WO2012029706A1 - Inverter integration type drive module - Google Patents

Inverter integration type drive module Download PDF

Info

Publication number
WO2012029706A1
WO2012029706A1 PCT/JP2011/069428 JP2011069428W WO2012029706A1 WO 2012029706 A1 WO2012029706 A1 WO 2012029706A1 JP 2011069428 W JP2011069428 W JP 2011069428W WO 2012029706 A1 WO2012029706 A1 WO 2012029706A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
motor
conductor wire
inverter
phase
Prior art date
Application number
PCT/JP2011/069428
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 深山
盛幸 枦山
井上 正哉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012531860A priority Critical patent/JP5214064B2/en
Priority to DE112011102869T priority patent/DE112011102869T5/en
Publication of WO2012029706A1 publication Critical patent/WO2012029706A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This invention relates to a drive module incorporating an inverter.
  • a single-phase inverter circuit formed by connecting an upper arm side switching element and a lower arm side switching element in series is connected in parallel to each other to form a multiphase inverter circuit. It is configured and arranged on the end face of the AC motor.
  • the switching element is arranged in the circumferential direction with a predetermined interval with respect to the rotating shaft of the AC motor, and has a positive conductor that connects the positive electrode side of the upper arm side switching element of the multiphase inverter circuit to the power supply positive terminal.
  • the negative conductor connecting the negative side of the switching element on the lower arm side of the phase inverter circuit to the power source negative terminal has a ring shape or an arc shape and is close to the inner peripheral side of the switching element arranged in the circumferential direction.
  • the output conductor for each phase connected to the connection point of the upper arm side switching element and the lower arm side switching element is arranged on the inner peripheral side of the switching element arranged in the circumferential direction, and the signal of the switching element
  • the terminal is disposed on the outer peripheral side facing the output conductor with the switching element interposed therebetween, and is connected to the control circuit (see, for example, Patent Document 1).
  • the lead wire of the coil of the AC motor is drawn out from the stator core and bent inward in the radial direction. Next, it had to be stretched to the vicinity of, and then bent in the axial direction near the center and pulled out to the module side to be connected to the output conductor.
  • a conductor wire having a large cross-sectional area is used for the coil in order to suppress heat generation in the coil through which a large current flows.
  • connection work such as connection of the coil lead wire and the inverter circuit and connection of the neutral point of the coil becomes complicated.
  • connection work such as connection of the coil lead wire and the inverter circuit and connection of the neutral point of the coil becomes complicated.
  • connection work such as connection of the coil lead wire and the inverter circuit and connection of the neutral point of the coil becomes complicated.
  • the number of lead wires and the number of neutral points are remarkably increased, and the above-described problems are remarkable. It becomes.
  • power is supplied from a single inverter unit to a plurality of in-phase coils, it is necessary to connect the in-phase coils between the teeth using conductor wires that are difficult to bend in the motor.
  • the present invention has been made in order to solve the above-mentioned problem, and in an inverter-integrated drive module using a motor in which each of the phase coils is formed by winding a conductor wire around each of the teeth portions in a concentrated winding,
  • the unit is arranged corresponding to each of the phase coils, and one end of the conductor wire constituting the phase coil is extended in the axial direction so that it can be joined to the AC output terminal of the inverter unit, and other than the conductor wire constituting the phase coil
  • the end can be extended in the axial direction and joined to the neutral point connection conductor, making it easy to connect the phase coil to the inverter circuit, and also to connect the neutral point of the phase coil to large capacity applications such as electric vehicles.
  • An object is to obtain a suitable inverter-integrated drive module.
  • An inverter-integrated drive module includes a stator having a stator coil formed by winding a conductor wire around each of the teeth portions and having the same number of phase coils as the teeth portions, and one end of the conductor wire.
  • An AC output terminal connected to the negative electrode side and the positive electrode side of the lower arm side switching element, and having the same number of inverter units as the phase coils It includes a down converter module, a.
  • the said neutral point connection conductor is arrange
  • each of the said inverter unit is In correspondence with each of the phase coils, the AC output terminal is located on a plane orthogonal to the axial direction so that the other end of the conductor wire constituting the phase coil is extended in the axial direction.
  • the other end of the conductor wire constituting the phase coil is shifted from the position extended in the axial direction and is arranged at the shaft end of the motor, and each of the phase coils is wound around the teeth portion.
  • the other end of the conductor wire is extended parallel to the axial direction of the motor, and one end of the conductor wire that is joined to the AC output terminal of the corresponding inverter unit and wound around the tooth portion is connected to the motor.
  • Axial direction By extend parallel to and are joined to the neutral point connection conductor.
  • the present invention since power is supplied from the inverter unit corresponding to each of the phase coils, it is not necessary to connect the phase coils of the same phase across the teeth portions using a conductor wire that is difficult to bend.
  • An annular neutral point connecting conductor is disposed at the shaft end of the motor so as to be located at a position where one end of the conductor wire constituting the phase coil is extended in the axial direction. Therefore, one end of the conductor wire wound around the teeth can be extended parallel to the motor axial direction and joined to the neutral point connection conductor, so there is no need to bend the end of the conductor wire and the neutrality of the phase coil Point connection is simplified.
  • the inverter unit is arranged at the shaft end of the motor so that the AC output terminal is positioned at a position where the other end of the conductor wire constituting the phase coil is extended in the axial direction corresponding to each of the phase coils. Has been. Therefore, the other end of the conductor wire wound around the tooth portion can be extended parallel to the motor axial direction and joined to the AC output terminal of the corresponding inverter unit, so there is no need to bend the conductor wire, Connection to the inverter circuit is simplified.
  • FIG. 1 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 1 of the present invention. It is a perspective view explaining the structure of the phase coil applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. It is a principal part perspective view explaining the structure of the neutral point connection conductor applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. It is a schematic diagram explaining the structure of the inverter unit applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. It is a perspective view explaining the connection structure of the alternating current output terminal of the inverter unit and phase coil in the inverter integrated drive module which concerns on Embodiment 1 of this invention.
  • FIG. 3 It is a perspective sectional view showing an inverter integrated drive module according to Embodiment 3 of the present invention. It is an end elevation explaining the arrangement
  • FIG. 1 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 1 of the present invention
  • FIG. 2 illustrates a configuration of a phase coil applied to the inverter-integrated drive module according to Embodiment 1 of the present invention
  • FIG. 3 is a perspective view of a main part for explaining the structure of a neutral point connecting conductor applied to the inverter-integrated drive module according to the first embodiment of the present invention
  • FIG. 4 is a first embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining the configuration of an inverter unit applied to the inverter-integrated drive module according to FIG. 5, and FIG.
  • FIG. 5 shows the relationship between the AC output terminal and the phase coil of the inverter unit in the inverter-integrated drive module according to Embodiment 1
  • FIG. 6 is a cross-sectional view illustrating a motor applied to the inverter-integrated drive module according to Embodiment 1 of the present invention
  • 7 is a circuit diagram of an inverter-integrated driving module according to Embodiment 1 of the present invention.
  • an inverter-integrated drive module 1 is supplied to a positive electrode power supply plate 2 and a negative electrode power supply plate 3, which are connected to an external DC power source and constitute a DC supply line, and to a positive electrode power supply plate 2 and a negative electrode power supply plate 3.
  • the inverter module 4 that converts the DC power into the AC power, and the motor 13 that is supplied with the AC power converted by the inverter module 4 and rotates.
  • the motor 13 is made in a cylindrical shape with a shaft insertion hole 15a drilled at the axial center position, and is attached to the rotor yoke portion 15 fixed to the shaft 16 inserted through the shaft insertion hole 15a and the outer peripheral edge portion of the rotor yoke portion 15.
  • a rotor 14 having a permanent magnet 18 inserted and fixed in each of magnet insertion holes 17 drilled at an equiangular pitch in the circumferential direction with the hole direction as an axial direction, a cylindrical stator yoke portion 21, and a stator yoke portion, respectively.
  • the rotor 14 is rotatably disposed in the housing 27 by a shaft 16 fixed to the rotor yoke portion 15 made of a magnetic material such as iron supported by a bearing (not shown) held by the housing 27. Is done.
  • the permanent magnet 18 is, for example, a sintered rare earth magnet. Then, as shown in FIG. 6, 20 permanent magnets 18 are inserted into the magnet insertion holes 17 and arranged at equiangular pitches in the circumferential direction so that N poles and S poles are alternately arranged. .
  • the stator core 20 is produced by laminating magnetic steel plates, for example, and 24 teeth portions 22 project from the inner peripheral surface of the stator yoke portion 21, and the slots 23 are surrounded by the tooth portions 22 adjacent to the stator yoke portion 21. It is configured.
  • the stator coil 24 is composed of 24 phase coils 25 wound around each tooth portion 22.
  • Each phase coil 25 is a concentrated winding coil configured by winding one conductor wire 26 around one tooth portion 22 a predetermined number of times. As shown in FIG. 6, the 24 phase coils 25 are wound around the stator core 20 while being repeatedly arranged in the circumferential direction in the order of the U1 phase, the U2 phase, the V1 phase, the V2 phase, the W1 phase, and the W2 phase.
  • the conductor wire 26 is made into a belt-like body having a rectangular cross section using a good electrical conductive material such as copper.
  • the conductor wire 26 is wound on the outermost position in the radial direction of the tooth portion 22 on the conductor wire 26 wound on the first step, and the conductor wire 26 wound on the second step.
  • a predetermined number of stages are wound in one row so that the third stage is wound on the top.
  • the conductor wire 26 is displaced inward in the radial direction and adjacent to the winding portion of the first row of conductor wires 26, the second row is wound on the conductor wires 26 wound in the first row.
  • phase coil 25 having a predetermined number of turns is produced by winding the conductor wire 26 in a predetermined number of rows and a predetermined number of rows while displacing the conductor wire 26 inward in the radial direction.
  • the conductor wire 26 is wound edgewise so that the normal of the short side of the rectangular cross section faces the tooth portion 22.
  • the winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 extend from the radially outer side and the inner side of the same slot 23 in the opposite direction of the axial direction of the stator core 20.
  • the 24 phase coils 25 are arranged in the circumferential direction so that the winding start portions 26a of the conductor wires 26 extending from the radially outer side of the slots 23 alternately extend on one side and the other side of the stator core 20. It is installed.
  • the stator 19 manufactured in this way is fixed to the housing 27, and is arranged on the outer peripheral side of the rotor 14 and coaxially with the shaft 16.
  • the pair of substrates 6 are fixed to the housing 27 on both sides in the axial direction of the motor 13 so as to be orthogonal to the axis of the shaft 16.
  • the neutral point connection conductor 28 is made of a circular ring-shaped flat plate having a rectangular cross section using a good electrical conductive material such as copper. As shown in FIG. 3, twelve connecting portions 28a are formed at equal angular pitches in the circumferential direction by cutting and raising a part of the neutral point connecting conductor 28 at right angles in the radial direction.
  • the neutral point connection conductor 28 is coaxially connected to the shaft 16 and faces the connection portion 28a, and is electrically insulated and fixed to each of the opposing surfaces of the pair of substrates 6.
  • the neutral point connection conductor 28 is constituted by the long side on the inner diameter side of the rectangular cross section of the winding start portion 26a of the conductor wire 26 in which the surface of the connection portion 28a extends parallel to the axial direction from the outer side in the radial direction of the slot 23 It is comprised so that it may oppose and adjoin to the plane to be done.
  • a winding start portion 26a of a conductor wire 26 extending parallel to the axial direction from the radially outer side of the slot 23 to the axial direction one side of the stator core 20 is fixed to the substrate 6 disposed on the axial direction one side of the stator core 20.
  • the contact point 28a of the neutral point connection conductor 28 (first neutral point connection conductor) thus formed is abutted and joined by solder or the like. Accordingly, as shown in FIG. 7, a U-phase coil configured by connecting four U1-phase coils 25 in parallel and a V-circuit configured by connecting four V1-phase coils 25 in parallel.
  • a W-phase coil configured by connecting a phase coil and four W1-phase coils 25 in parallel is connected to form a first three-phase AC winding 50 configured as a star-shaped coil.
  • a winding start portion 26 a of a conductor wire 26 extending in parallel to the axial direction from the radially outer side of the slot 23 to the other axial direction of the stator core 20 is formed on the substrate 6 disposed on the other axial side of the stator core 20. It is abutted against the connecting portion 28a of the fixed neutral point connection conductor 28 (second neutral point connection conductor) and joined by soldering or the like. Accordingly, as shown in FIG. 7, a U-phase coil configured by connecting four U2-phase coils 25 in parallel and a V-circuit configured by connecting four V2-phase coils 25 in parallel. A W-phase coil configured by connecting a phase coil and four W2-phase coils 25 in parallel is connected to form a second three-phase AC winding 51 configured as a star-connected coil.
  • the stator coil 24 is composed of the first and second three-phase AC windings 50 and 51 having a phase difference of 30 degrees in electrical angle, and the motor 13 has 20 poles and 24 slots. It is configured as an inner rotor type double three-phase motor.
  • the inverter unit 5 includes an upper arm side switching element 7, a lower arm side switching element 8, a positive input terminal 9, a negative input terminal 10, and an AC output terminal 11, as shown in FIG.
  • the upper arm side switching element 7 and the lower arm side switching element 8 are formed into a substantially rectangular parallelepiped by resin sealing with an insulating resin.
  • One end of the positive electrode input terminal 9 is connected to the positive electrode side of the upper arm side switching element 7 and extends from the resin sealing portion 12, and the one end of the negative electrode input terminal 10 is connected to the negative electrode side of the lower arm side switching element 8.
  • the AC output terminal 11 is connected to the negative side of the upper arm side switching element 7 and the positive side of the lower arm side switching element 8 from the resin sealing part 12. It has been extended.
  • the positive electrode input terminal 9 and the negative electrode input terminal 10 are spaced apart in the thickness direction of the resin sealing part 12, are extended from the same side surface of the resin sealing part 12, and are AC output terminals. 11 is extended from the side surface opposite to the side surface of the resin sealing part 12 from which the positive electrode input terminal 9 and the negative electrode input terminal 10 are extended.
  • semiconductor switching elements such as MOSFET and IGBT are used, for example.
  • the inverter module 4 is configured by mounting twelve inverter units 5 on the surface of each substrate 6 opposite to the motor 13 in a row on a concentric circle at an equiangular pitch. At this time, each inverter unit 5 has each board
  • the AC output terminals 11 of the inverter unit 5 mounted on the substrate 6 disposed on the other side in the axial direction of the stator core 20 are respectively bent at L-shaped ends as shown in FIG. Further, the winding end portion of the conductor wire 26 extending from the radially inner side of the slot 23 to the other axial direction side of the stator core 20 in parallel with the axial direction and drawn out in the axial direction from the through hole 29 drilled in the substrate 6. It is abutted against a plane constituted by the long side of the rectangular cross section 26b and joined by solder or the like. Thereby, the first three-phase AC winding is electrically connected to the inverter module 4.
  • each of the AC output terminals 11 of the inverter unit 5 mounted on the substrate 6 disposed on one side of the stator core 20 in the axial direction has an L-shaped bent end portion in the radial direction of the slot 23.
  • the long side of the rectangular cross section of the winding end portion 26b of the conductor wire 26 that extends parallel to the axial direction from the inside to one side in the axial direction of the stator core 20 and is drawn out from the through hole 29 formed in the substrate 6 in the axial direction. Are joined to each other by solder or the like. As a result, the second three-phase AC winding is electrically connected to the inverter module 4.
  • Each of the positive electrode power supply plate 2 and the negative electrode power supply plate 3 is made into a circular ring-shaped flat plate using a good electric conductive material such as copper, and is electrically connected to the surface of each substrate 6 opposite to the motor 13 by a holding member 30.
  • a parallel plate electrode is configured by being supported in an insulated state and arranged in parallel and coaxially with a predetermined gap in the axial direction.
  • the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are disposed on the inner diameter side of the inverter units 5 arranged in the circumferential direction, and are positive electrodes that extend radially inward from the resin sealing portions 12 of the inverter units 5.
  • the input terminal 9 is joined to the positive electrode power supply plate 2 by solder or the like, and the negative electrode input terminal 10 extending radially inward from the resin sealing portion 12 of each inverter unit 5 is joined to the negative electrode power supply plate 3 by solder or the like. ing.
  • a heat sink is disposed on the surface of the resin sealing portion 12 of the inverter unit 5 on the side opposite to the motor 13 to generate heat in the upper arm side switching element 7 and the lower arm side switching element 8. Heat can be effectively dissipated. Note that a heat sink may be used instead of the substrate 6.
  • the inverter-integrated drive module 1 configured as described above has a positive electrode power supply plate 2 and a negative electrode power supply plate 3 connected to an external power source 31 via a wiring 32, and a smoothing capacitor 33 is an inverter module. 4 is connected in parallel to the input side of 4 to absorb the ripple current and stabilize the input voltage. Then, the upper arm side switching element 7 and the lower arm side switching element 8 of the 24 inverter units 5 are ON / OFF controlled by the control device 34, and the DC power supplied from the external power supply 31 is converted into AC power. AC power is supplied to the stator coil 24 via the AC output terminal 11, and a rotating magnetic field is generated in the stator 19. Due to the interaction between the rotating magnetic field of the stator 19 and the magnetic field generated by the permanent magnet 18, a rotational force is generated and the rotor 14 is driven to rotate.
  • This inverter-integrated drive module 1 can be used even when a plurality of motors such as electric railways are used because the power supply is DC.
  • the stator coil 24 includes the phase coils 25 corresponding to the number of the teeth portions 22 formed by winding the conductor wires 26 around the teeth portions 22 in concentrated winding.
  • the inverter unit 5 is positioned so that the AC output terminal 11 corresponds to each of the phase coils 25 and the winding end portion 26b of the conductor wire 26 constituting the phase coil 25 is extended in the axial direction.
  • the motor 13 is disposed at the shaft end. Therefore, the winding end portion 26 b of the conductor wire 26 is extended in parallel with the axial direction and joined to the AC output terminal 11 of the inverter unit 5.
  • the axial end of the motor 13 is coaxial with the shaft 16 so that the annular neutral point connection conductor 28 is located at a position where the winding start portion 26a of the conductor wire 26 constituting the phase coil 25 is extended in the axial direction. It is arranged. Therefore, the winding start portion 26 a of the conductor wire 26 is extended parallel to the axial direction and joined to the neutral point connection conductor 28.
  • each phase coil 25 can be fed from the dedicated inverter unit 5, it is not necessary to connect the phase coils 25 of the same phase across the teeth portions 22 using a conductor wire that is difficult to bend. Furthermore, the bending of the end portion of the conductor wire 26 can be suppressed, the phase coil 25 and the inverter circuit can be easily connected, and the neutral point of the phase coil 25 can be easily connected.
  • the inverter-integrated drive module 1 that can be used and is suitable for high-capacity applications such as an electric vehicle is obtained.
  • the winding start portion 26a and the winding end portion 26b of the conductor wire 26 are extended in the axial direction from the radially outer side and the inner side of the tooth portion 22, the AC output terminal 11 and the neutral point connection conductor 28 are connected to the motor. 13 is disposed on both sides in the axial direction, and the radial distance between the AC output terminal 11 and the neutral point connection conductor 28 is increased, and insulation between the two is ensured.
  • the phase coil 25 is disposed in the circumferential direction so that the winding start portion 26a and the winding end portion 26b of the conductor wire 26 alternately extend on one side and the other side in the axial direction.
  • the motor of the substrate 6 arranged on the other side in the axial direction of the motor 13 so that the twelve inverter units 5 correspond to the phase coils 25 in which the winding end portion 26b of the conductor wire 26 extends to the other side in the axial direction.
  • the remaining 12 inverter units 5 are arranged on the surface opposite to 13 in the circumferential direction at an equiangular pitch, and the remaining 12 inverter units 5 correspond to the phase coil 25 in which the winding end portion 26b of the conductor wire 26 extends to one side in the axial direction.
  • the neutral point connection conductor 28 is disposed coaxially with the shaft 16 on the opposing surfaces of the substrate 6 disposed on both axial sides of the motor 13.
  • the winding end portion 26 b of the conductor wire 26 extending to the other side in the axial direction of the phase coil 25 is joined to the AC output terminal 11 of the corresponding inverter unit 5 disposed on the other side in the axial direction of the motor 13.
  • a winding start portion 26 a of a conductor wire 26 extending to one side in the axial direction of the phase coil 25 is joined to a neutral point connection conductor 28 disposed on one side in the axial direction of the motor 13.
  • the winding end portion 26 b of the conductor wire 26 extending to one side in the axial direction of the phase coil 25 is joined to the AC output terminal 11 of the corresponding inverter unit 5 disposed on one side in the axial direction of the motor 13.
  • the winding start portion 26 a of the conductor wire 26 extending to the other side in the axial direction of the phase coil 25 is joined to a neutral point connection conductor 28 disposed on the other side in the axial direction of the motor 13.
  • the 24 inverter units 5 are divided into 12 pieces on both sides in the axial direction, and are arranged on the substrate 6 at an equiangular pitch in the circumferential direction. Are distributed in the circumferential direction, and the temperature rise of the inverter unit 5 is suppressed. Moreover, since the neutral point connection conductors 28 having different potentials are disposed on both sides in the axial direction of the motor 13, insulation between the neutral point connection conductors 28 having different potentials is ensured.
  • a conductor wire having a circular cross section is wound around the tooth portion 22 from the radially outermost position to the radially innermost position, and then from the radially innermost position to the radially outermost position of the teeth portion 22 in two steps. Further, the third stage is wound around the teeth portion 22 from the radially outermost position to the radially innermost position. In this way, a phase coil having a predetermined number of turns is produced by winding a predetermined number of steps and a predetermined number of rows while reciprocating a conductor wire having a circular cross section in the radial direction.
  • the radial position of the winding end portion of the conductor wire that is, the radial distance between the winding start portion and the winding end portion of the conductor wire is the required number of turns, the thickness of the conductor wire and the tooth portion, and the radial direction of the tooth portion. It depends on the length.
  • the phase coil 25 having a predetermined number of turns is manufactured by winding a predetermined number of rows and a predetermined number of rows while being displaced radially inward from the radially outermost position of the tooth portion 22.
  • the Therefore, the winding end portion 26b of the conductor wire 26 can be brought closer to the radially outermost position of the tooth portion 22 by adjusting the number of stages in each row in accordance with the required number of turns.
  • the winding end portion 26 b of the conductor wire 26 is positioned at the radially outermost position of the tooth portion 22.
  • the radial distance between the winding start portion 26a and the winding end portion 26b of the conductor wire 26 can be sufficiently secured.
  • the conductor wire 26 has a rectangular cross section
  • the conductor wire 26, the AC output terminal 11, and the neutrality are produced by forming the connection portion 28a of the AC output terminal 11 and the neutral point connection conductor 28 in a flat plate shape.
  • the point connection conductor 28 can be joined by abutting flat surfaces. Therefore, joining of the conductor wire 26 to the AC output terminal 11 and the neutral point connection conductor 28 is simplified and the joining strength is increased.
  • FIG. 8 is a perspective view illustrating a connection structure between an AC output terminal and a phase coil of an inverter unit in an inverter-integrated drive module according to Embodiment 2 of the present invention
  • FIG. 9 is an inverter according to Embodiment 2 of the present invention
  • FIG. 10 is a perspective view of a main part for explaining the structure of a neutral point connecting conductor applied to the integrated drive module
  • FIG. 10 illustrates the configuration of a phase coil applied to the inverter integrated drive module according to Embodiment 2 of the present invention.
  • the phase coil 25 is wound around the tooth portion 22 so that the normal of the long side of the rectangular cross section of the conductor wire 26 faces the tooth portion 22, that is, flatwise. It is made up of concentrated winding coils. And the winding start part 26a and the winding end part 26b of the conductor wire 26 are extended in the opposite direction in the axial direction of the stator core 20 from the radially outer side and the inner side of the same slot 23, and are configured by long sides of a rectangular cross section. Is facing in the circumferential direction.
  • Each neutral point connecting conductor 28A is made of a circular ring-shaped flat plate having a rectangular cross section using a good electrical conductive material such as copper. Then, as shown in FIG. 9, twelve connecting portions 28a are formed at equal angular pitches in the circumferential direction by cutting and raising a part of the neutral point connection conductor 28A at right angles in the circumferential direction. Then, the winding start portion 26a of the conductor wire 26 extending in parallel with the axial direction of the stator core 20 from the outside in the radial direction of the slot 23 is a plane formed by the long side of the rectangular cross section, and the connection portion of the neutral point connection conductor 28A It is abutted against the plane 28a and joined by solder or the like.
  • the AC output terminal 11 of the inverter unit 5 extends from the side surface of the resin sealing portion 12 so that the normal line of the long side of the rectangular cross section faces the circumferential direction. Then, the winding end portion 26b of the conductor wire 26 extending in parallel with the axial direction of the stator core 20 from the radially inner side of the slot 23 has a plane constituted by the long side of the rectangular cross section as the length of the rectangular cross section of the AC output terminal 11. It is abutted against a plane constituted by sides and joined by solder or the like. Other configurations are the same as those in the first embodiment.
  • the second embodiment also has the same effect as the first embodiment.
  • the phase coil 25 is configured by winding the conductor wire 26 around the tooth portion 22 flatly. Therefore, the conductor wire 26 can be easily wound around the tooth portion 22 and the phase coil 25 can be easily manufactured as compared with the first embodiment in which the tooth portion 22 is wound edgewise.
  • the winding start portion 26a and the winding end portion 26b of the conductor wire 26 extending parallel to the axial direction have a plane formed by the long sides of the rectangular cross section facing the circumferential direction. Therefore, the winding end portion 26b of the conductor wire 26 and the AC output are simply produced by making the inverter unit 5 so that the long side of the rectangular cross section of the AC output terminal 11 faces the circumferential direction.
  • the terminals 11 can be joined to each other by joining the planes, and the complicated operation of bending the AC output terminal 11 into an L shape is not necessary, and a large joining strength is obtained.
  • connection portion 28a a part of the neutral point connection conductor 28A is cut and raised in the circumferential direction at right angles to form the connection portion 28a, and the winding start portion 26a and the connection portion 28a of the conductor wire 26 are brought into contact with each other.
  • the joining operation of the conductor wire 26 and the neutral point connection conductor 28A is simplified, and a large joining strength is obtained.
  • the AC output terminal extending from the resin sealing portion is abutted and joined from the radially inner side to the winding end portion of the conductor wire extending in the axial direction from the radially inner side of the slot.
  • the AC output terminal extending from the resin sealing portion may be abutted and joined from the radially outer side to the winding end portion of the conductor wire extending in the axial direction from the radially inner side of the slot.
  • the inverter unit can be positioned on the outer diameter side, a gap between adjacent inverter units in the circumferential direction is widened, the inverter units that are heat generating parts are dispersed in the circumferential direction, and the temperature rise of the inverter unit is reduced. It can be suppressed. Further, when a heat sink for cooling the inverter unit is installed, the heat radiation area of the heat sink can be increased, and the cooling performance of the inverter unit is improved.
  • the conductor wire is wound around the tooth portion from the radially outer side to the inner side to produce the phase coil.
  • the conductor wire is wound around the tooth portion from the radially inner side.
  • a phase coil may be produced by winding outward.
  • the winding end portion of the conductor wire is extended from the outside in the radial direction of the slot in the axial direction of the stator core and connected to the AC output terminal of the inverter unit.
  • the inverter unit can be positioned on the outer diameter side, a gap between adjacent inverter units in the circumferential direction is widened, and the inverter units as heat generating parts are dispersed in the circumferential direction, thereby suppressing the temperature rise of the inverter unit. It is done. Further, when a heat sink for cooling the inverter unit is installed, the heat radiation area of the heat sink can be increased, and the cooling performance of the inverter unit is improved.
  • FIG. 11 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 3 of the present invention
  • FIG. 12 is an end view for explaining an arrangement state of inverter units in the inverter-integrated drive module according to Embodiment 3 of the present invention.
  • the winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 extend in the opposite direction of the axial direction of the stator core 20 from the radially outer side and the inner side of the same slot 23.
  • the phase coil 25 is arrange
  • the first neutral point connection conductor 35 is configured in the same manner as the neutral point connection conductor 28 except that the first neutral point connection conductor 35 is formed to have a small diameter. It is comprised similarly to the sex point connection conductor 28.
  • FIG. And the 1st and 2nd neutral point connection conductors 35 and 36 are arrange
  • substrate 6 arrange
  • the inverter unit 5 is disposed at a radial position between the winding start portion 26a and the winding end portion 26b of the conductor wire 26 on the surface opposite to the motor 13 of the substrate 6 arranged on one side of the motor 13 in the axial direction. 24 are mounted on the concentric circles at an equiangular pitch.
  • the inverter units 5 are arranged in the circumferential direction so that the AC output terminals 11 alternately extend radially inward and outward from the resin sealing portion 12.
  • the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are electrically insulated by a holding member (not shown) on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13.
  • the inverter unit 5 is supported and arranged on the side opposite to the motor 13 of the inverter unit 5 in parallel and coaxially with a predetermined gap in the axial direction.
  • the winding start portion 26a of the conductor wire 26 extending from the radially inner side of the slot 23 to the other axial side of the stator core 20 extends in parallel with the axial direction and is joined to each connection portion of the first neutral connection conductor 35.
  • a W-phase coil configured by connecting the coils 25 in parallel is connected to produce a first three-phase AC winding configured as a star-shaped connection coil.
  • a winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction.
  • the AC output terminal 11 that extends radially outward from the resin sealing portion 12 of the inverter unit 5 is joined.
  • winding start portion 26a of the conductor wire 26 extending from the outer side in the radial direction of the slot 23 to the other side in the axial direction of the stator core 20 extends in parallel with the axial direction to each connection portion of the second neutral point connection conductor 36.
  • a U-phase coil composed of four U1-phase coils 25 connected in parallel, a V-phase coil composed of four V1-phase coils 25 connected in parallel, and four W1-phase coils W-phase coils configured by connecting the phase coils 25 in parallel are connected to form a second three-phase AC winding configured as a star-shaped connection coil.
  • the winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction.
  • the AC output terminal 11 extending inward in the radial direction from the resin sealing portion 12 of the inverter unit 5 is joined.
  • each inverter unit 5 is joined to the positive power supply plate 2 and the negative power supply plate 3, respectively. Also in the inverter integrated drive module configured as described above, the electric circuit shown in FIG. 7 is configured. Other configurations are the same as those in the first embodiment.
  • the winding end portion 26b of the conductor wire 26 wound around the tooth portion 22 is extended parallel to the axial direction of the motor 13 and joined to the AC output terminal 11 of the corresponding inverter unit 5.
  • the winding start portion 26 a of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the first and second neutral point connection conductors 35 and 36.
  • the first and second neutral point connection conductors 35 and 36 and the AC output terminal 11 of the inverter unit 5 are arranged separately on both sides of the motor 13 in the axial direction. Simple insulation is ensured easily and reliably. Further, since all the inverter units 5 are arranged on one side in the axial direction of the motor 13, a pair of the positive electrode power supply plate 2 and the negative electrode power supply plate 3 for supplying DC power is sufficient, and the number of parts can be reduced.
  • FIG. 13 is an end view for explaining the arrangement of inverter units in an inverter-integrated drive module according to Embodiment 4 of the present invention.
  • the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are electrically insulated by a holding member (not shown) on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13.
  • the conductor wire 26 is disposed in a radial position between the winding start portion 26a and the winding end portion 26b in parallel and coaxially with a predetermined gap in the axial direction.
  • the inverter unit 5 is alternately arranged on the inner diameter side and the outer diameter side of the phase coil 25 arranged in the circumferential direction on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13. Twelve in the circumferential direction are arranged in two rows so as to be positioned. And the inverter unit 5 located in the internal diameter side of the phase coil 25 arranged in the circumferential direction is arrange
  • the inverter unit 5 located on the outer diameter side of the phase coil 25 arranged in the is arranged such that the AC output terminal 11 extends radially inward from the resin sealing portion 12.
  • a winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction.
  • the AC output terminal 11 that extends radially inward from the resin sealing portion 12 of the inverter unit 5 disposed on the outer diameter side of the phase coil 25 is abutted and joined.
  • a winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through a through hole 29 formed in the substrate 6 by extending parallel to the axial direction.
  • the AC output terminal 11 extending radially outward from the resin sealing portion 12 of the inverter unit 5 disposed on the inner diameter side of the phase coil 25 is abutted and joined.
  • Other configurations are the same as those in the third embodiment.
  • This fourth embodiment also has the same effect as the third embodiment. According to the fourth embodiment, since the inverter units 5 are arranged in two rows in the circumferential direction, the gap between the inverter units 5 is widened, and the inverter units 5 that are heat generating parts are dispersed in the circumferential direction. The temperature rise of the unit 5 is suppressed.
  • FIG. 14 is an end view for explaining the arrangement of inverter units in an inverter-integrated drive module according to Embodiment 5 of the present invention.
  • the inverter unit 5 is arranged such that the AC output terminal 11 extends from the resin sealing portion 12 in the circumferential direction.
  • a winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction. These are joined to the AC output terminal 11 extending in the circumferential direction from the resin sealing portion 12 of the inverter unit 5 arranged on the outer diameter side of the phase coil 25.
  • a winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through a through hole 29 formed in the substrate 6 by extending parallel to the axial direction. These are joined to the AC output terminal 11 extending in the circumferential direction from the resin sealing portion 12 of the inverter unit 5 disposed on the inner diameter side of the phase coil 25.
  • Other configurations are the same as those in the fourth embodiment.
  • the inverter units 5 are arranged in two rows in the circumferential direction, the gap between the inverter units 5 becomes wide as in the fourth embodiment, and the inverter unit 5 which is a heat-generating component. Are distributed in the circumferential direction, and the temperature rise of the inverter unit 5 is suppressed.
  • the AC output terminal 11, the positive input terminal 9, and the negative input terminal 10 are taken out from different side surfaces of the resin sealing portion 12, so that the AC output terminal 11 and the positive input terminal 9 and the negative electrode input terminal 10 can be easily secured.
  • FIG. FIG. 15 is a schematic diagram for explaining the connection state of the stator coils in the inverter-integrated drive module according to Embodiment 6 of the present invention.
  • the stator coil 24A is composed of a first three-phase AC winding 50A and a second three-phase AC winding 51A.
  • the first three-phase AC winding 50A includes a three-phase winding 50a formed by connecting ends of the U11 phase coil 25, the V11 phase coil 25, and the W11 phase coil 25, and U12. Phase coil 25, V12 phase coil 25, W12 phase coil 25, three-phase winding 50 b made by connecting together, U13 phase coil 25, V13 phase coil 25 And the three-phase winding 50c produced by connecting the ends of the W13 phase coil 25 and the ends of the U14 phase coil 25, the V14 phase coil 25 and the W14 phase coil 25. It is composed of a three-phase winding 50d produced by connection.
  • the four three-phase windings 50a to 50d are respectively connected via four neutral point connection conductors (not shown) having different diameters and having three phase coils 25 concentrically arranged on the substrate. It is configured with a star connection.
  • the second three-phase AC winding 51A includes a three-phase winding 51a formed by connecting ends of U21 phase coil 25, V21 phase coil 25, and W21 phase coil 25, and U22.
  • Phase coil 25, phase coil 25 of V22 phase and phase coil 25 of W22 phase and a three-phase winding 51b produced by connecting ends of phase coil 25, phase coil 25 of U23 phase, phase coil 25 of V23 phase
  • the three-phase winding 51c produced by connecting the ends of the phase coil 25 of the W23 phase and the ends of the phase coil 25 of the U24 phase, the phase coil 25 of the V24 phase and the phase coil 25 of the W24 phase. It is composed of a three-phase winding 51d produced by connection.
  • the four three-phase windings 51a to 51d are respectively connected via four neutral point connection conductors (not shown) having different diameters and having three phase coils 25 concentrically arranged on the substrate. It is configured with a star connection. Other configurations are the same as those in the first embodiment.
  • each of the first and second three-phase AC windings 50 and 51 is configured by connecting the end portions of the twelve phase coils 25 to one neutral point connection conductor. Therefore, the twelve phase coils 25 are electrically connected. Therefore, a circulating current may be generated between the same phases due to variations in resistance of the phase coil 25 and variations in characteristics of the inverter elements.
  • the first three-phase AC winding 50A is composed of four three-phase windings 50a to 50d, and each of the three-phase windings 50a to 50d constitutes the minimum number (three). ) Of the phase coil 25 is connected to a dedicated neutral point connection conductor, so that the three-phase windings 50a to 50d are electrically separated from each other.
  • the second three-phase AC winding 51A is composed of four three-phase windings 51a to 51d, and each of the three-phase windings 51a to 51d constitutes the end of the minimum number (three) of phase coils 25 constituting three phases.
  • the three-phase windings 51a to 51d are electrically separated from each other because the portion is connected to a dedicated neutral point connection conductor.
  • the circulating current as described above does not occur. Even if one of the phase windings 50a to 50d and 51a to 51d cannot be energized due to a ground fault or a short circuit failure, the other phases of the phase windings 50a to 50d and 51a to 51d The windings are not affected at all and the motor can be operated. Furthermore, since the magnetic flux is closed in units of 6 slots, the stator core is divided into four equal parts, that is, four divided cores having 6 slots are produced, and phase windings are wound around each of the tooth portions of each divided core.
  • the stator core is manufactured by connecting the split cores in an annular shape, and the neutral point of the phase winding is connected, so that the stator can be assembled and the motor can be easily manufactured.
  • each of the first and second three-phase AC windings 50A and 51A includes the number of poles of the motor (20 poles) and the first and second three-phase AC windings 50A and 51A. Are divided into four three-phase windings equal to the greatest common divisor with the number of each phase coil (12), but the number of divisions of the first and second three-phase AC windings 50A and 51A. Is equal to the greatest common divisor of the number of poles of the motor and the number of phase coils 25 of each of the first and second three-phase AC windings 50A and 51A if the three-phase windings are electrically separated from each other. It is not limited to the number, but may be a number equal to the common divisor of both (however, 2 or more).
  • the motor is configured in a double three-phase configuration in which the stator coil includes two sets of three-phase AC windings having a phase difference of 30 degrees in electrical angle.
  • the pitch of the teeth part is 150 degrees or 30 degrees in electrical angle (6 ⁇ 1 pole) , 6 coils) as a unit is advantageous. That is, the ratio between the number of poles of the motor and the number of phase coils may be 5: 6 or 7: 6.
  • a combination of 20 poles and 24 coils is preferably a combination of 10 poles and 12 coils.
  • a combination of 28 poles and 24 coils, and a combination of 14 poles and 12 coils are preferable.
  • FIG. FIG. 16 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 7 of the present invention.
  • the winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 extend from the radially outer side and the inner side of the same slot 23 in the opposite direction of the axial direction of the stator core 20.
  • Each phase coil 25 is disposed in the circumferential direction so that a winding start portion 26 a of a conductor wire 26 extending from the radially outer side of the slot 23 extends to the other axial side of the stator core 20.
  • One neutral point connecting conductor 28 is coaxial with the shaft 16, and the connecting portion 28 a faces the motor 13, and the motor 6 side of the substrate 6 disposed on the other side in the axial direction of the motor 13. It is electrically insulated and fixed to the surface.
  • the 24 inverter units 5 are connected to the inner diameter side of the phase coil 25 arranged in the circumferential direction on the surface opposite to the motor 13 of the substrate 6 disposed on one side of the motor 13 in the axial direction.
  • 11 are arranged in a line at a regular pitch on a concentric circle with the side surface of the resin sealing portion 12 from which 11 is extended facing radially outward.
  • the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are supported in an electrically insulated state by a holding member 30 on a surface opposite to the motor 13 of the substrate 6 arranged on one side in the axial direction of the motor 13, and thus in the circumferential direction.
  • a winding start portion 26a of a conductor wire 26 extending from the radially outer side of the slot 23 to the other axial side of the stator core 20 extends in parallel with the axial direction and is joined to each connection portion of the neutral point connecting conductor 28.
  • U-phase coil configured by connecting two U1-phase coils 25 in parallel
  • V-phase coil configured by connecting eight V1-phase coils 25 in parallel
  • eight W1-phase coils 25 Are connected in parallel
  • a three-phase AC winding configured as a star-shaped connection coil is produced.
  • the winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 extends in the axial direction from a through hole 29 that extends parallel to the axial direction and is formed in the substrate 6.
  • the positive electrode input terminal 9 and the negative electrode input terminal 10 of each inverter unit 5 are joined to the positive electrode power supply plate 2 and the negative electrode power supply plate 3, respectively.
  • Other configurations are the same as those in the first embodiment.
  • the winding end portion 26b of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the AC output terminal 11 of the corresponding inverter unit 5. ing. Further, the winding start portion 26 a of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the neutral point connection conductor 28. In this way, the phase coil 25 and the inverter circuit can be easily connected without bending the conductor wire, and the neutral point of the phase coil 25 can be easily connected, so that the conductor wire 26 having a large cross-sectional area can be used. In addition, an inverter-integrated drive module suitable for large capacity applications such as electric vehicles can be realized.
  • stator coil is composed of one star-connected three-phase AC winding, only one neutral point connection conductor 28 is required, and the number of parts can be reduced.
  • the inverter unit is arranged on the inner diameter side of the phase coil arranged in the circumferential direction, but the inverter unit is parallel to the axial direction of the stator core from the radially inner side of the slot. You may arrange
  • the winding start part and winding end part of the conductor wire which comprise all the phase coils shall be extended to the opposite direction of an axial direction from the radial direction outer side and inner side of the same slot.
  • a phase coil in which the winding start portion and the winding end portion of the conductor wire extend in the axially opposite direction from the radially outer side and the inner side of the same slot, and the winding start portion and the winding end portion of the conductor wire form the teeth portion.
  • Phase coils extending in the same axial direction from the radially outer side and the inner side of the two sandwiched slots may be alternately arranged in the circumferential direction. In this case, only one neutral point connecting conductor is required, and the inverter unit can be divided and disposed on both sides in the axial direction of the motor, so that the temperature rise of the inverter unit can be suppressed.
  • FIG. 17 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 8 of the present invention.
  • the winding start portion 26 a of the conductor wire 26 extends from the radially outer side of one slot 23 sandwiching the teeth portion 22 to one side in the axial direction, and the winding end portion 26 b sandwiches the teeth portion 22. It arrange
  • One neutral point connection conductor 28 is electrically connected to the surface on the motor 13 side of the substrate 6 arranged on one side in the axial direction of the motor 13 with the connecting portion facing the motor 13 side coaxially with the shaft 16. Insulated and fixed.
  • inverter units 5 are connected to the inner diameter side of the phase coils 25 arranged in the circumferential direction on the surface opposite to the motor 13 of the substrate 6 disposed on one side of the motor 13 in the axial direction.
  • the side surfaces of the resin sealing portion 12 from which the terminals 11 are extended are arranged in a row on the concentric circles at an equiangular pitch with the radial direction facing outward.
  • the winding start portion 26a of the conductor wire 26 of the phase coil 25 is extended to one side in the axial direction and joined to the neutral point connection conductor 28, and the eight U1-phase coils 25 are connected in parallel.
  • a U-phase coil, a V-phase coil configured by connecting eight V1-phase coils 25 in parallel, and a W-phase coil configured by connecting eight W1-phase coils 25 in parallel are connected, A three-phase AC winding configured as a star connection coil is produced.
  • the winding end portion 26 b of the conductor wire 26 of the phase coil 25 is drawn in the axial direction from a through hole 29 that extends in one side in the axial direction and is formed in the substrate 6, and the AC output terminal 11 of the corresponding inverter unit 5. It is joined to. Furthermore, the positive electrode input terminal 9 and the negative electrode input terminal 10 of each inverter unit 5 are joined to the positive electrode power supply plate 2 and the negative electrode power supply plate 3, respectively. Other configurations are the same as those in the seventh embodiment.
  • this eighth embodiment also has the same effect as the seventh embodiment.
  • the inverter module 4 is arranged on one side of the motor 13 in the axial direction, the connection work between the phase coil 25 and the inverter circuit and the connection work at the neutral point of the phase coil 25 are performed. It becomes simple.
  • FIG. FIG. 18 is a cross-sectional view of a main part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 9 of the present invention.
  • the inverter unit 5 has, on the surface of the substrate 6 opposite to the motor 13, the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 corresponding to each of the phase coils 25 in the axial direction. It is mounted by shifting from the stretched position.
  • the AC output terminal 11 is made of a strip-shaped flat plate having a rectangular cross section, and extends from the resin sealing portion 12 so that the surface constituted by the long sides of the rectangular cross section is parallel to the surface of the substrate 6.
  • the extended end of the AC output terminal 11 is bent at a position where the winding end portion 26b is extended in the axial direction so that the normal line of the long side of the rectangular cross section faces the radial direction.
  • the phase coil 25 is configured by winding a conductor wire having a rectangular cross section around a tooth portion in an edgewise manner, and the winding end portion 26b extends in the axial direction with the normal line of the long side of the rectangular cross section directed radially. ing. Then, planes in which the end of the winding end portion 26b inserted through the through hole 29 and the extended end of the bent AC output terminal 11 are formed of long sides of a rectangular cross section are brought into surface contact with each other by welding or the like. It is joined. A joint portion 53 between the winding end portion 26 b and the AC output terminal 11 is embedded with an insulating member 54. Further, a metal mesh 55 made of a high conductivity metal such as copper or aluminum as an electromagnetic shielding member is mounted so as to cover the insulating member 54. Other configurations are the same as those in the first embodiment.
  • the joining surface is It can be widened, and joining by welding or the like becomes easy, and the joining strength can be increased.
  • conductor wires coated with insulation are used for the AC output terminal 11 and the phase coil 25, and the insulation coating of the conductor wires in the joining region is removed.
  • the joint part 53 is embedded by the insulating member 54, the electrical insulation of the joint part 53 is ensured. Therefore, it is possible to prevent the upper arm side switching element 7 and the lower arm side switching element 8 from being short-circuited and destroyed.
  • the wire mesh 55 is mounted so as to cover the insulating member 54 in which the joint portion 53 is embedded, it is possible to prevent the Invar unit 5 from malfunctioning due to noise from the joint portion 53.
  • FIG. FIG. 19 is a cross-sectional view of an essential part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 10 of the present invention.
  • the inverter unit 5 corresponds to each of the phase coils 25A, and the winding end portion 26b of the conductor wire 26 constituting the phase coil 25A is axially provided. It is mounted by shifting from the stretched position.
  • the AC output terminal 11 is manufactured as a belt-like flat plate having a rectangular cross section, and extends from the resin sealing portion 12 so that the surface formed by the short sides of the rectangular cross section is parallel to the surface of the substrate 6.
  • the phase coil 25A is configured by winding a conductor wire having a rectangular cross section around a tooth portion in a flatwise manner, and the winding end portion 26b extends in the axial direction with the normal line of the short side of the rectangular cross section directed in the radial direction. ing. Then, the end of the winding end portion 26b inserted through the through hole 29 and the extended end of the AC output terminal 11 are joined by welding or the like with the planes formed by the long sides of the rectangular cross section being in surface contact with each other. Yes. A joint portion 53 between the winding end portion 26 b and the AC output terminal 11 is embedded with an insulating member 54. Further, a metal mesh 55 is attached so as to cover the insulating member 54. Other configurations are the same as those in the second embodiment.
  • the joining surface is It can be widened, and joining by welding or the like becomes easy, and the joining strength can be increased. Moreover, since the bending process of the extending end of the AC output terminal 11 is not required, the cost of the inverter unit 5 can be reduced.
  • a conductor wire with insulation coating is used for the AC output terminal 11 and the phase coil 25A, and the insulation coating of the conductor wire in the joining region is removed.
  • the joint part 53 is embedded by the insulating member 54, the electrical insulation of the joint part 53 is ensured. Therefore, it is possible to prevent the upper arm side switching element 7 and the lower arm side switching element 8 from being short-circuited and destroyed.
  • the wire mesh 55 is mounted so as to cover the insulating member 54 in which the joint portion 53 is embedded, it is possible to prevent the Invar unit 5 from malfunctioning due to noise from the joint portion 53.
  • FIG. FIG. 20 is a cross-sectional view of a main part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 11 of the present invention.
  • the extending end of the AC output terminal 11 is formed wide so that the length of the long side of the rectangular cross section is increased.
  • Other configurations are the same as those in the tenth embodiment.
  • the extending end of the AC output terminal 11 is formed wide, the end of the winding end portion 26b, the end of the AC output terminal 11, and the joining surface are further widened, and the joining portion 53 is formed.
  • the electrical resistance can be reduced and the bonding strength can be increased.
  • the metal shield made of metal such as copper or aluminum is used as the electromagnetic shielding member.
  • the electromagnetic shield member is made of metal wire such as copper or aluminum. It is not limited to this, and any electromagnetic wave can be shielded.
  • a conductive fiber knitted mesh or a conductive sheet may be used.
  • a round surface is formed by chamfering a corner portion of a joint portion between the winding end portion of the conductor wire of the phase coil and the AC output terminal of the inverter unit, or the joint portion is substantially omitted.
  • a metal material having a spherical surface may be covered to eliminate the corners of the metal member. Thus, by eliminating the corners of the metal member, it is difficult for electric discharge to occur, and the amount of the insulating member used can be reduced or the insulating member can be omitted.
  • the winding end portion of the conductor wire is joined to the AC output terminal of the inverter unit, and the winding start portion of the conductor wire is joined to the neutral point connection conductor.
  • the start portion may be joined to the AC output terminal of the inverter unit, and the winding end portion of the conductor wire may be joined to the neutral point connection conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Windings For Motors And Generators (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention provides an inverter integration type drive module which simplifies a connection of a phase coil with an inverter circuit and a connection of a neutral point of the phase coil and is preferable for a large volume use such as an electric vehicle. In the inverter integration type drive module according to the present invention, a stator coil has the same number of phase coils as teeth portions, which are formed by winding a conductor line around each of the teeth portions in a concentrated winding manner. In each of the phase coils, a winding start portion of the conductor line is extended in parallel to a shaft direction of a motor and is joined with a neutral point connecting conductor line, and a winding end portion of the conductor line is extended in parallel to the shaft direction of the motor and is joined with an alternating current output terminal of a corresponding inverter unit.

Description

インバータ一体型駆動モジュールInverter integrated drive module
 この発明は、インバータを内蔵した駆動モジュールに関するものである。 This invention relates to a drive module incorporating an inverter.
 交流モータと一体化された従来のインバータモジュールでは、上アーム側スイッチング素子と下アーム側スイッチング素子とを直列接続してなる単相インバータ回路が、互いに複数個並列接続されて、多相インバータ回路を構成し、交流モータの端面に配置されている。そして、スイッチング素子は、交流モータの回転軸に対して所定の間隔を隔てて周方向に配置され、多相インバータ回路の上アーム側スイッチング素子の正極側を電源正極端子に接続する正極導体と多相インバータ回路の下アーム側スイッチング素子の負極側を電源負極端子に接続する負極導体は、リング状又は円弧状を有して近接して、周方向に配置されたスイッチング素子の内周部側に配置され、上アーム側スイッチング素子と下アーム側スイッチング素子との接続点に接続した各相毎の出力導体は、周方向に配置されたスイッチング素子の内周部側に配置され、スイッチング素子の信号端子は、スイッチング素子を挟んで出力導体と相対する外周部側に配置して制御回路に接続されている(例えば、特許文献1参照)。 In a conventional inverter module integrated with an AC motor, a single-phase inverter circuit formed by connecting an upper arm side switching element and a lower arm side switching element in series is connected in parallel to each other to form a multiphase inverter circuit. It is configured and arranged on the end face of the AC motor. The switching element is arranged in the circumferential direction with a predetermined interval with respect to the rotating shaft of the AC motor, and has a positive conductor that connects the positive electrode side of the upper arm side switching element of the multiphase inverter circuit to the power supply positive terminal. The negative conductor connecting the negative side of the switching element on the lower arm side of the phase inverter circuit to the power source negative terminal has a ring shape or an arc shape and is close to the inner peripheral side of the switching element arranged in the circumferential direction. The output conductor for each phase connected to the connection point of the upper arm side switching element and the lower arm side switching element is arranged on the inner peripheral side of the switching element arranged in the circumferential direction, and the signal of the switching element The terminal is disposed on the outer peripheral side facing the output conductor with the switching element interposed therebetween, and is connected to the control circuit (see, for example, Patent Document 1).
特開2007-116840号公報JP 2007-116840 A
 従来のインバータモジュールでは、出力導体が周方向に配置されたスイッチング素子の内周部側に配置されているので、交流モータのコイルの引出線をステータコアから引き出して径方向内方に曲げて中央部の近傍まで延伸させ、ついで中央部の近傍で軸方向に曲げてモジュール側に引き出して出力導体に接続しなければならなかった。
 特に、従来のインバータモジュールが電気自動車などの大容量の用途に適用される場合、大電流が流れるコイルでの発熱を抑えるために、断面積の大きな導体線がコイルに用いられるので、導体線が曲がりにくくなり、コイルの引出線とインバータ回路との接続、さらにはコイルの中性点の接続などの接続作業が煩雑となるという不具合があった。
 また、相コイルのそれぞれがティース部のそれぞれに導体線を集中巻に巻回して構成されている場合には、引出線の数および中性点の結線数が著しく多くなり、上述の不具合が顕著となる。さらに、1つのインバータユニットから複数の同相の相コイルに給電する場合には、モータ内で曲げにくい導体線を用いてティース部間を跨いで同相の相コイル同士を結線する必要があった。
In the conventional inverter module, since the output conductor is arranged on the inner peripheral side of the switching element arranged in the circumferential direction, the lead wire of the coil of the AC motor is drawn out from the stator core and bent inward in the radial direction. Next, it had to be stretched to the vicinity of, and then bent in the axial direction near the center and pulled out to the module side to be connected to the output conductor.
In particular, when a conventional inverter module is applied to a large capacity application such as an electric vehicle, a conductor wire having a large cross-sectional area is used for the coil in order to suppress heat generation in the coil through which a large current flows. There is a problem that it is difficult to bend, and connection work such as connection of the coil lead wire and the inverter circuit and connection of the neutral point of the coil becomes complicated.
In addition, when each of the phase coils is configured by winding a conductor wire around each of the teeth portions, the number of lead wires and the number of neutral points are remarkably increased, and the above-described problems are remarkable. It becomes. Furthermore, when power is supplied from a single inverter unit to a plurality of in-phase coils, it is necessary to connect the in-phase coils between the teeth using conductor wires that are difficult to bend in the motor.
 この発明は、上記課題を解決するためになされたもので、相コイルのそれぞれがティース部のそれぞれに導体線を集中巻に巻回して構成されたモータを用いたインバータ一体型駆動モジュールにおいて、インバータユニットを相コイルのそれぞれに対応して配置し、相コイルを構成する導体線の一端を軸方向に延伸させてインバータユニットの交流出力端子に接合可能とし、かつ相コイルを構成する導体線の他端を軸方向に延伸させて中性点結線導体に接合可能として、相コイルとインバータ回路との接続、さらには相コイルの中性点の接続が簡易となり、電気自動車などの大容量の用途に好適なインバータ一体型駆動モジュールを得ることを目的とする。 The present invention has been made in order to solve the above-mentioned problem, and in an inverter-integrated drive module using a motor in which each of the phase coils is formed by winding a conductor wire around each of the teeth portions in a concentrated winding, The unit is arranged corresponding to each of the phase coils, and one end of the conductor wire constituting the phase coil is extended in the axial direction so that it can be joined to the AC output terminal of the inverter unit, and other than the conductor wire constituting the phase coil The end can be extended in the axial direction and joined to the neutral point connection conductor, making it easy to connect the phase coil to the inverter circuit, and also to connect the neutral point of the phase coil to large capacity applications such as electric vehicles. An object is to obtain a suitable inverter-integrated drive module.
 この発明によるインバータ一体型駆動モジュールは、ティース部のそれぞれに導体線を集中巻に巻回して形成された、該ティース部と同数の相コイルからなるステータコイルを有するステータ、上記導体線の一端を結線して上記相コイルを星形結線する環状の中性点結線導体、およびN極とS極とが交互に周方向に配列された磁極を有するロータから構成されるモータと、それぞれ、正極側入力端子、負極側入力端子、正極側が該正極側入力端子に接続された上アーム側スイッチング素子、負極側が該負極側入力端子に接続された下アーム側スイッチング素子、および該上アーム側スイッチング素子の負極側と該下アーム側スイッチング素子の正極側とに接続された交流出力端子を備え、上記相コイルと同数のインバータユニットを有するインバータモジュールと、を備えている。そして、上記中性点結線導体は、上記相コイルを構成する上記導体線の一端を軸方向に延伸させた位置に位置するように上記モータの軸端に配設され、上記インバータユニットのそれぞれは、上記相コイルのそれぞれに対応して、上記交流出力端子が上記相コイルを構成する上記導体線の他端を軸方向に延伸させた位置に位置するように、軸方向と直交する平面上で上記相コイルを構成する上記導体線の他端を軸方向に延伸させた位置からシフトして上記モータの軸端に配設され、上記相コイルのそれぞれは、上記ティース部に巻回された上記導体線の他端を上記モータの軸方向と平行に延伸させて、対応する上記インバータユニットの上記交流出力端子に接合され、かつ上記ティース部に巻回された上記導体線の一端を上記モータの軸方向と平行に延伸させて、上記中性点結線導体に接合されている。 An inverter-integrated drive module according to the present invention includes a stator having a stator coil formed by winding a conductor wire around each of the teeth portions and having the same number of phase coils as the teeth portions, and one end of the conductor wire. An annular neutral point connection conductor for connecting the phase coils in a star shape and a rotor having a magnetic pole in which N poles and S poles are alternately arranged in the circumferential direction; An input terminal, a negative input terminal, an upper arm switching element having a positive electrode connected to the positive input terminal, a lower arm switching element having a negative electrode connected to the negative input terminal, and an upper arm switching element An AC output terminal connected to the negative electrode side and the positive electrode side of the lower arm side switching element, and having the same number of inverter units as the phase coils It includes a down converter module, a. And the said neutral point connection conductor is arrange | positioned in the axial end of the said motor so that the end of the said conductor wire which comprises the said phase coil may be located in the position extended in the axial direction, and each of the said inverter unit is In correspondence with each of the phase coils, the AC output terminal is located on a plane orthogonal to the axial direction so that the other end of the conductor wire constituting the phase coil is extended in the axial direction. The other end of the conductor wire constituting the phase coil is shifted from the position extended in the axial direction and is arranged at the shaft end of the motor, and each of the phase coils is wound around the teeth portion. The other end of the conductor wire is extended parallel to the axial direction of the motor, and one end of the conductor wire that is joined to the AC output terminal of the corresponding inverter unit and wound around the tooth portion is connected to the motor. Axial direction By extend parallel to and are joined to the neutral point connection conductor.
 この発明によれば、相コイルのそれぞれに対応するインバータユニットから給電されるので、曲げにくい導体線を用いてティース部間を跨いで同相の相コイル同士を結線する必要がない。
 また、環状の中性点結線導体が、相コイルを構成する導体線の一端を軸方向に延伸させた位置に位置するようにモータの軸端に配設されている。そこで、ティース部に巻回された導体線の一端をモータの軸方向と平行に延伸させて中性点結線導体に接合できるので、導体線の端部の曲げが不要となり、相コイルの中性点の結線が簡易となる。
 また、インバータユニットが、相コイルのそれぞれに対応して、交流出力端子が相コイルを構成する導体線の他端を軸方向に延伸させた位置に位置するように、モータの軸端に配設されている。そこで、ティース部に巻回された導体線の他端をモータの軸方向と平行に延伸させて、対応するインバータユニットの交流出力端子に接合できるので、導体線の曲げが不要となり、相コイルとインバータ回路との接続が簡易となる。
According to the present invention, since power is supplied from the inverter unit corresponding to each of the phase coils, it is not necessary to connect the phase coils of the same phase across the teeth portions using a conductor wire that is difficult to bend.
An annular neutral point connecting conductor is disposed at the shaft end of the motor so as to be located at a position where one end of the conductor wire constituting the phase coil is extended in the axial direction. Therefore, one end of the conductor wire wound around the teeth can be extended parallel to the motor axial direction and joined to the neutral point connection conductor, so there is no need to bend the end of the conductor wire and the neutrality of the phase coil Point connection is simplified.
Also, the inverter unit is arranged at the shaft end of the motor so that the AC output terminal is positioned at a position where the other end of the conductor wire constituting the phase coil is extended in the axial direction corresponding to each of the phase coils. Has been. Therefore, the other end of the conductor wire wound around the tooth portion can be extended parallel to the motor axial direction and joined to the AC output terminal of the corresponding inverter unit, so there is no need to bend the conductor wire, Connection to the inverter circuit is simplified.
この発明の実施の形態1に係るインバータ一体型駆動モジュールを示す斜視断面図である。1 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 1 of the present invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用される相コイルの構成を説明する斜視図である。It is a perspective view explaining the structure of the phase coil applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用される中性点結線導体の構造を説明する要部斜視図である。It is a principal part perspective view explaining the structure of the neutral point connection conductor applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるインバータユニットの構成を説明する模式図である。It is a schematic diagram explaining the structure of the inverter unit applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるインバータユニットの交流出力端子と相コイルとの接続構造を説明する斜視図である。It is a perspective view explaining the connection structure of the alternating current output terminal of the inverter unit and phase coil in the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを示す断面図である。It is sectional drawing which shows the motor applied to the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るインバータ一体型駆動モジュールの回路図である。It is a circuit diagram of the inverter integrated drive module which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るインバータ一体型駆動モジュールにおけるインバータユニットの交流出力端子と相コイルとの接続構造を説明する斜視図である。It is a perspective view explaining the connection structure of the alternating current output terminal of the inverter unit and phase coil in the inverter integrated drive module which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るインバータ一体型駆動モジュールに適用される中性点結線導体の構造を説明する要部斜視図である。It is a principal part perspective view explaining the structure of the neutral point connection conductor applied to the inverter integrated drive module which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るインバータ一体型駆動モジュールに適用される相コイルの構成を説明する斜視図である。It is a perspective view explaining the structure of the phase coil applied to the inverter integrated drive module which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係るインバータ一体型駆動モジュールを示す斜視断面図である。It is a perspective sectional view showing an inverter integrated drive module according to Embodiment 3 of the present invention. この発明の実施の形態3に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。It is an end elevation explaining the arrangement | sequence state of the inverter unit in the inverter integrated drive module which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。It is an end elevation explaining the arrangement | sequence state of the inverter unit in the inverter integrated drive module which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。It is an end elevation explaining the arrangement | sequence state of the inverter unit in the inverter integrated drive module which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係るインバータ一体型駆動モジュールにおけるステータコイルの結線状態を説明する模式図である。It is a schematic diagram explaining the connection state of the stator coil in the inverter integrated drive module which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係るインバータ一体型駆動モジュールを示す斜視断面図である。It is a perspective sectional view showing an inverter integrated drive module according to Embodiment 7 of the present invention. この発明の実施の形態8に係るインバータ一体型駆動モジュールを示す斜視断面図である。It is a perspective sectional view showing an inverter integrated drive module according to Embodiment 8 of the present invention. この発明の実施の形態9に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。It is principal part sectional drawing explaining the connection structure of the alternating current output terminal and phase coil in the inverter integrated drive module which concerns on Embodiment 9 of this invention. この発明の実施の形態10に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。It is principal part sectional drawing explaining the connection structure of the alternating current output terminal and phase coil in the inverter integrated drive module which concerns on Embodiment 10 of this invention. この発明の実施の形態11に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。It is principal part sectional drawing explaining the connection structure of the alternating current output terminal and phase coil in the inverter integrated drive module which concerns on Embodiment 11 of this invention.
 以下、本発明によるインバータ一体型駆動モジュールの好適な実施の形態につき図面を用いて説明する。 Hereinafter, preferred embodiments of an inverter-integrated drive module according to the present invention will be described with reference to the drawings.
 実施の形態1.
 図1はこの発明の実施の形態1に係るインバータ一体型駆動モジュールを示す斜視断面図、図2はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用される相コイルの構成を説明する斜視図、図3はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用される中性点結線導体の構造を説明する要部斜視図、図4はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるインバータユニットの構成を説明する模式図、図5はこの発明の実施の形態1に係るインバータ一体型駆動モジュールにおけるインバータユニットの交流出力端子と相コイルとの接続構造を説明する斜視図、図6はこの発明の実施の形態1に係るインバータ一体型駆動モジュールに適用されるモータを示す断面図、図7はこの発明の実施の形態1に係るインバータ一体型駆動モジュールの回路図である。
Embodiment 1 FIG.
FIG. 1 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 1 of the present invention, and FIG. 2 illustrates a configuration of a phase coil applied to the inverter-integrated drive module according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of a main part for explaining the structure of a neutral point connecting conductor applied to the inverter-integrated drive module according to the first embodiment of the present invention, and FIG. 4 is a first embodiment of the present invention. FIG. 5 is a schematic diagram for explaining the configuration of an inverter unit applied to the inverter-integrated drive module according to FIG. 5, and FIG. 5 shows the relationship between the AC output terminal and the phase coil of the inverter unit in the inverter-integrated drive module according to Embodiment 1 FIG. 6 is a cross-sectional view illustrating a motor applied to the inverter-integrated drive module according to Embodiment 1 of the present invention; 7 is a circuit diagram of an inverter-integrated driving module according to Embodiment 1 of the present invention.
 図1において、インバータ一体型駆動モジュール1は、外部の直流電源に接続されてDC供給ラインを構成する正極給電板2および負極給電板3と、正極給電板2と負極給電板3とに供給された直流電力を交流電力に変換するインバータモジュール4と、インバータモジュール4で変換された交流電力が供給されて回転駆動するモータ13と、を備えている。 In FIG. 1, an inverter-integrated drive module 1 is supplied to a positive electrode power supply plate 2 and a negative electrode power supply plate 3, which are connected to an external DC power source and constitute a DC supply line, and to a positive electrode power supply plate 2 and a negative electrode power supply plate 3. The inverter module 4 that converts the DC power into the AC power, and the motor 13 that is supplied with the AC power converted by the inverter module 4 and rotates.
 モータ13は、シャフト挿通孔15aが軸心位置に穿設された円筒状に作製され、シャフト挿通孔15aに挿通されたシャフト16に固着されたロータヨーク部15、およびロータヨーク部15の外周縁部に穴方向を軸方向として周方向に等角ピッチで穿設された磁石挿入孔17のそれぞれに挿入、固着された永久磁石18を有するロータ14と、円筒状のステータヨーク部21およびそれぞれステータヨーク部21の内周面から径方向内方に突設され、周方向に等角ピッチで配列されたティース部22を有するステータコア20、およびステータコア20に巻装されたステータコイル24を有するステータ19と、を備えている。 The motor 13 is made in a cylindrical shape with a shaft insertion hole 15a drilled at the axial center position, and is attached to the rotor yoke portion 15 fixed to the shaft 16 inserted through the shaft insertion hole 15a and the outer peripheral edge portion of the rotor yoke portion 15. A rotor 14 having a permanent magnet 18 inserted and fixed in each of magnet insertion holes 17 drilled at an equiangular pitch in the circumferential direction with the hole direction as an axial direction, a cylindrical stator yoke portion 21, and a stator yoke portion, respectively. A stator core 20 having teeth 22 projecting radially inward from an inner circumferential surface of 21 and arranged at equiangular pitches in the circumferential direction, and a stator 19 having a stator coil 24 wound around the stator core 20; It has.
 ロータ14は、鉄などの磁性材料を用いて作製されたロータヨーク部15に固着されたシャフト16をハウジング27に保持された軸受(図示せず)に支持されてハウジング27内に回転可能に配設される。永久磁石18は、例えば焼結希土類磁石である。そして、20個の永久磁石18が、図6に示されるように、磁石挿入孔17に挿入されて、N極とS極とが交互に並ぶように周方向に等角ピッチに配列されている。 The rotor 14 is rotatably disposed in the housing 27 by a shaft 16 fixed to the rotor yoke portion 15 made of a magnetic material such as iron supported by a bearing (not shown) held by the housing 27. Is done. The permanent magnet 18 is, for example, a sintered rare earth magnet. Then, as shown in FIG. 6, 20 permanent magnets 18 are inserted into the magnet insertion holes 17 and arranged at equiangular pitches in the circumferential direction so that N poles and S poles are alternately arranged. .
 ステータコア20は、例えば磁性鋼板を積層して作製され、24個のティース部22がステータヨーク部21の内周面に突設され、スロット23がステータヨーク部21と隣り合うティース部22とに囲まれて構成されている。そして、ステータコイル24は、各ティース部22に巻回された24本の相コイル25から構成されている。各相コイル25は、1本の導体線26を1つのティース部22に所定回巻回して構成された集中巻コイルである。24本の相コイル25は、図6に示されるように、U1相、U2相、V1相、V2相、W1相、W2相の順に周方向に繰り返し並んでステータコア20に巻装される。 The stator core 20 is produced by laminating magnetic steel plates, for example, and 24 teeth portions 22 project from the inner peripheral surface of the stator yoke portion 21, and the slots 23 are surrounded by the tooth portions 22 adjacent to the stator yoke portion 21. It is configured. The stator coil 24 is composed of 24 phase coils 25 wound around each tooth portion 22. Each phase coil 25 is a concentrated winding coil configured by winding one conductor wire 26 around one tooth portion 22 a predetermined number of times. As shown in FIG. 6, the 24 phase coils 25 are wound around the stator core 20 while being repeatedly arranged in the circumferential direction in the order of the U1 phase, the U2 phase, the V1 phase, the V2 phase, the W1 phase, and the W2 phase.
 ここで、相コイル25の構成について図2を参照しつつ説明する。
 導体線26は、銅などの良電気伝導材を用いて長方形断面を有する帯状体に作製されている。導体線26は、まず、ティース部22の径方向最外位置に、1段目に巻回された導体線26の上に2段目を巻回し、2段目に巻回された導体線26の上に3段目を巻回するようにして1列に所定段数巻回される。ついで、導体線26は、径方向内側に変位され、1列目の導体線26の巻回部に隣接して、1段目に巻回された導体線26の上に2段目を巻回し、2段目に巻回された導体線26の上に3段目を巻回するようにして1列に所定段数巻回される。このように、導体線26を径方向内側に変位しつつ所定段数、かつ所定列数巻回して、所定ターン数の相コイル25が作製される。
Here, the configuration of the phase coil 25 will be described with reference to FIG.
The conductor wire 26 is made into a belt-like body having a rectangular cross section using a good electrical conductive material such as copper. First, the conductor wire 26 is wound on the outermost position in the radial direction of the tooth portion 22 on the conductor wire 26 wound on the first step, and the conductor wire 26 wound on the second step. A predetermined number of stages are wound in one row so that the third stage is wound on the top. Next, the conductor wire 26 is displaced inward in the radial direction and adjacent to the winding portion of the first row of conductor wires 26, the second row is wound on the conductor wires 26 wound in the first row. A predetermined number of turns are wound in one row so that the third stage is wound on the conductor wire 26 wound in the second stage. Thus, the phase coil 25 having a predetermined number of turns is produced by winding the conductor wire 26 in a predetermined number of rows and a predetermined number of rows while displacing the conductor wire 26 inward in the radial direction.
 このとき、導体線26は、長方形断面の短辺の法線がティース部22に向くように、即ちエッジワイズに巻かれている。また、導体線26の巻き始め部26aおよび巻き終わり部26bは、同一スロット23の径方向外側と内側とからステータコア20の軸方向の反対方向に延伸している。そして、24本の相コイル25は、スロット23の径方向外側から延伸する導体線26の巻き始め部26aがステータコア20の軸方向一側と他側とに交互に延伸するように周方向に配設されている。 At this time, the conductor wire 26 is wound edgewise so that the normal of the short side of the rectangular cross section faces the tooth portion 22. The winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 extend from the radially outer side and the inner side of the same slot 23 in the opposite direction of the axial direction of the stator core 20. The 24 phase coils 25 are arranged in the circumferential direction so that the winding start portions 26a of the conductor wires 26 extending from the radially outer side of the slots 23 alternately extend on one side and the other side of the stator core 20. It is installed.
 モータ13は、このように作製されたステータ19が、ハウジング27に固着されて、ロータ14の外周側に、かつシャフト16と同軸に配設されている。そして、一対の基板6が、モータ13の軸方向両側に、シャフト16の軸心と直交するようにハウジング27に固着されている。 In the motor 13, the stator 19 manufactured in this way is fixed to the housing 27, and is arranged on the outer peripheral side of the rotor 14 and coaxially with the shaft 16. The pair of substrates 6 are fixed to the housing 27 on both sides in the axial direction of the motor 13 so as to be orthogonal to the axis of the shaft 16.
 中性点結線導体28は、銅などの良電気伝導材を用いて長方形断面を有する円形のリング状平板に作製されている。接続部28aが、図3に示されるように、それぞれ中性点結線導体28の一部を直角に径方向に切り起こして、周方向に等角ピッチで12個形成されている。中性点結線導体28は、シャフト16と同軸に、かつ接続部28aを向き合わせて、一対の基板6の対向する面のそれぞれに電気的に絶縁されて固着されている。このとき、中性点結線導体28は、接続部28aの表面がスロット23の径方向外側から軸方向と平行に延伸する導体線26の巻き始め部26aの長方形断面の内径側の長辺により構成される平面に近接して相対するように構成されている。 The neutral point connection conductor 28 is made of a circular ring-shaped flat plate having a rectangular cross section using a good electrical conductive material such as copper. As shown in FIG. 3, twelve connecting portions 28a are formed at equal angular pitches in the circumferential direction by cutting and raising a part of the neutral point connecting conductor 28 at right angles in the radial direction. The neutral point connection conductor 28 is coaxially connected to the shaft 16 and faces the connection portion 28a, and is electrically insulated and fixed to each of the opposing surfaces of the pair of substrates 6. At this time, the neutral point connection conductor 28 is constituted by the long side on the inner diameter side of the rectangular cross section of the winding start portion 26a of the conductor wire 26 in which the surface of the connection portion 28a extends parallel to the axial direction from the outer side in the radial direction of the slot 23 It is comprised so that it may oppose and adjoin to the plane to be done.
 そして、スロット23の径方向外側からステータコア20の軸方向一側に軸方向と平行に延伸する導体線26の巻き始め部26aが、ステータコア20の軸方向一側に配設された基板6に固着された中性点結線導体28(第1中性点結線導体)の接続部28aに突き合わされて半田などにより接合される。これにより、図7に示されるように、4本のU1相の相コイル25を並列接続して構成されたU相コイル、4本のV1相の相コイル25を並列接続して構成されたV相コイルおよび4本のW1相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された第1の3相交流巻線50が作製される。 Then, a winding start portion 26a of a conductor wire 26 extending parallel to the axial direction from the radially outer side of the slot 23 to the axial direction one side of the stator core 20 is fixed to the substrate 6 disposed on the axial direction one side of the stator core 20. The contact point 28a of the neutral point connection conductor 28 (first neutral point connection conductor) thus formed is abutted and joined by solder or the like. Accordingly, as shown in FIG. 7, a U-phase coil configured by connecting four U1-phase coils 25 in parallel and a V-circuit configured by connecting four V1-phase coils 25 in parallel. A W-phase coil configured by connecting a phase coil and four W1-phase coils 25 in parallel is connected to form a first three-phase AC winding 50 configured as a star-shaped coil.
 同様に、スロット23の径方向外側からステータコア20の軸方向他側に軸方向と平行に延伸する導体線26の巻き始め部26aが、ステータコア20の軸方向他側に配設された基板6に固着された中性点結線導体28(第2中性点結線導体)の接続部28aに突き合わされて半田などにより接合される。これにより、図7に示されるように、4本のU2相の相コイル25を並列接続して構成されたU相コイル、4本のV2相の相コイル25を並列接続して構成されたV相コイルおよび4本のW2相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された第2の3相交流巻線51が作製される。 Similarly, a winding start portion 26 a of a conductor wire 26 extending in parallel to the axial direction from the radially outer side of the slot 23 to the other axial direction of the stator core 20 is formed on the substrate 6 disposed on the other axial side of the stator core 20. It is abutted against the connecting portion 28a of the fixed neutral point connection conductor 28 (second neutral point connection conductor) and joined by soldering or the like. Accordingly, as shown in FIG. 7, a U-phase coil configured by connecting four U2-phase coils 25 in parallel and a V-circuit configured by connecting four V2-phase coils 25 in parallel. A W-phase coil configured by connecting a phase coil and four W2-phase coils 25 in parallel is connected to form a second three-phase AC winding 51 configured as a star-connected coil.
 このように、ステータコイル24は、互いに電気角で30度の位相差を有する第1および第2の3相交流巻線50,51により構成され、モータ13は、極数20、スロット数24のインナーロータ型の2重3相のモータに構成されている。 Thus, the stator coil 24 is composed of the first and second three-phase AC windings 50 and 51 having a phase difference of 30 degrees in electrical angle, and the motor 13 has 20 poles and 24 slots. It is configured as an inner rotor type double three-phase motor.
 インバータユニット5は、図4に示されるように、上アーム側スイッチング素子7、下アーム側スイッチング素子8、正極入力端子9、負極入力端子10、および交流出力端子11を備えている。そして、上アーム側スイッチング素子7と下アーム側スイッチング素子8とが絶縁性樹脂により樹脂封止されて略直方体に形成されている。正極入力端子9はその一端を上アーム側スイッチング素子7の正極側に接続されて樹脂封止部12から延出され、負極入力端子10がその一端を下アーム側スイッチング素子8の負極側に接続されて樹脂封止部12から延出され、交流出力端子11がその一端を上アーム側スイッチング素子7の負極側と下アーム側スイッチング素子8の正極側とに接続されて樹脂封止部12から延出されている。 The inverter unit 5 includes an upper arm side switching element 7, a lower arm side switching element 8, a positive input terminal 9, a negative input terminal 10, and an AC output terminal 11, as shown in FIG. The upper arm side switching element 7 and the lower arm side switching element 8 are formed into a substantially rectangular parallelepiped by resin sealing with an insulating resin. One end of the positive electrode input terminal 9 is connected to the positive electrode side of the upper arm side switching element 7 and extends from the resin sealing portion 12, and the one end of the negative electrode input terminal 10 is connected to the negative electrode side of the lower arm side switching element 8. The AC output terminal 11 is connected to the negative side of the upper arm side switching element 7 and the positive side of the lower arm side switching element 8 from the resin sealing part 12. It has been extended.
 そして、図5に示されるように、正極入力端子9と負極入力端子10は、樹脂封止部12の厚み方向に離間して、樹脂封止部12の同じ側面から延出され、交流出力端子11は、正極入力端子9と負極入力端子10とが延出される樹脂封止部12の側面に相対する側面から延出されている。なお、上アーム側スイッチング素子7および下アーム側スイッチング素子8には、例えばMOSFET、IGBTなどの半導体スイッチング素子が用いられる。 And as FIG. 5 shows, the positive electrode input terminal 9 and the negative electrode input terminal 10 are spaced apart in the thickness direction of the resin sealing part 12, are extended from the same side surface of the resin sealing part 12, and are AC output terminals. 11 is extended from the side surface opposite to the side surface of the resin sealing part 12 from which the positive electrode input terminal 9 and the negative electrode input terminal 10 are extended. For the upper arm side switching element 7 and the lower arm side switching element 8, semiconductor switching elements such as MOSFET and IGBT are used, for example.
 インバータモジュール4は、12個のインバータユニット5を各基板6のモータ13と反対側の表面上に、同心円上に等角ピッチで1列に並んで実装されて構成されている。このとき、各インバータユニット5は、交流出力端子11が延出される樹脂封止部12の側面を径方向外方に向けて、径方向に関して相コイル25の内径側に位置するように各基板6に実装されている。さらに、各インバータユニット5は、樹脂封止部12の側面から延出する交流出力端子11が、スロット23の径方向内側からステータコア20の軸方向と平行に延伸する導体線26の巻き終わり部26bと交差するように、位置決めされて、各基板6に実装されている。 The inverter module 4 is configured by mounting twelve inverter units 5 on the surface of each substrate 6 opposite to the motor 13 in a row on a concentric circle at an equiangular pitch. At this time, each inverter unit 5 has each board | substrate 6 so that the side surface of the resin sealing part 12 from which the alternating current output terminal 11 is extended may be located on the inner diameter side of the phase coil 25 with respect to the radial direction. Has been implemented. Further, each inverter unit 5 includes a winding end portion 26b of a conductor wire 26 in which the AC output terminal 11 extending from the side surface of the resin sealing portion 12 extends from the radially inner side of the slot 23 in parallel with the axial direction of the stator core 20. And are mounted on each substrate 6 so as to cross each other.
 そして、ステータコア20の軸方向の他側に配設された基板6に実装されたインバータユニット5の交流出力端子11が、それぞれ、L字状に曲げられた先端部を、図5に示されるように、スロット23の径方向内側からステータコア20の軸方向の他側に軸方向と平行に延伸し、基板6に穿設された貫通穴29から軸方向に引き出された導体線26の巻き終わり部26bの長方形断面の長辺により構成される平面に突き合わされて半田などにより接合される。これにより、第1の3相交流巻線がインバータモジュール4と電気的に接続される。 Then, the AC output terminals 11 of the inverter unit 5 mounted on the substrate 6 disposed on the other side in the axial direction of the stator core 20 are respectively bent at L-shaped ends as shown in FIG. Further, the winding end portion of the conductor wire 26 extending from the radially inner side of the slot 23 to the other axial direction side of the stator core 20 in parallel with the axial direction and drawn out in the axial direction from the through hole 29 drilled in the substrate 6. It is abutted against a plane constituted by the long side of the rectangular cross section 26b and joined by solder or the like. Thereby, the first three-phase AC winding is electrically connected to the inverter module 4.
 同様に、ステータコア20の軸方向の一側に配設された基板6に実装されたインバータユニット5の交流出力端子11が、それぞれ、L字状に曲げられた先端部を、スロット23の径方向内側からステータコア20の軸方向の一側に軸方向と平行に延伸し、基板6に穿設された貫通穴29から軸方向に引き出された導体線26の巻き終わり部26bの長方形断面の長辺により構成される平面に突き合わされて半田などにより接合される。これにより、第2の3相交流巻線がインバータモジュール4と電気的に接続される。 Similarly, each of the AC output terminals 11 of the inverter unit 5 mounted on the substrate 6 disposed on one side of the stator core 20 in the axial direction has an L-shaped bent end portion in the radial direction of the slot 23. The long side of the rectangular cross section of the winding end portion 26b of the conductor wire 26 that extends parallel to the axial direction from the inside to one side in the axial direction of the stator core 20 and is drawn out from the through hole 29 formed in the substrate 6 in the axial direction. Are joined to each other by solder or the like. As a result, the second three-phase AC winding is electrically connected to the inverter module 4.
 正極給電板2と負極給電板3は、それぞれ、銅などの良電気伝導材を用いて円形リング状の平板に作製され、各基板6のモータ13と反対側の表面上に保持部材30により電気的に絶縁状態に支持されて、軸方向に所定の隙間を持って平行に、かつ同軸に配設されて平行平板電極を構成する。正極給電板2と負極給電板3は、周方向に配列されているインバータユニット5の内径側に配設され、各インバータユニット5の樹脂封止部12から径方向内方に延出された正極入力端子9が正極給電板2に半田などにより接合され、各インバータユニット5の樹脂封止部12から径方向内方に延出された負極入力端子10が負極給電板3に半田などにより接合されている。 Each of the positive electrode power supply plate 2 and the negative electrode power supply plate 3 is made into a circular ring-shaped flat plate using a good electric conductive material such as copper, and is electrically connected to the surface of each substrate 6 opposite to the motor 13 by a holding member 30. A parallel plate electrode is configured by being supported in an insulated state and arranged in parallel and coaxially with a predetermined gap in the axial direction. The positive electrode power supply plate 2 and the negative electrode power supply plate 3 are disposed on the inner diameter side of the inverter units 5 arranged in the circumferential direction, and are positive electrodes that extend radially inward from the resin sealing portions 12 of the inverter units 5. The input terminal 9 is joined to the positive electrode power supply plate 2 by solder or the like, and the negative electrode input terminal 10 extending radially inward from the resin sealing portion 12 of each inverter unit 5 is joined to the negative electrode power supply plate 3 by solder or the like. ing.
 ここで、図示していないが、ヒートシンクがインバータユニット5の樹脂封止部12のモータ13と反対側の面に配設され、上アーム側スイッチング素子7および下アーム側スイッチング素子8での発熱を効果的に放熱できるようになっている。なお、基板6に代えて、ヒートシンクを用いてもよい。 Here, although not shown, a heat sink is disposed on the surface of the resin sealing portion 12 of the inverter unit 5 on the side opposite to the motor 13 to generate heat in the upper arm side switching element 7 and the lower arm side switching element 8. Heat can be effectively dissipated. Note that a heat sink may be used instead of the substrate 6.
 このように構成されたインバータ一体型駆動モジュール1は、図7に示されるように、正極給電板2と負極給電板3が配線32を介して外部電源31に接続され、平滑コンデンサ33がインバータモジュール4の入力側に並列に接続され、リップル電流を吸収して入力電圧を安定化させている。
 そして、24個のインバータユニット5の上アーム側スイッチング素子7と下アーム側スイッチング素子8が制御装置34によりON/OFF制御され、外部電源31から供給された直流電力が交流電力に変換される。交流電力は、交流出力端子11を介してステータコイル24に供給され、ステータ19に回転磁界が発生する。このステータ19の回転磁界と永久磁石18による磁界との相互作用により、回転力が発生し、ロータ14が回転駆動される。
As shown in FIG. 7, the inverter-integrated drive module 1 configured as described above has a positive electrode power supply plate 2 and a negative electrode power supply plate 3 connected to an external power source 31 via a wiring 32, and a smoothing capacitor 33 is an inverter module. 4 is connected in parallel to the input side of 4 to absorb the ripple current and stabilize the input voltage.
Then, the upper arm side switching element 7 and the lower arm side switching element 8 of the 24 inverter units 5 are ON / OFF controlled by the control device 34, and the DC power supplied from the external power supply 31 is converted into AC power. AC power is supplied to the stator coil 24 via the AC output terminal 11, and a rotating magnetic field is generated in the stator 19. Due to the interaction between the rotating magnetic field of the stator 19 and the magnetic field generated by the permanent magnet 18, a rotational force is generated and the rotor 14 is driven to rotate.
 このインバータ一体型駆動モジュール1は、供給電源が直流であるので、電鉄のような複数のモータを使う場合にも使用可能である。 This inverter-integrated drive module 1 can be used even when a plurality of motors such as electric railways are used because the power supply is DC.
 この実施の形態1によれば、ステータコイル24が導体線26をティース部22のそれぞれに集中巻に巻回して形成されたティース部22の本数分の相コイル25から構成されている。そして、インバータユニット5は、相コイル25のそれぞれに対応するように、交流出力端子11が相コイル25を構成する導体線26の巻き終わり部26bを軸方向に延伸させた位置に位置するように、モータ13の軸端に配設されている。そこで、導体線26の巻き終わり部26bが軸方向と平行に延伸されて、インバータユニット5の交流出力端子11に接合される。また、環状の中性点結線導体28が、相コイル25を構成する導体線26の巻き始め部26aを軸方向に延伸させた位置に位置するように、シャフト16と同軸にモータ13の軸端に配設されている。そこで、導体線26の巻き始め部26aが軸方向と平行に延伸されて、中性点結線導体28に接合される。 According to the first embodiment, the stator coil 24 includes the phase coils 25 corresponding to the number of the teeth portions 22 formed by winding the conductor wires 26 around the teeth portions 22 in concentrated winding. The inverter unit 5 is positioned so that the AC output terminal 11 corresponds to each of the phase coils 25 and the winding end portion 26b of the conductor wire 26 constituting the phase coil 25 is extended in the axial direction. The motor 13 is disposed at the shaft end. Therefore, the winding end portion 26 b of the conductor wire 26 is extended in parallel with the axial direction and joined to the AC output terminal 11 of the inverter unit 5. Further, the axial end of the motor 13 is coaxial with the shaft 16 so that the annular neutral point connection conductor 28 is located at a position where the winding start portion 26a of the conductor wire 26 constituting the phase coil 25 is extended in the axial direction. It is arranged. Therefore, the winding start portion 26 a of the conductor wire 26 is extended parallel to the axial direction and joined to the neutral point connection conductor 28.
 これにより、各相コイル25に専用のインバータユニット5から給電できるので、曲げにくい導体線を用いてティース部22間を跨いで同相の相コイル25同士を結線する必要がなくなる。さらに、導体線26の端部の曲げを抑えて、相コイル25とインバータ回路とを簡易に接続でき、さらに相コイル25の中性点を簡易に接続できるので、断面積の大きな導体線26の使用が可能となり、電気自動車などの大容量の用途に好適なインバータ一体型駆動モジュール1が得られる。 Thus, since each phase coil 25 can be fed from the dedicated inverter unit 5, it is not necessary to connect the phase coils 25 of the same phase across the teeth portions 22 using a conductor wire that is difficult to bend. Furthermore, the bending of the end portion of the conductor wire 26 can be suppressed, the phase coil 25 and the inverter circuit can be easily connected, and the neutral point of the phase coil 25 can be easily connected. The inverter-integrated drive module 1 that can be used and is suitable for high-capacity applications such as an electric vehicle is obtained.
 導体線26の巻き始め部26aと巻き終わり部26bとが、ティース部22の径方向外側と内側とから軸方向に延伸されているので、交流出力端子11と中性点結線導体28とがモータ13の軸方向の両側に配置され、交流出力端子11と中性点結線導体28との径方向距離が長くなり、両者の絶縁が確保される。 Since the winding start portion 26a and the winding end portion 26b of the conductor wire 26 are extended in the axial direction from the radially outer side and the inner side of the tooth portion 22, the AC output terminal 11 and the neutral point connection conductor 28 are connected to the motor. 13 is disposed on both sides in the axial direction, and the radial distance between the AC output terminal 11 and the neutral point connection conductor 28 is increased, and insulation between the two is ensured.
 相コイル25は、導体線26の巻き始め部26aと巻き終わり部26bとが、軸方向の一側と他側とに交互に延伸するように、周方向に配設されている。12個のインバータユニット5が、導体線26の巻き終わり部26bが軸方向の他側に延伸する相コイル25に対応するように、モータ13の軸方向の他側に配置された基板6のモータ13と反対側の面上に、周方向に等角ピッチで配列され、残る12個のインバータユニット5が、導体線26の巻き終わり部26bが軸方向の一側に延伸する相コイル25に対応するように、モータ13の軸方向の一側に配置された基板6のモータ13と反対側の面上に、周方向に等角ピッチで配列されている。さらに、中性点結線導体28が、モータ13の軸方向両側に配置された基板6の相対する面上に、シャフト16と同軸に配設されている。 The phase coil 25 is disposed in the circumferential direction so that the winding start portion 26a and the winding end portion 26b of the conductor wire 26 alternately extend on one side and the other side in the axial direction. The motor of the substrate 6 arranged on the other side in the axial direction of the motor 13 so that the twelve inverter units 5 correspond to the phase coils 25 in which the winding end portion 26b of the conductor wire 26 extends to the other side in the axial direction. The remaining 12 inverter units 5 are arranged on the surface opposite to 13 in the circumferential direction at an equiangular pitch, and the remaining 12 inverter units 5 correspond to the phase coil 25 in which the winding end portion 26b of the conductor wire 26 extends to one side in the axial direction. Thus, on the surface opposite to the motor 13 of the substrate 6 arranged on one side in the axial direction of the motor 13, they are arranged at an equiangular pitch in the circumferential direction. Further, the neutral point connection conductor 28 is disposed coaxially with the shaft 16 on the opposing surfaces of the substrate 6 disposed on both axial sides of the motor 13.
 そして、相コイル25の軸方向の他側に延伸する導体線26の巻き終わり部26bが、モータ13の軸方向の他側に配置された、対応するインバータユニット5の交流出力端子11に接合され、相コイル25の軸方向の一側に延伸する導体線26の巻き始め部26aが、モータ13の軸方向の一側に配置された中性点結線導体28に接合されている。さらに、相コイル25の軸方向の一側に延伸する導体線26の巻き終わり部26bが、モータ13の軸方向の一側に配置された、対応するインバータユニット5の交流出力端子11に接合され、相コイル25の軸方向の他側に延伸する導体線26の巻き始め部26aが、モータ13の軸方向の他側に配置された中性点結線導体28に接合されている。 Then, the winding end portion 26 b of the conductor wire 26 extending to the other side in the axial direction of the phase coil 25 is joined to the AC output terminal 11 of the corresponding inverter unit 5 disposed on the other side in the axial direction of the motor 13. A winding start portion 26 a of a conductor wire 26 extending to one side in the axial direction of the phase coil 25 is joined to a neutral point connection conductor 28 disposed on one side in the axial direction of the motor 13. Furthermore, the winding end portion 26 b of the conductor wire 26 extending to one side in the axial direction of the phase coil 25 is joined to the AC output terminal 11 of the corresponding inverter unit 5 disposed on one side in the axial direction of the motor 13. The winding start portion 26 a of the conductor wire 26 extending to the other side in the axial direction of the phase coil 25 is joined to a neutral point connection conductor 28 disposed on the other side in the axial direction of the motor 13.
 これにより、24個のインバータユニット5が、軸方向の両側に、12個ずつに分かれて、周方向に等角ピッチに配列されて基板6に実装されているので、発熱部品であるインバータユニット5が周方向に分散され、インバータユニット5の温度上昇が抑えられる。
 また、電位の異なる中性点結線導体28がモータ13の軸方向の両側に配設されているので、電位の異なる中性点結線導体28間の絶縁が確保される。
As a result, the 24 inverter units 5 are divided into 12 pieces on both sides in the axial direction, and are arranged on the substrate 6 at an equiangular pitch in the circumferential direction. Are distributed in the circumferential direction, and the temperature rise of the inverter unit 5 is suppressed.
Moreover, since the neutral point connection conductors 28 having different potentials are disposed on both sides in the axial direction of the motor 13, insulation between the neutral point connection conductors 28 having different potentials is ensured.
 ここで、導体線26として長方形断面を有する帯状体を用いる効果について説明する。
 まず、円形断面の導体線は、ティース部22に径方向最外位置から径方向最内位置まで1段目を巻き付け、ついでティース部22の径方向最内位置から径方向最外位置まで2段目を巻き付け、さらにティース部22に径方向最外位置から径方向最内位置まで3段目を巻き付けられる。このように、円形断面の導体線を径方向に往復移動させながら、所定段数、かつ所定列数巻回して、所定ターン数の相コイルが作製される。したがって、導体線の巻き終わり部の径方向位置、つまり、導体線の巻き始め部と巻き終わり部との径方向距離が、必要ターン数、導体線およびティース部の太さ、ティース部の径方向長さなどにより、変わってしまう。
Here, the effect of using a strip having a rectangular cross section as the conductor wire 26 will be described.
First, a conductor wire having a circular cross section is wound around the tooth portion 22 from the radially outermost position to the radially innermost position, and then from the radially innermost position to the radially outermost position of the teeth portion 22 in two steps. Further, the third stage is wound around the teeth portion 22 from the radially outermost position to the radially innermost position. In this way, a phase coil having a predetermined number of turns is produced by winding a predetermined number of steps and a predetermined number of rows while reciprocating a conductor wire having a circular cross section in the radial direction. Therefore, the radial position of the winding end portion of the conductor wire, that is, the radial distance between the winding start portion and the winding end portion of the conductor wire is the required number of turns, the thickness of the conductor wire and the tooth portion, and the radial direction of the tooth portion. It depends on the length.
 長方形断面を有する帯状体の導体線26では、ティース部22の径方向最外位置から径方向内側に変位しつつ所定段数、かつ所定列数巻回して、所定ターン数の相コイル25が作製される。したがって、必要ターン数にあわせて各列の段数を調整することにより、導体線26の巻き終わり部26bをティース部22の径方向最外位置に近づけるようにできる。このように、相コイル25の必要ターン数、導体線26の寸法、ティース部22の寸法などの設計要因に拘らず、導体線26の巻き終わり部26bをティース部22の径方向最外位置に近づけるようにでき、導体線26の巻き始め部26aと巻き終わり部26bとの径方向距離を十分に確保できる。 In the strip-shaped conductor wire 26 having a rectangular cross section, the phase coil 25 having a predetermined number of turns is manufactured by winding a predetermined number of rows and a predetermined number of rows while being displaced radially inward from the radially outermost position of the tooth portion 22. The Therefore, the winding end portion 26b of the conductor wire 26 can be brought closer to the radially outermost position of the tooth portion 22 by adjusting the number of stages in each row in accordance with the required number of turns. Thus, regardless of design factors such as the required number of turns of the phase coil 25, the size of the conductor wire 26, and the size of the tooth portion 22, the winding end portion 26 b of the conductor wire 26 is positioned at the radially outermost position of the tooth portion 22. Thus, the radial distance between the winding start portion 26a and the winding end portion 26b of the conductor wire 26 can be sufficiently secured.
 また、導体線26が長方形断面を有しているので、交流出力端子11および中性点結線導体28の接続部28aを平板状に作製することで、導体線26と交流出力端子11および中性点結線導体28とは、平面同士を突き合わせて接合できる。したがって、導体線26と交流出力端子11および中性点結線導体28との接合が簡易となるとともに、接合強度が高められる。 Moreover, since the conductor wire 26 has a rectangular cross section, the conductor wire 26, the AC output terminal 11, and the neutrality are produced by forming the connection portion 28a of the AC output terminal 11 and the neutral point connection conductor 28 in a flat plate shape. The point connection conductor 28 can be joined by abutting flat surfaces. Therefore, joining of the conductor wire 26 to the AC output terminal 11 and the neutral point connection conductor 28 is simplified and the joining strength is increased.
 実施の形態2.
 図8はこの発明の実施の形態2に係るインバータ一体型駆動モジュールにおけるインバータユニットの交流出力端子と相コイルとの接続構造を説明する斜視図、図9はこの発明の実施の形態2に係るインバータ一体型駆動モジュールに適用される中性点結線導体の構造を説明する要部斜視図、図10はこの発明の実施の形態2に係るインバータ一体型駆動モジュールに適用される相コイルの構成を説明する斜視図である。
Embodiment 2. FIG.
8 is a perspective view illustrating a connection structure between an AC output terminal and a phase coil of an inverter unit in an inverter-integrated drive module according to Embodiment 2 of the present invention, and FIG. 9 is an inverter according to Embodiment 2 of the present invention. FIG. 10 is a perspective view of a main part for explaining the structure of a neutral point connecting conductor applied to the integrated drive module, and FIG. 10 illustrates the configuration of a phase coil applied to the inverter integrated drive module according to Embodiment 2 of the present invention. FIG.
 この実施の形態2では、図10に示されるように、相コイル25は、導体線26の長方形断面の長辺の法線がティース部22に向くように、即ちフラットワイズにティース部22に巻回して集中巻コイルに構成されている。そして、導体線26の巻き始め部26aおよび巻き終わり部26bは、同一スロット23の径方向外側と内側とからステータコア20の軸方向の反対方向に延伸し、長方形断面の長辺により構成される平面が周方向に向いている。 In the second embodiment, as shown in FIG. 10, the phase coil 25 is wound around the tooth portion 22 so that the normal of the long side of the rectangular cross section of the conductor wire 26 faces the tooth portion 22, that is, flatwise. It is made up of concentrated winding coils. And the winding start part 26a and the winding end part 26b of the conductor wire 26 are extended in the opposite direction in the axial direction of the stator core 20 from the radially outer side and the inner side of the same slot 23, and are configured by long sides of a rectangular cross section. Is facing in the circumferential direction.
 各中性点結線導体28Aは、銅などの良電気伝導材を用いて長方形断面を有する円形のリング状平板に作製されている。そして、接続部28aが、図9に示されるように、それぞれ中性点結線導体28Aの一部を直角に周方向に切り起こして、周方向に等角ピッチで12個形成されている。そして、スロット23の径方向外側からステータコア20の軸方向と平行に延伸する導体線26の巻き始め部26aが、その長方形断面の長辺により構成される平面を中性点結線導体28Aの接続部28aの平面に突き合わされて、半田などにより接合される。 Each neutral point connecting conductor 28A is made of a circular ring-shaped flat plate having a rectangular cross section using a good electrical conductive material such as copper. Then, as shown in FIG. 9, twelve connecting portions 28a are formed at equal angular pitches in the circumferential direction by cutting and raising a part of the neutral point connection conductor 28A at right angles in the circumferential direction. Then, the winding start portion 26a of the conductor wire 26 extending in parallel with the axial direction of the stator core 20 from the outside in the radial direction of the slot 23 is a plane formed by the long side of the rectangular cross section, and the connection portion of the neutral point connection conductor 28A It is abutted against the plane 28a and joined by solder or the like.
 インバータユニット5の交流出力端子11は、図8に示されるように、長方形断面の長辺の法線が周方向に向くように樹脂封止部12の側面から延出される。そして、スロット23の径方向内側からステータコア20の軸方向と平行に延伸する導体線26の巻き終わり部26bが、その長方形断面の長辺により構成される平面を交流出力端子11の長方形断面の長辺により構成される平面に突き合わされて、半田などにより接合される。
 なお、他の構成は上記実施の形態1と同様に構成されている。
As shown in FIG. 8, the AC output terminal 11 of the inverter unit 5 extends from the side surface of the resin sealing portion 12 so that the normal line of the long side of the rectangular cross section faces the circumferential direction. Then, the winding end portion 26b of the conductor wire 26 extending in parallel with the axial direction of the stator core 20 from the radially inner side of the slot 23 has a plane constituted by the long side of the rectangular cross section as the length of the rectangular cross section of the AC output terminal 11. It is abutted against a plane constituted by sides and joined by solder or the like.
Other configurations are the same as those in the first embodiment.
 したがって、この実施の形態2においても、上記実施の形態1と同様の効果を奏する。
 この実施の形態2では、相コイル25が、導体線26をフラットワイズにティース部22に巻回して構成されている。そこで、エッジワイズにティース部22に巻回している上記実施の形態1に比べ、導体線26をティース部22に巻回しやすくなり、相コイル25の作製が容易となる。
Therefore, the second embodiment also has the same effect as the first embodiment.
In the second embodiment, the phase coil 25 is configured by winding the conductor wire 26 around the tooth portion 22 flatly. Therefore, the conductor wire 26 can be easily wound around the tooth portion 22 and the phase coil 25 can be easily manufactured as compared with the first embodiment in which the tooth portion 22 is wound edgewise.
 また、相コイル25において、軸方向と平行に延伸する導体線26の巻き始め部26aおよび巻き終わり部26bは、長方形断面の長辺により構成される平面が周方向に向いている。そこで、交流出力端子11の長方形断面の長辺が周方向を向くように樹脂封止部12から延出するようにインバータユニット5を作製するだけで、導体線26の巻き終わり部26bと交流出力端子11とを平面同士を突き合わして接合でき、交流出力端子11をL字状に曲げるという煩雑な作業が不要となるとともに、大きな接合強度が得られる。同様に、それぞれ中性点結線導体28Aの一部を直角に周方向に切り起こして接続部28aを形成するだけで、導体線26の巻き始め部26aと接続部28aとを平面同士を突き合わして接合でき、導体線26と中性点結線導体28Aとの接合作業が簡易となるとともに、大きな接合強度が得られる。 Further, in the phase coil 25, the winding start portion 26a and the winding end portion 26b of the conductor wire 26 extending parallel to the axial direction have a plane formed by the long sides of the rectangular cross section facing the circumferential direction. Therefore, the winding end portion 26b of the conductor wire 26 and the AC output are simply produced by making the inverter unit 5 so that the long side of the rectangular cross section of the AC output terminal 11 faces the circumferential direction. The terminals 11 can be joined to each other by joining the planes, and the complicated operation of bending the AC output terminal 11 into an L shape is not necessary, and a large joining strength is obtained. Similarly, a part of the neutral point connection conductor 28A is cut and raised in the circumferential direction at right angles to form the connection portion 28a, and the winding start portion 26a and the connection portion 28a of the conductor wire 26 are brought into contact with each other. Thus, the joining operation of the conductor wire 26 and the neutral point connection conductor 28A is simplified, and a large joining strength is obtained.
 なお、上記実施の形態1,2では、樹脂封止部から延出する交流出力端子をスロットの径方向内側から軸方向に延伸する導体線の巻き終わり部に径方向内側から突き当てて接合するものとしているが、樹脂封止部から延出する交流出力端子をスロットの径方向内側から軸方向に延伸する導体線の巻き終わり部に径方向外側から突き当てて接合してもよい。この場合、インバータユニットを外径側に位置させることができるので、周方向に隣り合うインバータユニット間の隙間が広くなり、発熱部品であるインバータユニットが周方向に分散され、インバータユニットの温度上昇が抑えられる。さらに、インバータユニットを冷却するためのヒートシンクを設置する場合には、ヒートシンクの放熱面積を大きくでき、インバータユニットの冷却性が高められる。 In the first and second embodiments, the AC output terminal extending from the resin sealing portion is abutted and joined from the radially inner side to the winding end portion of the conductor wire extending in the axial direction from the radially inner side of the slot. However, the AC output terminal extending from the resin sealing portion may be abutted and joined from the radially outer side to the winding end portion of the conductor wire extending in the axial direction from the radially inner side of the slot. In this case, since the inverter unit can be positioned on the outer diameter side, a gap between adjacent inverter units in the circumferential direction is widened, the inverter units that are heat generating parts are dispersed in the circumferential direction, and the temperature rise of the inverter unit is reduced. It can be suppressed. Further, when a heat sink for cooling the inverter unit is installed, the heat radiation area of the heat sink can be increased, and the cooling performance of the inverter unit is improved.
 また、上記実施の形態1,2では、導体線をティース部に径方向の外側から内側に向って巻回して相コイルを作製するものとしているが、導体線をティース部に径方向の内側から外側に向って巻回して相コイルを作製してもよい。この場合、導体線の巻き終わり部をスロットの径方向外側からステータコアの軸方向に延伸させてインバータユニットの交流出力端子に接続する。そこで、インバータユニットを外径側に位置させることができるので、周方向に隣り合うインバータユニット間の隙間が広くなり、発熱部品であるインバータユニットが周方向に分散され、インバータユニットの温度上昇が抑えられる。さらに、インバータユニットを冷却するためのヒートシンクを設置する場合には、ヒートシンクの放熱面積を大きくでき、インバータユニットの冷却性が高められる。 In the first and second embodiments, the conductor wire is wound around the tooth portion from the radially outer side to the inner side to produce the phase coil. However, the conductor wire is wound around the tooth portion from the radially inner side. A phase coil may be produced by winding outward. In this case, the winding end portion of the conductor wire is extended from the outside in the radial direction of the slot in the axial direction of the stator core and connected to the AC output terminal of the inverter unit. Therefore, since the inverter unit can be positioned on the outer diameter side, a gap between adjacent inverter units in the circumferential direction is widened, and the inverter units as heat generating parts are dispersed in the circumferential direction, thereby suppressing the temperature rise of the inverter unit. It is done. Further, when a heat sink for cooling the inverter unit is installed, the heat radiation area of the heat sink can be increased, and the cooling performance of the inverter unit is improved.
 実施の形態3.
 図11はこの発明の実施の形態3に係るインバータ一体型駆動モジュールを示す斜視断面図、図12はこの発明の実施の形態3に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。
Embodiment 3 FIG.
FIG. 11 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 3 of the present invention, and FIG. 12 is an end view for explaining an arrangement state of inverter units in the inverter-integrated drive module according to Embodiment 3 of the present invention. FIG.
 まず、相コイル25を構成する導体線26の巻き始め部26aと巻き終わり部26bとは、同一スロット23の径方向外側と内側とからステータコア20の軸方向の反対方向に延伸している。そして、相コイル25は、導体線26の巻き始め部26aが、スロット23の径方向外側と内側とから交互にステータコア20の軸方向他側に延伸するように周方向に配設されている。 First, the winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 extend in the opposite direction of the axial direction of the stator core 20 from the radially outer side and the inner side of the same slot 23. And the phase coil 25 is arrange | positioned in the circumferential direction so that the winding start part 26a of the conductor wire 26 may extend | stretch to the axial direction other side of the stator core 20 from the radial direction outer side and inner side of the slot 23 alternately.
 図11および図12において、第1中性点結線導体35は、小径に形成されている点を除いて中性点結線導体28と同様に構成され、第2中性点結線導体36は、中性点結線導体28と同様に構成されている。そして、第1および第2中性点結線導体35,36は、モータ13の軸方向他側に配置された基板6のモータ13側の面に、同心状に配置されて、電気的に絶縁状態に固着されている。 11 and 12, the first neutral point connection conductor 35 is configured in the same manner as the neutral point connection conductor 28 except that the first neutral point connection conductor 35 is formed to have a small diameter. It is comprised similarly to the sex point connection conductor 28. FIG. And the 1st and 2nd neutral point connection conductors 35 and 36 are arrange | positioned concentrically on the surface at the side of the motor 13 of the board | substrate 6 arrange | positioned at the other axial direction of the motor 13, and are electrically insulated. It is fixed to.
 インバータユニット5は、モータ13の軸方向一側に配置された基板6のモータ13と反対側の面上に、導体線26の巻き始め部26aと巻き終わり部26bとの間の径方向位置に、同心円上に等角ピッチで24個実装されている。そして、インバータユニット5は、交流出力端子11が樹脂封止部12から径方向内方と外方とに交互に延出するように、周方向に配列されている。さらに、正極給電板2と負極給電板3とが、モータ13の軸方向一側に配置された基板6のモータ13と反対側の面に保持部材(図示せず)により電気的に絶縁状態に支持されて、周方向に配列されているインバータユニット5のモータ13と反対側に、軸方向に所定に隙間を持って平行に、かつ同軸に配設されている。 The inverter unit 5 is disposed at a radial position between the winding start portion 26a and the winding end portion 26b of the conductor wire 26 on the surface opposite to the motor 13 of the substrate 6 arranged on one side of the motor 13 in the axial direction. 24 are mounted on the concentric circles at an equiangular pitch. The inverter units 5 are arranged in the circumferential direction so that the AC output terminals 11 alternately extend radially inward and outward from the resin sealing portion 12. Furthermore, the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are electrically insulated by a holding member (not shown) on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13. The inverter unit 5 is supported and arranged on the side opposite to the motor 13 of the inverter unit 5 in parallel and coaxially with a predetermined gap in the axial direction.
 スロット23の径方向内側からステータコア20の軸方向他側に延伸する導体線26の巻き始め部26aが、軸方向と平行に延伸して第1中性点結線導体35の各接続部に接合され、4本のU1相の相コイル25を並列接続して構成されたU相コイル、4本のV1相の相コイル25を並列接続して構成されたV相コイルおよび4本のW1相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された第1の3相交流巻線が作製される。そして、スロット23の径方向外側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、インバータユニット5の樹脂封止部12から径方向外方に延出する交流出力端子11に接合される。 The winding start portion 26a of the conductor wire 26 extending from the radially inner side of the slot 23 to the other axial side of the stator core 20 extends in parallel with the axial direction and is joined to each connection portion of the first neutral connection conductor 35. A U-phase coil configured by connecting four U1-phase coils 25 in parallel, a V-phase coil configured by connecting four V1-phase coils 25 in parallel, and four W1-phase phases A W-phase coil configured by connecting the coils 25 in parallel is connected to produce a first three-phase AC winding configured as a star-shaped connection coil. A winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction. The AC output terminal 11 that extends radially outward from the resin sealing portion 12 of the inverter unit 5 is joined.
 また、スロット23の径方向外側からステータコア20の軸方向他側に延伸する導体線26の巻き始め部26aが、軸方向と平行に延伸して第2中性点結線導体36の各接続部に接合され、4本のU1相の相コイル25を並列接続して構成されたU相コイル、4本のV1相の相コイル25を並列接続して構成されたV相コイルおよび4本のW1相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された第2の3相交流巻線が作製される。そして、スロット23の径方向内側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、インバータユニット5の樹脂封止部12から径方向内方に延出する交流出力端子11に接合される。 Further, the winding start portion 26a of the conductor wire 26 extending from the outer side in the radial direction of the slot 23 to the other side in the axial direction of the stator core 20 extends in parallel with the axial direction to each connection portion of the second neutral point connection conductor 36. A U-phase coil composed of four U1-phase coils 25 connected in parallel, a V-phase coil composed of four V1-phase coils 25 connected in parallel, and four W1-phase coils W-phase coils configured by connecting the phase coils 25 in parallel are connected to form a second three-phase AC winding configured as a star-shaped connection coil. The winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction. The AC output terminal 11 extending inward in the radial direction from the resin sealing portion 12 of the inverter unit 5 is joined.
 さらに、図示していないが、各インバータユニット5の正極入力端子9および負極入力端子10が、正極給電板2および負極給電板3にそれぞれ接合される。
 このよう構成されたインバータ一体型駆動モジュールにおいても、図7に示される電気回路が構成される。
 なお、他の構成は上記実施の形態1と同様に構成されている。
Further, although not shown, the positive input terminal 9 and the negative input terminal 10 of each inverter unit 5 are joined to the positive power supply plate 2 and the negative power supply plate 3, respectively.
Also in the inverter integrated drive module configured as described above, the electric circuit shown in FIG. 7 is configured.
Other configurations are the same as those in the first embodiment.
 この実施の形態3においても、ティース部22に巻回された導体線26の巻き終わり部26bをモータ13の軸方向と平行に延伸させて、対応するインバータユニット5の交流出力端子11に接合されている。また、ティース部22に巻回された導体線26の巻き始め部26aをモータ13の軸方向と平行に延伸させて、第1および第2中性点結線導体35,36に接合されている。このように、導体線26を曲げることなく、相コイル25とインバータ回路とを簡易に接続でき、相コイル25の中性点を簡易に接続できるので、断面積の大きな導体線26の使用が可能となり、電気自動車などの大容量の用途に好適なインバータ一体型駆動モジュールを実現できる。 Also in the third embodiment, the winding end portion 26b of the conductor wire 26 wound around the tooth portion 22 is extended parallel to the axial direction of the motor 13 and joined to the AC output terminal 11 of the corresponding inverter unit 5. ing. The winding start portion 26 a of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the first and second neutral point connection conductors 35 and 36. In this way, the phase coil 25 and the inverter circuit can be easily connected without bending the conductor wire 26, and the neutral point of the phase coil 25 can be easily connected, so that the conductor wire 26 having a large cross-sectional area can be used. Thus, an inverter-integrated drive module suitable for high-capacity applications such as electric vehicles can be realized.
 この実施の形態3によれば、第1および第2中性点結線導体35,36とインバータユニット5の交流出力端子11とがモータ13の軸方向両側に分かれて配設されるので、電気的な絶縁が簡易に、かつ確実に確保される。また、全てのインバータユニット5がモータ13の軸方向一側に配設されているので、直流電力を供給する正極給電板2と負極給電板3とが一対ですみ、部品点数を削減できる。 According to the third embodiment, the first and second neutral point connection conductors 35 and 36 and the AC output terminal 11 of the inverter unit 5 are arranged separately on both sides of the motor 13 in the axial direction. Simple insulation is ensured easily and reliably. Further, since all the inverter units 5 are arranged on one side in the axial direction of the motor 13, a pair of the positive electrode power supply plate 2 and the negative electrode power supply plate 3 for supplying DC power is sufficient, and the number of parts can be reduced.
 実施の形態4.
 図13はこの発明の実施の形態4に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。
Embodiment 4 FIG.
FIG. 13 is an end view for explaining the arrangement of inverter units in an inverter-integrated drive module according to Embodiment 4 of the present invention.
 図13において、正極給電板2と負極給電板3とが、モータ13の軸方向一側に配置された基板6のモータ13と反対側の面に保持部材(図示せず)により電気的に絶縁状態に支持されて、導体線26の巻き始め部26aと巻き終わり部26bとの間の径方向位置に、軸方向に所定の隙間を持って平行に、かつ同軸に配設されている。 In FIG. 13, the positive electrode power supply plate 2 and the negative electrode power supply plate 3 are electrically insulated by a holding member (not shown) on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13. Supported in a state, the conductor wire 26 is disposed in a radial position between the winding start portion 26a and the winding end portion 26b in parallel and coaxially with a predetermined gap in the axial direction.
 インバータユニット5は、モータ13の軸方向一側に配置された基板6のモータ13と反対側の面上に、周方向に配列されている相コイル25の内径側と外径側とに交互に位置するように、周方向に12個ずつ2列に配設されている。そして、周方向に配列されている相コイル25の内径側に位置するインバータユニット5は、交流出力端子11が樹脂封止部12から径方向外方に延出するように配設され、周方向に配列されている相コイル25の外径側に位置するインバータユニット5は、交流出力端子11が樹脂封止部12から径方向内方に延出するように配設されている。 The inverter unit 5 is alternately arranged on the inner diameter side and the outer diameter side of the phase coil 25 arranged in the circumferential direction on the surface of the substrate 6 opposite to the motor 13 on the one side in the axial direction of the motor 13. Twelve in the circumferential direction are arranged in two rows so as to be positioned. And the inverter unit 5 located in the internal diameter side of the phase coil 25 arranged in the circumferential direction is arrange | positioned so that the alternating current output terminal 11 may extend radially outward from the resin sealing part 12, and the circumferential direction The inverter unit 5 located on the outer diameter side of the phase coil 25 arranged in the is arranged such that the AC output terminal 11 extends radially inward from the resin sealing portion 12.
 そして、スロット23の径方向外側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、相コイル25の外径側に配置されているインバータユニット5の樹脂封止部12から径方向内方に延出する交流出力端子11に突き合わされて接合される。さらに、スロット23の径方向内側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、相コイル25の内径側に配置されているインバータユニット5の樹脂封止部12から径方向外方に延出する交流出力端子11に突き合わされて接合される。
 なお、他の構成は、上記実施の形態3と同様に構成されている。
A winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction. The AC output terminal 11 that extends radially inward from the resin sealing portion 12 of the inverter unit 5 disposed on the outer diameter side of the phase coil 25 is abutted and joined. Furthermore, a winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through a through hole 29 formed in the substrate 6 by extending parallel to the axial direction. The AC output terminal 11 extending radially outward from the resin sealing portion 12 of the inverter unit 5 disposed on the inner diameter side of the phase coil 25 is abutted and joined.
Other configurations are the same as those in the third embodiment.
 この実施の形態4においても、上記実施の形態3と同様の効果を奏する。
 この実施の形態4によれば、インバータユニット5が周方向に2列に配列されているので、インバータユニット5間の隙間が広くなり、発熱部品であるインバータユニット5が周方向に分散され、インバータユニット5の温度上昇が抑えられる。
This fourth embodiment also has the same effect as the third embodiment.
According to the fourth embodiment, since the inverter units 5 are arranged in two rows in the circumferential direction, the gap between the inverter units 5 is widened, and the inverter units 5 that are heat generating parts are dispersed in the circumferential direction. The temperature rise of the unit 5 is suppressed.
 実施の形態5.
 図14はこの発明の実施の形態5に係るインバータ一体型駆動モジュールにおけるインバータユニットの配列状態を説明する端面図である。
Embodiment 5 FIG.
14 is an end view for explaining the arrangement of inverter units in an inverter-integrated drive module according to Embodiment 5 of the present invention.
 図14において、インバータユニット5は、交流出力端子11が樹脂封止部12から周方向に延出するように配設されている。そして、スロット23の径方向外側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、相コイル25の外径側に配置されているインバータユニット5の樹脂封止部12から周方向に延出する交流出力端子11に接合される。さらに、スロット23の径方向内側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29を貫通し、相コイル25の内径側に配置されているインバータユニット5の樹脂封止部12から周方向に延出する交流出力端子11に接合される。
 なお、他の構成は、上記実施の形態4と同様に構成されている。
In FIG. 14, the inverter unit 5 is arranged such that the AC output terminal 11 extends from the resin sealing portion 12 in the circumferential direction. A winding end portion 26b of the conductor wire 26 extending from the radially outer side of the slot 23 to one side in the axial direction of the stator core 20 extends through the through hole 29 formed in the substrate 6 by extending parallel to the axial direction. These are joined to the AC output terminal 11 extending in the circumferential direction from the resin sealing portion 12 of the inverter unit 5 arranged on the outer diameter side of the phase coil 25. Furthermore, a winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 passes through a through hole 29 formed in the substrate 6 by extending parallel to the axial direction. These are joined to the AC output terminal 11 extending in the circumferential direction from the resin sealing portion 12 of the inverter unit 5 disposed on the inner diameter side of the phase coil 25.
Other configurations are the same as those in the fourth embodiment.
 この実施の形態5においても、インバータユニット5が周方向に2列に配列されているので、上記実施の形態4と同様に、インバータユニット5間の隙間が広くなり、発熱部品であるインバータユニット5が周方向に分散され、インバータユニット5の温度上昇が抑えられる。
 この実施の形態5によれば、交流出力端子11と、正極入力端子9および負極入力端子10とが、樹脂封止部12の異なる側面から取り出されているので、交流出力端子11と正極入力端子9および負極入力端子10との間の電気的絶縁を簡易に確保することができる。
Also in the fifth embodiment, since the inverter units 5 are arranged in two rows in the circumferential direction, the gap between the inverter units 5 becomes wide as in the fourth embodiment, and the inverter unit 5 which is a heat-generating component. Are distributed in the circumferential direction, and the temperature rise of the inverter unit 5 is suppressed.
According to the fifth embodiment, the AC output terminal 11, the positive input terminal 9, and the negative input terminal 10 are taken out from different side surfaces of the resin sealing portion 12, so that the AC output terminal 11 and the positive input terminal 9 and the negative electrode input terminal 10 can be easily secured.
 実施の形態6.
 図15はこの発明の実施の形態6に係るインバータ一体型駆動モジュールにおけるステータコイルの結線状態を説明する模式図である。
Embodiment 6 FIG.
FIG. 15 is a schematic diagram for explaining the connection state of the stator coils in the inverter-integrated drive module according to Embodiment 6 of the present invention.
 図15において、ステータコイル24Aは、第1の3相交流巻線50Aと、第2の3相交流巻線51Aとから構成されている。 15, the stator coil 24A is composed of a first three-phase AC winding 50A and a second three-phase AC winding 51A.
 第1の3相交流巻線50Aは、U11相の相コイル25、V11相の相コイル25およびW11相の相コイル25の端部同士を結線して作製された3相巻線50aと、U12相の相コイル25、V12相の相コイル25およびW12相の相コイル25の端部同士を結線して作製された3相巻線50bと、U13相の相コイル25、V13相の相コイル25およびW13相の相コイル25の端部同士を結線して作製された3相巻線50cと、U14相の相コイル25、V14相の相コイル25およびW14相の相コイル25の端部同士を結線して作製された3相巻線50dとから構成されている。そして、4つの3相巻線50a~50dは、それぞれ、3本の相コイル25を基板に同心状に配設された径の異なる環状の4つの中性点結線導体(図示せず)を介して星形結線して構成されている。 The first three-phase AC winding 50A includes a three-phase winding 50a formed by connecting ends of the U11 phase coil 25, the V11 phase coil 25, and the W11 phase coil 25, and U12. Phase coil 25, V12 phase coil 25, W12 phase coil 25, three-phase winding 50 b made by connecting together, U13 phase coil 25, V13 phase coil 25 And the three-phase winding 50c produced by connecting the ends of the W13 phase coil 25 and the ends of the U14 phase coil 25, the V14 phase coil 25 and the W14 phase coil 25. It is composed of a three-phase winding 50d produced by connection. The four three-phase windings 50a to 50d are respectively connected via four neutral point connection conductors (not shown) having different diameters and having three phase coils 25 concentrically arranged on the substrate. It is configured with a star connection.
 第2の3相交流巻線51Aは、U21相の相コイル25、V21相の相コイル25およびW21相の相コイル25の端部同士を結線して作製された3相巻線51aと、U22相の相コイル25、V22相の相コイル25およびW22相の相コイル25の端部同士を結線して作製された3相巻線51bと、U23相の相コイル25、V23相の相コイル25およびW23相の相コイル25の端部同士を結線して作製された3相巻線51cと、U24相の相コイル25、V24相の相コイル25およびW24相の相コイル25の端部同士を結線して作製された3相巻線51dとから構成されている。そして、4つの3相巻線51a~51dは、それぞれ、3本の相コイル25を基板に同心状に配設された径の異なる環状の4つの中性点結線導体(図示せず)を介して星形結線して構成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
The second three-phase AC winding 51A includes a three-phase winding 51a formed by connecting ends of U21 phase coil 25, V21 phase coil 25, and W21 phase coil 25, and U22. Phase coil 25, phase coil 25 of V22 phase and phase coil 25 of W22 phase, and a three-phase winding 51b produced by connecting ends of phase coil 25, phase coil 25 of U23 phase, phase coil 25 of V23 phase And the three-phase winding 51c produced by connecting the ends of the phase coil 25 of the W23 phase and the ends of the phase coil 25 of the U24 phase, the phase coil 25 of the V24 phase and the phase coil 25 of the W24 phase. It is composed of a three-phase winding 51d produced by connection. The four three-phase windings 51a to 51d are respectively connected via four neutral point connection conductors (not shown) having different diameters and having three phase coils 25 concentrically arranged on the substrate. It is configured with a star connection.
Other configurations are the same as those in the first embodiment.
 上記実施の形態1では、第1および第2の3相交流巻線50,51は、それぞれ、12本の相コイル25の端部を1つの中性点結線導体に接続して構成されているので、12本の相コイル25が電気的に接続されている。そこで、相コイル25の抵抗のバラツキやインバータ素子の特性のバラツキなどにより、同相間で循環電流が発生する恐れがある。 In the first embodiment, each of the first and second three-phase AC windings 50 and 51 is configured by connecting the end portions of the twelve phase coils 25 to one neutral point connection conductor. Therefore, the twelve phase coils 25 are electrically connected. Therefore, a circulating current may be generated between the same phases due to variations in resistance of the phase coil 25 and variations in characteristics of the inverter elements.
 この実施の形態6では、第1の3相交流巻線50Aが4つの3相巻線50a~50dから構成され、3相巻線50a~50dのそれぞれが3相を構成する最小本数(3本)の相コイル25の端部を専用の中性点結線導体に接続して構成されているので、3相巻線50a~50dが互いに電気的に離れている。第2の3相交流巻線51Aが4つの3相巻線51a~51dから構成され、3相巻線51a~51dのそれぞれが3相を構成する最小本数(3本)の相コイル25の端部を専用の中性点結線導体に接続して構成されているので、3相巻線51a~51dが互いに電気的に離れている。 In the sixth embodiment, the first three-phase AC winding 50A is composed of four three-phase windings 50a to 50d, and each of the three-phase windings 50a to 50d constitutes the minimum number (three). ) Of the phase coil 25 is connected to a dedicated neutral point connection conductor, so that the three-phase windings 50a to 50d are electrically separated from each other. The second three-phase AC winding 51A is composed of four three-phase windings 51a to 51d, and each of the three-phase windings 51a to 51d constitutes the end of the minimum number (three) of phase coils 25 constituting three phases. The three-phase windings 51a to 51d are electrically separated from each other because the portion is connected to a dedicated neutral point connection conductor.
 そこで、上述のような循環電流が発生することはない。また、地絡故障や短絡故障などにより相巻線50a~50d、51a~51dの1つ相巻線に通電できない状態となった場合でも、相巻線50a~50d、51a~51dの他の相巻線には何ら影響がなく、モータの動作が可能となる。さらに、磁束が6スロット単位で閉じているので、ステータコアを4等分した形状、すなわち6スロットを有する分割コアを4つ作製し、各分割コアのティース部のそれぞれに相巻線を巻装し、分割コアを環状に連結してステータコアを作製し、相巻線の中性点を結線することにより、ステータを組み立てることができ、モータの作製が容易となる。 Therefore, the circulating current as described above does not occur. Even if one of the phase windings 50a to 50d and 51a to 51d cannot be energized due to a ground fault or a short circuit failure, the other phases of the phase windings 50a to 50d and 51a to 51d The windings are not affected at all and the motor can be operated. Furthermore, since the magnetic flux is closed in units of 6 slots, the stator core is divided into four equal parts, that is, four divided cores having 6 slots are produced, and phase windings are wound around each of the tooth portions of each divided core. The stator core is manufactured by connecting the split cores in an annular shape, and the neutral point of the phase winding is connected, so that the stator can be assembled and the motor can be easily manufactured.
 ここで、実施の形態6では、第1および第2の3相交流巻線50A,51Aのそれぞれが、モータの極数(20極)と第1および第2の3相交流巻線50A,51Aのそれぞれの相コイルの本数(12本)との最大公約数に等しい4つの3相巻線に分割されているが、第1および第2の3相交流巻線50A,51Aのそれぞれの分割数は、3相巻線が互いに電気的に離れていれば、モータの極数と第1および第2の3相交流巻線50A,51Aのそれぞれの相コイル25の本数との最大公約数に等しい個数に限定されず、両者の公約数(但し、2以上)に等しい個数であればよい。 Here, in the sixth embodiment, each of the first and second three-phase AC windings 50A and 51A includes the number of poles of the motor (20 poles) and the first and second three-phase AC windings 50A and 51A. Are divided into four three-phase windings equal to the greatest common divisor with the number of each phase coil (12), but the number of divisions of the first and second three-phase AC windings 50A and 51A. Is equal to the greatest common divisor of the number of poles of the motor and the number of phase coils 25 of each of the first and second three-phase AC windings 50A and 51A if the three-phase windings are electrically separated from each other. It is not limited to the number, but may be a number equal to the common divisor of both (however, 2 or more).
 なお、上記実施の形態1~6では、モータが、ステータコイルが電気角で30度の位相差を有する2組の3相交流巻線から構成されている2重3相に構成されているものとしているが、2組の3相交流巻線が電気角で30度の位相差を有するように構成するには、ティース部のピッチが電気角で150度若しくは30度となる(6±1極、6コイル)を1単位とする組み合わせが有利となる。つまり、モータの極数と相コイル数との比が、5:6又は7:6とすればよい。モータの極数と相コイル数との比を5:6とする場合、例えば20極と24コイルとの組み合わせ、10極と12コイルとの組み合わせが好ましい。また、モータの極数と相コイル数との比を7:6とする場合、例えば28極と24コイルとの組み合わせ、14極と12コイルとの組み合わせが好ましい。 In the first to sixth embodiments described above, the motor is configured in a double three-phase configuration in which the stator coil includes two sets of three-phase AC windings having a phase difference of 30 degrees in electrical angle. However, in order to configure the two sets of three-phase AC windings to have a phase difference of 30 degrees in electrical angle, the pitch of the teeth part is 150 degrees or 30 degrees in electrical angle (6 ± 1 pole) , 6 coils) as a unit is advantageous. That is, the ratio between the number of poles of the motor and the number of phase coils may be 5: 6 or 7: 6. When the ratio between the number of poles of the motor and the number of phase coils is 5: 6, for example, a combination of 20 poles and 24 coils is preferably a combination of 10 poles and 12 coils. When the ratio of the number of motor poles to the number of phase coils is 7: 6, for example, a combination of 28 poles and 24 coils, and a combination of 14 poles and 12 coils are preferable.
 実施の形態7.
 図16はこの発明の実施の形態7に係るインバータ一体型駆動モジュールを示す斜視断面図である。
Embodiment 7 FIG.
FIG. 16 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 7 of the present invention.
 図16において、相コイル25を構成する導体線26の巻き始め部26aと巻き終わり部26bとは、同一スロット23の径方向外側と内側とからステータコア20の軸方向の反対方向に延伸している。そして、各相コイル25は、スロット23の径方向外側から延伸する導体線26の巻き始め部26aが、ステータコア20の軸方向他側に延伸するように周方向に配設されている。そして、1つの中性点結線導体28が、シャフト16と同軸に、かつ接続部28aをモータ13側に向けて、モータ13の軸方向他側に配設されている基板6のモータ13側の面に電気的に絶縁されて固着されている。 In FIG. 16, the winding start portion 26 a and the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 extend from the radially outer side and the inner side of the same slot 23 in the opposite direction of the axial direction of the stator core 20. . Each phase coil 25 is disposed in the circumferential direction so that a winding start portion 26 a of a conductor wire 26 extending from the radially outer side of the slot 23 extends to the other axial side of the stator core 20. One neutral point connecting conductor 28 is coaxial with the shaft 16, and the connecting portion 28 a faces the motor 13, and the motor 6 side of the substrate 6 disposed on the other side in the axial direction of the motor 13. It is electrically insulated and fixed to the surface.
 24個のインバータユニット5が、モータ13の軸方向一側に配設された基板6のモータ13と反対側の表面上の周方向に配列されている相コイル25の内径側に、交流出力端子11が延出される樹脂封止部12の側面を径方向外方に向けて、同心円上に等角ピッチで1列に並んで配設されている。正極給電板2と負極給電板3とが、モータ13の軸方向一側に配置された基板6のモータ13と反対側の面に保持部材30により電気的に絶縁状態に支持されて、周方向に配設されているインバータユニット5の内径側に、軸方向に所定の隙間を持って平行に、かつ同軸に配設されている。 The 24 inverter units 5 are connected to the inner diameter side of the phase coil 25 arranged in the circumferential direction on the surface opposite to the motor 13 of the substrate 6 disposed on one side of the motor 13 in the axial direction. 11 are arranged in a line at a regular pitch on a concentric circle with the side surface of the resin sealing portion 12 from which 11 is extended facing radially outward. The positive electrode power supply plate 2 and the negative electrode power supply plate 3 are supported in an electrically insulated state by a holding member 30 on a surface opposite to the motor 13 of the substrate 6 arranged on one side in the axial direction of the motor 13, and thus in the circumferential direction. Are arranged on the inner diameter side of the inverter unit 5 arranged in parallel with and coaxially with a predetermined gap in the axial direction.
 スロット23の径方向外側からステータコア20の軸方向他側に延伸する導体線26の巻き始め部26aが、軸方向と平行に延伸して中性点結線導体28の各接続部に接合され、8本のU1相の相コイル25を並列接続して構成されたU相コイル、8本のV1相の相コイル25を並列接続して構成されたV相コイルおよび8本のW1相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された3相交流巻線が作製される。そして、スロット23の径方向内側からステータコア20の軸方向一側に延伸する導体線26の巻き終わり部26bが、軸方向と平行に延伸して基板6に穿設された貫通穴29から軸方向に引き出され、対応するインバータユニット5の交流出力端子11に接合されている。さらに、各インバータユニット5の正極入力端子9および負極入力端子10が、正極給電板2および負極給電板3にそれぞれ接合される。
 なお、他の構成は上記実施の形態1と同様に構成されている。
A winding start portion 26a of a conductor wire 26 extending from the radially outer side of the slot 23 to the other axial side of the stator core 20 extends in parallel with the axial direction and is joined to each connection portion of the neutral point connecting conductor 28. U-phase coil configured by connecting two U1-phase coils 25 in parallel, V-phase coil configured by connecting eight V1-phase coils 25 in parallel, and eight W1-phase coils 25 Are connected in parallel, and a three-phase AC winding configured as a star-shaped connection coil is produced. The winding end portion 26b of the conductor wire 26 extending from the radially inner side of the slot 23 to one side in the axial direction of the stator core 20 extends in the axial direction from a through hole 29 that extends parallel to the axial direction and is formed in the substrate 6. To the AC output terminal 11 of the corresponding inverter unit 5. Furthermore, the positive electrode input terminal 9 and the negative electrode input terminal 10 of each inverter unit 5 are joined to the positive electrode power supply plate 2 and the negative electrode power supply plate 3, respectively.
Other configurations are the same as those in the first embodiment.
 この実施の形態7においても、ティース部22に巻回された導体線26の巻き終わり部26bをモータ13の軸方向と平行に延伸させて、対応するインバータユニット5の交流出力端子11に接合されている。また、ティース部22に巻回された導体線26の巻き始め部26aをモータ13の軸方向と平行に延伸させて、中性点結線導体28に接合されている。このように、導体線を曲げることなく、相コイル25とインバータ回路とを簡易に接続でき、相コイル25の中性点を簡易に接続できるので、断面積の大きな導体線26の使用が可能となり、電気自動車などの大容量の用途に好適なインバータ一体型駆動モジュールを実現できる。 Also in the seventh embodiment, the winding end portion 26b of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the AC output terminal 11 of the corresponding inverter unit 5. ing. Further, the winding start portion 26 a of the conductor wire 26 wound around the tooth portion 22 is extended in parallel with the axial direction of the motor 13 and joined to the neutral point connection conductor 28. In this way, the phase coil 25 and the inverter circuit can be easily connected without bending the conductor wire, and the neutral point of the phase coil 25 can be easily connected, so that the conductor wire 26 having a large cross-sectional area can be used. In addition, an inverter-integrated drive module suitable for large capacity applications such as electric vehicles can be realized.
 この実施の形態7によれば、ステータコイルが1つの星形結線された3相交流巻線に構成されているので、中性点結線導体28が1つですみ、部品点数を削減できる。 According to the seventh embodiment, since the stator coil is composed of one star-connected three-phase AC winding, only one neutral point connection conductor 28 is required, and the number of parts can be reduced.
 なお、上記実施の形態7では、インバータユニットが周方向に配列されている相コイルの内径側に配置されるものとしているが、インバータユニットは、スロットの径方向内側からステータコアの軸方向と平行に延伸する導体線の巻き終わり部より外径側に配置されてもよい。 In the seventh embodiment, the inverter unit is arranged on the inner diameter side of the phase coil arranged in the circumferential direction, but the inverter unit is parallel to the axial direction of the stator core from the radially inner side of the slot. You may arrange | position to the outer diameter side from the winding end part of the conductor wire to extend | stretch.
 また、上記実施の形態7では、全ての相コイルを構成する導体線の巻き始め部と巻き終わり部とが同一スロットの径方向外側と内側とから軸方向の反対方向に延伸するものとしているが、導体線の巻き始め部と巻き終わり部とが同一スロットの径方向外側と内側とから軸方向の反対方向に延伸する相コイルと、導体線の巻き始め部と巻き終わり部とがティース部を挟む2つのスロットの径方向外側と内側とから軸方向の同じ方向に延伸する相コイルとを、周方向に交互に配置してもよい。この場合、中性点結線導体が1つですむとともに、インバータユニットをモータの軸方向の両側に分割配置でき、インバータユニットの温度上昇を抑えることができる。 Moreover, in the said Embodiment 7, although the winding start part and winding end part of the conductor wire which comprise all the phase coils shall be extended to the opposite direction of an axial direction from the radial direction outer side and inner side of the same slot. , A phase coil in which the winding start portion and the winding end portion of the conductor wire extend in the axially opposite direction from the radially outer side and the inner side of the same slot, and the winding start portion and the winding end portion of the conductor wire form the teeth portion. Phase coils extending in the same axial direction from the radially outer side and the inner side of the two sandwiched slots may be alternately arranged in the circumferential direction. In this case, only one neutral point connecting conductor is required, and the inverter unit can be divided and disposed on both sides in the axial direction of the motor, so that the temperature rise of the inverter unit can be suppressed.
 実施の形態8.
 図17はこの発明の実施の形態8に係るインバータ一体型駆動モジュールを示す斜視断面図である。
Embodiment 8 FIG.
FIG. 17 is a perspective sectional view showing an inverter-integrated drive module according to Embodiment 8 of the present invention.
 図17において、相コイル25は、導体線26の巻き始め部26aがティース部22を挟む一方のスロット23の径方向外側から軸方向一側に延伸し、巻き終わり部26bがティース部22を挟む他方のスロット23の径方向内側から軸方向の一側に延伸するように、周方向に配設されている。1つの中性点結線導体28が、シャフト16と同軸に、かつ接続部をモータ13側に向けて、モータ13の軸方向一側に配設されている基板6のモータ13側の面に電気的に絶縁されて固着されている。 In FIG. 17, in the phase coil 25, the winding start portion 26 a of the conductor wire 26 extends from the radially outer side of one slot 23 sandwiching the teeth portion 22 to one side in the axial direction, and the winding end portion 26 b sandwiches the teeth portion 22. It arrange | positions in the circumferential direction so that it may extend | stretch from the radial inside of the other slot 23 to the one side of an axial direction. One neutral point connection conductor 28 is electrically connected to the surface on the motor 13 side of the substrate 6 arranged on one side in the axial direction of the motor 13 with the connecting portion facing the motor 13 side coaxially with the shaft 16. Insulated and fixed.
 24個のインバータユニット5が、モータ13の軸方向一側に配設された基板6のモータ13と反対側の表面上に、周方向に配列されている相コイル25の内径側に、交流出力端子11が延出される樹脂封止部12の側面を径方向外方に向けて、同心円上に等角ピッチで1列に並んで配設されている。そして、相コイル25の導体線26の巻き始め部26aが軸方向の一側に延伸して中性点結線導体28に接合され、8本のU1相の相コイル25を並列接続して構成されたU相コイル、8本のV1相の相コイル25を並列接続して構成されたV相コイルおよび8本のW1相の相コイル25を並列接続して構成されたW相コイルが結線され、星形結線コイルに構成された3相交流巻線が作製される。 24 inverter units 5 are connected to the inner diameter side of the phase coils 25 arranged in the circumferential direction on the surface opposite to the motor 13 of the substrate 6 disposed on one side of the motor 13 in the axial direction. The side surfaces of the resin sealing portion 12 from which the terminals 11 are extended are arranged in a row on the concentric circles at an equiangular pitch with the radial direction facing outward. The winding start portion 26a of the conductor wire 26 of the phase coil 25 is extended to one side in the axial direction and joined to the neutral point connection conductor 28, and the eight U1-phase coils 25 are connected in parallel. A U-phase coil, a V-phase coil configured by connecting eight V1-phase coils 25 in parallel, and a W-phase coil configured by connecting eight W1-phase coils 25 in parallel are connected, A three-phase AC winding configured as a star connection coil is produced.
 相コイル25の導体線26の巻き終わり部26bが、軸方向の一側に延伸して基板6に穿設された貫通穴29から軸方向に引き出され、対応するインバータユニット5の交流出力端子11に接合されている。さらに、各インバータユニット5の正極入力端子9および負極入力端子10が、正極給電板2および負極給電板3にそれぞれ接合される。
 なお、他の構成は上記実施の形態7と同様に構成されている。
The winding end portion 26 b of the conductor wire 26 of the phase coil 25 is drawn in the axial direction from a through hole 29 that extends in one side in the axial direction and is formed in the substrate 6, and the AC output terminal 11 of the corresponding inverter unit 5. It is joined to. Furthermore, the positive electrode input terminal 9 and the negative electrode input terminal 10 of each inverter unit 5 are joined to the positive electrode power supply plate 2 and the negative electrode power supply plate 3, respectively.
Other configurations are the same as those in the seventh embodiment.
 したがって、この実施の形態8においても、上記実施の形態7と同様の効果を奏する。
 この実施の形態8によれば、インバータモジュール4がモータ13の軸方向一側に配置されているので、相コイル25とインバータ回路との結線作業、および相コイル25の中性点の結線作業が簡易となる。
Therefore, this eighth embodiment also has the same effect as the seventh embodiment.
According to the eighth embodiment, since the inverter module 4 is arranged on one side of the motor 13 in the axial direction, the connection work between the phase coil 25 and the inverter circuit and the connection work at the neutral point of the phase coil 25 are performed. It becomes simple.
 実施の形態9.
 図18はこの発明の実施の形態9に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。
Embodiment 9 FIG.
FIG. 18 is a cross-sectional view of a main part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 9 of the present invention.
 図18において、インバータユニット5は、基板6のモータ13と反対側の表面上に、相コイル25のそれぞれに対応して、相コイル25を構成する導体線26の巻き終わり部26bを軸方向に延伸させた位置からシフトして実装されている。交流出力端子11は、長方形断面を有する帯状平板に作製され、長方形断面の長辺で構成される表面が基板6の表面と平行となるように樹脂封止部12から延出されている。そして、交流出力端子11の延出端が、巻き終わり部26bを軸方向に延伸させた位置で、長方形断面の長辺の法線が径方向を向くように折り曲げられている。 In FIG. 18, the inverter unit 5 has, on the surface of the substrate 6 opposite to the motor 13, the winding end portion 26 b of the conductor wire 26 constituting the phase coil 25 corresponding to each of the phase coils 25 in the axial direction. It is mounted by shifting from the stretched position. The AC output terminal 11 is made of a strip-shaped flat plate having a rectangular cross section, and extends from the resin sealing portion 12 so that the surface constituted by the long sides of the rectangular cross section is parallel to the surface of the substrate 6. The extended end of the AC output terminal 11 is bent at a position where the winding end portion 26b is extended in the axial direction so that the normal line of the long side of the rectangular cross section faces the radial direction.
 相コイル25は、長方形断面の導体線をティース部にエッジワイズに巻かれて構成されており、その巻き終わり部26bが長方形断面の長辺の法線を径方向に向けて軸方向に延伸している。そして、貫通穴29を挿通した巻き終わり部26bの端部と折り曲げられた交流出力端子11の延出端とが、長方形断面の長辺で構成される平面同士を面接触状態として、溶接などにより接合されている。
 巻き終わり部26bと交流出力端子11との接合部53は、絶縁部材54により埋設されている。さらに、電磁遮蔽部材としての銅、アルミニウムなどの高導電率の金属製の金網55が絶縁部材54を覆うように装着されている。
 なお、他の構成は上記実施の形態1と同様に構成されている。
The phase coil 25 is configured by winding a conductor wire having a rectangular cross section around a tooth portion in an edgewise manner, and the winding end portion 26b extends in the axial direction with the normal line of the long side of the rectangular cross section directed radially. ing. Then, planes in which the end of the winding end portion 26b inserted through the through hole 29 and the extended end of the bent AC output terminal 11 are formed of long sides of a rectangular cross section are brought into surface contact with each other by welding or the like. It is joined.
A joint portion 53 between the winding end portion 26 b and the AC output terminal 11 is embedded with an insulating member 54. Further, a metal mesh 55 made of a high conductivity metal such as copper or aluminum as an electromagnetic shielding member is mounted so as to cover the insulating member 54.
Other configurations are the same as those in the first embodiment.
 この実施の形態9によれば、巻き終わり部26bの端部と交流出力端子11の端部とが長方形断面の長辺で構成される平面同士を面接触状態として接合されるので、接合面を広くすることができ、溶接などによる接合が容易となるとともに、接合強度を大きくすることができる。 According to the ninth embodiment, since the end portion of the winding end portion 26b and the end portion of the AC output terminal 11 are joined to each other in a plane contact state formed by the long sides of the rectangular cross section, the joining surface is It can be widened, and joining by welding or the like becomes easy, and the joining strength can be increased.
 また、交流出力端子11および相コイル25には、絶縁被覆された導体線が用いられ、接合領域における導体線の絶縁被覆は除去されている。しかし、接合部53が絶縁部材54により埋設されているので、接合部53の電気絶縁性が確保される。そこで、上アーム側スイッチング素子7と下アーム側スイッチング素子8とが短絡して破壊するようなことを防止できる。 Further, conductor wires coated with insulation are used for the AC output terminal 11 and the phase coil 25, and the insulation coating of the conductor wires in the joining region is removed. However, since the joint part 53 is embedded by the insulating member 54, the electrical insulation of the joint part 53 is ensured. Therefore, it is possible to prevent the upper arm side switching element 7 and the lower arm side switching element 8 from being short-circuited and destroyed.
 また、金網55が接合部53を埋設している絶縁部材54を覆うように装着されているので、インバーユニット5が接合部53からのノイズによって誤動作するようなことを防止できる。 Moreover, since the wire mesh 55 is mounted so as to cover the insulating member 54 in which the joint portion 53 is embedded, it is possible to prevent the Invar unit 5 from malfunctioning due to noise from the joint portion 53.
 実施の形態10.
 図19はこの発明の実施の形態10に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。
Embodiment 10 FIG.
FIG. 19 is a cross-sectional view of an essential part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 10 of the present invention.
 図19において、インバータユニット5は、基板6のモータ13と反対側の表面上に、相コイル25Aのそれぞれに対応して、相コイル25Aを構成する導体線26の巻き終わり部26bを軸方向に延伸させた位置からシフトして実装されている。交流出力端子11は、長方形断面を有する帯状平板に作製され、長方形断面の短辺で構成される表面が基板6の表面と平行となるように樹脂封止部12から延出されている。 In FIG. 19, on the surface of the substrate 6 opposite to the motor 13, the inverter unit 5 corresponds to each of the phase coils 25A, and the winding end portion 26b of the conductor wire 26 constituting the phase coil 25A is axially provided. It is mounted by shifting from the stretched position. The AC output terminal 11 is manufactured as a belt-like flat plate having a rectangular cross section, and extends from the resin sealing portion 12 so that the surface formed by the short sides of the rectangular cross section is parallel to the surface of the substrate 6.
 相コイル25Aは、長方形断面の導体線をティース部にフラットワイズに巻かれて構成されており、その巻き終わり部26bが長方形断面の短辺の法線を径方向に向けて軸方向に延伸している。そして、貫通穴29を挿通した巻き終わり部26bの端部と交流出力端子11の延出端とが、長方形断面の長辺で構成される平面同士を面接触状態として、溶接などにより接合されている。
 巻き終わり部26bと交流出力端子11との接合部53は、絶縁部材54により埋設されている。さらに、金網55が絶縁部材54を覆うように装着されている。
 なお、他の構成は上記実施の形態2と同様に構成されている。
The phase coil 25A is configured by winding a conductor wire having a rectangular cross section around a tooth portion in a flatwise manner, and the winding end portion 26b extends in the axial direction with the normal line of the short side of the rectangular cross section directed in the radial direction. ing. Then, the end of the winding end portion 26b inserted through the through hole 29 and the extended end of the AC output terminal 11 are joined by welding or the like with the planes formed by the long sides of the rectangular cross section being in surface contact with each other. Yes.
A joint portion 53 between the winding end portion 26 b and the AC output terminal 11 is embedded with an insulating member 54. Further, a metal mesh 55 is attached so as to cover the insulating member 54.
Other configurations are the same as those in the second embodiment.
 この実施の形態10によれば、巻き終わり部26bの端部と交流出力端子11の端部とが長方形断面の長辺で構成される平面同士を面接触状態として接合されるので、接合面を広くすることができ、溶接などによる接合が容易となるとともに、接合強度を大きくすることができる。また、交流出力端子11の延出端の折り曲げ工程が不要となるので、インバータユニット5のコスト低減が図られる。 According to the tenth embodiment, since the end portion of the winding end portion 26b and the end portion of the AC output terminal 11 are joined to each other in a plane contact state formed by the long sides of the rectangular cross section, the joining surface is It can be widened, and joining by welding or the like becomes easy, and the joining strength can be increased. Moreover, since the bending process of the extending end of the AC output terminal 11 is not required, the cost of the inverter unit 5 can be reduced.
 また、交流出力端子11および相コイル25Aには、絶縁被覆された導体線が用いられ、接合領域における導体線の絶縁被覆は除去されている。しかし、接合部53が絶縁部材54により埋設されているので、接合部53の電気絶縁性が確保される。そこで、上アーム側スイッチング素子7と下アーム側スイッチング素子8とが短絡して破壊するようなことを防止できる。 Further, a conductor wire with insulation coating is used for the AC output terminal 11 and the phase coil 25A, and the insulation coating of the conductor wire in the joining region is removed. However, since the joint part 53 is embedded by the insulating member 54, the electrical insulation of the joint part 53 is ensured. Therefore, it is possible to prevent the upper arm side switching element 7 and the lower arm side switching element 8 from being short-circuited and destroyed.
 また、金網55が接合部53を埋設している絶縁部材54を覆うように装着されているので、インバーユニット5が接合部53からのノイズによって誤動作するようなことを防止できる。 Moreover, since the wire mesh 55 is mounted so as to cover the insulating member 54 in which the joint portion 53 is embedded, it is possible to prevent the Invar unit 5 from malfunctioning due to noise from the joint portion 53.
 実施の形態11.
 図20はこの発明の実施の形態11に係るインバータ一体型駆動モジュールにおける交流出力端子と相コイルとの接続構造を説明する要部断面図である。
Embodiment 11 FIG.
FIG. 20 is a cross-sectional view of a main part for explaining a connection structure between an AC output terminal and a phase coil in an inverter-integrated drive module according to Embodiment 11 of the present invention.
 図20において、交流出力端子11の延出端が長方形断面の長辺の長さを長くした幅広に形成されている。
 なお、他の構成は、上記実施の形態10と同様に構成されている。
In FIG. 20, the extending end of the AC output terminal 11 is formed wide so that the length of the long side of the rectangular cross section is increased.
Other configurations are the same as those in the tenth embodiment.
 この実施の形態11では、交流出力端子11の延出端が幅広に形成されているので、巻き終わり部26bの端部と交流出力端子11の端部と接合面をさらに広くなり、接合部53の電気抵抗を小さく、かつ接合強度を大きくすることができる。 In the eleventh embodiment, since the extending end of the AC output terminal 11 is formed wide, the end of the winding end portion 26b, the end of the AC output terminal 11, and the joining surface are further widened, and the joining portion 53 is formed. The electrical resistance can be reduced and the bonding strength can be increased.
 なお、上記実施の形態9~11では、電磁遮蔽部材としての銅、アルミニウムなどの高導電率の金属製の金網を用いるものとしているが、電磁遮蔽部材は、銅、アルミニウムなどの金属製の金網に限定されず、電磁波を遮蔽できればよく、例えば導電性繊維をメッシュ状に編み込んだもの、導電性シートなどを用いてもよい。また、相コイルの導体線の巻き終わり部とインバータユニットの交流出力端子との接合部を埋設する絶縁部材は、ゴム、樹脂などの凹凸のある部分に隙間なく充填できる絶縁材料を用いることが好ましい。 In the ninth to eleventh embodiments, the metal shield made of metal such as copper or aluminum is used as the electromagnetic shielding member. However, the electromagnetic shield member is made of metal wire such as copper or aluminum. It is not limited to this, and any electromagnetic wave can be shielded. For example, a conductive fiber knitted mesh or a conductive sheet may be used. In addition, it is preferable to use an insulating material that can fill the uneven portion such as rubber and resin without gaps as the insulating member that embeds the joint between the winding end of the conductor wire of the phase coil and the AC output terminal of the inverter unit. .
 また、上記実施の形態9~11において、相コイルの導体線の巻き終わり部とインバータユニットの交流出力端子との接合部の角部に面取りを施して丸面を形成し、あるいは接合部に略球状の表面を有する金属材料を被せて、金属部材の角部をなくしてもよい。このように金属部材の角部をなくすことにより、放電が発生し難くなり、絶縁部材の使用量を削減、若しくは絶縁部材を省略することができる。
 また、上記各実施の形態では、導体線の巻き終わり部をインバータユニットの交流出力端子に接合し、導体線の巻き始め部を中性点結線導体に接合するものとしているが、導体線の巻き始め部をインバータユニットの交流出力端子に接合し、導体線の巻き終わり部を中性点結線導体に接合してもよい。
In the ninth to eleventh embodiments, a round surface is formed by chamfering a corner portion of a joint portion between the winding end portion of the conductor wire of the phase coil and the AC output terminal of the inverter unit, or the joint portion is substantially omitted. A metal material having a spherical surface may be covered to eliminate the corners of the metal member. Thus, by eliminating the corners of the metal member, it is difficult for electric discharge to occur, and the amount of the insulating member used can be reduced or the insulating member can be omitted.
In each of the above embodiments, the winding end portion of the conductor wire is joined to the AC output terminal of the inverter unit, and the winding start portion of the conductor wire is joined to the neutral point connection conductor. The start portion may be joined to the AC output terminal of the inverter unit, and the winding end portion of the conductor wire may be joined to the neutral point connection conductor.

Claims (14)

  1.  ティース部のそれぞれに導体線を集中巻に巻回して形成された、該ティース部と同数の相コイルからなるステータコイルを有するステータ、上記導体線の一端を結線して上記相コイルを星形結線する環状の中性点結線導体、およびN極とS極とが交互に周方向に配列された磁極を有するロータから構成されるモータと、
     それぞれ、正極側入力端子、負極側入力端子、正極側が該正極側入力端子に接続された上アーム側スイッチング素子、負極側が該負極側入力端子に接続された下アーム側スイッチング素子、および該上アーム側スイッチング素子の負極側と該下アーム側スイッチング素子の正極側とに接続された交流出力端子を備え、上記相コイルと同数のインバータユニットを有するインバータモジュールと、を備えたインバータ一体型駆動モジュールにおいて、
     上記中性点結線導体は、上記相コイルを構成する上記導体線の一端を軸方向に延伸させた位置に位置するように上記モータの軸端に配設され、
     上記インバータユニットのそれぞれは、上記相コイルのそれぞれに対応して、上記交流出力端子が上記相コイルを構成する上記導体線の他端を軸方向に延伸させた位置に位置するように、軸方向と直交する平面上で上記相コイルを構成する上記導体線の他端を軸方向に延伸させた位置からシフトして上記モータの軸端に配設され、
     上記相コイルのそれぞれは、上記ティース部に巻回された上記導体線の他端を上記モータの軸方向と平行に延伸させて、対応する上記インバータユニットの上記交流出力端子に接合され、かつ上記ティース部に巻回された上記導体線の一端を上記モータの軸方向と平行に延伸させて、上記中性点結線導体に接合されていることを特徴とするインバータ一体型駆動モジュール。
    A stator having a stator coil composed of the same number of phase coils as the teeth, formed by winding a conductor wire around each of the teeth, and connected to one end of the conductor, and the phase coil is connected in a star shape. A motor composed of a ring-shaped neutral point connection conductor and a rotor having magnetic poles in which N and S poles are alternately arranged in the circumferential direction;
    A positive side input terminal, a negative side input terminal, an upper arm side switching element whose positive side is connected to the positive side input terminal, a lower arm side switching element whose negative side is connected to the negative side input terminal, and the upper arm, respectively An inverter module having an AC output terminal connected to the negative side of the side switching element and the positive side of the lower arm side switching element, and having the same number of inverter units as the phase coils. ,
    The neutral point connection conductor is disposed at the shaft end of the motor so as to be positioned at a position where one end of the conductor wire constituting the phase coil is extended in the axial direction,
    Each of the inverter units has an axial direction corresponding to each of the phase coils such that the AC output terminal is located at a position where the other end of the conductor wire constituting the phase coil is extended in the axial direction. The other end of the conductor wire constituting the phase coil on a plane perpendicular to the axis is shifted from the position extended in the axial direction and is disposed at the shaft end of the motor.
    Each of the phase coils is joined to the AC output terminal of the corresponding inverter unit by extending the other end of the conductor wire wound around the tooth portion in parallel to the axial direction of the motor, and One end of the said conductor wire wound by the teeth part is extended in parallel with the axial direction of the said motor, and it is joined to the said neutral point connection conductor, The inverter integrated drive module characterized by the above-mentioned.
  2.  上記相コイルのそれぞれは、上記ティース部に巻回された上記導体線の一端および他端が径方向に離反して、かつ上記モータの軸方向の反対方向に延伸するように構成されていることを特徴とする請求項1記載のインバータ一体型駆動モジュール。 Each of the phase coils is configured such that one end and the other end of the conductor wire wound around the tooth portion are separated in the radial direction and extend in a direction opposite to the axial direction of the motor. The inverter integrated drive module according to claim 1.
  3.  上記相コイルは、上記ティース部に巻回された上記導体線の一端が上記モータの軸方向の一側と他側とに交互に延伸するように周方向に配設され、
     上記中性点結線導体は、上記相コイルの上記導体線の一端を軸方向の一側に延伸させた位置に位置するように、上記モータの軸方向の一側の該モータの軸方向と直交する平面上に環状に配設される第1中性点結線導体と、上記相コイルの上記導体線の一端を軸方向の他側に延伸させた位置に位置するように、上記モータの軸方向の他側の該モータの軸方向と直交する平面上に環状に配設される第2中性点結線導体とを有し、
     半数の上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が上記モータの軸方向の他側に延伸する上記相コイルのそれぞれに対応するように該モータの軸方向の他側の該モータの軸方向と直交する平面上に周方向に1列に配設され、
     上記半数のインバータユニットのそれぞれの交流出力端子が、上記相コイルの上記モータの軸方向の他側に延伸する上記導体線の他端に接合され、かつ上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の一端が上記第1中性点結線導体に接合されて第1の3相交流巻線を構成し、
     残りの半数の上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が上記モータの軸方向の一側に延伸する上記相コイルのそれぞれに対応するように該モータの軸方向の一側の該モータの軸方向と直交する平面上に周方向に1列に配設され、
     上記残りの半数のインバータユニットのそれぞれの交流出力端子が、上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の他端に接合され、かつ上記相コイルの上記モータの軸方向の他側に延伸する上記導体線の一端が上記第2中性点結線導体に接合されて第2の3相交流巻線を構成していることを特徴とする請求項2記載のインバータ一体型駆動モジュール。
    The phase coil is disposed in the circumferential direction so that one end of the conductor wire wound around the tooth portion alternately extends on one side and the other side in the axial direction of the motor,
    The neutral point connection conductor is orthogonal to the axial direction of the motor on one side in the axial direction of the motor so that one end of the conductor wire of the phase coil is extended to one side in the axial direction. The axial direction of the motor so as to be located at a position where one end of the conductor wire of the phase coil is extended to the other side in the axial direction. A second neutral point connection conductor disposed annularly on a plane perpendicular to the axial direction of the motor on the other side,
    Half of the inverter units are connected in the other axial direction of the motor so that the other end of the conductor wire wound around the tooth portion corresponds to each of the phase coils extending to the other axial side of the motor. Arranged in a row in the circumferential direction on a plane perpendicular to the axial direction of the motor on the side,
    The AC output terminals of the half of the inverter units are joined to the other end of the conductor wire extending to the other axial side of the motor of the phase coil, and one of the phase coils in the axial direction of the motor. One end of the conductor wire extending to the side is joined to the first neutral point connection conductor to constitute a first three-phase AC winding,
    The other half of the inverter units are arranged in the axial direction of the motor so that the other end of the conductor wire wound around the tooth portion corresponds to each of the phase coils extending to one side in the axial direction of the motor. Arranged in a row in a circumferential direction on a plane orthogonal to the axial direction of the motor on one side of the motor,
    The AC output terminals of the other half of the inverter units are joined to the other end of the conductor wire extending to one side of the motor in the axial direction of the phase coil, and the axial direction of the motor of the phase coil The inverter integrated type according to claim 2, wherein one end of the conductor wire extending to the other side is joined to the second neutral point connection conductor to constitute a second three-phase AC winding. Driving module.
  4.  上記相コイルは、上記ティース部に巻回された上記導体線の一端が径方向外側と内側とから上記モータの軸方向の他側に交互に延伸するように周方向に配設され、
     上記中性点結線導体は、それぞれ、上記相コイルの上記導体線の一端を径方向内側と外側とから軸方向の他側に延伸させた位置に位置するように、上記モータの軸方向の他側の該モータの軸方向と直交する平面上に同心状に配設される環状の第1中性点結線導体と環状の第2中性点結線導体とを有し、
     半数の上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が径方向外側から上記モータの軸方向の一側に延伸する上記相コイルのそれぞれに対応するように該モータの軸方向の一側の該モータの軸方向と直交する平面上に周方向に1列に配設され、
     上記半数のインバータユニットのそれぞれの交流出力端子が、径方向外側から上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の他端に接合され、かつ径方向内側から上記相コイルの上記モータの軸方向の他側に延伸する上記導体線の一端が上記第1中性点結線導体に接合されて第1の3相交流巻線を構成し、
     残りの半数の上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が径方向内側から上記モータの軸方向の一側に延伸する上記相コイルのそれぞれに対応するように、上記半数のインバータユニットが配設されている上記平面上に周方向に1列に配設され、
     上記残りの半数のインバータユニットのそれぞれの交流出力端子が、径方向内側から上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の他端に接合され、かつ径方向外側から上記相コイルの上記モータの軸方向の他側に延伸する上記導体線の一端が上記第2中性点結線導体に接合されて第2の3相交流巻線を構成していることを特徴とする請求項2記載のインバータ一体型駆動モジュール。
    The phase coil is disposed in the circumferential direction so that one end of the conductor wire wound around the tooth portion alternately extends from the radially outer side and the inner side to the other side in the axial direction of the motor,
    The neutral point connection conductors are arranged in the axial direction of the motor so that one end of the conductor wire of the phase coil is located at a position extending from the radially inner side to the outer side in the axial direction. An annular first neutral point connection conductor and an annular second neutral point connection conductor disposed concentrically on a plane perpendicular to the axial direction of the motor on the side,
    Half of the inverter units correspond to each of the phase coils in which the other end of the conductor wire wound around the teeth portion extends from the radially outer side to one side in the axial direction of the motor. Arranged in a row in the circumferential direction on a plane orthogonal to the axial direction of the motor on one side in the axial direction;
    The AC output terminals of the half of the inverter units are joined to the other end of the conductor wire extending from the radially outer side to the one side of the motor in the axial direction of the phase coil, and the phase coil from the radially inner side. One end of the conductor wire extending to the other side in the axial direction of the motor is joined to the first neutral point connection conductor to constitute a first three-phase AC winding,
    The other half of the inverter units correspond to each of the phase coils in which the other end of the conductor wire wound around the tooth portion extends from the radially inner side to one side in the axial direction of the motor. Arranged in a row in the circumferential direction on the plane on which the half of the inverter units are arranged,
    The AC output terminals of the remaining half of the inverter units are joined to the other end of the conductor wire extending from the radially inner side to the one axial side of the motor of the phase coil, and from the radially outer side to the above One end of the conductor wire extending to the other side of the motor in the axial direction of the phase coil is joined to the second neutral point connection conductor to constitute a second three-phase AC winding. The inverter integrated drive module according to claim 2.
  5.  上記半数のインバータユニットと上記残りの半数のインバータユニットとが、周方向に交互に一列に配列されていることを特徴とする請求項4記載のインバータ一体型駆動モジュール。 5. The inverter-integrated drive module according to claim 4, wherein the half of the inverter units and the remaining half of the inverter units are alternately arranged in a line in the circumferential direction.
  6.  上記半数のインバータユニットと上記残りの半数のインバータユニットとが、径方向の内径側と外径側とに分かれて、周方向に二列に配列されていることを特徴とする請求項4記載のインバータ一体型駆動モジュール。 The half of the inverter units and the remaining half of the inverter units are divided into a radially inner diameter side and an outer diameter side, and are arranged in two rows in the circumferential direction. Inverter integrated drive module.
  7.  上記モータは、ロータの磁極数とステータのティース部の数との比が、5:6若しくは7:6に構成されていることを特徴とする請求項3乃至請求項6のいずれか1項に記載のインバータ一体型駆動モジュール。 7. The motor according to claim 3, wherein the ratio of the number of magnetic poles of the rotor to the number of teeth of the stator is 5: 6 or 7: 6. The inverter integrated drive module as described.
  8.  上記第1および第2の3相交流巻線のそれぞれは、ロータの磁極数と相コイルの本数との2以上の公約数に等しい個数の3相巻線に分割され、分割された上記3相巻線のそれぞれが上記相コイルを専用の中性点結線導体を介して接続して構成され、互いに電気的に離れていることを特徴とする請求項3乃至請求項7のいずれか1項に記載のインバータ一体型駆動モジュール。 Each of the first and second three-phase AC windings is divided into a number of three-phase windings equal to a common divisor of two or more of the number of magnetic poles of the rotor and the number of phase coils. 8. Each of the windings is configured by connecting the phase coils via a dedicated neutral point connection conductor, and is electrically separated from each other. The inverter integrated drive module as described.
  9.  上記相コイルは、上記ティース部に巻回された上記導体線の一端が径方向外側と内側との一方から上記モータの軸方向の他側に延伸するように周方向に配設され、
     上記中性点結線導体は、上記相コイルの上記導体線の一端を軸方向の他側に延伸させた位置に位置するように、上記モータの軸方向の他側の該モータの軸方向と直交する平面上に配設され、
     上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が上記モータの軸方向の一側に延伸する上記相コイルのそれぞれに対応するように該モータの軸方向の一側の該モータの軸方向と直交する平面上に周方向に1列に配設され、
     上記インバータユニットのそれぞれの交流出力端子が、上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の他端に接合され、かつ上記相コイルの上記モータの軸方向の他側に延伸する上記導体線の一端が上記中性点結線導体に接合されて3相交流巻線を構成していることを特徴とする請求項2記載のインバータ一体型駆動モジュール。
    The phase coil is disposed in the circumferential direction so that one end of the conductor wire wound around the tooth portion extends from one of the radially outer side and the inner side to the other side in the axial direction of the motor,
    The neutral point connecting conductor is orthogonal to the axial direction of the motor on the other side in the axial direction of the motor so that one end of the conductor wire of the phase coil is extended to the other side in the axial direction. Arranged on a plane that
    The inverter unit has one end in the axial direction of the motor so that the other end of the conductor wire wound around the tooth portion corresponds to each of the phase coils extending to one side in the axial direction of the motor. Arranged in a row in the circumferential direction on a plane orthogonal to the axial direction of the motor,
    Each AC output terminal of the inverter unit is joined to the other end of the conductor wire extending to one side in the axial direction of the motor of the phase coil, and on the other side in the axial direction of the motor of the phase coil. 3. The inverter-integrated drive module according to claim 2, wherein one end of the extending conductor wire is joined to the neutral point connecting conductor to constitute a three-phase AC winding.
  10.  上記相コイルのそれぞれは、上記ティース部に巻回された上記導体線の一端および他端が径方向に離反して、かつ上記モータの軸方向の一側に延伸するように構成されていることを特徴とする請求項1記載のインバータ一体型駆動モジュール。 Each of the phase coils is configured such that one end and the other end of the conductor wire wound around the tooth portion are separated in the radial direction and extend to one side in the axial direction of the motor. The inverter integrated drive module according to claim 1.
  11.  上記相コイルは、上記導体線の一端が径方向外側と内側との一方から上記モータの軸方向の一側に延伸するように周方向に配設され、
     上記中性点結線導体は、上記相コイルの上記導体線の一端を軸方向の一側に延伸させた位置に位置するように、上記モータの軸方向の一側の該モータの軸方向と直交する平面上に配設され、
     上記インバータユニットが、上記ティース部に巻回された上記導体線の他端が上記モータの軸方向の一側に延伸する上記相コイルのそれぞれに対応するように該モータの軸方向の一側の該モータの軸方向と直交する平面上に周方向に1列に配設され、
     上記インバータユニットのそれぞれの交流出力端子が、上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の他端に接合され、かつ上記相コイルの上記モータの軸方向の一側に延伸する上記導体線の一端が上記中性点結線導体に接合されて3相交流巻線を構成していることを特徴とする請求項10記載のインバータ一体型駆動モジュール。
    The phase coil is disposed in the circumferential direction so that one end of the conductor wire extends from one of the radially outer side and the inner side to one side in the axial direction of the motor,
    The neutral point connection conductor is orthogonal to the axial direction of the motor on one side in the axial direction of the motor so that one end of the conductor wire of the phase coil is extended to one side in the axial direction. Arranged on a plane that
    The inverter unit has one end in the axial direction of the motor so that the other end of the conductor wire wound around the tooth portion corresponds to each of the phase coils extending to one side in the axial direction of the motor. Arranged in a row in the circumferential direction on a plane orthogonal to the axial direction of the motor,
    Each AC output terminal of the inverter unit is joined to the other end of the conductor wire extending to one side in the axial direction of the motor of the phase coil, and on one side in the axial direction of the motor of the phase coil. 11. The inverter-integrated drive module according to claim 10, wherein one end of the extending conductor wire is joined to the neutral point connecting conductor to constitute a three-phase AC winding.
  12.  上記相コイルのそれぞれは、長方形断面を有する帯状体に作製された上記導体線をエッジワイズ、又はフラットワイズに上記ティース部に巻回して構成されていることを特徴とする請求項1乃至請求項11のいずれか1項に記載のインバータ一体型駆動モジュール。 Each of the phase coils is configured by winding the conductor wire produced in a belt-like body having a rectangular cross section around the tooth portion in an edgewise or flatwise manner. The inverter integrated drive module according to any one of 11.
  13.  上記交流出力端子は、長方形断面を有する導体板により作製され、
     上記交流出力端子と上記相コイルの上記導体線の他端とが、長方形断面の長辺により構成される平面同士を対向させて接合されていることを特徴とする請求項12記載のインバータ一体型駆動モジュール。
    The AC output terminal is made of a conductor plate having a rectangular cross section,
    13. The inverter integrated type according to claim 12, wherein the AC output terminal and the other end of the conductor wire of the phase coil are joined to each other such that planes constituted by long sides of a rectangular cross section are opposed to each other. Driving module.
  14.  上記交流出力端子と上記相コイルの上記導体線の他端との接合部が絶縁部材および電磁遮蔽部材の少なくとも一方で覆われていることを特徴とする請求項13記載のインバータ一体型駆動モジュール。 14. The inverter-integrated drive module according to claim 13, wherein a joint between the AC output terminal and the other end of the conductor wire of the phase coil is covered with at least one of an insulating member and an electromagnetic shielding member.
PCT/JP2011/069428 2010-08-30 2011-08-29 Inverter integration type drive module WO2012029706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012531860A JP5214064B2 (en) 2010-08-30 2011-08-29 Inverter integrated drive module
DE112011102869T DE112011102869T5 (en) 2010-08-30 2011-08-29 Drive module with integrated inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-192076 2010-08-30
JP2010192076 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012029706A1 true WO2012029706A1 (en) 2012-03-08

Family

ID=45772793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069428 WO2012029706A1 (en) 2010-08-30 2011-08-29 Inverter integration type drive module

Country Status (3)

Country Link
JP (1) JP5214064B2 (en)
DE (1) DE112011102869T5 (en)
WO (1) WO2012029706A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045499A1 (en) * 2012-09-19 2014-03-27 日産自動車株式会社 Power conversion device
JP2015006116A (en) * 2013-06-24 2015-01-08 株式会社デンソー Rotary electric machine for vehicle
JP2015006118A (en) * 2013-06-24 2015-01-08 株式会社デンソー Rotary electric machine for vehicle
CN105830313A (en) * 2013-12-20 2016-08-03 法雷奥电机设备公司 Interconnector for a stator of an electric machine and stator of an electric machine comprising such an interconnector
EP2717440A3 (en) * 2012-10-04 2016-10-12 Mitsubishi Electric Corporation Rotary electric motor salient pole armature winding
WO2018037457A1 (en) * 2016-08-22 2018-03-01 三菱電機株式会社 Motor drive device, refrigeration cycle device, and air conditioner
CN107852072A (en) * 2015-08-05 2018-03-27 三菱电机株式会社 Integral inverter motor
EP3631952B1 (en) * 2017-06-01 2021-12-01 Mahle International GmbH Electric machine with integrated power electronics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203568A1 (en) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Electric drive system
DE102015219865A1 (en) 2015-10-13 2017-04-13 Lenze Drives Gmbh Electric drive
DE102016221349A1 (en) * 2016-10-28 2018-05-03 Robert Bosch Gmbh Electric machine with dividing machines
DE102017212995A1 (en) 2017-07-27 2019-01-31 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Method for mounting a switching unit to a component of an electric motor
DE102020120118A1 (en) * 2020-07-30 2022-02-03 Schaeffler Technologies AG & Co. KG Modularization of the e-machine and power electronics with the highest fill factor, e.g. copper fill factor
FR3125656A1 (en) * 2021-07-26 2023-01-27 Safran Electrical & Power Aircraft electric propulsion system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116840A (en) * 2005-10-21 2007-05-10 Nichicon Corp Inverter module and inverter-integrated alternating current motor using the same
JP2009291040A (en) * 2008-05-30 2009-12-10 Panasonic Corp Synchronous motor drive system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116840A (en) * 2005-10-21 2007-05-10 Nichicon Corp Inverter module and inverter-integrated alternating current motor using the same
JP2009291040A (en) * 2008-05-30 2009-12-10 Panasonic Corp Synchronous motor drive system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045499A1 (en) * 2012-09-19 2016-08-18 日産自動車株式会社 Power converter
WO2014045499A1 (en) * 2012-09-19 2014-03-27 日産自動車株式会社 Power conversion device
EP2899864A4 (en) * 2012-09-19 2015-07-29 Nissan Motor Power conversion device
CN104620488A (en) * 2012-09-19 2015-05-13 日产自动车株式会社 Power conversion device
EP2717440A3 (en) * 2012-10-04 2016-10-12 Mitsubishi Electric Corporation Rotary electric motor salient pole armature winding
JP2015006118A (en) * 2013-06-24 2015-01-08 株式会社デンソー Rotary electric machine for vehicle
JP2015006116A (en) * 2013-06-24 2015-01-08 株式会社デンソー Rotary electric machine for vehicle
CN105830313A (en) * 2013-12-20 2016-08-03 法雷奥电机设备公司 Interconnector for a stator of an electric machine and stator of an electric machine comprising such an interconnector
US20170005535A1 (en) * 2013-12-20 2017-01-05 Valeo Equipements Electriques Moteur Interconnector for a stator of an electrical machine and stator of an electrical machine comprising an interconnector of this type
US20210367459A1 (en) * 2013-12-20 2021-11-25 Valeo Equipements Electriques Moteur Interconnector for stator of electrical machine and the stator comprising the interconnector
CN107852072A (en) * 2015-08-05 2018-03-27 三菱电机株式会社 Integral inverter motor
US20180198351A1 (en) * 2015-08-05 2018-07-12 Mitsubishi Electric Corporation Inverter-integrated motor
WO2018037457A1 (en) * 2016-08-22 2018-03-01 三菱電機株式会社 Motor drive device, refrigeration cycle device, and air conditioner
EP3631952B1 (en) * 2017-06-01 2021-12-01 Mahle International GmbH Electric machine with integrated power electronics

Also Published As

Publication number Publication date
DE112011102869T5 (en) 2013-06-20
JP5214064B2 (en) 2013-06-19
JPWO2012029706A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5214064B2 (en) Inverter integrated drive module
JP6977556B2 (en) Rotating machine
JP5335104B2 (en) Inverter integrated drive module and manufacturing method thereof
JP6609373B2 (en) Rotating electric machine
JP5140389B2 (en) Stator for rotating electric machine and rotating electric machine using the same
US20210234415A1 (en) Rotating electric machine
JP5885179B2 (en) Mechanical and electric rotating machine
JP5365862B2 (en) Armature for rotating electrical machine
JP2008061357A (en) Coil for rotating electric machine and its manufacturing method, and rotating electric machine and its manufacturing method
JP2014054051A (en) Rotary electric machine drive system
JP2012517209A (en) Synchronous machine
US9240707B2 (en) Rotary electric machine
US9537366B2 (en) Magnet-type generator
US20240039355A1 (en) Rotating Electrical Machine, Electric Wheel, and Vehicle
JP2011151875A (en) Stator of synchronous rotating machine
JP5748878B2 (en) Rotating electric machine
KR102351855B1 (en) 6-Phase Motor Having Connector Foaming Multi Electric Conductor
US20150372551A1 (en) Structure of stator
CN112840526B (en) Rotary electric machine
JP2019122183A (en) Stator of rotating electric machine and rotating electric machine
WO2023228518A1 (en) Axial gap motor
JP2016213916A (en) Rotary electric machine
JP2019161716A (en) Stator for rotary electric machine
JP2010279205A (en) Rotary electric machine with built-in switching element
US20180034337A1 (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531860

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111028695

Country of ref document: DE

Ref document number: 112011102869

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821722

Country of ref document: EP

Kind code of ref document: A1