gear 724.
  • the specific structure of the transmission mechanism 722 is not particularly limited, for example, a combination of a worm gear and a worm wheel can be used.
  • the clutch mechanism 723 is attached in the middle of the transmission mechanism 722.
  • the intermittent operation of the clutch mechanism 723 can be performed by an appropriate control mechanism.
  • the bevel gear 724 is meshed with a bevel gear attached to the rotation shaft 712 so that the rotation shaft 712 can be rotated.
  • the rotary blade mechanism of the sixth embodiment by controlling the air guide blade 710 to an appropriate angle by the motor 721, the airflow passing through the side of the rotating body 2 can be efficiently flowed. Thereby, in this embodiment, the wind receiving efficiency in each rotary blade can be improved.
  • the wind guide blade 710 can be freely rotated by setting the clutch mechanism 723 to the disconnected state. Since the main body 711 of the wind guide blade 710 is attached in an eccentric state with respect to the rotating shaft 712, when the clutch mechanism 723 is in a disconnected state, the main body 711 of the wind guide blade 710 is moved along the wind direction by wind force. Can be arranged. Therefore, in the present embodiment, it is possible to reduce the possibility of the wind guide blades 710 being damaged during a strong wind.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • a specific number of rotor blades is used, but any other appropriate number can be used.
  • the number of movable sprockets is set according to the number of rotor blades.
  • the angular relationship of the second engaging portions formed on each movable sprocket is set so that the above-described operation is possible according to the arrangement state of each rotor blade.
  • wind power is exemplified as the fluid.
  • other fluid flows such as hydraulic power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To make a rotary blade and a wind direction parallel with each other by use of wind during a strong wind. [Solution] First to third rotary blades (3 to 5) are attached to a rotatable rotating body (2) so as to be centered on a revolution shaft (1). A wind direction shaft (6) is rotatable with respect to the revolution shaft (1) according to the direction of wind force against a wind direction plate (61). A fixed sprocket (7) is fixed to the wind direction shaft (6). A key driving mechanism (13) allows a first key member (11) to be engaged into the respective first engaging portions (81, 91) of first and second movable sprockets (8, 9) at a normal time. In this state, the rotating body (2) can be rotated by the wind received by the rotary blades (3 to 5). During a strong wind, the first key member (11) is pulled out from the respective first engaging portions (81, 91). A second key member (12) is then engaged into the respective second engaging portions (82, 92) of the first and second movable sprockets (8, 9). In this state, each of the rotary blades (3 to 5) becomes parallel with a wind direction.

Description

回転翼機構及びこれを用いた発電装置Rotor mechanism and power generator using the same
  本発明は、流体の運動を利用して回転力を発生させるための回転翼に関するものである。特に本発明は、いわゆる垂直軸型の回転翼機構及びこれを用いた発電装置に関連している。 The present invention relates to a rotating blade for generating a rotational force by using a fluid motion. In particular, the present invention relates to a so-called vertical axis type rotary blade mechanism and a power generation apparatus using the same.
  従来から、風向に平行な回転軸を持つ風車(いわゆる平行軸型の風車)が、風力発電用として実用化されている。この風車では、基本的には、風向に直交する仮想面内において、巨大な羽根が回転する。このため、以下のような問題点が指摘されている。
・鳥は、上昇気流を探すため、風の下流に向けて飛行する習性がある。すると、風向に垂直な方向に移動する羽根と衝突しやすい。衝突すれば、鳥にも、羽根にも被害を生じる可能性がある。特に、平行軸型の風車では、発電効率を向上させるために、地表から羽根の上端までの高さが100メートル程度のものがある。このような大型の風車では、被害が顕在化しやすい。
・また、平行軸型の風車では、羽根が巨大であるために、大面積を持つ羽根の先端が比較的に高速で移動することになる。このため、この形式の風車では、風切り音、特に低周波騒音が発生しやすいことが知られている。
・さらに、平行軸型の風車は、高所に回転軸を配置し、回転する巨大な回転翼で風を受けるために、回転翼の支持体と地表面との接続箇所に大きなトルクが作用しやすい。このため、基礎工事や設置工事が大がかりになる傾向にある。
・また、高所に回転翼や回転軸機構をつり上げるには、大きなクレーンが必要であり、この点からも設置工事が大がかりになりやすい。このため、強い風力が発生する尾根に風車を設置するためには、非常に難しい工事が必要となる。また、高所で回転軸や回転翼の保守作業を行うことは容易ではない。
・さらに、平行軸型では、巨大な回転翼があるために、ここに雷が落ちやすく、有効な避雷針設置が難しい。落雷の場合は装置に損傷を受ける可能性がある。
Conventionally, wind turbines having a rotation axis parallel to the wind direction (so-called parallel axis type wind turbines) have been put to practical use for wind power generation. In this windmill, basically, huge blades rotate in a virtual plane orthogonal to the wind direction. For this reason, the following problems have been pointed out.
-Birds have the habit of flying toward the downstream of the wind in order to search for updrafts. Then, it is easy to collide with the blade | wing which moves to a direction perpendicular | vertical to a wind direction. A collision can cause damage to birds and feathers. In particular, a parallel axis type windmill has a height of about 100 meters from the ground surface to the upper end of the blade in order to improve power generation efficiency. In such a large windmill, damage is likely to become obvious.
In addition, in the parallel axis type windmill, since the blades are enormous, the tip of the blade having a large area moves at a relatively high speed. For this reason, it is known that wind noise, particularly low-frequency noise, is likely to occur in this type of windmill.
・ Furthermore, in the parallel axis type wind turbine, the rotating shaft is arranged at a high place and wind is received by a huge rotating blade, so that a large torque acts on the connection between the rotor support and the ground surface. Cheap. For this reason, foundation work and installation work tend to be large.
-In addition, a large crane is required to lift the rotor blades and the rotating shaft mechanism at a high place, and installation work tends to be large in this respect as well. For this reason, in order to install a windmill in the ridge where a strong wind force is generated, a very difficult construction is required. In addition, it is not easy to perform maintenance work on the rotating shaft and rotor blades at a high place.
・ Furthermore, in the parallel shaft type, there are huge rotor blades, so lightning easily falls here, and it is difficult to install an effective lightning rod. In the event of a lightning strike, the equipment may be damaged.
  このため、風向に直交する回転軸を持つ風車(いわゆる垂直軸型の風車)も提案されている(下記特許文献1参照)。これによれば、前記した課題の多くは解決可能である。また、下記特許文献1の技術では、回転翼が1公転する間に1/2の自転を行う構成となっている。つまり、回転翼の公転周期が、回転翼自体の自転周期の1/2となっている(特許文献1の図4)。このようにすると、公転角0°の位置で回転翼の受風面が風向に直行するとき、公転角180°では、回転翼の受風面が、風向とほぼ平行となる。これにより、効率的に風力を回転力に変換することができる。 For this reason, a windmill having a rotation axis orthogonal to the wind direction (so-called vertical axis type windmill) has also been proposed (see Patent Document 1 below). According to this, many of the problems described above can be solved. Moreover, in the technique of the following patent document 1, it is the structure which performs 1/2 autorotation, while a rotary blade revolves once. That is, the revolution period of the rotor blade is ½ of the rotation period of the rotor blade itself (FIG. 4 of Patent Document 1). In this way, when the wind receiving surface of the rotor blade is orthogonal to the wind direction at the revolution angle of 0 °, the wind receiving surface of the rotor blade is substantially parallel to the wind direction at the revolution angle of 180 °. Thereby, wind power can be efficiently converted into rotational force.
  ところで、風速が過大になると(いわゆる強風時)、回転翼の公転あるいは自転速度が過大となり、支持部品や発電装置が損傷するおそれが生じる。そこで、下記特許文献2では、各回転翼の自転角を、サーボモータによって個別に制御することにより、強風時において、風向と回転翼の受風面とを平行にするようにしている。 By the way, if the wind speed becomes excessive (so-called strong wind), the revolution or rotation speed of the rotor blades becomes excessive, and the support parts and the power generation device may be damaged. Therefore, in Patent Document 2 below, the rotation angle of each rotor blade is individually controlled by a servo motor so that the wind direction and the wind receiving surface of the rotor blade are parallel in a strong wind.
  しかしながら、サーボモータを用いると、そのための駆動電力が必要となる。このため、風力発電装置においては、一般に、風力を使って発電した電力をサーボモータ用の駆動電力として消費することとなる。すると、発電装置としての発電効率が劣化するという問題を生じる。 However, when a servo motor is used, driving power for that purpose is required. For this reason, in a wind power generator, generally, electric power generated using wind power is consumed as drive power for a servo motor. Then, the problem that the power generation efficiency as a power generation device deteriorates arises.
特開平10-47227号公報Japanese Patent Laid-Open No. 10-47227 特開2001-107838号公報JP 2001-107838 A
  本発明は、前記した状況に鑑みてなされたものである。本発明の主な目的は、流体の速度が過大である場合において、流体の流れを利用して、回転翼と流体の流れ方向とを平行にすることが可能な技術を提供することである。 The present invention has been made in view of the above situation. A main object of the present invention is to provide a technique capable of making a rotor blade and a fluid flow direction parallel by utilizing a fluid flow when the fluid velocity is excessive.
  本発明は、以下の項目に記載の内容としてそれぞれ表現できる。 The present invention can be expressed as the contents described in the following items.
  (項目1)
 公転軸と、回転体と、第1回転翼と、第2回転翼と、風向軸と、固定スプロケットと、第1可動スプロケットと、回転力伝達機構と、第1かぎ部材と、第2かぎ部材と、かぎ駆動機構とを備えており、
 前記回転体は、前記公転軸を中心として回転可能とされており、
 前記第1回転翼及び前記第2回転翼は、前記回転体に取り付けられており、これによって、これらの回転翼は、いずれも、前記公転軸を中心として公転できる構成となっており、
 前記第1回転翼は、第1自転スプロケットを備えており、
 前記第2回転翼は、第2自転スプロケットを備えており、
 前記風向軸は、風力を受けるための風向板を備えており、かつ、前記風向軸は、前記公転軸に対して、前記風向板への風力の方向に従って回転可能とされており、
 前記固定スプロケットは、前記風向軸に固定されて、前記風向軸の回転に従って回転可能とされており、
 前記第1可動スプロケットは、前記風向軸に取り付けられており、かつ、前記風向軸を中心として回転可能とされており、
 また、前記第1可動スプロケットは、第1係合部と第2係合部とを備えており、
 前記回転力伝達機構は、前記固定スプロケットと前記第1回転翼の前記第1自転スプロケットとの間で、同じ方向の回転力を伝達する構成となっており、これにより、前記第1自転スプロケットの公転によって、公転と逆方向に、前記第1自転スプロケットを自転させる構成となっており、
 さらに、回転力伝達機構は、前記第1可動スプロケットと前記第2回転翼の前記第2自転スプロケットとの間で、同じ方向の回転力を伝達する構成となっており、これにより、前記第2自転スプロケットの公転によって、公転と逆方向に、前記第2自転スプロケットを自転させる構成となっており、
 前記第1かぎ部材は、前記第1係合部に、着脱自在に係合して、前記第1可動スプロケットと前記風向軸とを固定できる構成となっており、
 かつ、前記第1かぎ部材が前記第1係合部に係合した状態では、前記第2回転翼が前記第1回転翼と同じ公転角度に到達した場合には、前記第2回転翼の自転角度が、前記第1回転翼の自転角度とほぼ等しくなる構成となっており、
 前記第2かぎ部材は、前記第2係合部に、着脱自在に係合して、前記第1可動スプロケットと前記風向軸とを固定できる構成となっており、
 かつ、前記第2かぎ部材が前記第2係合部に係合した状態では、前記第2回転翼が前記第1回転翼に対して実質的に平行となる構成となっており、
 前記かぎ駆動機構は、通常時に前記第1かぎ部材を前記第1係合部に係合させ、強風時に前記第2かぎ部材を前記第2係合部に係合させる構成となっている
 ことを特徴とする回転翼機構。
(Item 1)
Revolving shaft, rotating body, first rotating blade, second rotating blade, wind direction shaft, fixed sprocket, first movable sprocket, rotational force transmission mechanism, first key member, and second key member And a key drive mechanism,
The rotating body is rotatable around the revolution axis,
The first rotating blade and the second rotating blade are attached to the rotating body, and thereby, each of these rotating blades is configured to revolve around the revolution axis,
The first rotor blade includes a first rotating sprocket,
The second rotor blade includes a second rotating sprocket,
The wind direction axis is provided with a wind direction plate for receiving wind force, and the wind direction axis is rotatable with respect to the revolution axis according to the direction of the wind force to the wind direction plate,
The fixed sprocket is fixed to the wind direction axis and is rotatable according to the rotation of the wind direction axis,
The first movable sprocket is attached to the wind direction axis, and is rotatable about the wind direction axis.
The first movable sprocket includes a first engagement portion and a second engagement portion,
The rotational force transmission mechanism is configured to transmit rotational force in the same direction between the fixed sprocket and the first rotating sprocket of the first rotating blade. By the revolution, the first rotating sprocket is configured to rotate in the direction opposite to the revolution,
Further, the rotational force transmission mechanism is configured to transmit rotational force in the same direction between the first movable sprocket and the second rotating sprocket of the second rotary blade, whereby the second By the revolution of the rotation sprocket, the second rotation sprocket is rotated in the direction opposite to the revolution,
The first key member is configured to be able to detachably engage with the first engagement portion to fix the first movable sprocket and the wind direction shaft,
In the state where the first hook member is engaged with the first engaging portion, when the second rotating blade reaches the same revolution angle as the first rotating blade, the second rotating blade rotates. The angle is substantially equal to the rotation angle of the first rotor blade,
The second hook member is configured to be able to detachably engage with the second engagement portion to fix the first movable sprocket and the wind direction shaft,
And in the state where the second key member is engaged with the second engagement portion, the second rotary blade is substantially parallel to the first rotary blade,
The key drive mechanism is configured to engage the first key member with the first engaging portion in a normal state and to engage the second key member with the second engaging portion in a strong wind. Characteristic rotary blade mechanism.
  (項目2)
 前記第1かぎ部材が前記第1係合部から離脱し、かつ、前記第2かぎ部材が前記第2係合部に係合する前の状態では、前記第1可動スプロケットは、前記第2回転翼の自転による回転力を、前記回転力伝達機構を介して受け取ることによって回転し、これによって、前記第2係合部が前記第2かぎ部材の位置に到達する構成となっている、項目1に記載の回転翼機構。
(Item 2)
In a state where the first key member is detached from the first engaging portion and the second key member is not engaged with the second engaging portion, the first movable sprocket is rotated in the second rotation. Item 1 is configured to rotate by receiving the rotational force generated by the rotation of the blade through the rotational force transmission mechanism, whereby the second engagement portion reaches the position of the second key member. The rotor blade mechanism according to 1.
  (項目3)
 前記第2回転翼には、この第2回転翼の自転における半径方向の端部において、前記自転方向とは反対方向に立ち上がる立ち上がり部が備えられている、項目1又は2に記載の回転翼機構。
(Item 3)
The rotary blade mechanism according to item 1 or 2, wherein the second rotary blade is provided with a rising portion that rises in a direction opposite to the rotation direction at an end portion in a radial direction in the rotation of the second rotary blade. .
  (項目4)
 前記第1及び第2回転翼は、前記風向軸を中心とした1公転の間に1/2回転だけ自転する構成となっている、項目1~3のいずれか1項に記載の回転翼機構。
(Item 4)
The rotary blade mechanism according to any one of items 1 to 3, wherein the first and second rotary blades are configured to rotate by half a revolution during one revolution about the wind direction axis. .
  (項目5)
 前記回転力伝達機構は、スプロケット間で動力を伝達するためのチェーンである、項目1~4のいずれか1項に記載の回転翼機構。
(Item 5)
The rotary blade mechanism according to any one of items 1 to 4, wherein the rotational force transmission mechanism is a chain for transmitting power between sprockets.
  (項目6)
 項目1~5のいずれか1項に記載の回転翼機構における前記回転体の公転力を発電用の回転力として用いて発電することを特徴とする発電装置。
(Item 6)
6. A power generator that generates electric power by using the revolution force of the rotating body in the rotary blade mechanism according to any one of items 1 to 5 as a rotational force for power generation.
  本発明によれば、流体の速度が過大である場合において、流体の流れを利用して、回転翼と流体の流れ方向とを平行にすることが可能となる。 According to the present invention, when the velocity of the fluid is excessive, it is possible to make the rotor blade and the fluid flow direction parallel by using the fluid flow.
本発明の第1実施形態に係る回転翼機構の全体的な断面図である。この図では、2枚の回転翼のみ記載している。1 is an overall cross-sectional view of a rotary blade mechanism according to a first embodiment of the present invention. In this figure, only two rotor blades are shown. 回転翼機構における公転軸の拡大図である。It is an enlarged view of the revolution shaft in a rotary blade mechanism. 回転翼機構における回転体の概略的な説明図である。この図では、2枚の回転翼のみ記載している。It is a schematic explanatory drawing of the rotary body in a rotary blade mechanism. In this figure, only two rotor blades are shown. 回転翼の自転角度を説明するための概略的な平面図である。It is a schematic top view for demonstrating the rotation angle of a rotary blade. 回転翼の横断面図である。It is a cross-sectional view of a rotary blade. 風向軸の拡大図である。It is an enlarged view of a wind direction axis. 風向軸の要部についての拡大断面図である。It is an expanded sectional view about the principal part of a wind direction axis. 2枚の可動スプロケットが取り付けられた部分における風向軸の拡大断面図である。It is an expanded sectional view of a wind direction axis in a portion to which two movable sprockets are attached. 2枚の可動スプロケットにおける第1係合部と第2係合部の位置関係を説明するための概略的な説明図である。It is a schematic explanatory drawing for demonstrating the positional relationship of the 1st engaging part and 2nd engaging part in two movable sprockets. 2枚の可動スプロケットに第1かぎ部材と第2かぎ部材とが係合する様子を説明するための説明図である。図10(a)は、第1かぎ部材が第1係合部に嵌入する様子を示している。図10(b)は、第2かぎ部材が第2係合部に嵌入する様子を示している。図(c)は、第2かぎ部材が第1可動スプロケットの第2係合部に嵌入し、ひき続いて第2可動スプロケットの第2係合部に嵌入する様子を示している。It is explanatory drawing for demonstrating a mode that a 1st key member and a 2nd key member engage with two movable sprockets. FIG. 10A shows a state in which the first key member is fitted into the first engagement portion. FIG. 10B shows a state in which the second key member is fitted into the second engaging portion. FIG. 3C shows a state in which the second key member is fitted into the second engaging portion of the first movable sprocket and subsequently fitted into the second engaging portion of the second movable sprocket. 各回転翼が平行になった状態を概略的に説明するための説明図である。It is explanatory drawing for demonstrating schematically the state in which each rotary blade became parallel. 第2実施形態に係る回転翼機構を、平面視と縦断面視を用いて説明するための説明図である。図(a)は8翼使用時、図(b)は4翼使用時、図(c)は2翼使用時、図(d)は全翼不使用の状態を示す。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 2nd Embodiment using planar view and longitudinal cross-sectional view. Fig. (A) shows the use of 8 blades, Fig. (B) shows the use of 4 blades, Fig. (C) shows the use of 2 blades, and Fig. (D) shows the state of not using all the blades. 7枚の可動スプロケットと1枚の固定スプロケットとに第1かぎ部材と第2かぎ部材とが係合する様子を説明するための説明図である。It is explanatory drawing for demonstrating a mode that a 1st key member and a 2nd key member engage with seven movable sprockets and one fixed sprocket. 図(a)は、固定スプロケットにおける第1係合部と第2係合部との位置関係を説明するための説明図である。図(b)は、7枚の可動スプロケットと1枚の固定スプロケットとにおける第1係合部と第2係合部の相互の位置関係(角度関係)を説明するための概略的な説明図である。FIG. 4A is an explanatory diagram for explaining the positional relationship between the first engagement portion and the second engagement portion in the fixed sprocket. FIG. 5B is a schematic explanatory diagram for explaining the mutual positional relationship (angular relationship) between the first engaging portion and the second engaging portion in the seven movable sprockets and the one fixed sprocket. is there. 第3実施形態に係る回転翼機構を説明するための説明図である。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 3rd Embodiment. 第4実施形態に係る回転翼機構を説明するための説明図である。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 4th Embodiment. 第5実施形態に係る回転翼機構を説明するための説明図であって、回転翼機構の概略的な縦断面に相当する図である。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 5th Embodiment, Comprising: It is a figure equivalent to the rough longitudinal cross-section of a rotary blade mechanism. 図(a)は、図17の平面図に相当する図である。図(b)は、図(a)のB方向要部矢視図である。FIG. 19A is a view corresponding to the plan view of FIG. Fig. (B) is an arrow view of the main part of the B direction in Fig. (A). 図17におけるA方向の矢視における、一部を破断した側面図に相当する図である。It is a figure equivalent to the side view which fractured | ruptured partially in the arrow direction of A direction in FIG. 図17の横断面に対応する図であって、支柱のみを示す図である。It is a figure corresponding to the cross section of FIG. 17, Comprising: It is a figure which shows only a support | pillar. 第5実施形態に係る回転翼機構を説明するための説明図であって、回転翼機構の概略的な要部縦断面に相当する図である。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 5th Embodiment, Comprising: It is a figure corresponded to the rough principal part longitudinal cross-section of a rotary blade mechanism. 図21の要部拡大図である。It is a principal part enlarged view of FIG. 第6実施形態に係る回転翼機構を説明するための説明図であって、側方排気機構の概略的な配置を説明するための説明図である。It is explanatory drawing for demonstrating the rotary blade mechanism which concerns on 6th Embodiment, Comprising: It is explanatory drawing for demonstrating schematic arrangement | positioning of a side exhaust mechanism. 第6実施形態に係る回転翼機構の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the rotary blade mechanism which concerns on 6th Embodiment. 図24の要部拡大図である。It is a principal part enlarged view of FIG. 第6実施形態に係る回転翼機構において用いられる駆動機構を説明するための説明図である。It is explanatory drawing for demonstrating the drive mechanism used in the rotary blade mechanism which concerns on 6th Embodiment. 図26におけるC方向要部矢視図である。It is a C direction principal part arrow directional view in FIG. 第6実施形態に係る回転翼機構において用いられる導風翼を説明するための説明図である。It is explanatory drawing for demonstrating the wind guide blade used in the rotary blade mechanism which concerns on 6th Embodiment.
  以下、本発明の第1実施形態に係る回転翼機構を、添付の図面を参照しながら説明する。本実施形態の回転翼機構は、いわゆる垂直軸型の構造を備えている。また、本実施形態では、回転力を得るための流体の一例として、気体、すなわち風力を用いている。 Hereinafter, a rotary blade mechanism according to a first embodiment of the present invention will be described with reference to the accompanying drawings. The rotary blade mechanism of the present embodiment has a so-called vertical axis type structure. Moreover, in this embodiment, gas, ie, a wind force, is used as an example of the fluid for obtaining a rotational force.
  本実施形態の回転翼機構は、公転軸1と、回転体2と、第1回転翼3と、第2回転翼4と、第3回転翼5と、風向軸6と、固定スプロケット7と、第1可動スプロケット8と、第2可動スプロケット9と、回転力伝達機構10と、第1かぎ部材11と、第2かぎ部材12と、かぎ駆動機構13とを備えている(図1、図4及び図7参照)。 The rotating blade mechanism of the present embodiment includes a revolution shaft 1, a rotating body 2, a first rotating blade 3, a second rotating blade 4, a third rotating blade 5, a wind direction shaft 6, a fixed sprocket 7, A first movable sprocket 8, a second movable sprocket 9, a rotational force transmission mechanism 10, a first key member 11, a second key member 12, and a key drive mechanism 13 are provided (FIGS. 1 and 4). And FIG. 7).
  公転軸1は、図1及び図2に示されるように、平面(例えば地盤)上に立設されている。公転軸1の内部には、軸心の方向に延長された空間1aが形成されている。 The revolution shaft 1 is erected on a plane (for example, the ground) as shown in FIGS. 1 and 2. Inside the revolution shaft 1, a space 1a extending in the direction of the axis is formed.
  回転体2は、公転軸1を中心として回転可能とされている。具体的には、回転体2は、軸受2a(図1参照)を介して公転軸1に取り付けられており、これによって、公転軸1を中心とした回転が可能となっている。回転体2は、各受風翼を支持するための下部支持体2bと上部支持体2cとを有している(図3参照)。 Rotating body 2 is rotatable around the revolution axis 1. Specifically, the rotating body 2 is attached to the revolution shaft 1 via a bearing 2a (see FIG. 1), and thereby, rotation about the revolution shaft 1 is possible. The rotating body 2 includes a lower support 2b and an upper support 2c for supporting each wind receiving blade (see FIG. 3).
  第1~第3回転翼3~5は、回転体2に対して、自転できるように取り付けられている(図1及び図4参照)。なお、図1及び図3においては、説明簡略化のため、2枚の回転翼のみが示されている。図3に示すように、各回転翼の下端は、下部支持体2bによって、回転可能なように支持されており、各回転翼の上端は、上部支持体2cによって、回転可能なように支持されている。なお、各回転翼を回転可能に支持する手段としては、例えば軸受を用いることができる。また、各回転翼を回転体2に取り付けることによって、これらの回転翼は、いずれも、公転軸1を中心として公転できる構成となっている。 The first to third rotor blades 3 to 5 are attached to the rotating body 2 so as to be able to rotate (see FIGS. 1 and 4). In FIG. 1 and FIG. 3, only two rotor blades are shown for simplicity of explanation. As shown in FIG. 3, the lower end of each rotor blade is rotatably supported by the lower support 2b, and the upper end of each rotor blade is rotatably supported by the upper support 2c. ing. In addition, as a means to support each rotary blade rotatably, a bearing can be used, for example. In addition, by attaching each rotor blade to the rotor 2, each of these rotor blades can revolve around the revolution shaft 1.
  第1~第3回転翼3~5は、第1~第3自転スプロケット31~51を備えている(図4参照)。各自転スプロケット31~51は、回転力伝達機構10を介して、風向軸6に取り付けられた各スプロケット7~9(図7参照)に連結されている(後述)。 The first to third rotating blades 3 to 5 are provided with first to third rotating sprockets 31 to 51 (see FIG. 4). The rotating sprockets 31 to 51 are connected to the sprockets 7 to 9 (see FIG. 7) attached to the wind direction shaft 6 via the rotational force transmission mechanism 10 (described later).
  各回転翼は、図4に示されるように、略平板形状とされている。また、本実施形態においては、各回転翼には、各回転翼の自転における半径方向の両端部(図5において左右方向の端部)において、自転方向とは反対方向に立ち上がる立ち上がり部32・42・52(図4では図示省略されている)がそれぞれ備えられている。 Each rotor blade has a substantially flat plate shape as shown in FIG. Further, in the present embodiment, each rotor blade has a rising portion 32 or 42 that rises in the opposite direction to the rotation direction at both ends in the radial direction during rotation of each rotor blade (the ends in the left-right direction in FIG. 5). 52 (not shown in FIG. 4) are provided.
  風向軸6は、風力を受けるための風向板61を備えている(図6参照)。さらに、風向軸6は、公転軸1に対して、風向板61への風力の方向に従って回転可能とされている。具体的には、風向軸6は、公転軸1の内部に形成された空間1aの内部に挿入されており、かつ、軸受を介して、この公転軸1に取り付けられている。これにより、風向軸6は、公転軸1に対して回転可能なように支持されている。 The wind direction shaft 6 includes a wind direction plate 61 for receiving wind force (see FIG. 6). Further, the wind direction axis 6 is rotatable with respect to the revolution axis 1 according to the direction of the wind force toward the wind direction plate 61. Specifically, the wind direction shaft 6 is inserted into a space 1a formed inside the revolution shaft 1, and is attached to the revolution shaft 1 via a bearing. Thereby, the wind direction axis | shaft 6 is supported so that rotation with respect to the revolution axis | shaft 1 is possible.
  固定スプロケット7は、風向軸6の外側面に固定されて、風向軸6の回転に従って回転可能とされている(図7参照)。 The fixed sprocket 7 is fixed to the outer surface of the wind direction shaft 6 and can be rotated according to the rotation of the wind direction shaft 6 (see FIG. 7).
  第1可動スプロケット8及び第2可動スプロケット9(図7参照)は、風向軸6の外側面に取り付けられており、かつ、風向軸6を中心として回転可能とされている。後述の通り、通常時には、第1及び第2可動スプロケット8及び9は、第1かぎ部材11によって、風向軸6に対して既定の回転角度を維持するように固定されている。 The first movable sprocket 8 and the second movable sprocket 9 (see FIG. 7) are attached to the outer surface of the wind direction shaft 6 and are rotatable about the wind direction shaft 6. As will be described later, at the normal time, the first and second movable sprockets 8 and 9 are fixed by the first hook member 11 so as to maintain a predetermined rotation angle with respect to the wind direction shaft 6.
  第1可動スプロケット8の上側及び第2可動スプロケット9の下側には、これらのスプロケットの、軸方向(図8において上下方向)への異動を阻止するストッパ14a及び14bが配置されている。これらのストッパ14a及び14bは、いずれも、風向軸6の外側面に、ビスによって固定されている。ただし、これらのストッパを固定する手段は特に制約されず、例えば接着剤によることも可能である。なお、これらのストッパ14a及び14b自体は、第1及び第2可動スプロケット8及び9が軸回りに回転することを阻止しないようになっている。 Stoppers 14a and 14b for preventing the movement of these sprockets in the axial direction (vertical direction in FIG. 8) are arranged above the first movable sprocket 8 and below the second movable sprocket 9. These stoppers 14a and 14b are both fixed to the outer surface of the wind direction shaft 6 with screws. However, the means for fixing these stoppers is not particularly limited, and for example, an adhesive may be used. Note that these stoppers 14a and 14b themselves do not prevent the first and second movable sprockets 8 and 9 from rotating about the axis.
  第1可動スプロケット8は、第1係合部81と第2係合部82とを備えている(図7参照)。第1係合部81と第2係合部82との位置関係を図9に示す。図示されるように、公転軸1の軸心から第2係合部82までの距離は、公転軸1の軸心から第1係合部81までの距離とは異なっている。また、第2係合部82は、第1係合部81から図中時計回りで約120°の位置に形成されている。第1係合部81及び第2係合部82には、後述する第1及び第2かぎ部材11及び12の嵌入動作を円滑とするための溝81a及び82aが形成されている(図10参照)。なお、図10は、第1及び第2かぎ部材が第1及び第2係合部に係合する場合の状態の遷移を概略的に示すものである。 The first movable sprocket 8 includes a first engagement portion 81 and a second engagement portion 82 (see FIG. 7). The positional relationship between the first engagement portion 81 and the second engagement portion 82 is shown in FIG. As shown in the drawing, the distance from the axis of the revolution shaft 1 to the second engagement portion 82 is different from the distance from the axis of the revolution shaft 1 to the first engagement portion 81. Further, the second engaging portion 82 is formed at a position of about 120 ° clockwise from the first engaging portion 81 in the drawing. Grooves 81a and 82a are formed in the first engaging portion 81 and the second engaging portion 82 for smooth insertion operation of the first and second key members 11 and 12, which will be described later (see FIG. 10). ). FIG. 10 schematically shows a state transition when the first and second hook members engage with the first and second engaging portions.
  第2可動スプロケット9も、第1可動スプロケット8と同様に、第1係合部91と第2係合部92とを備えている(図7参照)。なお、後述するように、第2可動スプロケット9の第2係合部92は、初期状態においては、第1可動スプロケット8の第2係合部82とは異なる位置(位相角)に配置されているが、理解を容易とするために、図7においては両者を共に図示している。公転軸1の軸心から第2可動スプロケット9の第2係合部92までの距離は、公転軸1の軸心から第1可動スプロケット8の第2係合部82までの距離とほぼ等しくされている(図9参照)。なお、図9は、各係合部の位置関係を説明するためのものなので、第1可動スプロケット8の背面側に隠れているはずの係合部も図示している。また、第2可動スプロケット9の第2係合部92は、第1係合部91から図中時計回りで約240°の位置に形成されている。つまり、第1係合部81と第1係合部91とを一致させた状態(図7に示す状態)では、第1係合部81・91と第2係合部82と第2係合部92との間隔は、いずれも120°となっている(図9参照)。さらに、第2可動スプロケット9においても、第1係合部91及び第2係合部92に、後述する第1及び第2かぎ部材11及び12の嵌入動作を円滑とするための溝91a及び92aが形成されている(図10参照)。 Similarly to the first movable sprocket 8, the second movable sprocket 9 also includes a first engagement portion 91 and a second engagement portion 92 (see FIG. 7). As will be described later, the second engaging portion 92 of the second movable sprocket 9 is disposed at a position (phase angle) different from the second engaging portion 82 of the first movable sprocket 8 in the initial state. However, in order to facilitate understanding, both are shown in FIG. The distance from the axis of the revolution shaft 1 to the second engagement portion 92 of the second movable sprocket 9 is substantially equal to the distance from the axis of the revolution shaft 1 to the second engagement portion 82 of the first movable sprocket 8. (See FIG. 9). Since FIG. 9 is for explaining the positional relationship between the respective engaging portions, the engaging portion that should be hidden behind the first movable sprocket 8 is also illustrated. The second engaging portion 92 of the second movable sprocket 9 is formed at a position of about 240 ° clockwise from the first engaging portion 91 in the drawing. That is, in the state where the first engaging portion 81 and the first engaging portion 91 are matched (the state shown in FIG. 7), the first engaging portions 81 and 91, the second engaging portion 82, and the second engaging portion. The intervals with the part 92 are all 120 ° (see FIG. 9). Further, also in the second movable sprocket 9, grooves 91 a and 92 a for smoothly inserting the first and second hook members 11 and 12 described later into the first engaging portion 91 and the second engaging portion 92. Is formed (see FIG. 10).
  回転力伝達機構10は、この実施形態においては、固定/可動スプロケット7,8,9と各自転スプロケット31~51との間に掛け渡されたチェーン101・102・103(図4参照)によって構成されている。回転力伝達機構10のチェーン101は、固定スプロケット7と第1回転翼3の第1自転スプロケット31との間で、同じ方向(図4においては反時計回り)の回転力を伝達することが可能な構成となっている。 In this embodiment, the rotational force transmission mechanism 10 is constituted by chains 101, 102, and 103 (see FIG. 4) spanned between the fixed / movable sprockets 7, 8, and 9 and the respective rotating sprockets 31 to 51. Has been. The chain 101 of the rotational force transmission mechanism 10 can transmit rotational force in the same direction (counterclockwise in FIG. 4) between the fixed sprocket 7 and the first rotating sprocket 31 of the first rotating blade 3. It has become a structure.
  これにより、回転力伝達機構10は、第1自転スプロケット31の公転(例えば図4において反時計回りの公転)によって、公転と逆方向に(例えば図4において時計回りに)、第1自転スプロケット31を自転させる構成となっている。 As a result, the rotational force transmission mechanism 10 causes the first rotation sprocket 31 to rotate in the opposite direction to the revolution (for example, clockwise in FIG. 4) by the revolution of the first rotation sprocket 31 (for example, counterclockwise rotation in FIG. 4). Is configured to rotate.
  回転力伝達機構10のチェーン102は、前記したチェーン101の場合と同様に、第1可動スプロケット8と第2回転翼4の第2自転スプロケット41との間で、同じ方向の回転力を伝達する構成となっている。これにより、回転力伝達機構10は、第2自転スプロケット41の公転によって、公転と逆方向に、第2自転スプロケット41を自転させる構成となっている。 As in the case of the chain 101 described above, the chain 102 of the rotational force transmission mechanism 10 transmits rotational force in the same direction between the first movable sprocket 8 and the second rotating sprocket 41 of the second rotary blade 4. It has a configuration. Thereby, the rotational force transmission mechanism 10 is configured to rotate the second rotation sprocket 41 in the direction opposite to the rotation by the revolution of the second rotation sprocket 41.
  回転力伝達機構10のチェーン103も、前記したチェーン101の場合と同様に、第2可動スプロケット9と第3回転翼5の第3自転スプロケット51との間で、同じ方向の回転力を伝達する構成となっている。これにより、回転力伝達機構10は、第3自転スプロケット51の公転によって、公転と逆方向に、第3自転スプロケット51を自転させる構成となっている。なお、図1では、チェーン102及び103のうちの一方のみを示す。 The chain 103 of the rotational force transmission mechanism 10 also transmits rotational force in the same direction between the second movable sprocket 9 and the third rotating sprocket 51 of the third rotary blade 5 as in the case of the chain 101 described above. It has a configuration. Thereby, the rotational force transmission mechanism 10 is configured to rotate the third rotation sprocket 51 in the direction opposite to the rotation by the revolution of the third rotation sprocket 51. In FIG. 1, only one of the chains 102 and 103 is shown.
  第1~第3回転翼3~5は、風向軸6を中心とした1公転の間に1/2回転だけ自転する構成となっている。具体的には、各自転スプロケット31・41・51の歯数は、対応する固定スプロケット7及び可動スプロケット8・9の歯数の2倍とされている。 The first to third rotor blades 3 to 5 are configured to rotate by ½ rotation during one revolution around the wind direction axis 6. Specifically, the number of teeth of each of the rotating sprockets 31, 41, 51 is twice the number of teeth of the corresponding fixed sprocket 7 and movable sprocket 8, 9.
  第1かぎ部材11は、第1可動スプロケット8の第1係合部81と第2可動スプロケット9の第1係合部91とに、着脱自在に係合して、第1及び第2可動スプロケット8及び9と風向軸6との相対的な回転角度を固定できる構成となっている。 The first hook member 11 is detachably engaged with the first engaging portion 81 of the first movable sprocket 8 and the first engaging portion 91 of the second movable sprocket 9 so that the first and second movable sprockets are engaged. The relative rotation angle between 8 and 9 and the wind direction axis 6 can be fixed.
  第1かぎ部材11が第1係合部81・91に係合した状態では、第2・第3回転翼4・5が第1回転翼3と同じ公転角度に到達した場合には、第2・第3回転翼4・5の自転角度が、それぞれ、第1回転翼3の自転角度とほぼ等しくなる構成となっている。つまり、各回転翼は、同じ公転角度においては、同じ自転角度となるように設定されている。 In a state where the first hook member 11 is engaged with the first engaging portions 81 and 91, when the second and third rotary blades 4 and 5 reach the same revolution angle as the first rotary blade 3, the second The rotation angles of the third rotor blades 4 and 5 are substantially equal to the rotation angle of the first rotor blade 3, respectively. That is, each rotary blade is set to have the same rotation angle at the same revolution angle.
  第2かぎ部材12は、第2係合部82・92に、着脱自在に係合して、第1・第2可動スプロケット8・9と風向軸6とを固定できる構成となっている。ここで、第2かぎ部材12が第2係合部82・92に係合した状態では、第2・第3回転翼4・5が第1回転翼3に対して実質的に平行となる構成となっている。この動作については後述する。 The second hook member 12 is configured to be able to detachably engage with the second engaging portions 82 and 92 to fix the first and second movable sprockets 8 and 9 and the wind direction shaft 6. Here, in a state where the second key member 12 is engaged with the second engaging portions 82 and 92, the second and third rotor blades 4 and 5 are substantially parallel to the first rotor blade 3. It has become. This operation will be described later.
  かぎ駆動機構13は、通常時に第1かぎ部材11を第1係合部81・91に係合させ、強風時に第2かぎ部材12を第2係合部82・92に係合させる構成となっている。具体的には、かぎ駆動機構13は、風向軸6の内部に収納された操作部131と支持部132とを備えている(図7参照)。操作部131は、風向軸6の下方に延長されており、適宜な駆動手段(図示せず)あるいは手動により上下動させることができるものとなっている。支持部132は、操作部131の先端(図7において上端)に取り付けられている。支持部132の側面には、第1かぎ部材11及び第2かぎ部材12が取り付けられている。なお、支持部132の側面に対応する位置においては、風向軸6の側面が、軸方向に沿って開口されており、これによって、かぎ部材11及び12の両者が外部に突出し、かつ、必要な範囲で上下動できるようになっている。 The key drive mechanism 13 has a configuration in which the first key member 11 is engaged with the first engaging portions 81 and 91 in a normal state and the second key member 12 is engaged with the second engaging portions 82 and 92 in a strong wind. ing. Specifically, the key drive mechanism 13 includes an operation unit 131 and a support unit 132 housed inside the wind direction shaft 6 (see FIG. 7). The operation part 131 is extended below the wind direction axis 6 and can be moved up and down by appropriate drive means (not shown) or manually. The support part 132 is attached to the tip (upper end in FIG. 7) of the operation part 131. The first key member 11 and the second key member 12 are attached to the side surface of the support portion 132. In addition, in the position corresponding to the side surface of the support part 132, the side surface of the wind direction axis | shaft 6 is opened along the axial direction, and, thereby, both the key members 11 and 12 protrude outside, and required. It can be moved up and down in the range.
  (本実施形態の動作)
 (通常時の動作)
 つぎに、前記した本実施形態の回転翼機構の動作について説明する。まず、初期状態では、第1かぎ部材11が二つの第1係合部81及び91にそれぞれ嵌入しているものとする(図7の状態)。この状態では、各回転翼の自転角は、図4に示された状態となる。これは、風向軸6の風向板61が風下を向いた状態である。したがって、回転翼で受けた風力により、図4において反時計方向に回転体2を回転させることができる。したがって、回転体2の回転力を利用する発電機構(図示せず)を用いて、発電を行わせることができる。なお、1公転の間に1/2の自転を行う回転翼機構の動作は既によく知られているので、これについての詳しい説明は省略する。
(Operation of this embodiment)
(Normal operation)
Next, the operation of the rotary blade mechanism of this embodiment will be described. First, in the initial state, it is assumed that the first key member 11 is fitted into the two first engaging portions 81 and 91 (state shown in FIG. 7). In this state, the rotation angle of each rotor blade is in the state shown in FIG. This is a state in which the wind direction plate 61 of the wind direction axis 6 faces downwind. Therefore, the rotating body 2 can be rotated counterclockwise in FIG. 4 by the wind force received by the rotor blades. Therefore, power generation can be performed using a power generation mechanism (not shown) that uses the rotational force of the rotating body 2. In addition, since the operation | movement of the rotary blade mechanism which carries out a half rotation during one revolution is already known well, detailed description about this is abbreviate | omitted.
  (強風時の動作)
 強風時においては、かぎ駆動機構13の操作部131を操作して、支持部312を下方に移動させる。ここで、操作部131の操作は、例えば手動によって行われる。もちろん、風力を検知して、モータなどの駆動手段によって操作する構成も可能である。
(Operation in strong wind)
When the wind is strong, the operation unit 131 of the key drive mechanism 13 is operated to move the support unit 312 downward. Here, the operation of the operation unit 131 is performed manually, for example. Of course, the structure which detects wind force and is operated by drive means, such as a motor, is also possible.
  支持部312が下降すると、それに固定されている第1かぎ部材11及び第2かぎ部材12も下降する。すると、まず、第1かぎ部材11が二つの第1係合部81及び91から順次抜ける。第1かぎ部材11が二つの第1係合部81及び91から完全に抜けた状態では、第1可動スプロケット8と第2可動スプロケット9とは、風向軸6に対して軸回りに回転可能となる。一方、第2回転翼4と第3回転翼5とは、いずれも、強い風力を受けるので、この風力により自転し、チェーン102及び103を介して、第1・第2可動スプロケット8・9が風向軸6に対して回転する。 When the support portion 312 is lowered, the first key member 11 and the second key member 12 fixed thereto are also lowered. Then, first, the first key member 11 is sequentially removed from the two first engaging portions 81 and 91. In a state where the first key member 11 is completely removed from the two first engaging portions 81 and 91, the first movable sprocket 8 and the second movable sprocket 9 can rotate about the axis relative to the wind direction axis 6. Become. On the other hand, since both the second rotor blade 4 and the third rotor blade 5 receive strong wind force, they rotate by this wind force, and the first and second movable sprockets 8 and 9 are connected via the chains 102 and 103. It rotates with respect to the wind direction axis 6.
  ここで、本実施形態では、第1~第3回転翼に立ち上がり部32~52を形成したので各回転翼における自転方向の力を高めることができるという利点がある。 Here, in this embodiment, since the rising portions 32 to 52 are formed on the first to third rotor blades, there is an advantage that the force in the rotation direction of each rotor blade can be increased.
  一方、第2かぎ部材12は、かぎ駆動機構13の支持部132の下降に伴って下降する。そして、第2かぎ部材12の先端(図7において下端)が、第1可動スプロケット8の表面(図7において上面)に当接する。すると、第2かぎ部材12の位置は、回転している第1可動スプロケット8の第2係合部82の位置に一致する。一致した時点で、第2かぎ部材12の先端は、第2係合部82に嵌入し、さらに、第1可動スプロケット8を貫通する。すると、第2かぎ部材12の先端は、第2可動スプロケット9の上面に当接する(図10(b))。 On the other hand, the second key member 12 descends as the support portion 132 of the key drive mechanism 13 descends. And the front-end | tip (lower end in FIG. 7) of the 2nd key member 12 contact | abuts on the surface (upper surface in FIG. 7) of the 1st movable sprocket 8. FIG. Then, the position of the second key member 12 coincides with the position of the second engaging portion 82 of the rotating first movable sprocket 8. At the time of matching, the tip of the second key member 12 is fitted into the second engaging portion 82 and further penetrates the first movable sprocket 8. Then, the tip of the second key member 12 comes into contact with the upper surface of the second movable sprocket 9 (FIG. 10B).
  第2可動スプロケット9も、第1可動スプロケット8と同様に回転しているので、やがて、第2かぎ部材12の位置と、第2可動スプロケット9における第2係合部92の位置とが一致する。すると、第2かぎ部材12の先端は、第2係合部92に嵌入する(図10(c))。 Since the second movable sprocket 9 also rotates in the same manner as the first movable sprocket 8, the position of the second key member 12 eventually coincides with the position of the second engaging portion 92 in the second movable sprocket 9. . Then, the tip of the second key member 12 is fitted into the second engaging portion 92 (FIG. 10C).
  このようにして、第2かぎ部材12を、二つの第2係合部82及び92にそれぞれ係合させることができる。この係合状態では、各可動スプロケット8及び9は、いずれも、風向軸6に対して固定された状態となる。また、第2かぎ部材12が二つの第2係合部82及び92にそれぞれ係合した状態では、図11に概略的に示したように、第2及び第3回転翼4及び5が、いずれも、第1回転翼3と平行になる。これは、各可動スプロケット8・9が風向軸6に対して自転すると、第2及び第3回転翼4及び5の公転角は不変でも、その自転角が変わるためである。 In this way, the second hook member 12 can be engaged with the two second engaging portions 82 and 92, respectively. In this engaged state, the movable sprockets 8 and 9 are both fixed with respect to the wind direction shaft 6. Further, in a state where the second key member 12 is engaged with the two second engaging portions 82 and 92, respectively, as schematically shown in FIG. Is also parallel to the first rotor blade 3. This is because when the movable sprockets 8 and 9 rotate with respect to the wind direction axis 6, even if the revolution angles of the second and third rotor blades 4 and 5 remain unchanged, the rotation angles change.
  この状態では、風向軸6の風向板61と各回転翼とが平行になる。つまり、風向板61と第1回転翼3とが平行な状態において、前記した動作により、第2回転翼4及び第3回転翼5が、第1回転翼3と平行になる。このように、風向板61と各回転翼とが平行になるため、強風時において各回転翼が受ける公転力を減少させることができる。これにより、回転体2の過回転を防止することができる。 In this state, the wind direction plate 61 of the wind direction axis 6 and each rotor blade are parallel to each other. That is, in the state where the wind direction plate 61 and the first rotary blade 3 are parallel, the second rotary blade 4 and the third rotary blade 5 are parallel to the first rotary blade 3 by the above-described operation. Thus, since the wind direction plate 61 and each rotary blade become parallel, the revolution force which each rotary blade receives at the time of a strong wind can be reduced. Thereby, the overrotation of the rotary body 2 can be prevented.
  また、風向板61と各回転翼が平行な状態において、もし風向きが変わっても、風向板61の向きに沿うように各回転翼が公転する。また、各回転翼が等間隔で設置されていれば、瞬間的な風向きの変更があっても、各回転翼に作用する公転方向の力の和は、ほぼ零になるという利点もある。 In addition, in a state where the wind direction plate 61 and each rotary blade are parallel, even if the wind direction changes, each rotary blade revolves along the direction of the wind direction plate 61. Further, if the rotor blades are installed at equal intervals, there is an advantage that the sum of the forces in the revolving direction acting on the rotor blades is almost zero even if there is an instantaneous change in the wind direction.
  前記動作の後、通常時の状態に戻すには、前記と逆の操作を行えばよい。すなわち、かぎ駆動機構13の操作部131を操作して、支持部132を上昇させる。すると、前記と逆の動作により、風力による回転力を利用して、第1かぎ部材11を二つの第1係合部81及び91に順次係合させることができる。この状態では、各回転翼の自転角は、図4に示す初期状態に戻る。風力がないときは各回転翼はそのままの状態となるが、この状態ではそもそも発電ができないので、このこと自体は特に問題にならない。また、各回転翼が互いに平行な状態であっても、各翼に設けた立ち上がり部(図5参照)の効果のために、微弱な風によって、初期位置への復帰が可能になる。また、風向きは常時変動するので、その変動に伴い、各翼への回転力を付与することが可能であると考えられる。 In order to return to the normal state after the above operation, the reverse operation is performed. That is, the operation part 131 of the key drive mechanism 13 is operated to raise the support part 132. Then, the first hook member 11 can be sequentially engaged with the two first engaging portions 81 and 91 by utilizing the rotational force of the wind force by the reverse operation to the above. In this state, the rotation angle of each rotor blade returns to the initial state shown in FIG. When there is no wind power, each rotor blade is left as it is, but in this state, power generation is not possible in the first place, so this is not a problem in itself. Even if the rotary blades are parallel to each other, the initial position can be restored by a weak wind due to the effect of the rising portions (see FIG. 5) provided on the blades. Further, since the wind direction constantly fluctuates, it is considered that a rotational force can be applied to each blade along with the fluctuation.
  ここで、本実施形態では、かぎ駆動機構13を上下動させるだけで各回転翼を平行にできるので、仮にかぎ駆動機構13を電力により駆動した場合でも、消費電力が少なくてすむ。このため、この回転翼機構を用いた発電装置において、発電効率の低下が少ないという利点がある。 Here, in the present embodiment, since the rotary blades can be made parallel only by moving the key drive mechanism 13 up and down, even when the key drive mechanism 13 is driven by electric power, power consumption can be reduced. For this reason, in the electric power generating apparatus using this rotary blade mechanism, there exists an advantage that there is little fall of power generation efficiency.
 次に、図12~図14を参照して、本発明の第2実施形態に係る回転翼機構を説明する。第2実施形態の説明においては、前記した第1実施形態と基本的に共通する部材については、同一符号を用いることによって、説明を簡略化する。前記した第1実施形態では、合計3枚の回転翼を用いていたが、第2実施形態では、合計8枚の回転翼を用いる点で、第1実施形態とは異なる。ただし、両実施形態における動作原理は同じである。 Next, a rotating blade mechanism according to a second embodiment of the present invention will be described with reference to FIGS. In description of 2nd Embodiment, description is simplified by using the same code | symbol about the member fundamentally common with above-described 1st Embodiment. In the first embodiment described above, a total of three rotor blades are used. However, the second embodiment is different from the first embodiment in that a total of eight rotor blades are used. However, the operating principle in both embodiments is the same.
 すなわち、第2実施形態の回転翼機構は、第1~第8の回転翼211~218を備えており、これらの回転翼には、第1実施形態の場合と同様に、それぞれを自転させるための自転スプロケット(図示せず)が取り付けられている。 That is, the rotary blade mechanism of the second embodiment includes first to eighth rotary blades 211 to 218, and these rotary blades rotate in the same manner as in the first embodiment. A rotating sprocket (not shown) is attached.
 一方、風向軸6には、第1実施形態と同様に、固定スプロケット及び可動スプロケットが取り付けられているが、第2実施形態では、回転翼の枚数に対応して、8個のスプロケットが用いられている。すなわち、第2実施形態における風向軸6には、固定スプロケット220と、第1~第7可動スプロケット231~237とが取り付けられている。 On the other hand, a fixed sprocket and a movable sprocket are attached to the wind direction shaft 6 as in the first embodiment, but in the second embodiment, eight sprockets are used corresponding to the number of rotor blades. ing. That is, a fixed sprocket 220 and first to seventh movable sprockets 231 to 237 are attached to the wind direction shaft 6 in the second embodiment.
 固定スプロケット220には、固定スプロケット7の場合と同様に、第1係合部221と第2係合部222とが形成されている(図13~図14参照)。 The fixed sprocket 220 is formed with a first engaging portion 221 and a second engaging portion 222 as in the case of the fixed sprocket 7 (see FIGS. 13 to 14).
 さらに、第1~第7可動スプロケット231~237においても、第1係合部2311~2371と第2係合部2312~2372とが形成されている(図13~図14参照)。なお、図14では、各係合部の位置関係を示すために、本来は隠れているはずの係合部も実線で示している。 Furthermore, the first to seventh movable sprockets 231 to 237 are also formed with first engaging portions 2311 to 2371 and second engaging portions 2312 to 2372 (see FIGS. 13 to 14). In FIG. 14, in order to show the positional relationship between the engaging portions, the engaging portions that should have been hidden are also shown by solid lines.
 さらに、第1実施形態では、一つのかぎ駆動機構13を用いていたが、第2実施形態では、このかぎ駆動機構を分割して、第1かぎ駆動機構3131と第2かぎ駆動機構3132とを用いる。第1実施形態の場合と同様に、第1かぎ駆動機構3131には、第1かぎ部材11が取り付けられており、第2かぎ駆動機構3132には、第2かぎ部材12が取り付けられている(図12参照)。 Furthermore, in the first embodiment, one key drive mechanism 13 is used. However, in the second embodiment, this key drive mechanism is divided into a first key drive mechanism 3131 and a second key drive mechanism 3132. Use. As in the case of the first embodiment, the first key drive mechanism 3131 is attached with the first key member 11, and the second key drive mechanism 3132 is attached with the second key member 12 ( (See FIG. 12).
 つぎに、第2実施形態における回転翼機構の動作を説明する。 Next, the operation of the rotary blade mechanism in the second embodiment will be described.
 (8枚の回転翼を使用)
 弱風時、例えば15m/s以下の風速のときは、8枚の回転翼を動作状態とする。この状態の各回転翼の状態を、図12(a)に示す。この状態では、第1かぎ駆動機構3131の第1かぎ部材11が、固定スプロケット220の第1係合部221と、第1~第7可動スプロケット231~237の第1係合部2311~2371に嵌入している。これにより、各回転翼について、同じ公転角であれば同じ自転角となるように動作させることができる。
(Uses 8 rotor blades)
When the wind is weak, for example, when the wind speed is 15 m / s or less, the eight rotor blades are set in an operating state. The state of each rotor blade in this state is shown in FIG. In this state, the first key member 11 of the first key driving mechanism 3131 is engaged with the first engaging portion 221 of the fixed sprocket 220 and the first engaging portions 2311 to 2371 of the first to seventh movable sprockets 231 to 237. It is inserted. Thereby, about each rotary blade, if it is the same revolution angle, it can be operated so that it may become the same autorotation angle.
 (4枚の回転翼を使用)
 図12(a)の場合よりも風速が高い時、例えば15m/s~19m/sの風速のときは、4枚の回転翼215~218を動作状態とする。この状態の各回転翼の状態を、図12(b)に示す。この状態では、第1かぎ駆動機構3131の第1かぎ部材11が、第1~第4可動スプロケット231~234の第1係合部2311~2341から外れている。そして、その代わりに、第2かぎ駆動機構3132の第2かぎ部材12が、第1~第4可動スプロケット231~234の第2係合部2312~2342に嵌入している。これにより、第1~第4回転翼については、風向と平行とし、それ以外の4枚の回転翼については、同じ公転角であれば同じ自転角となるように動作させることができる(図12(b)参照)。第2かぎ部材12が第2係合部に嵌入する動作は、前記した第1実施形態と同様なので、詳しい説明は省略する(図13(b)参照)。また、5枚~7枚の回転翼を動作させることも可能であるが、その場合の動作は、前記から理解可能なので、詳しい説明は省略する。
(Uses 4 rotor blades)
When the wind speed is higher than in the case of FIG. 12A, for example, when the wind speed is 15 m / s to 19 m / s, the four rotor blades 215 to 218 are set in an operating state. The state of each rotor blade in this state is shown in FIG. In this state, the first key member 11 of the first key drive mechanism 3131 is disengaged from the first engaging portions 2311 to 2341 of the first to fourth movable sprockets 231 to 234. Instead, the second key member 12 of the second key driving mechanism 3132 is fitted into the second engaging portions 2312 to 2342 of the first to fourth movable sprockets 231 to 234. As a result, the first to fourth rotor blades can be operated in parallel with the wind direction, and the other four rotor blades can be operated to have the same rotation angle at the same revolution angle (FIG. 12). (See (b)). The operation in which the second key member 12 is fitted into the second engaging portion is the same as in the first embodiment described above, and a detailed description thereof will be omitted (see FIG. 13B). It is also possible to operate 5 to 7 rotating blades, but since the operation in that case can be understood from the above, detailed description thereof will be omitted.
 (2枚の回転翼を使用)
 図12(b)の場合よりも風速が高い時、例えば19m/s~24m/sの風速のときは、2枚の回転翼217及び218を動作状態とする。この状態の各回転翼の状態を、図12(c)に示す。この状態では、第1かぎ駆動機構3131の第1かぎ部材11が、第1~第6可動スプロケット231~236の第1係合部2311~2361から外れている。そして、その代わりに、第2かぎ駆動機構3132の第2かぎ部材12が、第1~第6可動スプロケット231~236の第2係合部2312~2362に嵌入している。これにより、第1~第6回転翼については、風向と平行とし、それ以外の2枚の回転翼については、同じ公転角であれば同じ自転角となるように動作させることができる(図12(c)参照)。第2かぎ部材12が第2係合部に嵌入する動作は、前記した第1実施形態と同様なので、詳しい説明は省略する。また、3枚の回転翼を動作させることも可能であるが、その場合の動作は、前記から理解可能なので、詳しい説明は省略する。
(Uses two rotor blades)
When the wind speed is higher than in the case of FIG. 12B, for example, when the wind speed is 19 m / s to 24 m / s, the two rotor blades 217 and 218 are set in an operating state. The state of each rotor blade in this state is shown in FIG. In this state, the first key member 11 of the first key drive mechanism 3131 is disengaged from the first engaging portions 2311 to 2361 of the first to sixth movable sprockets 231 to 236. Instead, the second key member 12 of the second key driving mechanism 3132 is fitted into the second engaging portions 2312 to 2362 of the first to sixth movable sprockets 231 to 236. Thus, the first to sixth rotor blades can be operated in parallel with the wind direction, and the other two rotor blades can be operated to have the same rotation angle if they have the same revolution angle (FIG. 12). (See (c)). Since the operation | movement in which the 2nd key member 12 inserts in a 2nd engaging part is the same as that of above-described 1st Embodiment, detailed description is abbreviate | omitted. It is also possible to operate three rotor blades, but since the operation in that case can be understood from the above, detailed description will be omitted.
 (強風時)
 図12(c)の場合よりも風速がさらに高い時、例えば24m/s以上の風速のときは、全ての回転翼を非動作状態とする。この状態の各回転翼の状態を、図12(d)に示す。この状態では、第1かぎ駆動機構3131の第1かぎ部材11が、第1~第7可動スプロケット231~237の第1係合部2311~2371と固定スプロケット220の第1係合部221とから外れている。そして、その代わりに、第2かぎ駆動機構3132の第2かぎ部材12が、第1~第7可動スプロケット231~237の第2係合部2312~2372と、固定スプロケット220の第2係合部222とに嵌入している。これにより、第1~第8回転翼を、風向に平行な状態とすることができる(図12(d)参照)。第2かぎ部材12が第2係合部に嵌入する動作は、前記した第1実施形態と同様なので、詳しい説明は省略する(図13(a)及び(c)参照)。また、1枚の回転翼を動作させることも可能であるが、その場合の動作は、前記から理解可能なので、詳しい説明は省略する。
(In strong wind)
When the wind speed is higher than in the case of FIG. 12C, for example, when the wind speed is 24 m / s or more, all the rotor blades are set in a non-operating state. The state of each rotor blade in this state is shown in FIG. In this state, the first key member 11 of the first key driving mechanism 3131 is moved from the first engaging portions 2311 to 2371 of the first to seventh movable sprockets 231 to 237 and the first engaging portion 221 of the fixed sprocket 220. It is off. Instead, the second key member 12 of the second key drive mechanism 3132 includes the second engaging portions 2312 to 2372 of the first to seventh movable sprockets 231 to 237 and the second engaging portion of the fixed sprocket 220. 222. As a result, the first to eighth rotor blades can be in a state parallel to the wind direction (see FIG. 12D). Since the operation of fitting the second key member 12 into the second engaging portion is the same as that in the first embodiment described above, detailed description thereof will be omitted (see FIGS. 13A and 13C). Further, although it is possible to operate one rotary blade, the operation in that case can be understood from the above description, and detailed description thereof will be omitted.
 第2実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の説明は省略する。 Since other configurations and advantages in the second embodiment are the same as those in the first embodiment, further explanation is omitted.
 (第3実施形態)
 次に、図15を参照して、第3実施形態に係る回転翼機構を説明する。第3実施形態の説明においては、前記した第1実施形態と基本的に共通する部材については、同一符号を用いることによって、説明を簡略化する。前記した第1実施形態では、第1かぎ部材11と第2かぎ部材12とを、一つのかぎ駆動機構13によって駆動していた。これに対して、第3実施形態では、第1かぎ部材11を第1かぎ駆動機構3131で駆動し、第2かぎ部材12を第2かぎ駆動機構3132で駆動する構成としている。図示の例では、第1かぎ部材11を第1係合部81及び91から外した後、第2かぎ部材12を第2係合部82及び92に順次嵌入する。これにより、第1実施形態の場合と同様の動作が可能となる。
(Third embodiment)
Next, a rotating blade mechanism according to the third embodiment will be described with reference to FIG. In the description of the third embodiment, the same reference numerals are used for members that are basically the same as those in the first embodiment described above, thereby simplifying the description. In the first embodiment described above, the first key member 11 and the second key member 12 are driven by one key drive mechanism 13. On the other hand, in the third embodiment, the first key member 11 is driven by the first key driving mechanism 3131 and the second key member 12 is driven by the second key driving mechanism 3132. In the illustrated example, after the first key member 11 is removed from the first engaging portions 81 and 91, the second key member 12 is sequentially fitted into the second engaging portions 82 and 92. As a result, the same operation as in the first embodiment is possible.
 第3実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の説明は省略する。 Since other configurations and advantages in the third embodiment are the same as those in the first embodiment, further explanation is omitted.
 (第4実施形態)
 次に、図16を参照して、第4実施形態に係る回転翼機構を説明する。第4実施形態の説明においては、前記した第1実施形態と基本的に共通する部材については、同一符号を用いることによって、説明を簡略化する。第4実施形態の回転翼機構は、風向軸6を支持するための支持枠400を備えている。支持枠400は、基体401と支柱402とから構成されている。基体401と風向軸6との接続箇所には、風向軸6を回転可能なように支持するためのベアリングが取り付けられている。この実施形態では、支持枠400を設けたので、強風時において回転翼機構の損傷を防ぐことができる。
(Fourth embodiment)
Next, a rotating blade mechanism according to the fourth embodiment will be described with reference to FIG. In the description of the fourth embodiment, the same reference numerals are used for members that are basically the same as those in the first embodiment described above, thereby simplifying the description. The rotary blade mechanism of the fourth embodiment includes a support frame 400 for supporting the wind direction shaft 6. The support frame 400 includes a base body 401 and a support column 402. A bearing for supporting the wind direction shaft 6 so as to be rotatable is attached to a connection portion between the base body 401 and the wind direction shaft 6. In this embodiment, since the support frame 400 is provided, it is possible to prevent damage to the rotary blade mechanism during strong winds.
 第4実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の説明は省略する。 Since other configurations and advantages in the fourth embodiment are the same as those in the first embodiment, further description is omitted.
 (第5実施形態)
 次に、図17~20を参照して、第5実施形態に係る回転翼機構を説明する。第5実施形態の説明においては、前記した第1実施形態と基本的に共通する部材については、同一符号を用いることによって、説明を簡略化する。第5実施形態の回転翼機構は、回転翼を通過した気流の排出効率を高めるための上方排気機構500を備えている。
(Fifth embodiment)
Next, a rotating blade mechanism according to a fifth embodiment will be described with reference to FIGS. In the description of the fifth embodiment, the same reference numerals are used for members that are basically the same as those in the first embodiment described above, thereby simplifying the description. The rotary blade mechanism of the fifth embodiment includes an upper exhaust mechanism 500 for improving the discharge efficiency of the airflow that has passed through the rotary blade.
 上方排気機構500は、6本の支柱510と、上部レール520と、案内板530と、回転枠540とを備えている。 The upper exhaust mechanism 500 includes six struts 510, an upper rail 520, a guide plate 530, and a rotating frame 540.
 支柱510は、断面円形とされており(図20参照)、回転体2の外側に配置されている。なお、図17には、支柱510を支持する補助支柱511も記載されているが、図20では補助支柱の記載を省略している。 The column 510 has a circular cross section (see FIG. 20), and is disposed outside the rotating body 2. In FIG. 17, auxiliary struts 511 that support the struts 510 are also illustrated, but in FIG. 20, the description of the auxiliary struts is omitted.
 上部レール520は、円環状とされており、支柱510の上端に取り付けられている(図18参照)。 The upper rail 520 has an annular shape and is attached to the upper end of the column 510 (see FIG. 18).
 案内板530は、下に凸とされた円錐台形状とされており、その上端が上部レール520に接続されている。 The guide plate 530 has a truncated cone shape that is convex downward, and its upper end is connected to the upper rail 520.
 回転枠540は、風向軸6の風向板61に取り付けられており、この風向板61と一緒に回動するように構成されている。具体的には、回転枠540は、上面板541と、側面板542及び543とから概略構成されている。また、回転枠540の内部には、気流を通過させるための通風路544が形成されている。 The rotation frame 540 is attached to the wind direction plate 61 of the wind direction shaft 6 and is configured to rotate together with the wind direction plate 61. Specifically, the rotating frame 540 is generally configured by an upper surface plate 541 and side surface plates 542 and 543. In addition, a ventilation path 544 for allowing airflow to pass therethrough is formed inside the rotary frame 540.
 上面板541は、図18に示すように、略扇形とされており、かつ、風向板61に固定されている。上面板541により、通風路544の上面が規定されている。 As shown in FIG. 18, the top plate 541 has a substantially fan shape and is fixed to the wind direction plate 61. The upper surface plate 541 defines the upper surface of the ventilation path 544.
 側面板542及び543は、上面板541の側部に接続されており、通風路544の側面を規定している。 The side plates 542 and 543 are connected to the side portion of the top plate 541 and define the side surface of the ventilation path 544.
 さらに、側面板542及び543の下部には、ローラ542a及び543aが取り付けられている。ローラ542a及び543aは、上部レール520の上面を走行可能となっており、これによって、回転枠540が風向板61と一緒に移動できるようになっている。 Furthermore, rollers 542a and 543a are attached to the lower portions of the side plates 542 and 543. The rollers 542 a and 543 a can run on the upper surface of the upper rail 520, so that the rotating frame 540 can move together with the wind direction plate 61.
 第5実施形態の回転翼機構によれば、回転体2の上部近傍を通過する気流の一部は、案内板530によって上方に案内され、さらには、回転枠540の通風路544を通って下流に移動できる。このように、本実施形態では、風向板61の向き(つまり気流の下流側への向き)に気流を流すことができる。これにより、回転翼周辺での気流の流れを円滑にすることができ、その結果、気流の流れを回転翼によって効率的に受けることができる。 According to the rotary blade mechanism of the fifth embodiment, a part of the airflow passing through the vicinity of the upper portion of the rotating body 2 is guided upward by the guide plate 530, and further downstream through the ventilation path 544 of the rotary frame 540. Can move to. Thus, in the present embodiment, the airflow can flow in the direction of the wind direction plate 61 (that is, the direction toward the downstream side of the airflow). Thereby, the flow of the airflow around the rotor blade can be made smooth, and as a result, the airflow can be efficiently received by the rotor blade.
 次に、図21~22を参照して、第5実施形態に係る回転翼機構をさらに補足して説明する。 Next, with reference to FIGS. 21 to 22, the rotary blade mechanism according to the fifth embodiment will be further described.
 第2実施形態においては、風向軸6の周囲に固定スプロケット220と第1~第7可動スプロケット231~237とを配置した。これに対して、第6実施形態の回転翼機構では、風向軸6の外側にこれらのスプロケットを配置し、ギヤ機構を介して風向軸6に各スプロケットを取り付けた。 In the second embodiment, the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 are arranged around the wind direction axis 6. In contrast, in the rotary blade mechanism of the sixth embodiment, these sprockets are arranged outside the wind direction shaft 6 and each sprocket is attached to the wind direction shaft 6 via a gear mechanism.
 具体的には、この第5実施形態では、固定スプロケット220と第1~第7可動スプロケット231~237とが、回転軸600に対して、これに対して自転可能なように取り付けられている。そして、各スプロケットの位置は、第1かぎ部材11と第2かぎ部材12とによって規定されている。回転軸600は、ベベルギヤを用いた回転伝達機構650によって風向軸6に接続されている。 Specifically, in the fifth embodiment, the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 are attached to the rotating shaft 600 so as to be able to rotate relative thereto. The position of each sprocket is defined by the first key member 11 and the second key member 12. The rotation shaft 600 is connected to the wind direction shaft 6 by a rotation transmission mechanism 650 using a bevel gear.
 これにより、第5実施形態では、第2実施形態と同様の動作を実現することができる。また、第5実施形態では、ベベルギヤ間の減速比を調節することによって、各回転翼が1公転する間に1/2自転する構成を実現することができる。すなわち、この実施形態では、固定スプロケット220と第1~第7可動スプロケット231~237とを、各自転スプロケットと同じピッチ円半径とすることができ、これのため、固定スプロケット220と第1~第7可動スプロケット231~237とを小型化できるという利点もある。 Thereby, in the fifth embodiment, the same operation as in the second embodiment can be realized. Further, in the fifth embodiment, by adjusting the reduction ratio between the bevel gears, it is possible to realize a configuration in which each rotary blade rotates by half during one revolution. That is, in this embodiment, the fixed sprocket 220 and the first to seventh movable sprockets 231 to 237 can have the same pitch circle radius as that of the respective rotating sprockets. There is also an advantage that the 7 movable sprockets 231 to 237 can be downsized.
 本実施形態では、地盤上に立設された台座100により回転枠2が回転自在に支持されており、仮想的な公転軸1(図21及び図22参照)を中心として各翼が公転する。 In this embodiment, the rotary frame 2 is rotatably supported by a pedestal 100 erected on the ground, and each wing revolves around a virtual revolution shaft 1 (see FIGS. 21 and 22).
 (第6実施形態)
 次に、図23~28を参照して、第6実施形態に係る回転翼機構を説明する。第6実施形態の説明においては、前記した第1実施形態と基本的に共通する部材については、同一符号を用いることによって、説明を簡略化する。
(Sixth embodiment)
Next, a rotating blade mechanism according to a sixth embodiment will be described with reference to FIGS. In the description of the sixth embodiment, the same reference numerals are used for members that are basically the same as those in the first embodiment described above, thereby simplifying the description.
 第6実施形態の回転翼機構は、回転体2の周囲に、側方排気機構700を備えている。具体的には、側方排気機構700は、6枚の導風翼710と、駆動機構720(図26)とを備えている。 The rotary blade mechanism of the sixth embodiment includes a side exhaust mechanism 700 around the rotary body 2. Specifically, the side exhaust mechanism 700 includes six air guide blades 710 and a drive mechanism 720 (FIG. 26).
 各導風翼710は、いずれも、薄肉板状の本体711と、回転軸712とを備えている。本体711は、図28に拡大して示すように、回転軸712に対して偏心する位置に取り付けられている。回転軸712の上端は、第4実施形態で説明したものと同様な支持枠400によって、回転可能なように支持されている。また、回転軸712の下端も、適宜な土台によって、回転可能なように支持されている。 Each of the air guide blades 710 includes a thin plate-like main body 711 and a rotating shaft 712. The main body 711 is attached at a position eccentric with respect to the rotation shaft 712 as shown in an enlarged view in FIG. The upper end of the rotating shaft 712 is rotatably supported by a support frame 400 similar to that described in the fourth embodiment. Moreover, the lower end of the rotating shaft 712 is also rotatably supported by an appropriate base.
 駆動機構720は、モータ721と、伝動機構722と、クラッチ機構723と、ベベルギヤ724とを備えている(図26参照)。 The drive mechanism 720 includes a motor 721, a transmission mechanism 722, a clutch mechanism 723, and a bevel gear 724 (see FIG. 26).
 モータ721は、図示しない制御手段によって、所定角度で回転するように制御されるようになっている。 The motor 721 is controlled to rotate at a predetermined angle by a control means (not shown).
 伝動機構722は、クラッチ機構723及びベベルギヤ724を介して、モータ721の回転力を導風翼710の回転軸712に伝えるための機構である。伝動機構722の具体的構成は特に制約されないが、例えばウォームギヤとウォームホイールとの組み合わせを用いることができる。 The transmission mechanism 722 is a mechanism for transmitting the rotational force of the motor 721 to the rotating shaft 712 of the wind guide blade 710 via the clutch mechanism 723 and the bevel gear 724. Although the specific structure of the transmission mechanism 722 is not particularly limited, for example, a combination of a worm gear and a worm wheel can be used.
 クラッチ機構723は、伝動機構722の途中に取り付けられている。クラッチ機構723の断続動作は、適宜な制御機構により行うことができる。 The clutch mechanism 723 is attached in the middle of the transmission mechanism 722. The intermittent operation of the clutch mechanism 723 can be performed by an appropriate control mechanism.
 ベベルギヤ724は、回転軸712に取り付けられたベベルギヤと噛みあっており、回転軸712を回転させることができるようになっている。 The bevel gear 724 is meshed with a bevel gear attached to the rotation shaft 712 so that the rotation shaft 712 can be rotated.
 第6実施形態の回転翼機構によれば、モータ721によって導風翼710を適宜な角度に制御することによって、回転体2の側方を通過する気流を効率よく流すことができる。これにより、本実施形態では、各回転翼における受風効率を向上させることができる。 According to the rotary blade mechanism of the sixth embodiment, by controlling the air guide blade 710 to an appropriate angle by the motor 721, the airflow passing through the side of the rotating body 2 can be efficiently flowed. Thereby, in this embodiment, the wind receiving efficiency in each rotary blade can be improved.
 また、強風時には、クラッチ機構723を切断状態とすることによって、導風翼710を回転自由とすることができる。導風翼710の本体711は、回転軸712に対して偏心した状態で取り付けられているので、クラッチ機構723を切断状態としたときには、風力によって、導風翼710の本体711を風向に沿って配置することができる。したがって、本実施形態では、強風時において導風翼710が損傷する可能性を低減することができる。 Further, when the wind is strong, the wind guide blade 710 can be freely rotated by setting the clutch mechanism 723 to the disconnected state. Since the main body 711 of the wind guide blade 710 is attached in an eccentric state with respect to the rotating shaft 712, when the clutch mechanism 723 is in a disconnected state, the main body 711 of the wind guide blade 710 is moved along the wind direction by wind force. Can be arranged. Therefore, in the present embodiment, it is possible to reduce the possibility of the wind guide blades 710 being damaged during a strong wind.
 第6実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の説明は省略する。 Since other configurations and advantages in the sixth embodiment are the same as those in the first embodiment, further explanation is omitted.
  なお、本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得るものである。例えば、前記した実施形態では、特定枚数の回転翼を用いたが、それ以外の適宜の数とすることができる。この場合、可動スプロケットの数は、回転翼の数に応じて設定される。また、各可動スプロケットに形成される第2係合部の角度関係は、各回転翼の配置状態に応じて、前記した動作が可能なように設定される。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, a specific number of rotor blades is used, but any other appropriate number can be used. In this case, the number of movable sprockets is set according to the number of rotor blades. Further, the angular relationship of the second engaging portions formed on each movable sprocket is set so that the above-described operation is possible according to the arrangement state of each rotor blade.
  また、前記した実施形態では、流体として風力を例示したが、水力など、他の流体の流れを用いることは可能である。 In the above-described embodiment, wind power is exemplified as the fluid. However, it is possible to use other fluid flows such as hydraulic power.
  1 公転軸
 1a 空間
 2 回転体
 2a 軸受
 2b 下部支持体
 2c 上部支持体
 3 第1回転翼
 31 自転スプロケット
 4 第2回転翼
 41 自転スプロケット
 5 第3回転翼
 51 自転スプロケット
 6 風向軸
 61 風向板
 7 固定スプロケット
 8 第1可動スプロケット
 81 第1係合部
 81a 溝
 82 第2係合部
 9 第2可動スプロケット
 91 係合部
 91a 溝
 92 係合部
 10 回転力伝達機構
 101・102・103 チェーン
 11 第1かぎ部材
 12 第2かぎ部材
 13 かぎ駆動機構
 3131 第1かぎ駆動機構
 3132 第2かぎ駆動機構
 131 操作部
 132 支持部
 14a・14b ストッパ
 211~218 第1~第8回転翼
 220 固定スプロケット
 221 固定スプロケットの第1係合部
 222 固定スプロケットの第2係合部
 231~237 第1~第7可動スプロケット
 2311~2371 第1~第7可動スプロケットの第1係合部
 2312~2372 第1~第7可動スプロケットの第2係合部
 400 支持枠
 500 上方排気機構
 600 回転軸
 650 回転伝達機構
 700 側方排気機構
DESCRIPTION OF SYMBOLS 1 Revolving shaft 1a Space 2 Rotating body 2a Bearing 2b Lower support 2c Upper support 3 1st rotating blade 31 Rotating sprocket 4 2nd rotating wing 41 Rotating sprocket 5 3rd rotating wing 51 Rotating sprocket 6 Wind direction shaft 61 Wind direction plate 7 Fixed Sprocket 8 First movable sprocket 81 First engagement portion 81a Groove 82 Second engagement portion 9 Second movable sprocket 91 Engagement portion 91a Groove 92 Engagement portion 10 Rotational force transmission mechanism 101, 102, 103 Chain 11 First key Member 12 second key member 13 key driving mechanism 3131 first key driving mechanism 3132 second key driving mechanism 131 operation unit 132 support unit 14a and 14b stoppers 211 to 218 first to eighth rotary blades 220 fixed sprocket 221 fixed sprocket first 1 engaging portion 222 second engaging portion 231 of fixed sprocket 237 First to seventh movable sprockets 2311 to 2371 First engaging portions of first to seventh movable sprockets 2312 to 2372 Second engaging portions of first to seventh movable sprockets 400 Support frame 500 Upper exhaust mechanism 600 Rotating shaft 650 Rotation transmission mechanism 700 Side exhaust mechanism

Claims (6)

  1.  公転軸と、回転体と、第1回転翼と、第2回転翼と、風向軸と、固定スプロケットと、第1可動スプロケットと、回転力伝達機構と、第1かぎ部材と、第2かぎ部材と、かぎ駆動機構とを備えており、
     前記回転体は、前記公転軸を中心として回転可能とされており、
     前記第1回転翼及び前記第2回転翼は、前記回転体に取り付けられており、これによって、これらの回転翼は、いずれも、前記公転軸を中心として公転できる構成となっており、
     前記第1回転翼は、第1自転スプロケットを備えており、
     前記第2回転翼は、第2自転スプロケットを備えており、
     前記風向軸は、風力を受けるための風向板を備えており、かつ、前記風向軸は、前記公転軸に対して、前記風向板への風力の方向に従って回転可能とされており、
     前記固定スプロケットは、前記風向軸に固定されて、前記風向軸の回転に従って回転可能とされており、
     前記第1可動スプロケットは、前記風向軸に取り付けられており、かつ、前記風向軸を中心として回転可能とされており、
     また、前記第1可動スプロケットは、第1係合部と第2係合部とを備えており、
     前記回転力伝達機構は、前記固定スプロケットと前記第1回転翼の前記第1自転スプロケットとの間で、同じ方向の回転力を伝達する構成となっており、これにより、前記第1自転スプロケットの公転によって、公転と逆方向に、前記第1自転スプロケットを自転させる構成となっており、
     さらに、回転力伝達機構は、前記第1可動スプロケットと前記第2回転翼の前記第2自転スプロケットとの間で、同じ方向の回転力を伝達する構成となっており、これにより、前記第2自転スプロケットの公転によって、公転と逆方向に、前記第2自転スプロケットを自転させる構成となっており、
     前記第1かぎ部材は、前記第1係合部に、着脱自在に係合して、前記第1可動スプロケットと前記風向軸とを固定できる構成となっており、
     かつ、前記第1かぎ部材が前記第1係合部に係合した状態では、前記第2回転翼が前記第1回転翼と同じ公転角度に到達した場合には、前記第2回転翼の自転角度が、前記第1回転翼の自転角度とほぼ等しくなる構成となっており、
     前記第2かぎ部材は、前記第2係合部に、着脱自在に係合して、前記第1可動スプロケットと前記風向軸とを固定できる構成となっており、
     かつ、前記第2かぎ部材が前記第2係合部に係合した状態では、前記第2回転翼が前記第1回転翼に対して実質的に平行となる構成となっており、
     前記かぎ駆動機構は、通常時に前記第1かぎ部材を前記第1係合部に係合させ、強風時に前記第2かぎ部材を前記第2係合部に係合させる構成となっている
     ことを特徴とする回転翼機構。
    Revolving shaft, rotating body, first rotating blade, second rotating blade, wind direction shaft, fixed sprocket, first movable sprocket, rotational force transmission mechanism, first key member, and second key member And a key drive mechanism,
    The rotating body is rotatable around the revolution axis,
    The first rotating blade and the second rotating blade are attached to the rotating body, and thereby, each of these rotating blades is configured to revolve around the revolution axis,
    The first rotor blade includes a first rotating sprocket,
    The second rotor blade includes a second rotating sprocket,
    The wind direction axis is provided with a wind direction plate for receiving wind force, and the wind direction axis is rotatable with respect to the revolution axis according to the direction of the wind force to the wind direction plate,
    The fixed sprocket is fixed to the wind direction axis and is rotatable according to the rotation of the wind direction axis,
    The first movable sprocket is attached to the wind direction axis, and is rotatable about the wind direction axis.
    The first movable sprocket includes a first engagement portion and a second engagement portion,
    The rotational force transmission mechanism is configured to transmit rotational force in the same direction between the fixed sprocket and the first rotating sprocket of the first rotating blade. By the revolution, the first rotating sprocket is configured to rotate in the direction opposite to the revolution,
    Further, the rotational force transmission mechanism is configured to transmit rotational force in the same direction between the first movable sprocket and the second rotating sprocket of the second rotary blade, whereby the second By the revolution of the rotation sprocket, the second rotation sprocket is rotated in the direction opposite to the revolution,
    The first key member is configured to be able to detachably engage with the first engagement portion to fix the first movable sprocket and the wind direction shaft,
    In the state where the first hook member is engaged with the first engaging portion, when the second rotating blade reaches the same revolution angle as the first rotating blade, the second rotating blade rotates. The angle is substantially equal to the rotation angle of the first rotor blade,
    The second key member is configured to be able to detachably engage with the second engagement portion to fix the first movable sprocket and the wind direction shaft,
    And in the state where the second key member is engaged with the second engagement portion, the second rotary blade is substantially parallel to the first rotary blade,
    The key drive mechanism is configured to engage the first key member with the first engaging portion in a normal state and to engage the second key member with the second engaging portion in a strong wind. Characteristic rotary blade mechanism.
  2.  前記第1かぎ部材が前記第1係合部から離脱し、かつ、前記第2かぎ部材が前記第2係合部に係合する前の状態では、前記第1可動スプロケットは、前記第2回転翼の自転による回転力を、前記回転力伝達機構を介して受け取ることによって回転し、これによって、前記第2係合部が前記第2かぎ部材の位置に到達する構成となっている、請求項1に記載の回転翼機構。 In a state where the first key member is detached from the first engaging portion and the second key member is not engaged with the second engaging portion, the first movable sprocket is rotated in the second rotation. The structure is configured to rotate by receiving a rotational force generated by rotation of a blade through the rotational force transmission mechanism, whereby the second engagement portion reaches a position of the second key member. The rotary blade mechanism according to 1.
  3.  前記第2回転翼には、この第2回転翼の自転における半径方向の端部において、前記自転方向とは反対方向に立ち上がる立ち上がり部が備えられている、請求項1又は2に記載の回転翼機構。 3. The rotor blade according to claim 1, wherein the second rotor blade is provided with a rising portion that rises in a direction opposite to the rotation direction at an end portion in a radial direction in the rotation of the second rotor blade. mechanism.
  4.  前記第1及び第2回転翼は、前記風向軸を中心とした1公転の間に1/2回転だけ自転する構成となっている、請求項1~3のいずれか1項に記載の回転翼機構。 The rotor blade according to any one of claims 1 to 3, wherein the first and second rotor blades are configured to rotate by ½ rotation during one revolution centered on the wind direction axis. mechanism.
  5.  前記回転力伝達機構は、スプロケット間で動力を伝達するためのチェーンである、請求項1~4のいずれか1項に記載の回転翼機構。 The rotary blade mechanism according to any one of claims 1 to 4, wherein the rotational force transmission mechanism is a chain for transmitting power between sprockets.
  6.  請求項1~5のいずれか1項に記載の回転翼機構における前記回転体の公転力を発電用の回転力として用いて発電することを特徴とする発電装置。 A power generator that generates electric power by using the revolution force of the rotating body in the rotary blade mechanism according to any one of claims 1 to 5 as a rotational force for power generation.
PCT/JP2011/069812 2010-09-24 2011-08-31 Rotary blade mechanism and power generation device using same WO2012039249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-214020 2010-09-24
JP2010214020A JP2013253476A (en) 2010-09-24 2010-09-24 Rotor blade mechanism and power generation apparatus using the same

Publications (1)

Publication Number Publication Date
WO2012039249A1 true WO2012039249A1 (en) 2012-03-29

Family

ID=45873739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069812 WO2012039249A1 (en) 2010-09-24 2011-08-31 Rotary blade mechanism and power generation device using same

Country Status (2)

Country Link
JP (1) JP2013253476A (en)
WO (1) WO2012039249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147176A1 (en) * 2012-07-05 2015-05-28 Adv Tech Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104774U (en) * 1979-01-18 1980-07-22
JPS55131585A (en) * 1979-02-26 1980-10-13 Hideo Sakai Windmill with rotating blades
JPS5618076A (en) * 1979-07-11 1981-02-20 Voith Gmbh J M Device for utilizing fluid energy
JP2001107838A (en) * 1999-08-02 2001-04-17 Hirai Sekkei Jimusho:Kk Windmill and its control method
JP2002339854A (en) * 2001-03-15 2002-11-27 Toshiyuki Uchibayashi Wind power generation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104774U (en) * 1979-01-18 1980-07-22
JPS55131585A (en) * 1979-02-26 1980-10-13 Hideo Sakai Windmill with rotating blades
JPS5618076A (en) * 1979-07-11 1981-02-20 Voith Gmbh J M Device for utilizing fluid energy
JP2001107838A (en) * 1999-08-02 2001-04-17 Hirai Sekkei Jimusho:Kk Windmill and its control method
JP2002339854A (en) * 2001-03-15 2002-11-27 Toshiyuki Uchibayashi Wind power generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147176A1 (en) * 2012-07-05 2015-05-28 Adv Tech Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades
US9841003B2 (en) * 2012-07-05 2017-12-12 Adv Tech Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades

Also Published As

Publication number Publication date
JP2013253476A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
DK2306002T3 (en) Systems and methods for assembling a pitch control device for use in a wind turbine
KR101297887B1 (en) Wind turbine generator, gear transmission mechanism, and method of controlling engagement of gears
DK2416006T3 (en) Krøjningsanordning for use in wind turbines
WO2008022209A3 (en) Wind driven power generator
CN102612797B (en) Rotary motor actuator and horizontal axis wind turbine
JP2005516159A5 (en)
CA2552297A1 (en) Magnus type wind power generator
CN102374114B (en) For the wheel hub of wind turbine and the method for mounting wind
MX353575B (en) Wind turbine with compensated motor torque.
EP2549096A2 (en) Vertical axis wind turbine
JP2009500562A (en) Blade pitch control mechanism
JP2010121518A (en) Vertical shaft magnus type wind turbine generator
CN102844565A (en) Drive unit for windmill
RU2426005C1 (en) Rotor-type windmill
WO2012039249A1 (en) Rotary blade mechanism and power generation device using same
KR101525553B1 (en) Wind power generator with vertical rotor
JP2009085090A (en) Wind turbine device
WO2009081438A3 (en) Rotary fluid motor device with a vertical axis for the production of energy
WO2009006287A3 (en) Oscillating windmill
CN104204512A (en) Power generation device
JP2012112309A (en) Method for controlling windmill blade
US20130343889A1 (en) Friction Wheel Drive Train for a Wind Turbine
TW201428180A (en) A wind turbine system, an assembling method of a wind turbine system, an inspecting method of a wind turbine system, and an operation method of a wind turbine system
KR20130024330A (en) Blade of wind power generator
KR101010317B1 (en) Steel tower rotation type windmill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP