WO2012029864A1 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
WO2012029864A1
WO2012029864A1 PCT/JP2011/069801 JP2011069801W WO2012029864A1 WO 2012029864 A1 WO2012029864 A1 WO 2012029864A1 JP 2011069801 W JP2011069801 W JP 2011069801W WO 2012029864 A1 WO2012029864 A1 WO 2012029864A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
single crystal
hydrogen
crucible
type dopant
Prior art date
Application number
PCT/JP2011/069801
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 沖野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2012029864A1 publication Critical patent/WO2012029864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials

Definitions

  • the present invention relates to a method for producing a silicon carbide single crystal.
  • Silicon carbide single crystal is used as a substrate material for LEDs and high-frequency semiconductor devices because it has better electrical characteristics and mechanical properties than silicon single crystal.
  • an N-type dopant for example, As, P, N, etc.
  • a P-type dopant for example, B, Al, etc.
  • the silicon carbide single crystal forms many deep levels compared to the silicon single crystal.
  • the deep level is located away from the end of the conduction band or valence band, that is, in the middle of the forbidden band. Point defects (vacancies) can be cited as the main cause of the formation of this deep level. In the point defect, only the bond end exists at the position where carbon or silicon should be. An N-type dopant and a P-type dopant are bonded to the bond end. For this reason, the deep level worked as a hole and electron trap.
  • the N-type dopant and the P-type dopant are introduced in an appropriate balance, they are introduced due to the deep level acting as an electron trap. It was difficult to control the balance between the N-type dopant and the P-type dopant. For this reason, even if a silicon carbide single crystal portion having high resistance, that is, excellent semi-insulating properties is obtained in the initial stage of growth, the balance between the N-type dopant and the P-type dopant cannot be maintained properly as it grows. In some cases, a silicon carbide single crystal having excellent semi-insulating properties could not be obtained.
  • an object of the present invention is to provide a method for producing a silicon carbide single crystal having excellent semi-insulating properties by making it easier to control the balance between the N-type dopant and the P-type dopant.
  • a feature of the present invention is a method for producing a silicon carbide single crystal comprising a step of placing a silicon carbide raw material in a crucible and a step of growing the silicon carbide single crystal by heating the silicon carbide raw material placed in the crucible.
  • the gist of the step of growing the silicon carbide single crystal is to introduce hydrogen into the crucible.
  • hydrogen is introduced into the crucible in the step of growing the silicon carbide single crystal.
  • the introduced hydrogen is bonded to the bonding ends of vacancies existing in the silicon carbide single crystal. That is, since hydrogen inactivates deep levels, an N-type dopant is not bonded to the bond end.
  • the introduced N-type dopant and P-type dopant can all function as an N-type dopant and a P-type dopant, respectively, the balance between the N-type dopant and the P-type dopant can be controlled more easily. As a result, a silicon carbide single crystal having excellent semi-insulating properties can be obtained.
  • the hydrogen includes a hydrogen atom.
  • Another feature of the present invention is that the hydrogen is introduced into the crucible so that the density of the hydrogen is 5 ⁇ 10 16 / cm 3 or more.
  • FIG. 1 is a cross-sectional view of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 1 is a cross-sectional view of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • a silicon carbide single crystal manufacturing apparatus 1 (hereinafter abbreviated as “single crystal manufacturing apparatus 1” as appropriate) includes a crucible 10, a quartz tube 50, a chamber 60, and a heating coil 70.
  • the crucible 10 has a crucible body 10a and a crucible lid 10b.
  • a silicon carbide raw material 20 serving as a single crystal raw material is disposed.
  • a seed crystal 30 that induces recrystallization of the silicon carbide raw material 20 is disposed in the crucible lid 10b.
  • One end of the crucible 10 (that is, the bottom of the crucible body 10a) is provided with the silicon carbide raw material 20, and the other end of the crucible 10 facing the one end of the crucible 10 (that is, the crucible lid 10b)
  • a seed crystal 30 is arranged. Therefore, the silicon carbide raw material 20 and the seed crystal 30 face each other.
  • the crucible 10 is fixed inside the quartz tube 50 by a support bar 55.
  • the quartz tube 50 is disposed outside the crucible 10. Chambers 60 are attached to both ends (upper and lower ends in FIG. 1) of the quartz tube 50. One chamber 60 (lower end) is provided with an introduction port 65 a for introducing atmospheric gas into the quartz tube 50 and the chamber 60. The other chamber 60 (upper end) is provided with a quartz tube 50 and a discharge port 65b for discharging the atmospheric gas inside the chamber 60. Since the crucible 10 is not sealed, when the atmospheric gas is introduced into the quartz tube 50 and the chamber 60, the crucible 10 is also filled with the atmospheric gas. The atmosphere inside the single crystal manufacturing apparatus 1 is adjusted by introducing and discharging the atmospheric gas.
  • the heating coil 70 is provided on the outer periphery of the quartz tube 50.
  • the crucible 10 is heated by the heating coil 70.
  • the crucible 10 is covered with a heat insulating material (not shown).
  • the introduction port 65a may be connected to a pipe through which hydrogen atoms can be introduced from the hydrogen reaction chamber.
  • the hydrogen reaction chamber has a mechanism for decomposing hydrogen molecules into hydrogen atoms.
  • Step S ⁇ b> 1 is a step of preparing the silicon carbide raw material 20 and the seed crystal 30.
  • the silicon carbide raw material 20 may be prepared by any manufacturing method. For example, silicon carbide produced by chemical vapor deposition (CVD) may be used as the silicon carbide raw material 20, or a silicon carbide precursor is produced from a silicon-containing raw material and a carbon-containing raw material, and the produced silicon carbide precursor is produced. Silicon carbide obtained by firing the body may be used as the silicon carbide raw material 20. The silicon carbide raw material 20 is placed in the crucible 10.
  • CVD chemical vapor deposition
  • the seed crystal 30 is disposed on the crucible lid 10b. Since seed crystal 30 serves as a growth starting point for a silicon carbide single crystal, it is preferable to use a seed crystal 30 made of a silicon carbide single crystal.
  • the crucible lid 10b on which the seed crystal 30 is disposed is attached to the crucible body 10a.
  • Step S2 is a step for growing a silicon carbide single crystal. After the crucible lid 10b is attached to the crucible body 10a, the crucible lid 10b is sealed so that gas does not flow out / inflow from the single crystal manufacturing apparatus 1 except for the introduction port 65a and the discharge port 65b.
  • hydrogen gas hydrogen molecules
  • the silicon carbide raw material 20 is heated by heating the crucible 10 with the heating coil 70.
  • the silicon carbide raw material 20 heated above the sublimation temperature is recrystallized on the seed crystal 30.
  • the heating temperature is 2000 ° C to 2500 ° C.
  • the N-type dopant and / or the P-type dopant are introduced from the introduction port 65a.
  • the N-type dopant and / or the P-type dopant are appropriately adjusted according to the atmosphere inside the crucible 10.
  • the hydrogen gas is preferably introduced while the single crystal is growing. Therefore, it is preferable to introduce hydrogen gas from the start of temperature increase to the end of temperature decrease.
  • Hydrogen not only terminates at the bond end and bond, but also breaks and determination occurs. Therefore, termination and determination are repeated in the vacancies, but if the hydrogen density is in the range of 1 ⁇ 10 13 / cm 3 to 5 ⁇ 10 16 / cm 3 and hydrogen remains in the single crystal, Bonding between the end and the P-type dopant can be sufficiently suppressed. For this reason, it is preferable to introduce hydrogen in the crucible 10 so that the density of hydrogen becomes 5 ⁇ 10 16 / cm 3 or more. In addition, about the density of hydrogen, when a hydrogen atom is contained in hydrogen, it is a density of hydrogen at the time of converting the two said hydrogen atoms into one hydrogen molecule.
  • Argon gas and hydrogen gas containing hydrogen molecules and hydrogen atoms were introduced into a single crystal production apparatus in which a silicon carbide raw material and a seed crystal were arranged.
  • the inside of the single crystal manufacturing apparatus was adjusted to a pressure of about 1 to 10 torr. Hydrogen gas was continuously introduced until the temperature dropped.
  • the inlet is connected to the hydrogen reaction chamber.
  • a tungsten filament is provided in the hydrogen reaction chamber. Hydrogen molecules that have passed through the hydrogen reaction chamber are decomposed into hydrogen atoms by thermionic electrons emitted from the tungsten filament.
  • N 2 nitrogen gas
  • the nitrogen gas is adjusted so that N 2 is 1 ⁇ 10 17 / cm in the single crystal. Since nitrogen (N) is contained in the silicon carbide raw material and the crucible, the concentration of N increases at the beginning of crystal growth, but as the temperature inside the crucible increases, it vaporizes into N 2 and is discharged from the discharge port. Is done. For this reason, the concentration of N decreases as the growth of the single crystal proceeds. For this reason, it adjusted so that the quantity of nitrogen gas introduced might increase after the middle stage of growth rather than the initial stage of growth.
  • B that is, P-type dopant
  • the P-type dopant was not intentionally introduced from the introduction port in this example. Since the concentration of B contained in the silicon carbide raw material and the crucible is constant, the concentration of B is constant in the single crystal. Specifically, it was about 5 ⁇ 10 16 / cm 3 .
  • the concentration of B that contributes to the resistance of the single crystal is higher than that in the case where hydrogen is not introduced.
  • the concentration of B that contributes to the resistance of the crystal is small, in order to obtain a high-resistance single crystal, it is necessary to reduce the concentration of the introduced nitrogen gas. Becomes difficult.
  • the concentration of B is increased, the amount of nitrogen gas to be introduced can be increased, so that control and adjustment of nitrogen gas is facilitated.
  • the single crystal was sliced.
  • the resistance value of the sliced single crystal substrate was measured.
  • the resistance value of the single crystal substrate in the initial growth part and the single crystal substrate in the middle growth stage and the late growth stage were both 1 ⁇ 10 5 ⁇ ⁇ cm. Therefore, according to the present Example, it turned out that the silicon carbide single crystal excellent in semi-insulation property is obtained.
  • hydrogen gas (hydrogen molecules) is introduced into the crucible 10 in the step of heating the silicon carbide raw material 20.
  • the introduced hydrogen molecules are bonded to the bonding ends of the vacancies existing in the silicon carbide single crystal. That is, since the hydrogen molecule inactivates the deep level, the N-type dopant and the P-type dopant are not bonded to the bond end.
  • the introduced N-type dopant and P-type dopant can all function as an N-type dopant and a P-type dopant, respectively, the balance between the N-type dopant and the P-type dopant can be further controlled.
  • hydrogen may contain hydrogen atoms. Since a hydrogen atom is more likely to bond to a bond end than a hydrogen atom, the introduction of a hydrogen atom can terminate efficiently. For this reason, it is more preferable to introduce only hydrogen atoms into the crucible 10.
  • hydrogen may be introduced in the crucible 10 so that the hydrogen density is 5 ⁇ 10 16 / cm 3 or more.
  • the method for producing a silicon carbide single crystal according to the present invention can produce a silicon carbide single crystal having excellent semi-insulating properties, and thus is useful in the field of producing a silicon carbide single crystal.

Abstract

This method for producing a silicon carbide single crystal comprises a step for disposing silicon carbide starting material (20) in a crucible (10) and a step for growing the silicon carbide single crystal by heating the silicon starting material (20) disposed in the crucible (10). In the step for heating the silicon carbide starting material (20), hydrogen gas is introduced to the crucible (10).

Description

炭化ケイ素単結晶の製造方法Method for producing silicon carbide single crystal
 本発明は、炭化ケイ素単結晶の製造方法に関する。 The present invention relates to a method for producing a silicon carbide single crystal.
 炭化ケイ素単結晶は、ケイ素単結晶に比べて電気的特性・機械的物性に優れるため、LED、高周波半導体デバイス用の基板材料として利用されている。炭化ケイ素単結晶に適切な半絶縁性を付与するためには、N型ドーパント(例えば、As、P、N等)や、P型ドーパント(例えば、B、Al等)を適切なバランスで配合する必要がある。 Silicon carbide single crystal is used as a substrate material for LEDs and high-frequency semiconductor devices because it has better electrical characteristics and mechanical properties than silicon single crystal. In order to impart an appropriate semi-insulating property to the silicon carbide single crystal, an N-type dopant (for example, As, P, N, etc.) and a P-type dopant (for example, B, Al, etc.) are blended in an appropriate balance. There is a need.
 このため、余剰となるN型ドーパント及びP型ドーパントが炭化ケイ素単結晶内に混入しないようにする方法が提案されている。例えば、使用する部材に含まれる不純物を除去する方法(特許文献1参照)、使用する原料粉に含まれる不純物を除去する方法(特許文献2参照)、使用する雰囲気ガスに含まれる不純物を除去する方法(特許文献3参照)がある。 For this reason, a method for preventing excess N-type dopant and P-type dopant from being mixed into the silicon carbide single crystal has been proposed. For example, a method of removing impurities contained in a member to be used (see Patent Document 1), a method of removing impurities contained in a raw material powder to be used (see Patent Document 2), and impurities contained in an atmosphere gas to be used are removed. There exists a method (refer patent document 3).
特開2005―8473号公報Japanese Patent Laying-Open No. 2005-8473 特開平11-116398号公報Japanese Patent Laid-Open No. 11-116398 特開2002-274994号公報JP 2002-274994 A
 炭化ケイ素単結晶は、ケイ素単結晶に比べて、多くの深い準位が形成される。深い準位とは、伝導帯や価電子帯の端から離れたところ、すなわち禁止帯の中ほどに位置しているものである。この深い準位が形成される主な原因に点欠陥(空孔)が挙げられる。点欠陥には、炭素又はケイ素があるべき位置に、結合端のみが存在している。結合端には、N型ドーパント及びP型ドーパントが結合する。このため、深い準位は、正孔及び電子トラップとして働いていた。従って、上述した方法により、余剰のN型ドーパントとP型ドーパントとを除去して、N型ドーパントとP型ドーパントとを適切なバランスで導入しても、電子トラップとして働く深い準位により、導入したN型ドーパントとP型ドーパントとのバランスを制御することが困難であった。このため、成長初期において、高抵抗、すなわち半絶縁性の優れた炭化ケイ素単結晶部分が得られても、成長するに従ってN型ドーパントとP型ドーパントのバランスを適切に保てずに、全体として半絶縁性の優れた炭化ケイ素単結晶を得られないこともあった。 The silicon carbide single crystal forms many deep levels compared to the silicon single crystal. The deep level is located away from the end of the conduction band or valence band, that is, in the middle of the forbidden band. Point defects (vacancies) can be cited as the main cause of the formation of this deep level. In the point defect, only the bond end exists at the position where carbon or silicon should be. An N-type dopant and a P-type dopant are bonded to the bond end. For this reason, the deep level worked as a hole and electron trap. Therefore, even if the excess N-type dopant and P-type dopant are removed by the above-described method and the N-type dopant and the P-type dopant are introduced in an appropriate balance, they are introduced due to the deep level acting as an electron trap. It was difficult to control the balance between the N-type dopant and the P-type dopant. For this reason, even if a silicon carbide single crystal portion having high resistance, that is, excellent semi-insulating properties is obtained in the initial stage of growth, the balance between the N-type dopant and the P-type dopant cannot be maintained properly as it grows. In some cases, a silicon carbide single crystal having excellent semi-insulating properties could not be obtained.
 そこで、本発明は、N型ドーパントとP型ドーパントとのバランスをより制御しやすくすることによって、半絶縁性の優れた炭化ケイ素単結晶の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a silicon carbide single crystal having excellent semi-insulating properties by making it easier to control the balance between the N-type dopant and the P-type dopant.
 上述した課題を解決するため、本発明は、次のような特徴を有している。本発明の特徴は、炭化ケイ素原料を坩堝に配置する工程と、前記坩堝に配置された前記炭化ケイ素原料を加熱し、炭化ケイ素単結晶を成長させる工程とを含む炭化ケイ素単結晶の製造方法であって、前記炭化ケイ素単結晶を成長させる工程では、前記坩堝に水素を導入することを要旨とする。 In order to solve the above-described problems, the present invention has the following characteristics. A feature of the present invention is a method for producing a silicon carbide single crystal comprising a step of placing a silicon carbide raw material in a crucible and a step of growing the silicon carbide single crystal by heating the silicon carbide raw material placed in the crucible. The gist of the step of growing the silicon carbide single crystal is to introduce hydrogen into the crucible.
 本発明の特徴によれば、前記炭化ケイ素単結晶を成長させる工程では、前記坩堝に水素を導入する。導入された水素は、炭化ケイ素単結晶に存在する空孔の結合端と結合する。すなわち、水素は、深い準位を不活性化するため、結合端には、N型ドーパントが結合しない。これによって、導入したN型ドーパント及びP型ドーパントは、それぞれ全てN型ドーパント及びP型ドーパントとして機能することが可能であるため、N型ドーパントとP型ドーパントのバランスをより制御しやすくなる。これによって、半絶縁性の優れた炭化ケイ素単結晶が得られる。 According to a feature of the present invention, hydrogen is introduced into the crucible in the step of growing the silicon carbide single crystal. The introduced hydrogen is bonded to the bonding ends of vacancies existing in the silicon carbide single crystal. That is, since hydrogen inactivates deep levels, an N-type dopant is not bonded to the bond end. Thereby, since the introduced N-type dopant and P-type dopant can all function as an N-type dopant and a P-type dopant, respectively, the balance between the N-type dopant and the P-type dopant can be controlled more easily. As a result, a silicon carbide single crystal having excellent semi-insulating properties can be obtained.
 本発明の他の特徴は、前記水素には、水素原子が含まれることを要旨とする。 Another feature of the present invention is summarized in that the hydrogen includes a hydrogen atom.
 本発明の他の特徴は、前記坩堝の内部において、前記水素の密度が、5×1016/cm以上になるように、前記水素を導入することを要旨とする。 Another feature of the present invention is that the hydrogen is introduced into the crucible so that the density of the hydrogen is 5 × 10 16 / cm 3 or more.
 なお、水素の密度について、水素に水素原子が含まれる場合には、2個の前記水素原子を1個の水素分子に換算した場合の水素の密度である。 In addition, about the density of hydrogen, when a hydrogen atom is contained in hydrogen, it is a density of hydrogen at the time of converting the two said hydrogen atoms into one hydrogen molecule.
図1は、本実施形態に係る炭化ケイ素単結晶の製造方法に用いられる製造装置の断面図である。FIG. 1 is a cross-sectional view of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal according to the present embodiment.
 本発明に係る炭化ケイ素単結晶の製造方法の一例について、図面を参照しながら説明する。具体的には、(1)炭化ケイ素単結晶製造装置1の概略構成、(2)炭化ケイ素単結晶の製造方法、(3)実施例、(4)作用・効果、について説明する。 An example of a method for producing a silicon carbide single crystal according to the present invention will be described with reference to the drawings. Specifically, (1) a schematic configuration of the silicon carbide single crystal manufacturing apparatus 1, (2) a method for manufacturing a silicon carbide single crystal, (3) examples, and (4) actions and effects will be described.
 以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。したがって、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ得る。 In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. It should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings may be contained.
 (1)炭化ケイ素単結晶製造装置1の構成
 本実施形態に係る炭化ケイ素単結晶製造装置1について、図1を参照しながら説明する。図1は、本実施形態に係る炭化ケイ素単結晶の製造方法に用いられる製造装置の断面図である。図1に示されるように、炭化ケイ素単結晶製造装置1(以下、適宜、単結晶製造装置1と略す)は、坩堝10、石英管50、チャンバ60、加熱コイル70とを備える。
(1) Configuration of Silicon Carbide Single Crystal Manufacturing Apparatus 1 A silicon carbide single crystal manufacturing apparatus 1 according to this embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal according to the present embodiment. As shown in FIG. 1, a silicon carbide single crystal manufacturing apparatus 1 (hereinafter abbreviated as “single crystal manufacturing apparatus 1” as appropriate) includes a crucible 10, a quartz tube 50, a chamber 60, and a heating coil 70.
 坩堝10は、坩堝本体10aと坩堝蓋体10bとを有する。坩堝本体10aには、単結晶の原料となる炭化ケイ素原料20が配置される。坩堝蓋体10bには、炭化ケイ素原料20の再結晶を誘起する種結晶30が配置される。の一端部(すなわち、坩堝本体10aの底部)には、炭化ケイ素原料20が配置され、坩堝10の一端部に対向する坩堝10の他端部(すわなち、坩堝蓋体10b)には、種結晶30が配置される。従って、炭化ケイ素原料20と種結晶30とは対向している。坩堝10は、支持棒55により石英管50の内部に固定される。 The crucible 10 has a crucible body 10a and a crucible lid 10b. In the crucible body 10a, a silicon carbide raw material 20 serving as a single crystal raw material is disposed. A seed crystal 30 that induces recrystallization of the silicon carbide raw material 20 is disposed in the crucible lid 10b. One end of the crucible 10 (that is, the bottom of the crucible body 10a) is provided with the silicon carbide raw material 20, and the other end of the crucible 10 facing the one end of the crucible 10 (that is, the crucible lid 10b) A seed crystal 30 is arranged. Therefore, the silicon carbide raw material 20 and the seed crystal 30 face each other. The crucible 10 is fixed inside the quartz tube 50 by a support bar 55.
 石英管50は、坩堝10の外側に配置される。石英管50の両端(図1において、上端及び下端)には、チャンバ60が取り付けられている。一方のチャンバ60(下端)には、石英管50及びチャンバ60の内部に雰囲気ガスを導入する導入口65aが設けられている。他方のチャンバ60(上端)には、石英管50及びチャンバ60の内部の雰囲気ガスを排出する排出口65bが設けられている。坩堝10は、密閉されていないため、石英管50及びチャンバ60の内部に雰囲気ガスを導入すると、坩堝10の内部にも雰囲気ガスによって満たされる。雰囲気ガスの導入及び排出によって、単結晶製造装置1の内部の雰囲気を調整する。 The quartz tube 50 is disposed outside the crucible 10. Chambers 60 are attached to both ends (upper and lower ends in FIG. 1) of the quartz tube 50. One chamber 60 (lower end) is provided with an introduction port 65 a for introducing atmospheric gas into the quartz tube 50 and the chamber 60. The other chamber 60 (upper end) is provided with a quartz tube 50 and a discharge port 65b for discharging the atmospheric gas inside the chamber 60. Since the crucible 10 is not sealed, when the atmospheric gas is introduced into the quartz tube 50 and the chamber 60, the crucible 10 is also filled with the atmospheric gas. The atmosphere inside the single crystal manufacturing apparatus 1 is adjusted by introducing and discharging the atmospheric gas.
 加熱コイル70は、石英管50の外周に設けられる。加熱コイル70により、坩堝10が加熱される。なお、坩堝10は、断熱材(不図示)で覆われている。 The heating coil 70 is provided on the outer periphery of the quartz tube 50. The crucible 10 is heated by the heating coil 70. The crucible 10 is covered with a heat insulating material (not shown).
 図示していないが、導入口65aは、水素反応室から水素原子が導入できる管と接続されていても良い。水素反応室は、水素分子を水素原子に分解する機構が備えられている。 Although not shown, the introduction port 65a may be connected to a pipe through which hydrogen atoms can be introduced from the hydrogen reaction chamber. The hydrogen reaction chamber has a mechanism for decomposing hydrogen molecules into hydrogen atoms.
 (2)炭化ケイ素単結晶の製造方法
 本実施形態に係る炭化ケイ素単結晶(以下、適宜、単結晶と略す)の製造方法について、説明する。本実施形態に係る炭化ケイ素単結晶の製造方法は、工程S1及び工程S2を有する。
(2) Method for Producing Silicon Carbide Single Crystal A method for producing a silicon carbide single crystal (hereinafter, abbreviated as “single crystal” as appropriate) according to this embodiment will be described. The method for manufacturing a silicon carbide single crystal according to the present embodiment includes step S1 and step S2.
 (2.1)準備工程S1
 工程S1は、炭化ケイ素原料20及び種結晶30を準備する工程である。炭化ケイ素原料20は、どのような製造方法で製造されたものを準備しても構わない。例えば、化学気相成長法(CVD法)で製造された炭化ケイ素を炭化ケイ素原料20としてもよいし、ケイ素含有原料と炭素含有原料とから炭化ケイ素前駆体を生成し、生成された炭化ケイ素前駆体を焼成することで得られる炭化ケイ素を炭化ケイ素原料20としてもよい。この炭化ケイ素原料20を坩堝10に配置する。
(2.1) Preparation step S1
Step S <b> 1 is a step of preparing the silicon carbide raw material 20 and the seed crystal 30. The silicon carbide raw material 20 may be prepared by any manufacturing method. For example, silicon carbide produced by chemical vapor deposition (CVD) may be used as the silicon carbide raw material 20, or a silicon carbide precursor is produced from a silicon-containing raw material and a carbon-containing raw material, and the produced silicon carbide precursor is produced. Silicon carbide obtained by firing the body may be used as the silicon carbide raw material 20. The silicon carbide raw material 20 is placed in the crucible 10.
 種結晶30は、坩堝蓋体10bに配置される。種結晶30は、炭化ケイ素単結晶の成長起点となるため、炭化ケイ素単結晶からなるものを用いることが好ましい。種結晶30が配置された坩堝蓋体10bを坩堝本体10aに取り付ける。 The seed crystal 30 is disposed on the crucible lid 10b. Since seed crystal 30 serves as a growth starting point for a silicon carbide single crystal, it is preferable to use a seed crystal 30 made of a silicon carbide single crystal. The crucible lid 10b on which the seed crystal 30 is disposed is attached to the crucible body 10a.
 (2.2)成長工程
 工程S2は、炭化ケイ素単結晶を成長させる工程である。坩堝蓋体10bを坩堝本体10aに取り付けた後、導入口65a及び排出口65bを除いて単結晶製造装置1から気体が流出・流入しないように密封する。
(2.2) Growth Step Step S2 is a step for growing a silicon carbide single crystal. After the crucible lid 10b is attached to the crucible body 10a, the crucible lid 10b is sealed so that gas does not flow out / inflow from the single crystal manufacturing apparatus 1 except for the introduction port 65a and the discharge port 65b.
 次に、導入口65aから石英管50の内部へ水素ガス(水素分子)を導入する。また、加熱コイル70により坩堝10を加熱することによって、炭化ケイ素原料20を加熱する。昇華温度以上に加熱された炭化ケイ素原料20は、種結晶30上に再結晶する。このため、炭化ケイ素原料20の位置の温度に比べて、種結晶30の位置の温度がやや低温となるように加熱することが好ましい。一般的に加熱温度は、2000℃から2500℃である。 Next, hydrogen gas (hydrogen molecules) is introduced into the quartz tube 50 from the introduction port 65a. Moreover, the silicon carbide raw material 20 is heated by heating the crucible 10 with the heating coil 70. The silicon carbide raw material 20 heated above the sublimation temperature is recrystallized on the seed crystal 30. For this reason, it is preferable to heat so that the temperature at the position of the seed crystal 30 is slightly lower than the temperature at the position of the silicon carbide raw material 20. Generally, the heating temperature is 2000 ° C to 2500 ° C.
 N型ドーパント及び/又はP型ドーパントは、導入口65aから導入される。N型ドーパント及び/又はP型ドーパントは、坩堝10内部の雰囲気に応じて、適宜調整される。 The N-type dopant and / or the P-type dopant are introduced from the introduction port 65a. The N-type dopant and / or the P-type dopant are appropriately adjusted according to the atmosphere inside the crucible 10.
 水素は、単結晶の成長により形成された点欠陥の結合端と結合する。すなわち、点欠陥の結合端は、水素によって終端化される。これによって、導入されたP型ドーパントが点欠陥の結合端と結合することを抑制できる。従って、N型ドーパントとP型ドーパントとのバランスをより制御しやすくなる。 Hydrogen bonds with the bond ends of point defects formed by the growth of single crystals. That is, the bond ends of point defects are terminated with hydrogen. Thereby, it can suppress that the introduce | transduced P-type dopant couple | bonds with the bond edge of a point defect. Therefore, it becomes easier to control the balance between the N-type dopant and the P-type dopant.
 単結晶の成長によって点欠陥は形成されるため、水素ガスは、単結晶が成長している間、導入されることが好ましい。従って、昇温開始から降温終了まで水素ガスを導入することが好ましい。 Since point defects are formed by the growth of the single crystal, the hydrogen gas is preferably introduced while the single crystal is growing. Therefore, it is preferable to introduce hydrogen gas from the start of temperature increase to the end of temperature decrease.
 水素分子よりも水素原子の方が、結合端と結合しやすいため、水素原子を導入した方が効率よく終端化することができる。 Since hydrogen atoms are easier to bond to the bond ends than hydrogen molecules, hydrogen atoms can be terminated more efficiently.
 水素は、結合端と結合により終端するだけでなく、結合が切れて脱終端化も生じる。従って、空孔において、終端と脱終端とが繰り返されるが、水素密度が1×1013/cm~5×1016/cmの範囲で、水素が単結晶内に残っていれば、結合端とP型ドーパントとの結合を充分に抑制できる。このため、坩堝10の内部において、水素の密度が、5×1016/cm以上になるように、水素を導入することが好ましい。なお、水素の密度について、水素に水素原子が含まれる場合には、2個の前記水素原子を1個の水素分子に換算した場合の水素の密度である。 Hydrogen not only terminates at the bond end and bond, but also breaks and determination occurs. Therefore, termination and determination are repeated in the vacancies, but if the hydrogen density is in the range of 1 × 10 13 / cm 3 to 5 × 10 16 / cm 3 and hydrogen remains in the single crystal, Bonding between the end and the P-type dopant can be sufficiently suppressed. For this reason, it is preferable to introduce hydrogen in the crucible 10 so that the density of hydrogen becomes 5 × 10 16 / cm 3 or more. In addition, about the density of hydrogen, when a hydrogen atom is contained in hydrogen, it is a density of hydrogen at the time of converting the two said hydrogen atoms into one hydrogen molecule.
 (3)実施例
 本発明の実施例を説明する。なお、本発明は、以下の実施例に限定されない。
(3) Examples Examples of the present invention will be described. In addition, this invention is not limited to a following example.
 炭化ケイ素原料と種結晶とが配置された単結晶製造装置に、アルゴンガスと水素分子及び水素原子を含む水素ガスとを導入した。これによって、単結晶製造装置の内部を1~10torr程度の圧力になるように調整した。なお、水素ガスは、降温するまで導入し続けた。 Argon gas and hydrogen gas containing hydrogen molecules and hydrogen atoms were introduced into a single crystal production apparatus in which a silicon carbide raw material and a seed crystal were arranged. Thus, the inside of the single crystal manufacturing apparatus was adjusted to a pressure of about 1 to 10 torr. Hydrogen gas was continuously introduced until the temperature dropped.
 導入口は、水素反応室とつながっている。水素反応室には、タングステンフィラメントが設けられている。タングステンフィラメントから放出される熱電子によって、水素反応室を通った水素分子は、水素原子へと分解される。 The inlet is connected to the hydrogen reaction chamber. A tungsten filament is provided in the hydrogen reaction chamber. Hydrogen molecules that have passed through the hydrogen reaction chamber are decomposed into hydrogen atoms by thermionic electrons emitted from the tungsten filament.
 加熱コイルにより、加熱するとともに、導入口から窒素ガス(N)を略20ppm導入した。単結晶の成長中は、窒素ガスは、単結晶内にNが1×1017/cmとなるように窒素ガスを調整する。窒素(N)は、炭化ケイ素原料及び坩堝に含まれるため、結晶成長初期においては、Nの濃度は高くなるものの、坩堝内部の温度が高くなるにつれて、Nに気化して、排出口から排出される。このため、Nの濃度は、単結晶の成長が進むにつれて減少していく。このため、成長初期よりも成長中期以降に、導入する窒素ガスの量が多くなるように調整した。 While being heated by the heating coil, approximately 20 ppm of nitrogen gas (N 2 ) was introduced from the inlet. During the growth of the single crystal, the nitrogen gas is adjusted so that N 2 is 1 × 10 17 / cm in the single crystal. Since nitrogen (N) is contained in the silicon carbide raw material and the crucible, the concentration of N increases at the beginning of crystal growth, but as the temperature inside the crucible increases, it vaporizes into N 2 and is discharged from the discharge port. Is done. For this reason, the concentration of N decreases as the growth of the single crystal proceeds. For this reason, it adjusted so that the quantity of nitrogen gas introduced might increase after the middle stage of growth rather than the initial stage of growth.
 B(すなわち、P型ドーパント)は、炭化ケイ素原料及び坩堝に含まれているため、本実施例において、P型ドーパントを導入口から意図的に導入しなかった。炭化ケイ素原料及び坩堝に含まれるBの濃度は、一定であるため、単結晶中において、Bの濃度は一定となる。具体的には、5×1016/cm程度であった。 Since B (that is, P-type dopant) is contained in the silicon carbide raw material and the crucible, the P-type dopant was not intentionally introduced from the introduction port in this example. Since the concentration of B contained in the silicon carbide raw material and the crucible is constant, the concentration of B is constant in the single crystal. Specifically, it was about 5 × 10 16 / cm 3 .
 水素を導入するため、Bは、点欠陥の結合端との結合が抑制される。従って、単結晶の抵抗に寄与するBの濃度は、水素が導入されない場合に比べて、大きくなる。結晶の抵抗に寄与するBの濃度が小さい場合、高抵抗の単結晶を得るためには、導入する窒素ガスの濃度も小さくする必要があるが、微量な量の調整が必要となるため、制御が難しくなる。一方、本実施例では、Bの濃度は大きくなるため、導入する窒素ガスの量も多くすることができるため、窒素ガスの制御・調整が容易となる。 Since hydrogen is introduced, the bond between B and the bond end of the point defect is suppressed. Therefore, the concentration of B that contributes to the resistance of the single crystal is higher than that in the case where hydrogen is not introduced. When the concentration of B that contributes to the resistance of the crystal is small, in order to obtain a high-resistance single crystal, it is necessary to reduce the concentration of the introduced nitrogen gas. Becomes difficult. On the other hand, in this embodiment, since the concentration of B is increased, the amount of nitrogen gas to be introduced can be increased, so that control and adjustment of nitrogen gas is facilitated.
 単結晶の成長終了後、単結晶をスライスした。スライスした単結晶基板の抵抗値を測定した。成長初期部分の単結晶基板も、成長中期及び成長後期の単結晶基板のいずれも抵抗値は、1×10Ω・cmであった。従って、本実施例によれば、半絶縁性の優れた炭化ケイ素単結晶が得られることが分かった。 After the growth of the single crystal, the single crystal was sliced. The resistance value of the sliced single crystal substrate was measured. The resistance value of the single crystal substrate in the initial growth part and the single crystal substrate in the middle growth stage and the late growth stage were both 1 × 10 5 Ω · cm. Therefore, according to the present Example, it turned out that the silicon carbide single crystal excellent in semi-insulation property is obtained.
 (4)作用効果
 本実施形態における炭化ケイ素単結晶の製造方法によれば、炭化ケイ素原料20を加熱する工程では、坩堝10に水素ガス(水素分子)を導入する。導入された水素分子は、炭化ケイ素単結晶に存在する空孔の結合端と結合する。すなわち、水素分子は、深い準位を不活性化するため、結合端には、N型ドーパント及びP型ドーパントが結合しない。これによって、導入したN型ドーパント及びP型ドーパントは、それぞれ全てN型ドーパント及びP型ドーパントとして機能することが可能であるため、N型ドーパントとP型ドーパントのバランスをより制御することができる。
(4) Effects According to the method for producing a silicon carbide single crystal in the present embodiment, hydrogen gas (hydrogen molecules) is introduced into the crucible 10 in the step of heating the silicon carbide raw material 20. The introduced hydrogen molecules are bonded to the bonding ends of the vacancies existing in the silicon carbide single crystal. That is, since the hydrogen molecule inactivates the deep level, the N-type dopant and the P-type dopant are not bonded to the bond end. Thereby, since the introduced N-type dopant and P-type dopant can all function as an N-type dopant and a P-type dopant, respectively, the balance between the N-type dopant and the P-type dopant can be further controlled.
 本実施形態における炭化ケイ素単結晶の製造方法によれば、水素には、水素原子が含まれても良い。水素原子よりも水素原子の方が、結合端と結合しやすいため、水素原子を導入した方が効率よく終端化することができる。このため、坩堝10に水素原子のみを導入することがより好ましい。 According to the method for producing a silicon carbide single crystal in the present embodiment, hydrogen may contain hydrogen atoms. Since a hydrogen atom is more likely to bond to a bond end than a hydrogen atom, the introduction of a hydrogen atom can terminate efficiently. For this reason, it is more preferable to introduce only hydrogen atoms into the crucible 10.
 本実施形態における炭化ケイ素単結晶の製造方法によれば、坩堝10の内部において、水素の密度が、5×1016/cm以上になるように、水素を導入しても良い。これによって、結合端とN型ドーパント及びP型ドーパントとの結合を充分に抑制できるため、N型ドーパントとP型ドーパントのバランスをより制御することができる。 According to the method for producing a silicon carbide single crystal in the present embodiment, hydrogen may be introduced in the crucible 10 so that the hydrogen density is 5 × 10 16 / cm 3 or more. Thereby, since the coupling | bonding with a coupling | bonding end, an N-type dopant, and a P-type dopant can fully be suppressed, the balance of an N-type dopant and a P-type dopant can be controlled more.
 本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。本発明はここでは記載していない様々な実施形態を含む。従って、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 Although the contents of the present invention have been disclosed through the embodiments of the present invention, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. The present invention includes various embodiments not described herein. Accordingly, the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 なお、日本国特許出願第2010-195610号(2010年9月1日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire contents of Japanese Patent Application No. 2010-195610 (filed on September 1, 2010) are incorporated herein by reference.
 以上のように、本発明に係る炭化ケイ素単結晶の製造方法は、半絶縁性の優れた炭化ケイ素単結晶を製造することができるため、炭化ケイ素単結晶の製造分野において有用である。 As described above, the method for producing a silicon carbide single crystal according to the present invention can produce a silicon carbide single crystal having excellent semi-insulating properties, and thus is useful in the field of producing a silicon carbide single crystal.

Claims (3)

  1.  炭化ケイ素原料を坩堝に配置する工程と、前記坩堝に配置された前記炭化ケイ素原料を加熱し、炭化ケイ素単結晶を成長させる工程とを含む炭化ケイ素単結晶の製造方法であって、
     前記炭化ケイ素単結晶を成長させる工程では、前記坩堝に水素を導入する炭化ケイ素単結晶の製造方法。
    A method for producing a silicon carbide single crystal comprising: placing a silicon carbide raw material in a crucible; and heating the silicon carbide raw material placed in the crucible to grow a silicon carbide single crystal,
    In the step of growing the silicon carbide single crystal, a method for producing a silicon carbide single crystal, wherein hydrogen is introduced into the crucible.
  2.  前記水素には、水素原子が含まれる請求項1に記載の炭化ケイ素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 1, wherein the hydrogen contains a hydrogen atom.
  3.  前記坩堝の内部において、前記水素の密度が、5×1016/cm以上になるように、前記水素を導入する請求項1又は2に記載の炭化ケイ素単結晶の製造方法。 In the interior of the crucible, the density of the hydrogen, so as to 5 × 10 16 / cm 3 or more, the method of producing a silicon carbide single crystal according to claim 1 or 2 for introducing the hydrogen.
PCT/JP2011/069801 2010-09-01 2011-08-31 Method for producing silicon carbide single crystal WO2012029864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195610A JP2012051760A (en) 2010-09-01 2010-09-01 Method for producing silicon carbide single crystal
JP2010-195610 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029864A1 true WO2012029864A1 (en) 2012-03-08

Family

ID=45772941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069801 WO2012029864A1 (en) 2010-09-01 2011-08-31 Method for producing silicon carbide single crystal

Country Status (2)

Country Link
JP (1) JP2012051760A (en)
WO (1) WO2012029864A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578994B2 (en) 2016-03-04 2019-09-25 株式会社デンソー Semiconductor substrate composed of silicon carbide and method of manufacturing the same
JP6553587B2 (en) 2016-12-20 2019-07-31 Nissha株式会社 Gas sensor module and method of manufacturing the same
CN108130592B (en) * 2017-11-14 2019-11-12 山东天岳先进材料科技有限公司 A kind of preparation method of high-purity semi-insulating silicon carbide monocrystalline

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520251A (en) * 1998-07-13 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for growing SiC single crystal
JP2003137696A (en) * 2001-11-05 2003-05-14 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP2007500667A (en) * 2003-07-28 2007-01-18 クリー インコーポレイテッド Reduction of nitrogen content in silicon carbide crystals by sublimation growth under hydrogen-containing atmosphere
US20080072817A1 (en) * 2006-09-26 2008-03-27 Ii-Vi Incorporated Silicon carbide single crystals with low boron content
JP2008260665A (en) * 2007-04-13 2008-10-30 Bridgestone Corp Method and apparatus for producing silicon carbide single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520251A (en) * 1998-07-13 2002-07-09 シーメンス アクチエンゲゼルシヤフト Method for growing SiC single crystal
JP2003137696A (en) * 2001-11-05 2003-05-14 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP2007500667A (en) * 2003-07-28 2007-01-18 クリー インコーポレイテッド Reduction of nitrogen content in silicon carbide crystals by sublimation growth under hydrogen-containing atmosphere
US20080072817A1 (en) * 2006-09-26 2008-03-27 Ii-Vi Incorporated Silicon carbide single crystals with low boron content
JP2008260665A (en) * 2007-04-13 2008-10-30 Bridgestone Corp Method and apparatus for producing silicon carbide single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.FURUSHO ET AL.: "Crystal growth of silicon carbide in hydrogen atmosphere by sublimation close space technique", JOURNAL OF CRYSTAL GROWTH, vol. 237-239, no. 2, April 2002 (2002-04-01), pages 1235 - 1238 *

Also Published As

Publication number Publication date
JP2012051760A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US9053834B2 (en) Silicon carbide single crystal and manufacturing method of the same
US20100028240A1 (en) Process for producing silicon carbide single crystal
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
US11781245B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
JP5186733B2 (en) AlN crystal growth method
JP7029467B2 (en) How to grow a silicon carbide substrate and a SiC single crystal boule
CN106968017A (en) Crucible for growing high-purity semi-insulating silicon carbide crystalloid
US20150214049A1 (en) Silicon carbide semiconductor device manufacturing method
CN106894091A (en) The crucible of carborundum crystals is grown for physical vapor transport
JP2007320790A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JPH06316499A (en) Production of sic single crystal
CN111455457B (en) Silicon carbide crystal growth device and preparation method thereof
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
WO2012029864A1 (en) Method for producing silicon carbide single crystal
JP2009256155A (en) Silicon carbide single crystal ingot and production method of the same
KR20160054514A (en) Bulk diffusion crystal growth process
JPH04193799A (en) Production of silicon carbide single crystal
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5744052B2 (en) Manufacturing apparatus and manufacturing method of aluminum nitride single crystal
JPH06219898A (en) Production of n-type silicon carbide single crystal
KR101480491B1 (en) Method for manufacturing sintered bulk of raw materials, and growing nethod for single crystal using sintered bulk
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
JP2006240968A (en) Single crystal growing method, and group iii nitride single crystal and sic single crystal obtained by using the method
JP2006021954A (en) Method and apparatus for manufacturing silicon carbide single crystal film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821879

Country of ref document: EP

Kind code of ref document: A1