WO2012035929A1 - ハイブリッドホイールローダ - Google Patents

ハイブリッドホイールローダ Download PDF

Info

Publication number
WO2012035929A1
WO2012035929A1 PCT/JP2011/068789 JP2011068789W WO2012035929A1 WO 2012035929 A1 WO2012035929 A1 WO 2012035929A1 JP 2011068789 W JP2011068789 W JP 2011068789W WO 2012035929 A1 WO2012035929 A1 WO 2012035929A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
capacitor
engine
energy
hybrid
Prior art date
Application number
PCT/JP2011/068789
Other languages
English (en)
French (fr)
Inventor
金子 悟
伊君 高志
秀一 森木
徳孝 伊藤
裕章 柳本
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201180040354.3A priority Critical patent/CN103080431B/zh
Priority to US13/817,538 priority patent/US8914177B2/en
Priority to EP11824937.4A priority patent/EP2617902B1/en
Priority to KR1020137003903A priority patent/KR101834027B1/ko
Publication of WO2012035929A1 publication Critical patent/WO2012035929A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/114Super-capacities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor

Definitions

  • the present invention relates to a hybrid wheel loader, and is particularly suitable for controlling the output of a capacitor as a power storage device.
  • hybrid model high efficiency drive of the engine
  • improvement of power transmission efficiency recovery of regenerative power, etc.
  • energy saving effect can be expected.
  • forklifts have become most electrified, and “battery forklifts” that drive motors using battery power have been put into practical use earlier than other vehicles.
  • battery forklifts that drive motors using battery power have been put into practical use earlier than other vehicles.
  • hybrid vehicles that combine a diesel engine and an electric motor have begun to be commercialized in hydraulic excavators, engine-type forklifts, and the like.
  • the conventional wheel loader As a vehicle that is expected to have a relatively large fuel consumption reduction effect when hybridized.
  • the conventional wheel loader has a traveling part (wheel part) and a front hydraulic working part (lift / bucket part) as main movable parts, and converts the power of the engine 1 to a torque converter.
  • (Torcon) 2 and transmission (T / M) 3 are transmitted to tire 13 and traveled while excavating and transporting sand and the like with hydraulic working device 5 at the front of the vehicle driven by hydraulic pump 4.
  • the power transmission efficiency of the torque converter used in the past is inferior to the power transmission efficiency by electricity, so that the power transmission efficiency from the engine can be improved accordingly. It becomes possible. Further, since the wheel loader repeats the starting and stopping traveling operations frequently during the work, when the traveling portion is electrified, recovery of regenerative electric power during braking can be expected from the traveling motor. As described above, when a part of the current wheel loader drive device is electrified and hybridized, it is generally said that the fuel consumption can be reduced by several tens of percent.
  • Patent Document 1 discloses a method for controlling such a hybrid system for work vehicles.
  • This patent document 1 discloses a method for selecting a control mode in accordance with the noise level of a hybrid work vehicle. Specifically, regarding the drive system in the low idle state of the engine, the engine is first fixed to the low idle state, and the pump output of only the engine drive is used as necessary so that the pump output set by the hand throttle is obtained. The shortage is assisted by an electric motor. Next, it is checked whether or not the electric motor is being driven. If the electric motor is being driven, the work implement is driven according to the operation signal of the work implement lever.
  • the electric motor is stopped, the electric motor is driven at a constant rotational speed, and the working machine is driven by the engine and the electric motor. Thereafter, the charge amount of the battery is calculated, and it is determined whether or not the battery is empty based on the charge amount.
  • a warning is output, and the electric motor is stopped and the hydraulic pump is driven only when the engine is low idle.
  • the electric motor is stopped when the operation signal of the work implement lever is not input, and the engine is stopped when the battery is fully charged. If the battery is not fully charged, it is charged by a generator.
  • a low-noise drive system can be realized by setting the engine to a low idle state or an idling stop state in accordance with the noise level of the vehicle.
  • the wheel loader has a specific operation mode in which the vehicle is fully accelerated while raising the front bucket portion from the low idle state (standby state) of the engine. In such a high-load operation mode, if the wheel loader is driven only in the low idle state of the engine as described in Patent Document 1, the required operation performance may not be obtained.
  • an object of the present invention is to provide a hybrid wheel loader capable of stably supplying power even in a high-load operation mode in which full acceleration is performed from a vehicle standby state unique to the wheel loader.
  • the present invention provides a hybrid wheel loader including a front working machine in front of a vehicle and a hybrid control device that uses an engine and a power storage device as a power source and controls the output of the power source.
  • the hybrid control device includes a capacitor as the power storage device, and the hybrid control device performs control so as to decrease the voltage of the capacitor as the energy held by the vehicle increases. According to the present invention, since the voltage of the capacitor can be used according to the energy held by the vehicle, the vehicle can be driven using the engine and the capacitor efficiently.
  • the “energy held by the vehicle” of the present invention is, for example, kinetic energy based on the vehicle body traveling speed.
  • the “energy held by the vehicle” of the present invention is the sum of the positional energy due to the bucket height of the front work machine, the rotational energy due to the rotational speed of the engine and the motor / generator, etc. It may be calculated.
  • the “energy held by the vehicle” of the present invention is any one of positional energy based on the bucket height of the front work machine and rotational energy based on the rotational speed of the engine and the motor / generator with respect to the kinetic energy based on the vehicle body traveling speed. You may add one.
  • the energy held by the vehicle is kinetic energy based on the traveling speed of the vehicle body, or the kinetic energy, positional energy based on the bucket height of the front work machine, and the engine and the motor / generator. It is preferable to be composed of energy obtained by adding at least one of rotational energy depending on the rotational speed.
  • the hybrid control device performs control so that the voltage characteristics of the capacitor with respect to the energy held by the vehicle differ between a normal operation mode in which a normal work operation is performed and a vehicle standby mode in which the vehicle is on standby.
  • the voltage of the capacitor Is a first specific voltage value (for example, Vc1 in FIG. 7) that is smaller than the maximum use voltage value (for example, equivalent to Vcmax in FIG. 7) and larger than the minimum use voltage value (for example, equivalent to Vcmin in FIG. 7).
  • the hybrid control device controls the voltage of the capacitor to be increased from the first specific voltage value to the maximum operating voltage value, and then reduces the engine speed to an idle speed so as to reduce the vehicle standby mode. It is preferable to adopt a configuration that shifts to.
  • the hybrid control device increases the voltage of the capacitor from the first specific voltage value according to an increase in energy held by the vehicle, to be greater than the minimum use voltage value. , And a second specific voltage value smaller than the first specific voltage value (for example, corresponding to Vc2 in FIG. 7).
  • the voltage of the capacitor is set to It is preferable that the control is performed so as to decrease from the maximum use voltage value to the minimum use voltage value according to an increase in the stored energy.
  • the voltage of the capacitor corresponding to the vehicle standby mode is controlled so that the vehicle accelerates.
  • the electric power is positively discharged from the capacitor to assist the output of the engine.
  • all the electric power stored in the capacitor can be used.
  • the engine In the normal operation mode, the engine is already operating at the number of revolutions assumed at the time of work, and it is in a state where it can output sufficient power for the power required by the vehicle, so it corresponds to the normal operation mode as in the present invention.
  • the capacitor By performing voltage control of the capacitor, charging of the capacitor due to unnecessary power generation from the motor / generator can be avoided. Moreover, since the output from the engine can be sufficiently output even if the vehicle speed increases after acceleration, the discharge power from the capacitor can be deferred.
  • a high load operation that fully accelerates from the standby state of the vehicle Even in the mode, stable power can be supplied with an optimum capacity of the capacitor.
  • FIG. 1 It is a figure which shows the structural example of the hybrid system of a working vehicle. It is a figure which shows the connection relation of a hybrid control apparatus and a periphery control apparatus. It is a figure which shows an example of the work pattern of a wheel loader. It is a figure which shows the example of control structure in a hybrid control apparatus. It is a flowchart which shows an operation mode detection process. It is a block diagram which shows the structure of an output distribution control means. It is a figure which shows the charging / discharging pattern of the capacitor according to operation
  • FIG. 1 a system configuration example of a hybrid wheel loader according to an embodiment of the present invention will be described with reference to FIGS.
  • the configuration example shown in FIG. 1 is a configuration in which the traveling portion of the movable portion of the wheel loader is motorized.
  • the output shaft of the engine 1 is an M / G (motor / generator) 6 and controls it.
  • M / G motor / generator
  • This is a series type hybrid system in which an inverter 7, a traveling motor 9 attached to a propeller shaft 8 of a traveling unit, and an inverter 10 for controlling the traveling motor 9 are mounted.
  • the capacitor 11 is electrically connected to the inverters 7 and 10 via the DCDC converter 12 and receives DC power between these power converters.
  • an electric double layer capacitor 11 is used as the power storage device, and the DCDC converter 12 performs the control of the step-up / step-down of the capacitor voltage, and exchanges DC power with the inverters 7 and 10.
  • the engine 1 and the capacitor 11 are power sources.
  • the hybrid wheel loader shown in FIG. 1 includes a hydraulic pump 4 that supplies oil to a hydraulic working device 5 in the front part that performs excavation work such as earth and sand as in the conventional machine shown in FIG. Implement the work.
  • the vehicle travels mainly by using the electric power generated by the motor / generator (M / G) 6 based on the power of the engine 1 and rotating the tire 13 by the electric motor 9 for traveling.
  • the capacitor 11 absorbs regenerative power during vehicle braking and assists the output to the engine 1, thereby contributing to reduction in vehicle energy consumption.
  • the hybrid system targeted by the present invention is not limited to the configuration example of FIG. 1, and the present invention can also be applied to various hybrid configurations such as a parallel type.
  • the hybrid control device 20 is mounted on the vehicle as a part for controlling the hybrid system.
  • the hybrid control device 20 is a controller that controls the energy and power of the entire hybrid system shown in FIG.
  • the vehicle includes a hydraulic control device 21 that controls a hydraulic control valve (C / V) and a pump, an engine control device 22 that controls the engine, and an inverter that controls the inverters 7 and 10.
  • a control device 23 and a converter control device 24 for controlling the DCDC converter 12 are mounted.
  • These peripheral control devices are connected using, for example, CAN (Controller Area ⁇ Network) communication or the like as shown in FIG. Sends and receives command values and state quantities for each device.
  • CAN Controller Area ⁇ Network
  • FIG. 1 In order to actually establish the vehicle, a monitor and an information system controller are required in addition to the peripheral control devices 21 to 24. However, since these are not directly related to the present invention, FIG. In FIG. 1, only a controller necessary for controlling each drive part of the hybrid system shown in FIG. 1 is shown.
  • the hybrid control device 20 is positioned above the controllers of the hydraulic control device 21, the engine control device 22, the inverter control device 23, and the converter control device 24, and controls the entire system. A specific operation command is given to each of the control devices 21 to 24 so that the entire system exhibits the best performance.
  • Each control device is not necessarily separate from the other control devices as shown in FIG. 2, and two or more control functions may be mounted on a single control device.
  • the wheel loader according to the present embodiment has several operation patterns, and the hybrid control device 20 needs to operate the vehicle optimally according to the operation.
  • a typical work pattern there is a V cycle excavation work shown in FIG.
  • This V-cycle excavation work is a main operation pattern that occupies about 70% or more of the actual work of the wheel loader.
  • the wheel loader first moves forward with respect to an object to be excavated such as a gravel mountain, and loads a transported object such as gravel into the bucket in such a manner as to thrust into the gravel mountain. Thereafter, the wheel loader moves backward and returns to the original position, and moves forward toward a transport vehicle such as a dump truck while operating the steering and raising the front bucket portion. And after loading a conveyed product in a transport vehicle, it reverses again and a vehicle returns to the original position. As described above, the wheel loader repeats this operation while drawing a V-shape.
  • a general hybrid vehicle is mainly equipped with a secondary battery (battery) as a power storage device, has a relatively large amount of electric energy, and distributes power with the engine.
  • secondary batteries still have problems such as weight, cost, and lifetime, and are not necessarily power storage devices that can be mounted on all hybrid vehicles.
  • the capacitor 11 is mounted as the power storage device, and the output of the capacitor 11 is controlled to be suitable for the actual operation of the hybrid wheel loader.
  • a combined operation from the standby state of the vehicle can be considered.
  • the vehicle is fully accelerated while raising the front hydraulic working unit (lift / bucket) from the lowest position, and the vehicle is moved to 10 km / h. It is to continue traveling up to the above.
  • the initial state of the acceleration operation of such a vehicle since the vehicle is fully accelerated while raising the bucket and lift of the front part from when the engine is in a low idle state, a large amount of power is required, and the engine is always at the maximum. Output state.
  • the full acceleration operation from the low idle state of the engine places a heavy burden on the engine as compared with the basic V cycle excavation work described above.
  • this may be changed to a smaller size than a conventional on-board engine.
  • This aims to improve fuel efficiency by using an efficient small engine.
  • simply reducing the size of the engine will result in insufficient engine output, resulting in a decrease in vehicle driving performance and the worst engine being stalled.
  • the output of the engine 1 is assisted by the newly installed motor / generator (M / G) 6 and the large-capacity capacitor 11, and the output performance is equal to or higher than that of the conventional machine.
  • M / G motor / generator
  • the engine 1 is originally operating at a speed near the rated speed, and a large power can be output from the engine 1, and the work range is earth and sand. Therefore, the power required from the vehicle is small compared to the aforementioned “full acceleration operation from low idle state”. It will be a thing. Therefore, it can be said that the electrical output assist in the hybrid system uses the maximum amount of electrical energy in the “full acceleration operation from the low idle state”.
  • the capacitor 11 can be immediately used when the power required by the vehicle is covered with the stored electric power. It is conceivable that the use voltage lower limit value is reached. Therefore, the hybrid control device 20 needs to control the output from the capacitor 11 with high efficiency while avoiding such an overdischarge state of the capacitor 11.
  • the hybrid controller 20 In order to realize the optimum capacitor control system for the hybrid wheel loader, it is necessary to first grasp the current operation mode of the vehicle by the hybrid control device 20. If the hybrid controller 20 can recognize the current or future vehicle operation, the power output amount from the capacitor 11 is determined in consideration of the current charging state of the capacitor 11 and the rotational acceleration state of the engine 1. Can do. That is, it can be said that control should be performed so as to change the charge / discharge pattern of the capacitor 11 according to each operation mode.
  • the hybrid control device 20 has the operation mode detection means 30 shown in FIG. 4, and the operation mode detection means 30 grasps the current operation content of the vehicle.
  • An example of the processing of the operation mode detection means 30 is shown in the flowchart of FIG.
  • the operation modes related to the charge / discharge control of the capacitor 11 are roughly classified into two types of “vehicle standby mode” and “normal operation mode”, and the detection method of each operation mode is described below.
  • step S100 the operation mode detecting means 30 performs various command values (accelerator, brake, forward / reverse lever, front operation lever operation) and state quantities (each hydraulic pump pressure, engine speed, vehicle speed, etc.). And the operation mode is determined in step S101. For example, in step S101, it is determined from each state obtained in step S100 whether the vehicle is in a normal working state or whether the vehicle is not working and is in a vehicle standby state.
  • one of the various command signals is in the operation command state, or indicates that the engine, each hydraulic pump, or the vehicle speed is in an operating state of the vehicle. Therefore, the operation mode detection means 30 determines the current operation mode as the “normal operation mode”. In contrast, in the vehicle standby state, the engine speed first decreases to the low idle speed. Furthermore, none of the various command signals are input in the standby state. At this time, the operation mode detection means 30 determines that the operation mode is “vehicle standby mode”, assuming that the vehicle is in a standby state.
  • the operation mode of the vehicle is broadly detected as the normal operation mode and the vehicle standby mode.
  • the charge / discharge pattern of the capacitor 11 is changed according to other operation modes, This can be realized by adding detection processing logic to the flowchart of FIG.
  • the output distribution control means 31 determines the charge / discharge output of the capacitor 11 according to the detected operation mode. Specifically, the hybrid control device 20 controls the output of the capacitor 11 so as to obtain a charge / discharge pattern as shown in FIG. 7 according to the operation mode of the vehicle.
  • the horizontal axis represents the energy held by the vehicle
  • the vertical axis represents the voltage of the capacitor 11 (corresponding to the amount of charge)
  • kinetic energy based on the traveling speed of the vehicle body is used as the energy held by the vehicle on the horizontal axis.
  • one or both of rotational energy based on the rotational speed of the motor / generator 6 and kinetic energy based on the traveling speed of the vehicle may be used as energy held by the vehicle.
  • a series hybrid system in which the traveling unit is replaced with an electric motor is assumed. In such a case, the horizontal axis is the most suitable parameter for the vehicle speed.
  • the charge / discharge pattern of the capacitor in this embodiment operates so as to decrease the charge amount (increase the discharge amount) according to the energy (vehicle traveling speed) possessed by the vehicle, as shown in FIG. If it does in this way, the free capacity which absorbs the regenerative energy generated when electric braking is applied from the state where the vehicle speed is high can be secured in the capacitor 11. As a result, the regenerative energy can be used effectively, and energy saving of the hybrid wheel loader can be realized.
  • the charge / discharge pattern of the capacitor 11 (voltage characteristic of the capacitor with respect to the energy held by the vehicle) is different between the normal operation mode and the vehicle standby mode. This is set so that the capacitor 11 is optimally controlled according to the operation mode of the vehicle.
  • the vehicle speed 0 that is, the capacitor even when the vehicle is stopped.
  • the vehicle is stopped without fully charging 11. That is, when the vehicle is stopped, the capacitor voltage is in the state of the first specific voltage value Vc1 that is lower than the maximum use voltage value Vcmax.
  • the capacitor 11 is fully charged (the capacitor voltage is at its highest use) when the vehicle is stopped (the engine 1 is in a low idle state because the vehicle is waiting). State in which the voltage Vcmax is reached). This is because when the vehicle accelerates from a stopped state, particularly when accelerating while operating the hydraulic working device 5 at the front, a large amount of power is required, but the engine is in a low idle state as described above. In addition, a large output equivalent to the required power cannot be extracted from the engine. In this case, the output of the engine 1 is assisted by the electric power from the capacitor 11 as much as possible.
  • the standby acceleration discharge pattern (broken line in FIG. 7), the vehicle 11 is fully charged when the vehicle is stopped (the vehicle has a minimum energy), and the capacitor 11 actively discharges power as the vehicle accelerates.
  • the output assist of the engine 1 is performed, and when the vehicle accelerates to the maximum, the voltage of the capacitor 11 is lowered to the minimum use voltage value Vcmin so that all the electric power stored in the capacitor 11 can be used.
  • the standby acceleration discharge pattern is a charge / discharge control pattern of the capacitor 11 corresponding to the vehicle standby mode, and the capacitor 11 is charged / discharged in preparation for “full acceleration operation from the low idle state”. It can be said that this is the control pattern.
  • the output distribution control means 31 shown in FIG. 4 controls the charge / discharge amount of the capacitor 11.
  • the processing of the output distribution control means 31 is shown in the block diagram of FIG. First, the output distribution control means 31 inputs various signals as shown in FIG. 6 to the hydraulic pressure required output calculation 35 and the travel required output calculation 36 to calculate the output that the vehicle currently requires for work.
  • the sum of the hydraulic demand output and the travel demand output calculated here substantially corresponds to the demand output of the entire vehicle.
  • the output distribution unit 37 Based on the calculated hydraulic demand output, travel demand output, engine speed, capacitor voltage (calculate the current charge amount), and operation mode, the output distribution unit 37 generates M /
  • the G output command and the charge / discharge output command from the capacitor 11 are calculated. Basically, since the current maximum output of the engine 1 can be grasped by inputting the engine speed, the shortage with respect to the total output required by the vehicle is calculated to be discharged from the capacitor 11.
  • the capacitor 11 is charged in advance to store the capacitor power required when the engine 1 is accelerated from the low idle state, or the regeneration generated by the normal work operation.
  • the fuel efficiency improvement effect in the hybrid wheel loader can be exhibited, such as storing electric power or increasing the discharge power of the capacitor 11 at an operating point where the efficiency of the engine 1 decreases.
  • the output distribution control means 31 sets the voltage of the capacitor 11 to be smaller than the maximum use voltage value Vcmax when the energy held by the vehicle is a minimum value (a predetermined low output value) in the normal operation mode, and Control is performed so that the voltage value Vc1 (first specific voltage value) is greater than the minimum usable voltage value Vcmin.
  • the output distribution control unit 31 controls the voltage of the capacitor 11 to be increased from the voltage value Vc1 to the maximum use voltage value Vcmax.
  • the hybrid control device 20 After the voltage of the capacitor 11 reaches the maximum use voltage value Vcmax, that is, after the capacitor 11 is fully charged, the hybrid control device 20 reduces the engine 1 to the idling state and waits for the vehicle. Enter mode. Thus, stable power can be supplied from the capacitor 11 even in a high-load operation mode in which the vehicle is fully accelerated from the standby state.
  • a vehicle corresponding to the “normal operation mode” corresponding to the V-shaped cycle excavation work and the standby state of the vehicle (particularly, the state in which the vehicle is prepared for the full acceleration operation from the low idle state).
  • other operation modes such as the “high-speed transport mode (corresponding to the low-frequency operation mode of the present invention)” can be considered in the actual operation.
  • Such an operation mode is considered to be a mode that occurs less frequently than the normal operation mode and does not require power compared to a state in which the vehicle is fully accelerated from the low idle state in the vehicle standby mode. At this time, for example, control may be performed so that power is not taken in and out of the capacitor 11 too much.
  • acceleration / deceleration from the standby state of the vehicle can be performed by changing / controlling the charge / discharge pattern of the capacitor 11 according to the operation mode. It becomes possible to avoid engine output shortage at the time, and smooth vehicle operation can be realized. Further, according to the hybrid wheel loader according to the embodiment of the present invention, the optimum power assist can be realized according to each operation mode, so that the mounting capacity of the capacitor 11 can be set optimally, resulting in a small vehicle size. And cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】高効率でかつ、安定に動力を供給可能なハイブリッドホイールローダを提供する。 【解決手段】車両の前方にフロント作業機(5)を備えると共に、エンジン(1)および蓄電装置を動力源とし、この動力源の出力を制御するハイブリッド制御装置(20)を備えたハイブリッドホイールローダにおいて、蓄電装置としてのキャパシタ(11)を備え、前記ハイブリッド制御装置は、車両の保有するエネルギーの増加に従って前記キャパシタの電圧を下げるように制御することを特徴としている。

Description

ハイブリッドホイールローダ
 本発明は、ハイブリッドホイールローダに関し、特に、蓄電装置としてのキャパシタの出力を制御するのに好適なものである。
 近年、環境問題、原油高騰などの点から、各工業製品に対して省エネ志向が強まっている。これまでディーゼルエンジンによる油圧駆動システムが中心であった建設車両、作業用車両等の分野においても、その傾向にあり、電動化による高効率化、省エネルギー化の事例が増加してきている。
 例えば、車両の駆動部分を電動化、すなわち駆動源を電気モータにした場合、排気ガスの低減のほか、エンジンの高効率駆動(ハイブリッド機種)、動力伝達効率の向上、回生電力の回収など多くの省エネルギー効果が期待できる。前述の建設車両、作業用車両等の分野では、フォークリフトの電動化が最も進んでおり、バッテリーの電力を用いてモータを駆動する「バッテリーフォークリフト」が他車両に先駆けていち早く実用化されている。最近ではこれに引き続いて、油圧ショベル、エンジン式フォークリフトなどにおいて、ディーゼルエンジンと電気モータを組み合わせた「ハイブリッド車両」が製品化され始めている。
 また、上記のように電動化による環境対応・省エネルギー化が進む建設機械、作業用車両の中で、ハイブリッド化した場合の効果に比較的大きな燃費低減効果が見込まれる車両にホイールローダがある。従来のホイールローダは、図8に示すように、主な可動部として、走行部(ホイール部分)とフロントの油圧作業部(リフト/バケット部分)を有しており、エンジン1の動力をトルクコンバータ(トルコン)2およびトランスミッション(T/M)3によりタイヤ13に伝えて走行を行いながら、油圧ポンプ4によって駆動される車両フロント部の油圧作業装置5で土砂等を掘削・運搬する。
 この従来のホイールローダの走行駆動部分を電動化した場合、従来から用いられているトルコンの動力伝達効率が電気による動力伝達効率より劣るため、その分、エンジンからの動力伝達効率を向上させることが可能となる。さらにホイールローダでは、作業中に頻繁に発進・停止の走行動作を繰り返すため、走行部分を電動化した場合には走行用電動機から制動時の回生電力の回収が見込める。このように現状のホイールローダの駆動装置の一部に電動化を施してハイブリッド化した場合、一般に燃料消費量を数10%程度低減可能であると言われている。
 このような作業用車両のハイブリッドシステムの制御方法については、例えば特許文献1に示されたものがある。この特許文献1には、ハイブリッド式作業車両の騒音レベルに応じて制御モードを選択する方式について開示されている。具体的には、エンジンのローアイドル状態での駆動方式について、まずエンジンをローアイドル状態に固定すると共に、ハンドスロットルで設定したポンプ出力となるように、必要に応じてエンジン駆動のみのポンプ出力で不足する分を電動モータにより補助する。つぎに電動モータを駆動中か否かをチェックし、駆動中の場合は作業機レバーの操作信号に応じて作業機を駆動する。
 このとき、電動モータが停止していれば、電動モータを一定回転数で駆動し、エンジンと電動モータにより作業機を駆動する。この後、バッテリーの充電量を演算し、この充電量に基づいてバッテリーが空か否かを判断する。そして、バッテリーが空のときは警告を出力すると共に、電動モータを停止してエンジンのローアイドルでのみ油圧ポンプを駆動する。また、作業機レバーの操作信号が入力されないときは電動モータを停止し、バッテリーが満充電のときはエンジンを停止する。またバッテリーが満充電ではないときは発電機により充電を行う。
 このように、特許文献1に記載の技術では、車両の騒音レベルに応じてエンジンをローアイドル状態もしくはアイドリングストップ状態として、低騒音な駆動方式が実現可能となる。
特開2000-226183号公報
 上記した特許文献1に記載の従来技術は、エンジンをローアイドル状態にした後、バッテリーの充電量を演算し、この充電量に基づいてバッテリーが空か否かを判断する。そして、バッテリーが空のときは警告を出力すると共に、電動モータを停止してエンジンのローアイドルでのみ油圧ポンプを駆動する。このようにした場合、バッテリーが空の状態では、オペレータの動力要求に対して出力不足が生じ、作業機械を満足できる速度で駆動することが困難となる可能性がある。
 さらに、上記した特許文献1に記載の従来技術は、公報の中でラフテレンクレーンと油圧ショベルのハイブリッド機に対して記載してあるが、本従来技術がその他の建設機械にもそのまま適用できるとは限らない。例えば、上記ホイールローダは、その動作モードの中で、エンジンのローアイドル状態(待機状態)からフロントのバケット部分を上昇させながら車両をフル加速させるといった特有の動作モードがある。このような高負荷の動作モードの際に、特許文献1に記載のようにエンジンのローアイドルの状態のみでホイールローダを駆動した場合は、所要の動作性能が得られない可能性がある。
 そこで、本発明の目的は、ホイールローダ特有の車両の待機状態からフル加速するような高負荷の動作モードの場合にも、安定に動力を供給可能なハイブリッドホイールローダを提供することにある。
 上記目的を達成するために、本発明は、車両の前方にフロント作業機を備えると共に、エンジンおよび蓄電装置を動力源とし、この動力源の出力を制御するハイブリッド制御装置を備えたハイブリッドホイールローダにおいて、前記蓄電装置としてのキャパシタを備え、前記ハイブリッド制御装置は、車両の保有するエネルギーの増加に従って前記キャパシタの電圧を下げるように制御することを特徴としている。本発明によれば、車両の保有するエネルギーに応じてキャパシタの電圧を使用できるため、エンジンとキャパシタとを効率良く使用して車両を駆動することができる。
 ここで、本発明の「車両の保有するエネルギー」とは、例えば、車体走行速度による運動エネルギーである。また、本発明の「車両の保有するエネルギー」は、車体走行速度による運動エネルギーに加えて、フロント作業機のバケット高さによる位置エネルギー、エンジンおよびモータ・ジェネレータの回転数による回転エネルギーなどの合計として演算されたものであっても良い。また、本発明の「車両の保有するエネルギー」は、車体走行速度による運動エネルギーに対して、フロント作業機のバケット高さによる位置エネルギー、エンジンおよびモータ・ジェネレータの回転数による回転エネルギーのいずれか1つを加えたものであっても良い。
 即ち、上記構成において、前記車両の保有するエネルギーは、車体の走行速度による運動エネルギー、または、前記運動エネルギーに、前記フロント作業機のバケット高さによる位置エネルギーと、前記エンジンおよび前記モータ・ジェネレータの回転数による回転エネルギーの少なくとも一方を加算したエネルギーからなるものであることが好ましい。
 また、上記構成において、前記ハイブリッド制御装置は、通常の作業動作を行う通常動作モードと、前記車両を待機させる車両待機モードとで前記車両の保有するエネルギーに対する前記キャパシタの電圧の特性が異なるよう制御すると共に、前記通常動作モードにおいて、前記車両の保有するエネルギーが予め定めた低出力値(例えば、図7の車両の保有するエネルギーmin(最小値)に相当)である場合に、前記キャパシタの電圧を、最高使用電圧値(例えば、図7のVcmaxに相当)より小さく、かつ最低使用電圧値(例えば、図7のVcminに相当)より大きい第1の特定電圧値(例えば、図7のVc1に相当)となるよう制御し、前記車両の保有するエネルギーが前記低出力値にある状態が所定時間継続された場合には、前記ハイブリッド制御装置は、前記キャパシタの電圧を前記第1の特定電圧値から前記最高使用電圧値に上げるよう制御し、その後、前記エンジンの回転数をアイドル状態の回転数に下げて前記車両待機モードに移行する構成とするのが好ましい。
 この構成によれば、車両の待機状態ではキャパシタの電圧を最高使用電圧値まで上げているため、車両の待機状態からフル加速するようなホイールローダ特有の高負荷の動作モードに対しても安定した動力をキャパシタから供給することができる。
 ところで、キャパシタの電圧が第1の特定電圧値から最高使用電圧値まで上げながら同時にエンジンの回転数をアイドル状態の回転数まで下げると、その途中で車両が急発進すると十分な出力が得られない場合がある。しかしながら、本発明によれば、キャパシタの電圧が最高使用電圧値まで上がってからエンジンの回転数をアイドル状態の回転数に下げるようにしているので、車両が急発進する場合においても十分な出力が得られる。
 また、上記構成において、前記ハイブリッド制御装置は、前記通常動作モードの場合に、前記キャパシタの電圧を前記車両の保有するエネルギーの増加に従って前記第1の特定電圧値から、前記最低使用電圧値より大きく、かつ前記第1の特定電圧値より小さい第2の特定電圧値(例えば、図7のVc2に相当)まで下げるように制御し、前記車両待機モードの場合に、前記キャパシタの電圧を前記車両の保有するエネルギーの増加に従って前記最高使用電圧値から前記最低使用電圧値まで下げるよう制御する構成とするのが好ましい。
 この構成によれば、車両の待機状態からフル加速するようなホイールローダ特有の高負荷の動作モードに対しては、車両待機モードに対応したキャパシタの電圧制御を行うことにより、車両が加速するに従って積極的にキャパシタより電力を放電し、エンジンの出力アシストを行い、車両がフル加速する際にはキャパシタに蓄えられている電力を全て使用することができる。
 また、通常動作モードでは既にエンジンが作業時を想定した回転数で稼働しており、車両の要求する動力に対して十分な出力を出せる状態にあるため、本発明の如き通常動作モードに対応したキャパシタの電圧制御を行うことにより、モータ・ジェネレータからの不要な発電でのキャパシタ充電を避けることができる。しかも、加速後、車両速度が上昇してきてもエンジンからの出力が十分出せるため、キャパシタからの放電電力を据え置くことができる。
 本発明によれば、フロント部の油圧作業装置と電動モータで動力の一部、あるいは全てを賄う走行駆動装置を有するハイブリッドホイールローダにおいて、車両の待機状態からのフル加速するような高負荷の動作モードの場合にも、最適なキャパシタの容量で安定した動力を供給することができる。
作業用車両のハイブリッドシステムの構成例を示す図である。 ハイブリッド制御装置と周辺制御装置との結線関係を示す図である。 ホイールローダの作業パターンの一例を示す図である。 ハイブリッド制御装置内の制御構成例を示す図である。 運転モード検出処理を示すフローチャートである。 出力配分制御手段の構成を示すブロック線図である。 ハイブリッドホイールローダの動作に応じたキャパシタの充放電パターンを示す図である。 作業用車両の一例であるホイールローダの従来の駆動システム構成を示す図である。
 以下、本発明の実施の形態例に係るハイブリッドホイールローダについて、図1~図7を参照しながら説明する。まず、本発明の実施の形態例に係るハイブリッドホイールローダのシステム構成例について、図1を用いて説明する。図1に示す構成例は、ホイールローダの可動部のうち走行部を電動化した構成であり、具体的には、エンジン1の出力軸にM/G(モータ/ジェネレータ)6、それを制御するインバータ7、ならびに、走行部のプロペラシャフト8に取り付けられた走行用電動機9、それを制御するインバータ10が搭載されたシリーズ型のハイブリッドシステムである。また、キャパシタ11はDCDCコンバータ12を介してインバータ7、10と電気的に接続されており、これらの電力変換器の間で直流電力の収受を行う。特に本実施例では、蓄電装置として電気2重層キャパシタ11が用いられており、DCDCコンバータ12によってキャパシタ電圧の昇降圧制御を行い、インバータ7、10との間で直流電力の受け渡しを行う。このように、本実施形態に係るハイブリッドホイールローダは、エンジン1とキャパシタ11とが動力源となっている。
 また、図1に示すハイブリッドホイールローダは、図8の従来機と同様に、土砂などの掘削作業を行うフロント部の油圧作業装置5に油を供給する油圧ポンプ4を備えていて、目的に応じた作業を実施する。それに対して、車両の走行は、主にエンジン1の動力を元にモータ・ジェネレータ(M/G)6で発電した電力を利用し、走行用電動機9でタイヤ13を回転駆動することにより行われる。その際、キャパシタ11では車両制動時の回生電力の吸収やエンジン1に対する出力アシストを行い、車両の消費エネルギー低減に寄与する。なお、本発明が対象とするハイブリッドシステムは図1の構成例に限られるものではなく、パラレル型など多様なハイブリッド構成に対しても本発明は適用可能である。
 また、上記ハイブリッドシステムの制御を行う部分として、車両にはハイブリッド制御装置20が搭載される。このハイブリッド制御装置20は、図1に示すハイブリッドシステム全体のエネルギーやパワーの制御を行うコントローラである。また、車両にはハイブリッド制御装置20の他、それぞれ油圧のコントロールバルブ(C/V)やポンプを制御する油圧制御装置21、エンジンの制御を行うエンジン制御装置22、インバータ7、10を制御するインバータ制御装置23、DCDCコンバータ12を制御するコンバータ制御装置24が搭載されており、これら周辺制御装置は、例えば図2に示すように、CAN(Controller Area Network)通信等を用いて結線され、相互に各機器の指令値、および状態量を送受信する。
 なお、実際に車両を成立させる上では、各周辺制御装置21~24の他にモニタや情報系のコントローラが必要となってくるが、それらは本発明と直接的な関係が無いため、図2においては、図1に示すハイブリッドシステムの各駆動部分を制御するために必要なコントローラのみを示している。
 ハイブリッド制御装置20は、図2に示すように、油圧制御装置21、エンジン制御装置22、インバータ制御装置23、コンバータ制御装置24の各コントローラの上位に位置してシステム全体の制御を行っており、システム全体が最高の性能を発揮するように各制御装置21~24に具体的動作の指令を与える。なお、各制御装置は図2に示すような必ずしも他制御装置と別体という訳ではなく、ある一つの制御装置に2つ以上の制御機能を実装しても構わない。
 また、本実施の形態例に係るホイールローダにはいくつかの動作パターンがあり、ハイブリッド制御装置20は、その動作に応じて車両を最適に稼働させる必要がある。たとえば、代表的な作業パターンとしては、図3に示すVサイクル掘削作業がある。このVサイクル掘削作業は実際のホイールローダの作業全体に対して、約7割以上を占める主動作パターンである。このVサイクル掘削作業では、ホイールローダは、まず砂利山などの掘削対象物に対して前進し、砂利山に突っ込むような形でバケットに砂利等の運搬物を積み込む。その後、ホイールローダは後進して元の位置に戻り、ステアリングを操作しながら、かつフロントのバケット部分を上昇させながらダンプ等の運搬車両に向かって前進する。そして、運搬車両に運搬物を積み込んだ後は再び後進し、車両は元の位置に戻る。以上の説明のように、ホイールローダはV字を描きながらこの作業を繰り返し行う。
 このとき、図1に示すハイブリッドシステムでは、各前進/後進の動作中に発生する制動動作時において走行用電動機9から回生電力を発生するため、その回生電力をキャパシタ11に蓄え、次の力行動作でその回生電力を再利用することが可能となる。また、このVサイクル掘削作業は、車両の速度が最大でも15km/h程度の低速走行であり、また頻繁に発進/停止を繰り返すため、従来から用いられているトルクコンバータでは動力の伝達効率がそれほど高くない。それに対して、図1のようなシリーズ型のハイブリッドシステムは電動機を用いて走行を行うため、上述の様に消費エネルギーを相当量削減することが可能である。
 以上、記載したように、ホイールローダをハイブリッド化した場合は、従来のトルコンからの走行部の伝達効率向上分や回生電力回収分などで大きな燃費改善効果を得ることが可能となる。ここで、一般のハイブリッド自動車は蓄電装置としては主に2次電池(バッテリー)を搭載していて、比較的大きな電気エネルギー量を有しており、エンジンとの間で動力配分を行っている。但し、2次電池は重量やコスト、寿命等の課題が未だ残っており、必ずしも全てのハイブリッド車に搭載可能な蓄電装置ではない。例えば、本発明で対象としているホイールローダにおいては、頻繁に発進停止を繰り返す動作が全体の作業内容に占める割合が大きく、このような機種では電気2重層キャパシタ等の大容量コンデンサの方が好適な場合もある。そこで、本実施例では、蓄電装置としてキャパシタ11を搭載し、このキャパシタ11の出力がハイブリッドホイールローダの実際の動作に適したものとなるように制御している。
 一方、ハイブリッドホイールローダにおいて最も電力のアシストを必要とする動作としては、車両の待機状態からの複合動作が考えられる。この具体的な動作としては、エンジンをローアイドル(待機)状態とした後から、フロントの油圧作業部(リフト/バケット)を最低位置から上昇させながら、車両をフル加速させ、車両を10km/h以上まで走行を継続するといったものである。このような車両の加速動作における初期の状態では、エンジンがローアイドル状態にあるときからフロント部のバケット、およびリフトを上昇させながら車両をフル加速させるため、大きな動力を必要とし、エンジンは常に最大出力状態となっている。このように、エンジンのローアイドル状態からのフル加速動作は、上述の基本的なVサイクル掘削作業に比べ、エンジンに対して大きな負担をかけることになる。
 また、一般にハイブリッドシステムでは、従来の搭載エンジンに比べてこれを小型に変更することがある。これは効率の良い小形のエンジンを用いることで燃費改善を実現する狙いがある。ただし、ただ単にエンジンを小型にしただけではエンジンの出力不足に陥り、結果的には車両の駆動性能が低下し、最悪エンジンがエンストしてしまうことが考えられる。
 そこで、実施の形態例に係るハイブリッドホイールローダでは、新たに搭載したモータ・ジェネレータ(M/G)6および大容量のキャパシタ11によりエンジン1の出力アシストを行い、従来機と同等以上の出力性能を実現している。なお、先で述べた通常の基本的作業動作であるVサイクル掘削作業では、エンジン1が元々定格付近の回転数で稼働しており、エンジン1から大きい動力が出力できることや、作業範囲は土砂等の掘削対象とダンプ等の運搬車両との間を行き来する程度の限られた範囲内であることから、車両から要求される動力は前述の「ローアイドル状態からのフル加速動作」に比べて小さなものとなる。よって、ハイブリッドシステムにおける電気的な出力アシストはこの「ローアイドル状態からのフル加速動作」において最大の電気エネルギー量を使用するといえる。
 このような作業内容に対して、本実施例では、蓄電装置として大容量キャパシタ11を想定しているため、車両の要求する動力をそのまま蓄えられている電力で賄おうとした場合、すぐにキャパシタ11の使用電圧下限値に達してしまうことが考えられる。そこで、ハイブリッド制御装置20では、このようなキャパシタ11の過放電状態を回避しながら、かつ高効率にキャパシタ11からの出力を制御する必要がある。
 ハイブリッドホイールローダに最適なキャパシタ制御方式を実現するためには、まず、車両の現在の動作モードをハイブリッド制御装置20にて把握する必要がある。ハイブリッド制御装置20にて現在、あるいはこれから行おうとする車両動作を認識できれば、現在のキャパシタ11の充電状態、およびエンジン1の回転加速状態を考慮しながら、キャパシタ11からの電力出力量を決定することができる。すなわち、各々の動作モードに応じてキャパシタ11の充放電パターンを変更するよう制御を行えば良いと言える。
 この制御を実現するためにはまず、ハイブリッド制御装置20は、図4に示す動作モード検出手段30を有し、この動作モード検出手段30により現在の車両の動作内容を把握する。この運転モード検出手段30の処理の一例を図5のフローチャートに示す。本実施例では、キャパシタ11の充放電制御に関わる動作モードを「車両待機モード」と「通常動作モード」の2種類に大別して、以下に各動作モードの検出方法を示す。
 まず、動作モード検出手段30は、ステップS100において、車両の各種指令値(アクセル、ブレーキ、前後進レバー、フロント作業部のレバー操作)および状態量(各油圧ポンプ圧力、エンジン回転数、車速など)を入力し、ステップS101にて動作モードを決定する。例えば、ステップS101では、ステップS100で得られた各状態から車両が通常作業状態にあるのか、または、車両が作業しておらず車両待機状態にあるのかを判定する。
 具体的には、前述のVサイクル掘削作業であれば、上記各種指令信号のうちいずれかは動作指令状態にあるか、もしくはエンジン、各油圧ポンプ、あるいは車速が車両の稼働状態であることを示しているので、動作モード検出手段30は、現在の動作モードを「通常動作モード」に決定する。それに対して、車両待機状態では、まずエンジン回転数がローアイドル回転数まで下がっている。さらに、各種指令信号は待機状態ではいずれも入力されない。このときは、動作モード検出手段30は、車両の待機状態であるとして、動作モードを「車両待機モード」に決定する。
 以上のように、各種信号の入力値の組み合わせで、キャパシタ充放電に係る現在の車両の動作モードを判定することが可能である。なお、本実施例では車両の動作モードを通常動作モードと車両待機モードに大別して検出するように記載したが、その他の動作モードに応じてキャパシタ11の充放電パターンを変更する場合には、その検出処理ロジックを図5のフローチャート内に追加することで実現できる。
 さらにハイブリッド制御装置20では、検出された動作モードに応じて出力配分制御手段31でキャパシタ11の充放電出力を決定する。具体的には、ハイブリッド制御装置20は、車両の動作モードに応じて図7に示すような充放電パターンとなる様にキャパシタ11の出力を制御する。ここで、図7は横軸を車両の保有するエネルギー、縦軸はキャパシタ11の電圧(充電量に相当)であり、車両の動作に応じたキャパシタ11の充放電パターンを示している。なお、横軸の車両の保有するエネルギーとして、本実施形態では車体の走行速度による運動エネルギーが用いられているが、油圧作業装置(フロント作業機)5のバケットの高さによる位置エネルギー、エンジン1およびモータ・ジェネレータ6の回転数による回転エネルギーの一方、または両方を車両の走行速度による運動エネルギーに加えたものを車両の保有するエネルギーとして用いても良い。たとえば本実施例では、走行部を電動モータで置き換えたシリーズ型ハイブリッドシステムを想定しており、このような場合には横軸は車両速度が最も適したパラメータとなる。
 本実施例でのキャパシタの充放電パターンは、図7に示すように、車両の保有するエネルギー(車両走行速度)に応じて充電量を減じる(放電量を増加させる)ように動作する。このようにすると、車両速度が高い状態から電気制動をかけた時に発生する回生エネルギーを吸収する空き容量をキャパシタ11に確保できるようになる。その結果、回生エネルギーを有効に利用することが可能となり、ハイブリッドホイールローダの省エネルギー化を実現することができる。
 ここで、本実施例では図7に示すように、通常動作モードと、車両待機モードとでキャパシタ11の充放電パターン(車両の保有するエネルギーに対するキャパシタの電圧特性)を違うものとしている。これは、車両の動作モードに応じて最適にキャパシタ11を制御するように設定したものであり、例えば図7の実線で示す通常動作時放電パターンでは車速=0、すなわち車両が停止した状態でもキャパシタ11を満充電状態にすること無く車両を止める。つまり、車両停止時に、キャパシタ電圧は、最高使用電圧値Vcmaxより低い第1の特定電圧値Vc1の状態となっている。これは、通常動作モードでは既にエンジンが作業時を想定した回転数で稼働しており、車両の要求する動力に対して十分な出力を出せる状態にあり、モータ・ジェネレータ(M/G)6からの不要な発電でのキャパシタ充電を避けるためであり、加速後、車両速度が上昇してきてもエンジンからの出力が十分出せるため、キャパシタからの放電電力も据え置くこととしている。
 そして、この通常動作時放電パターンでは、車両の保有するエネルギーが最大(Max)のときに、キャパシタ11の電圧が、最低使用電圧値Vcminより大きい第2の特定電圧値Vc2(ただしVc1>Vc2)の状態となっている。つまり、車両の保有するエネルギーが最大であっても、キャパシタ11の出力に若干の余力を残している。このように、通常動作モードでは、この通常動作時放電パターンに従ってキャパシタ11の充放電を制御している。
 これに対して、図7の破線で示す待機加速時放電パターンにおいては、車両停止時(車両待機時であるため、エンジン1はローアイドル状態)にキャパシタ11を満充電状態(キャパシタ電圧が最高使用電圧Vcmaxとなる状態)としておく。これは車両が停止状態から加速する場合、特にフロント部の油圧作業装置5を稼働させながら加速する場合には特に大きな動力が必要とされるが、エンジンは上記のようにローアイドル状態であるために、要求動力相当の大きな出力をエンジンからは取り出せないためであり、その場合にはできるだけキャパシタ11からの電力によりエンジン1の出力アシストを行うようにする。
 よって、待機加速時放電パターン(図7破線)では、車両停止状態(車両の保有するエネルギーが最小値の状態)で満充電状態とし、車両が加速するに従って積極的にキャパシタ11より電力を放電してエンジン1の出力アシストを行い、車両が最大まで加速する際にはキャパシタ11の電圧を最低使用電圧値Vcminまで下げてキャパシタ11の蓄えている電力をすべて使用できるようにする。このように、待機加速時放電パターンは、車両待機モードに対応するキャパシタ11の充放電の制御パターンであり、車両が「ローアイドル状態からのフル加速動作」することに備えたキャパシタ11の充放電の制御パターンであると言える。
 このとき、キャパシタ11の充放電量を制御するのが図4に示す出力配分制御手段31である。この出力配分制御手段31の処理を図6のブロック線図に示す。出力配分制御手段31ではまず、油圧要求出力演算35、および走行要求出力演算36に図6のような各種信号を入力して、現在車両が作業に必要とする出力を演算する。ここで演算された油圧要求出力と走行要求出力の総和がほぼ車両全体の要求出力に相当する。さらに、演算された油圧要求出力、走行要求出力、エンジン回転数、キャパシタ電圧(現在の充電量を演算)、および動作モードをもとにして、出力配分部37においてエンジン動力により発電されるM/G出力指令、およびキャパシタ11からの充放電出力指令が演算される。基本的にはエンジン回転数の入力により現在のエンジン1の最大出力が把握できるため、車両の要求する総出力に対する不足分をキャパシタ11より放電するように演算する。
 ここで、先で述べた動作モードの検出値を用いることで、予めキャパシタ11に充電を行い、エンジン1のローアイドル状態からの加速時に必要なキャパシタ電力を蓄えたり、通常作業動作により発生する回生電力を蓄えたり、さらにはエンジン1の効率が低下する動作点においてキャパシタ11の放電電力を増加させるなど、ハイブリッドホイールローダにおける燃費改善効果を発揮することができるようになる。
 また、出力配分制御手段31は、通常動作モードにおいて、車両の保有するエネルギーが最小値(予め定めた低出力値)である場合に、キャパシタ11の電圧を、最高使用電圧値Vcmaxより小さく、かつ最低使用電圧値Vcminより大きい電圧値Vc1(第1の特定電圧値)となるよう制御する。そして、車両の保有するエネルギーが最小値にある状態が所定時間継続された場合には、出力配分制御手段31は、キャパシタ11の電圧を電圧値Vc1から最高使用電圧値Vcmaxに上げるよう制御する。
 キャパシタ11の電圧が最高使用電圧値Vcmaxに到達した後に、即ち、キャパシタ11が満充電状態になった後に、ハイブリッド制御装置20は、エンジン1の回転数をアイドル状態の回転数に下げて車両待機モードに移行する。これにより、車両の待機状態からのフル加速するような高負荷の動作モードの場合にも、キャパシタ11から安定した動力を供給することができる。
 また、上述の本実施例では、V字サイクル掘削作業に相当する「通常動作モード」と、車両の待機状態(特に、車両がローアイドル状態からフル加速する動作に備えた状態)に相当する車両待機モードに大別しているが、実際の動作では通常動作モードの中でも「高速運搬走行モード(本発明の低頻度動作モードに相当)」など、その他の動作モードも考えられる。そのような動作モードは、通常動作モードに比べて発生頻度は少なく、かつ車両待機モードにおいて車両がローアイドル状態からフル加速する状態に比べて動力を必要としないモードであると考えられる。このときは、例えば、キャパシタ11にあまり電力の出し入れを行わないように制御すれば良い。
 以上、説明したように、本発明の実施の形態例に係るハイブリッドホイールローダによれば、動作モードに応じて、キャパシタ11の充放電パターンを変更・制御することで、車両の待機状態からの加速時におけるエンジンの出力不足を回避することが可能となり、スムーズな車両の動作を実現することができる。また、本発明の実施の形態例に係るハイブリッドホイールローダによれば、各動作モードに応じて最適なパワーアシストを実現できるため、キャパシタ11の搭載容量を最適に設定でき、結果的に車両の小型化、低コスト化が図れる。
 1…エンジン、2…トルクコンバータ、3…トランスミッション、4…油圧ポンプ、5…油圧作業装置(フロント作業機)、6…モータ・ジェネレータ、7…インバータ、8…プロペラシャフト、9…走行用電動機、10…インバータ、11…キャパシタ(蓄電装置)、12…DCDCコンバータ、13…タイヤ、20…ハイブリッド制御装置、21~24…周辺制御装置、30…動作モード検出手段、31…出力配分制御手段、35…油圧要求出力演算、36…走行要求出力演算、37…出力配分部

Claims (4)

  1.  車両の前方にフロント作業機を備えると共に、エンジン、モータ・ジェネレータ、および蓄電装置を動力源とし、この動力源の出力を制御するハイブリッド制御装置を備えたハイブリッドホイールローダにおいて、
     前記蓄電装置としてのキャパシタを備え、
     前記ハイブリッド制御装置は、車両の保有するエネルギーの増加に従って前記キャパシタの電圧を下げるように制御する
     ことを特徴とするハイブリッドホイールローダ。
  2.  請求項1の記載において、
     前記車両の保有するエネルギーは、車体の走行速度による運動エネルギー、または、前記運動エネルギーに、前記フロント作業機のバケット高さによる位置エネルギーと、前記エンジンおよび前記モータ・ジェネレータの回転数による回転エネルギーの少なくとも一方を加算したエネルギーからなるものであることを特徴とするハイブリッドホイールローダ。
  3.  請求項1または2の記載において、
     前記ハイブリッド制御装置は、通常の作業動作を行う通常動作モードと、前記車両を待機させる車両待機モードとで前記車両の保有するエネルギーに対する前記キャパシタの電圧の特性が異なるよう制御すると共に、前記通常動作モードにおいて、前記車両の保有するエネルギーが予め定めた低出力値である場合に、前記キャパシタの電圧を、最高使用電圧値より小さく、かつ最低使用電圧値より大きい第1の特定電圧値となるよう制御し、
     前記車両の保有するエネルギーが前記低出力値にある状態が所定時間継続された場合には、前記ハイブリッド制御装置は、前記キャパシタの電圧を前記第1の特定電圧値から前記最高使用電圧値に上げるよう制御し、その後、前記エンジンの回転数をアイドル状態の回転数に下げて前記車両待機モードに移行する
     ことを特徴とするハイブリッドホイールローダ。
  4.  請求項3の記載において、
     前記ハイブリッド制御装置は、前記通常動作モードの場合に、前記キャパシタの電圧を前記車両の保有するエネルギーの増加に従って前記第1の特定電圧値から、前記最低使用電圧値より大きく、かつ前記第1の特定電圧値より小さい第2の特定電圧値まで下げるように制御し、前記車両待機モードの場合に、前記キャパシタの電圧を前記車両の保有するエネルギーの増加に従って前記最高使用電圧値から前記最低使用電圧値まで下げるよう制御する
     ことを特徴とするハイブリッドホイールローダ。
PCT/JP2011/068789 2010-09-17 2011-08-19 ハイブリッドホイールローダ WO2012035929A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180040354.3A CN103080431B (zh) 2010-09-17 2011-08-19 混合动力轮式装载机
US13/817,538 US8914177B2 (en) 2010-09-17 2011-08-19 Hybrid wheel loader
EP11824937.4A EP2617902B1 (en) 2010-09-17 2011-08-19 Hybrid wheel loader
KR1020137003903A KR101834027B1 (ko) 2010-09-17 2011-08-19 하이브리드 휠 로더

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209464 2010-09-17
JP2010209464A JP5174875B2 (ja) 2010-09-17 2010-09-17 ハイブリッドホイールローダ

Publications (1)

Publication Number Publication Date
WO2012035929A1 true WO2012035929A1 (ja) 2012-03-22

Family

ID=45831403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068789 WO2012035929A1 (ja) 2010-09-17 2011-08-19 ハイブリッドホイールローダ

Country Status (6)

Country Link
US (1) US8914177B2 (ja)
EP (1) EP2617902B1 (ja)
JP (1) JP5174875B2 (ja)
KR (1) KR101834027B1 (ja)
CN (1) CN103080431B (ja)
WO (1) WO2012035929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108762A (ja) * 2014-12-03 2016-06-20 日立建機株式会社 ハイブリッド建設機械

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356436B2 (ja) * 2011-03-01 2013-12-04 日立建機株式会社 建設機械の制御装置
JP5855487B2 (ja) 2012-02-17 2016-02-09 日立建機株式会社 電動駆動式作業車両
WO2013145362A1 (ja) * 2012-03-28 2013-10-03 株式会社クボタ ハイブリッド作業車
DE102012209166A1 (de) * 2012-05-31 2013-12-05 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Ansteuern einer mobilen Arbeitsmaschine
JP6270596B2 (ja) * 2014-04-03 2018-01-31 日立建機株式会社 ハイブリッド式作業機械
US20150292392A1 (en) * 2014-04-15 2015-10-15 Arnold Magnetic Technologies Throttle control system and method
CN105299212B (zh) * 2014-12-02 2018-01-16 徐州重型机械有限公司 起重机的动力传动控制方法、装置及起重机
JP6531225B2 (ja) * 2016-09-16 2019-06-12 株式会社日立建機ティエラ ハイブリッド式作業機械
CN108385765A (zh) * 2018-05-25 2018-08-10 徐工集团工程机械股份有限公司科技分公司 滑移装载机及其控制方法
CN110588631B (zh) * 2019-09-20 2021-03-26 安徽合力股份有限公司 一种混合动力***的控制方法
US11535234B2 (en) * 2020-02-17 2022-12-27 Deere & Company Energy management system for a hybrid electric ground vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226183A (ja) 1999-02-04 2000-08-15 Komatsu Ltd ハイブリッド式作業車両
JP2009074407A (ja) * 2007-09-19 2009-04-09 Komatsu Ltd エンジンの制御装置
JP2010030599A (ja) * 2001-04-12 2010-02-12 Komatsu Ltd ホイールローダ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573365A (en) * 1995-04-28 1996-11-12 Michalski; Daniel T. Tarp loader and related method
KR0174397B1 (ko) * 1996-05-30 1999-04-15 토니헬샴 로우더의 엔진/펌프 제어장치
DE60043729D1 (de) * 1999-06-28 2010-03-11 Kobelco Constr Machinery Ltd Bagger mit hybrid-antriebsvorrichtung
US7950481B2 (en) * 2005-09-29 2011-05-31 Caterpillar Inc. Electric powertrain for machine
JP2007284873A (ja) * 2006-04-12 2007-11-01 Takeuchi Seisakusho:Kk 作業車
US8289743B2 (en) * 2007-02-16 2012-10-16 Komatsu Ltd. Systems and methods for direct-current voltage control
WO2008117748A1 (ja) * 2007-03-23 2008-10-02 Komatsu Ltd. ハイブリッド建設機械の発電制御方法およびハイブリッド建設機械
JP5186690B2 (ja) * 2008-03-21 2013-04-17 株式会社小松製作所 ハイブリッド建設機械における蓄電装置の劣化状態判定方法および装置
JP5347364B2 (ja) 2008-07-31 2013-11-20 マツダ株式会社 自動車のシート装置
US8087900B2 (en) * 2009-05-22 2012-01-03 Deere & Company Agricultural harvester with propulsion load shifting between dual engines
US8474560B1 (en) * 2011-12-28 2013-07-02 Deere & Company Inverter mounting on an electric drive loader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226183A (ja) 1999-02-04 2000-08-15 Komatsu Ltd ハイブリッド式作業車両
JP2010030599A (ja) * 2001-04-12 2010-02-12 Komatsu Ltd ホイールローダ
JP2009074407A (ja) * 2007-09-19 2009-04-09 Komatsu Ltd エンジンの制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108762A (ja) * 2014-12-03 2016-06-20 日立建機株式会社 ハイブリッド建設機械

Also Published As

Publication number Publication date
EP2617902B1 (en) 2020-11-11
KR20140005852A (ko) 2014-01-15
JP2012062726A (ja) 2012-03-29
JP5174875B2 (ja) 2013-04-03
CN103080431A (zh) 2013-05-01
US8914177B2 (en) 2014-12-16
KR101834027B1 (ko) 2018-03-02
EP2617902A1 (en) 2013-07-24
CN103080431B (zh) 2015-10-21
US20130151055A1 (en) 2013-06-13
EP2617902A4 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5174875B2 (ja) ハイブリッドホイールローダ
JP5356543B2 (ja) 作業用車両の駆動制御装置
JP6014463B2 (ja) 作業車両
US9151017B2 (en) Wheel loader
JP5340381B2 (ja) 電源システムを備えた建設機械及び産業車両
US20140147238A1 (en) Construction machine
JP6433687B2 (ja) ハイブリッド式ホイールローダ
CN110901371A (zh) 一种专项作业车及其控制方法
WO2016117547A1 (ja) ハイブリッド建設機械
WO2014175195A1 (ja) ハイブリッド式作業車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040354.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201004232

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2011824937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003903

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13817538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE