WO2012032859A1 - Saddled vehicle, engine unit, and control device - Google Patents

Saddled vehicle, engine unit, and control device Download PDF

Info

Publication number
WO2012032859A1
WO2012032859A1 PCT/JP2011/066331 JP2011066331W WO2012032859A1 WO 2012032859 A1 WO2012032859 A1 WO 2012032859A1 JP 2011066331 W JP2011066331 W JP 2011066331W WO 2012032859 A1 WO2012032859 A1 WO 2012032859A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
injector
engine
fuel
tip
Prior art date
Application number
PCT/JP2011/066331
Other languages
French (fr)
Japanese (ja)
Inventor
森川 健志
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2012032859A1 publication Critical patent/WO2012032859A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/043Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2202/00Motorised scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • F02D2200/0608Estimation of fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the present invention relates to a saddle-ride type vehicle, an engine unit, and a control device, and more particularly, to a saddle-ride type vehicle equipped with an air-cooled engine, an engine unit, and a control device.
  • the cylinder head In a saddle-ride type vehicle equipped with an air-cooled engine, the cylinder head generally tends to become hot after the engine is stopped. In the case of a natural air-cooled engine, when the engine stops, the saddle-ride type vehicle also stops. Therefore, traveling wind does not hit the cooling fins of the engine. Therefore, the temperature of the cylinder head is unlikely to decrease.
  • Some saddle-ride type vehicles are equipped with a forced air cooling device including a fan interlocked with an engine crankshaft. However, since the fan of the forced air cooling device is interlocked with the crankshaft, the operation is stopped when the engine is stopped. Accordingly, the temperature of the cylinder head becomes high.
  • An injector for supplying fuel to an engine is generally attached to an intake pipe near the cylinder head. Recently, in order to improve the responsiveness of fuel supply, an injector may be disposed on the cylinder head. As described above, if the temperature of the cylinder head is high after the engine is stopped, the temperature at the tip of the injector, that is, the temperature near the injection hole of the injector (hereinafter referred to as the tip vicinity temperature) also increases. When the temperature in the vicinity of the tip rises, a part of the fuel in the injector is vaporized, and bubbles (vapor) are generated in the fuel. When the engine is restarted, if the fuel contains bubbles, vapor lock is likely to occur and a desired amount of fuel cannot be supplied. Therefore, the fuel combustion efficiency is reduced. In particular, when the injector is disposed in the cylinder head, the temperature near the tip tends to increase, and vapor lock tends to occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-137374 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-265542 (Patent Document 2) disclose a technique for suppressing the occurrence of vapor lock when an automobile engine is restarted.
  • Patent Document 1 determines whether or not the temperature of fuel in the injector is equal to or lower than a reference temperature when the automobile engine is restarted.
  • the battery is driven to activate the electric water-cooled circulation device. Then, the water-cooled circulation device cools the fuel in the engine and the injector.
  • Patent Document 2 measures the temperature in the vicinity of the injector at predetermined intervals while the automobile engine is driven. If the measured temperature is equal to or higher than the reference temperature, the restart difficulty flag is set to 1. When the engine is stopped and then restarted, if the restart difficult flag is 1, the electric water cooling device cools the engine.
  • Patent Documents 1 and 2 are directed to an automobile engine and include an electric water cooling device that is driven separately from the engine. That is, the engines of these documents are water-cooled. If it is a large vehicle such as an automobile, it is easy to provide a water cooling device. However, if a saddle-ride type vehicle is provided with a water cooling device that is driven separately from the engine, the structure of the saddle-ride type vehicle becomes complicated and expensive.
  • An object of the present invention is to provide a saddle-ride type vehicle that can suppress vaporization of fuel in an injector when an air-cooled engine is stopped.
  • the saddle-ride type vehicle includes an intake pipe, an air-cooled engine, an injector, a temperature sensor, and a control device.
  • the air-cooled engine includes a cylinder head.
  • the cylinder head includes an intake port connected to the intake pipe.
  • the injector is attached to the intake pipe or the cylinder head and injects fuel toward the intake port.
  • the temperature sensor detects the temperature near the tip of the injector.
  • the control device controls the injector.
  • the control device includes a temperature acquisition unit, a comparison unit, and a first control unit.
  • the temperature acquisition means acquires the temperature near the tip of the injector from the temperature sensor when the engine is stopped.
  • the comparison means compares the acquired temperature with a reference temperature. When the acquired temperature exceeds the reference temperature, the first control means controls the injector and injects fuel.
  • the saddle riding type vehicle can suppress the fuel in the injector from being vaporized when the air-cooled engine is stopped.
  • FIG. 1 is a right side view of a saddle-ride type vehicle according to the present embodiment.
  • FIG. 2 is a right side view of the vicinity of the vehicle body cover in FIG.
  • FIG. 3 is a partial cross-sectional view of the engine unit in FIG. 1 in plan view. 4 is a cross-sectional view of the vicinity of the cylinder head in FIG.
  • FIG. 5 is a side view of the engine unit in FIG. 1.
  • FIG. 6 is a schematic diagram showing the relationship between the control device and peripheral devices.
  • FIG. 7 is a functional block diagram illustrating a hardware configuration of the control device.
  • FIG. 8 is a graph showing the relationship between the elapsed time since the engine was stopped and the temperature near the tip of the injector.
  • FIG. 8 is a graph showing the relationship between the elapsed time since the engine was stopped and the temperature near the tip of the injector.
  • FIG. 9 is a flowchart showing details of the vapor lock suppression process executed by the control device shown in FIG.
  • FIG. 10 is a graph showing the relationship between the elapsed time since the engine was stopped and the temperature near the tip of the injector when the vapor lock suppression process was executed.
  • FIG. 11 is a flowchart showing details of the injection amount correction processing executed by the control device shown in FIG.
  • FIG. 12 is a diagram showing a data structure of a correction table used in the processing in FIG.
  • front, rear, left and right indicate directions in a state where the rider is in the vehicle.
  • the X1 direction in the figure indicates the longitudinal direction of the vehicle.
  • the Y1 direction in the figure indicates the width direction of the vehicle.
  • the Z1 direction in the figure indicates the vertical direction of the vehicle.
  • FIG. 1 is a right side view of a saddle-ride type vehicle 200 according to the present embodiment.
  • FIG. 1 shows a part of a saddle-ride type vehicle 200 cut away.
  • FIG. 1 shows a scooter as an example of a saddle-ride type vehicle 200.
  • saddle riding type vehicle 200 is not limited to a scooter.
  • the “saddle-ride type vehicle” includes a motorcycle, an all-terrain vehicle, a snowmobile, and the like.
  • the “motorcycle” includes the above-described scooter and moped.
  • the saddle riding type vehicle 200 includes a handle 10, a steering shaft 13, a head pipe 11, a frame 15, an engine unit 20, a seat 16, a front wheel 14, a rear wheel 27, and a fuel tank 510.
  • the handle 10 is attached to the upper end of the steering shaft 13.
  • the steering shaft 13 extends obliquely forward from the handle 10 downward.
  • the steering shaft 13 is inserted into the head pipe 11.
  • the handle 10 is connected to the front wheel 14 via the steering shaft 13.
  • a starter switch (not shown) is attached to the handle 10. The user operates the starter switch to start or stop the engine.
  • the frame 15 extends from the head pipe 11 toward the rear of the saddle riding type vehicle 200.
  • the frame 15 is a so-called underbone type frame.
  • the frame 15 includes a front portion, a middle portion, and a rear portion.
  • the front portion extends obliquely rearward from the head pipe 11 downward.
  • the middle part is connected to the lower end of the front part and extends in the front-rear direction of the vehicle body.
  • the rear portion is connected to the rear end of the middle portion and extends obliquely upward toward the rear.
  • a footrest plate 17 is disposed in the middle of the frame 15.
  • a seat 16 is disposed above the rear portion of the frame 15.
  • a fuel tank 510 is disposed below the rear portion of the seat 16.
  • the fuel tank 510 includes a fuel pump 550.
  • the fuel pump 550 supplies fuel to the injector 34 in the engine 21.
  • the engine unit 20 is disposed below the front portion of the seat 16.
  • the engine unit 20 is attached to the frame 15 via a pivot shaft 25.
  • the engine unit 20 includes an intake pipe 2, an air-cooled engine 21, an injector 34, a forced air-cooling device 50, and a control device 500.
  • the intake pipe 2 includes a main intake pipe 36 and a sub intake pipe 41.
  • the intake pipe 2 is disposed between the engine 21 and an air cleaner (not shown), and supplies intake air to the engine 21.
  • the injector 34 is supplied with fuel from the fuel pump 550 and injects fuel into the engine 21.
  • Control device 500 is, for example, an ECU (Engine Control Unit).
  • the control device 500 controls the engine 21 to drive or stop the engine 21. Further, after the engine 21 is stopped, the control device 500 controls the injector 34 to inject fuel and suppress the temperature of the engine 21 from rising.
  • FIG. 2 is a right side view of the vicinity of the body cover 18 in the saddle-ride type vehicle 200 in FIG.
  • the vehicle body cover 18 includes a front wall 202 and a pair of side walls 203.
  • the front wall 202 is disposed below the front end portion of the seat 16.
  • the pair of side walls 203 are coupled to the front wall 202 and are respectively disposed below the left and right side edges of the seat 16.
  • the side wall 203 covers the front part of the engine unit 20.
  • the rear wheel 27 is connected to the engine 21 via the power transmission unit 26.
  • a rear shock absorber 28 is attached between the power transmission unit 26 and the frame 15. The engine 21 and the rear wheel 27 can swing up and down around the pivot shaft 25.
  • the saddle riding type vehicle 200 further includes an exhaust pipe 43 and a muffler 44.
  • the exhaust pipe 43 and the muffler 44 extend in the front-rear direction of the saddle riding type vehicle 200.
  • the exhaust pipe 43 is disposed below the engine 21.
  • the muffler 44 is disposed on the side of the rear wheel 27 and extends obliquely upward from the downstream end of the exhaust pipe 43 toward the rear.
  • the muffler 44 houses a catalyst device (not shown).
  • FIG. 3 is a partial cross-sectional view of the engine unit 20 in plan view.
  • engine 21 is an air-cooled single cylinder four-cycle engine.
  • the engine 21 includes a crankcase 24, a cylinder block 22, and a cylinder head 23.
  • a plurality of cooling fins 280 are formed in the cylinder block 22.
  • the crankcase 24 is disposed at the rear end of the engine 21.
  • the crankcase 24 houses the crankshaft 57.
  • the crankshaft 57 extends in the vehicle width direction (Y1 direction) and is rotatably attached to the crankcase 24 via bearings 281 and 282.
  • the right end portion 204 of the crankshaft is disposed outside the outer wall 246 of the crankcase 24.
  • a fan 56 is attached to the right end portion 204.
  • the fan 56 is disposed outside the engine 21 and rotates integrally with the crankshaft 57. That is, the fan 56 is interlocked with the crankshaft 57. Therefore, the fan 56 rotates while the engine 21 is driven.
  • the power transmission unit 26 is connected to the left end portion 260 of the crankshaft 57.
  • a ring gear 571 is further attached to the left end portion 260.
  • a crank angle sensor 502 is disposed in the vicinity of the ring gear 571. The crank angle sensor 502 outputs a pulse signal corresponding to the rotation of the ring gear 571.
  • the control device 500 specifies the crank angle and the position of the piston 208 by counting the number of pulses of the pulse signal.
  • the large end portion of the connecting rod 205 is rotatably attached to the center portion of the crankshaft 57.
  • the connecting rod 205 extends in the front-rear direction (X1 direction) of the saddle-ride type vehicle 200.
  • the cylinder block 22 is disposed at the front end of the crankcase 24.
  • the cylinder block 22 extends in the front-rear direction (X1 direction) of the saddle riding type vehicle 200. That is, the cylinder axis of the engine 21 extends in the X1 direction.
  • the cylinder block 22 is a cylindrical body, and a cylinder chamber E1 is disposed therein.
  • a piston 208 is accommodated in the cylinder chamber E1.
  • the piston 208 is attached to the small end portion of the connecting rod 205 via the piston pin 29.
  • the piston 208 reciprocates in the cylinder chamber E1 along the cylinder axis.
  • the cylinder head 23 is disposed at the front end of the cylinder block 22.
  • FIG. 4 is a cross-sectional view of the vicinity of the cylinder head 23. With reference to FIGS. 3 and 4, the cylinder head 23 forms a combustion chamber A ⁇ b> 1 together with the cylinder block 22.
  • the cylinder head 23 includes a camshaft 209 (FIG. 3), an intake valve 210 (FIG. 4), and an exhaust valve 31 (FIG. 3).
  • the camshaft 209 opens and closes the intake valve 210 and the exhaust valve 31.
  • the cylinder head 23 further includes an intake port 221 (FIG. 4) and an exhaust port (not shown).
  • An injector 34 is attached to the cylinder head 23.
  • the cylinder head 23 includes a boss 32.
  • the boss 32 is formed on the upper surface of the cylinder head 23.
  • the injector 34 is inserted into the boss 32 and fixed. Therefore, the injector 34 is disposed at the upper part of the cylinder head 23.
  • the injector 34 includes an injection nozzle 35 and an injector body 218.
  • the injection nozzle 35 is disposed at the tip of the injector 34.
  • the bottom of the boss 32 is connected to the intake port 221. Therefore, the injection nozzle 35 that is the tip of the injector 34 is disposed in the intake port 221.
  • the injection nozzle 35 is disposed in the vicinity of the opening 222 of the intake port 221. Therefore, when the intake valve 210 is opened, the fuel injected from the injection nozzle 35 tends to flow directly into the combustion chamber A1 through the opening 222. The easier the fuel enters the combustion chamber A1, the better the responsiveness of fuel supply, and the air-fuel mixture having a desired air-fuel ratio can be supplied to the combustion chamber A1 without delay.
  • a temperature sensor 504 is disposed in the vicinity of the injection nozzle 35. Therefore, the temperature sensor 504 is attached to the cylinder head 23.
  • the temperature sensor 504 detects the temperature near the injection nozzle 35, that is, the temperature near the tip of the injector 34.
  • the temperature in the vicinity of the tip of the injector 34 may be, for example, the temperature in the intake port 221.
  • intake pipe 2 includes a main intake pipe 36 and a sub intake pipe 41.
  • the main intake pipe 36 is disposed between an air cleaner (not shown) disposed at the rear portion of the saddle-ride type vehicle 200 and the intake port 221.
  • the main intake pipe 36 includes an intake hose 37, a throttle body 38, and a connection pipe 39.
  • the intake hose 37 is disposed between the throttle body 38 and the air cleaner.
  • the connecting pipe 39 is curved and is disposed between the throttle body 38 and the intake port 221.
  • the throttle body 38 is disposed above the cylinder block 22.
  • the throttle body 38 is a cylindrical body that extends in the vehicle front-rear direction (X1 direction in the figure), and houses the two valves 40A and 40B.
  • the valves 40A and 40B switch the intake passage to either the main intake pipe 36 or the sub intake pipe 41.
  • the valve 40A is disposed downstream of the valve 40B.
  • the auxiliary intake pipe 41 is disposed between the throttle body 38 and the cylinder head 23. Specifically, the upstream end of the auxiliary intake pipe 41 is connected to a portion of the throttle body 38 between the valve 40A and the valve 40B. The downstream end of the auxiliary intake pipe 41 is connected to a boss 241 formed on the upper surface of the cylinder head 23. The boss 241 is connected to the vicinity of the intake port 221 where the injection nozzle 35 is disposed. Therefore, the downstream end of the auxiliary intake pipe 41 is disposed in the vicinity of the injection nozzle 35.
  • the valves 40A and 40B open and close according to the load (throttle operation amount). Specifically, from the no-load (idle) region to a predetermined partial load region, the valve 40A is closed and the valve 40B is opened at an opening corresponding to the throttle operation amount.
  • the intake air passes through the auxiliary intake pipe 41 and flows into the vicinity of the injection nozzle 35 of the injector 34 in the intake port 221. Therefore, the intake air collides with the fuel injected from the injector 34 and promotes atomization of the fuel.
  • the fuel combustion efficiency is increased, and the unburned fuel can be reduced.
  • valve 40A and the valve 40A are also opened at an opening corresponding to the throttle operation amount.
  • the intake air flows into the intake port 221 not only from the auxiliary intake pipe 41 but also from the main intake pipe 36.
  • Valves 40A and 40B operate, for example, as follows.
  • the valve 40B is interlocked with the throttle operation amount of the handle 10.
  • the opening degree of the valve 40B corresponding to the throttle operation amount is 0 to 10%
  • the opening degree of the valve 40A is 0%. That is, the valve 40A is closed.
  • the opening degree of the valve 40B corresponding to the throttle operation amount is 10 to 100%
  • the opening degree of the valve 40A is 0 to 100% in proportion to the opening degree of the valve 40B.
  • the valve 40A and the valve 40B may be controlled by the control device 500, or mechanically interlocked with the throttle of the handle 10 and may be opened and closed according to the throttle operation amount.
  • FIG. 5 is a right side view of the engine unit 20. In FIG. 5, a part of the engine unit 20 is shown broken away.
  • the forced air cooling device 50 includes a fan 56 and a shroud 54.
  • the fan 56 is attached to the right end portion 204 of the crankshaft 57 and interlocked with the crankshaft 57 as described above.
  • the shroud 54 is disposed on the side surface of the engine 21.
  • the shroud 54 covers the fan 56, the crankcase 24, the cylinder block 22, and the rear part of the cylinder head 23.
  • the shroud 54 includes a cylindrical portion 51 and a side plate portion 52.
  • the cylindrical portion 51 covers the entire cylinder block 22 and the rear end portion of the cylinder head 23.
  • the side plate portion 52 covers the right side surface of the crankcase 24 and faces the fan 56.
  • An intake hole 58 is formed in the side plate portion 52.
  • a gap is formed between the shroud 54 and the engine 21.
  • the shroud 54 guides the air flow generated by the fan 56 to the cylinder head 23. Specifically, when the engine 21 is driven, the fan 56 also rotates in conjunction with the rotation of the crankshaft 57. At this time, an air flow is generated by the fan 56, and the air flows into the gap between the shroud 54 and the engine 21 from the intake hole 58. The air that flows in is guided to the cylinder head 23 by the shroud 54. As shown by the arrow R ⁇ b> 2 in FIGS. 3 and 5, the air passes through the shroud 54 toward the boss 32 of the cylinder head 23. Therefore, the vicinity of the tip (injection nozzle 35) of the injector 34 disposed in the boss 32 is forcibly air-cooled. Therefore, the fuel in the injector 34 is not easily vaporized while the engine 21 is driven.
  • FIG. 6 is a schematic diagram showing the relationship between the control device 500 and peripheral devices.
  • control device 500 receives an engine start instruction and a stop instruction from starter switch 501.
  • the control device 500 further receives a signal from the crank angle sensor 502 and specifies the crank angle and the position of the piston 208.
  • the control device 500 further controls the spark plug 505, the injector 34, and the fuel pump 550.
  • the control device 500 outputs a fuel pump drive signal to drive the fuel pump 550 when the engine 21 is driven. At this time, the fuel pump 550 supplies the fuel in the fuel tank 510 to the injector 34.
  • Control device 500 further outputs a fuel injection signal to injector 34 based on the position of piston 208 detected by crank angle sensor 502. Upon receiving the fuel injection signal, the injector 34 injects a predetermined amount of fuel at a predetermined timing. The control device 500 outputs an ignition signal to the spark plug 505 at the timing when the piston 208 moves to the top dead center. The spark plug 505 that has received the ignition signal ignites. Therefore, the air-fuel mixture in the combustion chamber A1 is combusted, and the piston 208 is pushed down from the top dead center toward the bottom dead center.
  • control device 500 receives the detection signal from the temperature sensor 504, and acquires the temperature in the intake port 221, more specifically, the temperature in the vicinity of the tip of the injector 34 (hereinafter simply referred to as the temperature in the vicinity of the tip).
  • the control device 500 executes a vapor lock suppression process based on the temperature detected by the temperature sensor 504 after the engine 21 is stopped.
  • the vapor lock suppression process the fuel in the injector 34 can be suppressed from being vaporized, and the occurrence of vapor lock is suppressed.
  • FIG. 7 is a functional block diagram showing the hardware configuration of the control device 500.
  • control device 500 includes a central processing unit (CPU) 420, a volatile memory 421, a nonvolatile memory 422, and a communication unit 423.
  • the volatile memory 421 is, for example, a RAM (Random Access Memory).
  • the volatile memory 421 is simply referred to as “memory 421”.
  • the nonvolatile memory 422 is, for example, a flash memory.
  • the nonvolatile memory 422 stores a control program.
  • the communication unit 423 receives signals from the starter switch 501, the crank angle sensor 502, and the temperature sensor 504.
  • the communication unit 423 further outputs a control signal (fuel pump drive signal) for the fuel pump 550, a control signal for the spark plug (ignition signal), and a control signal for the injector 34 (fuel injection signal).
  • a control signal fuel pump drive signal
  • a control signal for the spark plug ignition signal
  • a control signal for the injector 34 fuel injection signal
  • the control device 500 adjusts the temperature of the cylinder head 23 so that the temperature near the tip does not exceed the reference temperature after the engine 21 stops operating. Thereby, after the engine 21 stops, it suppresses that the fuel in the injector 34 vaporizes, and suppresses generation
  • vapor lock suppression processing is referred to as vapor lock suppression processing.
  • the control device 500 further corrects the injection amount of fuel injected from the injector 34 when the engine 21 is started again. Such a process is called an injection amount correction process.
  • the vapor lock suppression process and the injection amount correction process will be described.
  • the injector 34 is disposed in the cylinder head 23. If the engine 21 is not cooled while the engine 21 is being driven, the cylinder head 23 becomes hot. Therefore, the tip vicinity temperature also becomes high. Further, when the temperature in the vicinity of the tip becomes high, a part of the fuel in the injector 34 is vaporized and bubbles are easily generated in the fuel. Vapor lock is likely to occur due to bubbles generated in the fuel. Vapor lock inhibits desired fuel injection and inhibits engine start.
  • the fan 56 of the forced air cooling device 50 rotates as described above. Therefore, air flows into the shroud 54 and the cylinder head 23 is forcibly cooled by air. Therefore, while the engine 21 is being driven, the temperature rise of the cylinder head 23 is suppressed and the fuel is not easily vaporized.
  • the fan 56 also stops. This is because the fan 56 is interlocked with the crankshaft 57. Therefore, when the engine 21 is stopped, the cylinder head 23 cannot be cooled by the fan 56. Further, when the engine 21 stops, the fuel pump 550 also stops. For this reason, the fuel pressure in the injector 34 is reduced, and vapor lock is likely to occur.
  • the shroud 54 is attached to the side surface of the engine 21, the heat generated in the engine 21 is trapped in the gap between the engine 21 and the shroud 54. As a result, the temperature of the cylinder head 23 rises.
  • FIG. 8 is a graph showing a change in temperature change of the injector 34 after the engine 21 is stopped.
  • FIG. 8 was obtained by the following method. A saddle-ride type vehicle (scooter in this example) having the above-described configuration was manufactured. The manufactured saddle-ride type vehicle was placed in a temperature atmosphere of 30 ° C., and the engine was driven for 30 minutes. Thereafter, the engine was stopped, and the transition of the temperature near the tip of the injector (temperature near the tip) was measured with a temperature sensor. Based on the measured temperature transition, the graph of FIG. 8 was created.
  • the temperature near the tip increased with time after the engine was stopped. And about 10 minutes after stopping the engine, the temperature near the tip exceeded 120 ° C. Thereafter, the temperature near the injector tip gradually decreased with time.
  • the temperature near the tip once increases with the passage of time and then gradually decreases.
  • the temperature in the vicinity of the tip exceeds 120 ° C., vapor lock is likely to occur. Therefore, it is preferable to maintain the tip vicinity temperature below a temperature at which vapor lock is likely to occur.
  • the control device 500 executes a vapor lock suppression process.
  • the control device 500 monitors the tip vicinity temperature after stopping the engine 21. When the tip vicinity temperature exceeds the reference temperature, the control device 500 controls the fuel injection device 520 to inject fuel from the injection nozzle 35. The injected fuel is vaporized in the intake port 221 and takes away ambient heat. Therefore, the tip vicinity temperature is lowered.
  • the reference temperature is set to a temperature lower than the temperature at which vapor lock is likely to occur.
  • the reference temperature may be an empirically determined value or may vary depending on the type of fuel.
  • the reference temperature is, for example, about 110 ° C. to 115 ° C. However, the reference temperature is not limited to this range.
  • FIG. 9 is a flowchart showing details of the vapor lock suppression process.
  • CPU 420 in control device 500 monitors whether an engine stop operation has been performed (S1).
  • the CPU 420 determines that the engine stop operation has been performed (YES in S1).
  • the CPU 420 stops the control of the spark plug 505 and temporarily stops the control of the injector 34 (S2).
  • the piston 208 is stopped.
  • the CPU 420 further monitors the crank angle based on the pulse signal output from the crank angle sensor 502 (S3). When the operation of the piston 208 stops, the operation of the crankshaft 57 also stops. The CPU 420 determines whether or not the operation of the crankshaft 57 has stopped by detecting the crank angle.
  • the CPU 420 compares the temperature near the tip of the injector 34 with the reference temperature, and controls the fuel pump 550 and the injector 34 as necessary to inject fuel (S100). : Temperature comparison process).
  • the CPU 420 further resets the injection flag to “0”.
  • the injection flag is a flag indicating whether or not fuel is injected in the vapor lock suppression process. When the injection flag is “0”, it indicates that the fuel is not injected. When the injection flag is “1”, it indicates that fuel has been injected.
  • the counter n and the injection flag are stored in the memory 421.
  • the CPU 420 determines whether or not the tip vicinity temperature T0 exceeds the reference temperature (S5).
  • the tip vicinity temperature T0 exceeds the reference temperature (YES in S5)
  • the fuel in the injector 34 is highly likely to vaporize. Therefore, the CPU 420 controls the injector 34 to inject fuel (S9).
  • the fuel injection amount may be set in advance, or may be determined according to the difference value between the obtained tip vicinity temperature Tn and the reference temperature. Since the temperature of the injected fuel is lower than the tip vicinity temperature Tn, the tip vicinity temperature Tn is further lowered by the latent heat of vaporization when the fuel is vaporized in the intake port 221.
  • the CPU 420 After the fuel is injected, the CPU 420 stores the fuel injection amount in the memory 421 (S10). The CPU 420 further updates the fuel injection flag to “1”. This is because fuel was injected. In step S ⁇ b> 10, the CPU 420 stores the cumulative value of the fuel injection amount in the memory 421. Therefore, when fuel injection is performed a plurality of times, the CPU 420 stores the cumulative value of these injection amounts in the memory 421 in step S10.
  • step S9 When the engine restarts, the fuel injected in step S9 is also burned. Therefore, the CPU 420 corrects the fuel injection amount at the time of restarting the engine in the injection amount correction process in consideration of the fuel injection amount stored in step S10.
  • step S5 when the tip vicinity temperature T0 is lower than the reference temperature (NO in S5), the CPU 420 determines whether the tip vicinity temperature increases or decreases with the passage of time. Judgment is made (S6 to S8). The CPU 420 determines whether to continue or end the vapor lock suppression process by determining a change in temperature near the tip (increase or decrease as time elapses).
  • the CPU 420 determines whether or not the tip vicinity temperature Tn ⁇ 1 acquired immediately before the latest tip vicinity temperature Tn among the plurality of acquired tip vicinity temperatures is stored in the memory 421 (S6). ).
  • the latest tip vicinity temperature is T 0, and the tip tip temperature before that is not stored in the memory 421. Therefore, CPU 420 determines that tip vicinity temperature Tn-1 is not stored in memory 421 (NO in S6).
  • the CPU 420 determines whether or not the tip vicinity temperature tends to increase or decrease based on the obtained difference value ⁇ T (S8).
  • the difference value ⁇ T is positive (plus)
  • the CPU 420 determines that the tip vicinity temperature increases with the passage of time (NO in S8).
  • the tip vicinity temperature Tn increases with the passage of time, and may exceed the reference temperature. Therefore, the CPU 420 proceeds to step S11 in order to continue monitoring the tip vicinity temperature, and executes the next temperature comparison process (S100). In short, the CPU 420 continues the vapor lock suppression process.
  • the CPU 420 increases the tip vicinity temperature based on the tip vicinity temperature Tn and the tip vicinity temperature Tn ⁇ 1 obtained in the previous temperature comparison process. Monitor continuously whether trending or downtrend.
  • the CPU 420 determines that the tip vicinity temperature Tn is decreasing with the passage of time (YES in S8). In this case, the tip vicinity temperature Tn will decrease in the future, and therefore does not exceed the reference temperature. Therefore, the CPU 420 ends the vapor lock suppression process. At this time, the control device 500 stops operating. Thus, if the tip vicinity temperature is falling, since the control apparatus 500 stops operation
  • the CPU 420 stores the fuel flag and the cumulative fuel injection amount stored in the memory 421 in the non-volatile memory 422 after the determination in step S8 (YES in S8) and before ending the vapor lock suppression process. This is because the fuel flag and the cumulative injection amount of fuel are used for the injection amount correction process.
  • FIG. 10 is a graph showing the transition of the temperature near the tip after the engine 21 is stopped when the vapor lock process is performed.
  • FIG. 10 was obtained by the following method. A saddle-ride type vehicle manufactured to obtain the graph in FIG. 8 was used. The vapor lock suppression process was executed by the control device in the saddle-ride type vehicle. At this time, the reference temperature was 115 ° C.
  • the temperature near the tip exceeded the reference temperature 300 seconds after the engine stopped. Therefore, the fuel was injected by the control device. Regular gasoline was used as the fuel. In this example, the measurement of the temperature near the tip was continued even after the injection. Based on the measurement results, the graph of FIG. 10 was created.
  • the temperature near the tip after fuel injection decreased with the passage of time.
  • the maximum temperature near the tip decreased by about 8 ° C.
  • the control device 500 detects the tip vicinity temperature.
  • the injector 34 is controlled to inject fuel.
  • the temperature near the tip is lowered by the injected fuel. Therefore, it can suppress that the fuel in the injector 34 vaporizes. For this reason, even the air-cooled engine 21 can suppress the occurrence of vapor lock.
  • the control device 500 monitors the change in the temperature near the tip with time. Then, only when the temperature near the tip increases with the passage of time, the control device 500 continues to monitor the temperature near the tip. As a result, when the temperature near the tip exceeds the reference temperature, the control device 500 can quickly inject fuel and reduce the temperature near the tip. On the other hand, when the temperature in the vicinity of the tip is decreasing with time, the control device 500 stops its operation. As a result, excessive power consumption due to the vapor lock suppression process is suppressed.
  • the control device 500 corrects the fuel injection amount at the time of starting the engine according to the fuel injection amount. Therefore, the control apparatus 500 can suppress that the air fuel ratio at the time of engine starting becomes excessive.
  • details of the injection amount correction process will be described.
  • FIG. 11 is a flowchart showing details of the injection amount correction process at the time of starting the engine.
  • CPU 420 in control device 500 starts engine 21 when it receives an engine start signal output from starter switch 501 by a user operation (YES in S21).
  • the CPU 420 determines whether or not fuel has been injected in the vapor lock suppression process executed when the engine 21 is stopped (S22).
  • the CPU 420 reads the injection flag from the nonvolatile memory 422.
  • the injection flag is “0”
  • the CPU 420 determines that fuel is not injected in the vapor lock suppression process (NO in S22), and ends the injection amount correction process. In this case, fuel is injected with a normal injection amount, and the engine 21 is started.
  • the CPU 420 determines that the fuel is injected in the vapor lock suppression process (YES in S22). At this time, the CPU 420 reads the fuel injection amount from the nonvolatile memory 422 (S23). The read injection amount is a cumulative value of the fuel injected in the vapor lock process.
  • the CPU 420 determines an initial fuel injection amount at the time of engine start (hereinafter referred to as start injection amount) based on the read injection amount (S24). The CPU 420 determines the starting injection amount based on the elapsed time from the injection in step S9 in FIG. 9 and the injection amount. At this time, the CPU 420 uses the correction table shown in FIG. The correction table is stored in the non-volatile memory 422 and is loaded into the memory 421 during the injection amount correction process.
  • the correction table has a plurality of tables for each injection amount.
  • the injection amounts “1B”, “2B”, and “3B” indicate different injection amounts.
  • the correction table includes tables for the injection amounts “1B” to “kB” (k is a natural number not including 0).
  • the CPU 420 identifies a corresponding table from the correction table based on the injection amount read in step S23.
  • the CPU 420 further acquires the elapsed time.
  • the control device 500 has a timer (not shown).
  • the CPU 420 stores the latest injection time in the nonvolatile memory 422 in the vapor lock suppression process.
  • CPU 420 calculates the elapsed time based on the time indicated by the timer and the time stored in the HDD. Then, the CPU 420 reads a correction coefficient corresponding to the elapsed time from the specified table.
  • CPU 420 injects fuel based on the determined starting injection amount (S25).
  • control device 500 determines the starting injection amount in consideration of the fuel injection amount in the vapor lock suppression process. Therefore, control device 500 prevents the air-fuel ratio at the time of engine start from becoming excessive.
  • the injector 34 is disposed on the cylinder head 23.
  • the injector 34 may be disposed in the main intake pipe 36.
  • the injector 34 may be disposed in the connection pipe 39.
  • the injector 34 injects fuel toward the intake port 221. Even in such a case, the temperature in the vicinity of the injector 34 may rise after the engine 21 is stopped. Therefore, if the control device 500 executes the vapor lock suppression process, the occurrence of vapor lock can be suppressed.
  • the injector 34 is disposed in the cylinder head 23 as in the above-described embodiment, the vapor lock suppression process is more effective.
  • the forced air cooling device 50 is arranged.
  • the forced air cooling device 50 may not be arranged, and the air-cooled engine 21 may be naturally air-cooled. Even in such a case, the temperature in the vicinity of the injector 34 may rise after the engine 21 is stopped. However, the temperature near the tip of the injector 34 after the engine 21 is stopped is more likely to increase when the forced air cooling device 50 is arranged. Therefore, when the forced air cooling device 50 is arranged, the vapor lock suppression process is more effective.
  • the CPU 420 uses the latest tip vicinity temperature Tn and the tip vicinity temperature Tn ⁇ 1 obtained one time before, and the tip vicinity temperature changes with time. It is judged whether it is rising. However, the CPU 420 may determine the fluctuation of the tip vicinity temperature using at least one of the latest tip vicinity temperature Tn and the previous tip vicinity temperatures T0 to Tn-1.
  • the CPU 420 determines the starting injection amount based on the injection amount of the fuel injected during the vapor lock suppression process and the elapsed time since the latest injection was performed. To do. However, the CPU 420 may determine the starting injection amount by using only one of the fuel injection amount and the elapsed time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is a saddled vehicle configured so that, when the air-cooled engine stops, the fuel within the injection nozzle is prevented from evaporating. The air-cooled engine (21) of a saddled vehicle is provided with: a cylinder head (23) having an air intake port (221) connected to the air intake pipe; an injector (34) attached to the air intake pipe (36) or the air intake port (221) and injecting the fuel; a temperature sensor (504) for detecting the temperature in the vicinity of the tip of the injector (34); and a control device (500) for controlling the injector (34). When the air-cooled engine (21) stops, the control device (500) obtains from the temperature sensor (504) the temperature in the vicinity of the tip of the injector (34). Then, the control device (500) compares the obtained temperature with a reference temperature. When the obtained temperature is higher than the reference temperature, the control device (500) controls the injector (34) to inject the fuel.

Description

鞍乗り型車両、エンジンユニット及び制御装置Saddle-ride type vehicle, engine unit and control device
 本発明は、鞍乗り型車両、エンジンユニット及び制御装置に関し、さらに詳しくは、空冷式のエンジンを備える鞍乗り型車両、エンジンユニット及び制御装置に関する。 The present invention relates to a saddle-ride type vehicle, an engine unit, and a control device, and more particularly, to a saddle-ride type vehicle equipped with an air-cooled engine, an engine unit, and a control device.
 空冷のエンジンを備えた鞍乗り型車両では、一般的に、エンジン停止後のシリンダヘッドが高温になりやすい。自然空冷式のエンジンである場合、エンジンが停止すると、鞍乗り型車両も停止する。そのため、エンジンの冷却フィンに走行風が当たらない。したがって、シリンダヘッドの温度が低下しにくい。鞍乗り型車両の中には、エンジンのクランクシャフトと連動するファンを含む強制空冷装置を備えるものもある。しかしながら、強制空冷装置のファンは、クランクシャフトと連動するため、エンジンの停止とともに、動作を停止する。したがって、シリンダヘッドの温度は高温になる。 In a saddle-ride type vehicle equipped with an air-cooled engine, the cylinder head generally tends to become hot after the engine is stopped. In the case of a natural air-cooled engine, when the engine stops, the saddle-ride type vehicle also stops. Therefore, traveling wind does not hit the cooling fins of the engine. Therefore, the temperature of the cylinder head is unlikely to decrease. Some saddle-ride type vehicles are equipped with a forced air cooling device including a fan interlocked with an engine crankshaft. However, since the fan of the forced air cooling device is interlocked with the crankshaft, the operation is stopped when the engine is stopped. Accordingly, the temperature of the cylinder head becomes high.
 エンジンに燃料を供給するインジェクタは、一般的に、シリンダヘッド近傍の吸気管に取り付けられる。最近では、燃料供給の応答性を向上するために、インジェクタをシリンダヘッドに配置する場合もある。上述のとおり、エンジンが停止した後、シリンダヘッドの温度が高ければ、インジェクタの先端の温度、つまり、インジェクタの噴射孔近傍の温度(以下、先端近傍温度という)も上昇する。先端近傍温度が上昇すれば、インジェクタ内の燃料の一部が気化し、燃料内に気泡(ベーパ)が生成される。エンジンを再始動するとき、燃料に気泡が含まれていれば、ベーパロックが発生しやすく、所望量の燃料を供給できない。そのため、燃料の燃焼効率が低下する。特に、インジェクタがシリンダヘッドに配置される場合、先端近傍温度は高くなりやすく、ベーパロックが発生しやすい。 An injector for supplying fuel to an engine is generally attached to an intake pipe near the cylinder head. Recently, in order to improve the responsiveness of fuel supply, an injector may be disposed on the cylinder head. As described above, if the temperature of the cylinder head is high after the engine is stopped, the temperature at the tip of the injector, that is, the temperature near the injection hole of the injector (hereinafter referred to as the tip vicinity temperature) also increases. When the temperature in the vicinity of the tip rises, a part of the fuel in the injector is vaporized, and bubbles (vapor) are generated in the fuel. When the engine is restarted, if the fuel contains bubbles, vapor lock is likely to occur and a desired amount of fuel cannot be supplied. Therefore, the fuel combustion efficiency is reduced. In particular, when the injector is disposed in the cylinder head, the temperature near the tip tends to increase, and vapor lock tends to occur.
 特開2007-137374号公報(特許文献1)及び特開2008-265542号公報(特許文献2)は、自動車のエンジンを再始動するときにベーパロックの発生を抑制する技術を開示する。 Japanese Patent Application Laid-Open No. 2007-137374 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-265542 (Patent Document 2) disclose a technique for suppressing the occurrence of vapor lock when an automobile engine is restarted.
 特許文献1は、自動車のエンジンを再始動するとき、インジェクタ内の燃料の温度が基準温度以下であるか否かを判断する。インジェクタ内の燃料温度が基準温度以上である場合、バッテリを駆動して電動の水冷循環装置を起動する。そして、水冷循環装置がエンジン及びインジェクタ内の燃料を冷却する。 Patent Document 1 determines whether or not the temperature of fuel in the injector is equal to or lower than a reference temperature when the automobile engine is restarted. When the fuel temperature in the injector is equal to or higher than the reference temperature, the battery is driven to activate the electric water-cooled circulation device. Then, the water-cooled circulation device cools the fuel in the engine and the injector.
 特許文献2は、自動車のエンジンが駆動している間、インジェクタ近傍の温度を所定時間ごとに測定する。測定された温度が基準温度以上である場合、再始動困難フラグを1に設定する。エンジンが停止した後、再始動する場合に、再始動困難フラグが1であれば、電動の水冷装置がエンジンを冷却する。 Patent Document 2 measures the temperature in the vicinity of the injector at predetermined intervals while the automobile engine is driven. If the measured temperature is equal to or higher than the reference temperature, the restart difficulty flag is set to 1. When the engine is stopped and then restarted, if the restart difficult flag is 1, the electric water cooling device cools the engine.
 しかしながら、特許文献1及び2は、自動車のエンジンを対象としており、エンジンと別個に駆動される電動の水冷装置を備える。つまり、これらの文献のエンジンは水冷式である。自動車のような大型の車両であれば、水冷装置を備えやすい。しかしながら、鞍乗り型車両に、エンジンと別個に駆動する水冷装置を備えると、鞍乗り型車両の構造が複雑になり、コストもかかる。 However, Patent Documents 1 and 2 are directed to an automobile engine and include an electric water cooling device that is driven separately from the engine. That is, the engines of these documents are water-cooled. If it is a large vehicle such as an automobile, it is easy to provide a water cooling device. However, if a saddle-ride type vehicle is provided with a water cooling device that is driven separately from the engine, the structure of the saddle-ride type vehicle becomes complicated and expensive.
 本発明の目的は、空冷式のエンジンが停止したとき、インジェクタ内の燃料が気化するのを抑制できる鞍乗り型車両を提供する。 An object of the present invention is to provide a saddle-ride type vehicle that can suppress vaporization of fuel in an injector when an air-cooled engine is stopped.
 本実施の形態による鞍乗り型車両は、吸気管と、空冷式のエンジンと、インジェクタと、温度センサと、制御装置とを備える。空冷式のエンジンは、シリンダヘッドを含む。シリンダヘッドは、吸気管と接続される吸気ポートを含む。インジェクタは、吸気管又はシリンダヘッドに取り付けられ、吸気ポートに向かって燃料を噴射する。温度センサは、インジェクタの先端近傍の温度を検知する。制御装置は、インジェクタを制御する。制御装置は、温度取得手段と、比較手段と、第1制御手段とを備える。温度取得手段は、エンジンが停止したとき、温度センサからインジェクタの先端近傍の温度を取得する。比較手段は、取得された温度を基準温度と比較する。第1制御手段は、取得された温度が基準温度を超えるとき、インジェクタを制御して燃料を噴射する。
 本実施の形態による鞍乗り型車両は、空冷式のエンジンが停止したとき、インジェクタ内の燃料が気化するのを抑制できる。
The saddle-ride type vehicle according to the present embodiment includes an intake pipe, an air-cooled engine, an injector, a temperature sensor, and a control device. The air-cooled engine includes a cylinder head. The cylinder head includes an intake port connected to the intake pipe. The injector is attached to the intake pipe or the cylinder head and injects fuel toward the intake port. The temperature sensor detects the temperature near the tip of the injector. The control device controls the injector. The control device includes a temperature acquisition unit, a comparison unit, and a first control unit. The temperature acquisition means acquires the temperature near the tip of the injector from the temperature sensor when the engine is stopped. The comparison means compares the acquired temperature with a reference temperature. When the acquired temperature exceeds the reference temperature, the first control means controls the injector and injects fuel.
The saddle riding type vehicle according to the present embodiment can suppress the fuel in the injector from being vaporized when the air-cooled engine is stopped.
図1は、本実施の形態による鞍乗り型車両の右側面図である。FIG. 1 is a right side view of a saddle-ride type vehicle according to the present embodiment. 図2は、図1中の車体カバー近傍部分の右側面図である。FIG. 2 is a right side view of the vicinity of the vehicle body cover in FIG. 図3は、図1中のエンジンユニットの平面視における一部断面図である。FIG. 3 is a partial cross-sectional view of the engine unit in FIG. 1 in plan view. 図4は、図1中のシリンダヘッド近傍部分の断面図である。4 is a cross-sectional view of the vicinity of the cylinder head in FIG. 図5は、図1中のエンジンユニットの側面図である。FIG. 5 is a side view of the engine unit in FIG. 1. 図6は、制御装置及び周辺装置の関係を示す模式図である。FIG. 6 is a schematic diagram showing the relationship between the control device and peripheral devices. 図7は、制御装置のハードウェア構成を示す機能ブロック図である。FIG. 7 is a functional block diagram illustrating a hardware configuration of the control device. 図8は、エンジンを停止してからの経過時間と、インジェクタの先端近傍の温度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the elapsed time since the engine was stopped and the temperature near the tip of the injector. 図9は図6に示す制御装置により実行されるベーパロック抑制処理の詳細を示すフロー図である。FIG. 9 is a flowchart showing details of the vapor lock suppression process executed by the control device shown in FIG. 図10は、ベーパロック抑制処理を実行した場合の、エンジンを停止してからの経過時間と、インジェクタの先端近傍の温度との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the elapsed time since the engine was stopped and the temperature near the tip of the injector when the vapor lock suppression process was executed. 図11は、図6に示す制御装置により実行される噴射量補正処理の詳細を示すフロー図である。FIG. 11 is a flowchart showing details of the injection amount correction processing executed by the control device shown in FIG. 図12は、図11中の処理で利用される補正テーブルのデータ構造を示す図である。FIG. 12 is a diagram showing a data structure of a correction table used in the processing in FIG.
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。以下の説明での、前後左右は、ライダが乗車した状態での方向を示す。図中のX1方向は、車両の前後方向を示す。図中のY1方向は、車両の幅方向を示す。図中のZ1方向は、車両の上下方向を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In the following description, front, rear, left and right indicate directions in a state where the rider is in the vehicle. The X1 direction in the figure indicates the longitudinal direction of the vehicle. The Y1 direction in the figure indicates the width direction of the vehicle. The Z1 direction in the figure indicates the vertical direction of the vehicle.
 [鞍乗り型車両の全体構成]
 図1は、本実施の形態による鞍乗り型車両200の右側面図である。図1は、鞍乗り型車両200の一部を破断して示す。図1は、鞍乗り型車両200の一例としてスクータを示す。しかしながら、鞍乗り型車両200はスクータに限定されない。「鞍乗り型車両」は、自動二輪車や、不整地走行用車両(All-Terrain Vehicle)、スノーモービル等を含む。「自動二輪車」は、上述のスクータやモペットを含む。
[Overall configuration of saddle riding type vehicle]
FIG. 1 is a right side view of a saddle-ride type vehicle 200 according to the present embodiment. FIG. 1 shows a part of a saddle-ride type vehicle 200 cut away. FIG. 1 shows a scooter as an example of a saddle-ride type vehicle 200. However, saddle riding type vehicle 200 is not limited to a scooter. The “saddle-ride type vehicle” includes a motorcycle, an all-terrain vehicle, a snowmobile, and the like. The “motorcycle” includes the above-described scooter and moped.
 鞍乗り型車両200は、ハンドル10と、ステアリングシャフト13と、ヘッドパイプ11と、フレーム15と、エンジンユニット20と、シート16と、前輪14と、後輪27と、燃料タンク510とを備える。 The saddle riding type vehicle 200 includes a handle 10, a steering shaft 13, a head pipe 11, a frame 15, an engine unit 20, a seat 16, a front wheel 14, a rear wheel 27, and a fuel tank 510.
 ハンドル10は、ステアリングシャフト13の上端に取り付けられる。ステアリングシャフト13は、ハンドル10から下方に向かって斜め前方に延びる。ステアリングシャフト13は、ヘッドパイプ11に挿入される。ハンドル10は、ステアリングシャフト13を介して前輪14と連結される。ハンドル10には、図示しないスタータスイッチが取り付けられる。ユーザはスタータスイッチを操作して、エンジンを始動又は停止する。 The handle 10 is attached to the upper end of the steering shaft 13. The steering shaft 13 extends obliquely forward from the handle 10 downward. The steering shaft 13 is inserted into the head pipe 11. The handle 10 is connected to the front wheel 14 via the steering shaft 13. A starter switch (not shown) is attached to the handle 10. The user operates the starter switch to start or stop the engine.
 フレーム15は、ヘッドパイプ11から鞍乗り型車両200の後方に向かって延びる。フレーム15は、いわゆるアンダーボーン型のフレームである。フレーム15は、前部と中部と後部とを含む。前部は、ヘッドパイプ11から下方に向かって斜め後ろに延びる。中部は、前部の下端とつながり、車体の前後方向に延びる。後部は、中部の後端とつながり、後方に向かって斜め上方に延びる。 The frame 15 extends from the head pipe 11 toward the rear of the saddle riding type vehicle 200. The frame 15 is a so-called underbone type frame. The frame 15 includes a front portion, a middle portion, and a rear portion. The front portion extends obliquely rearward from the head pipe 11 downward. The middle part is connected to the lower end of the front part and extends in the front-rear direction of the vehicle body. The rear portion is connected to the rear end of the middle portion and extends obliquely upward toward the rear.
 フレーム15の中部には、足載せ板17が配置される。フレーム15の後部の上方には、シート16が配置される。シート16の後部の下方には、燃料タンク510が配置される。燃料タンク510は、燃料ポンプ550を備える。燃料ポンプ550は、エンジン21内のインジェクタ34に燃料を供給する。 A footrest plate 17 is disposed in the middle of the frame 15. A seat 16 is disposed above the rear portion of the frame 15. A fuel tank 510 is disposed below the rear portion of the seat 16. The fuel tank 510 includes a fuel pump 550. The fuel pump 550 supplies fuel to the injector 34 in the engine 21.
 シート16の前部の下方には、エンジンユニット20が配置される。エンジンユニット20は、ピボット軸25を介してフレーム15に取り付けられる。エンジンユニット20は、吸気管2と、空冷式のエンジン21と、インジェクタ34と、強制空冷装置50と、制御装置500とを備える。吸気管2は、主吸気管36及び副吸気管41を備える。吸気管2は、エンジン21とエアクリーナ(図示せず)との間に配置され、エンジン21に吸気を供給する。 The engine unit 20 is disposed below the front portion of the seat 16. The engine unit 20 is attached to the frame 15 via a pivot shaft 25. The engine unit 20 includes an intake pipe 2, an air-cooled engine 21, an injector 34, a forced air-cooling device 50, and a control device 500. The intake pipe 2 includes a main intake pipe 36 and a sub intake pipe 41. The intake pipe 2 is disposed between the engine 21 and an air cleaner (not shown), and supplies intake air to the engine 21.
 インジェクタ34は、燃料ポンプ550から燃料の供給を受け、エンジン21内に燃料を噴射する。 The injector 34 is supplied with fuel from the fuel pump 550 and injects fuel into the engine 21.
 制御装置500はたとえば、ECU(Engine Control Unit)である。制御装置500は、エンジン21を制御して、エンジン21を駆動又は停止する。制御装置500はさらに、エンジン21が停止した後、インジェクタ34を制御して燃料を噴射し、エンジン21の温度が上昇するのを抑制する。 Control device 500 is, for example, an ECU (Engine Control Unit). The control device 500 controls the engine 21 to drive or stop the engine 21. Further, after the engine 21 is stopped, the control device 500 controls the injector 34 to inject fuel and suppress the temperature of the engine 21 from rising.
 シート16の前部の下方には、車体カバー18が配置される。図2は、図1中の鞍乗り型車両200のうち、車体カバー18近傍部分の右側面図である。図2を参照して、車体カバー18は、前壁202と、一対の側壁203とを備える。前壁202は、シート16の前端部の下方に配置される。一対の側壁203は、前壁202と結合され、シート16の左右側縁の下方にそれぞれ配置される。側壁203は、エンジンユニット20の前部を覆う。 A vehicle body cover 18 is disposed below the front portion of the seat 16. FIG. 2 is a right side view of the vicinity of the body cover 18 in the saddle-ride type vehicle 200 in FIG. With reference to FIG. 2, the vehicle body cover 18 includes a front wall 202 and a pair of side walls 203. The front wall 202 is disposed below the front end portion of the seat 16. The pair of side walls 203 are coupled to the front wall 202 and are respectively disposed below the left and right side edges of the seat 16. The side wall 203 covers the front part of the engine unit 20.
 図1に戻って、後輪27は、動力伝達部26を介してエンジン21と連結される。動力伝達部26とフレーム15との間には、リアショックアブソーバ28が取り付けられる。エンジン21及び後輪27は、ピボット軸25周りを上下に揺動可能である。 Returning to FIG. 1, the rear wheel 27 is connected to the engine 21 via the power transmission unit 26. A rear shock absorber 28 is attached between the power transmission unit 26 and the frame 15. The engine 21 and the rear wheel 27 can swing up and down around the pivot shaft 25.
 鞍乗り型車両200はさらに、排気管43と、マフラ44とを備える。排気管43及びマフラ44は、鞍乗り型車両200の前後方向に延びる。排気管43は、エンジン21よりも下方に配置される。マフラ44は、後輪27の側方に配置され、排気管43の下流端から後方に向かって斜め上方に延びる。マフラ44は、図示しない触媒装置を収納する。 The saddle riding type vehicle 200 further includes an exhaust pipe 43 and a muffler 44. The exhaust pipe 43 and the muffler 44 extend in the front-rear direction of the saddle riding type vehicle 200. The exhaust pipe 43 is disposed below the engine 21. The muffler 44 is disposed on the side of the rear wheel 27 and extends obliquely upward from the downstream end of the exhaust pipe 43 toward the rear. The muffler 44 houses a catalyst device (not shown).
 [エンジン21の構成]
 図3は、エンジンユニット20の平面視における一部断面図である。図3を参照して、エンジン21は、空冷式の単気筒4サイクルエンジンである。エンジン21は、クランクケース24と、シリンダブロック22と、シリンダヘッド23とを備える。シリンダブロック22には、複数の冷却フィン280が形成される。
[Configuration of Engine 21]
FIG. 3 is a partial cross-sectional view of the engine unit 20 in plan view. Referring to FIG. 3, engine 21 is an air-cooled single cylinder four-cycle engine. The engine 21 includes a crankcase 24, a cylinder block 22, and a cylinder head 23. A plurality of cooling fins 280 are formed in the cylinder block 22.
 クランクケース24は、エンジン21の後端部に配置される。クランクケース24は、クランクシャフト57を収納する。クランクシャフト57は、車両幅方向(Y1方向)に延び、軸受281及び282を介してクランクケース24に回転可能に取り付けられる。クランクシャフトの右端部204は、クランクケース24の外壁246よりも外側に配置される。右端部204には、ファン56が取り付けられる。ファン56は、エンジン21の外側に配置され、クランクシャフト57と一体に回転する。つまり、ファン56は、クランクシャフト57と連動する。したがって、エンジン21が駆動している間、ファン56は回転する。 The crankcase 24 is disposed at the rear end of the engine 21. The crankcase 24 houses the crankshaft 57. The crankshaft 57 extends in the vehicle width direction (Y1 direction) and is rotatably attached to the crankcase 24 via bearings 281 and 282. The right end portion 204 of the crankshaft is disposed outside the outer wall 246 of the crankcase 24. A fan 56 is attached to the right end portion 204. The fan 56 is disposed outside the engine 21 and rotates integrally with the crankshaft 57. That is, the fan 56 is interlocked with the crankshaft 57. Therefore, the fan 56 rotates while the engine 21 is driven.
 クランクシャフト57の左端部260には、動力伝達部26が連結される。左端部260にはさらに、リングギヤ571が取り付けられる。リングギヤ571の近傍には、クランク角センサ502が配置される。クランク角センサ502は、リングギヤ571の回転に応じたパルス信号を出力する。制御装置500は、パルス信号のパルス数をカウントすることにより、クランク角及びピストン208の位置を特定する。 The power transmission unit 26 is connected to the left end portion 260 of the crankshaft 57. A ring gear 571 is further attached to the left end portion 260. A crank angle sensor 502 is disposed in the vicinity of the ring gear 571. The crank angle sensor 502 outputs a pulse signal corresponding to the rotation of the ring gear 571. The control device 500 specifies the crank angle and the position of the piston 208 by counting the number of pulses of the pulse signal.
 クランクシャフト57の中央部分には、コネクティングロッド205の大端部が回転可能に取り付けられる。コネクティングロッド205は、鞍乗り型車両200の前後方向(X1方向)に延びる。 The large end portion of the connecting rod 205 is rotatably attached to the center portion of the crankshaft 57. The connecting rod 205 extends in the front-rear direction (X1 direction) of the saddle-ride type vehicle 200.
 シリンダブロック22は、クランクケース24の前端に配置される。シリンダブロック22は、鞍乗り型車両200の前後方向(X1方向)に延びる。つまり、エンジン21の気筒軸線はX1方向に延びる。シリンダブロック22は筒体であり、内部には、シリンダ室E1が配置される。シリンダ室E1には、ピストン208が収納される。ピストン208は、ピストンピン29を介してコネクティングロッド205の小端部に取り付けられる。ピストン208は、気筒軸線に沿ってシリンダ室E1内を往復移動する。 The cylinder block 22 is disposed at the front end of the crankcase 24. The cylinder block 22 extends in the front-rear direction (X1 direction) of the saddle riding type vehicle 200. That is, the cylinder axis of the engine 21 extends in the X1 direction. The cylinder block 22 is a cylindrical body, and a cylinder chamber E1 is disposed therein. A piston 208 is accommodated in the cylinder chamber E1. The piston 208 is attached to the small end portion of the connecting rod 205 via the piston pin 29. The piston 208 reciprocates in the cylinder chamber E1 along the cylinder axis.
 シリンダヘッド23は、シリンダブロック22の前端に配置される。図4は、シリンダヘッド23近傍部分の断面図である。図3及び図4を参照して、シリンダヘッド23は、シリンダブロック22とともに燃焼室A1を形成する。 The cylinder head 23 is disposed at the front end of the cylinder block 22. FIG. 4 is a cross-sectional view of the vicinity of the cylinder head 23. With reference to FIGS. 3 and 4, the cylinder head 23 forms a combustion chamber A <b> 1 together with the cylinder block 22.
 シリンダヘッド23は、カムシャフト209(図3)と、吸気弁210と(図4)、排気弁31(図3)とを備える。カムシャフト209は、吸気弁210及び排気弁31を開閉する。シリンダヘッド23はさらに、吸気ポート221(図4)と排気ポート(図示せず)とを備える。 The cylinder head 23 includes a camshaft 209 (FIG. 3), an intake valve 210 (FIG. 4), and an exhaust valve 31 (FIG. 3). The camshaft 209 opens and closes the intake valve 210 and the exhaust valve 31. The cylinder head 23 further includes an intake port 221 (FIG. 4) and an exhaust port (not shown).
 シリンダヘッド23には、インジェクタ34が取り付けられる。具体的には、シリンダヘッド23は、ボス32を備える。ボス32は、シリンダヘッド23の上面に形成される。インジェクタ34は、ボス32に挿入され、固定される。したがってインジェクタ34は、シリンダヘッド23の上部に配置される。 An injector 34 is attached to the cylinder head 23. Specifically, the cylinder head 23 includes a boss 32. The boss 32 is formed on the upper surface of the cylinder head 23. The injector 34 is inserted into the boss 32 and fixed. Therefore, the injector 34 is disposed at the upper part of the cylinder head 23.
 インジェクタ34は、噴射ノズル35と、インジェクタ本体218とを備える。噴射ノズル35は、インジェクタ34の先端に配置される。ボス32の底は、吸気ポート221とつながる。したがって、インジェクタ34の先端である噴射ノズル35は、吸気ポート221に配置される。 The injector 34 includes an injection nozzle 35 and an injector body 218. The injection nozzle 35 is disposed at the tip of the injector 34. The bottom of the boss 32 is connected to the intake port 221. Therefore, the injection nozzle 35 that is the tip of the injector 34 is disposed in the intake port 221.
 インジェクタ34をシリンダヘッド23に取り付けることにより、噴射ノズル35が吸気ポート221の開口222近傍に配置される。そのため、吸気弁210が開いたとき、噴射ノズル35から噴射される燃料が開口222を通って燃焼室A1に直接流入しやすい。燃料が燃焼室A1に入りやすいほど、燃料供給の応答性が向上し、遅れなく所望の空燃比を持った混合気を燃焼室A1に供給できる。 By attaching the injector 34 to the cylinder head 23, the injection nozzle 35 is disposed in the vicinity of the opening 222 of the intake port 221. Therefore, when the intake valve 210 is opened, the fuel injected from the injection nozzle 35 tends to flow directly into the combustion chamber A1 through the opening 222. The easier the fuel enters the combustion chamber A1, the better the responsiveness of fuel supply, and the air-fuel mixture having a desired air-fuel ratio can be supplied to the combustion chamber A1 without delay.
 噴射ノズル35の近傍には、温度センサ504が配置される。したがって、温度センサ504は、シリンダヘッド23に取り付けられる。温度センサ504は、噴射ノズル35近傍の温度、つまり、インジェクタ34の先端近傍温度を検知する。インジェクタ34の先端近傍の温度は、たとえば、吸気ポート221内の温度であってもよい。 A temperature sensor 504 is disposed in the vicinity of the injection nozzle 35. Therefore, the temperature sensor 504 is attached to the cylinder head 23. The temperature sensor 504 detects the temperature near the injection nozzle 35, that is, the temperature near the tip of the injector 34. The temperature in the vicinity of the tip of the injector 34 may be, for example, the temperature in the intake port 221.
 [吸気管2の構成]
 図4を参照して、吸気管2は、主吸気管36と、副吸気管41とを備える。主吸気管36は、鞍乗り型車両200の後部に配置されるエアクリーナ(図示せず)と、吸気ポート221との間に配置される。主吸気管36は、吸気用ホース37と、スロットルボディ38と、接続管39とを備える。吸気用ホース37は、スロットルボディ38とエアクリーナとの間に配置される。接続管39は湾曲しており、スロットルボディ38と吸気ポート221との間に配置される。
[Configuration of Intake Pipe 2]
Referring to FIG. 4, intake pipe 2 includes a main intake pipe 36 and a sub intake pipe 41. The main intake pipe 36 is disposed between an air cleaner (not shown) disposed at the rear portion of the saddle-ride type vehicle 200 and the intake port 221. The main intake pipe 36 includes an intake hose 37, a throttle body 38, and a connection pipe 39. The intake hose 37 is disposed between the throttle body 38 and the air cleaner. The connecting pipe 39 is curved and is disposed between the throttle body 38 and the intake port 221.
 スロットルボディ38は、シリンダブロック22の上方に配置される。スロットルボディ38は、車両前後方向(図中のX1方向)に延びる筒体であり、2つのバルブ40A及び40Bを収納する。バルブ40A及び40Bは、吸気の通路を主吸気管36及び副吸気管41のいずれかに切り替える。バルブ40Aは、バルブ40Bよりも下流側に配置される。 The throttle body 38 is disposed above the cylinder block 22. The throttle body 38 is a cylindrical body that extends in the vehicle front-rear direction (X1 direction in the figure), and houses the two valves 40A and 40B. The valves 40A and 40B switch the intake passage to either the main intake pipe 36 or the sub intake pipe 41. The valve 40A is disposed downstream of the valve 40B.
 副吸気管41は、スロットルボディ38とシリンダヘッド23との間に配置される。具体的には、副吸気管41の上流端は、スロットルボディ38のうち、バルブ40Aとバルブ40Bとの間の部分とつながる。そして、副吸気管41の下流端は、シリンダヘッド23の上面に形成されたボス241と接続される。ボス241は、吸気ポート221のうち、噴射ノズル35が配置される近傍部分につながる。したがって、副吸気管41の下流端は、噴射ノズル35近傍部分に配置される。 The auxiliary intake pipe 41 is disposed between the throttle body 38 and the cylinder head 23. Specifically, the upstream end of the auxiliary intake pipe 41 is connected to a portion of the throttle body 38 between the valve 40A and the valve 40B. The downstream end of the auxiliary intake pipe 41 is connected to a boss 241 formed on the upper surface of the cylinder head 23. The boss 241 is connected to the vicinity of the intake port 221 where the injection nozzle 35 is disposed. Therefore, the downstream end of the auxiliary intake pipe 41 is disposed in the vicinity of the injection nozzle 35.
 エンジンユニット20では、負荷(スロットル操作量)に応じて、バルブ40A及び40Bが開閉する。具体的には、無負荷(アイドル)域から所定の部分負荷域までは、バルブ40Aが閉じ、バルブ40Bがスロットル操作量に応じた開度で開く。この場合、吸気は、副吸気管41を通って、吸気ポート221のうちインジェクタ34の噴射ノズル35の近傍部分に流入する。そのため、吸気がインジェクタ34から噴射された燃料と衝突し、燃料の微粒化を促進する。その結果、無負荷及び部分負荷域において、燃料の燃焼効率が高まり、未燃燃料を減じることができる。 In the engine unit 20, the valves 40A and 40B open and close according to the load (throttle operation amount). Specifically, from the no-load (idle) region to a predetermined partial load region, the valve 40A is closed and the valve 40B is opened at an opening corresponding to the throttle operation amount. In this case, the intake air passes through the auxiliary intake pipe 41 and flows into the vicinity of the injection nozzle 35 of the injector 34 in the intake port 221. Therefore, the intake air collides with the fuel injected from the injector 34 and promotes atomization of the fuel. As a result, in the no-load and partial load regions, the fuel combustion efficiency is increased, and the unburned fuel can be reduced.
 さらに、部分負荷域から高負荷域に移行するとき、バルブ40Bとともに、バルブ40Aも、スロットル操作量に応じた開度で開く。これにより、吸気は、副吸気管41だけでなく、主吸気管36からも、吸気ポート221に流入する。 Furthermore, when shifting from the partial load range to the high load range, the valve 40A and the valve 40A are also opened at an opening corresponding to the throttle operation amount. As a result, the intake air flows into the intake port 221 not only from the auxiliary intake pipe 41 but also from the main intake pipe 36.
 バルブ40A及び40Bは、たとえば、以下のように動作する。バルブ40Bは、ハンドル10のスロットル操作量と連動する。スロットル操作量に応じたバルブ40Bの開度が0~10%である場合、バルブ40Aの開度は0%である。つまり、バルブ40Aは閉じている。一方、スロットル操作量に応じたバルブ40Bの開度が10~100%である場合、バルブ40Aの開度は、バルブ40Bの開度に比例して0~100%となる。バルブ40A及びバルブ40Bは、制御装置500により制御されてもよいし、ハンドル10のスロットルと機械的に連動し、スロットル操作量に応じて開閉されてもよい。 Valves 40A and 40B operate, for example, as follows. The valve 40B is interlocked with the throttle operation amount of the handle 10. When the opening degree of the valve 40B corresponding to the throttle operation amount is 0 to 10%, the opening degree of the valve 40A is 0%. That is, the valve 40A is closed. On the other hand, when the opening degree of the valve 40B corresponding to the throttle operation amount is 10 to 100%, the opening degree of the valve 40A is 0 to 100% in proportion to the opening degree of the valve 40B. The valve 40A and the valve 40B may be controlled by the control device 500, or mechanically interlocked with the throttle of the handle 10 and may be opened and closed according to the throttle operation amount.
 [強制空冷装置の構成]
 図5は、エンジンユニット20の右側面図である。図5では、エンジンユニット20の一部を破断して示す。強制空冷装置50は、ファン56と、シュラウド54とを備える。
[Configuration of forced air cooling system]
FIG. 5 is a right side view of the engine unit 20. In FIG. 5, a part of the engine unit 20 is shown broken away. The forced air cooling device 50 includes a fan 56 and a shroud 54.
 図3及び図5を参照して、ファン56は上述のとおり、クランクシャフト57の右端部204に取り付けられ、クランクシャフト57と連動する。 3 and 5, the fan 56 is attached to the right end portion 204 of the crankshaft 57 and interlocked with the crankshaft 57 as described above.
 シュラウド54は、エンジン21の側面に配置される。シュラウド54は、ファン56と、クランクケース24と、シリンダブロック22と、シリンダヘッド23の後部とを覆う。シュラウド54は、筒状部51と、側板部52とを備える。筒状部51は、シリンダブロック22全体と、シリンダヘッド23の後端部とを覆う。側板部52は、クランクケース24の右側面を覆い、ファン56と対向する。側板部52には、吸気孔58が形成される。シュラウド54とエンジン21との間には、隙間が形成される。 The shroud 54 is disposed on the side surface of the engine 21. The shroud 54 covers the fan 56, the crankcase 24, the cylinder block 22, and the rear part of the cylinder head 23. The shroud 54 includes a cylindrical portion 51 and a side plate portion 52. The cylindrical portion 51 covers the entire cylinder block 22 and the rear end portion of the cylinder head 23. The side plate portion 52 covers the right side surface of the crankcase 24 and faces the fan 56. An intake hole 58 is formed in the side plate portion 52. A gap is formed between the shroud 54 and the engine 21.
 シュラウド54は、ファン56により生じた空気の流れをシリンダヘッド23に導く。具体的には、エンジン21が駆動しているとき、クランクシャフト57の回転と連動して、ファン56も回転する。このとき、ファン56により空気の流れが発生し、空気が吸気孔58からシュラウド54とエンジン21との間の隙間に流入する。流入した空気は、シュラウド54によりシリンダヘッド23に導かれる。図3及び図5の矢印R2で示すとおり、空気は、シュラウド54を通過して、シリンダヘッド23のボス32に向かう。そのため、ボス32内に配置されたインジェクタ34の先端(噴射ノズル35)の近傍部分は強制的に空冷される。したがって、エンジン21が駆動している間、インジェクタ34内の燃料は気化しにくい。 The shroud 54 guides the air flow generated by the fan 56 to the cylinder head 23. Specifically, when the engine 21 is driven, the fan 56 also rotates in conjunction with the rotation of the crankshaft 57. At this time, an air flow is generated by the fan 56, and the air flows into the gap between the shroud 54 and the engine 21 from the intake hole 58. The air that flows in is guided to the cylinder head 23 by the shroud 54. As shown by the arrow R <b> 2 in FIGS. 3 and 5, the air passes through the shroud 54 toward the boss 32 of the cylinder head 23. Therefore, the vicinity of the tip (injection nozzle 35) of the injector 34 disposed in the boss 32 is forcibly air-cooled. Therefore, the fuel in the injector 34 is not easily vaporized while the engine 21 is driven.
 [制御装置500の構成]
 図6は制御装置500と周辺装置との関係を示す模式図である。図6を参照して、制御装置500は、スタータスイッチ501から、エンジンの始動指示及び停止指示を受ける。制御装置500はさらに、クランク角センサ502からの信号を受け、クランク角及びピストン208の位置を特定する。制御装置500はさらに、点火プラグ505、インジェクタ34及び燃料ポンプ550を制御する。制御装置500は、エンジン21が駆動しているとき、燃料ポンプ駆動信号を出力して燃料ポンプ550を駆動する。このとき、燃料ポンプ550は、燃料タンク510内の燃料をインジェクタ34に供給する。
[Configuration of Control Device 500]
FIG. 6 is a schematic diagram showing the relationship between the control device 500 and peripheral devices. Referring to FIG. 6, control device 500 receives an engine start instruction and a stop instruction from starter switch 501. The control device 500 further receives a signal from the crank angle sensor 502 and specifies the crank angle and the position of the piston 208. The control device 500 further controls the spark plug 505, the injector 34, and the fuel pump 550. The control device 500 outputs a fuel pump drive signal to drive the fuel pump 550 when the engine 21 is driven. At this time, the fuel pump 550 supplies the fuel in the fuel tank 510 to the injector 34.
 制御装置500はさらに、クランク角センサ502により検知されたピストン208の位置に基づいて、燃料噴射信号をインジェクタ34に出力する。燃料噴射信号を受けたインジェクタ34は、所定のタイミングで所定量の燃料を噴射する。制御装置500は、ピストン208が上死点に移動するタイミングで、点火信号を点火プラグ505に出力する。点火信号を受けた点火プラグ505は点火する。そのため、燃焼室A1内の混合気が燃焼され、ピストン208を上死点から下死点方向に押し下げる。 Control device 500 further outputs a fuel injection signal to injector 34 based on the position of piston 208 detected by crank angle sensor 502. Upon receiving the fuel injection signal, the injector 34 injects a predetermined amount of fuel at a predetermined timing. The control device 500 outputs an ignition signal to the spark plug 505 at the timing when the piston 208 moves to the top dead center. The spark plug 505 that has received the ignition signal ignites. Therefore, the air-fuel mixture in the combustion chamber A1 is combusted, and the piston 208 is pushed down from the top dead center toward the bottom dead center.
 制御装置500はさらに、温度センサ504から検知信号を受け、吸気ポート221内の温度、より具体的には、インジェクタ34の先端近傍の温度(以下、単に先端近傍温度という)を取得する。制御装置500は、エンジン21の停止後に、温度センサ504により検知された温度に基づいて、ベーパロック抑制処理を実行する。ベーパロック抑制処理により、インジェクタ34内の燃料が気化するのを抑制でき、ベーパロックの発生が抑制される。 Further, the control device 500 receives the detection signal from the temperature sensor 504, and acquires the temperature in the intake port 221, more specifically, the temperature in the vicinity of the tip of the injector 34 (hereinafter simply referred to as the temperature in the vicinity of the tip). The control device 500 executes a vapor lock suppression process based on the temperature detected by the temperature sensor 504 after the engine 21 is stopped. By the vapor lock suppression process, the fuel in the injector 34 can be suppressed from being vaporized, and the occurrence of vapor lock is suppressed.
 図7は、制御装置500のハードウェア構成を示す機能ブロック図である。図7を参照して、制御装置500は、中央処理演算装置(CPU)420と、揮発性のメモリ421と、不揮発性メモリ422と、通信部423とを備える。揮発性メモリ421はたとえば、RAM(Random Access Memory)である。以下、揮発性メモリ421を単に「メモリ421」と称する。不揮発性メモリ422はたとえば、フラッシュメモリである。不揮発性メモリ422には、制御プログラムが格納される。通信部423は、スタータスイッチ501、クランク角センサ502及び温度センサ504からの信号を受信する。通信部423はさらに、燃料ポンプ550の制御信号(燃料ポンプ駆動信号)、点火プラグの制御信号(点火信号)及びインジェクタ34の制御信号(燃料噴射信号)を出力する。制御プログラムがメモリ421にロードされ、CPU420で実行されることにより、制御装置500は、以下の処理を実行する。 FIG. 7 is a functional block diagram showing the hardware configuration of the control device 500. As shown in FIG. Referring to FIG. 7, control device 500 includes a central processing unit (CPU) 420, a volatile memory 421, a nonvolatile memory 422, and a communication unit 423. The volatile memory 421 is, for example, a RAM (Random Access Memory). Hereinafter, the volatile memory 421 is simply referred to as “memory 421”. The nonvolatile memory 422 is, for example, a flash memory. The nonvolatile memory 422 stores a control program. The communication unit 423 receives signals from the starter switch 501, the crank angle sensor 502, and the temperature sensor 504. The communication unit 423 further outputs a control signal (fuel pump drive signal) for the fuel pump 550, a control signal for the spark plug (ignition signal), and a control signal for the injector 34 (fuel injection signal). When the control program is loaded into the memory 421 and executed by the CPU 420, the control device 500 executes the following processing.
 制御装置500は、エンジン21が動作を停止した後、先端近傍温度が基準温度を超えないように、シリンダヘッド23の温度を調整する。これにより、エンジン21が停止した後、インジェクタ34内の燃料が気化するのを抑制し、ベーパロックの発生を抑制する。以下、このような処理をベーパロック抑制処理という。制御装置500はさらに、エンジン21を再び始動するとき、インジェクタ34から噴射する燃料の噴射量を補正する。このような処理を噴射量補正処理という。以下、ベーパロック抑制処理及び噴射量補正処理について説明する。 The control device 500 adjusts the temperature of the cylinder head 23 so that the temperature near the tip does not exceed the reference temperature after the engine 21 stops operating. Thereby, after the engine 21 stops, it suppresses that the fuel in the injector 34 vaporizes, and suppresses generation | occurrence | production of a vapor lock. Hereinafter, such processing is referred to as vapor lock suppression processing. The control device 500 further corrects the injection amount of fuel injected from the injector 34 when the engine 21 is started again. Such a process is called an injection amount correction process. Hereinafter, the vapor lock suppression process and the injection amount correction process will be described.
 [ベーパロック抑制処理の概要]
 上述のとおり、インジェクタ34はシリンダヘッド23内に配置される。エンジン21が駆動している間、エンジン21が冷却されなければ、シリンダヘッド23は高温になる。そのため、先端近傍温度も高温になる。さらに、先端近傍温度が高温になれば、インジェクタ34内の燃料の一部が気化し、燃料内に気泡が発生しやすくなる。燃料に発生した気泡により、ベーパロックが発生しやすくなる。ベーパロックは、所望の燃料噴射を阻害し、エンジンの始動を阻害する。
[Outline of vapor lock suppression processing]
As described above, the injector 34 is disposed in the cylinder head 23. If the engine 21 is not cooled while the engine 21 is being driven, the cylinder head 23 becomes hot. Therefore, the tip vicinity temperature also becomes high. Further, when the temperature in the vicinity of the tip becomes high, a part of the fuel in the injector 34 is vaporized and bubbles are easily generated in the fuel. Vapor lock is likely to occur due to bubbles generated in the fuel. Vapor lock inhibits desired fuel injection and inhibits engine start.
 しかしながら、エンジン21が駆動しているときは、上述のとおり強制空冷装置50のファン56が回転する。そのため、シュラウド54内に空気が流入し、シリンダヘッド23が強制的に空冷される。したがって、エンジン21が駆動している間は、シリンダヘッド23の温度の上昇は抑制され、燃料が気化しにくい。しかしながら、エンジン21が停止すると、ファン56も停止する。なぜなら、ファン56はクランクシャフト57と連動するからである。したがって、エンジン21が停止すると、シリンダヘッド23はファン56により冷却することができない。さらに、エンジン21が停止すると、燃料ポンプ550も停止する。そのため、インジェクタ34内の燃料の圧力が低下し、ベーパロックが発生しやすくなる。 However, when the engine 21 is driven, the fan 56 of the forced air cooling device 50 rotates as described above. Therefore, air flows into the shroud 54 and the cylinder head 23 is forcibly cooled by air. Therefore, while the engine 21 is being driven, the temperature rise of the cylinder head 23 is suppressed and the fuel is not easily vaporized. However, when the engine 21 stops, the fan 56 also stops. This is because the fan 56 is interlocked with the crankshaft 57. Therefore, when the engine 21 is stopped, the cylinder head 23 cannot be cooled by the fan 56. Further, when the engine 21 stops, the fuel pump 550 also stops. For this reason, the fuel pressure in the injector 34 is reduced, and vapor lock is likely to occur.
 さらに、エンジン21の側面には、シュラウド54が取り付けられているため、エンジン21で発生した熱が、エンジン21と、シュラウド54の間の隙間にこもる。その結果、シリンダヘッド23の温度は上昇する。 Furthermore, since the shroud 54 is attached to the side surface of the engine 21, the heat generated in the engine 21 is trapped in the gap between the engine 21 and the shroud 54. As a result, the temperature of the cylinder head 23 rises.
 図8は、エンジン21を停止した後のインジェクタ34の温度変化の推移を示すグラフである。図8は以下の方法により得られた。上述の構成を有する鞍乗り型車両(本例ではスクータ)を製造した。製造された鞍乗り型車両を30℃の温度雰囲気下に配置し、エンジンを30分駆動した。その後、エンジンを停止して、温度センサにより、インジェクタの先端近傍の温度(先端近傍温度)の推移を測定した。測定された温度推移に基づいて、図8のグラフを作成した。 FIG. 8 is a graph showing a change in temperature change of the injector 34 after the engine 21 is stopped. FIG. 8 was obtained by the following method. A saddle-ride type vehicle (scooter in this example) having the above-described configuration was manufactured. The manufactured saddle-ride type vehicle was placed in a temperature atmosphere of 30 ° C., and the engine was driven for 30 minutes. Thereafter, the engine was stopped, and the transition of the temperature near the tip of the injector (temperature near the tip) was measured with a temperature sensor. Based on the measured temperature transition, the graph of FIG. 8 was created.
 図8を参照して、本例では、エンジンを停止した後、時間の経過とともに、先端近傍温度は上昇した。そして、エンジンを停止してから約10分後に、先端近傍温度は120℃を超えた。その後、インジェクタ先端近傍の温度は、時間の経過とともに徐々に低下した。 Referring to FIG. 8, in this example, the temperature near the tip increased with time after the engine was stopped. And about 10 minutes after stopping the engine, the temperature near the tip exceeded 120 ° C. Thereafter, the temperature near the injector tip gradually decreased with time.
 以上の例でも示されるように、エンジン21を停止した後、先端近傍温度は、時間の経過とともにいったん上昇し、その後、徐々に低下する。一般的に、先端近傍温度が120℃を超えると、ベーパロックが発生しやすくなることが知られている。したがって、先端近傍温度を、ベーパロックが発生しやすい温度未満に維持できる方が好ましい。 As also shown in the above example, after the engine 21 is stopped, the temperature near the tip once increases with the passage of time and then gradually decreases. In general, it is known that when the temperature in the vicinity of the tip exceeds 120 ° C., vapor lock is likely to occur. Therefore, it is preferable to maintain the tip vicinity temperature below a temperature at which vapor lock is likely to occur.
 エンジン21が停止した後の燃料の気化を抑制するため、制御装置500は、ベーパロック抑制処理を実行する。制御装置500は、エンジン21を停止した後、先端近傍温度を監視する。そして、先端近傍温度が基準温度を超えた場合、制御装置500は、燃料噴射装置520を制御して、噴射ノズル35から燃料を噴射する。噴射された燃料は吸気ポート221内で気化し、周囲の熱を奪う。そのため、先端近傍温度が低下する。 In order to suppress fuel vaporization after the engine 21 is stopped, the control device 500 executes a vapor lock suppression process. The control device 500 monitors the tip vicinity temperature after stopping the engine 21. When the tip vicinity temperature exceeds the reference temperature, the control device 500 controls the fuel injection device 520 to inject fuel from the injection nozzle 35. The injected fuel is vaporized in the intake port 221 and takes away ambient heat. Therefore, the tip vicinity temperature is lowered.
 基準温度は、ベーパロックが発生しやすい温度よりも低めの温度に設定する。基準温度は経験的に決定された値でもよいし、燃料の種類により変動してもよい。基準温度はたとえば、110℃~115℃程度である。しかしながら、基準温度はこの範囲に限定されない。 The reference temperature is set to a temperature lower than the temperature at which vapor lock is likely to occur. The reference temperature may be an empirically determined value or may vary depending on the type of fuel. The reference temperature is, for example, about 110 ° C. to 115 ° C. However, the reference temperature is not limited to this range.
 燃料温度は低いため、燃料の噴射により、先端近傍温度は低下する。その結果、インジェクタ34内の燃料が気化するのを抑制でき、ベーパロックの発生を抑制できる。以下、ベーパロック抑制処理について詳述する。 ∙ Since the fuel temperature is low, the temperature near the tip decreases due to fuel injection. As a result, the fuel in the injector 34 can be prevented from being vaporized, and the occurrence of vapor lock can be suppressed. Hereinafter, the vapor lock suppression process will be described in detail.
 [ベーパロック抑制処理の詳細]
 図9はベーパロック抑制処理の詳細を示すフロー図である。図9を参照して、制御装置500内のCPU420は、エンジン停止操作がされたか否かを監視する(S1)。CPU420は、ユーザ操作によりスタータスイッチ501から出力されたエンジン停止信号を受けたとき、エンジン停止操作がされたと判断する(S1でYES)。このとき、CPU420は、点火プラグ505の制御を停止し、インジェクタ34の制御をいったん停止する(S2)。これにより、点火プラグ505及びインジェクタ34が停止するため、ピストン208が停止する。
[Details of vapor lock suppression processing]
FIG. 9 is a flowchart showing details of the vapor lock suppression process. Referring to FIG. 9, CPU 420 in control device 500 monitors whether an engine stop operation has been performed (S1). When the CPU 420 receives the engine stop signal output from the starter switch 501 by a user operation, the CPU 420 determines that the engine stop operation has been performed (YES in S1). At this time, the CPU 420 stops the control of the spark plug 505 and temporarily stops the control of the injector 34 (S2). Thereby, since the spark plug 505 and the injector 34 are stopped, the piston 208 is stopped.
 CPU420はさらに、クランク角センサ502から出力されるパルス信号に基づいて、クランク角を監視する(S3)。ピストン208の動作が停止したとき、クランクシャフト57の動作も停止する。CPU420は、クランク角を検知することにより、クランクシャフト57の動作が停止したか否かを判断する。 The CPU 420 further monitors the crank angle based on the pulse signal output from the crank angle sensor 502 (S3). When the operation of the piston 208 stops, the operation of the crankshaft 57 also stops. The CPU 420 determines whether or not the operation of the crankshaft 57 has stopped by detecting the crank angle.
 クランクシャフト57が停止した後(S3でYES)、CPU420は、インジェクタ34の先端近傍温度を基準温度と比較して、必要に応じて燃料ポンプ550及びインジェクタ34を制御して燃料を噴射する(S100:温度比較処理)。 After the crankshaft 57 is stopped (YES in S3), the CPU 420 compares the temperature near the tip of the injector 34 with the reference temperature, and controls the fuel pump 550 and the injector 34 as necessary to inject fuel (S100). : Temperature comparison process).
 温度比較処理(S100)では、CPU420は、カウンタn(nは0を含む自然数)をリセットしてn=0にする。CPU420はさらに、噴射フラグをリセットして「0」にする。噴射フラグは、ベーパロック抑制処理において、燃料の噴射が行われたか否かを示すフラグである。噴射フラグが「0」である場合、燃料の噴射が行われなかったことを示す。噴射フラグが「1」である場合、燃料の噴射が行われたことを示す。カウンタn及び噴射フラグはメモリ421に格納される。 In the temperature comparison process (S100), the CPU 420 resets the counter n (n is a natural number including 0) so that n = 0. The CPU 420 further resets the injection flag to “0”. The injection flag is a flag indicating whether or not fuel is injected in the vapor lock suppression process. When the injection flag is “0”, it indicates that the fuel is not injected. When the injection flag is “1”, it indicates that fuel has been injected. The counter n and the injection flag are stored in the memory 421.
 次に、CPU420は、クランク停止後の時刻t0におけるインジェクタ34の先端近傍温度Tn=T0を取得する(S4)。具体的には、温度センサ504から出力される信号に基づいて、CPU420は、先端近傍温度T0を取得する。CPU420は、得られた先端近傍温度T0をメモリ421に保存する(S4)。 Next, the CPU 420 obtains the tip vicinity temperature Tn = T0 of the injector 34 at time t0 after the crank stop (S4). Specifically, based on the signal output from the temperature sensor 504, the CPU 420 acquires the tip vicinity temperature T0. The CPU 420 stores the obtained tip vicinity temperature T0 in the memory 421 (S4).
 次に、CPU420は、先端近傍温度T0が基準温度を超えるか否かを判断する(S5)。先端近傍温度T0が基準温度を超える場合(S5でYES)、インジェクタ34内の燃料が気化する可能性が高い。そこで、CPU420は、インジェクタ34を制御して、燃料を噴射する(S9)。燃料の噴射量は、予め設定されていてもよいし、得られた先端近傍温度Tnと基準温度との差分値に応じて決定されてもよい。噴射された燃料の温度は先端近傍温度Tnよりも低いため、さらに、燃料が吸気ポート221内で気化するときの気化潜熱により、先端近傍温度Tnは低下する。 Next, the CPU 420 determines whether or not the tip vicinity temperature T0 exceeds the reference temperature (S5). When the tip vicinity temperature T0 exceeds the reference temperature (YES in S5), the fuel in the injector 34 is highly likely to vaporize. Therefore, the CPU 420 controls the injector 34 to inject fuel (S9). The fuel injection amount may be set in advance, or may be determined according to the difference value between the obtained tip vicinity temperature Tn and the reference temperature. Since the temperature of the injected fuel is lower than the tip vicinity temperature Tn, the tip vicinity temperature Tn is further lowered by the latent heat of vaporization when the fuel is vaporized in the intake port 221.
 クランクシャフト57が停止しているとき、吸気弁210は一般的に閉じている。そのため、噴射された燃料は、吸気ポート221内に溜まる。 When the crankshaft 57 is stopped, the intake valve 210 is generally closed. Therefore, the injected fuel accumulates in the intake port 221.
 燃料を噴射した後、CPU420は、燃料の噴射量をメモリ421に保存する(S10)。CPU420はさらに、燃料噴射フラグを「1」に更新する。燃料の噴射が行われたためである。なお、ステップS10において、CPU420は、燃料の噴射量の累積値をメモリ421に保存する。したがって、燃料の噴射が複数回行われた場合、CPU420はステップS10において、それらの噴射量の累積値をメモリ421に保存する。 After the fuel is injected, the CPU 420 stores the fuel injection amount in the memory 421 (S10). The CPU 420 further updates the fuel injection flag to “1”. This is because fuel was injected. In step S <b> 10, the CPU 420 stores the cumulative value of the fuel injection amount in the memory 421. Therefore, when fuel injection is performed a plurality of times, the CPU 420 stores the cumulative value of these injection amounts in the memory 421 in step S10.
 エンジンが再始動するとき、ステップS9で噴射された燃料も燃焼される。そこで、CPU420は、噴射量補正処理において、ステップS10で保存された燃料の噴射量を考慮して、エンジン再始動時の燃料噴射量を補正する。 When the engine restarts, the fuel injected in step S9 is also burned. Therefore, the CPU 420 corrects the fuel injection amount at the time of restarting the engine in the injection amount correction process in consideration of the fuel injection amount stored in step S10.
 燃料を噴射し(S9)、噴射量を記録した後(S10)、CPU420は、カウントnをインクリメントしてn=1とする(S11)。CPU420はさらに、ステップS4で先端近傍温度T0を取得してから基準時間が経過したか否かを判断する(S12)。基準時間が経過したとき(S12でYES)、CPU420は、ステップS4に戻って温度比較処理(S100)を再び実行する。要するに、CPU420は、ベーパロック抑制処理を終了するまで、基準時間ごとに、温度比較処理(S100)を実行する。 After injecting fuel (S9) and recording the injection amount (S10), the CPU 420 increments the count n to n = 1 (S11). Further, the CPU 420 determines whether or not the reference time has elapsed after obtaining the tip vicinity temperature T0 in step S4 (S12). When the reference time has elapsed (YES in S12), the CPU 420 returns to step S4 and executes the temperature comparison process (S100) again. In short, the CPU 420 executes the temperature comparison process (S100) for each reference time until the vapor lock suppression process is completed.
 一方、ステップS5での判断の結果、先端近傍温度T0が基準温度未満である場合(S5でNO)、CPU420は、先端近傍温度が時間の経過に応じて上昇しているか、下降しているかを判断する(S6~S8)。CPU420は、先端近傍温度の変動(時間の経過に応じて上昇又は下降)を判断することにより、ベーパロック抑制処理を継続するか終了するかを決定する。 On the other hand, as a result of the determination in step S5, when the tip vicinity temperature T0 is lower than the reference temperature (NO in S5), the CPU 420 determines whether the tip vicinity temperature increases or decreases with the passage of time. Judgment is made (S6 to S8). The CPU 420 determines whether to continue or end the vapor lock suppression process by determining a change in temperature near the tip (increase or decrease as time elapses).
 CPU420は、取得された複数の先端近傍温度のうち、最新の先端近傍温度Tnよりも1つ前に取得された先端近傍温度Tn-1がメモリ421に格納されているか否かを判断する(S6)。本例では、最新の先端近傍温度はT0であり、それ以前の先端近傍温度はメモリ421に保存されていない。そこで、CPU420は、先端近傍温度Tn-1がメモリ421に保存されていないと判断する(S6でNO)。このとき、CPU420は、カウンタnをインクリメントしてn=1とし(S11)、基準時間経過後(S12でYES)に温度比較処理(S100)を再び実行し、先端近傍温度T1を取得する(S4)。先端近傍温度T1が基準温度未満である場合(S5でNO)、CPU420は、先端近傍温度Tn-1(本例では、先端近傍温度T0)がメモリ421に保存されていると判断する(S6でYES)。そこで、CPU420は、先端近傍温度Tnと、先端近傍温度Tn-1とを用いて、先端近傍温度が時間の経過に応じて上昇しているか否かを判断する(S7及びS8)。具体的には、CPU420は、式(1)を用いて、先端近傍温度Tnと、先端近傍温度Tn-1との差分値ΔTを求める(S7)。
 ΔT=Tn-Tn-1 (1)
The CPU 420 determines whether or not the tip vicinity temperature Tn−1 acquired immediately before the latest tip vicinity temperature Tn among the plurality of acquired tip vicinity temperatures is stored in the memory 421 (S6). ). In this example, the latest tip vicinity temperature is T 0, and the tip tip temperature before that is not stored in the memory 421. Therefore, CPU 420 determines that tip vicinity temperature Tn-1 is not stored in memory 421 (NO in S6). At this time, the CPU 420 increments the counter n to n = 1 (S11), and again executes the temperature comparison process (S100) after the reference time has elapsed (YES in S12) to acquire the tip vicinity temperature T1 (S4). ). If the tip vicinity temperature T1 is lower than the reference temperature (NO in S5), the CPU 420 determines that the tip vicinity temperature Tn-1 (in this example, the tip vicinity temperature T0) is stored in the memory 421 (S6). YES). Therefore, the CPU 420 determines whether or not the tip vicinity temperature has increased with the passage of time using the tip vicinity temperature Tn and the tip vicinity temperature Tn−1 (S7 and S8). Specifically, the CPU 420 obtains a difference value ΔT between the tip vicinity temperature Tn and the tip vicinity temperature Tn−1 using Expression (1) (S7).
ΔT = Tn-Tn-1 (1)
 CPU420は、得られた差分値ΔTに基づいて、先端近傍温度が上昇傾向にあるか下降傾向にあるかを判断する(S8)。差分値ΔTが正(プラス)である場合、CPU420は、先端近傍温度が時間の経過に応じて上昇していると判断する(S8でNO)。この場合、時間の経過に応じて先端近傍温度Tnが上昇し、基準温度を超える可能性がある。そこで、CPU420は、先端近傍温度の監視を継続するため、ステップS11に進み、次の温度比較処理(S100)を実行する。要するに、CPU420は、ベーパロック抑制処理を継続する。 CPU 420 determines whether or not the tip vicinity temperature tends to increase or decrease based on the obtained difference value ΔT (S8). When the difference value ΔT is positive (plus), the CPU 420 determines that the tip vicinity temperature increases with the passage of time (NO in S8). In this case, the tip vicinity temperature Tn increases with the passage of time, and may exceed the reference temperature. Therefore, the CPU 420 proceeds to step S11 in order to continue monitoring the tip vicinity temperature, and executes the next temperature comparison process (S100). In short, the CPU 420 continues the vapor lock suppression process.
 以上のとおり、CPU420は、先端近傍温度Tnが基準温度未満である場合、先端近傍温度Tnと、前回の温度比較処理で得られた先端近傍温度Tn-1とに基づいて、先端近傍温度が上昇傾向であるか、下降傾向であるかを継続的に監視する。 As described above, when the tip vicinity temperature Tn is lower than the reference temperature, the CPU 420 increases the tip vicinity temperature based on the tip vicinity temperature Tn and the tip vicinity temperature Tn−1 obtained in the previous temperature comparison process. Monitor continuously whether trending or downtrend.
 一方、ステップS8での判断の結果、差分値ΔTが負(マイナス)である場合、CPU420は、先端近傍温度Tnが時間の経過に応じて下降していると判断する(S8でYES)。この場合、先端近傍温度Tnは今後、低下するため、基準温度を超えない。したがって、CPU420は、ベーパロック抑制処理を終了する。このとき、制御装置500は動作を停止する。このように、先端近傍温度が下降していれば、制御装置500は動作を停止するため、過剰な電力消費を抑制できる。 On the other hand, if the difference value ΔT is negative (minus) as a result of the determination in step S8, the CPU 420 determines that the tip vicinity temperature Tn is decreasing with the passage of time (YES in S8). In this case, the tip vicinity temperature Tn will decrease in the future, and therefore does not exceed the reference temperature. Therefore, the CPU 420 ends the vapor lock suppression process. At this time, the control device 500 stops operating. Thus, if the tip vicinity temperature is falling, since the control apparatus 500 stops operation | movement, it can suppress excessive power consumption.
 なお、CPU420は、ステップS8の判断後(S8でYES)、ベーパロック抑制処理を終了する前に、メモリ421に格納された燃料フラグ及び燃料の累積噴射量を不揮発性メモリ422に格納する。燃料フラグ及び燃料の累積噴射量は、噴射量補正処理に利用されるためである。 The CPU 420 stores the fuel flag and the cumulative fuel injection amount stored in the memory 421 in the non-volatile memory 422 after the determination in step S8 (YES in S8) and before ending the vapor lock suppression process. This is because the fuel flag and the cumulative injection amount of fuel are used for the injection amount correction process.
 図10は、ベーパロック処理を実施した場合の、エンジン21を停止した後の先端近傍温度の推移を示すグラフである。図10は以下の方法により得られた。図8でグラフを得るために製造された鞍乗り型車両を利用した。鞍乗り型車両内の制御装置により、ベーパロック抑制処理を実行した。このとき、基準温度は115℃とした。 FIG. 10 is a graph showing the transition of the temperature near the tip after the engine 21 is stopped when the vapor lock process is performed. FIG. 10 was obtained by the following method. A saddle-ride type vehicle manufactured to obtain the graph in FIG. 8 was used. The vapor lock suppression process was executed by the control device in the saddle-ride type vehicle. At this time, the reference temperature was 115 ° C.
 先端近傍温度は、エンジンが停止してから300秒経過後に、基準温度を超えた。そのため、制御装置により、燃料が噴射された。燃料はレギュラーガソリンを使用した。本例では、噴射後も、先端近傍温度の測定を継続した。測定結果に基づいて、図10のグラフを作成した。 The temperature near the tip exceeded the reference temperature 300 seconds after the engine stopped. Therefore, the fuel was injected by the control device. Regular gasoline was used as the fuel. In this example, the measurement of the temperature near the tip was continued even after the injection. Based on the measurement results, the graph of FIG. 10 was created.
 図10を参照して、ベーパロック処理を実行することにより、燃料噴射後(300秒後)の先端近傍温度は、時間の経過とともに下降した。図8と比較して、図10では、先端近傍温度の最高温度が8℃程度低下した。 Referring to FIG. 10, by performing the vapor lock process, the temperature near the tip after fuel injection (after 300 seconds) decreased with the passage of time. Compared to FIG. 8, in FIG. 10, the maximum temperature near the tip decreased by about 8 ° C.
 以上のとおり、エンジン21が停止したとき、制御装置500は、先端近傍温度を検知する。そして、先端近傍温度が基準温度を超える場合、インジェクタ34を制御して燃料を噴射する。噴射される燃料により、先端近傍温度は低下する。そのため、インジェクタ34内の燃料が気化するのを抑制できる。そのため、空冷のエンジン21であっても、ベーパロックの発生を抑制できる。 As described above, when the engine 21 is stopped, the control device 500 detects the tip vicinity temperature. When the tip vicinity temperature exceeds the reference temperature, the injector 34 is controlled to inject fuel. The temperature near the tip is lowered by the injected fuel. Therefore, it can suppress that the fuel in the injector 34 vaporizes. For this reason, even the air-cooled engine 21 can suppress the occurrence of vapor lock.
 制御装置500はさらに、先端近傍温度が基準温度未満である場合、時間経過に伴う先端近傍温度の変動を監視する。そして、先端近傍温度が時間の経過に応じて上昇している場合に限り、制御装置500は、先端近傍温度の監視を継続する。これにより、先端近傍温度が基準温度を超えたときに、制御装置500は速やかに燃料を噴射し、先端近傍温度を低下できる。一方、先端近傍温度が時間の経過とともに下降している場合、制御装置500は動作を停止する。これにより、ベーパロック抑制処理による過剰な電力消費が抑制される。 Further, when the temperature near the tip is lower than the reference temperature, the control device 500 monitors the change in the temperature near the tip with time. Then, only when the temperature near the tip increases with the passage of time, the control device 500 continues to monitor the temperature near the tip. As a result, when the temperature near the tip exceeds the reference temperature, the control device 500 can quickly inject fuel and reduce the temperature near the tip. On the other hand, when the temperature in the vicinity of the tip is decreasing with time, the control device 500 stops its operation. As a result, excessive power consumption due to the vapor lock suppression process is suppressed.
 [噴射量補正処理の概要]
 ベーパロック抑制処理により燃料が噴射された後、エンジン21を再び始動するとき、ベーパロック抑制処理時に噴射された燃料により、エンジン始動時の空燃比が燃料リッチになる。この場合、燃費が低下する。
[Overview of injection amount correction processing]
After the fuel is injected by the vapor lock suppression process, when the engine 21 is started again, the fuel injected at the time of the vapor lock suppression process makes the air-fuel ratio at the time of engine startup rich. In this case, fuel consumption decreases.
 そこで、制御装置500は、ベーパロック抑制処理において燃料が噴射されたとき、燃料の噴射量に応じてエンジン始動時の燃料噴射量を補正する。これにより、制御装置500は、エンジン始動時の空燃比が過濃になるのを抑制できる。以下、噴射量補正処理の詳細を説明する。 Therefore, when the fuel is injected in the vapor lock suppression process, the control device 500 corrects the fuel injection amount at the time of starting the engine according to the fuel injection amount. Thereby, the control apparatus 500 can suppress that the air fuel ratio at the time of engine starting becomes excessive. Hereinafter, details of the injection amount correction process will be described.
 [噴射量補正処理の詳細]
 図11は、エンジン始動時の噴射量補正処理の詳細を示すフロー図である。図11を参照して、制御装置500内のCPU420は、ユーザ操作によりスタータスイッチ501から出力されたエンジン始動信号を受けたとき(S21でYES)、エンジン21を始動する。このとき、CPU420は、エンジン21が停止したときに実行されたベーパロック抑制処理において、燃料の噴射がされたか否かを判断する(S22)。このとき、CPU420は、不揮発性メモリ422から噴射フラグを読み出す。噴射フラグが「0」である場合、CPU420は、ベーパロック抑制処理において燃料の噴射は行われていないと判断し(S22でNO)、噴射量補正処理を終了する。この場合、通常の噴射量で燃料が噴射され、エンジン21が始動する。
[Details of injection amount correction processing]
FIG. 11 is a flowchart showing details of the injection amount correction process at the time of starting the engine. Referring to FIG. 11, CPU 420 in control device 500 starts engine 21 when it receives an engine start signal output from starter switch 501 by a user operation (YES in S21). At this time, the CPU 420 determines whether or not fuel has been injected in the vapor lock suppression process executed when the engine 21 is stopped (S22). At this time, the CPU 420 reads the injection flag from the nonvolatile memory 422. When the injection flag is “0”, the CPU 420 determines that fuel is not injected in the vapor lock suppression process (NO in S22), and ends the injection amount correction process. In this case, fuel is injected with a normal injection amount, and the engine 21 is started.
 一方、読み出された噴射フラグが「1」である場合、CPU420は、ベーパロック抑制処理において燃料の噴射が行われたと判断する(S22でYES)。このとき、CPU420は、不揮発性メモリ422から燃料の噴射量を読み出す(S23)。読み出された噴射量は、ベーパロック処理において噴射された燃料の累積値である。 On the other hand, when the read injection flag is “1”, the CPU 420 determines that the fuel is injected in the vapor lock suppression process (YES in S22). At this time, the CPU 420 reads the fuel injection amount from the nonvolatile memory 422 (S23). The read injection amount is a cumulative value of the fuel injected in the vapor lock process.
 CPU420は、読み出された噴射量に基づいて、エンジン始動時の最初の燃料噴射量(以下、始動噴射量という)を決定する(S24)。CPU420は、図9中のステップS9での噴射からの経過時間及び噴射量に基づいて、始動噴射量を決定する。このとき、CPU420は、図12に示す補正テーブルを利用する。補正テーブルは、不揮発性メモリ422に格納さており、噴射量補正処理時に、メモリ421にロードされる。 CPU 420 determines an initial fuel injection amount at the time of engine start (hereinafter referred to as start injection amount) based on the read injection amount (S24). The CPU 420 determines the starting injection amount based on the elapsed time from the injection in step S9 in FIG. 9 and the injection amount. At this time, the CPU 420 uses the correction table shown in FIG. The correction table is stored in the non-volatile memory 422 and is loaded into the memory 421 during the injection amount correction process.
 図12を参照して、補正テーブルは、噴射量ごとに複数のテーブルを有する。図12において、噴射量「1B」、「2B」及び「3B」は、互いに異なる噴射量を示す。補正テーブルは、噴射量「1B」~「kB」(kは0を含まない自然数)分のテーブルを有する。 Referring to FIG. 12, the correction table has a plurality of tables for each injection amount. In FIG. 12, the injection amounts “1B”, “2B”, and “3B” indicate different injection amounts. The correction table includes tables for the injection amounts “1B” to “kB” (k is a natural number not including 0).
 各テーブルには、ベーパロック抑制処理において最後に噴射が行われた時刻からの経過時間と、経過時間に対応する補正係数とが記録されている。経過時間が長い程、補正係数が大きくなる。経過時間が長いほど、噴射された燃料は散逸する。そのため、経過時間が長いほど、噴射された燃料の影響は小さくなる。 In each table, an elapsed time from the last injection time in the vapor lock suppression process and a correction coefficient corresponding to the elapsed time are recorded. The longer the elapsed time, the larger the correction coefficient. The longer the elapsed time, the more fuel is injected. Therefore, the longer the elapsed time, the smaller the influence of the injected fuel.
 CPU420は、ステップS23で読み出された噴射量に基づいて、補正テーブルの中から対応するテーブルを特定する。CPU420はさらに、経過時間を取得する。制御装置500は、図示しないタイマを有する。CPU420は、ベーパロック抑制処理において、最新の噴射が行われた時刻を、不揮発性メモリ422に保存する。CPU420は、タイマが示す時刻と、HDDに保存された時刻とに基づいて、経過時間を算出する。そして、CPU420は、特定されたテーブルから、経過時間に応じた補正係数を読み出す。CPU420はさらに、以下の式(2)に基づいて、始動噴射量を決定する(S24)。
 始動噴射量=通常の噴射量×読み出された補正係数 (2)
The CPU 420 identifies a corresponding table from the correction table based on the injection amount read in step S23. The CPU 420 further acquires the elapsed time. The control device 500 has a timer (not shown). The CPU 420 stores the latest injection time in the nonvolatile memory 422 in the vapor lock suppression process. CPU 420 calculates the elapsed time based on the time indicated by the timer and the time stored in the HDD. Then, the CPU 420 reads a correction coefficient corresponding to the elapsed time from the specified table. The CPU 420 further determines the starting injection amount based on the following equation (2) (S24).
Start injection amount = normal injection amount × read out correction coefficient (2)
 CPU420は、決定された始動噴射量に基づいて、燃料を噴射する(S25)。 CPU 420 injects fuel based on the determined starting injection amount (S25).
 以上の動作により、制御装置500は、ベーパロック抑制処理における燃料噴射量を考慮して、始動噴射量を決定する。そのため、制御装置500は、エンジン始動時の空燃比が過濃になるのを抑制する。 By the above operation, the control device 500 determines the starting injection amount in consideration of the fuel injection amount in the vapor lock suppression process. Therefore, control device 500 prevents the air-fuel ratio at the time of engine start from becoming excessive.
 上述の実施の形態では、インジェクタ34はシリンダヘッド23に配置される。しかしながら、インジェクタ34は主吸気管36に配置されてもよい。たとえば、インジェクタ34が接続管39に配置されてもよい。接続管39に配置されたとき、インジェクタ34は、吸気ポート221に向かって燃料を噴射する。このような場合であっても、エンジン21の停止後に、インジェクタ34の近傍部分の温度が上昇する場合がある。そのため、制御装置500がベーパロック抑制処理を実行すれば、ベーパロックの発生を抑制できる。 In the above-described embodiment, the injector 34 is disposed on the cylinder head 23. However, the injector 34 may be disposed in the main intake pipe 36. For example, the injector 34 may be disposed in the connection pipe 39. When arranged in the connecting pipe 39, the injector 34 injects fuel toward the intake port 221. Even in such a case, the temperature in the vicinity of the injector 34 may rise after the engine 21 is stopped. Therefore, if the control device 500 executes the vapor lock suppression process, the occurrence of vapor lock can be suppressed.
 ただし、上述の実施の形態のように、インジェクタ34がシリンダヘッド23に配置されている場合、ベーパロック抑制処理は、より有効に効果を奏する。 However, when the injector 34 is disposed in the cylinder head 23 as in the above-described embodiment, the vapor lock suppression process is more effective.
 上述の実施の形態では、強制空冷装置50が配置される。しかしながら、強制空冷装置50が配置されず、空冷式のエンジン21が自然空冷されてもよい。このような場合であっても、エンジン21の停止後に、インジェクタ34の近傍部分の温度が上昇する場合がある。ただし、強制空冷装置50が配置された場合の方が、エンジン21が停止した後のインジェクタ34の先端近傍温度が上昇しやすい。したがって、強制空冷装置50が配置された場合、ベーパロック抑制処理は、より有効に効果を奏する。 In the above-described embodiment, the forced air cooling device 50 is arranged. However, the forced air cooling device 50 may not be arranged, and the air-cooled engine 21 may be naturally air-cooled. Even in such a case, the temperature in the vicinity of the injector 34 may rise after the engine 21 is stopped. However, the temperature near the tip of the injector 34 after the engine 21 is stopped is more likely to increase when the forced air cooling device 50 is arranged. Therefore, when the forced air cooling device 50 is arranged, the vapor lock suppression process is more effective.
 上述の実施の形態では、ベーパロック抑制処理において、CPU420は、最新の先端近傍温度Tnと、一つ前に得られた先端近傍温度Tn-1とを用いて、先端近傍温度が時間の経過に応じて上昇しているか否かを判断する。しかしながら、CPU420は、最新の先端近傍温度Tnと、それ以前の先端近傍温度T0~Tn-1の中から少なくとも1つを用いて、先端近傍温度の変動を判断してもよい。 In the above-described embodiment, in the vapor lock suppression process, the CPU 420 uses the latest tip vicinity temperature Tn and the tip vicinity temperature Tn−1 obtained one time before, and the tip vicinity temperature changes with time. It is judged whether it is rising. However, the CPU 420 may determine the fluctuation of the tip vicinity temperature using at least one of the latest tip vicinity temperature Tn and the previous tip vicinity temperatures T0 to Tn-1.
 上述の実施の形態では、噴射量補正処理において、CPU420は、ベーパロック抑制処理時に噴射された燃料の噴射量と、最新の噴射が行われてからの経過時間とに基づいて、始動噴射量を決定する。しかしながら、CPU420は、燃料の噴射量又は経過時間のいずれか一方のみを利用して、始動噴射量を決定してもよい。 In the above-described embodiment, in the injection amount correction process, the CPU 420 determines the starting injection amount based on the injection amount of the fuel injected during the vapor lock suppression process and the elapsed time since the latest injection was performed. To do. However, the CPU 420 may determine the starting injection amount by using only one of the fuel injection amount and the elapsed time.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (10)

  1.  吸気管と、
     前記吸気管と接続される吸気ポートを含むシリンダヘッドを含む、空冷式のエンジンと、
     前記吸気管又は前記シリンダヘッドに取り付けられ、前記吸気ポートに向かって燃料を噴射するインジェクタと、
     前記インジェクタの先端近傍の温度を検知する温度センサと、
     前記インジェクタを制御する制御装置とを備え、
     前記制御装置は、
     前記エンジンが停止したとき、前記温度センサから前記インジェクタの先端近傍の温度を取得する温度取得手段と、
     前記取得された温度を基準温度と比較する比較手段と、
     前記取得された温度が前記基準温度を超えるとき、前記インジェクタを制御して前記燃料を噴射する第1制御手段とを含む、鞍乗り型車両。
    An intake pipe,
    An air-cooled engine including a cylinder head including an intake port connected to the intake pipe;
    An injector attached to the intake pipe or the cylinder head and injecting fuel toward the intake port;
    A temperature sensor for detecting the temperature in the vicinity of the tip of the injector;
    A control device for controlling the injector,
    The controller is
    Temperature acquisition means for acquiring the temperature in the vicinity of the tip of the injector from the temperature sensor when the engine is stopped;
    A comparing means for comparing the acquired temperature with a reference temperature;
    A saddle-ride type vehicle, comprising: first control means for controlling the injector to inject the fuel when the acquired temperature exceeds the reference temperature.
  2.  請求項1に記載の鞍乗り型車両であって、
     前記制御装置はさらに、
     前記比較手段による比較の結果、前記取得された温度が前記基準温度未満であるとき、前記温度が時間の経過に応じて上昇しているか否かを判断する温度判断手段を含み、
     前記温度が上昇している場合、前記温度取得手段は、基準時間経過後に前記インジェクタの先端近傍の温度をさらに取得し、
     前記比較手段は、前記温度が取得されるごとに、前記取得された温度と前記基準温度とを比較する、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 1,
    The control device further includes:
    As a result of the comparison by the comparison means, when the acquired temperature is less than the reference temperature, including a temperature determination means for determining whether the temperature is rising over time,
    If the temperature is rising, the temperature acquisition means further acquires the temperature near the tip of the injector after a reference time has elapsed,
    The comparison means compares the acquired temperature with the reference temperature each time the temperature is acquired.
  3.  請求項2に記載の鞍乗り型車両であって、
     前記温度判断手段は、前記温度取得手段により取得された複数の温度のうち、最新の温度と前記最新の温度より以前に取得された温度とに基づいて、前記温度が上昇しているか否かを判断する、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 2,
    The temperature determination means determines whether the temperature is rising based on the latest temperature and the temperature acquired before the latest temperature among the plurality of temperatures acquired by the temperature acquisition means. Judgment type vehicle to judge.
  4.  請求項2に記載の鞍乗り型車両であって、
     前記温度判断手段による判断の結果、前記温度が時間の経過に応じて下降している場合、前記制御装置は、動作を停止する、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 2,
    As a result of the determination by the temperature determination means, the control device stops the operation when the temperature decreases with the passage of time.
  5.  請求項1に記載の鞍乗り型車両であって、
     前記制御装置はさらに、
     前記エンジンを始動するとき、前記第1制御手段が既に前記燃料を噴射したか否かを判断する噴射判断手段と、
     前記第1制御手段が既に前記燃料を噴射しているとき、前記第1制御手段による燃料の噴射量及び/又は噴射後の経過時間に応じて、エンジン始動時の燃料の噴射量を決定する噴射量決定手段と、
     前記インジェクタを制御して前記決定された噴射量の燃料を噴射する第2制御手段とを含む、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 1,
    The control device further includes:
    Injection determining means for determining whether or not the first control means has already injected the fuel when starting the engine;
    When the first control means has already injected the fuel, the injection for determining the fuel injection quantity at the time of starting the engine according to the fuel injection quantity and / or the elapsed time after the injection by the first control means. A quantity determining means;
    And a second control means for controlling the injector to inject the determined amount of fuel.
  6.  請求項1に記載の鞍乗り型車両であって、
     前記インジェクタは、前記シリンダヘッドに配置される、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 1,
    The injector is a saddle-ride type vehicle disposed on the cylinder head.
  7.  請求項6に記載の鞍乗り型車両であって、
     前記エンジンはさらに、
     前記クランクシャフトを収納するクランクケースを含み、
     前記鞍乗り型車両はさらに、
     前記エンジンの外側に配置され、前記クランクシャフトと連動するファンを含み、前記ファンにより前記エンジンを空冷する強制空冷装置を備える、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 6,
    The engine further includes:
    Including a crankcase for storing the crankshaft;
    The saddle-ride type vehicle further includes
    A saddle-ride type vehicle including a fan disposed outside the engine and interlocking with the crankshaft, and including a forced air cooling device that cools the engine by the fan.
  8.  請求項7に記載の鞍乗り型車両であって、
     前記強制空冷装置は、前記シリンダヘッドの一部と前記ファンとを覆い、前記ファンによる空気の流れを前記シリンダヘッドに導くシュラウドを含む、鞍乗り型車両。
    A saddle-ride type vehicle according to claim 7,
    The forced air cooling device includes a shroud that covers a part of the cylinder head and the fan, and includes a shroud that guides an air flow from the fan to the cylinder head.
  9.  吸気管と、
     前記吸気管と接続される吸気ポートを含むシリンダヘッドを含む、空冷式のエンジンと、
     前記吸気管又はシリンダヘッドに取り付けられ、前記吸気ポートに向かって燃料を噴射するインジェクタと、
     前記インジェクタの先端近傍の温度を検知する温度センサと、
     前記インジェクタを制御する制御装置とを備え、
     前記制御装置は、
     前記エンジンが停止したとき、前記温度センサから前記インジェクタの先端近傍の温度を取得する温度取得手段と、
     前記取得された温度を基準温度と比較する比較手段と、
     前記取得された温度が前記基準温度を超えるとき、前記インジェクタを制御して前記燃料を噴射する第1制御手段とを含む、エンジンユニット。
    An intake pipe,
    An air-cooled engine including a cylinder head including an intake port connected to the intake pipe;
    An injector attached to the intake pipe or cylinder head and injecting fuel toward the intake port;
    A temperature sensor for detecting the temperature in the vicinity of the tip of the injector;
    A control device for controlling the injector,
    The controller is
    Temperature acquisition means for acquiring the temperature in the vicinity of the tip of the injector from the temperature sensor when the engine is stopped;
    A comparing means for comparing the acquired temperature with a reference temperature;
    And an engine unit that controls the injector to inject the fuel when the acquired temperature exceeds the reference temperature.
  10.  吸気管と、前記吸気管と接続される吸気ポートを含むシリンダヘッドを含む空冷式のエンジンと、前記吸気管又はシリンダヘッドに取り付けられ前記吸気ポートに向かって燃料を噴射するインジェクタと、前記インジェクタの先端近傍の温度を検知する温度センサとを備える鞍乗り型車両に利用される制御装置であって、
     前記エンジンが停止したとき、前記温度センサから前記インジェクタの先端近傍の温度を取得する温度取得手段と、
     前記取得された温度を基準温度と比較する比較手段と、
     前記取得された温度が前記基準温度を超えるとき、前記インジェクタを制御して前記燃料を噴射する第1制御手段とを備える、制御装置。
    An air-cooled engine including an intake pipe, a cylinder head including an intake port connected to the intake pipe, an injector attached to the intake pipe or the cylinder head, and injecting fuel toward the intake port; and A control device used in a saddle-ride type vehicle provided with a temperature sensor for detecting the temperature in the vicinity of the tip,
    Temperature acquisition means for acquiring the temperature in the vicinity of the tip of the injector from the temperature sensor when the engine is stopped;
    A comparing means for comparing the acquired temperature with a reference temperature;
    And a first control unit that controls the injector and injects the fuel when the acquired temperature exceeds the reference temperature.
PCT/JP2011/066331 2010-09-07 2011-07-19 Saddled vehicle, engine unit, and control device WO2012032859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010199665 2010-09-07
JP2010-199665 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012032859A1 true WO2012032859A1 (en) 2012-03-15

Family

ID=45810463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066331 WO2012032859A1 (en) 2010-09-07 2011-07-19 Saddled vehicle, engine unit, and control device

Country Status (1)

Country Link
WO (1) WO2012032859A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194679A (en) * 2012-03-22 2013-09-30 Fuji Heavy Ind Ltd Fuel supply device
WO2015186763A1 (en) * 2014-06-03 2015-12-10 株式会社ミクニ Starting control device for engine
CN105201612A (en) * 2014-06-10 2015-12-30 光阳工业股份有限公司 Engine air deflecting structure for motorcycle
JP6002347B1 (en) * 2016-05-17 2016-10-05 善隆 中山 Vehicle engine control device
JP2019094824A (en) * 2017-11-22 2019-06-20 ダイハツ工業株式会社 Controller of internal combustion engine
JP2020020325A (en) * 2018-08-03 2020-02-06 マツダ株式会社 Cooling device for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167133A (en) * 1985-01-21 1986-07-28 Toyota Motor Corp Fuel injection controller of internal-combustion engine
JPH02112611A (en) * 1988-10-19 1990-04-25 Mitsubishi Electric Corp Cooling device for engine
JPH07253041A (en) * 1994-03-15 1995-10-03 Toyota Motor Corp Fuel injection controller
JPH07332084A (en) * 1994-06-11 1995-12-19 Honda Motor Co Ltd Forcibly air cooling type internal combustion engine
JPH08186926A (en) * 1994-12-28 1996-07-16 Jatco Corp Controller for automobile
JP2006063899A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Control device for internal combustion engine, automobile equipped with the same and method for estimating temperature of fuel injection valve of internal combustion engine
JP2007137374A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Engine unit, hybrid car equipped with engine unit and method for controlling engine unit
JP2008190425A (en) * 2007-02-05 2008-08-21 Honda Motor Co Ltd Forcibly air-coolrd internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167133A (en) * 1985-01-21 1986-07-28 Toyota Motor Corp Fuel injection controller of internal-combustion engine
JPH02112611A (en) * 1988-10-19 1990-04-25 Mitsubishi Electric Corp Cooling device for engine
JPH07253041A (en) * 1994-03-15 1995-10-03 Toyota Motor Corp Fuel injection controller
JPH07332084A (en) * 1994-06-11 1995-12-19 Honda Motor Co Ltd Forcibly air cooling type internal combustion engine
JPH08186926A (en) * 1994-12-28 1996-07-16 Jatco Corp Controller for automobile
JP2006063899A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Control device for internal combustion engine, automobile equipped with the same and method for estimating temperature of fuel injection valve of internal combustion engine
JP2007137374A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Engine unit, hybrid car equipped with engine unit and method for controlling engine unit
JP2008190425A (en) * 2007-02-05 2008-08-21 Honda Motor Co Ltd Forcibly air-coolrd internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194679A (en) * 2012-03-22 2013-09-30 Fuji Heavy Ind Ltd Fuel supply device
WO2015186763A1 (en) * 2014-06-03 2015-12-10 株式会社ミクニ Starting control device for engine
CN106662027A (en) * 2014-06-03 2017-05-10 株式会社三国 Starting control device for engine
CN105201612A (en) * 2014-06-10 2015-12-30 光阳工业股份有限公司 Engine air deflecting structure for motorcycle
JP6002347B1 (en) * 2016-05-17 2016-10-05 善隆 中山 Vehicle engine control device
JP2017206979A (en) * 2016-05-17 2017-11-24 善隆 中山 Vehicle engine control device
JP2019094824A (en) * 2017-11-22 2019-06-20 ダイハツ工業株式会社 Controller of internal combustion engine
JP7062332B2 (en) 2017-11-22 2022-05-06 ダイハツ工業株式会社 Internal combustion engine control device
JP2020020325A (en) * 2018-08-03 2020-02-06 マツダ株式会社 Cooling device for vehicle
JP7125669B2 (en) 2018-08-03 2022-08-25 マツダ株式会社 vehicle cooling system

Similar Documents

Publication Publication Date Title
WO2012032859A1 (en) Saddled vehicle, engine unit, and control device
JP4148233B2 (en) Engine fuel injection control device
JP2009074367A (en) Controller of internal combustion engine and saddle-riding vehicle having the same
JP4720668B2 (en) Piston cooling system for internal combustion engine
JP2006348861A (en) Starter of internal combustion engine
JP2006207575A (en) Internal combustion engine and control method thereof
JP5760633B2 (en) Control device for internal combustion engine
JP2004052724A (en) Lubricating oil feeder for engine, and outboard engine using the same
JP2008232007A (en) Start control device of internal combustion engine
JP2008223583A (en) Control device for engine
JP5409538B2 (en) Fuel injection control device for internal combustion engine
WO2014122823A1 (en) Vehicle controller
JP2016183583A (en) Control device of internal combustion engine
TWI568923B (en) Air-cooled engine unit
JP5912743B2 (en) Engine control method
JP2005069131A (en) Control device of internal combustion engine with variable compression ratio mechanism
JP4269922B2 (en) Control device for internal combustion engine
EP2149692B1 (en) Starting system for an internal combustion engine with two fuels
JP5245910B2 (en) Idle rotational speed control device for internal combustion engine
JP4393533B2 (en) Fuel injection control device for internal combustion engine
JP2009068447A (en) Control device for internal combustion engine and saddle-ride type vehicle provided with same
JP2007077954A (en) Engine starting device
JP2010255512A (en) Engine control device
EP2530289B1 (en) Activation determining system for oxygen sensor
JP2010156268A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP