WO2012032239A1 - Procede et dispositif de protection thermique d'un organe electrique de vehicule automobile - Google Patents

Procede et dispositif de protection thermique d'un organe electrique de vehicule automobile Download PDF

Info

Publication number
WO2012032239A1
WO2012032239A1 PCT/FR2011/051854 FR2011051854W WO2012032239A1 WO 2012032239 A1 WO2012032239 A1 WO 2012032239A1 FR 2011051854 W FR2011051854 W FR 2011051854W WO 2012032239 A1 WO2012032239 A1 WO 2012032239A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
electric motor
maximum
function
mechanical power
Prior art date
Application number
PCT/FR2011/051854
Other languages
English (en)
Inventor
Marco Marsilia
Samuel Cregut
Yann Chazal
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2012032239A1 publication Critical patent/WO2012032239A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • B60L2260/16Temporary overload of electrical drive trains
    • B60L2260/167Temporary overload of electrical drive trains of motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the thermal protection of electrical components of a motor vehicle with a hybrid or all - electric type of motorization.
  • the invention relates to electrical devices dedicated to the propulsion and / or the production of electrical energy of the motor vehicle.
  • the electrical components of purely electric or hybrid motor vehicles generally comprise a battery for powering an electric motor via an electronic power unit.
  • the temperature of these components can be controlled by limiting the current flowing from the battery to the electric motor (in traction mode, when the electric motor is propelling the vehicle) or conversely (in the energy recovery mode, when the electric motor recovers Energy) .
  • these thermal protection strategies have the disadvantage of generating jolts in the torque delivered or recovered by the electric motor, and are generally poorly felt by the driver of the vehicle.
  • 2 1 10 280 which discloses a control system for an electric vehicle of an electric power unit comprising a battery and an electronic power unit for powering an electric motor.
  • This system limits the torque of the electric motor from a torque setpoint and a low consumption setpoint so as to reduce the losses of the drive unit.
  • this system uses mappings stored in memory that give the value of power unit losses as a function of torque and rotational speed of the electric motor. But the torque setpoint is in this case limited to the operating points where the losses do not exceed a certain limit value.
  • One of the aims of the invention is to overcome the drawbacks mentioned above by providing an improved method and an improved device for the thermal protection of the electrical components of a motor vehicle when the temperature of an organ becomes too high.
  • Another object of the invention is to protect the electrical components while ensuring the safety and drivability of the vehicle.
  • a method of thermal protection of at least one electric member of a motor vehicle equipped with an electric motor in which a limit temperature of said electric member and a speed of rotation of the electric motor are measured and we limit the torque of the electric motor.
  • a maximum mechanical power is determined as a function of the limit temperature and the torque of the electric motor is limited as a function of the rotational speed of the electric motor and of said determined maximum mechanical power.
  • limiting the traction torque or energy recovery limit the current consumed or supplied by the electric motor.
  • a reduction power is developed which is non-zero when the value of the measurement of the limit temperature is greater than a temperature threshold, and otherwise zero, and the maximum mechanical power is determined as a function of a sum between a parameterizable variable representing nominal maximum mechanical power and said elaborated reduction power.
  • a reduction power is developed as a function of the temperature of an electric member so as to reduce the torque limit of the electric motor when the temperature increases.
  • said reduction power is equal to a parameterizable gain that multiplies a difference between said temperature threshold and the value of the measurement of the limit temperature.
  • the torque limit of the electric motor can be modified in order to adapt the speed of the device to limit the torque according to the needs, in traction mode or in energy recovery mode.
  • a first maximum torque is calculated as a function of the ratio between the maximum mechanical power and the rotation speed of the electric motor
  • a second maximum torque is determined from a piecewise affine function of the maximum mechanical power
  • limit the torque of the electric motor as a function of the minimum between the first and second maximum torque.
  • the torque limit of the motor is further reduced when the rotational speed of the motor is low, which makes it possible to reduce the jolts of the electric motor during transitions between a low rotational speed and a high rotational speed in order to avoid surprising the driver during transitions.
  • a device for thermal protection of at least one electric member of a motor vehicle equipped with an electric motor comprising means for measuring a limit temperature of said electrical member and a rotational speed of the electric motor and a torque limiting means adapted to develop a torque limit for the electric motor.
  • the torque limiting means comprises power determining means for determining a maximum mechanical power as a function of the limit temperature, said torque limit being elaborated as a function of the rotational speed of the electric motor and said determined maximum mechanical power.
  • the torque limiting means is configured to calculate a first maximum torque as a function of the ratio between the maximum mechanical power and the rotational speed of the electric motor, to determine a second maximum torque from a function piecewise refining the maximum mechanical power, and to develop the torque limit as a function of the minimum between the first and second maximum torque.
  • the means for measuring the limit temperature comprise temperature sensors for respectively measuring the temperatures of the electrical components of the motor vehicle and a comparison means configured to determine the limit temperature which is equal to the maximum value of the temperatures of the electrical organs measured.
  • the torque limiting means comprises a limit temperature control loop which is configured to control the torque value of the electric motor from the torque limit and as a function of a difference between a temperature threshold and said limit temperature.
  • Figure 1 schematically illustrates an embodiment of a thermal protection device of a motor vehicle electrical member
  • FIG. 2 is a graphical representation of the variations of the maximum mechanical power as a function of the temperature
  • FIG. 3 is a graphical representation of the variations in the maximum torque calculated as a function of the speed of rotation of the motor
  • Fig. 4 illustrates an exemplary piecewise affine function
  • FIG. 5 is a graphical representation of the variations of the torque limit of the electric motor as a function of the speed of rotation of the electric motor.
  • FIG. 1 diagrammatically shows a first embodiment of a device for thermal protection 1 of electrical components 2, 3, 4 of a motor vehicle.
  • These electric devices generally comprise a battery 2, an electric motor 3 and a power electronics unit 4.
  • the battery 2 supplies the electric motor 3 via the power electronic unit 4.
  • the device 1 comprises at least one temperature sensor 5, a speed sensor 6 and a torque limiting means 7.
  • the sensors 5, 6 make it possible respectively to measure the limit temperature T of an electrical component to be protected among the electric members 2, 3, 4 and the speed of rotation N of the electric motor 3.
  • the limit temperature T of the battery 2 is measured, but it is also possible to measure the temperature of the electronic power unit 4 or the temperature of the electric motor 3 itself.
  • the torque limiting means 7 produces a Climite torque limit that it transmits, via a connection 8, to the motor 3.
  • This Climite torque limit represents a maximum torque setpoint which limits the torque (traction or recovery) of the electric motor 3 in order to control the limit temperature T of the battery 2.
  • This Climite limit is positive or zero and the principle of its elaboration will be described later.
  • the limiting means 7 comprises a power determining means 9 for determining a maximum mechanical power Pmax, a calculation means 10 for calculating a first maximum torque Cmax cal, a torque determining module 1 1 for determining a second maximum torque Cmax red and an output module 12 to develop the Climite torque limit, said output module 12 being coupled to the motor 3 by the connection 8.
  • the power determination means 9 receives the measurement of the limit temperature T of the battery 2 by a connection 13 from the temperature sensor 5. It further comprises an adder 14 which makes the difference ⁇ between the measured value T of the temperature limit of the battery 2 and a threshold of temperature Tseuil, then transmits this difference ⁇ by a connection 1 5 to a proportional regulator 16 G variable gain.
  • the adder 14 calculates the difference ⁇ according to the following equation (1):
  • T the limit temperature of an electrical component to be protected in ° C, for example the limit temperature of the battery 2;
  • Tseuil threshold of temperature beyond which one limits the torque of the electric motor in ° C.
  • variable gain proportional controller G generates a reduction power Pred, according to equation (2), which it transmits via a connection 17 to a calculation module 1 8.
  • Pred Min (0; G- ⁇ ) (2) with
  • Min function that calculates the minimum value between two variables
  • Pred reduction power can be negative or zero.
  • the temperature threshold Tseuil and the variable gain G are two adjustable parameters.
  • the calculation module 1 8 determines the maximum mechanical power Pmax as a function of the reduction power Pred and a parameterizable variable Pmax nom representing a maximum nominal mechanical power.
  • the calculation module 1 8 calculates the maximum mechanical power Pmax according to the following equation (3):
  • Pmax name nominal maximum mechanical power, parameterizable, in Watt
  • Max function that calculates the maximum value between two variables.
  • the parameterizable variable Pmax nom represents the maximum mechanical power of the electric motor in traction mode (or in generator mode) and in a nominal situation, that is to say a situation without defects. This variable Pmax name is therefore specific to the type of electric motor used.
  • the power determining means 9 transmits the maximum mechanical power Pmax via a connection 19 towards the calculation means 10 and towards the torque determining module 11.
  • the calculation means 10 comprises a divider 20 and a control operator 21.
  • the control operator 21 receives the measurement of the rotational speed N of the electric motor 3 by a connection 22 from the speed sensor 6 and supplies a strictly positive value Nabs to the divider 20 via a connection 23 in order to prevent the division by zero.
  • the calculation means 10 transmits, by a connection 24, the result of the calculation of the first maximum torque Cmax cal to the output module 12.
  • the calculation means 10 calculates the first maximum torque Cmax cal according to the following equations (4 and 5):
  • Ne Max (Nabs; Eps) (5) with
  • Cmax cal first maximum torque, also noted maximum calculated torque, in N-m;
  • Ne strictly positive parameter in radians "1 ;
  • Nabs absolute value of the rotation speed N of the electric motor 3 in radians "1 ;
  • Eps constant equal to 1 in radians 1 (to avoid division by 0 when the rotation speed N of the electric motor 3 is zero).
  • the torque determination module 1 1 determines the second maximum torque Cmax red which it transmits, by a connection 25 to the output module 12.
  • the torque determination module 1 1 determines the second maximum torque Cmax red according to the following equation (6):
  • Cmax red second maximum torque, also noted maximum torque, in N-m.
  • This affine function f makes it possible to associate a vector of n values of an input variable with a vector of n values of an output variable. Each element of the input vector corresponds to the element of the same position of the output vector.
  • the intermediate points of the function f are obtained by interpolation.
  • FIG. 4 shows, by way of example, a curve Fa of a piecewise affine function g.
  • the function f may be defined, by way of non-limiting example, by the following vectors:
  • the output module 12 generates the Climite torque limit according to the following equation (7):
  • the second maximum torque Cmax Red makes it possible to add a limitation to the engine torque in addition to that established from the first maximum torque Cmax cal.
  • the first maximum torque C max calculated allows to protect the battery 2 from heating due mainly to magnetic losses, also known as hysteresis losses.
  • the second maximum torque Cmax Red allows, for its part, to protect the battery 2 from heating due mainly to losses by Joule effect.
  • FIG. 2 shows two curves representing variations of the maximum mechanical power P max for two respective values G 1, G 2 of the variable gain G.
  • variable gain G therefore makes it possible to directly adjust the speed of the limitation of the torque as a function of the heating of the battery 2.
  • FIG. 3 shows graphically variations of the first maximum torque Cmax cal as a function of the speed of rotation of the motor N.
  • the three curves C (T 1), D (T2), E (T3) are called iso-power curves because they are established for constant values of the maximum mechanical power Pmax.
  • Curves C (T 1), D (T2), E (T3) represent the variations of the first maximum torque Cmax cal for three different temperatures of the element to be protected T l, T2, T3, with T l ⁇ T2 ⁇ T3 .
  • FIG. 5 graphically shows variations in the torque limit of the Climite electric motor as a function of the speed of rotation of the electric motor N.
  • the values H and I represent the values of the second maximum torque Cmax red, respectively for the temperatures T 1 and T2.
  • the Climite torque limit can be a simple instruction for the electric motor to prevent the torque of the latter from exceeding the Climite limit.
  • this Climite torque limit can serve as a basis for developing a torque command for controlling the torque value of the electric motor 3.
  • the thermal protection device 1 corresponds to a regulator of the limit temperature T of the organ to be protected.
  • the torque limiting means 7 comprises a regulation loop BR for regulating the limiting temperature T around the temperature threshold Tseuil.
  • This control loop BR is configured to develop the control of the torque of the electric motor 3 from the limit of torque Climite and the difference ⁇ between the temperature threshold Tseuil and said limit temperature T.
  • the variable gain G of the proportional regulator 16 thus makes it possible to adjust the gain of the thermal protection device 1 and thus to adjust the dynamics of the regulation.
  • a temperature sensor for each electrical component to be protected and develop a corresponding temperature limit T, for example the maximum value or the average of the measured temperatures.
  • the present invention it is possible to control the temperature of at least one electrical element using parameterizable means which offer great freedom of adjustment to adapt the power consumption of the various electrical components according to the needs, and in particular to improve the driving comfort of the driver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Dispositif de protection thermique d'au moins un organe électrique (2,3,4) d'un véhicule automobile équipé d'un moteur électrique (3), comprenant des moyens (5,6) pour mesurer une température limite dudit organe électrique (2) et une vitesse de rotation du moteur électrique (3) et un moyen de limitation de couple (7) qui est apte à élaborer une limite de couple pour le moteur électrique (3), et qui comprend un moyen de détermination de puissance (9) pour déterminer une puissance mécanique maximum en fonction de la température limite, ladite limite de couple étant élaborée en fonction de la vitesse de rotation du moteur électrique (3) et de ladite puissance mécanique maximum déterminée.

Description

Procédé et dispositif de protection thermique d'un organe électrique de véhicule automobile
L 'invention concerne la protection thermique des organes électriques d'un véhicule automobile à motorisation de type hybride ou tout électrique.
En particulier, l 'invention concerne les organes électriques dédiés à la propulsion et/ou la production d' énergie électrique du véhicule automobile.
Les organes électriques des véhicules automobiles purement électriques ou hybrides comprennent, de manière générale, une batterie pour alimenter un moteur électrique par l ' intermédiaire d'une unité électronique de puissance.
Afin de ne pas détruire ou détériorer ces organes électriques, il est nécessaire d' éviter un échauffement de ces derniers au-delà d'une température limite.
On peut contrôler la température de ces organes en limitant le courant qui circule de la batterie vers le moteur électrique (en mode traction, lorsque le moteur électrique propulse le véhicule) ou inversement (en mode de récupération d' énergie, lorsque le moteur électrique récupère de l ' énergie) . Mais ces stratégies de protection thermiques ont l 'inconvénient de générer des à-coups dans le couple délivré, ou récupéré, par le moteur électrique, et sont en générale mal ressentis par le conducteur du véhicule.
On peut, par exemple, citer la demande de brevet européen EP
1 084 895 qui décrit une méthode de contrôle du couple d'un moteur électrique de véhicule électrique à partir de la température du moteur ou du niveau de charge de la batterie .
On peut citer également la demande de brevet européen EP
2 1 10 280 qui décrit un système de contrôle pour un véhicule électrique d 'une unité motrice électrique comprenant une batterie et une unité électronique de puissance pour alimenter en puissance un moteur électrique. Ce système limite le couple du moteur électrique à partir d'une consigne de couple et d'une consigne de consommation faible de manière à réduire les pertes de l 'unité motrice. En outre, ce système utilise des cartographies stockées en mémoire qui donnent la valeur des pertes de l 'unité motrice en fonction du couple et de la vitesse de rotation du moteur électrique. Mais la consigne de couple est dans ce cas limitée aux points de fonctionnement où les pertes ne dépassent pas une certaine valeur limite .
Un des buts de l ' invention est de pallier les inconvénients cités ci avant en fournissant un procédé et un dispositif améliorés pour la protection thermique des organes électriques d'un véhicule automobile lorsque la température d'un organe devient trop élevée .
Un autre but de l ' invention consiste à protéger les organes électriques tout en assurant la sécurité et l ' agrément de conduite du véhicule .
Selon un aspect, il est proposé un procédé de protection thermique d' au moins un organe électrique d'un véhicule automobile équipé d'un moteur électrique, dans lequel on mesure une température limite dudit organe électrique et une vitesse de rotation du moteur électrique et on limite le couple du moteur électrique.
Dans ce procédé, on détermine une puissance mécanique maximum en fonction de la température limite et on limite le couple du moteur électrique en fonction de la vitesse de rotation du moteur électrique et de ladite puissance mécanique maximum déterminée.
Ainsi, en limitant le couple de traction ou de récupération d' énergie, on limite le courant consommé ou fourni par le moteur électrique .
On offre également une stratégie améliorée pour la protection thermique des organes car on prend en compte la température d' au moins un organe électrique et la vitesse de rotation du moteur électrique .
Selon un mode de mise en œuvre, on élabore une puissance de réduction qui est non nulle lorsque la valeur de la mesure de la température limite est supérieure à un seuil de température, et nulle sinon, et on détermine la puissance mécanique maximum en fonction d'une somme entre une variable paramétrable représentant une puissance mécanique maximale nominale et ladite puissance de réduction élaborée . Ainsi, on élabore une puissance de réduction en fonction de la température d 'un organe électrique de manière à diminuer la limite du couple du moteur électrique lorsque la température augmente .
On protège ainsi efficacement l ' organe électrique d'une surchauffe .
Avantageusement, ladite puissance de réduction est égale à un gain paramétrable que multiplie une différence entre ledit seuil de température et la valeur de la mesure de la température limite.
A l ' aide d'un tel gain paramétrable, on peut modifier la limite du couple du moteur électrique afin d' adapter la rapidité du dispositif à limiter le couple en fonction des besoins, en mode traction ou en mode de récupération d' énergie .
Selon un autre mode de mise en œuvre, on calcule un premier couple maximum en fonction du rapport entre la puissance mécanique maximum et la vitesse de rotation du moteur électrique, on détermine un deuxième couple maximum à partir d'une fonction affine par morceaux de la puissance mécanique maximum, et on limite le couple du moteur électrique en fonction du minimum entre les premier et deuxième couples maximum.
Ainsi, on diminue davantage la limite du couple du moteur lorsque la vitesse de rotation du moteur est faible, ce qui permet de diminuer les à-coups du moteur électrique lors des transitions entre une vitesse de rotation faible et une vitesse de rotation élevée afin d' éviter de surprendre le conducteur lors des transitions .
On peut limiter le couple de traction du moteur électrique lorsque celui-ci fonctionne en mode de traction pour propulser le véhicule automobile.
On peut également limiter le couple de récupération d' énergie du moteur électrique lorsque celui-ci fonctionne en mode de récupération d ' énergie pour fournir de l ' énergie électrique au véhicule automobile .
Selon un autre aspect, il est proposé un dispositif de protection thermique d' au moins un organe électrique d'un véhicule automobile équipé d'un moteur électrique, comprenant des moyens pour mesurer une température limite dudit organe électrique et une vitesse de rotation du moteur électrique et un moyen de limitation de couple apte à élaborer une limite de couple pour le moteur électrique .
Le moyen de limitation de couple comprend un moyen de détermination de puissance pour déterminer une puissance mécanique maximum en fonction de la température limite, ladite limite de couple étant élaborée en fonction de la vitesse de rotation du moteur électrique et de ladite puissance mécanique maximum déterminée.
Selon un mode de réalisation, le moyen de limitation de couple est configuré pour calculer un premier couple maximum en fonction du rapport entre la puissance mécanique maximum et la vitesse de rotation du moteur électrique, pour déterminer un deuxième couple maximum à partir d'une fonction affine par morceaux de la puissance mécanique maximum, et pour élaborer la limite de couple en fonction du minimum entre les premier et deuxième couples maximum.
Selon un autre mode de réalisation, les moyens de mesure de la température limite comprennent des capteurs de température pour mesurer respectivement les températures des organes électriques du véhicule automobile et un moyen de comparaison configuré pour déterminer la température limite qui est égale à la valeur maximum des températures des organes électriques mesurées .
Selon encore un autre mode de réalisation, le moyen de limitation de couple comprend une boucle de régulation de la température limite qui est configurée pour commander la valeur du couple du moteur électrique à partir de la limite de couple et en fonction d 'une différence entre un seuil de température et ladite température limite.
Ainsi, à partir de la limite de couple, on peut réguler la température de l ' organe à protéger autour d'un seuil de température.
D ' autres buts, caractéristiques et avantages de l ' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels : la figure 1 illustre de façon schématique un mode de réalisation d'un dispositif de protection thermique d'un organe électrique de véhicule automobile ;
la figure 2 est une représentation graphique des variations de la puissance mécanique maximum en fonction de la température ;
la figure 3 est une représentation graphique des variations du couple maximum calculé en fonction de la vitesse de rotation du moteur ;
la figure 4 illustre un exemple de fonction affine par morceaux ; et
la figure 5 est une représentation graphique des variations de la limite du couple du moteur électrique en fonction de la vitesse de rotation du moteur électrique .
Sur la figure 1 , on a représenté schématiquement un premier mode de réalisation d'un dispositif de protection thermique 1 des organes électriques 2, 3 , 4 d'un véhicule automobile . Ces organes électriques comprennent généralement une batterie 2 , un moteur électrique 3 et un unité d ' électronique de puissance 4. La batterie 2 alimente le moteur électrique 3 par l 'intermédiaire de l 'unité électronique de puissance 4.
Le dispositif 1 comprend au moins un capteur de température 5 , un capteur de vitesse 6 et un moyen de limitation de couple 7.
Les capteurs 5 , 6 permettent de mesurer respectivement la température limite T d'un organe électrique à protéger parmi les organes électrique 2, 3 , 4 et la vitesse de rotation N du moteur électrique 3 .
A titre d ' exemple, non limitatif, on mesure la température limite T de la batterie 2, mais on pourra également mesurer la température de l 'unité électronique de puissance 4 ou la température du moteur électrique 3 elle-même .
Le moyen de limitation de couple 7 élabore une limite de couple Climite qu' il transmet, par une connexion 8 , au moteur électrique 3. Cette limite de couple Climite représente une consigne de couple maximum qui limite le couple (de traction ou de récupération) du moteur électrique 3 afin de contrôler la température limite T de la batterie 2. Cette limite Climite est positive ou nulle et le principe de son élaboration sera décrit ultérieurement.
Le moyen de limitation 7 comprend un moyen de détermination de puissance 9 pour déterminer une puissance mécanique maximum Pmax, un moyen de calcul 10 pour calculer un premier couple maximum Cmax cal, un module de détermination de couple 1 1 pour déterminer un deuxième couple maximum Cmax red et un module de sortie 12 pour élaborer la limite de couple Climite, ledit module de sortie 12 étant couplé au moteur 3 par la connexion 8.
Le moyen de détermination de puissance 9 reçoit la mesure de la température limite T de la batterie 2 par une connexion 13 depuis le capteur de température 5. Il comprend en outre un sommateur 14 qui effectue la différence ΔΤ entre la valeur mesurée T de la température limite de la batterie 2 et un seuil de température Tseuil, puis transmet cette différence ΔΤ par une connexion 1 5 à un régulateur proportionnel 16 à gain variable G.
Le sommateur 14 calcule la différence ΔΤ selon l ' équation ( 1 ) suivante :
ΔΤ = Tseuil-T ( 1 ) avec
T : la température limite d'un organe électrique à protéger en ° C, par exemple la température limite de la batterie 2;
Tseuil : seuil de température au-delà duquel on limite le couple du moteur électrique en °C .
Le régulateur proportionnel 16 à gain variable G élabore une puissance de réduction Pred, selon l ' équation (2), qu' il transmet par une connexion 17 à un module de calcul 1 8. Pred = Min(0 ; G-ΔΤ) (2) avec
Pred : puissance de réduction en Watt ;
Min : fonction qui calcule la valeur minimum entre deux variables ;
G : Gain variable en W/°C .
La puissance de réduction Pred peut être négative ou nulle. En outre, le seuil de température Tseuil et le gain variable G sont deux paramètres réglables .
Le module de calcul 1 8 détermine la puissance mécanique maximum Pmax en fonction de la puissance de réduction Pred et d'une variable paramétrable Pmax nom représentant une puissance mécanique maximale nominale.
Le module de calcul 1 8 calcule la puissance mécanique maximum Pmax selon l ' équation (3) suivante :
Pmax = Max(0 ; Pmax nom+Pred) (3) avec
Pmax nom : puissance mécanique maximale nominale, paramétrable, en Watt ;
Max : fonction qui calcule la valeur maximum entre deux variables .
La variable paramétrable Pmax nom représente la puissance mécanique maximale du moteur électrique en mode traction (ou en mode générateur) et en situation nominale, c ' est-à-dire une situation sans défauts. Cette variable Pmax nom est donc spécifique au type de moteur électrique utilisé.
Le moyen de détermination de puissance 9 émet la puissance mécanique maximum Pmax, via une connexion 19 en direction du moyen de calcul 10 et en direction du module de détermination de couple 1 1 . Le moyen de calcul 1 0 comprend un diviseur 20 et un opérateur de contrôle 21 . L 'opérateur de contrôle 21 reçoit la mesure de la vitesse de rotation N du moteur électrique 3 par une connexion 22 depuis le capteur de vitesse 6 et fournit une valeur strictement positive Nabs au diviseur 20 par une connexion 23 afin d' empêcher la division par zéro . Le moyen de calcul 10 transmet, par une connexion 24 le résultat du calcul du premier couple maximum Cmax cal au module de sortie 12.
Le moyen de calcul 10 calcule le premier couple maximum Cmax cal selon les équations (4 et 5) suivantes :
, max . A .
C max cal = (4)
Ne
Ne = Max(Nabs ; Eps) (5) avec
Cmax cal : premier couple maximum, noté également couple maximum calculé, en N-m ;
Ne : paramètre strictement positif en radian- s" 1 ;
Nabs : valeur absolue de la vitesse de rotation N du moteur électrique 3 en radian- s" 1 ;
Eps : constante égale à 1 en radian- s" 1 (pour éviter la division par 0 lorsque la vitesse de rotation N du moteur électrique 3 est nulle) .
Le module de détermination de couple 1 1 détermine le deuxième couple maximum Cmax red qu ' il transmet, par une connexion 25 au module de sortie 12.
Le module de détermination de couple 1 1 détermine le deuxième couple maximum Cmax red selon l ' équation (6) suivante :
Cmax red = f(Pmax) (6) avec f : fonction affine (ou droite) par morceaux ;
Cmax red : deuxième couple maximum, noté également couple maximum déterminé, en N-m.
Cette fonction affine f permet d'associer un vecteur de n valeurs d'une variable d'entrée à un vecteur de n valeurs d'une variable de sortie. A chaque élément du vecteur d'entrée correspond l'élément de même position du vecteur de sortie. Les points intermédiaires de la fonction f sont obtenus par interpolation.
Sur la figure 4, on a représenté, à titre d'exemple, une courbe Fa d'une fonction g affine par morceaux.
Soit le vecteur d'entrée xl = (a,b,c,d) avec a<b<c<d et le vecteur de sortie correspondant yl = (g,h,h,i).
La fonction d'équation y=g(x) affine par morceaux est définie par les vecteurs xl et yl.
Pour la fonction affine f utilisée par le module de détermination de couple 11, on peut définir, à titre d'exemple non limitatif, la fonction f par les vecteurs suivants :
Pmax = (al ,a2,a3,a4,a5)
Cmax_red = (bl,b2,b2,b3,b3)
Où les valeurs al ,a2,a3,a4,a5 de Pmax sont telles que al<a2<a3<a4<a5 et sont exprimées en Watt et celles de Cmax red sont telles que bl<b2<b3 et sont exprimées en N-m.
Le module de sortie 12 élabore la limite de couple Climite selon l'équation (7) suivante :
Climite = Min(Cmax_cal ; Cmax_red) (7)
Le deuxième couple maximum Cmax Red permet d'ajouter une limitation au couple du moteur en plus de celle établie à partir du premier couple maximum Cmax cal. Le premier couple maximum Cmax cal calculé permet de protéger la batterie 2 de r échauffement dû principalement aux pertes magnétiques, aussi appelées pertes par hystérésis.
Le deuxième couple maximum Cmax Red permet, quant à lui, de protéger la batterie 2 de r échauffement dû principalement aux pertes par effet Joule.
L 'utilisation des premier et deuxième couples maximum Cmax cal, Cmax Red permet de protéger efficacement l 'organe électrique d'une surchauffe.
Sur la figure 2 on a représenté graphiquement des variations de la puissance mécanique maximum Pmax en fonction de la température T dans le cas où Pmax_nom=45000 Watts et Tseuil=60°C .
On a représenté sur la figure 2 , deux courbes qui représentent des variations de la puissance mécanique maximum Pmax pour deux valeurs respectives G l , G2 du gain variable G.
La courbe A représente les variations de la puissance mécanique maximum Pmax pour une première valeur G l du gain variable avec G l =5000 W/°C .
La courbe B représente les variations de la puissance mécanique maximum Pmax pour une deuxième valeur G2 du gain variable avec G2= 10000 W/° C .
Le gain variable G permet donc de régler directement la rapidité de la limitation du couple en fonction de r échauffement de la batterie 2.
Sur la figure 3 on a représenté graphiquement des variations du premier couple maximum Cmax cal en fonction de la vitesse de rotation du moteur N .
Les trois courbes C(T 1 ), D(T2), E(T3) sont appelées des courbes d' iso-puissance car elles sont établies pour des valeurs constantes de la puissance mécanique maximum Pmax.
Les courbes C(T 1 ), D(T2), E(T3) représentent les variations du premier couple maximum Cmax cal pour trois températures de l ' organe à protéger T l , T2, T3 différentes, avec T l < T2 < T3. Sur la figure 5 , on a représenté graphiquement des variations de la limite du couple du moteur électrique Climite en fonction de la vitesse de rotation du moteur électrique N.
On également représenté les trois courbes C(T 1 ), D(T2), E(T3) décrites à la figure 3 , deux valeurs H, I, pour le deuxième couple maximum Cmax red et une zone de limitation ZC, représentée sur la figure 5 par la zone hachurée.
Les valeurs H et I représentent les valeurs du deuxième couple maximum Cmax red, respectivement pour les températures T l et T2.
Pour chaque courbe d ' iso-puissance C(T 1 ), D(T2), E(T3), on détermine un deuxième couple maximum Cmax red. Par conséquence, pour une température donnée T2 supérieure au seuil de température Tseuil, le couple du moteur électrique est limité dans la zone de limitation ZC .
La limite de couple Climite peut être une simple consigne destinée au moteur électrique afin d' empêcher que le couple de ce dernier ne puisse dépasser cette limite Climite .
Selon un autre mode de réalisation, cette limite de couple Climite peut servir de base à élaborer une commande de couple destinée à commander la valeur du couple du moteur électrique 3. Dans cette variante, le dispositif de protection thermique 1 correspond à un régulateur de la température limite T de l ' organe à protéger. Ainsi, le moyen de limitation de couple 7 comprend une boucle de régulation BR pour réguler la température limite T autour du seuil de température Tseuil. Cette boucle de régulation BR est configurée pour élaborer la commande du couple du moteur électrique 3 à partir de la limite de couple Climite et de la différence ΔΤ entre le seuil de température Tseuil et ladite température limite T. Le gain variable G du régulateur proportionnel 16 permet donc de régler le gain du dispositif de protection thermique 1 et donc de régler la dynamique de la régulation.
Selon encore un autre mode de réalisation, on peut utiliser un capteur de température pour chaque organe électrique à protéger et élaborer une température limite T correspondant, par exemple à la valeur maximum ou à la moyenne des températures mesurées.
Ainsi, on peut protéger efficacement un organe électrique en particulier, ou plusieurs organes électriques, d'un véhicule automobile .
Grâce à la présente invention, il est possible de contrôler la température d' au moins un organe électrique à l ' aide de moyens paramétrables qui offrent une grande liberté de réglage pour adapter la consommation en courant électriques des différents organes électriques en fonction des besoins, et en particulier pour améliorer le confort de conduite du conducteur.

Claims

REVENDICATIONS
1 . Procédé de protection thermique d'une batterie (2) d'un véhicule automobile équipé d'un moteur électrique (3), dans lequel on mesure une température limite (T) de ladite batterie et une vitesse de rotation (N) du moteur électrique (3) et on limite le couple du moteur électrique (3), caractérisé en ce qu' on détermine une puissance mécanique maximum directement en fonction de la température limite (T) et on limite le couple du moteur électrique (3) en fonction de la vitesse de rotation (N) du moteur électrique (3) et de ladite puissance mécanique maximum déterminée .
2. Procédé selon la revendication 1 , dans lequel on élabore une puissance de réduction qui est non nulle lorsque la valeur de la mesure de la température limite (T) est supérieure à un seuil de température (Tseuil), et nulle sinon, et on détermine la puissance mécanique maximum en fonction d'une somme entre une variable paramétrable (Pmax nom) représentant une puissance mécanique maximale nominale et ladite puissance de réduction élaborée.
3. Procédé selon la revendication 2, dans lequel ladite puissance de réduction est égale à un gain paramétrable (G) que multiplie une différence entre ledit seuil de température (Tseuil) et la valeur de la mesure de la température limite (T) .
4. Procédé selon l 'une quelconque des revendications 1 à 3 , dans lequel on calcule un premier couple maximum en fonction du rapport entre la puissance mécanique maximum et la vitesse de rotation (N) du moteur électrique (3), on détermine un deuxième couple maximum à partir d'une fonction affine par morceaux de la puissance mécanique maximum, et on limite le couple du moteur électrique (3) en fonction du minimum entre les premier et deuxième couples maximum.
5. Procédé selon l 'une quelconque des revendications 1 à 4, dans lequel on limite le couple de traction du moteur électrique (3) lorsque celui-ci fonctionne en mode de traction pour propulser le véhicule automobile .
6. Procédé selon l 'une quelconque des revendications 1 à 4, dans lequel on limite le couple de récupération d' énergie du moteur électrique (3) lorsque celui-ci fonctionne en mode de récupération d' énergie pour fournir de l ' énergie électrique au véhicule automobile.
7. Dispositif de protection thermique d 'une batterie (2) d'un véhicule automobile équipé d'un moteur électrique (3), comprenant des moyens (5 ,6) pour mesurer une température limite de ladite batterie (2) et une vitesse de rotation du moteur électrique (3) et un moyen de limitation de couple (7) apte à élaborer une limite de couple pour le moteur électrique (3), caractérisé en ce que le moyen de limitation de couple (7) comprend un moyen de détermination de puissance (9) pour déterminer une puissance mécanique maximum directement en fonction de la température limite, ladite limite de couple étant élaborée en fonction de la vitesse de rotation du moteur électrique (3) et de ladite puissance mécanique maximum déterminée.
8. Dispositif selon la revendication 7, dans lequel le moyen de limitation de couple (7) est configuré pour calculer un premier couple maximum en fonction du rapport entre la puissance mécanique maximum et la vitesse de rotation du moteur électrique (3), pour déterminer un deuxième couple maximum à partir d'une fonction affine par morceaux de la puissance mécanique maximum, et pour élaborer la limite de couple en fonction du minimum entre les premier et deuxième couples maximum.
9. Dispositif selon l 'une des revendications 7 ou 8 , dans lequel le moyen de limitation de couple (7) comprend une boucle de régulation (BR) de la température limite qui est configurée pour commander la valeur du couple du moteur électrique (3) à partir de la limite de couple et en fonction d 'une différence entre un seuil de température et ladite température limite .
PCT/FR2011/051854 2010-09-09 2011-08-02 Procede et dispositif de protection thermique d'un organe electrique de vehicule automobile WO2012032239A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057160 2010-09-09
FR1057160A FR2964612B1 (fr) 2010-09-09 2010-09-09 Procede et dispositif de protection thermique d'un organe electrique de vehicule automobile

Publications (1)

Publication Number Publication Date
WO2012032239A1 true WO2012032239A1 (fr) 2012-03-15

Family

ID=43858131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051854 WO2012032239A1 (fr) 2010-09-09 2011-08-02 Procede et dispositif de protection thermique d'un organe electrique de vehicule automobile

Country Status (2)

Country Link
FR (1) FR2964612B1 (fr)
WO (1) WO2012032239A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944485A (zh) * 2013-12-23 2014-07-23 上海大郡动力控制技术有限公司 纯电动汽车中永磁电机过温的保护方法
CN104044464A (zh) * 2014-06-27 2014-09-17 奇瑞汽车股份有限公司 一种传感器供电输出保护隔离电路
FR3031424A1 (fr) * 2015-01-06 2016-07-08 Valeo Equip Electr Moteur Dispositif de pilotage d'un alternateur de vehicule automobile et alternateur correspondant
DE102015224922A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Funktionssicherheitskoordinator zur Sicherstellung einer Momentlimitierung für einen Elektro-Antriebsmotor
CN108216461A (zh) * 2017-12-22 2018-06-29 深圳天轮科技有限公司 平衡车电机安全控制方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104859452B (zh) * 2014-05-23 2017-07-11 北汽福田汽车股份有限公司 一种电动汽车行驶安全监控方法及***
JP7122186B2 (ja) * 2018-07-13 2022-08-19 日野自動車株式会社 モーター制御装置
CN109986974A (zh) * 2019-03-11 2019-07-09 汉腾汽车有限公司 一种电动汽车电驱能量回收的温度条件判断算法
CN112428829B (zh) * 2020-11-30 2022-04-01 合肥巨一动力***有限公司 一种电动汽车用制动能量回馈控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090114A (en) * 1974-03-07 1978-05-16 Westinghouse Electric Corp. Safety features for electric vehicle control
EP1084895A1 (fr) 1999-09-09 2001-03-21 Siemens Canada Limited Système de régulation pour un véhicule électrique
US20090058366A1 (en) * 2007-08-27 2009-03-05 Denso Corporation Battery charging and discharging control apparatus
US20090242293A1 (en) * 2008-03-28 2009-10-01 Aisin Aw Co., Ltd. Rotating electrical machine control system and vehicle drive system
EP2110280A1 (fr) 2007-02-01 2009-10-21 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de véhicule électrique
DE102008058669A1 (de) * 2008-11-22 2010-05-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung der Rekuperationsstärke bzw. des Rekuperationsmoments einer elektrischen Maschine eines Hybrid- oder Elektrofahrzeugs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090114A (en) * 1974-03-07 1978-05-16 Westinghouse Electric Corp. Safety features for electric vehicle control
EP1084895A1 (fr) 1999-09-09 2001-03-21 Siemens Canada Limited Système de régulation pour un véhicule électrique
EP2110280A1 (fr) 2007-02-01 2009-10-21 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de véhicule électrique
US20090058366A1 (en) * 2007-08-27 2009-03-05 Denso Corporation Battery charging and discharging control apparatus
US20090242293A1 (en) * 2008-03-28 2009-10-01 Aisin Aw Co., Ltd. Rotating electrical machine control system and vehicle drive system
DE102008058669A1 (de) * 2008-11-22 2010-05-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung der Rekuperationsstärke bzw. des Rekuperationsmoments einer elektrischen Maschine eines Hybrid- oder Elektrofahrzeugs

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944485A (zh) * 2013-12-23 2014-07-23 上海大郡动力控制技术有限公司 纯电动汽车中永磁电机过温的保护方法
CN104044464A (zh) * 2014-06-27 2014-09-17 奇瑞汽车股份有限公司 一种传感器供电输出保护隔离电路
FR3031424A1 (fr) * 2015-01-06 2016-07-08 Valeo Equip Electr Moteur Dispositif de pilotage d'un alternateur de vehicule automobile et alternateur correspondant
WO2016110619A1 (fr) * 2015-01-06 2016-07-14 Valeo Equipements Electriques Moteur Dispositif de pilotage d'un alternateur de véhicule automobile et alternateur correspondant
CN107112932A (zh) * 2015-01-06 2017-08-29 法雷奥电机设备公司 控制机动车辆的交流发电机的装置和对应的交流发电机
US9948230B2 (en) 2015-01-06 2018-04-17 Valeo Equipments Electriques Moteur Device for controlling a motor vehicle alternator, and corresponding alternator
CN107112932B (zh) * 2015-01-06 2019-08-20 法雷奥电机设备公司 控制机动车辆的交流发电机的装置和对应的交流发电机
DE102015224922A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Funktionssicherheitskoordinator zur Sicherstellung einer Momentlimitierung für einen Elektro-Antriebsmotor
CN108216461A (zh) * 2017-12-22 2018-06-29 深圳天轮科技有限公司 平衡车电机安全控制方法及装置

Also Published As

Publication number Publication date
FR2964612B1 (fr) 2014-08-15
FR2964612A1 (fr) 2012-03-16

Similar Documents

Publication Publication Date Title
WO2012032239A1 (fr) Procede et dispositif de protection thermique d&#39;un organe electrique de vehicule automobile
EP0782941B1 (fr) Procédé et dispositif pour régler la répartition de la puissance électrique dans un véhicule automobile, notamment à propulsion hybride
EP2516819B1 (fr) Dispositif de refroidissement pour véhicule automobile
EP2812993B1 (fr) Système et procéde de commande de l&#39;alimentation d&#39;une machine électrique en fonction de la température
EP2922719B1 (fr) Système et procédé de commande d&#39;un véhicule automobile à machines électriques arrières indépendantes
WO2019122696A1 (fr) Procédé de contrôle d&#39;un convertisseur de courant continu dans un réseau de bord d&#39;un véhicule automobile
EP1428712A1 (fr) Chaíne de traction et procedé de réglage pour véhicule hybride série
FR2973872A1 (fr) Dispositif et procede de gestion d&#39;un vehicule automobile
EP3036549A1 (fr) Procede de detection d&#39;une deconnexion de batterie d&#39;alimentation d&#39;un vehicule automobile
FR3016488A1 (fr) Procede et dispositif de commande d&#39;un levier de manœuvre d&#39;un vehicule
EP2197724A2 (fr) Procede et systeme de commande d&#39;un groupe motopropulseur a derivation de puissance
FR3015412A1 (fr) Procede et dispositif de gestion d&#39;un dispositif d&#39;entrainement hybride
FR3018057A1 (fr) Assistance au deplacement d&#39;un objet roulant par un asservissement utilisant l&#39;acceleration de l&#39;objet roulant
EP3350608B1 (fr) Procede de limitation de l&#39;usure des balais de moteur electrique
EP3037298B1 (fr) Procede et systeme de commande du couple developpe par un moteur electrique d&#39;un vehicule
EP3361623B1 (fr) Alterno-démarreur, véhicule automobile et procédé de commande associés
WO2010116108A1 (fr) Dispositif de refroidissement pour véhicule automobile
FR2845643A1 (fr) Systeme et procede de commande du fonctionnement de moteurs de vehicule automobile hybride
FR2929579A1 (fr) Dispositif de commande de direction a assistance electrique
WO2009044073A2 (fr) Systeme de commande pour la gestion de l&#39;energie electrique transitant par un element de stockage dans un groupe motopropulseur hybride equipe d&#39;une transmission infiniment variable
FR3067682B1 (fr) Procede de controle d’un groupe motopropulseur d’un vehicule hybride pour rechauffer la batterie de traction
FR2955303A3 (fr) Systeme et procede de commande d&#39;un vehicule hybride en phase de deceleration
FR3015140A1 (fr) Procede de commande pour un vehicule automobile a motorisation electrique
FR2927042A1 (fr) Procede et dispositif de commande d&#39;une propulsion hybride de vehicule automobile.
FR3027473A1 (fr) Dispositif et procede de pilotage de la machine electrique d&#39;un vehicule en vue de son maintien en position immobilisee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11757377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11757377

Country of ref document: EP

Kind code of ref document: A1