WO2012032783A1 - 通信システム、通信方法、並びに移動端末及び移動基地局装置 - Google Patents

通信システム、通信方法、並びに移動端末及び移動基地局装置 Download PDF

Info

Publication number
WO2012032783A1
WO2012032783A1 PCT/JP2011/005058 JP2011005058W WO2012032783A1 WO 2012032783 A1 WO2012032783 A1 WO 2012032783A1 JP 2011005058 W JP2011005058 W JP 2011005058W WO 2012032783 A1 WO2012032783 A1 WO 2012032783A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile
connection
mobile terminal
bearer
Prior art date
Application number
PCT/JP2011/005058
Other languages
English (en)
French (fr)
Inventor
池田 新吉
青山 高久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/818,238 priority Critical patent/US9167623B2/en
Priority to JP2012532869A priority patent/JP5703301B2/ja
Publication of WO2012032783A1 publication Critical patent/WO2012032783A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1446Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a communication system, a communication method, a mobile terminal, and a mobile base station apparatus for connecting a mobile terminal accommodated in a mobile base station to a local network through an appropriate route.
  • Non-Patent Document 1 A local network connection via a femto base station is being studied by a standardization body that develops cellular standard technology. Particularly, in the 3GPP (3 rd Generation Partnership Project) , local IP access; network architecture as (Local IP Access LIPA), method, development of protocols have been developed (Non-Patent Document 1).
  • Non-Patent Document 1 a mobile terminal specifies an access point name (Access Point Name; hereinafter referred to as APN) as one of identifiers indicating a local network (hereinafter also referred to as a LIPA network) as a connection destination.
  • APN Access Point Name
  • LIPA IP access
  • RIPA Remote IP Access
  • the femto base station installed at home is connected to the operator's core network via a broadband line.
  • the femto base station establishes a connection to the core network by connecting to the nearby macro base station via the cellular line, and maintains the connection of the mobile terminal under the femto base station To do.
  • a technique for expanding the coverage of a cellular communication system using a cellular line is particularly called a relay technique (or mobile relay technique).
  • the relay technology in 3GPP is being studied in TR36.806.
  • a mobile base station When a mobile terminal accommodated in a femto base station that moves as described above (hereinafter referred to as a mobile base station) moves together with the mobile base station, the movement in the cellular system is concealed. In other words, since the upper base station does not change when viewed from the mobile terminal, the movement is not detected, and the movement management process (Tracking Update Procedure specified in TS23.401, Location Update Procedure specified in TS23.060, etc.) ) Or handover processing. Thereby, when the mobile base station accommodates a plurality of mobile terminals, the mobility management signaling from each mobile terminal can be reduced, and the traffic cost can be reduced.
  • the connection to the local network is performed by the mobile terminal explicitly specifying, and switching between LIPA and RIPA is also performed by the mobile terminal by reconnection or by handover processing. It is assumed that
  • a mobile base station In order to solve these problems, there is a method in which a mobile base station establishes a secure tunnel such as a home home gateway and a VPN (Virtual Private Network) and accommodates local network connections of mobile terminals under the mobile base station. Conceivable.
  • a secure tunnel such as a home home gateway and a VPN (Virtual Private Network)
  • TR36.806 discloses two methods for realizing a mobile base station.
  • One is a method of establishing a PDN connection and accommodating the PDN connection of the mobile terminal (UE) on the same as a conventional mobile terminal (called User Equipment; UE).
  • the PDN connection is a connection with a public data network (Public Data Network; PDN).
  • PDN Public Data Network
  • the PDN to which the mobile base station is connected is for routing the UE traffic in the core network, and external reachability such as the Internet is essentially unnecessary.
  • the PDN connected to the mobile base station may cause unnecessary traffic (for example, malicious packets) to be transferred and reduce the security level by causing UE traffic to reach an external network such as the Internet.
  • the relay base station is originally an operator facility, and if the relay base station directly communicates with an external network, the security level is lowered, and it is considered that the relay base station is not implemented as an operator managing the mobile base station.
  • the second method is a method for accommodating UE traffic by establishing only a radio bearer between a mobile base station that functions as a relay node and a macro base station that accommodates the mobile base station.
  • the mobile base station since the mobile base station does not establish a PDN connection, it does not have an IP address. That is, the mobile base station cannot establish a VPN tunnel on the IP network.
  • An object of the present invention is to provide a communication system, a communication method, and a mobile terminal and a mobile device used in the communication method for establishing an appropriate communication path to the local network of the mobile terminal according to the connection form of the mobile base station. It is to provide a base station apparatus.
  • the present invention provides a base station processing unit that receives a connection request from a mobile terminal accommodated by the mobile device, and a local station of the mobile terminal according to a backhaul media to which the mobile device is connected based on the connection request from the mobile terminal.
  • a mobile base station apparatus comprising a switching processing unit that switches a connection to a network to either a local IP connection or a remote IP connection.
  • the mobile base station device also includes a first communication unit that controls communication with the local network, a second communication unit that controls communication with a macro base station, and a third unit that controls communication with the mobile terminal.
  • the connection of the mobile terminal to the local network is switched to the local IP connection
  • the backhaul media is the second communication unit
  • the connection of the mobile terminal to the local network is switched to the remote IP connection.
  • the present invention is capable of accommodating a plurality of mobile terminals including an active mode mobile terminal and an idle mode mobile terminal, connected to a local network, a mobile base station device connected to a local network, and the plurality of mobile terminals
  • a mobile communication system comprising a mobile terminal state and an MME that performs mobile management, wherein the mobile base station device is based on a connection request of the mobile terminal in an active mode according to backhaul media to which the mobile device is connected , Switching the connection of the mobile terminal to the local network to either local IP connection or remote IP, and the MME determines whether the idle mode is in the idle mode based on the bearer modification instruction of the mobile terminal in the idle mode extracted by the local gateway.
  • the present invention can accommodate a plurality of mobile terminals including a mobile terminal in an active mode and a mobile terminal in an idle mode, and can be connected to a local network via a local gateway.
  • a communication system comprising: an MME connected to and configured to perform status management and mobility management of the plurality of mobile terminals, wherein the local gateway is configured to receive the mobile base station from a local network based on reception of a response from the mobile base station device.
  • the active mode For the mobile terminal, it carried a bearer modification request to the mobile base station device, wherein the mobile terminal in idle mode, does not perform bearer modification request to the mobile base station apparatus provides communication system.
  • the present invention is capable of accommodating a plurality of mobile terminals including an active mode mobile terminal and an idle mode mobile terminal, connected to a local network, a mobile base station device connected to a local network, and the plurality of mobile terminals
  • a mobile communication system comprising: a mobile terminal state and a mobile management MME, wherein the mobile base station apparatus detects a backhaul media switching, and establishes a bearer release established by the plurality of mobile terminals accommodated therein
  • the identification information of the own device included in the instruction message is transmitted to the MME, and the MME extracts the plurality of mobile terminals that have established bearers based on the identification information of the mobile base station device, and the extracted plurality
  • a communication system that performs state management and mobility management of mobile terminals is provided.
  • the present invention is capable of accommodating a plurality of mobile terminals including an active mode mobile terminal and an idle mode mobile terminal, connected to a local network, a mobile base station device connected to a local network, and the plurality of mobile terminals
  • a communication system comprising a mobile terminal state and a mobile management MME, wherein when the mobile base station apparatus detects switching of backhaul media, it is included in a bearer modification request established by the plurality of mobile terminals
  • the identification information of the own device is transmitted to the MME, and the MME extracts the plurality of mobile terminals that have established bearers based on the identification information of the mobile base station device, and the plurality of mobile terminals received from the local gateway.
  • a bearer modification request to the mobile base station device is issued for the mobile terminal in the active mode. Subjecting said for the mobile terminal in idle mode, does not perform bearer modification request to the mobile base station device, to provide a communication system.
  • the present invention operates a wireless communication unit that performs processing for connecting to a mobile base station device, a control unit that controls communication via the mobile base station device, and an application that performs communication using an established communication connection
  • An application unit, and the control unit based on a bearer release instruction from the mobile base station device based on backhaul media switching received via the wireless communication unit,
  • the connection to the network is switched to either one of the local IP connection or the remote IP connection
  • the application unit operates an application that performs communication through the communication connection of either the switched local IP connection or remote IP connection.
  • the present invention is also a communication method for switching a connection of a mobile terminal accommodated in a mobile base station device to a local network, wherein a connection request to the local network is transmitted from the mobile terminal to the mobile base station device. And transmitting the connection of the mobile terminal to the local network based on a backhaul medium to which the mobile base station device is connected based on a connection request to the local network from the mobile terminal. And switching to any one of the IP connections.
  • the connection path to the local network of the mobile terminal is either direct connection or remote connection according to the connection form of the mobile base station.
  • an appropriate communication path of the mobile terminal can be established. Furthermore, even when the mobile terminal is accommodated in the mobile base station and the movement in the communication system is concealed, it is possible to prevent the local network connection from being disconnected unexpectedly, and to ensure user convenience.
  • FIG. 3 is a block diagram showing a configuration of mobile base station 20 according to Embodiment 1.
  • A "UE connection process” flow chart of mobile base station 20 according to Embodiment 1
  • B "bearer switching process” flow chart of mobile base station 20 according to Embodiment 1
  • FIG. 2 is a block diagram showing a configuration of mobile terminals 10a and 10b according to Embodiment 1.
  • FIG. 1 The figure which shows the communication system structure which concerns on Embodiment 2.
  • FIG. 2 The figure which shows one state of the communication system which concerns on Embodiment 2.
  • Connection sequence diagram of mobile terminals 10a and 10b according to Embodiment 2 Switching sequence diagram of local network connection in the second embodiment (A) “UE connection process” flowchart of mobile base station 20 according to Embodiment 2, (b) “bearer switching process” flowchart of mobile base station 20 according to Embodiment 2
  • FIG. 2 The figure for demonstrating operation
  • FIG. 1 Block diagram showing the configuration of UE-MME 60 according to Embodiment 2
  • Local network connection switching sequence diagram according to the third embodiment The figure for demonstrating operation
  • FIG. The figure which shows the communication system structure which concerns on Embodiment 5.
  • FIG. The figure which shows one state of the communication system which concerns on Embodiment 5.
  • Connection sequence diagram of mobile terminals 10a and 10c according to Embodiment 5 Local network connection switching sequence diagram according to the fifth embodiment (A) "UE connection process” flow chart of mobile base station 20 according to Embodiment 5, (b) "bearer switching process” flow chart of mobile base station 20 according to Embodiment 5
  • FIG. The figure which shows the structure of a communication system including the public access system 3700 comprised by techniques, such as WiMAX, WLAN, and 3GPP2.
  • the mobile base station functioning as a relay node detects that the mobile terminal has moved due to a change in the backhaul of the mobile base station, and at that timing, The LIPA connection of the mobile terminal is disconnected to prompt reconnection, and the path at the time of reconnection is correctly controlled according to the type of backhaul media (Backhaul Media). Therefore, according to the communication system according to the present embodiment, the connection route to the local network of the mobile terminal is switched to either direct connection or remote connection according to the connection form of the mobile base station, and the optimal communication of the mobile terminal A route can be established.
  • FIG. 1 is a diagram showing a configuration of a communication system according to Embodiment 1 of the present invention.
  • the communication system shown in FIG. 1 includes a plurality of mobile terminals (UE) 10a and 10b (hereinafter referred to as mobile terminals 10a and 10b) connected to the local RAN 100, a mobile base station 20 forming the local RAN 100, A local gateway (LGW) 30 (hereinafter referred to as LGW 30) that functions as a gateway for making a LIPA connection to the local network 110 via the base station 20 and a macro base station connected to the macro RAN 130 an eNB 40 (hereinafter referred to as macro eNB 40), a UE-MME 60 connected to the core network 140, a serving gateway (SGW) 70 (hereinafter referred to as SGW 70) connected to the core network 140, Local RAN 10 If, it includes a local network 110, a provider network 120, a macro RAN 130, a core network 140 of the operator,
  • SGW serving gateway
  • the core network 140 includes an RN-MME 50 that is a mobility management entity (MME) of a relay node (see FIG. 2).
  • MME mobility management entity
  • the mobile base station 20 is directly connected to the local network 110.
  • the mobile terminals 10 a and 10 b are connected to the local network 110 via the mobile terminal station 20 and the LGW 30 by LIPA.
  • the UE-MME 60 is a mobility management entity (MME) of the mobile terminals 10a and 10b, and implements the state and mobility management of the mobile terminals 10a and 10b.
  • MME mobility management entity
  • FIG. 2 is a diagram illustrating a state of the communication system according to the first embodiment.
  • the mobile base station 20 connects to the macro eNB 40 and establishes a radio bearer under the management of the RN-MME 50.
  • the mobile terminals 10 a and 10 b connect to the LGW 30 via the mobile base station 20 and the SGW 70 and establish a RIPA connection to the local network 110.
  • FIG. 3 is a diagram showing a connection sequence of the mobile terminals 10a and 10b in the configuration of the communication system shown in FIG.
  • FIG. 4 is a sequence diagram (1) for explaining the bearer release instruction.
  • FIG. 5 is a sequence diagram (1) for explaining the bearer correction instruction.
  • the mobile base station 20 secures connectivity to the core network 140 via the local network 110 and the provider network 120 (step S301: core). Connection to NW is completed). Specifically, the mobile base station 20 establishes a secure connection to the core network 140 using a protocol such as PPPoE.
  • the mobile terminal 10a starts connection processing.
  • the mobile terminal 10a transmits a connection request to the mobile base station 20
  • the mobile base station 20 transfers the connection request to the UE-MME 60
  • processing is performed based on the initial connection procedure disclosed in TR23.829.
  • Steps S303 to S305 connection processing
  • a communication connection for LIPA (for example, a PDN connection or a PDP context) is established between the mobile terminal 10a and the LGW 30.
  • the mobile terminal 10b establishes a communication connection for LIPA between the mobile terminal 10b and the LGW 30 (steps S306 to S308: connection processing).
  • a bearer release is performed for a local network connection switching sequence when the local RAN 100 including the mobile base station 20 and the mobile terminals 10 a and 10 b moves and is accommodated in the macro eNB 40.
  • Two methods will be described: a method for instructing bearer and a method for instructing bearer correction.
  • FIG. 4 is a sequence diagram illustrating a method for instructing bearer release.
  • the mobile base station 20 detects backhaul switching (step S401: backhaul switching).
  • the backhaul of the mobile base station 20 uses communication media such as a wired LAN such as Ethernet (registered trademark), a wireless LAN, a wireless PAN (Personal Area Network), and a millimeter wave communication link. use.
  • the mobile base station 20 uses a cellular line when connecting to the macro RAN 130.
  • it is detected that the backhaul of the mobile base station 20 has been switched from, for example, a wired LAN to a cellular line.
  • the mobile base station 20 may detect that the backhaul of the mobile base station 20 has actually been switched. Alternatively, the mobile base station 20 may determine that the backhaul of the mobile base station 20 has been switched by receiving a signal instructing switching of the backhaul of the mobile base station 20. As the signal for instructing switching of the backhaul of the mobile base station 20, for example, a switching instruction signal input by a user through a screen, a button, or the like, a switching instruction signal input remotely, or the like can be considered. At that time, the mobile base station 20 determines that the backhaul of the mobile base station 20 has been switched when the connectivity of the backhaul media to be switched to is confirmed. For example, the mobile base station 20 can accurately switch backhaul media (Backhaul Media) while preventing erroneous detection.
  • backhaul media Backhaul Media
  • the mobile base station 20 Upon detecting backhaul switching to the cellular line, the mobile base station 20 performs connection processing with the RN-MME 50 via the macro eNB 40 (steps S403 and S404: connection processing), and communication for accommodating UE traffic.
  • a connection is established (step S405: connection establishment).
  • the detailed operation for establishing the communication connection can use, for example, a procedure as disclosed in TR36.806.
  • the mobile base station 20 sends a bearer release instruction to the bearer established by the accommodated mobile terminals 10a and 10b based on the bearer context information held by the UE. -Transmit to MME 60 (step S406: Bearer release instruction).
  • the bearer established by the mobile terminals 10a and 10b to be accommodated includes, for example, an EPS bearer, a PDN connection, a PDP context, a radio bearer, and the like.
  • step S406 the mobile base station 20 performs the release process of the applicable bearer (especially radio bearer) with respect to the mobile terminals 10a and 10b (steps S407 and S408: bearer release process).
  • the applicable bearer especially radio bearer
  • the mobile base station 20 may issue a bearer release instruction for each bearer. Further, the mobile base station 20 may issue a bearer release instruction for each mobile terminal, or for each PDN connection or PDP context. Furthermore, the mobile base station 20 may issue a bearer release instruction to all bearers at once. Thereby, the mobile base station 20 can reduce the signaling traffic.
  • the UE-MME 60 that has received the bearer release instruction in step S406 transfers the bearer deletion instruction to the LGW 30 (step S409: bearer deletion instruction). Then, the LGW 30 releases the context for the instructed bearer and transmits a bearer deletion request to the UE-MME 60 (Step S411: Bearer deletion request). Then, UE-MME 60 transmits a bearer deletion response to LGW 30 after releasing the instructed bearer context (step S413: bearer deletion response). And the bearer release process is completed.
  • the SGW 70 is allocated to the LIPA connection of the mobile terminals 10a and 10b, the SGW 70 is also involved in the bearer deletion process between the UE-MME 60 and the LGW 30.
  • the mobile terminals 10a and 10b that have released the bearer constituting the RIPA connection perform reconnection processing (steps S415 and S417: connection processing). At this time, the mobile terminals 10a and 10b perform reconnection by designating the access point name (APN) for LIPA again. This is because the mobile terminals 10a and 10b have not detected their own movement and have recognized that LIPA to the local network is still possible.
  • APN access point name
  • the mobile base station 20 In response to the reconnection of the mobile terminals 10a and 10b, the mobile base station 20 rewrites the access point name (APN) for RIPA or the access point name for RIPA in the connection request message from the mobile terminals 10a and 10b.
  • Information instructing switching to (APN) is added, and the UE-MME 60 continues the reconnection process of the mobile terminals 10a and 10b.
  • the information instructing switching to the access point name (APN) for RIPA added to the connection request message from the mobile terminals 10a and 10b is, for example, the access point name (APN) for RIPA and switching.
  • An instruction flag or an access point name (APN) for RIPA can be considered.
  • the UE-MME 60 selects the connection to the access point name (APN) for RIPA, that is, selects the SGW 70 for connection to the LGW 30, and moves. Allocation to terminals 10a and 10b is established and a RIPA connection is established (steps S419 and S421: connection establishment).
  • APN access point name
  • the mobile base station 20 may notify the mobile terminals 10a and 10b of the access point name (APN) for RIPA during the bearer release process. Further, the mobile base station 20 may notify the mobile terminals 10a and 10b of information (for example, a flag) that prompts connection to the RIPA access point name (APN) during the bearer release process. In response to this, the mobile terminals 10a and 10b specify the access point name (APN) for RIPA and perform reconnection processing. As a result, it is possible to reduce the burden of the mobile base station 20 checking the connection request messages from the mobile terminals 10a and 10b one by one and replacing them with RIPA access point names (APN).
  • API access point name
  • UEs mobile terminals
  • FIG. 5 is a sequence diagram (1) for explaining a method for instructing bearer correction.
  • step S501 backhaul switching
  • step S503 and 505 connection processing
  • step S507 connection establishment
  • a bearer modification request message for the bearer established by the accommodated mobile terminals 10a and 10b is transmitted to the UE-MME 60 (step S509: bearer modification). request).
  • the bearer established by the mobile terminals 10a and 10b to be accommodated includes an EPS bearer, a PDN connection, a PDP context, a radio bearer, and the like.
  • the mobile base station 20 instructs to switch the connection destination of the target bearer from the access point name (APN) for LIPA to the access point name (APN) for RIPA.
  • the mobile base station 20 may add an access point name (APN) for RIPA to the bearer modification request message.
  • the mobile base station 20 may explicitly add information (for example, a flag) instructing switching of the access point name (APN) to the bearer modification request message.
  • the mobile base station 20 may issue a bearer modification request message for each bearer. Further, the mobile base station 20 may issue a bearer modification request message for each mobile terminal or for each PDN connection / PDP context. Furthermore, the mobile base station 20 may issue a bearer modification request message to all the bearers at once, whereby the mobile base station 20 can reduce signaling traffic.
  • the UE-MME 60 that has received the bearer modification request selects and assigns the SGW 70 for connecting to the access point name (APN) for RIPA (step 511: SGW selection), and adds the contact address of the LGW 30 and the like.
  • a bearer modification request message is transmitted to the SGW 70 (step S513: bearer modification request).
  • the SGW 70 that has received the bearer modification request message generates a bearer contest for the target mobile terminals 10 a and 10 b and transfers the bearer modification request message to the LGW 30.
  • the LGW 30 modifies the bearer context of the target mobile terminals 10a and 10b (for example, the contact address of the SGW 70) as a bearer modification process, and transmits a bearer modification response message to the SGW 70.
  • Step S515 Bearer correction processing
  • the SGW 70 transmits a bearer modification response message to the UE-MME 60 (step S517: bearer modification response).
  • the UE-MME 60 updates the bearer context of the target mobile terminals 10a and 10b, and transmits a bearer modification response message to the mobile base station 20 (step S519: bearer modification response). Based on the received bearer modification response message, the mobile base station 20 performs a bearer modification process for updating the radio bearers (particularly, QoS parameters) of the mobile terminals 10a and 10b (steps S521 and S523: bearer modification process).
  • the gateway derived from the access point name (APN) for LIPA and the access point name (APN) for RIPA is different, relocation from the LGW 30 to the PDN gateway (PDN Gateway: PGW) for RIPA, or Relocation from the PDN gateway (PGW) for RIPA to the LGW 30 may be performed.
  • PGW PDN gateway
  • PGW PDN gateway
  • messages exchanged between the UE-MME 60 and the LGW 30 do not necessarily have to pass through the mobile base station 20.
  • LGW 30 is directly connected to the core network.
  • the LGW 30 constructs a secure tunnel (for example, VPN) with an external connection device (for example, a VPN gateway) on the core network via the provider network, a core such as UE-MME 60 or SGW 70 Messages can be exchanged directly with network devices. Thereby, the load by the message processing of the mobile base station 20 can be reduced.
  • a secure tunnel for example, VPN
  • an external connection device for example, a VPN gateway
  • the mobile terminals (UEs) 10a and 10b specify the APN for LIPA and the APN for RIPA, but do not specify the APN for LIPA and the APN for RIPA.
  • an indicator designating LIPA or RIPA may be added. This eliminates the need to generate and manage a large number of APNs, and reduces the processing burden on network devices (eg, UE-MME 60, SGW 70, and LGW 30) in connection management of mobile terminals (UE) 10a and 10b. it can.
  • FIG. 6 is a block diagram showing a configuration of mobile base station 20 according to Embodiment 1.
  • the mobile base station 20 shown in FIG. 6 accommodates a local communication unit 21 that controls communication with the local network 110, and a cellular communication unit (core network) 22 that controls communication with the macro eNB 40 of the macro RAN 130.
  • a cellular communication unit (UE) 23 that controls communication with the mobile terminals 10a and 10b, an LGW communication unit 24 that controls communication with the LGW 30 via the local communication unit 21, and all communication units (local communication unit 21).
  • UE cellular communication unit
  • a base station processing unit 25 that performs processing for accommodating the mobile terminals 10a and 10b via the cellular communication unit (core network) 22, the cellular communication unit (UE) 23, and the LGW communication unit 24) And a switching processing unit 26 that performs the switching process.
  • the local communication unit 21 corresponds to a communication interface (communication device) for connecting to a communication link such as a wired LAN or a wireless LAN.
  • FIG.7 (a) is a "UE connection process” flowchart of the mobile base station 20 for implementing the connection process to a local network by a mobile terminal (UE),
  • FIG.7 (b) is a bearer switching of UE.
  • FIG. 6 is a “bearer switching process” flowchart of the mobile base station 20 for implementing
  • step S701 connection request. Reception
  • the base station processing unit 25 notifies the switching processing unit 26 to that effect.
  • the switching processing unit 26 selects a connection destination based on the backhaul media (Backhaul Media) used when the notification is received from the base station processing unit 25 (step S703: connection destination selection). That is, when the backhaul media is the local communication unit 21, the switching processing unit 26 selects local IP access (LIPA). When the backhaul media is the cellular communication unit (core network), the switching processing unit 26 selects remote access (RIPA) to the local network.
  • backhaul media Backhaul Media
  • LIPA local IP access
  • the switching processing unit 26 selects remote access (RIPA) to the local network.
  • the access point name (APN) corresponding to the selected connection destination the access point name (APN) for LIPA or the access point name (APN) for RIPA) is the connection request message of the mobile terminals 10a and 10b. (Or overwritten with the access point name (APN) described in the connection request message), and via the base station processing unit 25 and backhaul media (cellular communication unit (core network) 22 or local communication unit 21). And transferred to the UE-MME 60 (step S705: connection transfer request). Thereafter, the base station processing unit 25 performs an operation necessary for the connection processing of the mobile terminals 10a and 10b, such as processing a message received from each communication unit (step S707: execution of subsequent connection processing).
  • the switching processing unit 26 detects that the backhaul media (Backhaul Media) has been switched (or needs to be switched) (step S731). : Backhaul switching detection), the switching processing unit 26 is, as a processing mode of the base station processing unit 25, (1) a mode in which it is connected via a communication medium such as a wired / wireless LAN and operates as a femto base station, or (2) One of the modes operating as a relay node via the cellular line is selected and applied to the base station processing unit 25 (step S733: change processing mode).
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer modification request message via the cellular communication unit (core network) 22 or the local communication unit 21.
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer release instruction via the cellular communication unit (core network) 22, the local communication unit 21, or the cellular communication unit (UE) 23.
  • Step S735 Bearer modification request or bearer release instruction.
  • the base station processing unit 25 performs operations necessary for update processing and release processing for the bearers of the mobile terminals 10a and 10b, such as processing messages received from the respective communication units (step S737: execution of subsequent processing).
  • FIG. 8 is a block diagram showing the configuration of the mobile terminals 10a and 10b. Since the mobile terminals 10a and 10b have the same configuration, the mobile terminal 10a (or 10b) is represented in FIG. 8 for convenience.
  • the mobile terminal 10a (or 10b) shown in FIG. 8 includes a wireless communication unit 11 for connecting to the mobile base station 20, a communication processing unit 12 for controlling communication via the mobile base station 20, and an established communication connection. And an application unit 13 that operates an application that performs communication.
  • FIG. 9 is a “bearer release instruction reception process” flowchart of the mobile terminals 10a and 10b according to the first embodiment.
  • step S901 APN extraction
  • the communication processing unit 12 performs a process for releasing a bearer for connecting to the local network 110 (step S903: bearer release process). Specifically, a bearer release procedure as disclosed in TS23.401 and TS23.060 is performed.
  • the mobile terminal 10a (or 10b) starts connection processing to the PDN indicated by the previously extracted access point name (APN) (step S905: connection to the extracted APN). Specifically, an initial connection procedure (Initial Attach Procedure) or an additional connection connection procedure (Additional PDN Connectivity Procedure) as disclosed in TS23.401 and TS23.060 is performed.
  • API access point name
  • the mobile terminal 10a (or 10b) that supports the system operation shown in FIG. 5 performs bearer correction processing disclosed in the conventional TS23.401 and TS23.060.
  • the mobile terminal 10a (or 10b) changes (1) the access point name (APN) of the connection destination from the mobile base station 20 during the bearer correction process performed with the mobile base station 20.
  • APN access point name
  • the mobile terminal 10a (or 10b) Modify the parameter to an appropriate value, or (b) run the application, or (c) implement other applications suitable for the connected network or QoS after the change. It may be.
  • Embodiment 2 In the communication system according to Embodiment 1, it is assumed that all the mobile terminals (UEs) are in the active mode. However, when the mobile terminal (UE) under the control of the mobile base station is in the idle mode, the mobile base station does not have a context of the idle mode user equipment (UE). Release and bearer modification processing cannot be performed. Therefore, in the communication system according to Embodiment 2, the idle mode UE is identified based on the UE context held by the LGW, and the connection of the idle mode UE is switched at the same timing as the switching of the active mode UE. Therefore, according to the communication system according to the present embodiment, the connection route to the local network of the mobile terminal is switched to either direct connection or remote connection according to the connection form of the mobile base station, and the optimal communication of the mobile terminal A route can be established.
  • UE user equipment
  • the idle mode UE indicates a mobile terminal (UE) in the idle mode
  • the active mode UE indicates a mobile terminal (UE) in the active mode
  • FIG. 10 is a diagram showing a communication system configuration according to Embodiment 2 of the present invention.
  • the communication system shown in FIG. 10 differs from the communication system shown in FIG. 1 in that the mobile terminal 10a is an active mode UE among the mobile terminals 10a and 10c accommodated by the mobile base station 20, and the mobile terminal 10c. Is an idle mode UE.
  • the second embodiment is the same as the first embodiment, and in FIG. 10, the same reference numerals are given to components common to FIG. 1.
  • the mobile base station 20 is directly connected to the local network 110. Further, the mobile terminals 10 a and 10 c are LIPA connected to the local network 110 via the mobile base station 20 and the LGW 30.
  • the UE-MME 60 is connected to the core network 140 and performs the status and mobility management of the mobile terminals 10a and 10c.
  • the mobile terminal 10a in the active mode may be referred to as the active mode UE 10a
  • the mobile terminal 10c in the idle mode may be referred to as the idle mode UE 10c.
  • FIG. 11 is a diagram showing one state of the communication system according to the second embodiment, and shows a state when the mobile base station 20 leaves the local network 110 and is connected to the macro eNB 40 of the macro RAN 130.
  • the communication system shown in FIG. 11 is different from the communication system shown in FIG. 2 in that the active mode UE 10a and the idle mode UE 10c are mixed. Except for this point, the second embodiment is the same as the first embodiment, and in FIG. 11, the same reference numerals are given to components common to FIG. 2.
  • FIG. 12 is a diagram showing a connection sequence of the mobile terminals 10a and 10c in the configuration of the communication system shown in FIG.
  • the mobile base station 20 prior to connecting the mobile terminals 10a and 10c, the mobile base station 20 ensures connectivity to the core network 140 via the local network 110 and the provider network 120 (step S1201: core). Connection to NW is completed). Specifically, the mobile base station 20 establishes a secure connection to the core network 140 using a protocol such as PPPoE.
  • the mobile terminal 10a starts connection processing.
  • the mobile terminal 10a transmits a connection request to the mobile base station 20
  • the mobile base station 20 transfers the connection request to the UE-MME 60
  • processing is performed based on the initial connection procedure disclosed in TR23.829.
  • Steps S1203 to S1205 connection processing
  • a communication connection for LIPA (for example, a PDN connection or a PDP context) is established between the mobile terminal 10a and the LGW 30.
  • the mobile terminal 10c establishes a communication connection for LIPA between the mobile terminal 10c and the LGW 30 (steps S1206 to S1208: connection processing).
  • step S1210 transition to the idle mode.
  • FIG. 13 is a switching sequence diagram of local network connection in the present embodiment.
  • Step S1301 backhaul switching
  • step S1303 connection processing
  • step S1307 Connection establishment
  • a bearer modification request message for the bearer established by the mobile terminal 10a to be accommodated is transmitted to the UE-MME 60
  • Step S1309 Bearer Correction request
  • the bearer established by the accommodated mobile terminal 10a refers to an EPS bearer, a PDN connection, a PDP context, a radio bearer, and the like.
  • the mobile base station 20 instructs to switch the connection destination of the target bearer from the access point name (APN) for LIPA to the access point name (APN) for RIPA.
  • the mobile base station 20 may add an access point name (APN) for RIPA to the bearer modification request message.
  • the mobile base station 20 may explicitly add information (for example, a flag) instructing switching of the access point name (APN) to the bearer modification request message.
  • the mobile base station 20 may issue a bearer modification request message for each bearer. Further, the mobile base station 20 may issue a bearer modification request message for each mobile terminal or for each PDN connection / PDP context. Furthermore, the mobile base station 20 may issue a bearer modification request message to all the bearers at once, whereby the mobile base station 20 can reduce signaling traffic.
  • the UE-MME 60 that has received the bearer modification request selects and assigns the SGW 70 for connecting to the access point name (APN) for RIPA (step 1311: SGW selection), and adds the contact address of the LGW 30 and the like.
  • a bearer modification request message is transmitted to the SGW 70 (step S1313: bearer modification request).
  • the SGW 70 of the core network is assigned at the time of LIPA connection, the same SGW may be used, thereby reducing the processing load accompanying the SGW selection in the UE-MME 60.
  • the SGW 70 that has received the bearer modification request message generates a bearer contest for the target mobile terminal 10 a and transfers the bearer modification request message to the LGW 30.
  • the LGW 30 modifies the bearer context of the target mobile terminal 10a (for example, the contact address of the SGW 70) as a bearer modification process, and transmits a bearer modification response message to the SGW 70 (step).
  • S1315 Bearer correction processing
  • the SGW 70 transmits a bearer modification response message to the UE-MME 60 (step S1317: bearer modification response).
  • the UE-MME 60 updates the bearer context of the target mobile terminal 10a, and transmits a bearer modification response message to the mobile base station 20 (step S1319: bearer modification response). Based on the received bearer modification response message, the mobile base station 20 performs a bearer modification process for updating the radio bearer (particularly the QoS parameter) of the mobile terminal 10a (step S1321: bearer modification process).
  • the gateway derived from the access point name (APN) for LIPA and the access point name (APN) for RIPA is different, relocation from the LGW 30 to the PDN gateway (PDN Gateway: PGW) for RIPA, or Relocation from the PDN gateway (PGW) for RIPA to the LGW 30 may be performed.
  • PGW PDN gateway
  • PGW PDN gateway
  • step S1301 to step S1321 which are the switching processing for the mobile terminal 10a in the active mode
  • the switching sequence shown in FIG. 13 is different from the sequence shown in FIG. 5 in the processing of LGW 30 that is performed after step S1321. That is, the LGW 30 that has completed the bearer modification processing for the active mode UE 10a and has completed the path switching for the local network connection holds bearer context information (context information for managing EPS bearer or PDP context). Based on this, an idle mode UE is extracted (step S1331: remaining UE detection). That is, the mobile terminal (UE) excluding the active mode UE that has previously performed the bearer correction process is extracted as the idle mode UE.
  • bearer context information context information for managing EPS bearer or PDP context
  • the LGW 30 may extract only the mobile terminals (UE) accommodated by the mobile base station 20, in particular.
  • the CSG, cell ID, base station ID, location registration area ID for example, Tracking Area ID, Location Area ID, Routing Area ID
  • the mobile terminal (UE) belonging to the same CSG, cell ID, base station ID, and location registration area ID as the active mode UE that has previously performed the bearer correction process.
  • a mobile terminal (UE) that has not yet been subjected to bearer correction processing is extracted as being an idle mode UE.
  • the LGW 30 performs bearer correction processing for the extracted idle mode UE 10c on the SGW 70 (step S1333: bearer correction processing).
  • the SGW 70 is the same SGW that was previously assigned to the active mode UE 10a. This is because the mobile terminals (UEs) accommodated in the same mobile base station are located in the same location, and thus are inevitably accommodated in the same SGW. It is.
  • the SGW 70 generates a bearer context of the idle mode UE 10c, sets the state of the mobile terminal 10c to the idle mode, and transmits a bearer modification instruction message to the UE-MME 60 (step S1335: bearer modification instruction).
  • the UE-MME 60 updates the bearer context of the mobile terminal 10c held by the UE-MME 60 based on the received bearer modification instruction message (for example, updates the contact address of the SGW) and records it in the context of the mobile terminal 10c. From this state, it is detected that the mode is the idle mode, and no bearer correction request is made to the mobile base station 20. Thereby, the mobile terminal 10c can continue the idle mode, and the battery consumption of the mobile terminal 10c can be reduced.
  • the received bearer modification instruction message for example, updates the contact address of the SGW
  • the SGW 70 When the SGW 70 issues a bearer modification instruction to the UE-MME 60, it may explicitly notify that the target mobile terminal 10c is in the idle mode. Later, in the service request processing performed when the mobile terminal 10c returns from the idle mode in step S1337 (in FIG. 13, “return from idle mode”), the entire communication connection including the radio bearer is reconstructed (mainly (Reconfiguration of QoS parameters) is performed (step S1339: service request processing and S1341: bearer modification processing).
  • LGW 30 derived from the LIPA access point name (APN) and the RIPA access point name (APN)
  • APN LIPA access point name
  • APN RIPA access point name
  • LGW relocation from LGW 30 to RIPA PGW May be implemented. More specifically, first, the bearer context of the active UE is handed over from the LGW 30 to the PGW. Thereafter, PGW relocation for the idle mode UE is performed in the bearer modification process of the idle mode UE performed by the LGW 30.
  • FIGS. 14 (a) and 14 (b) The operation of the mobile base station 20 of the present embodiment will be described using FIGS. 14 (a) and 14 (b).
  • the configuration of mobile base station 20 in the present embodiment is the same as the configuration of the mobile base station shown in FIG. FIG. 14 (a) is a “UE connection process” flow diagram of mobile base station 20 according to Embodiment 2
  • FIG. 14 (b) is a “bearer switching process” of mobile base station 20 according to Embodiment 2. It is a flow diagram.
  • step S1401 reception of connection request.
  • the base station processing unit 25 notifies the switching processing unit 26 accordingly.
  • the switching processing unit 26 selects a connection destination based on the backhaul media (Backhaul Media) used when the notification is received from the base station processing unit 25 (step S1403: connection destination selection (LIPA / RIPA)). . That is, when the backhaul media is the local communication unit 21, the switching processing unit 26 selects local IP access (LIPA). When the backhaul media is the cellular communication unit (core network), the switching processing unit 26 selects remote access (RIPA) to the local network.
  • backhaul Media backhaul media
  • LIPA local IP access
  • the switching processing unit 26 selects remote access (RIPA) to the local network.
  • the access point name (APN) corresponding to the selected connection destination the access point name (APN) for LIPA or the access point name (APN) for RIPA) is the connection request message of the mobile terminals 10a and 10c. (Or overwritten with the access point name (APN) described in the connection request message), and via the base station processing unit 25 and backhaul media (cellular communication unit (core network) 22 or local communication unit 21). And transferred to the UE-MME 60 (step S1405: connection transfer request). Thereafter, the base station processing unit 25 performs operations necessary for mobile terminal (UE) connection processing, such as processing messages received from each communication unit (step S1407: subsequent connection processing execution).
  • UE mobile terminal
  • the switching processing unit 26 detects that the backhaul media (Backhaul Media) has been switched (or needs to be switched) (step S1431: back). (Howl switching detection), the switching processing unit 26, as a processing mode of the base station processing unit 25, one of a mode operating as a femto base station and a mode operating as a relay node (2) Is applied to the base station processing unit 25 (step S1433: change of processing mode).
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer modification request message via the cellular communication unit (core network) 22 or the local communication unit 21.
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer release instruction via the cellular communication unit (core network) 22, the local communication unit 21, or the cellular communication unit (UE) 23.
  • Step S1435 Bearer modification request
  • the base station processing unit 25 performs operations necessary for update processing and release processing for the bearers of the mobile terminals 10a and 10c, such as processing messages received from the respective communication units (step S1437: execution of subsequent processing).
  • FIG. 15 is a block diagram showing a configuration of LGW 30 according to the second embodiment.
  • the LGW 30 shown in FIG. 15 includes a switching processing unit 31 for switching connection to the local network 110, and a mobile base station communication unit 32 for securely communicating with the mobile base station 20 via the local network 110. And an LGW processing unit 33 that executes LGW processing on the mobile base station 20 and the core network device connected to the local network 110, and a local communication unit 34 that controls communication with the local network 110.
  • FIG. 16 is a diagram for explaining the operation of the LGW 30 according to the second embodiment.
  • the mobile base station communication unit 32 sends a bearer modification request message together with the bearer context of the target mobile terminal 10a from the SGW 70 for connecting to the access point name (APN) for RIPA via the local communication unit 34.
  • the mobile base station communication unit 32 corrects the bearer context of the target mobile terminal 10a (step S1603: bearer correction process), and transmits a bearer correction response message to the SGW 70 via the local communication unit 34 (step S1605). : Bearer modification response transmission).
  • the switching processing unit 31 extracts the idle mode UE 10c based on the bearer context information held by the LGW 30 itself (step S1607: remaining UE detection). That is, the mobile terminal 10c excluding the active mode UE 10a that has previously performed the bearer correction process is extracted as being an idle mode UE.
  • the switching processing unit 31 corrects the extracted bearer context related to the idle mode UE 10c (for example, the SGW address and TEID (Tunnel Endpoint ID) used in GTP and GRE Key (Generic Routing Encapsulation Key) used in PMIP are notified by the SGW. Or set the value of TEID or GRE Key notified to the SGW) and the bearer correction processing for the extracted idle mode UE 10c to the SGW 70 via the LGW processing unit 33.
  • step S1609 bearer correction process activation
  • the SGW 70 is the same SGW that was previously assigned to the active mode UE 10a.
  • FIG. 17 is a block diagram showing a configuration of UE-MME 60 according to the second embodiment.
  • the UE-MME 60 illustrated in FIG. 17 includes an MME processing unit 61 for performing MME processing, and a communication unit 63 for transmitting and receiving messages to and from core network devices such as the mobile base station 20 and the SGW 70. .
  • FIG. 18 is a diagram for explaining the operation of the UE-MME 60 according to the second embodiment.
  • the UE-MME 60 receives the bearer modification request message transferred from the mobile base station 20 via the communication unit 63, and the MME processing unit 61 determines whether or not the connection path of the mobile terminal (UE) has been changed. (Step S1801: Connection path change?). When it is determined that the connection path has been changed (in the case of Yes), the MME processing unit 61 selects the SGW 70 for connecting to the changed access point name (APN) (step S1803: SGW selection).
  • the SGW 70 of the core network is assigned at the time of LIPA connection, the same SGW may be used, thereby reducing the processing load accompanying the SGW selection in the UE-MME 60.
  • Step S1805 Bearer modification request message transmission
  • step S1807 subsequent connection process is performed.
  • Embodiment 3 In the communication system according to Embodiment 3, a method will be described in which the LGW 30 detects the movement of the mobile base station 20 and switches the LIPA connection of the mobile terminal (UE) accommodated by the mobile base station 20 to the RIPA connection.
  • the connection path to the local network of the mobile terminal is switched to either direct connection or remote connection according to the connection form of the mobile base station, and the optimal communication path of the mobile terminal is determined. Can be established.
  • FIG. 19 is a diagram showing a communication system configuration according to the third embodiment.
  • the communication system shown in FIG. 19 is different from the communication system shown in FIG. 1 in that the mobile terminal 10a is an active mode UE among the mobile terminals 10a and 10c accommodated by the mobile base station 20, and the mobile terminal 10c. Is an idle mode UE.
  • the second embodiment is the same as the first embodiment, and in FIG. 19, the same reference numerals are given to the components common to FIG. 1.
  • the mobile base station 20 is directly connected to the local network 110. Further, the mobile terminals 10 a and 10 c are LIPA connected to the local network 110 via the mobile base station 20 and the LGW 30.
  • the UE-MME 60 is connected to the core network 140 and performs the status and mobility management of the mobile terminals 10a and 10c.
  • the mobile terminal 10a in the active mode may be referred to as the active mode UE 10a
  • the mobile terminal 10c in the idle mode may be referred to as the idle mode UE 10c.
  • FIG. 20 is a diagram illustrating a state of the communication system according to the third embodiment.
  • the difference between the state of the communication system shown in FIG. 20 and the state of the communication system shown in FIG. 2 is that the active mode UE 10a and the idle mode UE 10c are mixed. Except for this point, the second embodiment is the same as the first embodiment.
  • the same reference numerals are given to the components common to FIG. 2.
  • FIG. 21 is a connection sequence diagram of mobile terminals 10a and 10c according to Embodiment 3.
  • the mobile base station 20 prior to the connection of the mobile terminals 10a and 10c, the mobile base station 20 ensures connectivity to the core network 140 via the local network 110 and the provider network 120 (step S2101: core). Connection to NW is completed). Specifically, the mobile base station 20 establishes a secure connection to the core network 140 using a protocol such as PPPoE.
  • the mobile terminal 10a starts connection processing.
  • the mobile terminal 10a transmits a connection request to the mobile base station 20
  • the mobile base station 20 transfers the connection request to the UE-MME 60
  • processing is performed based on the initial connection procedure disclosed in TR23.829.
  • Steps S2102 to S2104 connection processing
  • a communication connection for LIPA for example, a PDN connection or a PDP context
  • the mobile terminal 10c establishes a communication connection for LIPA between the mobile terminal 10c and the LGW 30 (steps S2106 to S2108: connection processing).
  • step S2110 transition to the idle mode.
  • FIG. 22 is a local network connection switching sequence diagram according to the third embodiment.
  • the local RAN 100 including the mobile base station 20 and the mobile terminals 10a and 10c is moved and accommodated in the macro eNB 40.
  • the local network connection switching sequence will be described.
  • the mobile base station 20 switches the backhaul to the cellular line (step S2201: backhaul switching), and establishes connections with the macro eNB 40 and the RN-MME 50 (steps S2202, S2203). : Connection processing, and step S2204: connection establishment).
  • the interface to the UE-MME 60 to which the mobile terminals 10a and 10c accommodated by the mobile base station 20 are connected is updated between the mobile base station 20 and the UE-MME 60.
  • Step S2205 S1-AP update process.
  • the interface to the UE-MME 60 to which the mobile terminals 10a and 10c accommodated by the mobile base station 20 are connected is disclosed as S1-AP in TS23.401.
  • the mobile base station 20 becomes able to receive the message regarding the bearer update process activated by the core network device.
  • step S2207 detection of mobile base station leaving.
  • the mobile terminal UE10a, 10c periodically transmits a survival confirmation packet (for example, ping request) to the mobile base station 20 from when the LIPA connection is established, and the LGW 30 manages response reception. That is, while the mobile base station 20 is connected to the local network 110, it responds to the survival confirmation packet from the LGW 30.
  • the LGW 30 Detects the departure of the mobile base station 20 from the local network when the response stops.
  • the LGW 30 that has detected the departure of the mobile base station 20 extracts the mobile terminals 10a and 10c that have established the LIPA connection via the mobile base station 20 (step S2209: target UE extraction).
  • the LGW 30 is one of the cell ID, base station ID, CSG ID, location registration area ID, etc. of the mobile base station 20 that accommodates the mobile terminals 10a, 10c. (Or a plurality of combinations) is collected, and a mobile terminal (UE) that matches one of the IDs (or a combination of a plurality of IDs) of the mobile base station 20 that detected the departure is set as the target mobile terminal (UE). .
  • the LGW 30 to collect any (or a plurality of combinations) of the cell ID, base station ID, CSG ID, location registration area ID, etc. of the mobile base station 20 that accommodates the mobile terminals 10a, 10c.
  • (1) The cell ID, base station ID, CSG ID, and location registration area ID of the mobile base station 20 are included in the message transmitted from the mobile terminals 10a and 10c to the LGW 30, or (2) the mobile base station 20 is added to the LGW 30.
  • the LGW 30 selects and assigns the SGW 70 as a message destination to perform the bearer update of the extracted mobile terminals 10a and 10c (step S2211: SGW selection).
  • SGW selection the SGW 70 is used. That is, the LGW 30 may omit the “SGW selection” process.
  • the LGW 30 may select the SGW 70 that has already been allocated in the “SGW selection” process.
  • the LGW 30 may perform the “SGW selection” process instead of the “SGW selection” process by the UE-MME 60.
  • the LGW 30 may transmit a message instructing the UE-MME 60 to perform the “SGW selection” process via a PCRF (Policy and Charging Rules Function) that is a core network device (not shown).
  • PCRF Policy and Charging Rules Function
  • the UE-MME 60 can utilize the already installed SGW selection function, and can reduce the LGW apparatus cost.
  • Information about the SGW 70 selected by the UE-MME 60 (for example, a contact address) is notified to the LGW 30 via the PCRF.
  • the UE-MME 60 may perform subsequent bearer correction processing.
  • the LGW 30 that has determined the SGW 70 to be a relay gateway when switching the LIPA connection to the RIPA connection transmits a bearer modification request message to the SGW 70 (step S2213: bearer modification request).
  • the LGW 30 may issue a bearer modification request message for each bearer.
  • the LGW 30 may issue a bearer modification request message for each mobile terminal or for each PDN connection / PDP context. Furthermore, the LGW 30 may issue a bearer modification request message to all the bearers at once, thereby enabling the LGW 30 to reduce signaling traffic.
  • the SGW 70 generates bearer contexts of the mobile terminals 10a (active mode) and 10c (idle mode) that are the targets of the bearer modification request, and transmits a bearer modification request message to the UE-MME 60 (step S2215: bearer modification request). ).
  • the UE-MME 60 updates the bearer context of the mobile terminals 10a and 10c held by the UE-MME 60 based on the received bearer modification request message (for example, updates the contact address of the SGW), and the mobile terminals 10a and 10c.
  • the active mode or the idle mode is detected from the state recorded in the context.
  • the UE-MME 60 transmits a bearer modification request to the mobile base station 20 only in the active mode UE 10a (Step S2217: Bearer modification request (active UE only)).
  • the UE-MME 60 transmits a bearer modification request message for the bearer of the active mode UE 10a to the mobile base station 20, and does not transmit a bearer modification request message for the bearer of the idle mode UE 10c to the mobile base station 20. Thereby, UE-MME 60 can continue the idle mode of the mobile terminal 10c, and can reduce the battery consumption of the mobile terminal 10c.
  • the mobile base station 20 performs a bearer modification process for updating a radio bearer (particularly, a QoS parameter) of the mobile terminal 10a in the active mode based on the received bearer modification response message (step S2219: bearer modification process).
  • a bearer modification process for updating a radio bearer (particularly, a QoS parameter) of the mobile terminal 10a in the active mode based on the received bearer modification response message (step S2219: bearer modification process).
  • the mobile base station 20 transmits a bearer modification response message to the UE-MME 60 (step S2221: bearer modification response).
  • the UE-MME 60 transmits a bearer modification response including the state of the mobile terminals 10a and 10c (idle mode and active mode) and other context information to the SGW 70, and the context information received by the SGW 70 in its own context data. Reflect (Step S2223: Bearer modification response).
  • the UE-MME 60 is a mobile base station for updating the S1 bearer of the active mode UE 10a (which is a bearer between the mobile base station 20 and the SGW 70 and forms a part of the UE bearer).
  • Information such as 20 addresses and TEID is notified to the SGW 70, and the SGW 70 updates (corrects) the bearer context of the active mode UE 10a.
  • Step S2225 Bearer modification response
  • the LGW 30 updates its own context data to complete the bearer modification process.
  • step S2227 service request process
  • step S2229 Bearer correction processing
  • FIG. 23 is a diagram for explaining the operation of the LGW 30 according to the third embodiment. Note that the configuration of LGW 30 in the present embodiment is the same as that of LGW 30 according to Embodiment 2 shown in FIG.
  • the mobile base station communication unit 32 detects the departure of the mobile base station 20 from the local network via the local communication unit 34 (step S2301: detection of removal of the mobile base station).
  • the switching processing unit 31 extracts the mobile terminals 10a and 10c that have established the LIPA connection via the mobile base station 20 (step S2303: target UE extraction). For example, when the mobile terminals 10a and 10c establish a LIPA connection, the LGW 30 via the local communication unit 34, the cell ID, base station ID, and CSG ID of the mobile base station 20 that accommodates the mobile terminals 10a and 10c. Collecting any (or a plurality of combinations) of location registration area IDs, etc., and targeting mobile terminals (UEs) that match any ID (or combination of multiple IDs) of the mobile base station 20 that detected the departure Mobile terminal (UE).
  • UE departure Mobile terminal
  • the switching processing unit 31 selects and assigns the SGW 70 that is the message destination in order to update the bearer of the extracted mobile terminals 10a and 10c (step S2305: SGW selection). In addition, when the SGW 70 is already assigned when the LIPA connection is established, the SGW 70 is used.
  • the mobile base station communication unit 32 transmits a bearer modification request message to the SGW 70 serving as a relay gateway when switching the LIPA connection to the RIPA connection via the local communication unit 34 (step S2307: bearer modification request transmission).
  • the mobile base station communication unit 32 receives the bearer modification response including the state of the mobile terminals 10a and 10c (idle mode and active mode) and other context information from the UE-MME 60 via the local communication unit 34 ( Step S2309: Bearer modification response reception). Then, the “bearer switching process” shown in FIG.
  • UE-MME 60 “Bearer Modification Request Reception Processing” Flow (1)
  • UE-MME 60 “Bearer Modification Request Reception Processing” Flow (1)
  • Embodiment 3 The configuration of UE-MME 60 is the same as that of UE-MME 60 according to Embodiment 2 shown in FIG. Therefore, detailed description thereof is omitted.
  • the MME processing unit 61 determines whether the bearer modification request message received from the SGW 70 is for the mobile terminal in the idle mode via the communication unit 63 (step S2401: Idle UE modification request?). If the bearer modification request message is for an idle mode mobile terminal (Yes), the process proceeds to Step S2405. If not (No), the process proceeds to Step S2403.
  • the MME processing unit 61 When the bearer modification request message is not intended for the mobile terminal in the idle mode, the MME processing unit 61 performs a process of updating the contexts of the retained S1 bearer and S5 / S8 bearer (step S2403: S1 bearer update, and Step S2405: S5 / S8 bearer update).
  • the MME processing unit 61 updates the context of the retained S5 / S8 bearer (step S2405: S5 / S8 bearer update). That is, the S1 bearer is not updated.
  • the MME processing unit 61 transmits a bearer modification request message for the bearer of the active mode UE 10a to the mobile base station 20 in order to update the radio bearer of the active mode UE 10a (especially the QoS parameter) via the communication unit 63. To do. Then, the bearer modification request reception processing flow (1) ends.
  • the MME processing unit 61 communicates with the LGW 30 via the core network device PCRF via the communication unit 63, and extracts the mobile terminals 10a and 10c with which the LIPA connection is established. To do. (Step S2431: target UE extraction).
  • the MME processing unit 61 determines whether or not the extracted mobile terminals 10a and 10c are idle mode mobile terminals (step 2433: Idle UE?). If the extracted mobile terminals 10a and 10c are idle mode mobile terminals (in the case of Yes), the process proceeds to step S2437. If the extracted mobile terminals 10a and 10c are not idle mode mobile terminals, the process proceeds to step S2435. To do.
  • the MME processing unit 61 updates the contexts of the retained S1 bearer and S5 / S8 bearer (step S2435: S1 bearer update, and steps S2437: S5). / S8 bearer update).
  • the MME processing unit 61 updates the context of the retained S5 / S8 bearer (step S2437: S5 / S8 bearer update).
  • the MME processing unit 61 transmits a bearer modification request message for the bearer of the active mode UE 10a to the mobile base station 20 in order to update the radio bearer of the active mode UE 10a (especially the QoS parameter) via the communication unit 63. (Step S2439). Then, the bearer modification request reception processing flow (2) ends.
  • steps S2433 to S2437 are performed for all the extracted mobile terminals 10a and 10c.
  • FIG. 25 is a diagram showing a communication system configuration according to Embodiment 4 of the present invention.
  • the communication system shown in FIG. 25 is different from the communication system shown in FIG. 1 in that the mobile terminal 10a is an active mode UE among the mobile terminals 10a and 10c accommodated by the mobile base station 20, and the mobile terminal 10c. Is an idle mode UE.
  • the second embodiment is the same as the first embodiment.
  • the same reference numerals are given to the components common to FIG.
  • the mobile base station 20 is directly connected to the local network 110. Further, the mobile terminals 10 a and 10 c are LIPA connected to the local network 110 via the mobile base station 20 and the LGW 30.
  • the UE-MME 60 is connected to the core network 140 and performs the status and mobility management of the mobile terminals 10a and 10c.
  • the mobile terminal 10a in the active mode may be referred to as the active mode UE 10a
  • the mobile terminal 10c in the idle mode may be referred to as the idle mode UE 10c.
  • FIG. 26 is a diagram illustrating one state of the communication system according to the fourth embodiment.
  • the communication system shown in FIG. 26 is different from the communication system shown in FIG. 2 in that the active mode UE 10a and the idle mode UE 10c are mixed. Except for this point, the second embodiment is the same as the first embodiment, and in FIG. 26, the same reference numerals are given to the components common to FIG.
  • FIG. FIG. 27 is a connection sequence diagram of mobile terminals 10a and 10c according to Embodiment 4.
  • the mobile base station 20 prior to connecting the mobile terminals 10a and 10c, the mobile base station 20 ensures connectivity to the core network 140 via the local network 110 and the provider network 120 (step S2701: core). Connection to NW is completed). Specifically, the mobile base station 20 establishes a secure connection to the core network 140 using a protocol such as PPPoE.
  • the mobile terminal 10a starts connection processing.
  • the mobile terminal 10a transmits a connection request to the mobile base station 20
  • the mobile base station 20 transfers the connection request to the UE-MME 60
  • processing is performed based on the initial connection procedure disclosed in TR23.829.
  • a communication connection for example, a PDN connection or a PDP context
  • S2705 connection establishment
  • the mobile terminal 10c establishes a communication connection for LIPA between the mobile terminal 10c and the LGW 30 (steps S2706 to S2708: connection processing, S2709; connection establishment).
  • step S2710 transition to the idle mode.
  • FIG. 28 is a switching sequence diagram of local network connection according to the fourth embodiment.
  • the local RAN 100 including the mobile base station 20 and the mobile terminals 10a and 10c has moved and is accommodated in the macro eNB 40. Shows the switching sequence of local network connection.
  • the mobile base station 20 switches the backhaul to a cellular line (step S2801: backhaul switching), and establishes a connection with the macro eNB 40 and the RN-MME 50 (steps S2802 and S2803).
  • step S2804 connection establishment).
  • the mobile base station 20 releases the bearers (all bearers such as EPS bearer, PDN connection, PDP context, radio bearer) established by the subordinate mobile terminals 10a and 10c. Is sent to the UE-MME 60 (step S2806: bearer release instruction).
  • bearer release instruction cell ID, base station ID, CSG ID, location registration area ID (for example, Tracking Area ID, Location Area ID, Routing Area ID) are used as identification information for identifying the mobile base station 20. ) (Or a plurality of combinations).
  • the UE-MME 60 extracts the mobile terminals 10 a and 10 c that have established the LIPA connection via the mobile base station 20 based on the identification information for identifying the mobile base station 20 included in the bearer release instruction message. For example, when the mobile terminals 10a and 10c establish a LIPA connection, one of the cell ID, base station ID, CSG ID, and location registration ID of the mobile base station 20 that accommodates the mobile terminals 10a and 10c (or a plurality of registration IDs) The UE-MME 60 collects the combination), and extracts the mobile terminals 10a and 10c that have established the LIPA connection from the mobile base station 20 that matches the identifier included in the bearer release instruction message received from the mobile base station 20.
  • the UE-MME 60 uses the cell ID, base station ID, CSG ID, location registration ID, etc. of the mobile base station 20 that accommodates the mobile terminals 10a and 10c (or a combination thereof) as the UE-MME 60. May be included in a message transmitted from the mobile terminals 10a and 10c to the UE-MME 60, or may be included in a message transmitted from the mobile base station 20 to the UE-MME 60.
  • the UE-MME 60 transmits a bearer deletion instruction for the LIPA connection established by the extracted mobile terminals 10a and 10c to the LGW 30 (step S2807: bearer deletion instruction).
  • the UE-MME 60 may issue a bearer modification request message for each bearer.
  • the UE-MME 60 may issue a bearer modification request message for each mobile terminal or for each PDN connection / PDP context.
  • the UE-MME 60 may collectively issue a bearer modification request message to all bearers, whereby the UE-MME 60 can reduce signaling traffic.
  • the LGW 30 releases the context for the instructed bearer, and transmits a bearer deletion request to the UE-MME 60 (step S2808: bearer deletion request).
  • UE-MME 60 transmits a bearer deletion request to mobile base station 20 (step S2809: bearer deletion request).
  • the mobile base station 20 performs bearer release processing for the designated bearer on the mobile terminals 10a and 10c (steps S2810 and S2811: bearer release processing).
  • the target bearers are the bearers of the mobile terminals 10a and 10c accommodated by the mobile base station 20 previously extracted by the UE-MME 60, including the bearers of the active mode UE 10a and the idle mode UE 10c. , Subject to bearer release processing.
  • the mobile base station 20 transmits a bearer deletion response message to the UE-MME 60 (step S2812).
  • UE-MME 60 releases the bearer context of interest and transmits a bearer deletion response message to LGW 30 (step S2813: bearer deletion response), and completes the bearer release process.
  • step S2813 bearer deletion response
  • the SGW 70 is assigned to the LIPA connection of the mobile terminals 10a and 10c, the SGW 70 is also involved in the bearer deletion process between the UE-MME 60 and the LGW 30.
  • the mobile terminals 10a and 10c that have released the bearers constituting the LIPA connection perform reconnection processing (steps S2817 and S2818: connection processing).
  • the mobile terminals 10a and 10c specify the access point name (APN) for LIPA and perform reconnection.
  • APN access point name
  • the mobile base station 20 Upon receiving the reconnection from the mobile terminals 10a and 10c, the mobile base station 20 rewrites (1) the access point name (APN) for RIPA (2) or the RIPA in the connection request message from the mobile terminals 10a and 10c.
  • Information for instructing switching to an access point name (APN) for use for example, access point name (APN) for RIPA and switching instruction flag, or access point name (APN) for RIPA only
  • UE -MME 60 continues the reconnection process of the mobile terminals 10a and 10c.
  • the UE-MME 60 selects and assigns the connection to the RIPA APN, that is, the SGW 70 for connection to the LGW 30, and establishes the RIPA connection (steps S2819 and S2820: connection establishment).
  • the mobile base station 20 may notify the access point name (APN) for RIPA in the bearer release process, and information that prompts connection to the access point name (APN) for RIPA (for example, a flag) May be notified to the mobile terminals 10a and 10c.
  • the mobile terminals 10a and 10c specify the access point name (APN) for RIPA and perform the reconnection process.
  • the mobile base station 20 (1) checks connection request messages from the mobile terminals 10a and 10c one by one and replaces them with the access point name (APN) for RIPA, or (2) the access point name for RIPA. It is possible to reduce the burden of instructing the UE-MME 60 to switch to (APN). This is an effective means for reducing the load particularly in the communication system according to the present embodiment in which a plurality of mobile terminals (UEs) are accommodated.
  • FIG. 29A is a “UE connection process” flowchart of the mobile base station 20 according to Embodiment 4, and particularly shows a connection process to the local network by the mobile terminal (UE).
  • FIG. 29B is a “bearer switching process” flowchart of the mobile base station 20 according to the fourth embodiment, and particularly shows bearer switching of the mobile terminal (UE).
  • the configuration of mobile base station 20 according to the present embodiment is the same as the configuration of mobile base station according to Embodiment 1 shown in FIG.
  • step S2901 connection request reception
  • the base station processing unit 25 notifies the switching processing unit 26 accordingly.
  • the switching processing unit 26 selects a connection destination based on the backhaul media (Backhaul Media) used when the notification is received from the base station processing unit 25 (step S2903: connection destination selection). That is, when the backhaul media is the local communication unit 21, the switching processing unit 26 selects local IP access (LIPA). When the backhaul media (Backhaul Media) is the cellular communication unit (core network) 22, the switching processing unit 26 selects remote access (RIPA) to the local network.
  • backhaul media Backhaul Media
  • the switching processing unit 26 selects remote access (RIPA) to the local network.
  • the access point name (APN) corresponding to the selected connection destination the access point name (APN) for LIPA or the access point name (APN) for RIPA) is the connection request message of the mobile terminals 10a and 10c. (Or overwritten with the access point name (APN) described in the connection request message), and via the base station processing unit 25 and backhaul media (cellular communication unit (core network) 22 or local communication unit 21). And transferred to the UE-MME 60 (step S2905: connection transfer request). Thereafter, the base station processing unit 25 performs an operation necessary for the connection processing of the mobile terminal (UE) such as processing a message received from each communication unit (step S2907: execution of subsequent connection processing).
  • the switching processing unit 26 detects that the backhaul media (Backhaul Media) is switched (or needs to be switched) (step S2931: back). (Howl switching detection), the switching processing unit 26, as a processing mode of the base station processing unit 25, one of a mode operating as a femto base station and a mode operating as a relay node (2) And is applied to the base station processing unit 25 (step S2933: change processing mode).
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer modification request message via the cellular communication unit (core network) 22 or the local communication unit 21.
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer release instruction via the cellular communication unit (core network) 22, the local communication unit 21, or the cellular communication unit (UE) 23.
  • Step S2935 Bearer release instruction (target CSG designation)).
  • the base station processing unit 25 performs operations necessary for update processing and release processing for the bearers of the mobile terminals 10a and 10c, such as processing messages received from the respective communication units (step S2937: execution of subsequent processing).
  • FIG. 30 is a diagram for explaining the operation of UE-MME 60 according to the fourth embodiment.
  • the configuration of UE-MME 60 according to the present embodiment is the same as the configuration of UE-MME 60 according to Embodiment 2, and a detailed description thereof will be omitted.
  • the MME processing unit 61 moves through the communication unit 63 based on the identification information for identifying the mobile base station 20 included in the bearer release instruction message.
  • the mobile terminals 10a and 10c that have established the LIPA connection are extracted via the base station 20 (step S3001: target UE extraction (UE connected to the designated CSG)).
  • step S3003 bearer deletion response
  • FIG. 31 is a diagram showing a communication system configuration according to the fifth embodiment.
  • the communication system shown in FIG. 31 differs from the communication system shown in FIG. 1 in that the mobile terminal 10a is an active mode UE among the mobile terminals 10a and 10c accommodated by the mobile base station 20, and the mobile terminal 10c. Is an idle mode UE.
  • the second embodiment is the same as the first embodiment, and in FIG. 31, the same reference numerals are given to the components common to FIG. 1.
  • the mobile base station 20 is directly connected to the local network 110. Further, the mobile terminals 10 a and 10 c are LIPA connected to the local network 110 via the mobile base station 20 and the LGW 30.
  • the UE-MME 60 is connected to the core network 140 and performs the status and mobility management of the mobile terminals 10a and 10c.
  • the mobile terminal 10a in the active mode may be referred to as the active mode UE 10a
  • the mobile terminal 10c in the idle mode may be referred to as the idle mode UE 10c.
  • FIG. 32 is a diagram illustrating a state of the communication system according to the fifth embodiment.
  • the communication base station 20 is disconnected from the local network 110 and connected to the macro eNB 40 of the macro RAN 130. Indicates one state.
  • the communication system shown in FIG. 32 is different from the communication system shown in FIG. 2 in that active mode UE 10a and idle mode UE 10c are mixed. Except for this point, the second embodiment is the same as the first embodiment, and in FIG. 32, the same reference numerals are given to components common to those in FIG.
  • FIG. 33 is a connection sequence diagram of mobile terminals 10a and 10c according to Embodiment 5.
  • the mobile base station 20 secures connectivity to the core network 140 via the local network 110 and the provider network 120 (step S3301: core). Connection to NW is completed). Specifically, the mobile base station 20 establishes a secure connection to the core network 140 using a protocol such as PPPoE.
  • the mobile terminal 10a starts connection processing.
  • the mobile terminal 10a transmits a connection request to the mobile base station 20
  • the mobile base station 20 transfers the connection request to the UE-MME 60
  • processing is performed based on the initial connection procedure disclosed in TR23.829.
  • Steps S3303 to S3305 connection processing
  • a communication connection for example, a PDN connection or a PDP context
  • the mobile terminal 10c establishes a communication connection for LIPA between the mobile terminal 10c and the LGW 30 (steps S3306 to S3308: connection processing).
  • step S3310 transition to the idle mode.
  • FIG. 34 is a local network connection switching sequence diagram according to the fifth embodiment.
  • the local RAN 100 including the mobile base station 20 and the mobile terminals 10a and 10c moves and is accommodated in the macro eNB 40. Shows switching of local network connection.
  • FIG. 34 is a sequence diagram illustrating a method for instructing bearer release.
  • the mobile base station 20 detects the backhaul switching (step S3401: backhaul switching).
  • the backhaul of the mobile base station 20 uses a wired LAN such as Ethernet (registered trademark) or a wireless LAN when connecting to the local network 110.
  • the mobile base station 20 uses a cellular line when connecting to the macro RAN.
  • it is detected that the backhaul of the mobile base station 20 has been switched from, for example, a wired LAN to a cellular line.
  • the mobile base station 20 may detect that the backhaul of the mobile base station 20 has actually been switched. In addition, the mobile base station 20 may determine that the backhaul of the mobile base station 20 has been switched when the mobile base station 20 has received a signal instructing switching of the backhaul of the mobile base station 20.
  • a signal instructing switching of the backhaul of the mobile base station 20 for example, a switching instruction signal input by a user through a screen, a button, or the like, a switching instruction signal input remotely, or the like can be considered.
  • the mobile base station 20 determines that the backhaul of the mobile base station 20 has been switched when the connectivity of the backhaul media to be switched to is confirmed. For example, the mobile base station 20 can accurately switch backhaul media (Backhaul Media) while preventing erroneous detection.
  • the mobile base station 20 Upon detecting backhaul switching to the cellular line, the mobile base station 20 performs connection processing with the RN-MME 50 via the macro eNB 40 (steps S3402, S3403: connection processing), and communication for accommodating UE traffic.
  • a connection is established (step S3404: connection establishment).
  • the detailed operation for establishing the communication connection can use, for example, a procedure as disclosed in TR36.806.
  • step S3404 when the connection for accommodating the UE traffic is established, the mobile base station 20 sends a bearer modification request message for switching the LIPA connection established by the subordinate mobile terminals 10a and 10c to the RIPA connection in the UE-MME 60.
  • Step S3405 Bearer modification request
  • the bearer modification request message includes one (or a plurality of combinations) of a cell ID, a base station ID, a CSG ID, and a location registration area ID as information for identifying the mobile base station 20.
  • the UE-MME 60 that has received the bearer modification request message extracts the mobile terminals 10 a and 10 c that have established the LIPA connection via the mobile base station 20. For example, when the mobile terminals 10a and 10c establish a LIPA connection, any one (or more) of the cell ID, base station ID, CSG ID, location registration area ID, etc. of the mobile base station 20 that accommodates the mobile terminals 10a and 10c
  • the UE-MME 60 collects the mobile terminals 10a and 10c that have established the LIPA connection from the mobile base station 20 that matches the identifier included in the bearer modification request message received from the mobile base station 20. .
  • the UE-MME 60 uses any one (or a plurality of combinations) of the cell ID, base station ID, CSG ID, location registration area ID, etc. of the mobile base station 20 that accommodates the mobile terminals 10a, 10c. May be included in a message transmitted from the mobile terminals 10a and 10c to the UE-MME 60, or may be included in a message transmitted from the mobile base station 20 to the UE-MME 60.
  • the mobile base station 20 instructs the bearer modification request message to switch the connection destination of the target bearer from the access point name (APN) for LIPA to the access point name (APN) for RIPA.
  • APN access point name
  • RIPA access point name
  • an access point name (APN) for RIPA may be added to the message, or information (for example, a flag) that explicitly instructs APN switching may be added.
  • the mobile base station 20 may issue a bearer modification request message for each bearer. Further, the mobile base station 20 may issue a bearer modification request message for each mobile terminal or for each PDN connection / PDP context. Furthermore, the mobile base station 20 may issue a bearer modification request message to all bearers at once, whereby the mobile base station 20 can reduce signaling traffic.
  • the UE-MME 60 that has received the bearer modification request selects and assigns the SGW 70 to connect to the access point name (APN) for RIPA (step S3407: SGW selection), and adds the contact address of the LGW 30 and the like.
  • a bearer modification request message is transmitted to the SGW 70 (step S3409: bearer modification request).
  • the SGW 70 that has received the message generates a bearer contest for the target mobile terminals 10a and 10c, and transfers a bearer modification request message to the LGW 30. Then, bearer context modification processing such as modifying the bearer context of the mobile terminals 10a and 10c targeted by the LGW 30 (for example, the contact address of the SGW) and transmitting a bearer modification response message to the SGW 70 is performed (step S3411: Bearer correction processing).
  • the SGW 70 When the SGW 70 completes the generation / update of the bearer context, the SGW 70 transmits a bearer modification response message to the UE-MME 60 (step S3413: bearer modification response).
  • the UE-MME 60 detects either the active mode or the idle mode from the state recorded in the context of the target mobile terminals UE10a, 10c. Then, the UE-MME 60 performs a bearer modification response message to the mobile base station 20 only in the active mode (step S3415: bearer modification request (active UE only)). That is, the UE-MME 60 transmits a bearer modification request message for the bearer of the active mode UE 10a to the mobile base station 20, and does not transmit a bearer modification request message for the bearer of the idle mode UE 10c to the mobile base station 20. Thereby, UE-MME 60 can continue the idle mode of the mobile terminal 10c, and can reduce the battery consumption of the mobile terminal 10c.
  • the mobile base station 20 Based on the received bearer modification response message, the mobile base station 20 performs a bearer modification process for updating the radio bearer (particularly the QoS parameter) of the mobile terminal 10a in the active mode (step S3417: bearer modification process).
  • step S3419 service request process
  • step S3421 Bearer correction processing
  • FIG. 35 (a) is a “UE connection process” flow diagram of mobile base station 20 according to Embodiment 5
  • FIG. 35 (b) is a “bearer switching process” of mobile base station 20 according to Embodiment 5. It is a flow diagram.
  • step S3501 reception of connection request.
  • the base station processing unit 25 notifies the switching processing unit 26 accordingly.
  • the switching processing unit 26 selects a connection destination based on the backhaul media (Backhaul Media) used when the notification is received from the base station processing unit 25 (step S3503: connection destination selection). That is, when the backhaul media is the local communication unit 21, the switching processing unit 26 selects local IP access (LIPA). When the backhaul media (Backhaul Media) is the cellular communication unit (core network) 22, the switching processing unit 26 selects remote access (RIPA) to the local network.
  • backhaul media Backhaul Media
  • the switching processing unit 26 selects remote access (RIPA) to the local network.
  • the access point name (APN) corresponding to the selected connection destination the access point name (APN) for LIPA or the access point name (APN) for RIPA) is the connection request message of the mobile terminals 10a and 10b. (Or overwritten with the access point name (APN) described in the connection request message), and via the base station processing unit 25 and backhaul media (cellular communication unit (core network) 22 or local communication unit 21). And transferred to the UE-MME 60 (step S3505: connection transfer request). Thereafter, the base station processing unit 25 performs an operation necessary for the connection process of the mobile terminal (UE) such as processing a message received from each communication unit (step S3507: execution of subsequent connection process).
  • the switching processing unit 26 detects that backhaul media has been switched (or needs to be switched) (step S3531: back). (Howl switching detection), the switching processing unit 26, as a processing mode of the base station processing unit 25, one of a mode operating as a femto base station and a mode operating as a relay node (2) Is applied to the base station processing unit 25 (step S3533: processing mode change).
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer modification request message via the cellular communication unit (core network) 22 or the local communication unit 21.
  • the switching processing unit 26 instructs the base station processing unit 25 to transmit a bearer release instruction via the cellular communication unit (core network) 22, the local communication unit 21, or the cellular communication unit (UE) 23.
  • Step S3535 Bearer modification request instruction.
  • the base station processing unit 25 performs operations necessary for update processing and release processing for the bearers of the mobile terminals 10a and 10b, such as processing messages received from the respective communication units (step S3537: execution of subsequent processing).
  • FIG. 36 is a diagram for explaining the operation of UE-MME 60 according to the present embodiment.
  • the MME processing unit 61 extracts the mobile terminals 10a and 10c in which the LIPA connection is established via the mobile base station 20 via the communication unit 63. (Step S3601: target UE extraction).
  • the MME processing unit 61 determines whether or not the extracted mobile terminals 10a and 10c are idle mode mobile terminals (step 3603: Idle UE?). If the extracted mobile terminals 10a and 10c are idle mode mobile terminals (in the case of Yes), the process proceeds to step S3607. If the extracted mobile terminals 10a and 10c are not idle mode mobile terminals, the process proceeds to step S3605. To do.
  • the MME processing unit 61 updates the contexts of the retained S1 bearer and S5 / S8 bearer (step S3605: S1 bearer update, and steps S3607: S5). / S8 bearer update).
  • the MME processing unit 61 updates the context of the retained S5 / S8 bearer (step S3607: S5 / S8 bearer update). That is, the context update of the S1 bearer is not performed.
  • the MME processing unit 61 transmits a bearer modification response message for the bearer of the active mode UE 10a to the mobile base station 20 to update the radio bearer of the active mode UE 10a (especially QoS parameters) via the communication unit 63.
  • Step S3609 Bearer modification response transmission).
  • steps S3603 to S3607 are performed on all the extracted mobile terminals 10a and 10c.
  • the bearer correction process (especially the S1 bearer correction)
  • the mobile terminal (UE) or UE-MME is instructed to start the bearer modification process.
  • the SGW and the S1 bearer context of the mobile base station 20 are updated as necessary (mobile base station address / TEID, SGW address / TEID, etc. are updated).
  • non-GPRS public wireless access systems such as 3GPP2, WiMAX, and WLAN
  • public wired access systems via Ethernet registered trademark
  • dial-up public-up
  • FIG. 37 is a diagram showing a configuration of a communication system including a public access system 3700 configured by technologies such as WiMAX, WLAN, 3GPP2, and Ethernet (registered trademark).
  • a communication system that targets 3GPP SAE / LTE for example, the system shown in FIG. 2 is that it has a public access system 3700 and a security gateway for connecting to the core network 140 via the public access system 3700 ( SeGW) 3800 is arranged in the core network 140.
  • SeGW public access system 3700
  • the macro RAN 130 is omitted from the configuration diagram, but the macro RAN 130 and an entity of the core network 140 (for example, RN-MME 50) that accommodates the macro RAN 130 may be included.
  • FIG. 38 is a diagram for explaining the operation of the communication system shown in FIG.
  • the mobile base station 1020 detects a connectable public access in the detection of the backhaul switching (performed by detecting the corresponding frequency, detecting the connection possibility via the broadcast channel, etc.) (step S5001: backhaul switching)
  • a mode that operates as a femto base station that performs remote access to the local network via public access is selected, and connection processing to public access is performed (step S5003: connection processing).
  • a secure connection is established with the security gateway (SeGW) 3800 (step S5005: connection establishment).
  • the secure connection can use an L2 tunnel or an IPsec tunnel.
  • the mobile base station 1020 completes preparation for switching the LIPA connection to the local network of the subordinate mobile terminals 10a and 10b to the RIPA connection, and bearer release processing and bearer correction processing as described in the previous embodiment. Is issued to switch the LIPA connection to the RIPA connection.
  • FIG. 39 is a diagram for explaining the configuration of mobile base station 1020 in the communication system shown in FIG. 37. The difference from the configuration of the mobile base station shown so far is that public access communication unit 1027 is provided. It is. For simplicity of explanation, the cellular communication unit (core network) 22 for connecting to the macro RAN 130 is omitted, but it may also be included.
  • FIG. 40 is a flowchart for explaining bearer switching processing of the mobile base station 1020 shown in FIG.
  • a public access system composed of technologies such as WiMAX, WLAN, 3GPP2 is detected based on information from the local communication unit 21 and the public access communication unit 1027 (step S4001: backhaul switching detection)
  • the switching processing unit 26 A mode that operates as a femto base station that performs remote access to the local network via public access is selected and applied to the base station processing unit 25 (step S4003: processing mode change).
  • the base station processing unit 25 connects to the public access system 3700, establishes a security connection with the SeGW 3800, and constructs a connection path to the core network 140.
  • the base station is selected by selecting one of the following modes according to the type of backhaul to be connected. This is applied to the station processing unit 25.
  • LIPA local access
  • RIPA remote access
  • Verification of whether it is possible to connect directly to the local network from public access is performed by the following method, for example. That is, the subnet constituting the local network is stored and connected to the same subnet via public access, or the communication confirmation with the LGW (for example, the communication confirmation using ping) after connecting to the network (before establishing connection with the SeGW)
  • the access point or router address (MAC address, IP address, etc.) is stored in advance or dynamically acquired, and is the same as the access point or router address connected for public access. If an identifier (SSID, etc.) used when connecting to the local network is stored in advance and it is detected that the identifier is the same as the identifier used when connecting to public access , Directly from public access to local network It is determined that it is possible to continue.
  • the switching processing unit 26 selects a mode that operates as a femto base station that performs local access (LIPA) in the processing mode change step.
  • LIPA local access
  • the public access communication unit 1027 may be integrated with the local communication unit 21 in the configuration of the mobile base station for verifying whether it is possible to directly connect to the local network from public access.
  • step S4005 (bearer modification request or bearer release instruction) and step S4007 (subsequent processing execution) are performed in the same manner as described above.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the communication system, the communication method, the mobile terminal, and the mobile base station apparatus according to the present invention have an effect of appropriately establishing a connection path to the local network of the mobile terminal according to the connection form of the mobile base station. It is useful as a communication method, a mobile terminal, a mobile base station apparatus and the like.
  • Wireless communication unit 10a, 10b, 10c Mobile terminal 11 Wireless communication unit 12 Communication processing unit 13 Application section 20 Mobile base stations 21 Local Communication Department 22 Cellular communication unit (core network) 23 Cellular communication unit (UE) 24 LGW Communication Department 25 Base station processor 26 Switching processor 30 LGW 31 switching processing unit 32 mobile base station communication unit 33 LGW processing unit 34 local communication unit 40 macro eNB 50 RN-MME 60 UE-MME 61 MME processing unit 63 communication unit 70 SGW 100 local RAN 110 Local network 120 Provider network 130 Macro RAN 140 Core network of operators

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動基地局の接続形態に応じて、移動端末のローカルネットワークへの適切な通信経路を確立させること。本発明の移動基地局装置は、自装置が収容する移動端末からの接続要求を受ける基地局処理部と、前記移動端末からの接続要求に基づき、自装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続あるいはリモートIP接続のいずれか一方に切り替える切替処理部と、を備える。

Description

通信システム、通信方法、並びに移動端末及び移動基地局装置
 本発明は、移動基地局に収容された移動端末がローカルネットワークに適切な経路で接続するための、通信システム、通信方法、並びに移動端末及び移動基地局装置に関する。
 セルラ通信システムのカバレッジを拡充させるための方策として、住宅や学校、企業などの狭域エリアをカバーするセルを形成するフェムト基地局の導入が進められている。さらには、フェムト基地局を介して自宅や学校、企業などが運用するローカルネットワークに接続するローカルIPアクセスサービスへの期待が高まっている。これは、従来の無線LANによるローカルネットワーク接続に比べて、セルラ技術を用いることによるQoS保証やセキュリティ確保の高さに対する期待である。
 フェムト基地局を介したローカルネットワーク接続は、セルラ標準技術を策定する標準化団体において検討が進められている。特に3GPP(3rd Generation Partnership Project)では、ローカルIPアクセス(Local IP Access; LIPA)としてネットワークアーキテクチャ、方式、プロトコルの策定が進められている(非特許文献1)。
 非特許文献1では、接続先となるローカルネットワーク(以下、LIPAネットワークとも呼ぶ)を示す識別子の一つとして、アクセスポイント名(Access Point Name;以下、APNと呼ぶ)を移動端末が指定してローカルIPアクセス(LIPA)を実施する方法が開示されている。
 ここで、フェムト基地局を持ち出して自宅や学校、企業の外からでもローカルネットワークへのセキュア接続を実施するユースケース(ローカルネットワークへのリモートアクセス;以下、Remote IP Access;RIPAとも呼ぶ)を考える。
 自宅に設置されたフェムト基地局は、ブロードバンド回線を介してオペレータのコアネットワークに接続される。ブロードバンド回線に接続するためのケーブルを抜くと、フェムト基地局はセルラ回線を介して付近のマクロ基地局に接続してコアネットワークへのコネクションを確立し、フェムト基地局配下の移動端末のコネクションを維持する。このように、セルラ回線を用いてセルラ通信システムのカバレッジを拡充させる技術は、特にリレー技術(あるいはモバイルリレー技術)と呼ばれる。3GPPにおけるリレー技術は、TR36.806において検討が進められている。
 上記のように移動するフェムト基地局(以降、移動基地局と呼ぶ)に収容される移動端末は、移動基地局とともに移動する場合において、セルラシステムにおける移動が隠蔽される。つまり、移動端末から見ると、上位の基地局が変わらないので移動を検出することがなく、移動管理処理(TS23.401に規定されるTracking Update ProcedureやTS23.060に規定されるLocation Update Procedureなど)やハンドオーバ処理を行わない。これによって、移動基地局が複数の移動端末を収容する場合に、個々の移動端末からの移動管理シグナリングを削減でき、トラフィックコストを低減することができるという特徴がある。しかしながら、先に示したようにローカルネットワークへの接続は、移動端末が明示的に指定することにより実施するものであり、LIPAとRIPAの切り替えも移動端末が再接続を行ったり、ハンドオーバ処理によって実施されることが想定される。
 これらのことから、移動基地局が移動端末を収容する環境においては、移動端末が自身の移動を検出できないので、移動基地局に伴って移動する際にローカルネットワークへの接続を正しく切り替えることができないという問題がある。すなわち、移動基地局とともに移動すると通信セッションが不意に切断され、ユーザ利便性を著しく損なうという問題がある。こうした問題を解決するために、移動基地局が自宅のホームゲートウェイとVPN(Virtual Private Network)等のセキュアトンネルを確立して、移動基地局配下の、移動端末のローカルネットワーク接続を一括収容する方法が考えられる。
 しかしながら、TR36.806に開示されるリレー技術では、リレーノードとして機能する移動基地局を終端点とするVPNトンネルを構築することができない。以下、これについて説明する。
 TR36.806では、移動基地局を実現する2つの方法が開示される。一つは従来の移動端末(User Equipment;UEと呼ぶ)と同様、PDNコネクションを確立し、その上に移動端末(UE)のPDNコネクションを収容する方法である。PDNコネクションとは、パブリック・データ・ネットワーク(Public Data Network; PDN)との接続である。このとき、移動基地局が接続するPDNは、UEトラフィックをコアネットワーク内でルーティングするためのものであり、インターネット等の外部到達性は本来必要ないものである。
 さらには、移動基地局が接続するPDNは、UEトラフィックを、インターネット等の外部ネットワークに到達させることにより、不要なパケット(例えば、悪意のあるパケット)が転送され、セキュリティレベルを低下させる懸念がある。リレー基地局は、本来オペレータ設備であり、リレー基地局が外部ネットワークとの直接通信すると、セキュリティレベルを下げてしまい、移動基地局を管理するオペレータとして実施しないことが考えられる。
 また、二つ目の方法は、リレーノードとして機能する移動基地局とそれを収容するマクロ基地局間の無線ベアラのみを確立して、UEトラフィックを収容する方法である。このとき、移動基地局はPDNコネクションを確立しないので、IPアドレスを持たない。すなわち、移動基地局はIPネットワーク上にVPNトンネルを構築することができない。
 本発明の目的は、移動基地局の接続形態に応じて、移動端末のローカルネットワークへの適切な通信経路を確立させるための、通信システム、通信方法、並びにその通信方法で用いられる移動端末及び移動基地局装置を提供することである。
 本発明は、自装置が収容する移動端末からの接続要求を受ける基地局処理部と、前記移動端末からの接続要求に基づき、自装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替える、切替処理部と、を備える移動基地局装置を提供する。
 また、上記移動基地局装置は、前記ローカルネットワークとの通信を制御する第1通信部と、マクロ基地局との通信を制御する第2通信部と、前記移動端末との通信を制御する第3通信部と、を備え、前記基地局処理部が、前記第3通信部を介して、前記移動端末からの接続要求を受信すると、前記切替処理部は、前記バックハウルメディアが前記第1通信部の場合、前記移動端末のローカルネットワークへの接続を前記ローカルIP接続に切り替え、前記バックハウルメディアが前記第2通信部の場合、前記移動端末のローカルネットワークへの接続を前記リモートIP接続に切り替える。
 また、本発明は、アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、前記移動基地局装置は、アクティブモードの前記移動端末の接続要求に基づき、自装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIPのいずれか一方に切り替え、前記MMEは、ローカルゲートウェイにより抽出されたアイドルモードの前記移動端末のベアラ修正指示に基づき、アイドルモードの前記移動端末の状態及び移動管理する、通信システムを提供する。
 また、本発明は、アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルゲートウェイを介して、ローカルネットワークと接続可能な移動基地局装置と、コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、前記ローカルゲートウェイは、前記移動基地局装置からの応答受信に基づき、ローカルネットワークからの前記移動基地局装置の離脱を検出することで、当該移動基地局装置に収容される前記複数の移動端末を抽出し、当該抽出された複数の移動端末のベアラ修正要求を前記MMEに送信し、前記MMEは、前記ローカルゲートウェイから受信した複数の移動端末のベアラ修正要求に基づき、アクティブモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施し、アイドルモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施しない、通信ステムを提供する。
 また、本発明は、アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、前記移動基地局装置が、バックハウルメディアの切替を検出すると、収容されている前記複数の移動端末が確立するベアラリリース指示メッセージに含まれる自装置の識別情報を前記MMEに送信し、前記MMEは、前記移動基地局装置の識別情報に基づき、ベアラを確立した前記複数の移動端末を抽出し、抽出された前記複数の移動端末の状態及び移動管理を行う、通信システムを提供する。
 また、本発明は、アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、前記移動基地局装置が、バックハウルメディアの切替を検出すると、前記複数の移動端末が確立するベアラ修正要求に含まれる自装置の識別情報を前記MMEに送信し、前記MMEは、前記移動基地局装置の識別情報に基づき、ベアラを確立した前記複数の移動端末を抽出し、ローカルゲートウェイから受信した複数の移動端末のベアラ修正要求に基づき、アクティブモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施し、アイドルモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施しない、通信システムを提供する。
 また、本発明は、移動基地局装置に接続するための処理を行う無線通信部と、前記移動基地局装置を介した通信を制御する制御部と、確立した通信コネクションにより通信を行うアプリケーションを動作させるアプリ部と、を備えた移動端末であって、前記制御部は、前記無線通信部を介して受信した、バックハウルメディアの切替に基づき前記移動基地局装置からのベアラリリース指示に基づき、ローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替え、前記アプリ部は、切り替えられたローカルIP接続又はリモートIP接続のいずれか一方の通信コネクションにより通信を行うアプリケーションを動作させる、移動端末を提供する。
 また、本発明は、移動基地局装置に収容される移動端末のローカルネットワークへの接続を切り替えるための通信方法であって、前記ローカルネットワークへの接続要求を前記移動端末から前記移動基地局装置へ送信するステップと、前記移動端末からの前記ローカルネットワークへの接続要求に基づき、前記移動基地局装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替えるステップと、を備える通信方法を提供する。
 本発明に係る通信システム、通信方法、並びに移動端末及び移動基地局装置によれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替えることにより移動端末の適切な通信経路を確立させることができる。更には、移動端末が移動基地局に収容されて通信システム内での移動が隠蔽される場合でも、ローカルネットワーク接続が不意に切断されることを回避させることができ、ユーザ利便性を確保できる。
実施の形態1に係る通信システムの構成を示す図 実施の形態1に係る通信システムの一状態を示す図 実施の形態1に係る移動端末10a、10bの接続シーケンス図 ベアラリリース指示を説明するシーケンス図(1) ベアラ修正指示を説明するシーケンス図(1) 実施の形態1に係る移動基地局20の構成を示すブロック図 (a)実施の形態1に係る移動基地局20の「UE接続処理」フロー図、(b)実施の形態1に係る移動基地局20の「ベアラ切替処理」フロー図 実施の形態1に係る移動端末10a、10bの構成を示すブロック図 実施の形態1に係る移動端末10a、10bの「ベアラリリース指示受信処理」フロー図 実施の形態2に係る通信システム構成を示す図 実施の形態2に係る通信システムの一状態を示す図 実施の形態2に係る移動端末10a、10bの接続シーケンス図 実施の形態2におけるローカルネットワーク接続の切替シーケンス図 (a)実施の形態2に係る移動基地局20の「UE接続処理」フロー図、(b)実施の形態2に係る移動基地局20の「ベアラ切替処理」フロー図 実施の形態2に係るLGW 30の構成を示すブロック図 実施の形態2に係るLGW 30の動作を説明するための図 実施の形態2に係るUE-MME 60の構成を示すブロック図 実施の形態2に係るUE-MME 60の動作を説明するための図 実施の形態3に係る通信システム構成を示す図 実施の形態3に係る通信システムの一状態を示す図 実施の形態3に係る移動端末10a、10cの接続シーケンス図 実施の形態3に係るローカルネットワーク接続の切替シーケンス図 実施の形態3に係るLGW 30の動作を説明するための図 (a)実施の形態3に係るUE-MME 60の「ベアラ修正要求受信処理」フロー(1)、(b)実施の形態3に係るUE-MME 60の「ベアラ修正要求受信処理」フロー(2) 実施の形態4に係る通信システム構成を示す図 実施の形態4に係る通信システムの一状態を示す図 実施の形態4に係る移動端末10a、10cの接続シーケンス図 実施の形態4に係るローカルネットワーク接続の切替シーケンス図 (a)実施の形態4に係る移動基地局20の「UE接続処理」フロー図、(b)実施の形態4に係る移動基地局20の「ベアラ切替処理」フロー図 実施の形態4に係るUE-MME 60の動作を説明するための図 実施の形態5に係る通信システム構成を示す図 実施の形態5に係る通信システムの一状態を示す図 実施の形態5に係る移動端末10a、10cの接続シーケンス図 実施の形態5に係るローカルネットワーク接続の切替シーケンス図 (a)実施の形態5に係る移動基地局20の「UE接続処理」フロー図、(b)実施の形態5に係る移動基地局20の「ベアラ切替処理」フロー図 実施の形態5に係るUE-MME 60の動作を説明するための図 WiMAX、WLAN、3GPP2などの技術で構成される公衆アクセスシステム3700を含む、通信システムの構成を示す図 図37に示した通信システムの動作を説明するための図 図37に示した通信システムにおける移動基地局1020の構成を説明するための図 図39に示した移動基地局1020のベアラ切替処理を説明するためのフローチャート
 以下、本発明の実施形態について、図面を参照して説明する。
(実施の形態1)
 本実施の形態に係る通信システムでは、リレーノードとして機能する移動基地局が、移動基地局のバックハウル(Backhaul)が変更されたことで、移動端末が移動したことを検出し、そのタイミングで、移動端末のLIPAコネクションを切断して再接続を促し、バックハウルメディア(Backhaul Media)の種別に応じて、再接続時の経路を正しく制御する。そのため、本実施の形態に係る通信システムによれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替え、移動端末の最適な通信経路を確立させることができる。
<通信システム構成>
 図1は、本発明の実施の形態1に係る通信システムの構成を示す図である。図1に示す通信システムは、ローカルRAN 100に接続する複数の移動端末(UE)10a、10b(以下、移動端末10a、10bと呼ぶ)と、ローカルRAN 100を形成する移動基地局20と、移動基地局20を経由して、ローカルネットワーク110にLIPA接続する際のゲートウェイとして機能するローカルゲートウェイ(Local Gateway;LGW)30(以下、LGW 30と呼ぶ)と、マクロRAN 130に接続されるマクロ基地局eNB 40(以下、マクロeNB 40と呼ぶ)と、コアネットワーク140に接続するUE-MME 60と、コアネットワーク140に接続するサービングゲートウェイ(Serving GateWay;SGW)70(以下、SGW 70と呼ぶ)と、ローカルRAN 100と、ローカルネットワーク110と、プロバイダネットワーク120と、マクロRAN 130と、オペレータのコアネットワーク140と、を含む。なお、図1に示していないが、コアネットワーク140内に、リレーノードのモビリティ・マネジメント・エンティティ(Mobility Management Entity; MME)であるRN-MME 50が含まれる(図2参照)。
 なお、実施の形態1に係る通信システムでは、全ての移動端末10a、10bがアクティブモードであることを想定している。
 図1では、移動基地局20がローカルネットワーク110に直接接続している。また、移動端末10a、10bは、移動基地局20とLGW 30を介してローカルネットワーク110にLIPA接続される。UE-MME 60は、移動端末10a、10bのモビリティ・マネジメント・エンティティ(Mobility Management Entity; MME)であり、移動端末10a、10bの状態及び移動管理を実施する。
 図2は、実施の形態1に係る通信システムの一状態を示す図であり、特に、移動基地局20がローカルネットワーク110から離脱して、マクロRAN 130のマクロeNB 40に接続した時の通信システムの一状態を示す。
 図2に示すように、移動基地局20は、マクロeNB 40と接続し、RN-MME 50による管理のもと無線ベアラを確立する。移動端末10a、10bは、移動基地局20及びSGW 70を介してLGW 30に接続し、ローカルネットワーク110へのRIPA接続を確立する。
<システム動作>
 図1、図2に示す通信システムに関する動作について、図3から図5を用いて説明する。図3は、図1に示す通信システムの構成における移動端末10a、10bの接続シーケンスを示す図である。図4は、ベアラリリース指示を説明するシーケンス図(1)である。図5は、ベアラ修正指示を説明するシーケンス図(1)である。
 図3に示すように、移動端末10a、10bの接続に先立ち、移動基地局20は、ローカルネットワーク110及びプロバイダネットワーク120を経由して、コアネットワーク140への接続性を確保する(ステップS301:コアNWへの接続完了)。具体的には、移動基地局20は、PPPoEなどのプロトコルを用いてコアネットワーク140へのセキュアコネクションを確立する。
 続いて、移動端末10aが接続処理を開始する。移動端末10aが接続要求を移動基地局20に送信すると、移動基地局20がその接続要求をUE-MME 60に転送し、以後TR23.829に開示される初期接続手順にもとづいて処理が行われ(ステップS303~S305:接続処理)、移動端末10aとLGW 30との間にLIPAのための通信コネクション(例えば、PDNコネクションやPDPコンテキスト)が確立される。移動端末10aと同様に、移動端末10bは、移動端末10bとLGW 30との間にLIPAのための通信コネクションを確立する(ステップS306~S308:接続処理)。
 次に、図4を参照し、移動基地局20、及び移動端末10a、10bを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切り替えシーケンスについて、ベアラリリースを指示する場合の方法と、ベアラ修正を指示する場合の方法の2通りを説明する。
 図4は、ベアラリリースを指示する場合の方法を説明するシーケンス図である。移動基地局20がバックハウル(Backhaul)の切り替えを検出する(ステップS401:バックハウル切り替え)。移動基地局20のバックハウル(Backhaul)は、ローカルネットワーク110に接続する場合はイーサネット(登録商標)等の有線LANや無線LAN、無線PAN(Personal Area Network)、ミリ波通信リンクなどの通信メディアを使用する。また、移動基地局20は、マクロRAN 130に接続する場合はセルラ回線を利用する。ここでは、移動基地局20のバックハウル(Backhaul)が、例えば有線LANからセルラ回線に切り替えられたことを検出する。
 なお、上記のように、移動基地局20が、移動基地局20のバックハウル(Backhaul)が実際に切り替えられたことを検出してもよい。また、移動基地局20が、移動基地局20のバックハウル(Backhaul)の切り替えを指示する信号を受信したことで、移動基地局20のバックハウル(Backhaul)が切り替えられたと判断してもよい。移動基地局20のバックハウル(Backhaul)の切り替えを指示する信号とは、例えば、ユーザが画面やボタンなどを介して入力する切り替え指示信号や、リモート入力される切り替え指示信号などが考えられる。その際、さらには、切り替え先のバックハウルメディア(Backhaul Media)の接続性が確認された時点で、移動基地局20が、移動基地局20のバックハウル(Backhaul)が切り替えられたことを判断すれば、移動基地局20は、誤検出を防いで的確にバックハウルメディア(Backhaul Media)の切り替えることができる。
 セルラ回線へのバックハウル切り替えを検出すると、移動基地局20は、マクロeNB 40を介してRN-MME 50と接続処理を行い(ステップS403、S404:接続処理)、UEトラフィックを収容するための通信コネクションを確立する(ステップS405:コネクション確立)。通信コネクションを確立する詳細な動作は、例えば、TR36.806に開示されるような手順を用いることができる。
 ステップS405で、UEトラフィックを収容するためのコネクションを確立すると、移動基地局20は、保持するベアラコンテキスト情報に基づいて、収容する移動端末10a、10bが確立しているベアラに対するベアラリリース指示をUE-MME 60に送信する(ステップS406:ベアラリリース指示)。ここで、収容する移動端末10a、10bが確立しているベアラとは、例えば、EPSベアラ、PDNコネクション、PDPコンテキスト、ラジオベアラなどを指す。
 そして、ステップS406と同時に、移動基地局20は、移動端末10a,10bに対して該当するベアラ(特に無線ベアラ)のリリース処理を実施する(ステップS407、S408:ベアラリリース処理)。
 なお、ステップS406で、移動基地局20は、ベアラ毎に、ベアラリリース指示を発行してもよい。また、移動基地局20は、移動端末毎に、又はPDNコネクションあるいはPDPコンテキスト毎に、ベアラリリース指示を発行してもよい。さらに、移動基地局20は、全ベアラに対して一括でベアラリリース指示を発行してもよい。これにより、移動基地局20は、シグナリングトラフィックの低減を図ることができる。
 ステップS406によりベアラリリース指示を受信したUE-MME 60は、ベアラ削除指示をLGW 30に転送する(ステップS409:ベアラ削除指示)。そして、LGW 30は、指示されたベアラに対するコンテキストをリリースし、ベアラ削除要求をUE-MME 60に送信する(ステップS411:ベアラ削除要求)。そして、UE-MME 60が、指示されたベアラのコンテキストをリリースした後にベアラ削除応答をLGW 30に送信する(ステップS413:ベアラ削除応答)。そして、ベアラリリース処理が完了する。なお、移動端末10a、10bのLIPAコネクションにSGW 70が割り当てられている場合は、UE-MME 60とLGW 30との間のベアラ削除処理にSGW 70も関与する。
 RIPAコネクションを構成するベアラをリリースされた移動端末10a、10bは、再接続処理を実施する(ステップS415、S417:接続処理)。このとき、移動端末10a、10bは、再度LIPA用のアクセスポイント名(APN)を指定して再接続を実施する。これは、移動端末10a,10bが自身の移動を検知していないためであり、引き続きローカルネットワークへのLIPAが可能であると認識しているためである。
 移動端末10a、10bの再接続の実施を受け、移動基地局20が、RIPA用のアクセスポイント名(APN)に書き換えて、又は移動端末10a、10bからの接続要求メッセージにRIPA用のアクセスポイント名(APN)への切り替えを指示する情報を付加して、UE-MME 60に移動端末10a、10bの再接続処理を継続させる。ここで、移動端末10a、10bからの接続要求メッセージに付加される、RIPA用のアクセスポイント名(APN)への切り替えを指示する情報とは、例えば、RIPA用のアクセスポイント名(APN)及び切り替え指示フラグ、又はRIPA用のアクセスポイント名(APN)が考えられる。
 移動端末10a、10bの再接続処理の継続を受けて、UE-MME 60は、RIPA用のアクセスポイント名(APN)への接続、すなわちLGW 30に接続させるためのSGW 70を選択して、移動端末10a、10bに割り当て、RIPA用コネクションを確立する(ステップS419、S421:コネクション確立)。
 なお、移動基地局20は、ベアラリリース処理の中で、RIPA用のアクセスポイント名(APN)を移動端末10a、10bに通知してもよい。また、移動基地局20は、ベアラリリース処理の中で、RIPA用のアクセスポイント名(APN)への接続を促す情報(例えば、フラグ)を移動端末10a、10bに通知してもよい。これを受けて、移動端末10a、10bは、RIPA用のアクセスポイント名(APN)を指定して再接続処理を実施する。これにより、移動基地局20が、移動端末10a、10bからの接続要求メッセージを逐一チェックして、RIPA用のアクセスポイント名(APN)に置き換える負担を軽減することができる。また、これにより、移動基地局20がUE-MME 60にRIPA用のアクセスポイント名(APN)への切り替えを指示する負担を、軽減することができる。特に、移動端末(UE)を複数収容するような通信システムのシステム負荷低減に有効である。
 図5を参照して、ベアラ修正を指示する場合の方法を説明するシーケンスについて説明する。図5はベアラ修正を指示する場合の方法を説明するシーケンス図(1)である。
 図5に示すように、移動基地局20がバックハウル(Backhaul)切り替えを検出して(ステップS501:バックハウル切替)、UEトラフィックを収容するためのコネクションを確立すると(ステップS503、505:接続処理、およびステップS507:コネクション確立)、保持するベアラコンテキスト情報に基づいて、収容する移動端末10a、10bが確立しているベアラに対するベアラ修正要求メッセージをUE-MME 60に送信する(ステップS509:ベアラ修正要求)。ここで、収容する移動端末10a、10bが確立しているベアラとは、EPSベアラ、PDNコネクション、PDPコンテキスト、ラジオベアラなどを指す。
 移動基地局20は、ベアラ修正要求メッセージの中で、対象としているベアラの接続先をLIPA用のアクセスポイント名(APN)からRIPA用のアクセスポイント名(APN)に切り替えることを指示する。例えば、移動基地局20は、RIPA用のアクセスポイント名(APN)をベアラ修正要求メッセージに付加してもよい。また、移動基地局20は、アクセスポイント名(APN)の切り替えを指示する情報(例えばフラグ)をベアラ修正要求メッセージに明示的に付加してもよい。
 なお、移動基地局20は、ベアラ修正要求メッセージをベアラ毎に発行してもよい。また、移動基地局20は、ベアラ修正要求メッセージを移動端末毎に、又はPDNコネクション/PDPコンテキスト毎に発行してもよい。さらには、移動基地局20は、ベアラ修正要求メッセージを全ベアラに対して一括で発行してもよい、これにより移動基地局20はシグナリングトラフィックの低減を図ることができる。
 ベアラ修正要求を受信したUE-MME 60は、RIPA用のアクセスポイント名(APN)に接続するためのSGW 70を選択して割り当て(ステップ511:SGW選択)、LGW 30のコンタクトアドレスなどを付加したベアラ修正要求メッセージをSGW 70に送信する(ステップS513:ベアラ修正要求)。
 ベアラ修正要求メッセージを受信したSGW 70は、対象となる移動端末10a、10bのベアラコンテストを生成するとともに、LGW 30にベアラ修正要求メッセージを転送する。そして、これを受けて、LGW 30は、ベアラ修正処理として、対象となる移動端末10a、10bのベアラコンテキストを修正し(例えばSGW 70のコンタクトアドレスなど)、ベアラ修正応答メッセージをSGW 70に送信する(ステップS515:ベアラ修正処理)。そして、ベアラコンテキストの生成/更新が完了すると、SGW 70は、ベアラ修正応答メッセージをUE-MME 60に送信する(ステップS517:ベアラ修正応答)。
 UE-MME 60は対象となる移動端末10a、10bのベアラコンテキストを更新し、ベアラ修正応答メッセージを移動基地局20に送信する(ステップS519:ベアラ修正応答)。移動基地局20は、受信したベアラ修正応答メッセージに基づいて、移動端末10a、10bの無線ベアラ(特にQoSパラメータなど)を更新するベアラ修正処理を実施する(ステップS521、S523:ベアラ修正処理)。
 なお、LIPA用のアクセスポイント名(APN)、及びRIPA用のアクセスポイント名(APN)から導出されるゲートウェイが異なる場合、LGW 30からRIPA用のPDNゲートウェイ(PDN Gateway:PGW)へのリロケーション、又はRIPA用のPDNゲートウェイ(PGW)からLGW 30へのリロケーションを実施するものであってもよい。
 また、移動基地局20経由の接続処理において、UE-MME 60とLGW 30の間で交換されるメッセージは、必ずしも移動基地局20を経由する必要はない。これは特に、LGW 30が直接コアネットワークに接続するような場合に適用される。具体的には、LGW 30がプロバイダネットワークを介してコアネットワーク上の外部接続装置(例えばVPNゲートウェイ)とセキュアトンネル(例えばVPN)を構築するような場合は、UE-MME 60やSGW 70などのコアネットワーク装置と直接メッセージを交換することができる。これにより、移動基地局20のメッセージ処理による負荷を低減できる。
 また、上記説明では、移動端末(UE)10a、10bがLIPA用のAPNやRIPA用のAPNを指定するとしたが、特にLIPA用のAPNやRIPA用のAPNを指定せず、従来の一般的なAPNに加えて、LIPAあるいはRIPAを指定する指示子(indicator)を付加するものであってもよい。これにより、多数のAPNを生成、管理する必要がなくなり、移動端末(UE)10a、10bの接続管理におけるネットワーク装置(例えばUE-MME 60やSGW 70,LGW 30)の処理負担を軽減させることができる。
<移動基地局装置の構成と動作>
 次に移動基地局20の構成について図6を用いて説明する。図6は、実施の形態1に係る移動基地局20の構成を示すブロック図である。図6に示す移動基地局20は、ローカルネットワーク110との通信を制御するローカル通信部21と、マクロRAN 130のマクロeNB 40との通信を制御するセルラ通信部(コア網)22と、収容する移動端末10a、10bとの通信を制御するセルラ通信部(UE)23と、ローカル通信部21を介してLGW 30との通信を制御するLGW通信部24と、すべての通信部(ローカル通信部21、セルラ通信部(コア網)22、セルラ通信部(UE)23、及びLGW通信部24)を介して、移動端末10a、10bを収容するための処理を実施する基地局処理部25と、接続切替処理を実施する切替処理部26と、を備える。ここでローカル通信部21は、例えば有線LANや無線LAN等の通信リンクに接続するための通信インタフェース(通信デバイス)に相当する。
 ここで、図6に示す移動基地局20の動作について、図7(a)、(b)を用いて説明する。図7(a)は、移動端末(UE)によるローカルネットワークへの接続処理を実施するための移動基地局20の「UE接続処理」フロー図であり、図7(b)は、UEのベアラ切替を実施するための、移動基地局20の「ベアラ切替処理」フロー図である。
 図7(a)に示す「UE接続処理」フロー図では、基地局処理部25がセルラ通信部(UE)23を介して移動端末10a、10bからの接続要求を受信すると(ステップS701:接続要求受信)、基地局処理部25が切替処理部26にその旨を通知する。
 切替処理部26は、基地局処理部25から通知を受けた時に利用しているバックハウルメディア(Backhaul Media)に基づいて、接続先を選択する(ステップS703:接続先選択)。すなわち、バックハウルメディア(Backhaul Media)がローカル通信部21である場合、切替処理部26はローカルIPアクセス(LIPA)を選択する。バックハウルメディア(Backhaul Media)がセルラ通信部(コア網)である場合、切替処理部26はローカルネットワークへのリモートアクセス(RIPA)を選択する。
 続いて、選択した接続先に相当するアクセスポイント名(APN)として、LIPA用のアクセスポイント名(APN)、又はRIPA用のアクセスポイント名(APN))は、移動端末10a、10bの接続要求メッセージに付加され(あるいは接続要求メッセージに記載されたアクセスポイント名(APN)に上書きされ)、基地局処理部25、及びバックハウルメディア(セルラ通信部(コア網)22又はローカル通信部21)を介して、UE-MME 60に転送される(ステップS705:接続転送要求)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末10a、10bの接続処理に必要な動作を実施する(ステップS707:後続する接続処理実施)。
 図7(b)に示す「ベアラ切替処理」フロー図では、切替処理部26は、バックハウルメディア(Backhaul Media)の切替が行われた(あるいは切替が必要である)ことを検出すると(ステップS731:バックハウル切替検出)、切替処理部26は、基地局処理部25の処理モードとして、(1)有線/無線LAN等の通信メディアで接続してフェムト基地局として動作するモード、あるいは(2)セルラ回線を介してリレーノードとして動作するモードの、いずれか一方のモードを選択して、基地局処理部25に適用する(ステップS733:処理モード変更)。
 続いて、切替処理部26は、セルラ通信部(コア網)22又はローカル通信部21を介して、ベアラ修正要求メッセージを送信するよう基地局処理部25に指示する。あるいは、切替処理部26は、セルラ通信部(コア網)22、ローカル通信部21、又はセルラ通信部(UE)23を介して、ベアラリリース指示を送信するように基地局処理部25に指示する(ステップS735:ベアラ修正要求 or ベアラリリース指示)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末10a、10bのベアラに対する更新処理やリリース処理に必要な動作を実施する(ステップS737:後続する処理実施)。
<移動端末の構成と動作>
 次に、移動端末10a、10bの構成について図8を用いて説明する。図8は、移動端末10a、10bの構成を示すブロック図である。移動端末10a、10bの構成は同じであるため、便宜上、図8では移動端末10a(又は10b)と表記する。
 図8に示す移動端末10a(又は10b)は、移動基地局20に接続するための無線通信部11と、移動基地局20を介した通信を制御する通信処理部12と、確立した通信コネクションを用いて通信を行うアプリケーションを動作させるアプリ部13と、を備える。
 図8に示す移動端末10a(又は10b)の動作として、特にローカルネットワーク110への接続切替時に、接続先識別子の指示を含むベアラリリース指示を受信した時の動作について、図9を用いて説明する。図9は、実施の形態1に係る移動端末10a、10bの「ベアラリリース指示受信処理」フロー図である。
 図9に示す「ベアラリリース指示受信処理」フローでは、移動端末10a(又は10b)は、無線通信部11を介してベアラリリース指示メッセージを移動基地局20から受信すると、通信処理部12が、ベアラリリース指示メッセージから接続先の識別子APNを抽出する(ステップS901:APN抽出)。
 続けて通信処理部12は、ローカルネットワーク110に接続するためのベアラをリリースするための処理を実施する(ステップS903:ベアラリリース処理実施)。具体的には、TS23.401やTS23.060に開示されるようなベアラリリース手順を実施する。
 ベアラリリース処理を完了すると、移動端末10a(又は10b)は、先に抽出したアクセスポイント名(APN)で示されるPDNへの接続処理を開始する(ステップS905:抽出したAPNに接続)。具体的には、TS23.401やTS23.060に開示されるような初期接続手順(Initial Attach Procedure)あるいは追加コネクション接続手順(Additional PDN Connectivity Procedure)を実施する。
 なお、図5に示すシステム動作をサポートする移動端末10a(又は10b)は、従来のTS23.401やTS23.060に開示されるベアラ修正処理を実施するものである。特に移動端末10a(又は10b)は、移動基地局20との間で実施されるベアラ修正処理の中で、(1)移動基地局20から接続先のアクセスポイント名(APN)が変更されることを通知された場合(例えば、接続先のアクセスポイント名(APN)を変更したことを通知するフラグ等の情報と変更後のアクセスポイント名(APN)が通知された場合)、又は、(2)変更後のアクセスポイント名(APN)が通知され、それまで接続していたアクセスポイント名(APN)と異なることを検出した場合、移動端末10a(又は10b)は、(a)アプリ部13においてQoSパラメータを適した値に修正変更したり、(b)アプリケーション動作、また(c)他の変更後の接続先ネットワークやQoSに適したアプリケーションを実行してもよい。
(実施の形態2)
 実施の形態1に係る通信システムでは、全ての移動端末(UE)がアクティブモードであることを想定したものであった。しかしながら、移動基地局の配下の移動端末(UE)がアイドルモードである場合、移動基地局には、アイドルモードUE(Idle mode User Equipment(UE))のコンテキストが存在しないため、移動基地局はベアラリリースやベアラ修正処理を実施することができない。したがって、実施の形態2に係る通信システムでは、LGWが保持するUEコンテキストに基づいてアイドルモードUEが特定され、アイドルモードUEのコネクションの切り替えをアクティブモードUEの切り替えと同じタイミングで実施される。そのため、本実施の形態に係る通信システムによれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替え、移動端末の最適な通信経路を確立させることができる。
 ここで、アイドルモードUEとは、アイドルモードである移動端末(UE)を指し、アクティブモードUEとは、アクティブモードである移動端末(UE)を指す。
<通信システム構成>
 図10は、本発明による実施の形態2に係る通信システム構成を示す図である。ここで、図10に示す通信システムが、図1に示す通信システムと異なる点は、移動基地局20が収容する移動端末10a、10cのうち、移動端末10aはアクティブモードUEであり、移動端末10cはアイドルモードUEである。この点以外は実施の形態1と同様であり、図10において、図1と共通する構成要素には同じ参照符号が付されている。
 図10では、移動基地局20がローカルネットワーク110に直接接続している。また、移動端末10a、10cは、移動基地局20とLGW 30を介してローカルネットワーク110にLIPA接続される。UE-MME 60は、コアネットワーク140に接続され、移動端末10a、10cの状態及び移動管理を実施する。
 以後、実施の形態2において、便宜上、アクティブモードである移動端末10aを、アクティブモードUE 10aと呼び、アイドルモードである移動端末10cを、アイドルモードUE 10cと呼ぶ場合がある。
 図11は、実施の形態2に係る通信システムの一状態を示す図であり、移動基地局20がローカルネットワーク110から離脱して、マクロRAN 130のマクロeNB 40に接続した時の状態を示す。図11に示す通信システムが、図2に示す通信システムと異なる点は、アクティブモードUE 10aとアイドルモードUE 10cとが混在する点である。この点以外は実施の形態1と同様であり、図11において、図2と共通する構成要素には同じ参照符号が付されている。
<システム動作>
 図10、図11に示す通信システムの動作について、図12及び図13を用いて説明する。図12は、図10に示す通信システムの構成における移動端末10a、10cの接続シーケンスを示す図である。
 図12に示すように、移動端末10a、10cの接続に先立ち、移動基地局20は、ローカルネットワーク110及びプロバイダネットワーク120を経由して、コアネットワーク140への接続性を確保する(ステップS1201:コアNWへの接続完了)。具体的には、移動基地局20は、PPPoEなどのプロトコルを用いてコアネットワーク140へのセキュアコネクションを確立する。
 続いて、移動端末10aが接続処理を開始する。移動端末10aが接続要求を移動基地局20に送信すると、移動基地局20がその接続要求をUE-MME 60に転送し、以後TR23.829に開示される初期接続手順にもとづいて処理が行われ(ステップS1203~S1205:接続処理)、移動端末10aとLGW 30との間にLIPAのための通信コネクション(例えば、PDNコネクションやPDPコンテキスト)が確立される。移動端末10aと同様に、移動端末10cは、移動端末10cとLGW 30との間にLIPAのための通信コネクションを確立する(ステップS1206~S1208:接続処理)。
 さらに、図12に示す接続シーケンスでは、移動端末10cがLIPA用コネクションを確立後、アイドルモードに遷移することを想定する(ステップS1210:アイドルモードに遷移)。これにより、移動基地局20における移動端末10cに関するベアラコンテキストが削除される。
 図13を参照して、移動基地局20、および移動端末10a、10cを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切替シーケンスについて説明する。図13は、本実施の形態におけるローカルネットワーク接続の切替シーケンス図である。
 図13に示すように、移動基地局20がバックハウル(Backhaul)切り替えを検出して(ステップS1301:バックハウル切替)、UEトラフィックを収容するためのコネクションを確立すると(ステップS1303、1305:接続処理、およびステップS1307:コネクション確立)、移動基地局20が保持するベアラコンテキスト情報に基づいて、収容する移動端末10aが確立したベアラに対するベアラ修正要求メッセージをUE-MME 60に送信する(ステップS1309:ベアラ修正要求)。ここで、収容する移動端末10aが確立しているベアラとは、EPSベアラ、PDNコネクション、PDPコンテキスト、ラジオベアラなどを指す。
 移動基地局20は、ベアラ修正要求メッセージの中で、対象としているベアラの接続先をLIPA用のアクセスポイント名(APN)からRIPA用のアクセスポイント名(APN)に切り替えることを指示する。例えば、移動基地局20は、RIPA用のアクセスポイント名(APN)をベアラ修正要求メッセージに付加してもよい。また、移動基地局20は、アクセスポイント名(APN)の切り替えを指示する情報(例えばフラグ)をベアラ修正要求メッセージに明示的に付加してもよい。
 なお、移動基地局20は、ベアラ修正要求メッセージをベアラ毎に発行してもよい。また、移動基地局20は、ベアラ修正要求メッセージを移動端末毎に、又はPDNコネクション/PDPコンテキスト毎に発行してもよい。さらには、移動基地局20は、ベアラ修正要求メッセージを全ベアラに対して一括で発行してもよい、これにより移動基地局20はシグナリングトラフィックの低減を図ることができる。
 ベアラ修正要求を受信したUE-MME 60は、RIPA用のアクセスポイント名(APN)に接続するためのSGW 70を選択して割り当て(ステップ1311:SGW選択)、LGW 30のコンタクトアドレスなどを付加したベアラ修正要求メッセージをSGW 70に送信する(ステップS1313:ベアラ修正要求)。ここで、LIPA接続時にコアネットワークのSGW 70が割り当てられるような場合は、同じSGWを用いてもよく、これによってUE-MME 60におけるSGW選択に伴う処理負荷を低減することができる。
 ベアラ修正要求メッセージを受信したSGW 70は、対象となる移動端末10aのベアラコンテストを生成するとともに、LGW 30にベアラ修正要求メッセージを転送する。そして、これを受けて、LGW 30は、ベアラ修正処理として、対象となる移動端末10aのベアラコンテキストを修正し(例えばSGW 70のコンタクトアドレスなど)、ベアラ修正応答メッセージをSGW 70に送信する(ステップS1315:ベアラ修正処理)。そして、ベアラコンテキストの生成/更新が完了すると、SGW 70は、ベアラ修正応答メッセージをUE-MME 60に送信する(ステップS1317:ベアラ修正応答)。
 UE-MME 60は対象となる移動端末10aのベアラコンテキストを更新し、ベアラ修正応答メッセージを移動基地局20に送信する(ステップS1319:ベアラ修正応答)。移動基地局20は、受信したベアラ修正応答メッセージに基づいて、移動端末10aの無線ベアラ(特にQoSパラメータなど)を更新するベアラ修正処理を実施する(ステップS1321:ベアラ修正処理)。
 なお、LIPA用のアクセスポイント名(APN)、及びRIPA用のアクセスポイント名(APN)から導出されるゲートウェイが異なる場合、LGW 30からRIPA用のPDNゲートウェイ(PDN Gateway:PGW)へのリロケーション、又はRIPA用のPDNゲートウェイ(PGW)からLGW 30へのリロケーションを実施するものであってもよい。
 上述のように、図13に示す切替シーケンスにおいて、アクティブモードである移動端末10aに対する切替処理であるステップS1301からステップS1321までは、図5に示すシーケンスで説明した移動端末10aに対する処理ステップS501~S521と同じである。
 ここで、図13に示す切替シーケンスが図5に示すシーケンスと異なる点は、ステップS1321の後に続けて実施される、LGW 30の処理である。すなわち、アクティブモードUE 10aに対するベアラ修正処理を完了し、ローカルネットワーク接続のための経路切替を完了したLGW 30は、自身が保持するベアラコンテキスト情報(EPSベアラあるいはPDPコンテキストを管理するためのコンテキスト情報)にもとづいて、アイドルモードUEを抽出する(ステップS1331:残りのUE検出)。すなわち、先にベアラ修正処理を実施したアクティブモードUEを除いた移動端末(UE)をアイドルモードUEであるとして抽出する。
 ステップS1331で、LGW 30は、特に移動基地局20が収容する移動端末(UE)だけを抽出してもよい。例えば、移動端末(UE)がLIPAへの接続処理時に通知してきた移動基地局20のCSGやセルID、基地局ID、位置登録エリアID(例えばTracking Area IDやLocation Area ID、Routing Area ID)などのいずれかひとつ、又は複数の組み合わせを記録しておき、先にベアラ修正処理を実施したアクティブモードUEと同じCSGやセルID、基地局ID、位置登録エリアIDに所属する移動端末(UE)のうち、まだベアラ修正処理を実施していない移動端末(UE)をアイドルモードUEであるとして抽出する。
 LGW 30は、抽出したアイドルモードUE 10cに対するベアラ修正処理をSGW 70に対して実施する(ステップS1333:ベアラ修正処理)。ここでSGW 70は、先にアクティブモードUE 10aに対して割り当てられたのと同じSGWである。これは、同じ移動基地局に収容される移動端末(UE)は、同じロケーションに在圏することから、ほぼ必然的に同じSGWに収容されることになる、システムオペレーション上の特性を利用したものである。
 SGW 70は、アイドルモードUE 10cのベアラコンテキストを生成するとともに、移動端末10cの状態をアイドルモードに設定し、ベアラ修正指示メッセージをUE-MME 60に送信する(ステップS1335:ベアラ修正指示)。
 UE-MME 60は、受信したベアラ修正指示メッセージに基づいて、UE-MME 60が保持する移動端末10cのベアラコンテキストを更新し(例えばSGWのコンタクトアドレスなどを更新)、移動端末10cのコンテキストに記録されている状態からアイドルモードであることを検出し、移動基地局20へのベアラ修正要求は行わない。これにより、移動端末10cはアイドルモードを継続することができ、移動端末10cのバッテリ消費を低減させることができる。
 なお、SGW 70がUE-MME 60に対してベアラ修正指示を実施する際に、対象とする移動端末10cがアイドルモードであることを明示的に通知してもよい。後に、ステップS1337(図13中、「アイドルモードから復帰」)で移動端末10cがアイドルモードから復帰する際に実施するサービスリクエスト処理の中で、無線ベアラを含む通信コネクション全体の再構築(主にQoSパラメータの再構築)を実施する(ステップS1339:サービスリクエスト処理、及びS1341:ベアラ修正処理)。
 なお、LIPA用のアクセスポイント名(APN)と、RIPA用のアクセスポイント名(APN)から導出されるゲートウェイが異なる場合、LGW 30からRIPA用PGWへの(あるいはRIPA用PGWからLGWへの)リロケーションを実施するものであってもよい。より詳しくは、まずアクティブUEのベアラコンテキストをLGW 30からPGWにハンドオーバする。その後で、LGW 30が実施するアイドルモードUEのベアラ修正処理の中で、アイドルモードUEに対するPGWリロケーションを実施する。
<移動基地局20の動作>
 本実施の移動基地局20の動作について、図14(a)、(b)を用いて説明する。なお、本実施の形態における移動基地局20の構成は、図6に示す移動基地局の構成と同じであるため、その説明を割愛する。図14(a)は、実施の形態2に係る移動基地局20の「UE接続処理」フロー図であり、図14(b)は、実施の形態2に係る移動基地局20の「ベアラ切替処理」フロー図である。
 図14(a)に示す「UE接続処理」において、基地局処理部25がセルラ通信部(UE)23を介して移動端末(UE)からの接続要求を受信すると(ステップS1401:接続要求受信)、基地局処理部25が切替処理部26にその旨を通知する。
 切替処理部26は、基地局処理部25から通知を受けた時に利用しているバックハウルメディア(Backhaul Media)に基づいて、接続先を選択する(ステップS1403:接続先選択(LIPA/RIPA))。すなわち、バックハウルメディア(Backhaul Media)がローカル通信部21である場合、切替処理部26はローカルIPアクセス(LIPA)を選択する。バックハウルメディア(Backhaul Media)がセルラ通信部(コア網)である場合、切替処理部26はローカルネットワークへのリモートアクセス(RIPA)を選択する。
 続いて、選択した接続先に相当するアクセスポイント名(APN)として、LIPA用のアクセスポイント名(APN)、又はRIPA用のアクセスポイント名(APN))は、移動端末10a、10cの接続要求メッセージに付加され(あるいは接続要求メッセージに記載されたアクセスポイント名(APN)に上書きされ)、基地局処理部25、及びバックハウルメディア(セルラ通信部(コア網)22又はローカル通信部21)を介して、UE-MME 60に転送される(ステップS1405:接続転送要求)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末(UE)の接続処理に必要な動作を実施する(ステップS1407:後続する接続処理実施)。
 図14(b)に示す「ベアラ切替処理」では、切替処理部26は、バックハウルメディア(Backhaul Media)の切替が行われた(あるいは切替が必要であること)を検出すると(ステップS1431:バックハウル切替検出)、切替処理部26は、基地局処理部25の処理モードとして、(1)フェムト基地局として動作するモード、および(2)リレーノードとして動作するモードのうち、いずれか一方のモードを選択して、基地局処理部25に適用する(ステップS1433:処理モード変更)。
 続いて、切替処理部26は、セルラ通信部(コア網)22又はローカル通信部21を介して、ベアラ修正要求メッセージを送信するよう基地局処理部25に指示する。あるいは、切替処理部26は、セルラ通信部(コア網)22、ローカル通信部21、又はセルラ通信部(UE)23を介して、ベアラリリース指示を送信するように基地局処理部25に指示する(ステップS1435:ベアラ修正要求)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末10a、10cのベアラに対する更新処理やリリース処理に必要な動作を実施する(ステップS1437:後続する処理実施)。
<LGW 30の構成と動作>
 本実施の形態におけるLGW 30の構成について図15を用いて説明する。図15は、実施の形態2に係るLGW 30の構成を示すブロック図である。図15に示すLGW 30は、ローカルネットワーク110への接続切替を実施するための切替処理部31と、ローカルネットワーク110を介して移動基地局20とセキュアに通信するための移動基地局通信部32と、ローカルネットワーク110に接続する移動基地局20やコアネットワーク装置に対してLGW処理を実行するLGW処理部33と、ローカルネットワーク110との通信を制御するローカル通信部34と、を備える。
 図15に示すLGW 30の動作について、図16を用いて説明する。図16は、実施の形態2に係るLGW 30の動作を説明するための図である。移動基地局通信部32は、ローカル通信部34を介して、RIPA用のアクセスポイント名(APN)に接続するためのSGW 70から、対象となる移動端末10aのベアラコンテキストとともに、ベアラ修正要求メッセージを受信する(ステップS1601:ベアラ修正要求受信)。
 移動基地局通信部32は、対象となる移動端末10aのベアラコンテキストを修正し(ステップS1603:ベアラ修正処理)、ローカル通信部34を介して、ベアラ修正応答メッセージをSGW 70に送信する(ステップS1605:ベアラ修正応答送信)。
 切替処理部31は、LGW 30自身が保持するベアラコンテキスト情報に基づいて、アイドルモードUE 10cを抽出する(ステップS1607:残りのUE検出)。すなわち、先にベアラ修正処理を実施したアクティブモードUE 10aを除いた移動端末10cをアイドルモードUEであるとして抽出する。
 切替処理部31は、抽出したアイドルモードUE 10cに関するベアラコンテキストを修正(例えばSGWアドレスやGTPで使われるTEID(Tunnel Endpoint ID)やPMIPで使われるGRE Key(Generic Routing Encapsulation Key)をSGWによって通知された値に変更したり、SGWに通知するTEIDやGRE Keyの値を設定したりする)するとともに、LGW処理部33を介して、抽出したアイドルモードUE 10cに対するベアラ修正処理をSGW 70に対して実施する(ステップS1609:ベアラ修正処理起動)。ここでSGW 70は、先にアクティブモードUE 10aに対して割り当てられたのと同じSGWである。
<MMEの構成と動作>
 次に、実施の形態2に係るUE-MME 60の構成について図17を用いて説明する。図17は、実施の形態2に係るUE-MME 60の構成を示すブロック図である。図17に示すUE-MME 60は、MME処理を実施するためのMME処理部61と、移動基地局20やSGW 70などのコアネットワーク装置とメッセージの送受信を行うための通信部63と、を備える。
 図17に示すUE-MME 60の動作について図18を参照して説明する。図18は、実施の形態2に係るUE-MME 60の動作を説明するための図である。
 UE-MME 60は、通信部63を介して、移動基地局20から転送されたベアラ修正要求メッセージを受信し、MME処理部61が、移動端末(UE)の接続経路が変更されているか否かを判断する(ステップS1801:接続経路変更?)。接続経路が変更されている判断された場合(Yesの場合)、MME処理部61は、変更後のアクセスポイント名(APN)に接続するためのSGW 70を選択する(ステップS1803:SGW選択)。ここで、LIPA接続時にコアネットワークのSGW 70が割り当てられるような場合は、同じSGWを用いてもよく、これによってUE-MME 60におけるSGW選択に伴う処理負荷を低減することができる。接続経路が変更されていないと判断された場合(Noの場合)、ステップS1805へ遷移する。そして、MME処理部61は、LGW 30のコンタクトアドレスなどを付加したベアラ修正要求メッセージを選択したSGW 70に送信する(ステップS1805:ベアラ修正要求メッセージ送信)。以後、移動端末(UE)の接続処理に必要な動作を実施する(ステップS1807:後続する接続処理実施)。
(実施の形態3)
 実施の形態3に係る通信システムでは、LGW 30が移動基地局20の移動を検出し、移動基地局20が収容する移動端末(UE)のLIPAコネクションをRIPAコネクションに切り替える方法について説明する。本実施の形態に係る通信システムによれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替え、移動端末の最適な通信経路を確立させることができる。
<通信システム構成>
 図19は、実施の形態3に係る通信システム構成を示す図である。ここで、図19に示す通信システムが、図1に示す通信システムと異なる点は、移動基地局20が収容する移動端末10a、10cのうち、移動端末10aはアクティブモードUEであり、移動端末10cは、アイドルモードUEである。この点以外は実施の形態1と同様であり、図19において、図1と共通する構成要素には同じ参照符号が付されている。
 図19では、移動基地局20がローカルネットワーク110に直接接続している。また、移動端末10a、10cは、移動基地局20とLGW 30を介してローカルネットワーク110にLIPA接続される。UE-MME 60は、コアネットワーク140に接続され、移動端末10a、10cの状態及び移動管理を実施する。
 以後、本実施の形態において、便宜上、アクティブモードである移動端末10aを、アクティブモードUE 10aと呼び、アイドルモードである移動端末10cを、アイドルモードUE 10cと呼ぶ場合がある。
 図20は、実施の形態3に係る通信システムの一状態を示す図であり、移動基地局20がローカルネットワーク110から離脱して、マクロRAN 130のマクロeNB 40に接続した時の通信システムの状態を示すものである。図20に示す通信システムの一状態が、図2に示す通信システムの一状態と異なる点は、アクティブモードUE 10aとアイドルモードUE 10cとが混在する点である。この点以外は実施の形態1と同様であり、図20において、図2と共通する構成要素には同じ参照符号が付されている。
<システム動作>
 図19、図20に示す通信システムの動作について、図21及び図22を用いて説明する。図21は、実施の形態3に係る移動端末10a、10cの接続シーケンス図である。
 図21に示すように、移動端末10a、10cの接続に先立ち、移動基地局20は、ローカルネットワーク110及びプロバイダネットワーク120を経由して、コアネットワーク140への接続性を確保する(ステップS2101:コアNWへの接続完了)。具体的には、移動基地局20は、PPPoEなどのプロトコルを用いてコアネットワーク140へのセキュアコネクションを確立する。
 続いて、移動端末10aが接続処理を開始する。移動端末10aが接続要求を移動基地局20に送信すると、移動基地局20がその接続要求をUE-MME 60に転送し、以後TR23.829に開示される初期接続手順にもとづいて処理が行われ(ステップS2102~S2104:接続処理)、移動端末10aとLGW 30との間にLIPAのための通信コネクション(例えば、PDNコネクションやPDPコンテキスト)が確立される。移動端末10aと同様に、移動端末10cは、移動端末10cとLGW 30との間にLIPAのための通信コネクションを確立する(ステップS2106~S2108:接続処理)。
 さらに、図21に示す接続シーケンスでは、移動端末10cがLIPA用コネクションを確立後、アイドルモードに遷移することを想定する(ステップS2110:アイドルモードに遷移)。これにより、移動基地局20の配下の移動端末10cに関するベアラコンテキストが削除される。
 図22は、実施の形態3に係るローカルネットワーク接続の切替シーケンス図であり、特に、移動基地局20、および移動端末10a、10cを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切替シーケンスについて説明する。
 図22に示すように、移動基地局20がバックハウル(Backhaul)をセルラ回線に切り替えて(ステップS2201:バックハウル切替)、マクロ eNB40、及びRN-MME 50とコネクションを確立する(ステップS2202、S2203:接続処理、及びステップS2204:コネクション確立)。
 ここで、本実施の形態に係る通信システムでは、移動基地局20が収容する移動端末10a、10cが接続する、UE-MME 60へのインタフェースが、移動基地局20及びUE-MME 60間で更新される(ステップS2205:S1-AP更新処理)。なお、移動基地局20が収容する移動端末10a、10cが接続するUE-MME 60へのインタフェースは、TS23.401ではS1-APとして開示されている。これにより、コアネットワーク装置で起動されるベアラ更新処理に関するメッセージを移動基地局20が受信できるようになる。
 一方、移動基地局20のバックハウル切替を、移動基地局20のローカルネットワークからの離脱したLGW 30が検出する(ステップS2207:移動基地局離脱検出)。例えば、移動端末UE10a、10cがLIPAコネクションを確立した時から定期的に移動基地局20に生存確認パケット(例えばping requestなど)を送信し、応答受信をLGW 30が管理する。すなわち、移動基地局20がローカルネットワーク110に接続している間は、LGW 30からの生存確認パケットに応答するが、バックハウル(Backhaul)をセルラ回線に切り替えた時点で応答が途絶えるため、LGW 30は応答が途絶えた時に移動基地局20のローカルネットワークからの離脱を検出する。
 移動基地局20の離脱を検出したLGW 30は、移動基地局20を経て、LIPAコネクションを確立した移動端末10a、10cを抽出する(ステップS2209:対象UE抽出)。例えば、移動端末10a、10cがLIPAコネクションを確立する際に、LGW 30が移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDなどのいずれか(あるいは複数の組み合わせ)を収集し、離脱を検出した移動基地局20が有するいずれかのID(あるいは複数IDの組み合わせ)と一致する移動端末(UE)を対象となる移動端末(UE)とする。
 なお、LGW 30が移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDなどのいずれか(あるいは複数の組み合わせ)を収集する方法として、例えば、(1)移動端末10a、10cがLGW 30に送信するメッセージに移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDを含める、又は(2)移動基地局20がLGW 30に送信するメッセージに移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDを含める、と言った方法がある。
 続いて、LGW 30は、抽出した移動端末10a、10cのベアラ更新を実施するため、メッセージの送り先となるSGW 70を選択して割り当てる(ステップS2211:SGW選択)。なお、LIPAコネクション確立時に、既にSGW 70が割り当てられている場合、そのSGW 70を利用する。すなわち、LGW 30は、「SGW選択」処理を割愛してもよい。また、LIPA接続時に既にコアネットワークのSGWが指定されるような場合、LGW 30は、「SGW選択」処理において割り当て済みのSGW 70を、あらためて選択してもよい。
 また、LGW 30は、「SGW選択」処理を実施するのではなく、UE-MME 60が「SGW選択」処理実施してもよい。例えば、図示していないコアネットワーク装置であるPCRF(Policy and Charging Rules Function)を経由して、LGW 30がUE-MME 60に「SGW選択」処理の実施を指示するメッセージを送信してもよい。これにより、UE-MME 60は、既に実装されたSGW選択機能を活用でき、LGW装置コストの低減を図ることができる。UE-MME60が選択したSGW 70に関する情報(例えばコンタクトアドレスなど)は、PCRF経由でLGW 30に通知される。または、後続するベアラ修正処理をUE-MME 60が実施してもよい。
 LIPAコネクションをRIPAコネクションに切り替える際の中継ゲートウェイとなるSGW 70を決定したLGW 30は、SGW 70にベアラ修正要求メッセージを送信する(ステップS2213:ベアラ修正要求)。
 なお、LGW 30は、ベアラ修正要求メッセージをベアラ毎に発行してもよい。また、LGW 30は、ベアラ修正要求メッセージを移動端末毎に、又はPDNコネクション/PDPコンテキスト毎に発行してもよい。さらには、LGW 30は、ベアラ修正要求メッセージを全ベアラに対して一括で発行してもよい、これによりLGW 30は、シグナリングトラフィックの低減を図ることができる。
 SGW 70は、ベアラ修正要求の対象となる移動端末10a(アクティブモード)および10c(アイドルモード)のベアラコンテキストを生成し、ベアラ修正要求メッセージをUE-MME 60に送信する(ステップS2215:ベアラ修正要求)。
 UE-MME 60は、受信したベアラ修正要求メッセージに基づいて、UE-MME 60が保持する移動端末10a、10cのベアラコンテキストを更新し(例えばSGWのコンタクトアドレスなどを更新)、移動端末10a、10cのコンテキストに記録されている状態から、アクティブモード及びアイドルモードのうちいずれかのモードを検出する。そして、UE-MME 60は、アクティブモードUE10aに限り、移動基地局20にベアラ修正要求を送信する(ステップS2217:ベアラ修正要求(active UEのみ))。すなわち、UE-MME 60は、アクティブモードUE 10aのベアラに対するベアラ修正要求メッセージを移動基地局20へ送信し、アイドルモードUE 10cのベアラに対するベアラ修正要求メッセージを移動基地局20に送信しない。これにより、UE-MME 60は、移動端末10cのアイドルモードを継続させることができ、移動端末10cのバッテリ消費を低減させることができる。
 移動基地局20は、受信したベアラ修正応答メッセージに基づいて、アクティブモードである移動端末10aの無線ベアラ(特にQoSパラメータなど)を更新するベアラ修正処理を実施する(ステップS2219:ベアラ修正処理)。そして、ベアラコンテキストの生成/更新が完了すると、移動基地局20は、ベアラ修正応答メッセージをUE-MME 60に送信する(ステップS2221:ベアラ修正応答)。
 UE-MME 60は、移動端末10a、10cの状態(アイドルモード、アクティブモード)、その他のコンテキスト情報を含むベアラ修正応答をSGW 70に送信し、SGW 70が自身のコンテキストデータに受信したコンテキスト情報を反映する(ステップS2223:ベアラ修正応答)。この中で、UE-MME 60は、アクティブモードUE 10aのS1ベアラ(移動基地局20とSGW 70間のベアラであり、UEのベアラの一部を構成する)を更新するために、移動基地局20のアドレスやTEIDなどの情報をSGW 70に通知し、SGW 70がアクティブモードUE 10aのベアラコンテキストを更新(修正)する。アイドルモードUE 10cのベアラについては、こうしたS1ベアラの更新作業は実施しない。さらにSGW 70は、ベアラ修正応答メッセージをLGW 30に転送し(ステップS2225:ベアラ修正応答)、LGW 30が自身のコンテキストデータを更新してベアラ修正処理を完了する。
 後に移動端末10cがアイドルモードから復帰する際に実施するサービスリクエスト処理の中で、無線ベアラを含む通信コネクション全体の再構築(主にQoSパラメータの再構築)を実施する(ステップS2227:サービスリクエスト処理、ステップS2229:ベアラ修正処理)。
<LGW動作>
 次に実施の形態3に係るLGW 30の動作について、図23を用いて説明する。図23は、実施の形態3に係るLGW 30の動作を説明するための図である。なお、本実施の形態におけるLGW 30の構成は、図15に示す実施の形態2に係るLGW 30と同じ構成であるため、その詳細な説明を省略する。
 図23に示すように、移動基地局通信部32は、ローカル通信部34を介して、移動基地局20のローカルネットワークからの離脱を検出する(ステップS2301:移動基地局の離脱検出)。
 切替処理部31は、移動基地局20を経て、LIPAコネクションを確立した移動端末10a、10cを抽出する(ステップS2303:対象UE抽出)。例えば、移動端末10a、10cがLIPAコネクションを確立する際に、LGW 30が、ローカル通信部34を介して、移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDなどのいずれか(あるいは複数の組み合わせ)を収集し、離脱を検出した移動基地局20が有するいずれかのID(あるいは複数IDの組み合わせ)と一致する移動端末(UE)を対象となる移動端末(UE)とする。
 切替処理部31は、抽出した移動端末10a、10cのベアラ更新を実施するため、メッセージの送り先となるSGW 70を選択して割り当てる(ステップS2305:SGW選択)。なお、LIPAコネクション確立時に、既にSGW 70が割り当てられている場合、そのSGW 70を利用する。
 移動基地局通信部32は、ローカル通信部34を介して、LIPAコネクションをRIPAコネクションに切り替える際の中継ゲートウェイとなるSGW 70にベアラ修正要求メッセージを送信する(ステップS2307:ベアラ修正要求送信)。
 移動基地局通信部32は、ローカル通信部34を介して、UE-MME 60から、移動端末10a、10cの状態(アイドルモード、アクティブモード)、その他のコンテキスト情報を含むベアラ修正応答を受信する(ステップS2309:ベアラ修正応答受信)。そして、図23に示す「ベアラ切替処理」は終了する。
<MME動作>
 次に本実施の形態におけるUE-MME 60の動作について、図24(a)、(b)を用いて説明する。実施の形態3に係るUE-MME 60の「ベアラ修正要求受信処理」フロー(1)なお、UE-MME 60の構成は、図17に示す実施の形態2に係るUE-MME 60と同じ構成であるため、その詳細な説明を省略する。
 図24(a)に示すように、MME処理部61は、通信部63を介して、SGW 70から受信したベアラ修正要求メッセージが、アイドルモードの移動端末向けのものかどうか判定する(ステップS2401:Idle UE向け修正要求?)。そして、ベアラ修正要求メッセージが、アイドルモードの移動端末向けのものである場合(Yesの場合)、ステップS2405へ遷移し、そうでない場合(Noの場合)、ステップS2403へ遷移する。
 ベアラ修正要求メッセージが、アイドルモードの移動端末向けのものでない場合、MME処理部61は、保持するS1ベアラ及びS5/S8ベアラのコンテキストを更新する処理を実施する(ステップS2403:S1ベアラ更新、およびステップS2405:S5/S8ベアラ更新)。
 ベアラ修正要求メッセージが、アイドルモードの移動端末向けのものである場合、MME処理部61は、保持するS5/S8ベアラのコンテキストを更新する(ステップS2405:S5/S8ベアラ更新)。すなわちS1ベアラの更新は実施しない。
 MME処理部61は、通信部63を介して、アクティブモードUE 10aの無線ベアラ(特にQoSパラメータなど)を更新するために、アクティブモードUE 10aのベアラに対するベアラ修正要求メッセージを移動基地局20に送信する。そして、ベアラ修正要求受信処理フロー(1)は終了する。
 図24(b)に示すように、MME処理部61は、通信部63を介して、コアネットワーク装置PCRFを経由してLGW 30と通信し、LIPAコネクションが確立された移動端末10a、10cを抽出する。(ステップS2431:対象UE抽出)。
 MME処理部61は、抽出された移動端末10a、10cがアイドルモードの移動端末であるかどうか判定する(ステップ2433:Idle UE?)。抽出された移動端末10a、10cがアイドルモードの移動端末である場合(Yesの場合)、ステップS2437へ遷移し、抽出された移動端末10a、10cがアイドルモードの移動端末でない場合、ステップS2435へ遷移する。
 抽出された移動端末10a、10cがアイドルモードの移動端末でない場合、MME処理部61は、保持するS1ベアラ及びS5/S8ベアラのコンテキストを更新する(ステップS2435:S1ベアラ更新、およびステップS2437:S5/S8ベアラ更新)。
 抽出された移動端末10a、10cがアイドルモードの移動端末である場合、、MME処理部61は、保持するS5/S8ベアラのコンテキストを更新する(ステップS2437:S5/S8ベアラ更新)。
 MME処理部61は、通信部63を介して、アクティブモードUE 10aの無線ベアラ(特にQoSパラメータなど)を更新するために、アクティブモードUE 10aのベアラに対するベアラ修正要求メッセージを移動基地局20に送信する(ステップS2439)。そして、ベアラ修正要求受信処理フロー(2)は終了する。
 なお、ステップS2433~ステップS2437に示す各処理は、抽出されたすべての移動端末10a、10cに対して実施される。
(実施の形態4)
 実施の形態4に係る通信システムでは、移動基地局20が、バックハウル(Backhaul)の切替を検出した時にCSG IDやセルID、基地局ID、位置登録エリアIDなどの移動基地局20に関する情報(移動基地局20を特定する情報)を通知し、UE-MME 60が、切替対象となる移動端末(UE)を検出し、移動端末10a、10cにRIPAコネクションへの再接続を実施させる。そのため、本実施の形態に係る通信システムによれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替え、移動端末の最適な通信経路を確立させることができる。
<通信システムの構成>
 図25は、本発明による実施の形態4に係る通信システム構成を示す図である。ここで、図25に示す通信システムが、図1に示す通信システムと異なる点は、移動基地局20が収容する移動端末10a、10cのうち、移動端末10aはアクティブモードUEであり、移動端末10cは、アイドルモードUEである。この点以外は実施の形態1と同様であり、図25において、図1と共通する構成要素には同じ参照符号が付されている。
 図25では、移動基地局20がローカルネットワーク110に直接接続している。また、移動端末10a、10cは、移動基地局20とLGW 30を介してローカルネットワーク110にLIPA接続される。UE-MME 60は、コアネットワーク140に接続され、移動端末10a、10cの状態及び移動管理を実施する。
 以後、本実施の形態において、便宜上、アクティブモードである移動端末10aを、アクティブモードUE 10aと呼び、アイドルモードである移動端末10cを、アイドルモードUE 10cと呼ぶ場合がある。
 図26は、実施の形態4に係る通信システムの一状態を示す図であり、特に、移動基地局20がローカルネットワーク110から離脱して、マクロRAN 130のマクロeNB 40に接続した時の通信システムの一状態を示す。図26に示す通信システムが、図2に示す通信システムと異なる点は、アクティブモードUE 10aとアイドルモードUE 10cとが混在する点である。この点以外は実施の形態1と同様であり、図26において、図2と共通する構成要素には同じ参照符号が付されている。
<システム動作>
 図25、図26に示す通信システムの動作について、図27及び図28を用いて説明する。図27は実施の形態4に係る移動端末10a、10cの接続シーケンス図である。
 図27に示すように、移動端末10a、10cの接続に先立ち、移動基地局20は、ローカルネットワーク110及びプロバイダネットワーク120を経由して、コアネットワーク140への接続性を確保する(ステップS2701:コアNWへの接続完了)。具体的には、移動基地局20は、PPPoEなどのプロトコルを用いてコアネットワーク140へのセキュアコネクションを確立する。
 続いて、移動端末10aが接続処理を開始する。移動端末10aが接続要求を移動基地局20に送信すると、移動基地局20がその接続要求をUE-MME 60に転送し、以後TR23.829に開示される初期接続手順にもとづいて処理が行われ(ステップS2702~S2704:接続処理)、移動端末10aとLGW 30との間にLIPAのための通信コネクション(例えば、PDNコネクションやPDPコンテキスト)が確立される(S2705:コネクション確立)。移動端末10aと同様に、移動端末10cは、移動端末10cとLGW 30との間にLIPAのための通信コネクションを確立する(ステップS2706~S2708:接続処理、S2709;コネクション確立)。
 さらに、図27に示す接続シーケンスでは、移動端末10cがLIPA用コネクションを確立後、アイドルモードに遷移することを想定する(ステップS2710:アイドルモードに遷移)。これにより、移動基地局20の配下の移動端末10cに関するベアラコンテキストが削除される。
 図28は、実施の形態4に係るローカルネットワーク接続の切替シーケンス図であり、特に、移動基地局20、および移動端末10a、10cを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切替シーケンスを示す。
 図28に示すように、移動基地局20がバックハウル(Backhaul)をセルラ回線に切り替えて(ステップS2801:バックハウル切替)、マクロ eNB40、及びRN-MME 50とコネクションを確立する(ステップS2802、S2803:接続処理、及びステップS2804:コネクション確立)。
 ここで、本実施の形態に係る通信システムでは、移動基地局20は、配下の移動端末10a、10cが確立したベアラ(EPSベアラ、PDNコネクション、PDPコンテキスト、ラジオベアラなど全てのベアラ)をリリースさせるためのベアラリリース指示メッセージをUE-MME 60に送信する(ステップS2806:ベアラリリース指示)。このとき、ベアラリリース指示メッセージには、移動基地局20を識別するための識別情報として、セルIDや基地局ID、CSG ID、位置登録エリアID(例えばTracking Area ID、Location Area ID、Routing Area ID)のいずれか(あるいは複数の組み合わせ)が含まれる。
 UE-MME 60は、ベアラリリース指示メッセージに含まれる移動基地局20を識別するための識別情報に基づき、移動基地局20経由で、LIPAコネクションを確立した移動端末10a、10cを抽出する。例えば、移動端末10a、10cがLIPAコネクションを確立する際に、移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録IDなどのいずれか(あるいは複数の組み合わせ)をUE-MME 60が収集しておき、移動基地局20から受信したベアラリリース指示メッセージに含まれる識別子と一致する移動基地局20からLIPAコネクションを確立した移動端末10a、10cを抽出する。
 ここで、UE-MME 60が、移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録IDなどのいずれか(あるいは複数の組み合わせ)をUE-MME 60が収集する方法として、例えば、移動端末10a、10cがUE-MME 60に送信するメッセージに含めてもよいし、移動基地局20がUE-MME 60に送信するメッセージに含めてもよい。
 UE-MME 60は、抽出した移動端末10a、10cが確立したLIPAコネクションに対するベアラ削除指示を、LGW 30に送信する(ステップS2807:ベアラ削除指示)。
 なお、UE-MME 60は、ベアラ修正要求メッセージをベアラ毎に発行してもよい。また、UE-MME 60は、ベアラ修正要求メッセージを移動端末毎に、又はPDNコネクション/PDPコンテキスト毎に発行してもよい。さらには、UE-MME 60は、ベアラ修正要求メッセージを全ベアラに対して一括で発行してもよい、これによりUE-MME 60は、シグナリングトラフィックの低減を図ることができる。
 LGW 30は、指示されたベアラに対するコンテキストをリリースし、ベアラ削除要求をUE-MME 60に送信する(ステップS2808:ベアラ削除要求)。
 UE-MME 60は、ベアラ削除要求を移動基地局20に送信する(ステップS2809:ベアラ削除要求)。
 移動基地局20は、移動端末10a、10cに、指定されたベアラに対するベアラリリース処理を実施する(ステップS2810、S2811:ベアラリリース処理)。ここで、対象となるベアラは先にUE-MME 60が抽出した、移動基地局20が収容する移動端末10a、10cのベアラであり、アクティブモードUE 10aのベアラ、及びアイドルモードUE 10cのベアラも、ベアラリリース処理の対象となる。
 移動基地局20及び移動端末10a、10cにおけるベアラリリース処理を完了すると、移動基地局20は、ベアラ削除応答メッセージをUE-MME 60に送信する(ステップS2812)。
 UE-MME 60は、対象となるベアラのコンテキストをリリースした後にベアラ削除応答メッセージをLGW 30に送信し(ステップS2813:ベアラ削除応答)、ベアラリリース処理を完了する。なお、移動端末10a、10cのLIPAコネクションにSGW 70が割り当てられている場合、UE-MME 60とLGW 30との間のベアラ削除処理にSGW 70も関与する。
 LIPAコネクションを構成するベアラをリリースされた移動端末10a、10cは、再接続処理を実施する(ステップS2817、S2818:接続処理)。このとき、移動端末10a、10cは、LIPA用のアクセスポイント名(APN)を指定して再接続を実施する。
 移動端末10a、10cからの再接続を受けて、移動基地局20が、(1)RIPA用のアクセスポイント名(APN)に書き換える、(2)又は移動端末10a、10cからの接続要求メッセージにRIPA用のアクセスポイント名(APN)への切り替えを指示する情報を付加して(例えば、RIPA用のアクセスポイント名(APN)と切り替え指示フラグ、またはRIPA用のアクセスポイント名(APN)のみ)、UE-MME 60に移動端末10a、10cの再接続処理を継続させる。これを受けてUE-MME60は、RIPA用APNへの接続、すなわちLGW 30に接続させるためのSGW 70を選択して割り当て、RIPA用コネクションを確立する(ステップS2819、S2820:コネクション確立)。
 なお、移動基地局20は、ベアラリリース処理の中でRIPA用のアクセスポイント名(APN)を通知しても良く、RIPA用のアクセスポイント名(APN)への接続を促す情報(例えばフラグなど)を、移動端末10a、10cに通知してもよい。これを受けて、移動端末10a、10cは、RIPA用のアクセスポイント名(APN)を指定して、再接続処理を実施する。これにより、移動基地局20が、(1)移動端末10a、10cからの接続要求メッセージを逐一チェックして、RIPA用のアクセスポイント名(APN)に置き換える、又は(2)RIPA用のアクセスポイント名(APN)への切り替えをUE-MME 60に指示する、負担を軽減することができる。これは、特に、移動端末(UE)を複数収容するような本実施の形態に係る通信システムにおいて、その負荷を低減させるのに有効な手段である。
<移動基地局の動作>
 本実施の形態に係る移動基地局20の動作について、図29(a)、(b)を用いて説明する。図29(a)は、実施の形態4に係る移動基地局20の「UE接続処理」フロー図であり、特に、移動端末(UE)によるローカルネットワークへの接続処理を示す。また、図29(b)は、実施の形態4に係る移動基地局20の「ベアラ切替処理」フロー図であり、特に、移動端末(UE)のベアラ切替を示す。なお、本実施の形態に係る移動基地局20の構成は、図6に示す実施の形態1に係る移動基地局の構成と同じであるため、その詳細な説明を省略する。
 図29(a)に示す「UE接続処理」において、基地局処理部25がセルラ通信部(UE)23を介して移動端末(UE)からの接続要求を受信すると(ステップS2901:接続要求受信)、基地局処理部25が切替処理部26にその旨を通知する。
 切替処理部26は、基地局処理部25から通知を受けた時に利用しているバックハウルメディア(Backhaul Media)に基づいて、接続先を選択する(ステップS2903:接続先選択)。すなわち、バックハウルメディア(Backhaul Media)がローカル通信部21である場合、切替処理部26はローカルIPアクセス(LIPA)を選択する。バックハウルメディア(Backhaul Media)がセルラ通信部(コア網)22である場合、切替処理部26はローカルネットワークへのリモートアクセス(RIPA)を選択する。
 続いて、選択した接続先に相当するアクセスポイント名(APN)として、LIPA用のアクセスポイント名(APN)、又はRIPA用のアクセスポイント名(APN))は、移動端末10a、10cの接続要求メッセージに付加され(あるいは接続要求メッセージに記載されたアクセスポイント名(APN)に上書きされ)、基地局処理部25、及びバックハウルメディア(セルラ通信部(コア網)22又はローカル通信部21)を介して、UE-MME 60に転送される(ステップS2905:接続転送要求)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末(UE)の接続処理に必要な動作を実施する(ステップS2907:後続する接続処理実施)。
 図29(b)に示す「ベアラ切替処理」では、切替処理部26は、バックハウルメディア(Backhaul Media)の切替が行われた(あるいは切替が必要であること)を検出すると(ステップS2931:バックハウル切替検出)、切替処理部26は、基地局処理部25の処理モードとして、(1)フェムト基地局として動作するモード、および(2)リレーノードとして動作するモードのうち、いずれか一方のモードを選択して、基地局処理部25に適用する(ステップS2933:処理モード変更)。
 続いて、切替処理部26は、セルラ通信部(コア網)22又はローカル通信部21を介して、ベアラ修正要求メッセージを送信するよう基地局処理部25に指示する。あるいは、切替処理部26は、セルラ通信部(コア網)22、ローカル通信部21、又はセルラ通信部(UE)23を介して、ベアラリリース指示を送信するように基地局処理部25に指示する(ステップS2935:ベアラリリース指示(対象CSG指定))。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末10a、10cのベアラに対する更新処理やリリース処理に必要な動作を実施する(ステップS2937:後続する処理実施)。
<MMEの動作>
 次に本実施の形態におけるUE-MME 60の動作について図30を用いて説明する。図30は、実施の形態4に係るUE-MME 60の動作を説明するための図である。本実施の形態に係るUE-MME 60の構成は、実施の形態2に係るUE-MME 60の構成と同じであり、その詳細な説明を省略する。
 図30に示す「ベアラリリース指示受信処理」では、まず、MME処理部61は、通信部63を介して、ベアラリリース指示メッセージに含まれる移動基地局20を識別するための識別情報に基づき、移動基地局20経由で、LIPAコネクションを確立した移動端末10a、10cを抽出する(ステップS3001:対象UE抽出(指定しているCSGに接続しているUE))。
 そして、MME処理部61、通信部63を介して、対象となるベアラのコンテキストをリリースした後にベアラ削除応答メッセージをLGW 30に送信し、ベアラリリース処理を完了する(ステップS3003:ベアラ削除応答)。
(実施の形態5)
 実施の形態5に係る通信システムでは、移動基地局20がバックハウル(Backhaul)の切替を検出した時に、CSG IDや基地局ID、セルID、位置登録エリアIDなど移動基地局20に関する情報を提供して、UE-MME 60が切替対象となる移動端末(UE)を検出し、移動端末(UE)のLIPAコネクションをRIPAコネクションに切り替える。そのため、本実施の形態に係る通信システムによれば、移動基地局の接続形態に応じて移動端末のローカルネットワークへの接続経路を直接接続かリモート接続のいずれかに切り替え、移動端末の最適な通信経路を確立させることができる。
<通信システムの構成>
 図31は、実施の形態5に係る通信システム構成を示す図である。ここで、図31に示す通信システムが、図1に示す通信システムと異なる点は、移動基地局20が収容する移動端末10a、10cのうち、移動端末10aはアクティブモードUEであり、移動端末10cは、アイドルモードUEである。この点以外は実施の形態1と同様であり、図31において、図1と共通する構成要素には同じ参照符号が付されている。
 図31では、移動基地局20がローカルネットワーク110に直接接続している。また、移動端末10a、10cは、移動基地局20とLGW 30を介してローカルネットワーク110にLIPA接続される。UE-MME 60は、コアネットワーク140に接続され、移動端末10a、10cの状態及び移動管理を実施する。
 以後、本実施の形態において、便宜上、アクティブモードである移動端末10aを、アクティブモードUE 10aと呼び、アイドルモードである移動端末10cを、アイドルモードUE 10cと呼ぶ場合がある。
 図32は、実施の形態5に係る通信システムの一状態を示す図であり、特に移動基地局20がローカルネットワーク110から離脱して、マクロRAN 130のマクロeNB 40に接続した時の通信システムの一状態を示す。図32に示す通信システムが、図2に示す通信システムと異なる点は、アクティブモードUE 10aとアイドルモードUE 10cとが混在する点である。この点以外は実施の形態1と同様であり、図32において、図2と共通する構成要素には同じ参照符号が付されている。
<システム動作>
 図31、図32に示す通信システムの動作について、図33及び図34を用いて説明する。図33は、実施の形態5に係る移動端末10a、10cの接続シーケンス図である。
 図33に示すように、移動端末10a、10cの接続に先立ち、移動基地局20は、ローカルネットワーク110及びプロバイダネットワーク120を経由して、コアネットワーク140への接続性を確保する(ステップS3301:コアNWへの接続完了)。具体的には、移動基地局20は、PPPoEなどのプロトコルを用いてコアネットワーク140へのセキュアコネクションを確立する。
 続いて、移動端末10aが接続処理を開始する。移動端末10aが接続要求を移動基地局20に送信すると、移動基地局20がその接続要求をUE-MME 60に転送し、以後TR23.829に開示される初期接続手順にもとづいて処理が行われ(ステップS3303~S3305:接続処理)、移動端末10aとLGW 30との間にLIPAのための通信コネクション(例えば、PDNコネクションやPDPコンテキスト)が確立される。移動端末10aと同様に、移動端末10cは、移動端末10cとLGW 30との間にLIPAのための通信コネクションを確立する(ステップS3306~S3308:接続処理)。
 さらに、図33に示す接続シーケンスでは、移動端末10cがLIPA用コネクションを確立後、アイドルモードに遷移することを想定する(ステップS3310:アイドルモードに遷移)。これにより、移動基地局20の配下の移動端末10cに関するベアラコンテキストが削除される。
 次に、図34を参照し、移動基地局20、及び移動端末10a、10cを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切り替えシーケンスについて説明する。図34は、実施の形態5に係るローカルネットワーク接続の切り替えシーケンス図であり、特に移動基地局20、及び移動端末10a、10cを含むローカルRAN 100が移動して、マクロeNB 40に収容された時の、ローカルネットワーク接続の切り替えを示す。
 図34は、ベアラリリースを指示する場合の方法を説明するシーケンス図である。移動基地局20がバックハウル(Backhaul)の切り替えを検出する(ステップS3401:バックハウル切り替え)。移動基地局20のバックハウル(Backhaul)は、ローカルネットワーク110に接続する場合はイーサネット(登録商標)等の有線LAN、又は無線LANを使用する。また、移動基地局20は、マクロRANに接続する場合はセルラ回線を利用する。ここでは、移動基地局20のバックハウル(Backhaul)が、例えば有線LANからセルラ回線に切り替えられたことを検出する。
 なお、上記のように、移動基地局20が、移動基地局20のバックハウル(Backhaul)が実際に切り替えられたことを検出してもよい。また、移動基地局20が、移動基地局20のバックハウル(Backhaul)の切り替えを指示する信号を受信したことをもって、移動基地局20のバックハウル(Backhaul)が切り替えられたと判断してもよい。移動基地局20のバックハウル(Backhaul)の切り替えを指示する信号とは、例えば、ユーザが画面やボタンなどを介して入力する切り替え指示信号や、リモート入力される切り替え指示信号などが考えられる。その際、さらには、切り替え先のバックハウルメディア(Backhaul Media)の接続性が確認された時点で、移動基地局20が、移動基地局20のバックハウル(Backhaul)が切り替えられたことを判断すれば、移動基地局20は、誤検出を防いで的確にバックハウルメディア(Backhaul Media)の切り替えることができる。
 セルラ回線へのバックハウル切り替えを検出すると、移動基地局20は、マクロeNB 40を介してRN-MME 50と接続処理を行い(ステップS3402、S3403:接続処理)、UEトラフィックを収容するための通信コネクションを確立する(ステップS3404:コネクション確立)。通信コネクションを確立する詳細な動作は、例えば、TR36.806に開示されるような手順を用いることができる。
 ステップS3404で、UEトラフィックを収容するためのコネクションを確立すると、移動基地局20は、配下の移動端末10a、10cが確立したLIPAコネクションをRIPAコネクションに切り替えるためのベアラ修正要求メッセージをUE-MME 60に送信する(ステップS3405:ベアラ修正要求)。このときベアラ修正要求メッセージには、移動基地局20を識別するための情報としてセルIDや基地局ID、CSG ID、位置登録エリアIDのいずれか(あるいは複数の組み合わせ)を含まれる。
 ベアラ修正要求メッセージを受信したUE-MME 60は、移動基地局20経由でLIPAコネクションを確立した移動端末10a、10cを抽出する。例えば、移動端末10a、10cがLIPAコネクションを確立する際に、移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDなどのいずれか(あるいは複数の組み合わせ)をUE-MME 60が収集しておき、移動基地局20から受信したベアラ修正要求メッセージに含まれる識別子と一致する移動基地局20からLIPAコネクションを確立した移動端末10a、10cを抽出する。
 ここで、UE-MME 60が、移動端末10a、10cを収容する移動基地局20のセルIDや基地局ID、CSG ID、位置登録エリアIDなどのいずれか(あるいは複数の組み合わせ)をUE-MME60が収集する方法として、例えば、移動端末10a、10cがUE-MME 60に送信するメッセージに含めてもよいし、移動基地局20がUE-MME 60に送信するメッセージに含めてもよい。
 また、移動基地局20は、ベアラ修正要求メッセージの中で、対象としているベアラの接続先をLIPA用のアクセスポイント名(APN)からRIPA用のアクセスポイント名(APN)に切り替えることを指示する。これは例えば、RIPA用のアクセスポイント名(APN)をメッセージに付加してもよいし、さらには明示的にAPN切替を指示する情報(例えばフラグ)を付加してもよい。
 なお、移動基地局20は、ベアラ修正要求メッセージをベアラ毎に発行してもよい。また、移動基地局20は、ベアラ修正要求メッセージを移動端末毎に、又はPDNコネクション/PDPコンテキスト毎に発行してもよい。さらには、移動基地局20は、ベアラ修正要求メッセージを全ベアラに対して一括で発行してもよい、これにより移動基地局20は、シグナリングトラフィックの低減を図ることができる。
 ベアラ修正要求を受信したUE-MME 60は、RIPA用のアクセスポイント名(APN)に接続するためのSGW 70を選択して割り当て(ステップS3407:SGW選択)、LGW 30のコンタクトアドレスなどを付加したベアラ修正要求メッセージをSGW 70に送信する(ステップS3409:ベアラ修正要求)。
 メッセージを受信したSGW 70は、対象となる移動端末10a、10cのベアラコンテストを生成するとともに、LGW 30にベアラ修正要求メッセージを転送すする。そして、LGW 30が対象となる移動端末10a、10cのベアラコンテキストを修正し(例えばSGWのコンタクトアドレスなど)、ベアラ修正応答メッセージをSGW 70に送信するなど、ベアラ修正処理を実施する(ステップS3411:ベアラ修正処理)。
 SGW 70は、ベアラコンテキストの生成/更新を完了すると、SGW70はベアラ修正応答メッセージをUE-MME 60に送信する(ステップS3413:ベアラ修正応答)。
 UE-MME 60は、対象となる移動端末UE10a、10cのコンテキストに記録されている状態からアクティブモード及びアイドルモードのうちいずれかのモードを検出する。そして、UE-MME 60は、アクティブモードである場合だけ、移動基地局20へのベアラ修正応答メッセージを実施する(ステップS3415:ベアラ修正要求(active UEのみ))。すなわち、UE-MME 60は、アクティブモードUE 10aのベアラに対するベアラ修正要求メッセージを移動基地局20へ送信し、アイドルモードUE 10cのベアラに対するベアラ修正要求メッセージを移動基地局20に送信しない。これにより、UE-MME 60は、移動端末10cのアイドルモードを継続させることができ、移動端末10cのバッテリ消費を低減させることができる。
 移動基地局20は、受信したベアラ修正応答メッセージに基づいて、アクティブモードである移動端末10aの無線ベアラ(特にQoSパラメータなど)を更新するベアラ修正処理を実施する(ステップS3417:ベアラ修正処理)。
 後に移動端末10cがアイドルモードから復帰する際に実施するサービスリクエスト処理の中で、無線ベアラを含む通信コネクション全体の再構築(主にQoSパラメータの再構築)を実施する(ステップS3419:サービスリクエスト処理、ステップS3421:ベアラ修正処理)。
<移動基地局の動作>
 次に本実施の形態における移動基地局20の動作について図35を用いて説明する。なお、本実施の形態に係る移動基地局20の構成は、図6に示す実施の形態1に係る移動基地局20の構成と同じであるため、その詳細は説明を省略する。
 ここで、本実施の形態に係る移動基地局20の動作について、図35(a)、(b)を用いて説明する。図35(a)は、実施の形態5に係る移動基地局20の「UE接続処理」フロー図であり、図35(b)は、実施の形態5に係る移動基地局20の「ベアラ切替処理」フロー図である。
 図35(a)に示す「UE接続処理」において、基地局処理部25がセルラ通信部(UE)23を介して移動端末(UE)からの接続要求を受信すると(ステップS3501:接続要求受信)、基地局処理部25が切替処理部26にその旨を通知する。
 切替処理部26は、基地局処理部25から通知を受けた時に利用しているバックハウルメディア(Backhaul Media)に基づいて、接続先を選択する(ステップS3503:接続先選択)。すなわち、バックハウルメディア(Backhaul Media)がローカル通信部21である場合、切替処理部26はローカルIPアクセス(LIPA)を選択する。バックハウルメディア(Backhaul Media)がセルラ通信部(コア網)22である場合、切替処理部26はローカルネットワークへのリモートアクセス(RIPA)を選択する。
 続いて、選択した接続先に相当するアクセスポイント名(APN)として、LIPA用のアクセスポイント名(APN)、又はRIPA用のアクセスポイント名(APN))は、移動端末10a、10bの接続要求メッセージに付加され(あるいは接続要求メッセージに記載されたアクセスポイント名(APN)に上書きされ)、基地局処理部25、及びバックハウルメディア(セルラ通信部(コア網)22又はローカル通信部21)を介して、UE-MME 60に転送される(ステップS3505:接続転送要求)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末(UE)の接続処理に必要な動作を実施する(ステップS3507:後続する接続処理実施)。
 図35(b)に示す「ベアラ切替処理」では、切替処理部26は、バックハウルメディア(Backhaul Media)の切替が行われた(あるいは切替が必要であること)を検出すると(ステップS3531:バックハウル切替検出)、切替処理部26は、基地局処理部25の処理モードとして、(1)フェムト基地局として動作するモード、および(2)リレーノードとして動作するモードのうち、いずれか一方のモードを選択して、基地局処理部25に適用する(ステップS3533:処理モード変更)。
 続いて、切替処理部26は、セルラ通信部(コア網)22又はローカル通信部21を介して、ベアラ修正要求メッセージを送信するよう基地局処理部25に指示する。あるいは、切替処理部26は、セルラ通信部(コア網)22、ローカル通信部21、又はセルラ通信部(UE)23を介して、ベアラリリース指示を送信するように基地局処理部25に指示する(ステップS3535:ベアラ修正要求指示)。以後、基地局処理部25が各通信部から受信するメッセージを処理するなど、移動端末10a、10bのベアラに対する更新処理やリリース処理に必要な動作を実施する(ステップS3537:後続する処理実施)。
<MMEの動作>
 次に、本実施の形態におけるUE-MME 60の構成は、図17に示す実施の形態2に係るUE-MME 60の構成と同じであるため、その詳細な説明を省略する。
 図36を参照して、本実施の形態に係るUE-MME 60の動作を説明する。図36は、本実施の形態に係るUE-MME 60の動作を説明するための図である。
 図36に示す「ベアラリリース指示受信処理」では、MME処理部61は、通信部63を介して、移動基地局20経由でLIPAコネクションが確立された移動端末10a、10cを抽出する。(ステップS3601:対象UE抽出)。
 MME処理部61は、抽出された移動端末10a、10cがアイドルモードの移動端末であるかどうか判定する(ステップ3603:Idle UE?)。抽出された移動端末10a、10cがアイドルモードの移動端末である場合(Yesの場合)、ステップS3607へ遷移し、抽出された移動端末10a、10cがアイドルモードの移動端末でない場合、ステップS3605へ遷移する。
 抽出された移動端末10a、10cがアイドルモードの移動端末でない場合、MME処理部61は、保持するS1ベアラ及びS5/S8ベアラのコンテキストを更新する(ステップS3605:S1ベアラ更新、およびステップS3607:S5/S8ベアラ更新)。
 抽出された移動端末10a、10cがアイドルモードの移動端末である場合、MME処理部61は、保持するS5/S8ベアラのコンテキストを更新する(ステップS3607:S5/S8ベアラ更新)。すなわち、S1ベアラのコンテキスト更新は実施しない。
 MME処理部61は、通信部63を介して、アクティブモードUE 10aの無線ベアラ(特にQoSパラメータなど)を更新するために、アクティブモードUE 10aのベアラに対するベアラ修正応答メッセージを移動基地局20に送信する(ステップS3609:ベアラ修正応答送信)。
 なお、ステップS3603~ステップS3607に示す各処理は、抽出されたすべての移動端末10a、10cに対して実施される。
 なお、上記各実施の形態において、LIPAコネクションからRIPAコネクションに切り替える場合の動作について示したが、逆向きの切り替えにおいても同様の操作によって実施できるものである。
 また、上記各実施の形態において、移動端末(UE)が、マクロPDNへのコネクションを確立あるいはハンドオーバする場合、移動基地局20がバックハウル変更検出した時に、ベアラ修正処理(特にはS1ベアラの修正)を起動(実施)する。あるいは、移動端末(UE)またはUE-MMEにベアラ修正処理の起動を指示する。これにより、SGWならびに必要に応じて移動基地局20のS1ベアラコンテキストが更新される(移動基地局アドレス/TEIDやSGWアドレス/TEIDなどが更新される)。
 また、上記各実施の形態では、特に3GPP SAE(System Architecture Evolution)システムの例をとりあげたが、従来のUMTSやGPRS、また3GPP2にて規定されるセルラ通信システムやWiMAXシステムへの適用も、メッセージ名やパラメータなど若干の変更により可能である。ここで、上記各実施の形態において説明した動作については、本質的な変更を行うことなく、当業者であれば、他システムに適用することができる。
 ここで、3GPP2やWiMAX、WLANなどの、いわゆる非GPRS系の公衆無線アクセスシステム、またEthernet(登録商標)やダイヤルアップなどを介する公衆有線アクセスシステム(以下総称して、公衆アクセス、公衆システム、またNon-3GPPアクセスシステムなどとよぶ)を含むシステムにおける動作について図37から図40を用いて説明する。
 図37は、WiMAX、WLAN、3GPP2、Ethernet(登録商標)などの技術で構成される公衆アクセスシステム3700を含む、通信システムの構成を示す図である。3GPP SAE/LTEを対象とする通信システム、例えば図2に示すシステムとの主な違いは、公衆アクセスシステム3700を有する点と、公衆アクセスシステム3700経由でコアネットワーク140に接続するためのセキュリティゲートウェイ(SeGW)3800がコアネットワーク140に配置される点である。なお説明の簡単上、マクロRAN130を構成図から省略したが、マクロRAN 130ならびにそれを収容するコアネットワーク140のエンティティ(例えばRN-MME 50)をあわせて有するものであってもよい。
 図38は、図37に示した通信システムの動作を説明するための図である。移動基地局1020がバックハウル切替の検出において、接続可能な公衆アクセスを検出すると(該当する周波数の検出、報知チャネルを介した接続可能性の検知などにより実施)(ステップS5001:バックハウル切替)、公衆アクセス経由でローカルネットワークへのリモートアクセスを実施するフェムト基地局として動作するモードを選択し、公衆アクセスへの接続処理を実施する(ステップS5003:接続処理)。その後、コアネットワーク140に接続するためにセキュリティゲートウェイ(SeGW)3800とセキュアコネクションを確立する(ステップS5005:コネクション確立)。セキュアコネクションはL2トンネルやIPsecトンネルなどを利用することができる。これにより、移動基地局1020は配下の移動端末10a、10bのローカルネットワークへのLIPAコネクションをRIPAコネクションに切り替える準備を完了し、先の実施の形態にて説明したようにベアラリリース処理やベアラ修正処理などを発行することにより、LIPAコネクションをRIPAコネクションに切り替える処理を実施する。
 図39は、図37に示した通信システムにおける移動基地局1020の構成を説明するための図であり、これまでに示した移動基地局の構成と異なる点は、公衆アクセス通信部1027を有する点である。なお説明の簡単上、マクロRAN 130に接続するためのセルラ通信部(コア網)22を省略しているが、あわせて有するものであってもよい。
 図40は、図39に示した移動基地局1020のベアラ切替処理を説明するためのフローチャートである。ローカル通信部21や公衆アクセス通信部1027からの情報にもとづいて、WiMAX、WLAN、3GPP2などの技術で構成される公衆アクセスシステムを検出すると(ステップS4001:バックハウル切替検出)、切替処理部26は、公衆アクセス経由でローカルネットワークへのリモートアクセスを実施するフェムト基地局として動作するモードを選択し、基地局処理部25に適用する(ステップS4003:処理モード変更)。基地局処理部25は、公衆アクセスシステム3700に接続し、SeGW3800とのセキュリティコネクションを確立してコアネットワーク140への接続パスを構築する。
 このように、Non 3GPPアクセスである公衆アクセスシステム3700を含む通信システムの移動基地局における処理モード変更では、接続先となるバックハウルの種別に応じて、次のいずれかのモードを選択して基地局処理部25に適用する。
1)ローカルネットワークへのローカルアクセス(LIPA)を実施するフェムト基地局として動作するモード(ローカル通信部21を介してローカルネットワーク110への接続が可能な場合)
2)ローカルネットワークへのリモートアクセス(RIPA)を実施するリレーノードとして動作するモード(セルラ通信部(コア網)22を有し、かつマクロRAN 130への接続が可能な場合)
3)公衆アクセス経由でローカルネットワークへのリモートアクセス(RIPA)を実施するフェムト基地局として動作するモード(公衆アクセス通信部1027を介して公衆アクセスシステム3700への接続が可能な場合)
 なお、公衆アクセスが特にWLANやEthernet(登録商標)などのローカルネットワークに接続する際に用いるのと同じ技術により構成される場合、その公衆アクセスからローカルネットワークに直接接続することができるかを検証してもよい。すなわち、これによって、ローカルネットワークへの接続をローカルアクセスにより実施することができ、リモートアクセスとする場合に比べてユーザトラフィックの通信効率向上ならびにネットワーク(特にコアネットワーク140)のトラフィック負荷を低減させることができる。
 公衆アクセスからローカルネットワークに直接接続することができるかの検証は、例えば次のような方法により実施する。すなわち、ローカルネットワーク構成するサブネットを記憶しておき、公衆アクセス経由で同じサブネットに接続したことや、ネットワーク接続後(SeGWとのコネ確立前)にLGWに対する疎通確認(例えばpingを用いた疎通確認)に成功したことや、接続先アクセスポイントやルータのアドレス(MACアドレスやIPアドレスなど)をあらかじめ記憶あるいは動的に取得し、公衆アクセスにおいて接続したアクセスポイントやルータのアドレスと比較して同じであることが検出できた場合や、ローカルネットワークに接続する時に用いる識別子(SSIDなど)をあらかじめ記憶しておいて、公衆アクセスに接続する時に用いた識別子と同じであることが検出できたような場合に、公衆アクセスからローカルネットワークに直接接続することができると判断する。
 ローカルネットワークに直接接続できると判断した場合、切替処理部26は処理モード変更ステップにおいて、ローカルアクセス(LIPA)を実施するフェムト基地局として動作するモードを選択する。
 なお、公衆アクセスからローカルネットワークに直接接続することができるかを検証するための移動基地局の構成において、公衆アクセス通信部1027をローカル通信部21と統合してもよい。
 図40における以降のステップS4005(ベアラ修正要求 or ベアラリリース指示)、ステップS4007(後続する処理実施)は、先に説明したのと同様に処理を実施する。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年9月9日出願の日本特許出願(特願2010-202515)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る通信システム、通信方法、並びに移動端末及び移動基地局装置は、移動基地局の接続形態に応じて、移動端末のローカルネットワークへの接続経路を適切に確立させる、という効果を有し、通信方法、並びに移動端末及び移動基地局装置等として有用である。
10a、10b、10c 移動端末     
11       無線通信部       
12       通信処理部       
13       アプリ部        
20       移動基地局       
21       ローカル通信部     
22       セルラ通信部(コア網) 
23       セルラ通信部(UE)  
24       LGW通信部      
25       基地局処理部      
26       切替処理部       
30       LGW         
31       切替処理部
32       移動基地局通信部
33       LGW処理部
34       ローカル通信部
40       マクロeNB       
50       RN-MME       
60       UE-MME       
61       MME処理部
63       通信部
70       SGW          
100      ローカルRAN
110      ローカルネットワーク
120      プロバイダネットワーク
130      マクロRAN       
140      オペレータのコアネットワーク

Claims (8)

  1.  自装置が収容する移動端末からの接続要求を受ける基地局処理部と、
     前記移動端末からの接続要求に基づき、自装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替える、切替処理部と、
     を備える移動基地局装置。
  2.  請求項1に記載の移動基地局装置であって、
     前記ローカルネットワークとの通信を制御する第1通信部と、
     マクロ基地局との通信を制御する第2通信部と、
     前記移動端末との通信を制御する第3通信部と、を備え、
     前記基地局処理部が、前記第3通信部を介して、前記移動端末からの接続要求を受信すると、前記切替処理部は、前記バックハウルメディアが前記第1通信部の場合、前記移動端末のローカルネットワークへの接続を前記ローカルIP接続に切り替え、前記バックハウルメディアが前記第2通信部の場合、前記移動端末のローカルネットワークへの接続を前記リモートIP接続に切り替える、移動基地局装置。
  3.  アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、
     コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、
     前記移動基地局装置は、アクティブモードの前記移動端末の接続要求に基づき、自装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替え、
     前記MMEは、ローカルゲートウェイにより抽出されたアイドルモードの前記移動端末のベアラ修正指示に基づき、アイドルモードの前記移動端末の状態及び移動管理する、
     通信システム。
  4.  アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルゲートウェイを介して、ローカルネットワークと接続可能な移動基地局装置と、
     コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、
     前記ローカルゲートウェイは、前記移動基地局装置からの応答受信に基づき、ローカルネットワークからの前記移動基地局装置の離脱を検出することで、当該移動基地局装置に収容される前記複数の移動端末を抽出し、当該抽出された複数の移動端末のベアラ修正要求を前記MMEに送信し、
     前記MMEは、前記ローカルゲートウェイから受信した複数の移動端末のベアラ修正要求に基づき、アクティブモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施し、アイドルモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施しない、
     通信システム。
  5.  アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、
     コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、
     前記移動基地局装置が、バックハウルメディアの切替を検出すると、収容されている前記複数の移動端末が確立するベアラリリース指示メッセージに含まれる自装置の識別情報を前記MMEに送信し、
     前記MMEは、前記移動基地局装置の識別情報に基づき、ベアラを確立した前記複数の移動端末を抽出し、抽出された前記複数の移動端末の状態及び移動管理を行う、
     通信システム。
  6.  アクティブモードの移動端末とアイドルモードの移動端末を含む複数の移動端末を収容可能であり、ローカルネットワークと接続可能な移動基地局装置と、
     コアネットワークに接続され、前記複数の移動端末の状態及び移動管理を行うMMEと、を備える通信システムであって、
     前記移動基地局装置が、バックハウルメディアの切替を検出すると、前記複数の移動端末が確立するベアラ修正要求に含まれる自装置の識別情報を前記MMEに送信し、
     前記MMEは、前記移動基地局装置の識別情報に基づき、ベアラを確立した前記複数の移動端末を抽出し、ローカルゲートウェイから受信した複数の移動端末のベアラ修正要求に基づき、アクティブモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施し、アイドルモードの前記移動端末について、前記移動基地局装置へのベアラ修正要求を実施しない、
     通信システム。
  7.  移動基地局装置に接続するための処理を行う無線通信部と、
     前記移動基地局装置を介した通信を制御する制御部と、
     確立した通信コネクションにより通信を行うアプリケーションを動作させるアプリ部と、を備えた移動端末であって、
     前記制御部は、前記無線通信部を介して受信した、バックハウルメディアの切替に基づき前記移動基地局装置からのベアラリリース指示に基づき、ローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替え、
     前記アプリ部は、切り替えられたローカルIP接続又はリモートIP接続のいずれか一方の通信コネクションにより通信を行うアプリケーションを動作させる、
     移動端末。
  8.  移動基地局装置に収容される移動端末のローカルネットワークへの接続を切り替えるための通信方法であって、前記ローカルネットワークへの接続要求を前記移動端末から前記移動基地局装置へ送信するステップと、
     前記移動端末からの前記ローカルネットワークへの接続要求に基づき、前記移動基地局装置が接続するバックハウルメディアに応じて、前記移動端末のローカルネットワークへの接続をローカルIP接続又はリモートIP接続のいずれか一方に切り替えるステップと、
     を備える通信方法。
PCT/JP2011/005058 2010-09-09 2011-09-08 通信システム、通信方法、並びに移動端末及び移動基地局装置 WO2012032783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/818,238 US9167623B2 (en) 2010-09-09 2011-09-08 Communication system, communication method, mobile terminal, and mobile base station device
JP2012532869A JP5703301B2 (ja) 2010-09-09 2011-09-08 通信システム、通信方法、並びに移動端末及び移動基地局装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-202515 2010-09-09
JP2010202515 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032783A1 true WO2012032783A1 (ja) 2012-03-15

Family

ID=45810393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005058 WO2012032783A1 (ja) 2010-09-09 2011-09-08 通信システム、通信方法、並びに移動端末及び移動基地局装置

Country Status (3)

Country Link
US (1) US9167623B2 (ja)
JP (1) JP5703301B2 (ja)
WO (1) WO2012032783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502315A (ja) * 2012-10-26 2016-01-21 クアルコム,インコーポレイテッド Samogベアラ管理のためのシステムおよび方法
JP2016504809A (ja) * 2012-11-19 2016-02-12 中興通訊股▲分▼有限公司 ローカルipアクセス接続を解放する方法および装置、移動管理ユニット、無線側ネットワーク要素
JP2018524946A (ja) * 2015-07-30 2018-08-30 ソニーモバイルコミュニケーションズ株式会社 モバイルホットスポット

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384480B1 (ko) * 2007-10-25 2014-04-10 닛본 덴끼 가부시끼가이샤 이동 통신 시스템, 무선 제어 장치, 이동 단말기, 및 메시지 송신 방법
US8879416B2 (en) * 2012-09-25 2014-11-04 Parallel Wireless, Inc. Heterogeneous mesh network and a multi-RAT node used therein
EP2907341B1 (en) 2012-09-25 2020-07-15 Parallel Wireless Inc. Heterogeneous self-organizing network for access and backhaul
EP2939462B1 (en) 2013-02-17 2017-06-28 Parallel Wireless Inc. Methods of incorporating an ad hoc cellular network into a fixed cellular network
US10165467B2 (en) 2013-08-06 2018-12-25 Parallel Wireless, Inc. Systems and methods for providing LTE-based backhaul
WO2015021334A2 (en) 2013-08-07 2015-02-12 Parallel Wireless, Inc. Multi-rat node used for search and rescue
EP3143793B1 (en) 2014-05-13 2018-12-26 Parallel Wireless, Inc. Multi-egress backhaul
US10757660B2 (en) 2014-11-07 2020-08-25 Parallel Wireless, Inc. Self-calibrating and self-adjusting network
US10743276B2 (en) 2014-11-07 2020-08-11 Parallel Wireless, Inc. Signal quality database
US10129158B2 (en) 2015-04-17 2018-11-13 Parallel Wireless, Inc. MaxMesh: mesh backhaul routing
US10200480B2 (en) * 2015-06-29 2019-02-05 Huawei Technologies Co., Ltd. System and method for connectivity management
EP3629669B1 (en) * 2015-09-22 2022-11-02 Huawei Technologies Co., Ltd. Control method,local control-plane device, system and computer-readable storage medium for switching a user equipment from idle state to active state
JP2019068113A (ja) * 2016-02-16 2019-04-25 シャープ株式会社 端末装置、MME(MobilityManagementEntity)、および通信制御方法
US10880296B2 (en) * 2017-03-30 2020-12-29 Kingston Digital Inc. Smart security storage
US11936645B2 (en) * 2017-03-30 2024-03-19 Kingston Digital, Inc. Smart security storage system
WO2019048135A1 (en) 2017-09-05 2019-03-14 British Telecommunications Public Limited Company CELLULAR TELECOMMUNICATION NETWORK
US11057773B2 (en) * 2018-11-20 2021-07-06 Cisco Technology, Inc. Systems and methods for detecting access point impersonators
US11540346B1 (en) * 2020-04-15 2022-12-27 Sprint Spectrum L.P. Use of threshold RAB-modification rate as basis to control configuration of dual connectivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104306A (ja) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd 通信装置及び通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780777B2 (en) * 2007-04-20 2014-07-15 Blackberry Limited Method and apparatus for user equipment for long term evolution multimedia broadcast multicast services
US8103278B2 (en) * 2008-04-01 2012-01-24 Mediatek Inc. Method and system for managing idle mode of a mobile node with multiple interfaces
WO2009132435A1 (en) * 2008-04-29 2009-11-05 Nortel Networks Limited Ubiquitous access to femto-connected network
US8665768B2 (en) * 2010-01-29 2014-03-04 Qualcomm Incorporated Femtocell one-to-many packet delivery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104306A (ja) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd 通信装置及び通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"cdma2000 Femtocell Network: Packet Data Network Aspects", 3GPP2 X.S0059-100-0, January 2010 (2010-01-01), pages 14 - 25, Retrieved from the Internet <URL:http://www.3gpp2.org/public_html/specs/X.S0059-100-0_v1.0_100216.pdf> [retrieved on 20111013] *
HUAWEI: "Impact of Stand-alone L-GW support", 3GPP TSG SA WG2 MEETING #80 S2-103495, 30 August 2010 (2010-08-30), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_80_Brunstad/Docs/S2-103495.zip> [retrieved on 20111013] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502315A (ja) * 2012-10-26 2016-01-21 クアルコム,インコーポレイテッド Samogベアラ管理のためのシステムおよび方法
JP2016504809A (ja) * 2012-11-19 2016-02-12 中興通訊股▲分▼有限公司 ローカルipアクセス接続を解放する方法および装置、移動管理ユニット、無線側ネットワーク要素
JP2018524946A (ja) * 2015-07-30 2018-08-30 ソニーモバイルコミュニケーションズ株式会社 モバイルホットスポット

Also Published As

Publication number Publication date
JPWO2012032783A1 (ja) 2014-01-20
JP5703301B2 (ja) 2015-04-15
US9167623B2 (en) 2015-10-20
US20130155959A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5703301B2 (ja) 通信システム、通信方法、並びに移動端末及び移動基地局装置
ES2929669T3 (es) Método para el interfuncionamiento entre redes en un sistema de comunicación inalámbrica y aparatos para el mismo
JP7088557B2 (ja) ネットワークシステムと方法と装置並びにプログラム
EP3300288B1 (en) Method for transmitting and receiving data in wireless communication system, and device therefor
EP2709340B1 (en) Local network and method for establishing connection between local gateway and home nodeb
Raghothaman et al. Architecture and protocols for LTE-based device to device communication
EP2469930B1 (en) Method, system and transmission distribution network element for indicating data-distribution
EP2332299B1 (en) Supporting a network locating a target node
JP5599781B2 (ja) 簡易化したローカル経路指定
KR101411968B1 (ko) 도너/중계 노드 관계의 자가―구성
EP2193632B1 (en) Methods for establishing connection of a home node b, hnb
EP2475142B1 (en) Method and system for acquiring route strategies
CN105900519B (zh) 通信***、通信设备以及通信控制方法
CN102196405B (zh) 移动性管理实体获取会话管理信息参数的方法和***
WO2012032782A1 (ja) 通信システム、通信方法、並びに移動端末及び基地局装置
CN111225427B (zh) 一种通过网关建立x2的方法
CN103857060A (zh) 一种家庭基站中获取标识和地址匹配关系的方法、***及网关
EP3573360A1 (en) Data transmission method, base station, local breakout controller, gateway and system
EP2699049A1 (en) Base station device and communication method for base station device
WO2016163416A1 (ja) 端末装置、pgw及びmme
CN102438328B (zh) 一种用户参与本地访问连接建立的方法及***
WO2016163422A1 (ja) 端末装置、pgw及びtwag
WO2014179960A1 (zh) 网络配置的方法和装置
JP7014600B2 (ja) Ue、twag、及び通信方法
CN102149067B (zh) 对本地ip数据进行管理的方法及移动通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532869

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13818238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823262

Country of ref document: EP

Kind code of ref document: A1