WO2012029918A1 - 多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ - Google Patents

多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ Download PDF

Info

Publication number
WO2012029918A1
WO2012029918A1 PCT/JP2011/069933 JP2011069933W WO2012029918A1 WO 2012029918 A1 WO2012029918 A1 WO 2012029918A1 JP 2011069933 W JP2011069933 W JP 2011069933W WO 2012029918 A1 WO2012029918 A1 WO 2012029918A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
porous carbon
carbon material
electrode
lithium ion
Prior art date
Application number
PCT/JP2011/069933
Other languages
English (en)
French (fr)
Inventor
貴彦 井戸
知宏 香村
豊浩 碓氷
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2012029918A1 publication Critical patent/WO2012029918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a porous carbon material, a capacitor electrode, a hybrid capacitor electrode, a lithium ion capacitor electrode, a capacitor, a hybrid capacitor, and a lithium ion capacitor.
  • capacitors electric double layer capacitors, hybrid capacitors, and lithium ion capacitors (hereinafter simply referred to as “capacitors”) are intended to be used in electric vehicles and the like, taking advantage of their low internal resistance and being able to charge and discharge in a short time. Development) is underway.
  • a porous carbon material made of activated carbon obtained by activating a petroleum coke-based material with alkali or water vapor, a porous carbon material made of activated carbon made of coconut shell or the like, and the like are known. .
  • the porous carbon material made of activated carbon includes pores having a pore diameter of 2 to 50 nm (hereinafter also referred to as mesopores), pores having a pore diameter smaller than 2 nm (hereinafter also referred to as micropores), and Many pores having pore diameters exceeding 50 nm (hereinafter also referred to as macropores) are formed.
  • the macropores include pores having a pore diameter of about 50 to 100 nm. For this reason, when a large number of macropores are formed, the porous carbon material becomes bulky, and in a capacitor electrode using the porous carbon material, the amount of electricity stored per unit volume (hereinafter, also simply referred to as electrode density) decreases. Conceivable.
  • the micropore has a large specific surface area, it is considered that the size of the pore is too small to allow the electrolyte to enter sufficiently. Further, for example, in an electrolytic solution composed of propylene carbonate and tetrabutylammonium ions, it is estimated that the electrolyte ions form a solvation having a diameter of about 0.86 nm. However, since most of the micropores are pores having a pore diameter smaller than 1 nm, the diameter of the electrolyte ions is close to the width of the micropores, and it is considered that the electrolyte ions are not sufficiently adsorbed to the micropores. Therefore, it is considered that the charge / discharge characteristics cannot be said to be sufficiently high in a capacitor electrode using a porous carbon material made of activated carbon in which many micropores and macropores are formed.
  • Patent Document 1 discloses a porous carbon material in which many mesopores are formed.
  • a porous carbon material is obtained by carbonizing a carbon precursor by heating a mixed material of inorganic particles such as silica and a carbon precursor such as phenol resin at 600 to 1500 ° C. Manufactured by etching with acid. The produced porous carbon material is pulverized and processed into carbon powder used for the capacitor electrode.
  • the conventional porous carbon material described in Patent Document 1 is said to be able to obtain many mesopores of a desired size by controlling the particle diameter of the inorganic particles in the production process.
  • Such a porous carbon material has a high specific surface area due to a small number of macropores, and a capacitor electrode using such a porous carbon material is considered to have a high electrode density.
  • the porous carbon material described in Patent Document 1 cannot be said to have a sufficiently high electrical conductivity, and the conductive material increases and the electrode density decreases. Therefore, in order to improve the charge / discharge characteristics of the capacitor electrode, further improvement in electrical conductivity is required.
  • the present inventors have completed the porous carbon material of the present invention having many suitable mesopores and high electrical conductivity.
  • the porous carbon material of the present invention forms pores in the pore diameter range of 2 to 200 nm in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method.
  • the total value A of the pore volume included in the range of the pore diameter of 2 to 15 nm occupies 80% or more of the total value B of the pore volume included in the range of the pore diameter of 2 to 200 nm
  • the electrical conductivity is 10.5 Scm ⁇ 1 or more.
  • pores in the pore diameter range of 2 to 200 nm are formed in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method. ing. Further, the total value A of differential pore volumes included in the range of pore diameters of 2 to 15 nm accounts for 80% or more of the total value B of differential pore volumes included in the range of pore diameters of 2 to 200 nm. .
  • mesopores with a high specific surface area are formed sufficiently more than macropores with a low specific surface area, the bulk is low, and an electrode for a capacitor using the porous material is The electrode density increases.
  • many mesopores having a size in which the electrolytic solution can easily enter are formed, and such a porous carbon material can be effectively used as an electrode for a capacitor.
  • the total value A may occupy 80% or more of the total value B, and the total value A may occupy 100% of the total value B. That is, the total value A may occupy 80 to 100% of the total value B.
  • the porous carbon material of the present invention has an electric conductivity of 10.5 Scm ⁇ 1 or more, it has a higher electric conductivity than the conventional porous carbon material. Therefore, when the porous carbon material of the present invention is used for a capacitor electrode, it can exhibit high charge / discharge characteristics coupled with the presence of the above-described mesopores. On the other hand, if the electrical conductivity of the porous carbon material is less than 10.5 Scm ⁇ 1 , the electrical conductivity is too low and it is necessary to add a large amount of a conductive material. Decreases.
  • the electric conductivity is desirably 20 to 50 Scm ⁇ 1 .
  • a capacitor electrode using a porous carbon material having an electric conductivity of 20 to 50 Scm ⁇ 1 can exhibit higher charge / discharge characteristics.
  • graphitization proceeds excessively due to the manufacturing method thereof, resulting in fewer mesopores.
  • the porous carbon material of the present invention preferably contains silicon carbide.
  • the silicon carbide content is more preferably 1 to 10% by weight. If the porous carbon material contains 1 to 10% by weight of silicon carbide, it is considered that the porous carbon material is less likely to be crushed into scales. Therefore, the porous carbon material can be easily pulverized, and the particle diameter of the carbon powder can be made more uniform.
  • the silicon carbide content is less than 1% by weight, the silicon carbide content is too small, making it difficult to align the particle diameter of the porous carbon material.
  • the content of silicon carbide exceeds 10% by weight, the electrical conductivity is greatly reduced.
  • the total value B is desirably 0.3 cm 3 / g or more, and the total value B is more desirably 0.4 to 1.2 cm 3 / g.
  • the capacitor electrode using such a porous carbon material can further improve the charge / discharge characteristics.
  • the total value B exceeds 1.2 cm 3 / g, the bulk density (weight per unit volume) of the porous carbon material decreases, and when such a porous carbon material is used, The electrode density is lowered.
  • the capacitor electrode of the present invention is characterized by comprising any one of the porous carbon materials of the present invention.
  • the hybrid capacitor electrode of the present invention is characterized by comprising any one of the porous carbon materials of the present invention.
  • the electrode for lithium ion capacitors of this invention consists of the porous carbon material in any one of this invention, It is characterized by the above-mentioned.
  • a capacitor according to the present invention includes a capacitor electrode made of any one of the porous carbon materials according to the present invention.
  • a hybrid capacitor of the present invention includes a hybrid capacitor electrode made of any one of the porous carbon materials of the present invention.
  • a lithium ion capacitor of the present invention includes a lithium ion capacitor electrode made of any one of the porous carbon materials of the present invention.
  • the porous carbon material of the present embodiment has pores in the pore diameter range of 2 to 200 nm in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method. Is formed.
  • the BJH method used here is a method proposed by Barrett, Joyner, Halenda for determining the distribution of mesopores (EP Barrett, LG Joyner and PP Halenda, J. et al. Am. Chem. Soc., 73, 373, (1951)).
  • the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is equal to the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm. It accounts for over 80%.
  • the electrical conductivity of the porous carbon material of the present embodiment is 10.5 Scm ⁇ 1 or more.
  • the electric conductivity is more preferably 10.5 to 50 Scm ⁇ 1 , and particularly preferably 20 to 50 Scm ⁇ 1 .
  • the electrical conductivity refers to the electrical conductivity obtained by measuring carbon powder prepared from a porous carbon material by a four-terminal method or a four-probe method. Details of the measurement method are described in the Examples.
  • the porous carbon material further contains silicon carbide, and its content is 1 to 10% by weight.
  • the content of silicon carbide contained in the porous carbon material refers to the content of silicon carbide measured using an ICP (Dielectric Coupled Plasma) emission spectrometer. Details of the measurement method are described in the Examples.
  • the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is 0.3 cm 3 / g or more.
  • the sum B is more desirably is 0.3 ⁇ 1.2cm 3 / g, and particularly desirably 0.4 ⁇ 1.2cm 3 / g.
  • the BET specific surface area is 300 m 2 / g or more.
  • the BET specific surface area is more preferably 350 to 1000 m 2 / g.
  • the BET specific surface area refers to the specific surface area determined by the BET method. Details of the method for measuring the BET specific surface area are described in Examples.
  • the porous carbon material of the present embodiment includes a first composite material in which a modifying group containing a pore source is bonded to the terminal or side chain of a polymer chain constituting the first organic material, or a pore source.
  • the second composite material composed of the inorganic sol or metal alkoxide and the second organic material can be manufactured through a heating step of heating at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source is decomposed and vaporized.
  • a modifying group for example, an organosilicon compound included in the first composite material becomes a pore source.
  • a part of silica generated by desorbing an organosilicon compound or the like from the first composite material or a part of the desorbed organosilicon compound is vaporized in the heating step described later. . As a result, it is considered that pores are formed.
  • thermosetting resin is mentioned as a 1st organic material.
  • thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like.
  • phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
  • the phenolic resin refers to a phenol resin and a resin containing a phenol resin as a main component (for example, a modified phenol resin).
  • the epoxy resin refers to an epoxy resin and a resin mainly composed of an epoxy resin. The same applies to other resins.
  • the modifying group examples include an organosilicon compound.
  • the organosilicon compound has functional groups such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group.
  • specific examples of the organosilicon compound include alkoxysilanes (for example, alkoxysilane compounds, alkoxysilane oligomers, polyalkoxysilanes, silane coupling agents, and the like).
  • the organosilicon compound has a reactive functional group such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group. Therefore, the first composite material is formed by bonding a modifying group such as an organosilicon compound to the first organic material via these functional groups.
  • alkoxysilane compound examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; trialkoxysilanes; or a polymer thereof.
  • the alkoxysilane compound to be bonded is preferably an alkoxysilane oligomer that is a polymer.
  • tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane or polymers thereof are preferable.
  • alkoxysilane compounds tetramethoxysilane or a polymer thereof is represented by chemical formula (1).
  • R represents a methyl group or a methoxy group.
  • N is an integer of 0 or more.
  • an alkoxysilane oligomer in which n in the chemical formula (1) is 2 to 10 can be used by reducing the polymerization degree of the alkoxysilane compound.
  • the alkoxysilane oligomer can form a large number of bonds with the first organic material such as a phenol resin, and a large number of uniform mesopores can be formed after the heating step.
  • silane coupling agent examples include vinyltriethoxysilane, vinyltrimethoxysilane, tris ( ⁇ -methoxyethoxy) vinylsilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ - (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl Trimethoxysilane, (N-phenyl- ⁇ -aminopropyl) trimethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -
  • the silane coupling agent undergoes an addition reaction with the first organic material such as a phenol resin through the functional group to form a first composite material.
  • Silane coupling agents are those in which a hydrolyzable group that easily binds inorganic components and a functional group that easily bonds organic components are bonded to silicon atoms (Si), and are usually used as resin modifiers. It is. By the chemical reaction of the functional group of the silane coupling agent, it bonds with the first organic material, and a crosslinked structure by the silane coupling agent is formed in the first organic material.
  • a phenol resin modified with an alkoxysilane compound hereinafter also referred to as an alkoxysilane-modified phenol resin
  • a polyamideimide resin modified with an alkoxysilane compound hereinafter referred to as an alkoxysilane-modified polyamide
  • the polyimide resin modified with an alkoxysilane compound hereinafter also referred to as an alkoxysilane-modified polyimide resin
  • a phenol resin modified with an alkoxysilane compound can be produced by reacting a phenol resin with an alkoxysilane oligomer that does not have a highly reactive functional group.
  • Chemical formula (2) shows the chemical structure of a phenol resin modified with an alkoxysilane compound.
  • part of a phenol resin and an alkoxysilane compound can be selected arbitrarily.
  • R represents a methyl group or a methoxy group.
  • M is an integer of 1 or more.
  • the phenolic resin modified with the alkoxysilane compound is mixed with a curing reagent and cured by heating at about 170 ° C. for about 30 minutes, at about 100 ° C. for about 30 minutes, at about 220 ° C. for about 120 minutes, etc. You may let them.
  • the curing reaction agent include hexamethylenetetramine, 2-ethyl-4-methyl-imidazole, formaldehyde and the like.
  • Polyamideimide resin modified with alkoxysilane compound is a sol-gel cure (alkoxysilane hydrolysis and condensation reaction) by reacting amide bond of polyamic acid and aromatic carboxylic acid with alkoxysilane (alkoxysilane oligomer). After that, the obtained gel is heat-cured at 120 to 250 ° C.
  • Chemical formula (3) shows the chemical structure of a polyamide-imide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyamideimide resin.
  • X represents an alkyl spacer.
  • M is an integer of 1 or more, and n is an integer of 1 or more.
  • a polyimide resin modified with an alkoxysilane compound is a method for preparing a polyamideimide resin modified with an alkoxysilane compound described above, except that a polyamic acid is used instead of an amide conjugate of a polyamic acid and an aromatic carboxylic acid. It can be prepared by the same method. That is, a polyimide resin modified with an alkoxysilane compound is obtained by performing sol-gel curing (alkoxysilane hydrolysis and condensation reaction) by reacting polyamic acid with alkoxysilane (alkoxysilane oligomer), and then obtained. The gel can be produced by heating at 120 to 430 ° C. for imidization.
  • Chemical formula (4) shows the chemical structure of a polyimide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyimide resin.
  • x is an integer of 1 or more
  • y is an integer of 1 or more
  • n is an integer of 1 or more.
  • a first composite material In order to form a first composite material by reacting an alkoxysilane (alkoxysilane oligomer) with a first organic material such as a phenol resin, an alkoxysilane (alkoxysilane oligomer) is added to the mixture in the sol state.
  • the polysiloxane is bonded to the first organic material by performing a polymerization reaction together with the hydrolysis. Then, for example, heating is performed at a temperature of 100 to 200 ° C. to form a bridge between the first organic materials by a sol-gel reaction, and the sol state is cured to the gel state.
  • an alkoxysilane (alkoxysilane oligomer) can be bonded to an arbitrary portion of the first organic material such as a phenol resin at a uniform interval, and the polysiloxane in the first organic material can be crosslinked and cured. Can be uniformly distributed.
  • the size and quantity of the pores can be controlled by adjusting the molecular weight and bonding point of the polysiloxane bonded in the first organic material such as phenol resin.
  • the first organic material such as phenol resin.
  • the bonding points of alkoxysilane (alkoxysilane oligomer) are increased in the first organic material, a large number of polysiloxane bonds in the first organic material.
  • the bonding points of alkoxysilane (alkoxysilane oligomer) are reduced, the bonding points of polysiloxane are reduced.
  • the fine structure of the carbon obtained by the heating process that is, the pore size and the number of pores are adjusted by the bonding point and bonding amount of the polysiloxane.
  • the structure of the composite may be a structure in which silica particles are dispersed in the phenol resin.
  • a structure dispersed in a phenolic resin cross-linked with (1) can also be considered.
  • sica means not only ceramic silica (SiO 2 ) but also Si—O units in organic materials. The same applies to other inorganic compounds other than silica.
  • the inorganic compound contained in the inorganic sol is vaporized or vaporized after the inorganic compound contained in the second organic material is desorbed. As a result, it is considered that pores are formed.
  • Examples of the inorganic sol include silica sol, alumina sol, magnesia sol, zirconia sol, and titania sol. Among these, silica sol, alumina sol, or magnesia sol is desirable, and silica sol is more desirable from the viewpoint of evaporability.
  • Silica sol includes organosilica sol.
  • the metal alkoxide include alkoxysilanes (eg, alkoxysilane compounds, alkoxysilane oligomers, polyalkoxysilanes, and silane coupling agents). Since the alkoxysilanes are the same as those described in the first composite material, the description thereof is omitted here.
  • alkoxysilanes eg, alkoxysilane compounds, alkoxysilane oligomers, polyalkoxysilanes, and silane coupling agents. Since the alkoxysilanes are the same as those described in the first composite material, the description thereof is omitted here.
  • thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like. Among these resins, phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
  • the second organic material may be a first composite material.
  • the second composite material having a structure in which inorganic compound particles contained in the inorganic sol are dispersed in the second organic material is a mixture of an inorganic sol such as an organosilica sol and a second organic material such as a phenol resin. And it can produce
  • Heating process a heating process for obtaining a porous carbon material by heating the first composite material or the second composite material containing the pore source at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source decomposes and vaporizes will be described. To do.
  • a heating process is performed in inert gas atmosphere, such as nitrogen and argon.
  • the pressure in a heating process is not specifically limited, Usually, it is desirable that it is about a normal pressure.
  • the heating time in the heating step is not particularly limited, but is preferably 1 to 100 hours, and more preferably 2 to 10 hours.
  • the temperature in the heating step is not less than the temperature at which a part of the pore source contained in the first composite material or the second composite material is decomposed and vaporized, and not more than 2200 ° C. Therefore, the temperature in the heating step is appropriately determined according to the type of the first composite material or the second composite material and other heating conditions (temperature rise temperature, heating time, etc.), but exceeds 1500 ° C.
  • the temperature is desirably 2200 ° C.
  • the temperature rising rate in the heating step is usually about 10 to 400 ° C./hour, and preferably about 20 to 200 ° C./hour. Further, it is considered that the pore source can be efficiently vaporized by increasing the CO partial pressure in the heating step.
  • the produced porous carbon material may be subjected to a post-treatment step or a pulverization step described below, if necessary.
  • a post-treatment step of treating the obtained porous carbon material with a base or acid may be performed after the heating step. Residual components can be removed by the post-treatment process.
  • etching is performed using a base such as sodium hydroxide (NaOH) or an acid such as hydrofluoric acid (HF).
  • a base such as sodium hydroxide (NaOH) or an acid such as hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • a carbon powder having a predetermined particle diameter By pulverizing the produced porous carbon material, a carbon powder having a predetermined particle diameter can be obtained.
  • the pulverization of the porous carbon material can be performed using an ultrafine pulverizer, a ball mill, a jet mill or the like.
  • the particle diameter (D50) of the carbon powder after the pulverization step is preferably 0.5 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. When the particle diameter of the carbon powder is 1 to 5 ⁇ m, a uniform electrode can be formed even when the thickness is small when used as an electrode for a capacitor.
  • the particle size (D50) of the porous carbon material can be obtained by measuring a pulverized carbon powder suspension with a particle size distribution measuring device and a particle size distribution measuring device (laser diffraction type).
  • D50 means that the volume is accumulated from particles having a small particle diameter on a volume basis and becomes 50% of the volume of the entire particle, and the particle diameter (D50) is the particle diameter at D50. Show.
  • a step of pulverizing the obtained porous carbon material (post-heating pulverization step) is performed, and the material obtained by the pulverization step is obtained.
  • the other conditions are the same as those in the heating step except that the material obtained in the post-heating pulverization step is heated at a temperature higher than the temperature in the heating step.
  • the temperature in the additional heating step is preferably from the heating temperature (temperature in the heating step) to 2200 ° C.
  • each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
  • the material containing the pore source is heated at a temperature lower than the temperature in the heating step (preheating step)
  • a step of crushing the material obtained by the preheating step may be performed. After removing a part of the pore source in the preheating step, the obtained material is pulverized, and the pulverized material is heated again, so that the pore source can be reliably removed.
  • the preheating step other conditions are the same as those in the heating step, except that the material including the pore source is heated at a temperature lower than the temperature in the heating step.
  • the temperature in the preheating step is desirably 400 ° C. to heating temperature (temperature in the heating step).
  • each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
  • the capacitor electrode, the capacitor electrode manufacturing method, the capacitor, and the capacitor manufacturing method of this embodiment will be described.
  • a lithium ion capacitor electrode which is a kind of hybrid capacitor electrode will be described as an example of the capacitor electrode
  • a lithium ion capacitor which is a kind of hybrid capacitor will be described as an example of the capacitor.
  • FIG. 1 is a cross-sectional view schematically showing a lithium ion capacitor of the present invention.
  • a lithium ion capacitor 1 according to this embodiment shown in FIG. 1 includes a lithium ion capacitor electrode (a positive electrode is indicated by reference numeral 2 and a negative electrode is indicated by reference numeral 3), a separator 4 and an electrolytic solution (not shown). .
  • the positive electrode 2 and the negative electrode 3 are provided so as to face each other with the separator 4 interposed therebetween.
  • the positive electrode 2 is a polarizable electrode comprising the porous carbon material of the present embodiment described above.
  • the positive electrode 2 includes an electrode composition made of the porous carbon material of the present embodiment, a positive electrode current collector 2a on which the electrode composition is formed, and a positive electrode tab 2b attached to the positive electrode current collector 2a.
  • the positive electrode tab 2b is taken out from the casing 5 to the outside.
  • the thickness of the positive electrode 2 is preferably 30 to 300 ⁇ m, more preferably 40 to 200 ⁇ m, and particularly preferably 50 to 150 ⁇ m.
  • the density of the positive electrode 2 is not particularly limited, but is preferably 0.30 to 10 g / cm 3 , more preferably 0.35 to 5.0 g / cm 3 , and particularly preferably 0.40 to 3.0 g / cm 3 . is there.
  • the positive electrode current collector 2a is made of, for example, metal, carbon, conductive polymer, and the like, and more preferably made of metal.
  • metal for the positive electrode current collector 2a aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys, or the like can be used. Among these, it is preferable to use copper, aluminum or an aluminum alloy from the viewpoint of electrical conductivity and voltage resistance.
  • Examples of the shape of the positive electrode current collector 2a include current collectors such as metal foils and metal edged foils, and current collectors having through-holes such as expanded metal, punching metal, and net-like, but reduce diffusion resistance of electrolyte ions.
  • a positive electrode current collector having a through-hole is preferable in that the output density of the lithium ion capacitor can be improved, and among them, expanded metal or punching metal is more preferable in that the electrode strength is further excellent.
  • the ratio of the holes in the positive electrode current collector 2a is preferably 10 to 80 area%, more preferably 20 to 60 area%, and particularly preferably 30 to 50 area%. When the ratio of the penetrating holes is within this range, the diffusion resistance of the electrolytic solution is reduced, and the internal resistance of the lithium ion capacitor is reduced.
  • the hole of a positive electrode electrical power collector should just be provided only in the case of a lithium ion capacitor, and the hole need not be provided in the case of an electric double layer capacitor.
  • the thickness of the positive electrode current collector 2a is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 20 to 50 ⁇ m. *
  • the negative electrode 3 is an electrode including a negative electrode active material that can occlude and release lithium ions.
  • the negative electrode 3 is provided with a negative electrode current collector 3a.
  • a negative electrode tab 3b is attached to the negative electrode current collector 3a, and the negative electrode tab 3b is taken out from the casing 5 to the outside.
  • the negative electrode current collector 3b is made of, for example, copper, nickel, stainless steel, and alloys thereof.
  • the negative electrode 3 is preferably preliminarily occluded with lithium ions. Lithium ions can be occluded in the negative electrode by a chemical method or an electrochemical method.
  • Examples of the chemical method include a method of immersing lithium ions by immersing in an electrolytic solution in a state where a negative electrode and a necessary amount of lithium metal are in contact with each other and applying heat.
  • Examples of the electrochemical method include a method in which lithium ions are occluded by making a negative electrode and lithium metal face each other through a separator and charging with constant current in an electrolytic solution.
  • the separator 4 is not particularly limited as long as it can insulate between lithium ion capacitor electrodes and allow ions to pass therethrough.
  • a polyolefin such as polyethylene or polypropylene, a microporous membrane made of rayon or glass fiber, a nonwoven fabric made of rayon or glass fiber, a porous membrane made mainly of pulp (generally called electrolytic capacitor paper), or the like is used. be able to.
  • the thickness of the separator 4 is preferably 1 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the casing 5 may be formed of a laminate film, a metal case, a resin case, a ceramic case, or the like.
  • the shape is not particularly limited, and may be a coin shape, a cylindrical shape, a square shape, or the like.
  • the electrolytic solution is composed of an electrolyte and a solvent.
  • a lithium salt can be used as the electrolyte. Therefore, lithium ions can be used as cations.
  • As anions PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , N (RfSO 3 ) 2 ⁇ , C (RfSO 3 ) 3 ⁇ , RfSO 3 ⁇ (Rf is 1 to 12 carbon atoms, respectively) F ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , AlF 4 ⁇ and the like can be used.
  • These electrolytes can be used alone or in combination of two or more.
  • the concentration of the lithium salt as the electrolyte is preferably 0.1 to 2.5 mol / l.
  • a solvent will not be specifically limited if it is a non-aqueous electrolyte solution which can be used for a capacitor or a lithium ion capacitor.
  • Specific examples include carbonates such as propylene boat, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile.
  • These solvents can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • the electrode for a lithium ion capacitor of this embodiment can be manufactured through the following steps (1) to (3).
  • Positive electrode composition preparation step A slurry for a positive electrode composition is prepared by mixing a carbon powder made of the porous carbon material of the present embodiment, a conductive material, a binder and water.
  • binder examples include polytetrafluoroethylene, styrene butadiene rubber, polytetrafluoroethylene, styrene butadiene rubber (SBR), and polyvinylidene fluoride (PVDF). These binders can be used alone or in combination of two or more.
  • polytetrafluoroethylene is preferable.
  • the binder is preferably a powder in order to facilitate the moldability.
  • the amount of the binder used is preferably, for example, 1 to 30 parts by weight with respect to 100 parts by weight of the carbon powder.
  • the conductive material is made of particulate carbon that has almost no pores that can form an electric double layer.
  • furnace black acetylene black, and ketjen black (registered by Akzo Nobel Chemicals Bethloten Fennaut Shap) Trade name) and the like.
  • acetylene black and furnace black are preferable.
  • These conductive materials can be used alone or in combination of two or more.
  • the average particle size of the conductive material is preferably smaller than the average particle size of the carbon powder made of the porous carbon material, more preferably 0.001 to 10 ⁇ m, still more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.00. 01 to 1 ⁇ m. When the average particle diameter of the conductive material is within this range, high electrical conductivity can be obtained.
  • the amount of the conductive material is preferably in the range of 0.1 to 50 parts by weight, more preferably 0.5 to 15 parts by weight, and still more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the carbon powder. When the amount of the conductive material is within this range, the capacity of the lithium ion capacitor using the obtained lithium ion capacitor electrode can be increased, and the internal resistance can be decreased.
  • the positive electrode 2 can be produced by such a wet molding method.
  • a method of laminating a positive electrode composition molded into a sheet shape on a positive electrode current collector (kneading sheet molding method), preparing composite particles of the positive electrode composition, forming a sheet on the positive electrode current collector, Examples thereof include a roll press method (dry molding method).
  • a wet molding method and a dry molding method are preferable, and a wet molding method is more preferable.
  • Negative electrode preparation step The negative electrode 3 is prepared by mixing a negative electrode active material, a binder, and a conductive material, adding this to a solvent to prepare a slurry for a negative electrode composition, and applying this slurry to the negative electrode current collector 3a. And dried to form.
  • the negative electrode may be produced by a kneading sheet molding method or a dry molding method.
  • the negative electrode active material may be any material that can reversibly carry lithium ions.
  • electrode active materials used in the negative electrode of lithium ion secondary batteries can be widely used.
  • crystalline carbon materials such as graphite and non-graphitizable carbon, carbon materials such as hard carbon and coke, and polyacene-based substances (PAS) are preferable.
  • These carbon materials and PAS are obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized.
  • the same binder and conductive material as the positive electrode can be used.
  • the positive electrode 2 is attached to the upper casing, and the negative electrode 3 is attached to the lower casing.
  • the separator 4 is installed between the positive electrode 2 and the negative electrode 3, and after impregnating with electrolyte solution, a casing is sealed. Thereby, the lithium ion capacitor of this embodiment can be manufactured.
  • the electrode for capacitors the electrode for hybrid capacitors, the electrode for lithium ion capacitors, a capacitor, a hybrid capacitor, and a lithium ion capacitor is described.
  • the porous carbon material of the present embodiment has a fine pore diameter range of 2 to 200 nm in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method.
  • the total value A of the differential pore volume included in the pore diameter range of 2 to 15 nm is 80% of the total value B of the differential pore volume included in the pore diameter range of 2 to 200 nm. It accounts for the above. Therefore, in the porous carbon material of this embodiment, the mesopores having a high specific surface area are formed sufficiently more than the macropores having a low specific surface area, the bulk is low, and the electrode for a capacitor using the porous material is used. Increases the electrode density.
  • the porous carbon material of this embodiment has an electric conductivity of 10.5 Scm ⁇ 1 or more, it has a sufficiently high electric conductivity as compared with the conventional porous carbon material. Therefore, when the porous carbon material of this embodiment is used for a capacitor electrode, it can exhibit high charge / discharge characteristics coupled with the presence of the above-described mesopores.
  • the electrical conductivity of the porous carbon material is less than 10.5 Scm ⁇ 1 , the electrical conductivity is too low, and it is necessary to add a large amount of a conductive material. Decreases.
  • the porous carbon material of the present embodiment has an electric conductivity of 20 to 50 Scm ⁇ 1 , a capacitor electrode using this porous carbon material can exhibit higher charge / discharge characteristics. .
  • a porous carbon material having an electric conductivity of more than 50 Scm ⁇ 1 graphitization proceeds excessively due to the manufacturing method thereof, resulting in fewer mesopores.
  • the porous carbon material of this embodiment contains silicon carbide, and its content is 1 to 10% by weight. Since 1 to 10% by weight of silicon carbide is contained in the porous carbon material, it is considered that the porous carbon material is less likely to be crushed into a scaly shape. Therefore, the porous carbon material can be easily pulverized, and the particle diameter of the carbon powder can be made more uniform. On the other hand, if the silicon carbide content is less than 1% by weight, the silicon carbide content is too small, making it difficult to align the particle diameter of the porous carbon material. On the other hand, when the content of silicon carbide exceeds 10% by weight, the electrical conductivity is greatly reduced.
  • the total value B is 0.3 cm 3 / g or more. Since the total value B is 0.3 cm 3 / g or more, there are many mesopores. Therefore, in the capacitor electrode using such a porous carbon material, the charge / discharge characteristics can be further improved. On the other hand, when the total value B exceeds 1.2 cm 3 / g, the bulk density (weight per unit volume) of the porous carbon material decreases, and when such a porous carbon material is used, The electrode density is lowered.
  • the capacitor electrode, the hybrid capacitor electrode, or the lithium ion capacitor electrode of the present embodiment is characterized by being made of any one of the porous carbon materials of the present embodiment.
  • Various capacitors using these electrodes are excellent in charge / discharge characteristics.
  • the capacitor, the hybrid capacitor, or the lithium ion capacitor of the present embodiment includes the capacitor electrode, the hybrid capacitor electrode, or the lithium ion capacitor electrode made of any one of the porous carbon materials of the present embodiment.
  • These capacitors are provided with electrodes having excellent charge / discharge characteristics, they are excellent in charge / discharge characteristics.
  • Example 1 A porous carbon material according to this example was manufactured through the following steps (1) and (2).
  • the adsorption isotherm obtained by the above operation was used to obtain the BET specific surface area by the BET method.
  • the BET specific surface area was 536 m 2 / g.
  • the BET specific surface area was measured by a capacity method and a multipoint method according to JIS Z 8830 (2001).
  • the electrical conductivity of the carbon powder obtained in the step (3) was measured as follows.
  • a powder resistance measurement system (powder resistance measurement system MCP-PD51 type, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used. First, set the carbon powder in the measurement system, gradually apply pressures of 4 kN, 8 kN, 12 kN, 16 kN, and 20 kN, and apply the pressure to the carbon powder. Conductivity was measured. As a result, the electric conductivity of the carbon powder at 20 kN load was 27.7 Scm ⁇ 1 .
  • Example 2 A porous carbon material was produced in the same manner as in Example 1 except that the heating conditions in the step (2) of Example 1 were changed as shown in Table 1 below.
  • Example 5 A polyamide-imide resin modified with an alkoxysilane compound synthesized by introducing siloxane into the basic skeleton of an aromatic polyamide-imide synthesized from trimellitic anhydride and diphenylmethane-4,4′-diisocyanate was used. A film was obtained in the same manner as in Example 1 for the polyamideimide resin modified with the alkoxysilane compound. The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere. By passing through the above process, the porous carbon material of Example 5 was manufactured.
  • Example 6 A polyimide resin (HBPI-SiO 2 -A manufactured by Ibiden Resin Co., Ltd.) modified with an alkoxysilane compound was prepared, and a film was obtained in the same manner as in Example 1. The obtained film was cut into a predetermined size, and heated at 2000 ° C. for 2 hours under N 2 atmosphere heating conditions. The porous carbon material of Example 6 was manufactured through the above steps.
  • Example 1 A porous carbon material was produced in the same manner as in Example 1 except that the film was heated at 800 ° C. for 2 hours in an N 2 atmosphere and then treated with 48% hydrofluoric acid (HF aqueous solution) for 24 hours.
  • HF aqueous solution hydrofluoric acid
  • Comparative Example 2 As the porous carbon material of Comparative Example 2, commercially available activated carbon (Calgon Carbon Japan Co., Ltd., Diasorb (registered trademark) F 100D) was used.
  • Example 2 For the porous carbon materials of Examples 2 to 6 and Comparative Examples 1 and 2, similar to Example 1, preparation of differential pore volume distribution curve, measurement of BET specific surface area, measurement of electrical conductivity and carbonization The content of silicon was measured.
  • Table 1 shows the types of resin composites in Examples 2 to 6 and Comparative Examples 1 and 2, heating conditions, and various test results together with the results of Example 1 and the like.
  • the porous carbon materials produced in Examples 1 to 6 pores included in the pore diameter range of 2 to 200 nm were formed, and the pore diameter ranged from 2 to 15 nm.
  • the total value A of the differential pore volume included occupies 80% or more of the total value B of the differential pore volume included in the pore diameter range of 2 to 200 nm.
  • the porous carbon materials produced in Examples 1 to 6 have a total value B of 0.3 cm 3 / g or more. Therefore, the porous carbon materials produced in Examples 1 to 6 are sufficiently low in bulk, and it is considered that the capacitor electrode using the porous carbon material has a high electrode density.
  • porous carbon materials produced in Examples 1 to 6 have an electric conductivity of 10.5 Scm ⁇ 1 or more, which is sufficiently higher than the conventional porous carbon materials shown in Comparative Examples 1 and 2. It has conductivity. Therefore, it is considered that when these porous carbon materials are used for capacitor electrodes, high charge / discharge characteristics can be exhibited. Furthermore, since the porous carbon materials produced in Examples 1 to 6 have a silicon carbide content of 1 to 10% by weight, they are easily pulverized, and it is considered that the particle diameter of the carbon powder can be made more uniform. .
  • the porous carbon material of Comparative Example 1 has an electric conductivity of less than 10.5 Scm ⁇ 1 , and when used for a capacitor electrode, it is considered that the charge / discharge characteristics are lowered. Further, it is considered that no silicon carbide is contained, and the particle diameter of the carbon powder is not more uniform than the carbon particles produced in Examples 1 to 6.
  • the total value A of differential pore volumes included in the range of pore diameters 2 to 15 nm accounts for 69% of the total value B of differential pore volumes included in the range of pore diameters 2 to 200 nm. However, the total value B is less than 0.3 cm 3 / g.
  • the electric conductivity is less than 10.5 Scm ⁇ 1 . Therefore, the capacitor electrode using this porous carbon material is considered to have low charge / discharge characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明の多孔質炭素材料は、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線における細孔直径2~200nmの範囲に含まれる細孔が形成されており、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80%以上を占めており、電気伝導率が、10.5Scm-1以上であることを特徴とする。

Description

多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ
本発明は、多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタに関する。
近年、内部抵抗が低く、短時間で充放電を行うことができるといった特性を活かし、電気自動車等に使用することを目的として、電気二重層キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ(以下、単にキャパシタともいう)の開発が進められている。
キャパシタ用電極を構成する材料としては、石油コークス系材料をアルカリ賦活、水蒸気賦活した活性炭からなる多孔質炭素材料や、ヤシ殻等を原料とする活性炭からなる多孔質炭素材料等が知られている。
活性炭からなる多孔質炭素材料には、細孔直径2~50nmの細孔(以下、メソ孔ともいう)の他に、細孔直径が2nmより小さい細孔(以下、ミクロ孔ともいう)、及び、細孔直径が50nmを超える細孔(以下、マクロ孔ともいう)が多く形成されている。
マクロ孔のなかには、細孔直径50~100nm程度の気孔が含まれている。そのため、マクロ孔が多く形成されていると、多孔質炭素材料がかさ高くなり、多孔質炭素材料を用いたキャパシタ用電極では単位体積あたりの蓄電量(以下、単に電極密度ともいう)が低くなると考えられる。
一方、ミクロ孔は、比表面積が大きいものの、細孔のサイズが小さすぎて電解液が充分に入り込みにくいと考えられる。また、例えば、プロピレンカーボネートとテトラブチルアンモニウムイオンとからなる電解液中では、電解質イオンは直径約0.86nmの溶媒和を形成していると推定される。しかしながら、ミクロ孔の大部分は、細孔直径が1nmより小さい細孔からなるため、電解質イオンの直径がミクロ孔の幅に近く、電解質イオンがミクロ孔に充分に吸着しないと考えられる。
それゆえ、ミクロ孔及びマクロ孔が多く形成された活性炭からなる多孔質炭素材料を使用したキャパシタ用電極では、充放電特性が充分に高いとはいえないと考えられる。
このような問題を考慮した多孔質炭素材料として、例えば、特許文献1には、メソ孔が多く形成された多孔質炭素材料が開示されている。
かかる多孔質炭素材料は、シリカ等の無機粒子とフェノール樹脂等の炭素前駆体との混合材料を600~1500℃で加熱することにより炭素前駆体を炭化させた後、残留した無機粒子を塩基又は酸でエッチングすることにより製造される。
製造された多孔質炭素材料は粉砕され、キャパシタ用電極に使用する炭素粉末に加工される。
特表2004-503456号公報
特許文献1に記載の従来の多孔質炭素材料は、製造工程で無機粒子の粒子径を制御することにより、所望のサイズのメソ孔を多く得ることができるとされている。
このような多孔質炭素材料は、マクロ孔が少ないため比表面積が高く、かかる多孔質炭素材料を使用したキャパシタ用電極は、高い電極密度を有すると考えられる。
しかしながら、特許文献1に記載の多孔質炭素材料は、電気伝導率が充分に高いとはいえず、導電材が多くなり電極密度が下がる。そのため、キャパシタ用電極の充放電特性を向上させるためには、さらなる電気伝導率の向上が求められている。
本発明者らが上記課題を解決すべく鋭意検討した結果、好適なメソ孔を多く有するとともに、高い電気伝導率を有する本発明の多孔質炭素材料を完成させた。
即ち、本発明の多孔質炭素材料は、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線における細孔直径2~200nmの範囲に含まれる細孔が形成されており、
細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80%以上を占めており、
電気伝導率が、10.5Scm-1以上であることを特徴とする。
本発明の多孔質炭素材料は、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線において、細孔直径2~200nmの範囲に含まれる細孔が形成されている。
さらに、細孔直径2~15nmの範囲に含まれる微分細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる微分細孔容積の合計値Bの80%以上を占めている。
よって、本発明の多孔質炭素材料には、高比表面積のメソ孔が低比表面積のマクロ孔よりも充分に多く形成されており、かさが低く、上記多孔質材料を用いたキャパシタ用電極は、電極密度が高くなる。
また、電解液が入り込みやすいサイズのメソ孔が多く形成されており、かかる多孔質炭素材料は、キャパシタ用電極として有効に活用することができる。
なお、上記合計値Aは、上記合計値Bの80%以上を占めていればよく、上記合計値Aは、上記合計値Bの100%を占めていてもよい。即ち、上記合計値Aは、上記合計値Bの80~100%を占めていてもよい。
さらに、本発明の多孔質炭素材料は、電気伝導率が10.5Scm-1以上であるため、従来の多孔質炭素材料に比べて高い電気伝導率を有している。
従って、本発明の多孔質炭素材料は、キャパシタ用電極に使用した場合に、上述したメソ孔の存在と相まって高い充放電特性を発揮することができる。
一方、多孔質炭素材料の電気伝導率が10.5Scm-1未満であると、電気伝導率が低すぎて、導電材を多量に加える必要があり、キャパシタ用電極に使用した場合に充放電特性が低下する。
本発明の多孔質炭素材料においては、電気伝導率が20~50Scm-1であることが望ましい。
電気伝導率が20~50Scm-1である多孔質炭素材料を使用したキャパシタ用電極では、より高い充放電特性を発揮することができる。
一方、電気伝導率が50Scm-1を超える多孔質炭素材料では、その製造方法に起因して黒鉛化が進行しすぎるため、メソ孔が少なくなってしまう。
本発明の多孔質炭素材料は、炭化ケイ素を含んでいることが望ましく、この場合、炭化ケイ素の含有量が1~10重量%であることがより望ましい。
多孔質炭素材料に炭化ケイ素が1~10重量%含まれていると、多孔質炭素材料が鱗片状に粉砕されにくくなると考えられる。そのため、多孔質炭素材料を粉砕しやすくなり、炭素粉末の粒子径をより均一に揃えることができる。
これに対して、炭化ケイ素の含有量が1重量%未満であると、炭化ケイ素の含有量が少なすぎて、多孔質炭素材料の粒子径を揃えにくくなる。一方、炭化ケイ素の含有量が10重量%を超えると、電気伝導度が大きく低下する。
本発明の多孔質炭素材料においては、上記合計値Bが0.3cm/g以上であることが望ましく、上記合計値Bが0.4~1.2cm/gであることがより望ましい。
上記合計値Bが0.3cm/g以上であると、メソ孔が多いため、かかる多孔質炭素材料を使用したキャパシタ用電極では、充放電特性をより向上させることができる。
これに対して、上記合計値Bが1.2cm/gを超えると、多孔質炭素材料のかさ密度(単位体積あたりの重量)が低くなり、かかる多孔質炭素材料を使用した場合には、電極密度が低くなる。
本発明のキャパシタ用電極は、本発明のいずれかの多孔質炭素材料からなることを特徴とする。
また、本発明のハイブリッドキャパシタ用電極は、本発明のいずれかの多孔質炭素材料からなることを特徴とする。
また、本発明のリチウムイオンキャパシタ用電極は、本発明のいずれかの多孔質炭素材料からなることを特徴とする。
本発明のキャパシタは、本発明のいずれかの多孔質炭素材料からなるキャパシタ用電極を備えたことを特徴とする。
また、本発明のハイブリッドキャパシタは、本発明のいずれかの多孔質炭素材料からなるハイブリッドキャパシタ用電極を備えたことを特徴とする。
また、本発明のリチウムイオンキャパシタは、本発明のいずれかの多孔質炭素材料からなるリチウムイオンキャパシタ用電極を備えたことを特徴とする。
本発明のリチウムイオンキャパシタを模式的に示す断面図である。
以下、本発明の多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタの一実施形態について説明する。
本実施形態の多孔質炭素材料には、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線において、細孔直径2~200nmの範囲に含まれる細孔が形成されている。
なお、ここで用いるBJH法とは、Barrett,Joyner,Halendaによって提唱された、メソ孔の分布を求める方法である(E.P.Barrett、L.G.Joyner and P.P.Halenda、J.Am.Chem.Soc.,73、373、(1951)参照)。
また、上記微分細孔容積分布曲線において、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aは、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80%以上を占めている。
本実施形態の多孔質炭素材料の電気伝導率は、10.5Scm-1以上である。
上記電気伝導率は、10.5~50Scm-1であることがより望ましく、20~50Scm-1であることが特に望ましい。
本明細書において、電気伝導率とは、多孔質炭素材料から調製した炭素粉末を四端子法、四探針法により測定した電気伝導率を指すこととする。測定方法の詳細については、実施例に記載する。
また、多孔質炭素材料には、さらに炭化ケイ素が含まれており、その含有量は、1~10重量%である。
本明細書において、多孔質炭素材料に含まれる炭化ケイ素の含有量は、ICP(誘電結合プラズマ)発光分光分析装置を使用して測定した炭化ケイ素の含有量を指すものとする。測定方法の詳細については、実施例に記載する。
細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bは、0.3cm/g以上である。上記合計値Bは、0.3~1.2cm/gであることがより望ましく、0.4~1.2cm/gであることが特に望ましい。
また、BET比表面積は、300m/g以上である。特に、BET比表面積は、350~1000m/gであることがより望ましい。
本明細書において、BET比表面積とは、BET法により求めた比表面積のことをいう。
BET比表面積の測定方法の詳細については、実施例に記載する。
次に、本実施形態の多孔質炭素材料の製造方法について説明する。
本実施形態の多孔質炭素材料は、第1の有機材料を構成する高分子鎖の末端もしくは側鎖に細孔源を含む修飾基が結合した第1の複合材、又は、細孔源を含む無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を、上記細孔源の一部が分解気化する温度以上2200℃以下で加熱する加熱工程を経て製造することができる。
(第1の複合材)
まず、第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材について説明する。
この場合、第1の複合材に含まれる修飾基(例えば、有機珪素化合物等)が、細孔源となる。
第1の複合材を用いる場合、後述する加熱工程において、第1の複合材から有機珪素化合物等が脱離して生成されたシリカの一部、又は、脱離有機珪素化合物の一部が気化する。その結果、細孔が形成されると考えられる。
第1の有機材料としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、ポリアミドイミド系樹脂、ウレタン系樹脂、アミノ系樹脂、不飽和ポリエステル系樹脂、ジアリルフタレート系樹脂、アルキド系樹脂、及び、ケイ素系樹脂等が挙げられる。これらの樹脂の中では、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂が望ましく、特に、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂が望ましい。
なお、本明細書において、フェノール系樹脂とは、フェノール樹脂及びフェノール樹脂を主成分とする樹脂(例えば、変性フェノール樹脂等)をいう。エポキシ系樹脂とは、エポキシ樹脂及びエポキシ樹脂を主成分とする樹脂をいう。他の樹脂についても同様である。
修飾基としては、例えば、有機珪素化合物等が挙げられる。また、有機珪素化合物は、例えば、ビニル基、メタクリル基、エポキシ基、アミノ基、窒素含有基、硫黄含有アルキル基、及び、水酸基等の官能基を有している。
有機珪素化合物としては、具体的に、アルコキシシラン類(例えば、アルコキシシラン化合物、アルコキシシランオリゴマー、ポリアルコキシシラン、及び、シランカップリング剤等)が挙げられる。
上記有機珪素化合物は、反応性の官能基、例えば、ビニル基、メタクリル基、エポキシ基、アミノ基、窒素含有基、硫黄含有アルキル基、及び、水酸基等を有している。
そのため、第1の複合材は、有機珪素化合物等の修飾基が、これらの官能基を介して第1の有機材料と結合することにより形成される。
アルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類;トリアルコキシシラン類;又はこれらの重合物等が挙げられる。
結合させるアルコキシシラン化合物としては、重合物であるアルコキシシランオリゴマーであることが望ましい。アルコキシシラン化合物の中でも、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン類又はこれらの重合物が望ましい。
アルコキシシラン化合物のうち、テトラメトキシシラン又はその重合物を化学式(1)に示す。
Figure JPOXMLDOC01-appb-C000001
化学式(1)中、Rはメチル基又はメトキシ基を表す。また、nは0以上の整数である。
また、アルコキシシラン化合物の重合度を小さくして、化学式(1)中のnを2~10のアルコキシシランオリゴマーを用いることができる。この場合、アルコキシシランオリゴマーがフェノール樹脂等の第1の有機材料と多数の結合を形成し、加熱工程の後に多数の均一なメソ孔を形成することができる。
シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、トリス(β-メトキシエトキシ)ビニルシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、(N-フェニル-γ-アミノプロピル)トリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、ビス(3-トリエトキシシリルプロピル)ジスルファン、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン等が挙げられる。
上記シランカップリング剤は、その官能基を介して、フェノール樹脂等の第1の有機材料に付加反応をして第1の複合材を形成する。なお、シランカップリング剤は、無機成分が結合しやすい加水分解基と有機成分が結合しやすい官能基とがシリコン原子(Si)に結合したものであり、通常、樹脂改質剤として用いられるものである。シランカップリング剤の官能基の化学反応によって、第1の有機材料と結合し、第1の有機材料にシランカップリング剤による架橋構造が形成される。
以下、第1の複合材の具体例として、アルコキシシラン化合物により修飾されたフェノール樹脂(以下、アルコキシシラン変性フェノール樹脂ともいう)、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂(以下、アルコキシシラン変性ポリアミドイミド樹脂ともいう)、及び、アルコキシシラン化合物により修飾されたポリイミド樹脂(以下、アルコキシシラン変性ポリイミド樹脂ともいう)について説明する。
アルコキシシラン化合物により修飾されたフェノール樹脂は、フェノール樹脂に反応性の高い官能基を有しないアルコキシシランオリゴマーを反応させることにより生成することができる。
化学式(2)に、アルコキシシラン化合物により修飾されたフェノール樹脂の化学構造を示す。なお、フェノール樹脂とアルコキシシラン化合物との結合部位は、任意に選定することができる。
Figure JPOXMLDOC01-appb-C000002
化学式(2)中、Rはメチル基又はメトキシ基を表す。また、mは1以上の整数である。
アルコキシシラン化合物により修飾されたフェノール樹脂は、硬化反応剤と混合し、約170℃で約30分間、約100℃で約30分間、約220℃で約120分間等の条件で加熱することにより硬化させてもよい。
硬化反応剤としては、例えば、ヘキサメチレンテトラミン、2-エチル-4-メチル-イミダゾール、ホルムアルデヒド等が挙げられる。
アルコキシシラン化合物により修飾されたポリアミドイミド樹脂は、ポリアミック酸と芳香族カルボン酸のアミド結合体に、アルコキシシラン(アルコキシシランオリゴマー)を反応させることによりゾル-ゲル硬化(アルコキシシランの加水分解及び縮合反応)を行い、その後、得られたゲルを120~250℃で加熱硬化する。
化学式(3)に、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂の化学構造を示す。なお、アルコキシシラン化合物は、ポリアミドイミド樹脂の任意の部位に結合させることも可能である。
Figure JPOXMLDOC01-appb-C000003
化学式(3)中、Xはアルキルスペーサーを表す。また、mは1以上の整数、nは1以上の整数である。
アルコキシシラン化合物により修飾されたポリイミド樹脂は、ポリアミック酸と芳香族カルボン酸のアミド結合体に代えて、ポリアミック酸を使用すること以外は、上述したアルコキシシラン化合物により修飾されたポリアミドイミド樹脂の調製方法と同様の方法により調製することができる。
すなわち、アルコキシシラン化合物により修飾されたポリイミド樹脂は、ポリアミック酸に、アルコキシシラン(アルコキシシランオリゴマー)を反応させることによりゾル-ゲル硬化(アルコキシシランの加水分解及び縮合反応)を行い、その後、得られたゲルを120~430℃で加熱してイミド化することにより生成することができる。
化学式(4)に、アルコキシシラン化合物により修飾されたポリイミド樹脂の化学構造を示す。なお、アルコキシシラン化合物は、ポリイミド樹脂の任意の部位に結合させることも可能である。
Figure JPOXMLDOC01-appb-C000004
化学式(4)中、xは1以上の整数、yは1以上の整数、nは1以上の整数である。
なお、フェノール樹脂等の第1の有機材料にアルコキシシラン(アルコキシシランオリゴマー)を反応させて第1の複合材を形成するには、ゾル状態の両者の混合物において、アルコキシシラン(アルコキシシランオリゴマー)を加水分解と共に重合反応をさせることで、第1の有機材料にポリシロキサンが結合される。
そして、例えば、100~200℃の温度で加熱を行い、ゾル-ゲル反応で第1の有機材料間に架橋を形成して、ゾル状態からゲル状態に硬化させる。
また、フェノール樹脂等の第1の有機材料の任意の部位に、均一な間隔でアルコキシシラン(アルコキシシランオリゴマー)を結合させることができ、架橋硬化した状態において、第1の有機材料中のポリシロキサンを均一に分布させることができる。
また、フェノール樹脂等の第1の有機材料中に結合したポリシロキサンの分子量、結合点を調整することで、細孔の大きさ、数量を制御することができる。
例えば、第1の有機材料中に、アルコキシシラン(アルコキシシランオリゴマー)の結合点を多くすれば、ポリシロキサンが第1の有機材料中に多数結合する。一方、アルコキシシラン(アルコキシシランオリゴマー)の結合点を少なくすれば、ポリシロキサンの結合点は少なくなる。その結果、加熱工程により得られるカーボンの微細構造、すなわち、孔サイズ、孔の数はポリシロキサンの結合点と結合量によって調整されることになる。
(第2の複合材)
次に、細孔源を含む無機ゾル又は金属アルコキシドと第2の有機材料とからなる第2の複合材について説明する。
この場合、無機ゾル又は第2の有機材料に含まれる無機化合物が、細孔源となる。
例えば、無機化合物がシリカであり、第2の有機材料がフェノール樹脂である場合、複合体の構造としては、シリカ粒子がフェノール樹脂中に分散している構造も考えられるし、シリカ粒子がシリカ部分で架橋されたフェノール樹脂中に分散している構造も考えられる。このように、「シリカ」とは、セラミックのシリカ(SiO)だけでなく、有機材料中のSi-O単位をも意味することとする。シリカ以外の他の無機化合物についても同様である。
第2の複合材を用いる場合、後述する加熱工程において、無機ゾルに含まれる無機化合物が気化するか、又は、第2の有機材料に含まれる無機化合物が脱離した後に気化する。その結果、細孔が形成されると考えられる。
無機ゾルとしては、例えば、シリカゾル、アルミナゾル、マグネシアゾル、ジルコニアゾル、及び、チタニアゾル等が挙げられる。これらの中では、気化しやすさの観点から、シリカゾル、アルミナゾル、又は、マグネシアゾルが望ましく、シリカゾルがより望ましい。
なお、シリカゾルには、オルガノシリカゾルも含まれる。
金属アルコキシドとしては、具体的に、アルコキシシラン類(例えば、アルコキシシラン化合物、アルコキシシランオリゴマー、ポリアルコキシシラン、及び、シランカップリング剤等)が挙げられる。
アルコキシシラン類については、第1の複合材で説明したものと同様であるため、ここでは説明を省略する。
第2の有機材料としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、ポリアミドイミド系樹脂、ウレタン系樹脂、アミノ系樹脂、不飽和ポリエステル系樹脂、ジアリルフタレート系樹脂、アルキド系樹脂、及び、ケイ素系樹脂等が挙げられる。これらの樹脂の中では、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂が望ましく、特に、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂が望ましい。
第2の有機材料は、第1の複合材であってもよい。
無機ゾルに含まれる無機化合物の粒子が第2の有機材料中に分散している構造を有する第2の複合材は、オルガノシリカゾル等の無機ゾルとフェノール樹脂等の第2の有機材料とを混合し、無機ゾルを第2の有機材料に分散させることにより生成することができる。
(加熱工程)
以下、細孔源を含む第1の複合材又は第2の複合材を、細孔源の一部が分解気化する温度以上2200℃以下で加熱することにより多孔質炭素材料を得る加熱工程について説明する。
加熱工程は、窒素、アルゴン等の不活性ガス雰囲気中で行われる。
加熱工程における圧力は、特に限定されないが、通常、常圧程度であることが望ましい。
加熱工程における加熱時間は、特に限定されないが、1~100時間であることが望ましく、2~10時間であることがより望ましい。
加熱工程における温度は、第1の複合材又は第2の複合材に含まれる細孔源の一部が分解気化する温度以上2200℃以下である。そのため、加熱工程における温度は、第1の複合材又は第2の複合材の種類、及び、他の加熱条件(昇温温度、加熱時間等)に応じて適宜決定されるが、1500℃を超え2200℃以下であることが望ましく、1600~2000℃であることがより望ましい。
加熱工程における昇温速度は、通常、10~400℃/時間程度であり、20~200℃/時間程度であることが望ましい。
また、加熱工程において、CO分圧を上げることにより、細孔源を効率的に気化させることができると考えられる。
製造した多孔質炭素材料は、必要に応じて、下記する後処理工程又は粉砕工程を行ってもよい。
(後処理工程)
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の後、得られた多孔質炭素材料を塩基又は酸で処理する後処理工程を行ってもよい。
後処理工程により、残留分を除去することができる。
後処理工程では、水酸化ナトリウム(NaOH)等の塩基、又は、フッ酸(HF)等の酸を用いてエッチング処理を行う。
例えば、フッ酸を用いたエッチング処理を行う場合、多孔質炭素材料を、20~50%のフッ酸溶液中で0.5~10時間にわたり攪拌することが望ましい。
(粉砕工程)
製造した多孔質炭素材料を粉砕することにより、所定の粒子径を有する炭素粉末を得ることができる。
多孔質炭素材料の粉砕は、超微粉砕機、ボールミル、ジェットミル等を用いて行うことができる。
粉砕工程後の炭素粉末の粒子径(D50)は、0.5~10μmであることが望ましく、1~5μmであることがより望ましい。
炭素粉末の粒子径が1~5μmであると、キャパシタ用電極とした場合に、厚みが薄くても均一な電極を形成することができる。
なお、多孔質炭素材料の粒子径(D50)は、粉砕した炭素粉末の懸濁液を、粒子径分布測定装置、粒度分布測定器(レーザー回折式)で測定することにより得ることができる。
D50とは、体積基準で、小さな粒子径を有する粒子からその体積を積算し、粒子全体の体積の50%となる点を意味し、粒子径(D50)とは、D50の時の粒子径を示している。
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の後、得られた多孔質炭素材料を粉砕する工程(加熱後粉砕工程)を行い、粉砕工程により得られた材料を、加熱工程における温度よりも高い温度で加熱する工程(追加加熱工程)を行ってもよい。
加熱工程により大部分の細孔源を除去した後、得られた材料を粉砕し、粉砕された材料を再度加熱することにより、残存する細孔源を確実に除去することができる。
追加加熱工程では、加熱後粉砕工程により得られた材料を、加熱工程における温度よりも高い温度で加熱することを除いて、その他の条件は加熱工程と同様である。
追加加熱工程における温度は、加熱温度(加熱工程における温度)~2200℃であることが望ましい。
また、加熱後粉砕工程の後、加熱後粉砕工程又は追加加熱工程により得られた材料を塩基又は酸でエッチングする後処理工程を行ってもよい。
後処理工程における各条件は、加熱工程の後に行う後処理工程における各条件と同様である。
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の前に、細孔源を含む材料を、加熱工程における温度よりも低い温度で加熱する工程(予備加熱工程)を行い、予備加熱工程により得られた材料を粉砕する工程(加熱前粉砕工程)を行ってもよい。
予備加熱工程において細孔源の一部を除去した後、得られた材料を粉砕し、粉砕された材料を再度加熱することにより、細孔源を確実に除去することができる。
予備加熱工程では、細孔源を含む材料を、加熱工程における温度よりも低い温度で加熱することを除いて、その他の条件は加熱工程と同様である。
予備加熱工程における温度は、400℃~加熱温度(加熱工程における温度)であることが望ましい。
また、加熱前粉砕工程の後、加熱前粉砕工程又は加熱工程により得られた材料を塩基又は酸でエッチングする後処理工程を行ってもよい。
後処理工程における各条件は、加熱工程の後に行う後処理工程における各条件と同様である。
次に、本実施形態のキャパシタ用電極、キャパシタ用電極の製造方法、キャパシタ及びキャパシタの製造方法について説明する。
ここでは、キャパシタ用電極として、ハイブリッドキャパシタ用電極の一種であるリチウムイオンキャパシタ用電極を例に説明し、キャパシタとして、ハイブリッドキャパシタの一種であるリチウムイオンキャパシタを例に説明する。
図1は、本発明のリチウムイオンキャパシタを模式的に示す断面図である。
図1に示す本実施形態のリチウムイオンキャパシタ1は、リチウムイオンキャパシタ用電極(正極を符号2で示し、負極を符号3で示す)、セパレータ4及び電解液(図示せず)から構成されている。
具体的には、リチウムイオンキャパシタ1では、正極2と負極3とが、セパレータ4を介して対向するように設けられている。
正極2は、上述した本実施形態の多孔質炭素材料を含んでなる分極性電極である。
正極2は、本実施形態の多孔質炭素材料からなる電極組成物と、電極組成物が形成される正極集電体2aと、正極集電体2aに取り付けられる正極タブ2bとからなる。正極タブ2bはケーシング5から外部に取り出されている。
正極2の厚みは、好ましくは30~300μm、より好ましくは40~200μm、特に好ましくは50~150μmである。
正極2の密度は、特に制限されないが、好ましくは0.30~10g/cm、より好ましくは0.35~5.0g/cm、特に好ましくは0.40~3.0g/cmである。
正極集電体2aは、例えば、金属、炭素、導電性高分子等から構成されており、金属から構成されていることがより好ましい。
正極集電体2a用の金属としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等を使用することができる。
これらの中で電気伝導率、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
正極集電体2aの形状は、金属箔、金属エッジド箔などの集電体、エキスパンドメタル、パンチングメタル、網状などの貫通する孔を有する集電体が挙げられるが、電解質イオンの拡散抵抗を低減しかつリチウムイオンキャパシタの出力密度を向上できる点で貫通する孔を有する正極集電体が好ましく、その中でもさらに電極強度に優れる点で、エキスパンドメタル又はパンチングメタルがより好ましい。
正極集電体2aの孔の割合は、好ましくは10~80面積%、より好ましくは20~60面積%、特に好ましくは30~50面積%である。貫通する孔の割合がこの範囲にあると、電解液の拡散抵抗が低減し、リチウムイオンキャパシタの内部抵抗が低減する。
なお、正極集電体の孔はリチウムイオンキャパシタの場合にのみ設けられていればよく、電気二重層キャパシタの場合には孔が設けられている必要はない。
正極集電体2aの厚みは、好ましくは5~100μmで、より好ましくは10~70μm、特に好ましくは20~50μmである。 
負極3は、リチウムイオンを吸蔵し、放出し得る負極活物質を含む電極である。
負極3には、負極集電体3aが設けられており、負極集電体3aには負極タブ3bが取り付けられており、負極タブ3bはケーシング5から外部に取り出されている。
負極集電体3bは、例えば、銅、ニッケル、ステンレス及びそれらの合金等から形成されている。
負極3には、リチウムイオンが予め吸蔵されていることが好ましい。
リチウムイオンは、化学的方法又は電気化学的方法等により負極に吸蔵させることができる。
化学的方法としては、負極と必要量のリチウム金属を接触させた状態で電解液に浸漬し、熱をかけることにより、リチウムイオンを吸蔵させる方法等が挙げられる。電気化学的方法としては、負極とリチウム金属をセパレータを介して対向させ、電解液中で定電流充電することにより、リチウムイオンを吸蔵させる方法等が挙げられる。
セパレータ4は、リチウムイオンキャパシタ用電極の間を絶縁でき、イオンを通過させることができるものであれば特に限定されない。
具体的には、ポリエチレン又はポリプロピレン等のポリオレフィン、レーヨン又はガラス繊維製の微孔膜、レーヨン又はガラス繊維製の不織布、パルプ(一般に電解コンデンサ紙と呼ばれる)を主原料とする多孔質膜などを用いることができる。
セパレータ4の厚みは、好ましくは1~100μmであり、より好ましくは10~80μmであり、特に好ましくは20~60μmである。
また、ケーシング5は、ラミネートフィルム、金属ケース、樹脂ケース、セラミックケース等から形成されていてもよい。
その形状としては、特に限定されず、コイン型、円筒型、角型等であってもよい。
電解液は、電解質と溶媒とから構成されている。
電解質としては、リチウム塩を使用することができる。そのため、カチオンとしては、リチウムイオンを用いることができる。また、アニオンとしては、PF 、BF 、AsF 、SbF 、N(RfSO2-、C(RfSO3-、RfSO (Rfはそれぞれ炭素数1~12のフルオロアルキル基を表す)、F、ClO 、AlCl 、AlF 等を用いることができる。
これらの電解質は単独または二種類以上として使用することができる。
また、電解質であるリチウム塩の濃度は、0.1~2.5mol/lが好ましい。
溶媒は、キャパシタやリチウムイオンキャパシタに用いることができる非水系電解液であれば特に限定されるものではない。
具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらの溶媒は単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。
本実施形態のリチウムイオンキャパシタ用電極は、以下の工程(1)~(3)を経て製造することができる。
(1)正極組成物調製工程
本実施形態の多孔質炭素材料からなる炭素粉末、導電材、バインダ及び水等の溶媒を混合することにより、正極組成物用スラリーを調製する。
バインダとしては、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリテトラフルオロエチレン、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらのバインダは、それぞれ単独でまたは2種以上を組み合わせて使用できる。バインダとしては、ポリテトラフルオロエチレンが好ましい。
また、バインダは、成形性を容易にするため、粉末状のものが好ましい。
バインダの使用量は、例えば、炭素粉末100重量部に対し1~30重量部であることが好ましい。
導電材としては、電気二重層を形成し得る細孔をほぼ有さない粒子状の炭素からなり、例えば、ファーネスブラック、アセチレンブラック、及び、ケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの電気伝導率カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。
導電材の平均粒子径は、多孔質炭素材料からなる炭素粉末の平均粒子径よりも小さいものが好ましく、より好ましくは0.001~10μm、さらに好ましくは0.05~5μm、特に好ましくは0.01~1μmである。導電材の平均粒子径がこの範囲にあると、高い電気伝導率が得られる。
導電材の量は、炭素粉末100重量部に対して好ましくは0.1~50重量部、より好ましくは0.5~15重量部、さらに好ましくは1~10重量部の範囲である。
導電材の量がこの範囲にあると、得られるリチウムイオンキャパシタ用電極を使用したリチウムイオンキャパシタの容量を高くし、内部抵抗を低くすることができる。
(2)正極作製工程
次に、正極組成物用スラリーを正極集電体2aの上に塗布した後、乾燥させる。
このような湿式成形法により、正極2を作製することができる。
その他の方法として、シート状に成形した正極組成物を、正極集電体上に積層する方法(混練シート成形法)、正極組成物の複合粒子を調製し、正極集電体上にシート成形、ロールプレスする方法(乾式成形法)などが挙げられる。中でも、湿式成形法、乾式成形法が好ましく、湿式成形法がより好ましい。
(3)負極作製工程
負極3は、負極活物質とバインダと導電材とを混合し、これを溶媒に添加して負極電極組成物用スラリーを作製し、このスラリーを負極集電体3aに塗布し、乾燥して形成することができる。
その他、混練シート成形法、乾式成形法により負極を作製してもよい。
負極活物質としては、リチウムイオンを可逆的に担持できる物質であればよい。
具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。
中でも、黒鉛、難黒鉛化炭素等の結晶性炭素材料、ハードカーボン、コークス等の炭素材料、ポリアセン系物質(PAS)が好ましい。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
バインダ及び導電材は、正極と同様のものを使用することができる。
次に、本実施形態のキャパシタの製造方法について説明する。
ここでは、上述したリチウムイオンキャパシタを例に、キャパシタの製造方法について説明する。
まず、正極2を上部ケーシングに取り付け、負極3を下部ケーシングに取り付ける。
その後、正極2と負極3との間にセパレータ4を設置し、電解液を含浸させた後、ケーシングを封止する。
これにより、本実施形態のリチウムイオンキャパシタを製造することができる。
以下に、本実施形態の多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタの作用効果を記載する。
(1)本実施形態の多孔質炭素材料は、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線において、細孔直径2~200nmの範囲に含まれる細孔が形成されており、細孔直径2~15nmの範囲に含まれる微分細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる微分細孔容積の合計値Bの80%以上を占めている。
よって、本実施形態の多孔質炭素材料には、高比表面積のメソ孔が低比表面積のマクロ孔よりも充分に多く形成されており、かさが低く、上記多孔質材料を用いたキャパシタ用電極は電極密度が高くなる。
また、電解液が入り込みやすいサイズのメソ孔が多く形成されており、かかる多孔質炭素材料は、キャパシタ用電極として有効に活用することができる。
さらに、本実施形態の多孔質炭素材料は、電気伝導率が10.5Scm-1以上であるため、従来の多孔質炭素材料に比べて充分に高い電気伝導率を有している。
従って、本実施形態の多孔質炭素材料は、キャパシタ用電極に使用した場合に、上述したメソ孔の存在と相まって高い充放電特性を発揮することができる。
一方、多孔質炭素材料の電気伝導率が10.5Scm-1未満であると、電気伝導率が低すぎて、導電材を多量に加える必要があり、キャパシタ用電極に使用した場合に充放電特性が低下する。
(2)本実施形態の多孔質炭素材料は、電気伝導率が20~50Scm-1であるため、この多孔質炭素材料を使用したキャパシタ用電極では、より高い充放電特性を発揮することができる。
一方、電気伝導率が50Scm-1を超える多孔質炭素材料では、その製造方法に起因して黒鉛化が進行しすぎるため、メソ孔が少なくなってしまう。
(3)本実施形態の多孔質炭素材料は、炭化ケイ素を含んでおり、その含有量は、1~10重量%である。
多孔質炭素材料に炭化ケイ素が1~10重量%含まれているので、多孔質炭素材料が鱗片状に粉砕されにくくなると考えられる。そのため、多孔質炭素材料を粉砕しやすくなり、炭素粉末の粒子径をより均一に揃えることができる。
これに対して、炭化ケイ素の含有量が1重量%未満であると、炭化ケイ素の含有量が少なすぎて、多孔質炭素材料の粒子径を揃えにくくなる。一方、炭化ケイ素の含有量が10重量%を超えると、電気伝導度が大きく低下する。
(4)本実施形態の多孔質炭素材料は、上記合計値Bが0.3cm/g以上である。
上記合計値Bが0.3cm/g以上であるので、メソ孔が多い。そのため、かかる多孔質炭素材料を使用したキャパシタ用電極では、充放電特性をより向上させることができる。
これに対して、上記合計値Bが1.2cm/gを超えると、多孔質炭素材料のかさ密度(単位体積あたりの重量)が低くなり、かかる多孔質炭素材料を使用した場合には、電極密度が低くなる。
(5)本実施形態のキャパシタ用電極、ハイブリッドキャパシタ用電極又はリチウムイオンキャパシタ用電極は、本実施形態のいずれかの多孔質炭素材料からなることを特徴とする。これらの電極を使用した各種キャパシタは、充放電特性に優れる。
(6)本実施形態のキャパシタ、ハイブリッドキャパシタ又はリチウムイオンキャパシタは、本実施形態のいずれかの多孔質炭素材料からなるキャパシタ用電極、ハイブリッドキャパシタ用電極又はリチウムイオンキャパシタ用電極をそれぞれ備えたことを特徴とする。
これらのキャパシタは、充放電特性に優れた電極を備えているため、充放電特性に優れる。
以下、本実施形態をより具体的に開示した実施例を示すが、本実施形態はこれらの実施例のみに限定されるものではない。
(実施例1)
以下の工程(1)及び(2)を経ることにより、本実施例に係る多孔質炭素材料を製造した。
(1)硬化反応剤混合物調製工程
アルコキシシラン変性フェノール樹脂(住友ベークライト株式会社製、スミライトレジン(登録商標)PR-54529)と、硬化反応剤としてのヘキサメチレンテトラミンとを、フェノール樹脂:硬化反応剤=5:1(重量比)で混合して硬化反応剤混合物を得た。
(2)加熱工程
工程(1)で得られた混合物を、ガラス板上に固定したPETシート上に載せた。
次に、ガラス棒を使用し、硬化反応剤混合物をPETシート上に製膜し、170℃、30分間の条件にて乾燥機内で硬化させた。
得られたフィルムを所定の大きさに切断し、1600℃、2時間、N雰囲気で加熱した。
以上の工程を経ることにより、実施例1の多孔質炭素材料を製造した。
(3)粉砕工程
各実施例及び比較例で製造した多孔質炭素材料を、ボールミルに入れ、アルミナ製ボールとともに10時間粉砕することにより、3μmの粒子径(D50)を有する炭素粉末を作製し、この炭素材料を用いて各評価を行った。
(微分細孔容積分布曲線の作製)
工程(3)の粉砕工程を経て製造した炭素粉末を用いてN吸着量を測定し、吸着等温線を作製した。
吸着量の測定には、カンタクローム社製 AUTOSORB-1MPを使用した。
得られた吸着等温線をBJH法で解析することにより、微分細孔容積分布曲線を得た。
その結果、細孔直径2~200nmの範囲に含まれる細孔が形成されていた。
また、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aは、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの88%を占めていた。
上記合計値Bは、0.49cm/gであった。
(BET比表面積の測定)
上記操作により得られた吸着等温線を使用し、BET法によりBET比表面積を求めた。
その結果、BET比表面積は、536m/gであった。
なお、BET比表面積は、JIS Z 8830(2001)に準じ、容量法、多点法により測定した。
(電気伝導率の測定)
工程(3)で得られた炭素粉末の電気伝導率は、次のようにして測定した。
粉体抵抗測定システム(粉体抵抗測定システム MCP-PD51型、株式会社三菱化学アナリテック製)を用いた。
まず、炭素粉末を測定システムにセットし、4kN、8kN、12kN、16kN、20kNと圧力を徐々にかけ、圧力を炭素粉末に負荷した状態で、四端子法、四探針法により各圧力時の電気伝導率を測定した。
その結果、20kN負荷時の炭素粉末の電気伝導率は、27.7Scm-1であった。
(炭化ケイ素の含有量の測定)
ICP発光分光分析装置(SPS3500シリーズ、エスアイアイ・ナノテクノロジー株式会社製)を使用し、工程(3)で得られた炭素粉末の炭化ケイ素含有量を測定した。
その結果、炭素粉末の炭化ケイ素含有量は、5重量%であった。
(実施例2~4)
実施例1の工程(2)における加熱条件を下記する表1に示すように変更したこと以外は、実施例1と同様にして多孔質炭素材料を製造した。
(実施例5)
無水トリメリット酸とジフェニルメタン-4,4’-ジイソシアネートから合成した芳香族ポリアミドイミドの基本骨格にシロキサンを導入することによって合成された、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂を用いた。
上記アルコキシシラン化合物により修飾されたポリアミドイミド樹脂について、実施例1と同様にフィルムを得た。
得られたフィルムを所定の大きさに切断し、1800℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例5の多孔質炭素材料を製造した。
(実施例6)
アルコキシシラン化合物により修飾されたポリイミド樹脂(イビデン樹脂株式会社製、HBPI-SiO-A)を準備し、実施例1と同様にフィルムを得た。
得られたフィルムを所定の大きさに切断し、2000℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例6の多孔質炭素材料を製造した。
(比較例1)
フィルムを800℃、2時間、N雰囲気で加熱し、その後、48%フッ酸(HF水溶液)で24時間処理したこと以外は、実施例1と同様にして多孔質炭素材料を製造した。
(比較例2)
比較例2の多孔質炭素材料として、市販の活性炭(カルゴンカーボンジャパン株式会社製、ダイアソーブ(登録商標)F 100D)を用いた。
実施例2~6、並びに、比較例1及び2の多孔質炭素材料について、実施例1と同様にして、微分細孔容積分布曲線の作製、BET比表面積の測定、電気伝導率の測定及び炭化ケイ素の含有量の測定を行った。
実施例2~6、並びに、比較例1及び2での樹脂複合体の種類、加熱条件及び各種試験結果を実施例1の結果等と合わせて表1に示す。
Figure JPOXMLDOC01-appb-T000005
表1に示したように、実施例1~6で製造した多孔質炭素材料は、細孔直径2~200nmの範囲に含まれる細孔が形成されており、細孔直径2~15nmの範囲に含まれる微分細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる微分細孔容積の合計値Bの80%以上を占めている。
また、実施例1~6で製造した多孔質炭素材料は、上記合計値Bが0.3cm/g以上である。
よって、実施例1~6で製造した多孔質炭素材料は、かさが充分に低く、これを用いたキャパシタ用電極は電極密度が高いと考えられる。また、電解液が入り込みやすいサイズのメソ孔が多く形成されており、かかる多孔質炭素材料は、キャパシタ用電極として有効に活用することができる。
実施例1~6で製造した多孔質炭素材料は、電気伝導率が10.5Scm-1以上であり、比較例1、2で示された従来の多孔質炭素材料に比べて、充分に高い電気伝導率を有している。従って、これらの多孔質炭素材料をキャパシタ用電極に使用した場合には、高い充放電特性を発揮することができると考えられる。
さらに、実施例1~6で製造した多孔質炭素材料は、炭化ケイ素の含有量が1~10重量%であるため粉砕しやすく、炭素粉末の粒子径をより均一に揃えることができると考えられる。
比較例1の多孔質炭素材料は、電気伝導率が10.5Scm-1未満であり、キャパシタ用電極に使用した場合には、充放電特性が低くなると考えられる。
また、炭化ケイ素が含まれておらず、炭素粉末の粒子径が実施例1~6で作製した炭素粒子よりも均一でないと考えられる。
比較例2では、細孔直径2~15nmの範囲に含まれる微分細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる微分細孔容積の合計値Bの69%を占めているにすぎず、上記合計値Bが0.3cm/g未満である。また、電気伝導率が10.5Scm-1未満である。
よって、この多孔質炭素材料を用いたキャパシタ用電極は、充放電特性が低くなると考えられる。
キャパシタ 1
正極 2
正極集電体 2a
正極タブ 2b
負極 3
負極集電体 3a
負極タブ 3b
セパレータ 4
ケーシング 5

Claims (12)

  1. 吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線における細孔直径2~200nmの範囲に含まれる細孔が形成されており、
    細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80%以上を占めており、
    電気伝導率が、10.5Scm-1以上であることを特徴とする多孔質炭素材料。
  2. 電気伝導率が、20~50Scm-1である請求項1に記載の多孔質炭素材料。
  3. 炭化ケイ素を含んでいる請求項1又は2に記載の多孔質炭素材料。
  4. 前記炭化ケイ素の含有量が、1~10重量%である請求項3に記載の多孔質炭素材料。
  5. 前記合計値Bが、0.3cm/g以上である請求項1~4のいずれかに記載の多孔質炭素材料。
  6. 前記合計値Bが、0.4~1.2cm/gである請求項5に記載の多孔質炭素材料。
  7. 請求項1~6のいずれかに記載の多孔質炭素材料からなることを特徴とするキャパシタ用電極。
  8. 請求項1~6のいずれかに記載の多孔質炭素材料からなることを特徴とするハイブリッドキャパシタ用電極。
  9. 請求項1~6のいずれかに記載の多孔質炭素材料からなることを特徴とするリチウムイオンキャパシタ用電極。
  10. 請求項1~6のいずれかに記載の多孔質炭素材料からなるキャパシタ用電極を備えたことを特徴とするキャパシタ。
  11. 請求項1~6のいずれかに記載の多孔質炭素材料からなるハイブリッドキャパシタ用電極を備えたことを特徴とするハイブリッドキャパシタ。
  12. 請求項1~6のいずれかに記載の多孔質炭素材料からなるリチウムイオンキャパシタ用電極を備えたことを特徴とするリチウムイオンキャパシタ。
PCT/JP2011/069933 2010-09-02 2011-09-01 多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ WO2012029918A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-197166 2010-09-02
JP2010197166 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029918A1 true WO2012029918A1 (ja) 2012-03-08

Family

ID=45772993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069933 WO2012029918A1 (ja) 2010-09-02 2011-09-01 多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ

Country Status (1)

Country Link
WO (1) WO2012029918A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232602A (ja) * 2012-05-01 2013-11-14 Ibiden Co Ltd 蓄電デバイス用電極材料の製造方法、蓄電デバイス用電極、及び、蓄電デバイス
US9312077B2 (en) 2011-12-16 2016-04-12 Calgon Carbon Corporation Double layer capacitors
US11661343B2 (en) 2017-10-27 2023-05-30 Heraeus Battery Technology Gmbh Process for the preparation of a porous carbon material using an improved carbon source
US11746015B2 (en) 2017-10-27 2023-09-05 Heraeus Battery Technology Gmbh Process for the preparation of a porous carbon material using an improved amphiphilic species
JP7469106B2 (ja) 2020-03-31 2024-04-16 群栄化学工業株式会社 フェノール樹脂組成物、フェノール樹脂硬化物、活性炭製造用炭化物及びフェノール樹脂活性炭の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327473A (ja) * 2002-05-14 2003-11-19 Asahi Kasei Corp 多孔質炭素焼結体の製造方法
JP2004503456A (ja) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド 中孔質炭素材料、炭素/金属酸化物複合材料および該材料を用いる電気化学的キャパシタ
JP2006513969A (ja) * 2003-04-23 2006-04-27 エフオーツェー・フランケンブルク・オイル・カンパニー・イスタブリッシュメント 多孔質カーボンの孔特性を変える方法およびその方法で製造された多孔質カーボン材料
JP2007186411A (ja) * 2005-12-16 2007-07-26 Showa Denko Kk 活性炭、その製造方法及びその用途
JP2009526743A (ja) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, メソ多孔質活性炭素
JP2010503214A (ja) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート カーボンナノチューブのナノコンポジット、カーボンナノチューブのナノコンポジットを作製する方法、およびナノコンポジットを含むデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (ja) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド 中孔質炭素材料、炭素/金属酸化物複合材料および該材料を用いる電気化学的キャパシタ
JP2003327473A (ja) * 2002-05-14 2003-11-19 Asahi Kasei Corp 多孔質炭素焼結体の製造方法
JP2006513969A (ja) * 2003-04-23 2006-04-27 エフオーツェー・フランケンブルク・オイル・カンパニー・イスタブリッシュメント 多孔質カーボンの孔特性を変える方法およびその方法で製造された多孔質カーボン材料
JP2007186411A (ja) * 2005-12-16 2007-07-26 Showa Denko Kk 活性炭、その製造方法及びその用途
JP2009526743A (ja) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, メソ多孔質活性炭素
JP2010503214A (ja) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート カーボンナノチューブのナノコンポジット、カーボンナノチューブのナノコンポジットを作製する方法、およびナノコンポジットを含むデバイス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312077B2 (en) 2011-12-16 2016-04-12 Calgon Carbon Corporation Double layer capacitors
JP2013232602A (ja) * 2012-05-01 2013-11-14 Ibiden Co Ltd 蓄電デバイス用電極材料の製造方法、蓄電デバイス用電極、及び、蓄電デバイス
US11661343B2 (en) 2017-10-27 2023-05-30 Heraeus Battery Technology Gmbh Process for the preparation of a porous carbon material using an improved carbon source
US11746015B2 (en) 2017-10-27 2023-09-05 Heraeus Battery Technology Gmbh Process for the preparation of a porous carbon material using an improved amphiphilic species
JP7469106B2 (ja) 2020-03-31 2024-04-16 群栄化学工業株式会社 フェノール樹脂組成物、フェノール樹脂硬化物、活性炭製造用炭化物及びフェノール樹脂活性炭の製造方法

Similar Documents

Publication Publication Date Title
Zhang et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors
Li et al. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte
TWI487180B (zh) 非水系鋰型蓄電元件用正極材料
EP3009399B1 (en) Aluminum silicate composite, electroconductive material, electroconductive material for lithium ion secondary battery, composition for forming negative electrode for lithiumion secondary battery, composition for forming positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
KR101811970B1 (ko) 리튬 이온 캐패시터
Liu et al. Coherent Mn 3 O 4-carbon nanocomposites with enhanced energy-storage capacitance
Yuksel et al. All‐carbon hybrids for high performance supercapacitors
Jeong et al. High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source
WO2011077663A1 (ja) 電気化学素子用活性炭、及びこれを用いた電気化学素子
WO2012029918A1 (ja) 多孔質炭素材料、キャパシタ用電極、ハイブリッドキャパシタ用電極、リチウムイオンキャパシタ用電極、キャパシタ、ハイブリッドキャパシタ及びリチウムイオンキャパシタ
JP2007008790A (ja) カーボン微粒子の製造方法、分極性電極の製造方法および電気二重層キャパシタ
TW201328975A (zh) 鋰離子二次電池及鋰離子二次電池用材料、負極、正極材料、正極合劑、正極、電解液、隔膜以及黏合劑
TW201929301A (zh) 正極塗佈液、正極前驅體及非水系鋰蓄電元件
Wang et al. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores
WO2022085694A1 (ja) 非水系アルカリ金属蓄電素子および正極塗工液
Kurc Precipitated silica as filler for polymer electrolyte based on poly (acrylonitrile)/sulfolane
WO2012029920A1 (ja) 多孔質炭素材料の製造方法、多孔質炭素材料、キャパシタ用電極、及び、キャパシタ
Lian et al. Curved fragmented graphenic hierarchical architectures for extraordinary charging capacities
JP7425605B2 (ja) 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス
Deng et al. Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors
TWI556495B (zh) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, nonaqueous electrolyte secondary battery negative electrode, nonaqueous electrolyte secondary battery and vehicle
JP2013232602A (ja) 蓄電デバイス用電極材料の製造方法、蓄電デバイス用電極、及び、蓄電デバイス
JP2013080780A (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
KR20080110311A (ko) 전기이중층 콘덴서용 탄소나노튜브와 이산화티탄을 이용한복합전극의 제조방법
JPH11340103A (ja) 活性炭素材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP