WO2012033302A2 - Method for manufacturing a segmented stator, and stator using same - Google Patents

Method for manufacturing a segmented stator, and stator using same Download PDF

Info

Publication number
WO2012033302A2
WO2012033302A2 PCT/KR2011/006459 KR2011006459W WO2012033302A2 WO 2012033302 A2 WO2012033302 A2 WO 2012033302A2 KR 2011006459 W KR2011006459 W KR 2011006459W WO 2012033302 A2 WO2012033302 A2 WO 2012033302A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
stator
segment
cores
assembly
Prior art date
Application number
PCT/KR2011/006459
Other languages
French (fr)
Korean (ko)
Other versions
WO2012033302A3 (en
Inventor
김병수
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2012033302A2 publication Critical patent/WO2012033302A2/en
Publication of WO2012033302A3 publication Critical patent/WO2012033302A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles

Definitions

  • the present invention relates to a method for manufacturing a segmented stator and a stator using the same, and more particularly, as one side of a plurality of unit cores is connected to each other to form a segment core constituting a part of the stator core.
  • the present invention relates to a method of manufacturing a segmented stator and a stator using the same, which can dramatically reduce the work time by dramatically simplifying the work process.
  • the motor includes a rotor and a stator, and provides a driving force through the rotation of the rotor by applying power to the stator.
  • a motor is completed through the manufacture of the rotor and the stator, respectively, and then joined together.
  • the rotor and the stator core is usually produced by press-lamination after the sheet punched from the silicon steel sheet is processed through the notching and separation operation.
  • FIG. 1 is an exemplary diagram of an inner rotor motor having a conventional integrated stator core structure.
  • the integrated inner rotor type motor 10 shown in FIG. 1 has a three-phase four-pole-6 slot structure in which the stator core 1 has six T-type teeth 3 in an annular frame 2. Extends in the axial direction, and there are six slots 4 between the six T-shaped teeth 3 and the teeth 3 so that the winding jig is inserted therebetween, and the coil 5 is wound. have.
  • the inner rotor type motor 10 having the integrated stator core structure has a rotating magnetic field when power is applied to the coil 5 of the stator so that the center of the rotating shaft 7 is interacted with each other by the interaction between the permanent magnets 6 of the rotor.
  • FIG. 2 is an exemplary view of an inner rotor type motor having a conventional split stator core structure.
  • the split inner rotor type motor 20 shown in FIG. 2 has a three-phase four-pole-6 slot structure, which is divided into six split stator cores 11a to 11f, and then coils 15 to each. ), And the wound stator cores 11a to 11f are assembled in an annular shape using the groove structure A.
  • Each of the split stator cores 11a to 11f includes a split frame 12 and a T-shaped tooth 13 extending in the axial direction and, as assembled in an annular shape, the T-shaped tooth 13 and the tooth 13.
  • the slot 14 is formed in between.
  • the split inner rotor type motor 20 is a permanent magnet in which N poles and S poles alternately magnetized on the rotating shaft 17 when the power is applied to the coil 15 of the stator. 16) provides a driving force by rotating the annular rotor made of.
  • each of the divided stator cores 11a to 11f can improve the efficiency of the winding operation according to the individual windings, the individual terminals for the coils 15 are phased (soldered). That is, as the polarization increases, the motor 20 of the split core structure increases working time for processing individual terminals due to an increase in connection points.
  • the split inner rotor type motor 20 requires 12 connection points in the case of six coil groups.
  • the Republic of Korea Patent No. 4,465,1 uses a core segment serial body obtained by connecting a split core sheet formed with a connection convex portion having a planar arc shape, and a connection concave portion to which the connection convex portion is coupled. Therefore, a technique for manufacturing a stator having excellent workability and magnetoresistance characteristics has been proposed.
  • the connecting convex portions of adjacent one core segments are joined to the connecting recesses formed in the other core segment to form a core segment serial body, and the core segment serial body is formed in a ring shape to form a magnetic circuit.
  • the core assembly serially solves the problem of assemblability which is indicated as a problem of the divided core structure.
  • the present invention solves the problem of assembly of each unit core in the manufacture of the stator of the conventional split core structure to significantly simplify the work process for the manufacture of the stator to shorten the working time and at the same time during the core molding It is an object of the present invention to provide a segmented stator manufacturing method capable of minimizing loss of material and a stator using the same.
  • the present invention comprises the steps of punching a thin plate to obtain a segment core arranged in a straight line and connected to each other via a movable connection; Stacking a plurality of segment cores to obtain an assembly segment core; Forming a bobbin on each unit core of the assembly segment core; Winding a coil to the assembly segment core to obtain an assembly segment core wound with a coil; And arranging the assembly segment cores wound around two adjacent coils in a circle and connecting them to each other to obtain a stator.
  • the punching molding it is preferable to alternately arrange the teeth of the unit core of one segment core so as to face each other with the teeth of the other segment core to simultaneously punch out at least one pair of segment cores.
  • the stopper function portion is punched into the movable connection portion to prevent the segment core from being bent out of the circle at the inner portion to be bent when the segment core is arranged in a circular shape.
  • the bobbin is preferably formed by insert molding using a thermosetting resin.
  • the winding step is characterized in that by using a three-axis winding machine continuously winding three coils for each of the U, V, W phase according to the three-phase driving method of U, V, W.
  • the direction of the tooth is arranged in a circular direction by selecting any one of the inside and the outside.
  • the present invention includes a stator core formed by connecting at least two assembly segment cores in which a plurality of unit cores are stacked with a plurality of unit cores connected to each other through a movable connection, and then connecting the assembly segment cores to each other; Bobbins formed in each unit core of the assembly segment core; And a coil wound around the assembly segment core.
  • the stator core is characterized in that in the unit core of the assembly segment core, the tooth direction is selected and arranged in a circle of any one of the inside and the outside.
  • the stator cores connect two adjacent assembly segment cores to each other using any one of a pin coupling method, a rivet coupling method, and a groove coupling method, and according to the coupling method, both ends of the two assembly segment cores.
  • a predetermined coupling portion is formed in the.
  • the present invention has the effect of minimizing the loss of the core material by simultaneously punching a pair of segment cores constituting part of the stator core.
  • the present invention has the effect of minimizing the mold investment by stacking a plurality of segment cores to form an assembly segment core to form a bobbin in a batch molding method for each unit core.
  • the present invention has the effect of high winding efficiency and minimizing the wiring for each coil by stacking a plurality of segment cores to form an assembly segment core and winding coils at least two unit cores at the same time.
  • the present invention can easily implement the inner rotor method and the outer rotor method selectively.
  • FIG. 1 is an exemplary diagram of an inner rotor motor having a conventional integrated stator core structure.
  • Figure 2 is an illustration of an inner rotor type motor having a conventional split stator core structure
  • Figure 3 is a flow chart for a split stator manufacturing method applied to the inner rotor structure according to the present invention
  • 4A is an exemplary view showing a manufacturing example of a segment core by punching molding of the present invention.
  • 4B is an explanatory view of an insert molding process for forming a bobbin according to the present invention.
  • 4c is an explanatory diagram of a winding process for a segment core of the present invention.
  • Figure 4d is an explanatory diagram for the connection and assembly process for the segment core of the present invention.
  • 4E is a schematic diagram showing the structure of a stator to which a segment core of the present invention is applied to an outer rotor type structure;
  • Figure 5d is an illustration of the core coupling portion according to the groove and the pin coupling method of the segment core of the present invention
  • 5E is a detail view of the engagement portion of the assembly segment core of FIG. 5D;
  • FIG. 5F is an explanatory view showing a coupling state of a pair of assembly segment cores of FIG. 5E.
  • the stator 30 of the present invention is a segmented structure by arranging and connecting to a reducing phase by using a plurality of segment cores 30a to 30c forming a group in a structure in which a plurality of unit cores 30a 1 to 30c 9 are sequentially connected.
  • a three-phase driving method a structure in which three segment cores 30a to 30c, which are composed of 27 unit cores 30a 1 to 30c 9 and each form a three-phase core group of U, V, and W, are connected to each other, respectively. It is assumed that a stator is manufactured.
  • each segment core (30a to 30c) since the manufacturing process of each segment core (30a to 30c) is the same, it will be described with respect to one segment core (30a), and the manufacturing process for the other segment core (30b, 30c) easily understood by those skilled in the art could be.
  • segment core 30a will be described using a single thin plate form (that is, step S101) and an assembly form in which a plurality of thin plates are stacked (that is, steps S102 to S104). .
  • stator core a manufacturing process of the stator core will be described in detail with reference to FIGS. 3 to 5C.
  • At least one pair of segment cores 30a and 30b is formed by pressing the teeth C of the unit cores 30a 1 to 30a 9 to each other in a strip-shaped magnetic steel sheet S.
  • FIG. It is separated from the magnetic steel sheet (S) through processing.
  • segment cores 30a are connected to each other through a movable connection part B which can be machined into a circle in the form of a stator core for each of the nine unit cores 30a 1 to 30a 9 .
  • the unit cores 30a 1 to 30a 9 form an I-shape.
  • the upper slots in the drawing are connected to each other through the adjacent unit core and the movable connection part B, and the lower slots in the drawing are opposed to the rotor.
  • stopper function B1 is further punched into the movable connection part B to prevent the bending out of the circle at the inner portion that is bent in a circle (see FIG. 4B).
  • the segment core 30a constitutes a part of the stator core by connecting the nine unit cores 30a 1 to 30a 9 to each other through the movable connection part B. As shown in FIG. Here, three segment cores 30a to 30c are connected to each other to form a stator core.
  • the segment core 30a is a form in which nine unit cores 30a 1 to 30a 9 are unfolded on a straight line and correspond to one third of the stator core.
  • the segment core 30a has a structure in which one unit C is connected to each of the nine unit cores 30a 1 to 30a 9 to form a body and has one tooth C for each unit core 30a 1 to 30a 9 . .
  • the segment core 30a is connected to the teeth C through the connection by the movable connection B, which can determine the direction of the teeth C of the nine unit cores 30a 1 to 30a 9 inward or outward.
  • the movable connection portion (B) is formed to a thickness of about 0.1mm to 1mm to maintain the desired shape without cutting even if the movement of the unit core (30a 1 to 30a 9 ) in the stator core manufacturing.
  • the teeth C of the segment cores 30a are alternately disposed to face each other with the teeth C of the adjacent segment cores 30b, thereby making it possible to at least the two segment cores 30a and 30b. It can be punched out at the same time. This can contribute to maximizing core material yield (minimizing loss), minimizing mold investment cost due to the enlargement of mold, and improving core productivity.
  • segment cores 30a obtained in the form of a thin plate (eg, 40 sheets) are stacked to form the segment cores 30a in an assembly form, and then an insert molding process is performed (S102).
  • the segment core 30a is integrally assembled with the bobbin 31 through insert molding using a thermosetting resin.
  • the bobbin 31 made of an insulating material is coupled to the outer circumference of each of the nine unit cores 30a 1 to 30a 9 .
  • the bobbin 31 is a space in which the coil can be wound, and the first and second flanges 31b and 31c which are bent and extended on both sides of the rectangular cylindrical portion 31a and the rectangular cylindrical portion 31a of the middle portion, respectively. Is made of.
  • the first and second flanges 31b and 31c are formed in different sizes according to the lengths of the upper side and the lower side of the unit cores 30a 1 to 30a 9 , in particular the first flange 31b has the movable connection portion B. ) Without being covered, so that the movable connection part B can be maintained.
  • the segment core 30a may be subjected to insert molding on nine unit cores 30a 1 to 30c 9 arranged in a straight line to simplify the process and minimize mold investment.
  • insert molding processes are individually performed on nine unit cores constituting one segment core 30a, the process is complicated and time-consuming.
  • the segment core 30a is divided into U, N, and N for the nine unit cores 30a 1 to 30c 9 by a conventional three-axis winding machine.
  • Coils L1, L2, and L3 are wound at the same time for each of the V and W phases.
  • the coils L1, L2, L3 correspond to each of the U, V, and W phases
  • the coils of the U phase are continuously wound on the first, fourth, and seventh unit cores 30a 1 , 30a 4 , 30a 7 , and V Coils of phase are continuously wound on the second, fifth and eighth unit cores 30a 2 , 30a 5 , 30a 8
  • coils of the phase W are continuously wound on the third, sixth and ninth unit cores 30a 3 , 30a 6 , 30a 9 .
  • the segment core 30a is wound at the same time on the U, V, and W phases, the winding operation is simple and the winding time is reduced, thereby minimizing the coil short wire.
  • the winding operation is performed as described above with respect to the segment cores 30b and 30c other than the segment core 30a and then connected to each other with respect to the coil.
  • the three segment cores 30a to 30c are arranged in a circle using a jig and then connected to each other to form a stator 30.
  • the three segment cores 30a to 30c may maintain the circle without being bent inward out of the circle by the stopper function portion B1.
  • one segment core 30a forms a core coupling portion D at both ends (ie, the first unit core 30a 1 and the ninth unit core 30a 9 ), and the core coupling portion D is formed by U.
  • FIG. It is punched out according to the coupling method by the female pin coupling method (see FIG. 5A), the rivet coupling method (see FIG. 5B), the groove coupling method (see FIG. 5C), and the like.
  • the core coupling part D is not illustrated in FIGS. 3A to 3C for convenience of description, but is actually formed in the segment cores 30a to 30c according to the coupling method.
  • segment cores 30a may be connected to each other in a manner of mixing a pin coupling method and a groove coupling method in a state of being stacked in an assembly.
  • both ends of one segment core (30a) is extended to form a coupling portion (E), one end to form a concave portion (E2) and the other end of the convex portion (E3) To form.
  • through holes E1 of the pins or rivets for the assembly of the assembly segment cores are drilled in this coupling part E.
  • stacked is shown in FIG. 5E. Accordingly, as shown in FIG. 5F, the adjacent assembly segment cores 30a and 30b are fitted with pins or rivets in the through-holes E1 formed by combining the concave portion E2 and the convex portion E3. do.
  • stator 30 of the present invention may be selectively implemented for the inner rotor or the outer rotor according to the connection method of the three segment cores (30a to 30c).
  • the stator 30 of the present invention is an inner case in which the rotor is disposed inward in the direction of the teeth C in the unit cores 30a 1 to 30c 9 of the segment cores 30a to 30c. It is implemented for the rotor, on the contrary, it is implemented for the outer rotor when the rotor is disposed outside in the direction of the tooth (C) outward as shown in FIG.
  • the stator of the present invention can be usefully applied not only for the inner rotor but also for the motor for the outer rotor and the double rotor structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a segmented stator in which the sides of a plurality of unit cores are connected to each other to form a segmented core which constitutes a portion of a stator core, thereby simplifying the working process for manufacturing a stator and reducing working time. According to the present invention, a method for manufacturing the segmented stator includes: banking a thin film to obtain a segmented core in which a plurality of unit cores are linearly disposed and connected to each other via a movable connection part; stacking the plurality of segmented cores to obtain a segmented core assembly; forming a bobbin on each unit core of the segmented core assembly; winding a coil around the segmented core assembly; circularly disposing two segmented core assemblies, around each of which a coil is wound, adjacent to each other so as to connect the two segmented core assemblies to each other.

Description

세그먼트형 스테이터의 제조방법 및 그를 이용한 스테이터Method for manufacturing segmented stator and stator using same
본 발명은 세그먼트형 스테이터 제조 방법 및 그를 이용한 스테이터에 관한 것으로, 더욱 상세하게는, 다수의 단위 코어의 일측을 서로 연결하여 스테이터 코어의 일부를 구성하는 세그먼트 코어를 구성함에 따라, 스테이터의 제조를 위한 작업 공정을 획기적으로 단순화하여 작업 시간을 단축할 수 있는 세그먼트형 스테이터의 제조방법 및 그를 이용한 스테이터에 관한 것이다.The present invention relates to a method for manufacturing a segmented stator and a stator using the same, and more particularly, as one side of a plurality of unit cores is connected to each other to form a segment core constituting a part of the stator core. The present invention relates to a method of manufacturing a segmented stator and a stator using the same, which can dramatically reduce the work time by dramatically simplifying the work process.
일반적으로, 모터는 로터(rotor)와 스테이터(stator)를 포함하며, 스테이터에 전원을 인가함에 따른 로터의 회전을 통해 구동력을 제공한다. 이러한 모터는 로터 및 스테이터를 각각 제조한 후 상호 간의 결합을 통해 완성된다. 이때, 로터 및 스테이터 코어는 통상적으로 규소 강판으로부터 타발된 낱장이 노칭 및 분리 작업을 통해 가공된 후 가압 적층되어 제조된다.In general, the motor includes a rotor and a stator, and provides a driving force through the rotation of the rotor by applying power to the stator. Such a motor is completed through the manufacture of the rotor and the stator, respectively, and then joined together. At this time, the rotor and the stator core is usually produced by press-lamination after the sheet punched from the silicon steel sheet is processed through the notching and separation operation.
도 1은 종래의 일체형 스테이터 코어 구조를 갖는 인너 로터형(inner rotor) 모터에 대한 예시도이다.1 is an exemplary diagram of an inner rotor motor having a conventional integrated stator core structure.
도 1에 도시된 일체형 인너 로터형 모터(10)는, 3상 4극-6슬롯을 갖는 구조로서, 스테이터 코어(1)가 환형의 프레임(2)에 6개의 T형 치(teeth, 3)가 축방향으로 연장되어 있고, 6개의 T형 치(3)와 치(3) 사이에 6개의 슬롯(4)이 있어 그 사이로 권선 지그(jig)를 넣고 코일(5)을 권선하는 구조로 되어 있다. 이러한 일체형 스테이터 코어 구조를 갖는 인너 로터형 모터(10)는 스테이터의 코일(5)에 전원이 인가되면 회전자계가 발생하여 로터의 영구자석(6) 사이의 상호 작용에 따라 회전축(7)을 중심으로 백요크(8)에 장착된 N극과 S극이 교대로 착자된 영구자석(6)으로 이루어진 환형의 로터를 회전시켜 구동력을 제공한다. 여기서, 자기회로는 화살표 방향을 따라 형성된다. 이때, 권선 작업은 스테이터 코어(1)의 폭이 좁은 슬롯(4)을 통해 진행되기 때문에, 권선 시간이 오래 걸릴 뿐만 아니라, 고가의 특수 권선기가 필요하여 초기 생산시에 설비 투자 비용이 많이 들고 생산성 저하에 따른 제조비용 상승으로 경쟁력 있는 제품을 생산하기 어렵다.The integrated inner rotor type motor 10 shown in FIG. 1 has a three-phase four-pole-6 slot structure in which the stator core 1 has six T-type teeth 3 in an annular frame 2. Extends in the axial direction, and there are six slots 4 between the six T-shaped teeth 3 and the teeth 3 so that the winding jig is inserted therebetween, and the coil 5 is wound. have. The inner rotor type motor 10 having the integrated stator core structure has a rotating magnetic field when power is applied to the coil 5 of the stator so that the center of the rotating shaft 7 is interacted with each other by the interaction between the permanent magnets 6 of the rotor. In order to provide a driving force by rotating the annular rotor made of a permanent magnet (6) alternately magnetized N and S poles mounted on the back yoke (8). Here, the magnetic circuit is formed along the direction of the arrow. At this time, since the winding operation is performed through the slot 4 of the narrow stator core 1, the winding time is not only long, but also requires a special expensive winding machine, which requires a lot of equipment investment and productivity in the initial production. It is difficult to produce competitive products due to rising manufacturing costs.
도 2는 종래의 분할형 스테이터 코어 구조를 갖는 인너 로터형 모터에 대한 예시도이다.2 is an exemplary view of an inner rotor type motor having a conventional split stator core structure.
도 2에 도시된 분할형 인너 로터형 모터(20)는, 3상 4극-6슬롯을 갖는 구조로서, 6개의 분할형 스테이터 코어(11a 내지 11f)로 분할되어 제작된 후 각각에 코일(15)을 권선하고, 권선된 스테이터 코어(11a 내지 11f)를 요홈 구조(A)를 이용하여 환형으로 조립하는 구조로 되어 있다.The split inner rotor type motor 20 shown in FIG. 2 has a three-phase four-pole-6 slot structure, which is divided into six split stator cores 11a to 11f, and then coils 15 to each. ), And the wound stator cores 11a to 11f are assembled in an annular shape using the groove structure A.
각 분할형 스테이터 코어(11a 내지 11f)는 분할형 프레임(12)과 축방향으로 연장되어 있는 T형 치(13)를 포함하며, 환형으로 조립됨에 따라 T형 치(13)와 치(13) 사이에 슬롯(14)이 형성된다. 이러한 분할형 인너 로터형 모터(20)는 스테이터의 코일(15)에 전원이 인가되면 회전축(17)을 중심으로 백요크(18)에 장착된 N극과 S극이 교대로 착자된 영구자석(16)으로 이루어진 환형의 로터를 회전시켜 구동력을 제공한다.Each of the split stator cores 11a to 11f includes a split frame 12 and a T-shaped tooth 13 extending in the axial direction and, as assembled in an annular shape, the T-shaped tooth 13 and the tooth 13. The slot 14 is formed in between. The split inner rotor type motor 20 is a permanent magnet in which N poles and S poles alternately magnetized on the rotating shaft 17 when the power is applied to the coil 15 of the stator. 16) provides a driving force by rotating the annular rotor made of.
각각의 분할형 스테이터 코어(11a 내지 11f)는 개별 권선에 따른 권선 작업의 효율이 향상될 수 있지만, 코일(15)에 대한 개별 단자를 위상별로 결선(솔더링) 과정이 요구된다. 즉, 분할형 코어 구조의 모터(20)는 분극이 많아질수록 결선 포인트의 증가로 인해 개별 단자를 처리하기 위한 작업 시간이 늘어난다. 일례로, 분할형 인너 로터형 모터(20)는 6개의 코일군으로 이루어진 경우 12개의 결선 포인트가 필요하다.Although each of the divided stator cores 11a to 11f can improve the efficiency of the winding operation according to the individual windings, the individual terminals for the coils 15 are phased (soldered). That is, as the polarization increases, the motor 20 of the split core structure increases working time for processing individual terminals due to an increase in connection points. For example, the split inner rotor type motor 20 requires 12 connection points in the case of six coil groups.
한편, 대한민국 등록특허 제465591호는, 평면형상이 원호형상으로 이루어진 연결용 볼록부, 및 이 연결용 볼록부가 결합가능한 연결용 오목부가 형성되어 있는 분할코어시트를 연결하여 얻은 코어 세그먼트 직렬체를 이용하여 작업성과 자기저항 특성이 우수한 스테이터를 제조하는 기술을 제안하고 있다. 여기서는 인접하는 한쪽의 코어 세그먼트의 연결용 볼록부를 다른 쪽의 코어 세그먼트에 형성된 연결용 오목부에 결합시켜 코어 세그먼트 직렬체를 제작하고, 코어 세그먼트 직렬체를 고리형상으로 구현하여 자기회로를 구성한다. On the other hand, the Republic of Korea Patent No. 4,465,1 uses a core segment serial body obtained by connecting a split core sheet formed with a connection convex portion having a planar arc shape, and a connection concave portion to which the connection convex portion is coupled. Therefore, a technique for manufacturing a stator having excellent workability and magnetoresistance characteristics has been proposed. Here, the connecting convex portions of adjacent one core segments are joined to the connecting recesses formed in the other core segment to form a core segment serial body, and the core segment serial body is formed in a ring shape to form a magnetic circuit.
그러나, 이 경우에 코어 세그먼트 직렬체는 결국 종래의 분할 코어의 제조 방식과 동일하게 각각의 분할코어를 요철 결합하여 형성하는 것이므로 분할코어 구조의 문제점으로 지적되는 조립성의 문제를 근원적으로 해결한 것으로는 볼 수 없다.However, in this case, since the core segment serial body is formed by uneven coupling of the respective divided cores in the same manner as in the conventional manufacturing method of the divided cores, the core assembly serially solves the problem of assemblability which is indicated as a problem of the divided core structure. Can't see
따라서 본 발명은 종래 분할형 코어 구조의 스테이터를 제조함에 있어 각 단위코어의 조립성의 문제를 해소하여 스테이터의 제조를 위한 작업 공정을 획기적으로 단순화하여 작업 시간을 단축할 수 있고 동시에 코어의 타발 성형 시 재료의 손실을 최소화할 수 있는 세그먼트형 스테이터 제조 방법 및 그를 이용한 스테이터를 제공하는데 그 목적이 있다.Therefore, the present invention solves the problem of assembly of each unit core in the manufacture of the stator of the conventional split core structure to significantly simplify the work process for the manufacture of the stator to shorten the working time and at the same time during the core molding It is an object of the present invention to provide a segmented stator manufacturing method capable of minimizing loss of material and a stator using the same.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention which are not mentioned above can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized by the means and combinations thereof indicated in the claims.
상기 목적을 달성하기 위하여, 본 발명은, 박판을 타발 성형하여 다수의 단위 코어가 직선상에 배치되고 가동 연결부를 통해 서로 연결된 세그먼트 코어를 얻는 단계; 상기 세그먼트 코어를 다수개 적층하여 조립체 세그먼트 코어를 얻는 단계; 상기 조립체 세그먼트 코어의 각 단위 코어에 보빈을 형성하는 단계; 상기 조립체 세그먼트 코어에 코일을 권선하여 코일이 권선된 조립체 세그먼트 코어를 얻는 단계; 및 인접하는 두 개의 상기 코일이 권선된 조립체 세그먼트 코어를 원형으로 배치하여 서로 연결하여 스테이터를 얻는 단계를 포함하는 세그먼트형 스테이터의 제조방법을 포함한다.In order to achieve the above object, the present invention comprises the steps of punching a thin plate to obtain a segment core arranged in a straight line and connected to each other via a movable connection; Stacking a plurality of segment cores to obtain an assembly segment core; Forming a bobbin on each unit core of the assembly segment core; Winding a coil to the assembly segment core to obtain an assembly segment core wound with a coil; And arranging the assembly segment cores wound around two adjacent coils in a circle and connecting them to each other to obtain a stator.
상기 타발 성형은 하나의 세그먼트 코어의 단위 코어의 치를 다른 세그먼트 코어의 치와 서로 마주보도록 교대로 배치하여 적어도 한 쌍의 세그먼트 코어를 동시에 타발 성형하는 것이 바람직하다.In the punching molding, it is preferable to alternately arrange the teeth of the unit core of one segment core so as to face each other with the teeth of the other segment core to simultaneously punch out at least one pair of segment cores.
상기 타발 성형에서는, 상기 세그먼트 코어가 원형으로 배치될 때 절곡되는 내측 부위에 원형을 벗어나 절곡되는 것을 저지하기 위한 스토퍼 기능부가 상기 가동 연결부에 타발 성형하는 것이 바람직하다.In the punching forming, it is preferable that the stopper function portion is punched into the movable connection portion to prevent the segment core from being bent out of the circle at the inner portion to be bent when the segment core is arranged in a circular shape.
상기 보빈은 열경화성 수지를 이용한 인서트 몰딩을 통해 형성하는 것이 바람직하다.The bobbin is preferably formed by insert molding using a thermosetting resin.
상기 권선 단계는, 3축 권선기를 이용하여 U, V, W의 3상 구동방식에 따라 각각 U, V, W의 상별로 3개의 코일을 동시에 연속 권선하는 것을 특징으로 한다.The winding step is characterized in that by using a three-axis winding machine continuously winding three coils for each of the U, V, W phase according to the three-phase driving method of U, V, W.
상기 코일이 권선된 조립체 세그먼트 코어의 단위 코어에서, 치의 방향을 내측 및 외측 중 어느 하나의 방향을 선택하여 원형 배치하는 것을 특징으로 한다.In the unit core of the coil assembly winding core, it is characterized in that the direction of the tooth is arranged in a circular direction by selecting any one of the inside and the outside.
한편, 본 발명은, 다수의 단위 코어가 가동 연결부를 통해 서로 연결된 세그먼트 코어가 다수개 적층된 적어도 2개의 조립체 세그먼트 코어를 원형으로 배치한 후 상기 조립체 세그먼트 코어를 서로 연결하여 형성되는 스테이터 코어; 상기 조립체 세그먼트 코어의 각 단위 코어에 형성되는 보빈; 및 상기 조립체 세그먼트 코어에 권선되는 코일을 포함하는 스테이터을 제공한다.On the other hand, the present invention includes a stator core formed by connecting at least two assembly segment cores in which a plurality of unit cores are stacked with a plurality of unit cores connected to each other through a movable connection, and then connecting the assembly segment cores to each other; Bobbins formed in each unit core of the assembly segment core; And a coil wound around the assembly segment core.
상기 스테이터 코어는, 상기 조립체 세그먼트 코어의 단위 코어에서, 치의 방향을 내측 및 외측 중 어느 하나의 방향으로 선택되어 원형 배치되는 것을 특징으로 한다.The stator core is characterized in that in the unit core of the assembly segment core, the tooth direction is selected and arranged in a circle of any one of the inside and the outside.
상기 스테이터 코어는, 인접하는 두 개의 상기 조립체 세그먼트 코어를 핀 결합 방식, 리벳 결합 방식, 요홈 결합 방식 중 어느 하나를 이용하여 서로 연결하며, 상기 결합 방식에 따라, 상기 두 개의 조립체 세그먼트 코어의 양 단에 소정의 결합부가 형성되는 것을 특징으로 한다.The stator cores connect two adjacent assembly segment cores to each other using any one of a pin coupling method, a rivet coupling method, and a groove coupling method, and according to the coupling method, both ends of the two assembly segment cores. A predetermined coupling portion is formed in the.
상기한 바와 같이, 본 발명은 스테이터 코어의 일부를 구성하는 한 쌍의 세그먼트 코어를 동시에 타발 성형함에 의해 코어 재료의 로스(loss)를 최소화할 수 있는 효과가 있다.As described above, the present invention has the effect of minimizing the loss of the core material by simultaneously punching a pair of segment cores constituting part of the stator core.
또한, 본 발명은 다수의 세그먼트 코어를 적층하여 조립체 세그먼트 코어로 형성하여 각 단위 코어에 대해 인서트 몰딩 방법으로 일괄적으로 보빈을 형성할 수 있어 금형 투자를 최소화할 수 있는 효과가 있다.In addition, the present invention has the effect of minimizing the mold investment by stacking a plurality of segment cores to form an assembly segment core to form a bobbin in a batch molding method for each unit core.
또한, 본 발명은 다수의 세그먼트 코어를 적층하여 조립체 세그먼트 코어로 형성하여 적어도 두 개의 단위 코어에 대해 동시에 코일을 권선함으로써 권선 효율이 높고 코일별 결선을 최소화할 수 있는 효과가 있다.In addition, the present invention has the effect of high winding efficiency and minimizing the wiring for each coil by stacking a plurality of segment cores to form an assembly segment core and winding coils at least two unit cores at the same time.
또한, 본 발명은 인너 로터 방식과 아우터 로터 방식을 필요에 따라 선택적으로 구현하는 것이 용이하다.In addition, the present invention can easily implement the inner rotor method and the outer rotor method selectively.
도 1은 종래의 일체형 스테이터 코어 구조를 갖는 인너 로터형(inner rotor) 모터에 대한 예시도,1 is an exemplary diagram of an inner rotor motor having a conventional integrated stator core structure.
도 2는 종래의 분할형 스테이터 코어 구조를 갖는 인너 로터형 모터에 대한 예시도,Figure 2 is an illustration of an inner rotor type motor having a conventional split stator core structure,
도 3은 본 발명에 따른 인너 로터형 구조에 적용되는 분할형 스테이터 제조방법에 대한 흐름도,Figure 3 is a flow chart for a split stator manufacturing method applied to the inner rotor structure according to the present invention,
도 4a는 본 발명의 타발 성형에 의한 세그먼트 코어의 제조 예를 도시한 예시도, 4A is an exemplary view showing a manufacturing example of a segment core by punching molding of the present invention;
도 4b은 본 발명에 따라 보빈을 형성하기 위한 인서트 몰딩 과정에 대한 설명도, 4B is an explanatory view of an insert molding process for forming a bobbin according to the present invention;
도 4c는 본 발명의 세그먼트 코어에 대한 권선 과정에 대한 설명도, 4c is an explanatory diagram of a winding process for a segment core of the present invention;
도 4d는 본 발명의 세그먼트 코어에 대한 결선 및 조립 과정에 대한 설명도,Figure 4d is an explanatory diagram for the connection and assembly process for the segment core of the present invention,
도 4e는 본 발명의 세그먼트 코어가 아우터 로터형 구조에 적용되는 스테이터의 구조를 나타낸 개략도,4E is a schematic diagram showing the structure of a stator to which a segment core of the present invention is applied to an outer rotor type structure;
도 5a 내지 도 5c는 본 발명의 세그먼트 코어의 결합부에 대한 예시도이고,5a to 5c is an illustration of the coupling portion of the segment core of the present invention,
도 5d는 본 발명의 세그먼트 코어의 요홈 및 핀 결합 방식에 따른 코어 결합부의 예시도, Figure 5d is an illustration of the core coupling portion according to the groove and the pin coupling method of the segment core of the present invention,
도 5e는 도 5d의 조립체 세그먼트 코어의 결합부위의 상세도, 5E is a detail view of the engagement portion of the assembly segment core of FIG. 5D;
도 5f는 도 5e의 조립체 세그먼트 코어 한 쌍의 결합 상태를 나타낸 설명도이다.FIG. 5F is an explanatory view showing a coupling state of a pair of assembly segment cores of FIG. 5E.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.The above objects, features, and advantages will become more apparent from the detailed description given hereinafter with reference to the accompanying drawings, and accordingly, those skilled in the art to which the present invention pertains may share the technical idea of the present invention. It will be easy to implement. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 스테이터(30)는 다수의 단위 코어(30a1 내지 30c9)가 순차적으로 연결된 구조로 그룹을 형성하는 다수의 세그먼트 코어(30a 내지 30c)를 이용해 환원 상으로 배치 및 연결하여 세그먼트형 구조로 제작한다. 여기서는 3상 구동방식으로서, 27개의 단위 코어(30a1 내지 30c9)로 이루어져 각각 9개씩 U, V, W의 3상 코어 그룹을 형성하는 3개의 세그먼트 코어(30a 내지 30c)를 서로 연결하는 구조의 스테이터를 제작하는 경우를 가정하여 설명한다.The stator 30 of the present invention is a segmented structure by arranging and connecting to a reducing phase by using a plurality of segment cores 30a to 30c forming a group in a structure in which a plurality of unit cores 30a 1 to 30c 9 are sequentially connected. Made with. Here, as a three-phase driving method, a structure in which three segment cores 30a to 30c, which are composed of 27 unit cores 30a 1 to 30c 9 and each form a three-phase core group of U, V, and W, are connected to each other, respectively. It is assumed that a stator is manufactured.
본 발명에서는 각각의 세그먼트 코어(30a 내지 30c)의 제작 과정이 동일하므로, 하나의 세그먼트 코어(30a)를 중심으로 설명하며, 타 세그먼트 코어(30b,30c)에 대한 제작 과정에 대해서는 당업자라면 쉽게 이해할 수 있을 것이다. In the present invention, since the manufacturing process of each segment core (30a to 30c) is the same, it will be described with respect to one segment core (30a), and the manufacturing process for the other segment core (30b, 30c) easily understood by those skilled in the art Could be.
아울러, 본 발명에서는 설명의 편의상 세그먼트 코어(30a)에 대해, 단일 박판 형태(즉, S101 단계)와 다수의 박판이 적층된 조립체 형태(즉, S102 단계 내지 S104 단계)를 구별없이 혼용하여 설명한다.In addition, in the present invention, for convenience of description, the segment core 30a will be described using a single thin plate form (that is, step S101) and an assembly form in which a plurality of thin plates are stacked (that is, steps S102 to S104). .
이하, 도 3 내지 도 5c를 참조하여 스테이터 코어의 제작 과정에 대해 상세히 설명한다.Hereinafter, a manufacturing process of the stator core will be described in detail with reference to FIGS. 3 to 5C.
먼저, 스테이터(30)의 제작을 위한 타발 성형 과정이 수행된다(S101).First, a punch molding process for manufacturing the stator 30 is performed (S101).
도 4a에 도시된 바와 같이, 적어도 한 쌍의 세그먼트 코어(30a,30b)는 스트립 형태의 자성강판(S)에 각 단위 코어(30a1 내지 30a9)의 치(C)가 서로 교차 배치되어 프레스 가공을 통해 자성강판(S)으로부터 분리된다.As shown in FIG. 4A, at least one pair of segment cores 30a and 30b is formed by pressing the teeth C of the unit cores 30a 1 to 30a 9 to each other in a strip-shaped magnetic steel sheet S. FIG. It is separated from the magnetic steel sheet (S) through processing.
여기서, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9) 각각에 대해 스테이터 코어 형태의 원형으로 가공할 수 있는 가동 연결부(B)를 통해 서로 연결된다. 이때, 단위 코어(30a1 내지 30a9)는 I자 형상을 이루는데, 도면상의 상부 슬롯이 인접 단위 코어와 가동 연결부(B)를 통해 서로 연결되며 도면상의 하부 슬롯이 로터에 대향된다.Here, the segment cores 30a are connected to each other through a movable connection part B which can be machined into a circle in the form of a stator core for each of the nine unit cores 30a 1 to 30a 9 . At this time, the unit cores 30a 1 to 30a 9 form an I-shape. The upper slots in the drawing are connected to each other through the adjacent unit core and the movable connection part B, and the lower slots in the drawing are opposed to the rotor.
특히, 가동 연결부(B)에는 원형으로 절곡되는 내측부위에 원형을 벗어나 절곡되는 것을 저지하기 위해 스토퍼 기능부(B1)가 더 타발 성형된다(도 4b 참조).In particular, the stopper function B1 is further punched into the movable connection part B to prevent the bending out of the circle at the inner portion that is bent in a circle (see FIG. 4B).
이와 같이, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9)가 가동 연결부(B)를 통해 서로 연결됨으로써, 스테이터 코어의 일부를 구성한다. 여기서는 3개의 세그먼트 코어(30a 내지 30c)를 서로 연결하여 스테이터 코어를 형성하는 것을 예시하고 있다.In this way, the segment core 30a constitutes a part of the stator core by connecting the nine unit cores 30a 1 to 30a 9 to each other through the movable connection part B. As shown in FIG. Here, three segment cores 30a to 30c are connected to each other to form a stator core.
구체적으로, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9)를 직선상에 펼쳐진 형태로서 스테이터 코어의 1/3에 해당한다. 또한, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9) 각각을 서로 연결해 하나의 몸체를 형성하여 단위 코어(30a1 내지 30a9)별로 하나의 치(C)를 갖는 구조를 나타낸다.Specifically, the segment core 30a is a form in which nine unit cores 30a 1 to 30a 9 are unfolded on a straight line and correspond to one third of the stator core. In addition, the segment core 30a has a structure in which one unit C is connected to each of the nine unit cores 30a 1 to 30a 9 to form a body and has one tooth C for each unit core 30a 1 to 30a 9 . .
특히, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9) 각각의 치(C)의 방향을 내측 또는 외측으로 결정할 수 있는 가동 연결부(B)에 의한 연결을 통해, 치(C)를 내측으로 향하여 로터를 내부에 배치하는 인너 로터(inner rotor) 방식 또는 치(C)를 외측으로 향하여 로터를 외부에 배치하는 아우터 로터(outer rotor) 방식으로 선택적으로 구현할 수 있다. 여기서, 가동 연결부(B)는 0.1㎜∼1㎜ 정도의 두께로 형성하여 스테이터 코어 제작시에 단위 코어(30a1 내지 30a9)의 움직임이 있더라도 절단되지 않고 원하는 형태를 유지할 수 있도록 한다.In particular, the segment core 30a is connected to the teeth C through the connection by the movable connection B, which can determine the direction of the teeth C of the nine unit cores 30a 1 to 30a 9 inward or outward. May be selectively implemented in an inner rotor method in which the rotor is disposed inwardly toward the inside or an outer rotor method in which the rotor C is disposed outwardly toward the outside. Here, the movable connection portion (B) is formed to a thickness of about 0.1mm to 1mm to maintain the desired shape without cutting even if the movement of the unit core (30a 1 to 30a 9 ) in the stator core manufacturing.
한편, 본 발명에서는 세그먼트 코어(30a)의 치(C)가 인접하는 다른 세그먼트 코어(30b)의 치(C)와 서로 마주보며 교대로 배치되도록 함으로써, 적어도 2개의 세그먼트 코어(30a,30b)를 동시에 타발 성형할 수 있다. 이는 코어 소재 수율의 극대화(로스 최소화), 금형의 대형화에 따른 금형투자비의 최소화 및 코어 생산성 향상에 기여할 수 있다.Meanwhile, in the present invention, the teeth C of the segment cores 30a are alternately disposed to face each other with the teeth C of the adjacent segment cores 30b, thereby making it possible to at least the two segment cores 30a and 30b. It can be punched out at the same time. This can contribute to maximizing core material yield (minimizing loss), minimizing mold investment cost due to the enlargement of mold, and improving core productivity.
다음으로, 박판 형태로 얻은 다수(예를 들어, 40장)의 세그먼트 코어(30a)를 적층하여 조립체 형태의 세그먼트 코어(30a)로 제조하고 이어서 인서트 몰딩 과정을 수행한다(S102). Next, a plurality of segment cores 30a obtained in the form of a thin plate (eg, 40 sheets) are stacked to form the segment cores 30a in an assembly form, and then an insert molding process is performed (S102).
도 4b에 도시된 바와 같이, 세그먼트 코어(30a)는 열경화성 수지를 이용한 인서트 몰딩을 통해 보빈(31)과 일체로 조립된다.As shown in FIG. 4B, the segment core 30a is integrally assembled with the bobbin 31 through insert molding using a thermosetting resin.
구체적으로, 세그먼트 코어(30a)는 9개의 단위 코어(30a1 내지 30a9) 각각의 외주에 절연성 재질로 이루어진 보빈(31)이 결합된다. 이때, 보빈(31)은 코일이 권선될 수 있는 공간으로 중간부분의 사각통 부분(31a), 사각통 부분(31a)의 양측에 각각 절곡되어 연장된 제1 및 제2 플랜지(31b,31c)로 이루어진다.Specifically, the bobbin 31 made of an insulating material is coupled to the outer circumference of each of the nine unit cores 30a 1 to 30a 9 . At this time, the bobbin 31 is a space in which the coil can be wound, and the first and second flanges 31b and 31c which are bent and extended on both sides of the rectangular cylindrical portion 31a and the rectangular cylindrical portion 31a of the middle portion, respectively. Is made of.
제1 및 제2 플랜지(31b,31c)는 단위 코어(30a1 내지 30a9)의 상부측 및 하부측의 길이에 따라 서로 상이한 크기로 형성되며, 특히 제1 플랜지(31b)는 가동 연결부(B)를 덮지 않고 그대로 노출시켜 가동 연결부(B)의 가동성을 유지할 수 있게 한다.The first and second flanges 31b and 31c are formed in different sizes according to the lengths of the upper side and the lower side of the unit cores 30a 1 to 30a 9 , in particular the first flange 31b has the movable connection portion B. ) Without being covered, so that the movable connection part B can be maintained.
세그먼트 코어(30a)는 일직선상으로 배치되는 9개의 단위 코어(30a1 내지 30c9)에 대해 일괄적으로 인서트 몰딩을 진행할 수 있어 공정이 간편하고 금형 투자를 최소화할 수 있다. 반면에, 하나의 세그먼트 코어(30a)를 이루는 9개의 단위 코어에 대해 개별적으로 인서트 몰딩 과정을 수행하는 경우에는 공정이 복잡하고 많은 시간이 소요된다.The segment core 30a may be subjected to insert molding on nine unit cores 30a 1 to 30c 9 arranged in a straight line to simplify the process and minimize mold investment. On the other hand, when insert molding processes are individually performed on nine unit cores constituting one segment core 30a, the process is complicated and time-consuming.
다음으로, 인서트 몰딩된 세그먼트 코어(30a)에 대한 권선 및 결선 과정이 수행된다(S103).Next, the winding and the connection process for the insert molded segment core 30a is performed (S103).
도 4c에 도시된 바와 같이, 세그먼트 코어(30a)는 U, V, W의 3상 구동방식이 적용될 경우에 통상의 3축 권선기에 의해 9개의 단위 코어(30a1 내지 30c9)에 대해 U, V, W의 상별로 코일(L1,L2,L3)이 동시에 권선된다. 즉, U, V, W의 각 상에 코일 L1, L2, L3이 대응되는 경우에, U상의 코일이 첫번째, 네번째 및 일곱째 단위 코어(30a1,30a4,30a7)에 연속 권선되고, V상의 코일이 두번째, 다섯째 및 여덟째 단위 코어(30a2,30a5,30a8)에 연속 권선되며, W상의 코일이 세번째, 여섯째 및 아홉째 단위 코어(30a3,30a6,30a9)에 연속 권선된다. 이와 같이, 세그먼트 코어(30a)는 U, V, W의 상에 대해 동시에 권선되므로 권선작업이 간편하고 권선시간이 절약되면 코일 간결선을 최소화한다.As shown in FIG. 4C, when the three-phase driving method of U, V, and W is applied, the segment core 30a is divided into U, N, and N for the nine unit cores 30a 1 to 30c 9 by a conventional three-axis winding machine. Coils L1, L2, and L3 are wound at the same time for each of the V and W phases. That is, in the case where the coils L1, L2, L3 correspond to each of the U, V, and W phases, the coils of the U phase are continuously wound on the first, fourth, and seventh unit cores 30a 1 , 30a 4 , 30a 7 , and V Coils of phase are continuously wound on the second, fifth and eighth unit cores 30a 2 , 30a 5 , 30a 8 , and coils of the phase W are continuously wound on the third, sixth and ninth unit cores 30a 3 , 30a 6 , 30a 9 . . As such, since the segment core 30a is wound at the same time on the U, V, and W phases, the winding operation is simple and the winding time is reduced, thereby minimizing the coil short wire.
여기서, 세그먼트 코어(30a) 이외의 다른 세그먼트 코어(30b,30c)에 대해서도 상기와 같이 권선 작업을 수행한 후 코일에 대해 서로 결선한다.Here, the winding operation is performed as described above with respect to the segment cores 30b and 30c other than the segment core 30a and then connected to each other with respect to the coil.
이후, 권선 작업이 완료된 3개의 세그먼트 코어(30a 내지 30c)에 대한 코어 연결 과정이 수행된다(S104). Then, the core connection process for the three segment core (30a to 30c) winding is completed is performed (S104).
도 4d에 도시된 바와 같이, 3개의 세그먼트 코어(30a 내지 30c)는 지그를 이용하여 원형으로 배치한 후 서로 연결하여 스테이터(30)를 형성한다. 이때, 3개의 세그먼트 코어(30a 내지 30c)는 원형으로 배치할 때 스토퍼 기능부(B1)에 의해 원형을 벗어나 내측으로 절곡되지 않고 원형을 유지할 수 있다.As shown in FIG. 4D, the three segment cores 30a to 30c are arranged in a circle using a jig and then connected to each other to form a stator 30. In this case, when the three segment cores 30a to 30c are disposed in a circle, the three segment cores 30a to 30c may maintain the circle without being bent inward out of the circle by the stopper function portion B1.
아울러, 하나의 세그먼트 코어(30a)는 양단[즉, 첫번째 단위 코어(30a1)와 아홉번째 단위 코어(30a9)]에 코어 결합부(D)를 형성하며, 코어 결합부(D)는 U자형 핀 결합 방식(도 5a 참조), 리벳 결합 방식(도 5b 참조), 요홈 결합 방식(도 5c 참조) 등에 의한 결합 방식에 따라 타발 성형된다. 여기서, 코어 결합부(D)는 설명의 편의상 상기 도 3a 내지 상기 도 3c에 도시하지 않았으나, 실제로 해당 결합 방식에 따라 세그먼트 코어(30a 내지 30c)에 형성되어 있다.In addition, one segment core 30a forms a core coupling portion D at both ends (ie, the first unit core 30a 1 and the ninth unit core 30a 9 ), and the core coupling portion D is formed by U. FIG. It is punched out according to the coupling method by the female pin coupling method (see FIG. 5A), the rivet coupling method (see FIG. 5B), the groove coupling method (see FIG. 5C), and the like. Here, the core coupling part D is not illustrated in FIGS. 3A to 3C for convenience of description, but is actually formed in the segment cores 30a to 30c according to the coupling method.
부가적으로, 세그먼트 코어(30a)는 조립체로 적층한 상태에서 핀 결합 방식과 요홈 결합 방식을 혼합한 방식으로 서로 연결할 수 있다. 이를 위해, 도 5d에 도시한 바와 같이, 하나의 세그먼트 코어(30a)의 양단은 각각 연장되어 결합부위(E)를 형성하는데, 일단에는 오목부(E2)를 형성하고 타단에는 볼록부(E3)을 형성한다. 또한, 이 결합부위(E)에는 조립체 세그먼트 코어의 결합을 위한 핀 또는 리벳의 관통 구멍(E1)이 타공된다. 이러한 형상의 세그먼트 코어(30a)을 다수개 적층한 조립체 세그먼트 코어(30a)의 상세도를 도 5e에 도시하였다. 그에 따라, 도 5f에 도시한 바와 같이, 인접하는 조립체 세그먼트 코어(30a,30b)는 오목부(E2)와 볼록부(E3)가 결합되어 형성되는 관통 구멍(E1)에 핀 또는 리벳을 끼워 고정한다.In addition, the segment cores 30a may be connected to each other in a manner of mixing a pin coupling method and a groove coupling method in a state of being stacked in an assembly. To this end, as shown in Figure 5d, both ends of one segment core (30a) is extended to form a coupling portion (E), one end to form a concave portion (E2) and the other end of the convex portion (E3) To form. In addition, through holes E1 of the pins or rivets for the assembly of the assembly segment cores are drilled in this coupling part E. The detailed view of the assembly segment core 30a in which the segment core 30a of this shape is laminated | stacked is shown in FIG. 5E. Accordingly, as shown in FIG. 5F, the adjacent assembly segment cores 30a and 30b are fitted with pins or rivets in the through-holes E1 formed by combining the concave portion E2 and the convex portion E3. do.
특히, 본 발명의 스테이터(30)는 3개의 세그먼트 코어(30a 내지 30c)의 연결 방식에 따라 인너 로터용 또는 아우터 로터용으로 선택적으로 구현될 수 있다.In particular, the stator 30 of the present invention may be selectively implemented for the inner rotor or the outer rotor according to the connection method of the three segment cores (30a to 30c).
전술한 바와 같이, 본 발명의 스테이터(30)는 세그먼트 코어(30a 내지 30c)의 단위 코어(30a1 내지 30c9)에서 치(C)의 방향을 내측으로 향하여 로터를 내부에 배치하는 경우에 인너 로터용으로 구현되며, 이와 반대로 도 4e와 같이 치(C)의 방향을 외측으로 향하여 로터를 외부에 배치하는 경우에 아웃터 로터용으로 구현된다.As described above, the stator 30 of the present invention is an inner case in which the rotor is disposed inward in the direction of the teeth C in the unit cores 30a 1 to 30c 9 of the segment cores 30a to 30c. It is implemented for the rotor, on the contrary, it is implemented for the outer rotor when the rotor is disposed outside in the direction of the tooth (C) outward as shown in FIG.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명의 스테이터는 인너 로터용은 물론이고 아웃터 로터용이나 더블 로터용 구조의 모터에 유용하게 적용할 수 있다.The stator of the present invention can be usefully applied not only for the inner rotor but also for the motor for the outer rotor and the double rotor structure.

Claims (13)

  1. 박판을 타발 성형하여 다수의 단위 코어가 직선상에 배치되고 가동 연결부를 통해 서로 연결된 세그먼트 코어를 얻는 단계;Punching the thin plates to obtain a segment core in which a plurality of unit cores are arranged in a straight line and connected to each other via a movable connection;
    상기 세그먼트 코어를 다수개 적층하여 조립체 세그먼트 코어를 얻는 단계;Stacking a plurality of segment cores to obtain an assembly segment core;
    상기 조립체 세그먼트 코어의 각 단위 코어에 보빈을 형성하는 단계;Forming a bobbin on each unit core of the assembly segment core;
    상기 조립체 세그먼트 코어에 코일을 권선하여 코일이 권선된 조립체 세그먼트 코어를 얻는 단계; 및Winding a coil to the assembly segment core to obtain an assembly segment core wound with a coil; And
    인접하는 두 개의 상기 코일이 권선된 조립체 세그먼트 코어를 원형으로 배치하여 서로 연결하여 스테이터를 얻는 단계;Disposing two adjacent coiled winding assembly segment cores in a circle and connecting them to each other to obtain a stator;
    를 포함하는 세그먼트형 스테이터의 제조방법.Method of manufacturing a segmented stator comprising a.
  2. 제 1 항에 있어서, 상기 타발 성형은, 하나의 세그먼트 코어의 각 단위 코어의 치를 다른 세그먼트 코어의 치와 서로 마주보도록 교대로 배치하여 적어도 한 쌍의 세그먼트 코어를 동시에 타발 성형하는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The segment forming method according to claim 1, wherein in the punch forming, at least one pair of segment cores are simultaneously punched by alternately arranging teeth of each unit core of one segment core to face each other. Method of manufacturing a type stator.
  3. 제 1 항에 있어서, 상기 타발 성형은, 상기 세그먼트 코어가 원형으로 배치될 때 절곡되는 내측 부위에 원형을 벗어나 절곡되는 것을 저지하기 위한 스토퍼 기능부가 상기 가동 연결부에 형성되는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The segment type stator according to claim 1, wherein in the punching forming, a stopper function part is formed on the movable connection part to prevent bending out of a circle at an inner portion to be bent when the segment core is arranged in a circle. Manufacturing method.
  4. 제 1 항에 있어서, 상기 보빈은 열경화성 수지를 이용한 인서트 몰딩에 의해 형성하는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The method of manufacturing a segmented stator according to claim 1, wherein the bobbin is formed by insert molding using a thermosetting resin.
  5. 제 1 항에 있어서, 상기 권선 단계는, 3축 권선기를 이용하여 U, V, W의 3상 구동방식에 따라 각각 U, V, W의 상별로 3개의 코일을 동시에 연속 권선하는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The method of claim 1, wherein the winding step, using the three-axis winding machine according to the three-phase driving method of U, V, W, characterized in that the continuous winding of three coils for each phase of U, V, W at the same time Method of manufacturing segmented stator.
  6. 제 1 항에 있어서, 상기 코일이 권선된 조립체 세그먼트 코어의 단위 코어에서, 치의 방향을 내측 및 외측 중 어느 하나의 방향을 선택하여 원형으로 배치하는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The method of manufacturing a segmented stator according to claim 1, wherein in the unit core of the assembly segment core in which the coil is wound, the direction of teeth is selected and arranged in a circle by selecting one of an inner side and an outer side.
  7. 제 1 항에 있어서, 상기 인접하는 두 개의 상기 코일이 권선된 조립체 세그먼트 코어는 핀 결합 방식, 리벳 결합 방식, 요홈 결합 방식 중 어느 하나를 이용하여 서로 연결되는 것을 특징으로 하는 세그먼트형 스테이터의 제조방법.The method of claim 1, wherein the two adjacent coil winding assembly segment cores are connected to each other using any one of a pin coupling method, a rivet coupling method, and a groove coupling method. .
  8. 다수의 단위 코어가 가동 연결부를 통해 서로 연결된 세그먼트 코어가 다수개 적층된 적어도 2개의 조립체 세그먼트 코어를 원형으로 배치한 후 상기 조립체 세그먼트 코어를 서로 연결하여 형성되는 스테이터 코어;A stator core formed by circularly arranging at least two assembly segment cores in which a plurality of segment cores are connected to each other through a movable connection, and then connecting the assembly segment cores to each other;
    상기 조립체 세그먼트 코어의 각 단위 코어에 형성되는 보빈; 및Bobbins formed in each unit core of the assembly segment core; And
    상기 조립체 세그먼트 코어에 권선되는 코일;A coil wound around the assembly segment core;
    을 포함하는 스테이터.Stator comprising a.
  9. 제 8 항에 있어서, 상기 보빈은, 상기 조립체 세그먼트 코어의 각 단위 코어에 열경화성 수지를 이용한 인서트 몰딩을 통해 형성되는 것을 특징으로 하는 스테이터.The stator according to claim 8, wherein the bobbin is formed by insert molding using a thermosetting resin on each unit core of the assembly segment core.
  10. 제 8 항에 있어서, 상기 코일은, 3축 권선기를 이용하여 U, V, W의 3상 구동방식에 따라 각각 U, V, W의 상별로 동시에 연속 권선되는 것을 특징으로 하는 스테이터.9. The stator according to claim 8, wherein the coil is continuously wound simultaneously for each of U, V, and W phases according to a three-phase driving method of U, V, and W using a three-axis winding machine.
  11. 제 8 항에 있어서, 상기 조립체 세그먼트 코어의 단위 코어에서, 치의 방향을 내측 및 외측 중 어느 하나의 방향으로 선택되어 원형으로 배치되는 것을 특징으로 하는 스테이터.9. The stator according to claim 8, wherein in the unit core of the assembly segment core, the direction of the teeth is selected and arranged in a circle in one of the inner and outer directions.
  12. 제 8 항에 있어서, 인접하는 두 개의 상기 조립체 세그먼트 코어는 핀 결합 방식, 리벳 결합 방식, 요홈 결합 방식 중 어느 하나를 이용하여 서로 연결되는 것을 특징으로 하는 스테이터.9. The stator of claim 8, wherein two adjacent assembly segment cores are connected to each other using any one of a pin coupling method, a rivet coupling method, and a groove coupling method.
  13. 제 8 항에 있어서, 상기 가동 연결부에는 스토퍼 기능부가 형성되는 것을 특징으로 하는 스테이터.9. The stator according to claim 8, wherein a stopper function is formed in the movable connection part.
PCT/KR2011/006459 2010-09-08 2011-08-31 Method for manufacturing a segmented stator, and stator using same WO2012033302A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0087969 2010-09-08
KR1020100087969A KR101133922B1 (en) 2010-09-08 2010-09-08 Method for manufacturing a segment type stator and stator thereof

Publications (2)

Publication Number Publication Date
WO2012033302A2 true WO2012033302A2 (en) 2012-03-15
WO2012033302A3 WO2012033302A3 (en) 2012-05-03

Family

ID=45811045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006459 WO2012033302A2 (en) 2010-09-08 2011-08-31 Method for manufacturing a segmented stator, and stator using same

Country Status (2)

Country Link
KR (1) KR101133922B1 (en)
WO (1) WO2012033302A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149906A3 (en) * 2012-04-05 2014-06-26 Robert Bosch Gmbh Multi-part stator for an electrical machine, electrical machine
CN111682709A (en) * 2020-06-08 2020-09-18 日立电梯电机(广州)有限公司 Stator core assembling method
CN113615038A (en) * 2019-03-20 2021-11-05 吉凯恩粉末冶金工程有限公司 Claw-pole stator for transverse flux machine
EP4156461A1 (en) * 2021-09-24 2023-03-29 Hanning Elektro-Werke GmbH & Co. KG Bldc motor and method for manufacturing stator assembly of bldc motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164526A (en) * 1997-11-27 1999-06-18 Toshiba Corp Stator manufacture and the like of rotating electric machine
KR20050096723A (en) * 2004-03-31 2005-10-06 엘지전자 주식회사 Linkage type bobbin, stator for motor having the same and manufacturing method thereof
JP2009247169A (en) * 2008-03-31 2009-10-22 Fujitsu General Ltd Method of manufacturing stator core
JP2009278814A (en) * 2008-05-16 2009-11-26 Fujitsu General Ltd Electric motor and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100260397B1 (en) * 1997-08-27 2000-07-01 김상면 Method for manufacturing motor-core
KR100454556B1 (en) 2002-05-09 2004-11-05 주식회사 미크로닉 Stator for BLDC Motor Using Segmental Stator Cores, Fabricating Method thereof and BLDC Motor Using the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164526A (en) * 1997-11-27 1999-06-18 Toshiba Corp Stator manufacture and the like of rotating electric machine
KR20050096723A (en) * 2004-03-31 2005-10-06 엘지전자 주식회사 Linkage type bobbin, stator for motor having the same and manufacturing method thereof
JP2009247169A (en) * 2008-03-31 2009-10-22 Fujitsu General Ltd Method of manufacturing stator core
JP2009278814A (en) * 2008-05-16 2009-11-26 Fujitsu General Ltd Electric motor and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149906A3 (en) * 2012-04-05 2014-06-26 Robert Bosch Gmbh Multi-part stator for an electrical machine, electrical machine
CN104254962A (en) * 2012-04-05 2014-12-31 罗伯特·博世有限公司 Multi-part stator for an electrical machine, electrical machine
CN113615038A (en) * 2019-03-20 2021-11-05 吉凯恩粉末冶金工程有限公司 Claw-pole stator for transverse flux machine
CN111682709A (en) * 2020-06-08 2020-09-18 日立电梯电机(广州)有限公司 Stator core assembling method
CN111682709B (en) * 2020-06-08 2021-08-31 日立电梯电机(广州)有限公司 Stator core assembling method
EP4156461A1 (en) * 2021-09-24 2023-03-29 Hanning Elektro-Werke GmbH & Co. KG Bldc motor and method for manufacturing stator assembly of bldc motor

Also Published As

Publication number Publication date
KR20120025827A (en) 2012-03-16
KR101133922B1 (en) 2012-04-13
WO2012033302A3 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
EP2273654A2 (en) Rotating electric machine and manufacturing method thereof
JP5738385B2 (en) Stator and rotating electric machine equipped with the stator
US8896189B2 (en) Stator for electric rotating machine and method of manufacturing the same
WO2011062373A2 (en) Winding frame with magmate and stator core with the same
KR100602487B1 (en) Stator for inner rotor motors and method of producing the same
US6876118B2 (en) Abduction-type motor and fabrication method of motor stator thereof
US20190393739A1 (en) Stator for external rotor type motor
WO2014129791A1 (en) Electric motor and method for manufacturing same
WO2012033302A2 (en) Method for manufacturing a segmented stator, and stator using same
JP2014073047A (en) Three-phase permanent magnet motor
WO2018037529A1 (en) Rotary electric machine
EP3229344A1 (en) Stator of electric motor and method for manufacturing stator of electric motor
CN106030984B (en) Stator of rotating electric machine and method for manufacturing same
CN102983685A (en) Manufacturing method of rotating electric machine and rotating electric machine
JP3056738B1 (en) Manufacturing method of condenser motor stator
US10374540B2 (en) Synchronous motor having component identical to that of another kind of synchronous motor and method of manufacturing synchronous motors
JPH11308789A (en) Stator of electric motor
WO2011008016A2 (en) Stator, and motor comprising same
CN1172419C (en) Synchronous electric motor rotor and manufacturing method thereof
WO2016078028A1 (en) Stator manufacturing method and stator
WO2015002453A1 (en) Motor having divisional core stator and manufacturing method therefor
JP3576106B2 (en) Capacitor motor stator and method of manufacturing the same
WO2020055151A1 (en) Motor
JP2003259594A (en) Stator of capacitor motor and its manufacturing method
WO2013070007A1 (en) Motor and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823735

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823735

Country of ref document: EP

Kind code of ref document: A2