WO2012029589A1 - 液晶表示パネル、液晶表示装置及び配向膜材料用重合体 - Google Patents

液晶表示パネル、液晶表示装置及び配向膜材料用重合体 Download PDF

Info

Publication number
WO2012029589A1
WO2012029589A1 PCT/JP2011/068936 JP2011068936W WO2012029589A1 WO 2012029589 A1 WO2012029589 A1 WO 2012029589A1 JP 2011068936 W JP2011068936 W JP 2011068936W WO 2012029589 A1 WO2012029589 A1 WO 2012029589A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment film
crystal display
photo
display panel
Prior art date
Application number
PCT/JP2011/068936
Other languages
English (en)
French (fr)
Inventor
寺下 慎一
寺岡 優子
伸一 平戸
博之 箱井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180042140.XA priority Critical patent/CN103097948B/zh
Priority to US13/819,820 priority patent/US20130162920A1/en
Publication of WO2012029589A1 publication Critical patent/WO2012029589A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal display panel, a liquid crystal display device, and a polymer for alignment film material. More specifically, personal digital assistants used for large numbers of people, personal computers, word processors, amusement equipment, educational equipment, flat displays such as television devices, display boards using the shutter effect of liquid crystals, display windows, display doors,
  • the present invention relates to a liquid crystal display device having a wide viewing angle characteristic suitable for a display wall and the like, and a liquid crystal display panel and a polymer for alignment film material used therefor.
  • Liquid crystal display devices are used in a wide range of fields, taking advantage of their thinness, light weight, and low power consumption.
  • the liquid crystal display device includes a pair of substrates that sandwich a liquid crystal layer, and appropriately applies a voltage to electrodes provided on the substrate on the liquid crystal layer side to control the alignment direction of liquid crystal molecules contained in the liquid crystal layer. This enables liquid crystal display.
  • the liquid crystal display device usually has an alignment film provided on the surface of the substrate on the liquid crystal layer side in order to control the alignment direction of the liquid crystal molecules.
  • resins such as polyamic acid, polyimide, polyamide, polysiloxane, polyester, and the like are used as the material of the alignment film constituting the liquid crystal display device.
  • polyimides have been used in many liquid crystal display devices because they exhibit excellent physical properties such as heat resistance, affinity with liquid crystals, and mechanical strength among organic resins.
  • the alignment film is usually subjected to an alignment treatment in order to give a certain pretilt angle to the liquid crystal molecules on the surface of the alignment film.
  • the alignment treatment method include a rubbing method and a photo-alignment method.
  • the rubbing method the alignment treatment is performed by rubbing the surface of the alignment film with a cloth wound around a roller.
  • the photo-alignment method uses a photo-alignment film as an alignment film material, and irradiates (exposes) light such as ultraviolet rays to the photo-alignment film, thereby generating an alignment regulating force in the alignment film and / or the alignment film. This is an alignment method for changing the alignment regulating direction of.
  • a liquid crystal alignment film is formed that prevents display defects, has good afterimage characteristics even after long-time driving, does not decrease the ability to align liquid crystal, and has little decrease in voltage holding ratio against light and heat.
  • a tetrafunctional silicon compound such as tetrachalcoxysilane, a trifunctional compound such as trialkoxysilane, and 0.8 to 3.0 moles per mole of functional group such as an alkoxy group.
  • a liquid crystal aligning agent composition containing a reaction product with water and a glycol ether solvent is disclosed (for example, see Patent Document 1).
  • liquid crystal aligning agent that can exhibit good coating properties and liquid crystal alignment characteristics, and can form a liquid crystal alignment film that has a short period of time until the afterimage is erased after voltage application is canceled in a liquid crystal display element.
  • a liquid crystal aligning agent comprising a polyamic acid having a structure derived from a monoamine compound or an imidized polymer thereof is disclosed (for example, see Patent Document 2).
  • a polymer 100 having an amic acid repeating unit and / or an imide repeating unit As a technique for providing a liquid crystal aligning agent that provides a vertical liquid crystal alignment film having excellent image sticking characteristics and reliability even when used with a reflective electrode, a polymer 100 having an amic acid repeating unit and / or an imide repeating unit.
  • a vertical liquid crystal aligning agent comprising at least 5 parts by weight of a compound having at least 5 parts by weight and a compound having at least two epoxy groups in the molecule is disclosed (for example, see Patent Document 3).
  • Residual DC is usually generated by offset voltage deviation between electrodes formed on opposing substrates in an AC-driven liquid crystal display device.
  • photoreactive polymers that produce stable high-resolution alignment patterns that have a defined tilt angle when irradiated with polarized light and at the same time have a sufficiently high resistance (retention ratio) in the adjacent liquid crystal medium.
  • -Polyimides are further disclosed which further include as side groups that can be structurally derived from arylacrylic acid (see, for example, Patent Document 4).
  • a functionalized photoreactive compound in which a specific electron-withdrawing group is added to a specific molecular structure having unsaturation directly bonded to two unsaturated ring structures which is used for a liquid crystal alignment material Is disclosed (for example, see Patent Document 6).
  • JP 2005-250244 A JP 2006-52317 A JP 2006-10896 A JP-T-2001-517719 Special table 2003-520878 gazette Special table 2009-511431 gazette Special table 2009-520702 gazette
  • the resin (polymer), which is the alignment film contained in the liquid crystal panel, and its constituent materials are new chemical substances, the amount of use should be reduced as much as possible in order to reduce the burden on the environment. Consideration to suppress is essential.
  • the alignment film mixing different types of polymers deteriorates the electrical characteristics such as the problem of precipitation in the ink solvent, the uniformity of liquid crystal alignment, and the voltage holding ratio and residual DC that cause image sticking.
  • the display quality and reliability may be reduced.
  • liquid crystal alignment processing in one direction is performed in the substrate plane. Because of the dependency, the direction in which the burn-in phenomenon can be observed depends on the viewing angle characteristics of the liquid crystal alignment mode in addition to the front direction. On the other hand, in liquid crystal TVs and large information displays, liquid crystal alignment is divided for viewing angle compensation during white display. As described above, in the orientation division mode in which the viewing angle is compensated, the image sticking phenomenon can be seen uniformly in all directions, so it is essential to improve the image sticking phenomenon.
  • the VATN mode may be referred to as an RTN (reverse twist TN; vertical alignment TN) mode.
  • the ECB mode may be of a vertical alignment when no voltage is applied, a horizontal alignment type when a voltage is applied (VAECB), a horizontal alignment when no voltage is applied, and a vertical alignment type when a voltage is applied.
  • the present invention has been made in view of the above situation, and efficiently produces and provides a display panel and a liquid crystal display device having excellent electrical characteristics and optical characteristics, uniform display quality, and sufficient reliability. It is for the purpose.
  • a method for producing an alignment film in a liquid crystal display panel there is a method of imparting functionality to the alignment film by forming a layer made of a different polymer on the substrate.
  • processing two-layer processing, or hybridization processing.
  • a polymer of a horizontal alignment film and a polymer of a vertical alignment film or a non-fluorine-introduced polymer and a fluorine-introduced polymer, for example, a non-fluorine-introduced vertical alignment film and a fluorine-introduced polymer with no photo-orientation.
  • a horizontal alignment film is formed on the substrate side and a vertical alignment film is formed on the liquid crystal side by utilizing the action of phase separation between the polymers.
  • the volume of the alignment film exposed on the liquid crystal side can be reduced, and an alignment film material (for example, an alignment film material that is a new chemical substance, and / or Alternatively, the use of the alignment film material can be reduced because the alignment film exposed to the liquid crystal side only needs to be included in the alignment film exposed to the liquid crystal side.
  • the modification ratio of the present invention refers to the weight ratio (wt% (wt%)) of the solid content of the non-photo-alignment polymer, where the weight of the total solid content of the photo-alignment polymer and the non-photo-alignment polymer is 100%.
  • wt% weight ratio of the solid content of the non-photo-alignment polymer
  • AC image sticking can be suppressed by introducing a chemical substance capable of preventing liquid crystal adsorption and side chain deformation. Furthermore, improvement in print applicability such as spin coating, flexographic printing, and inkjet can be expected.
  • the copolymerization of a high introduction rate of a photo-aligned diamine unit and a non-photo-aligned diamine unit results in a decrease in photosensitivity due to a decrease in photofunctional group density, a longer light irradiation time, transmittance, response characteristics, etc. There was concern about deterioration of display characteristics.
  • the inventor of the present invention includes a polymer for alignment film material that can have photoalignment by including a compound having photoalignment and has excellent display quality, reliability, and display characteristics, and a liquid crystal display panel using the same Then, the liquid crystal display device was examined, and various structures included in the alignment film and the polymer for the alignment film material were examined, and attention was paid to the molecular structure and composition of the main chain and the side chain.
  • the present inventor has optimized the photopolymer copolymerization ratio so as to have a photo-alignment property by containing a compound having a photo-alignment property, and found a use amount range in which no problem occurs in electro-optical characteristics.
  • the modification ratio was also optimized, and a range in which the electro-optical characteristics were similarly excellent was found. Then, the present inventors have found a desirable polymer structural composition as a photo-alignment film while having excellent electro-optical characteristics. As a result, the inventors have conceived that the above-mentioned problems can be solved brilliantly in the present invention, and have reached the present invention.
  • the present invention is a liquid crystal display panel having a configuration in which a liquid crystal layer containing liquid crystal molecules is sandwiched between a pair of substrates, and having a photo-alignment film on the liquid crystal layer side surface of at least one substrate
  • An alignment film is a film formed using an alignment film material containing a polymer whose essential constituent unit is a first constituent unit that exhibits characteristics for controlling the orientation of liquid crystal molecules by light irradiation.
  • the first structural unit expresses the property of controlling the alignment of liquid crystal molecules by at least one photochemical reaction of a photocrosslinking reaction and a photoisomerization reaction, and the polymer aligns the liquid crystal molecules.
  • the introduction ratio of the second structural unit that expresses the characteristics to be controlled regardless of light irradiation is 0 mol% or more when the total of the first structural unit and the second structural unit is 100 mol%.
  • the alignment film material It is composed of a film formed by using a film of other materials, and the liquid crystal layer side surface portion of the photo-alignment film is composed of a film formed by using the alignment film material.
  • the modification ratio is such that the introduction ratio of the second structural unit is 0 mol% or more.
  • the liquid crystal display panel (also referred to as the first invention) is 0 to 85 wt%, and when the introduction ratio is 6 mol% or more, the liquid crystal display panel is 0 to 90 wt%.
  • 0 to 85% by weight means 0% by weight or more and 85% by weight or less.
  • 0 to 90% by weight means 0% by weight or more and 90% by weight or less.
  • the second structural unit is a structural unit (monomer unit) in the polymer that exhibits the property of controlling the alignment of liquid crystal molecules regardless of light irradiation.
  • the liquid crystal molecules are aligned. What is necessary is just to express the characteristic to control and to evaluate that such a characteristic is expressed by methods other than light irradiation.
  • the introduction ratio of the second structural unit is 0 mol% or more when the total of the first structural unit and the second structural unit is 100 mol%. This means that the second structural unit may not be present in the polymer, that is, the second structural unit is an optional component, but a film formed using a non-new chemical substance, etc.
  • the second structural unit is present in the polymer.
  • the introduction ratio of the second structural unit is preferably 10 mol% or less. More preferably, it is 8 mol% or less. Moreover, as a lower limit, it is preferable that it is 4 mol% or more, However, More preferably, it exceeds 4 mol%. By setting it as such a form, it is possible to make a pretilt angle in a more suitable range.
  • the modification ratio is a ratio of the solid content of the material other than the alignment film material to the solid content of 100% by weight of the alignment film material and the other material for forming the photo-alignment film.
  • the introduction ratio is 0 mol% or more (particularly preferably 4 mol% or more) or less than 6 mol%
  • the modification ratio is 0 to 85% by weight
  • the introduction ratio of the second constituent unit is 6 mol% or more
  • the modification ratio The value of 0 to 90% by weight is supported by the results of reliability tests in Examples described later.
  • the modification ratio is optimized in order to reduce the amount of photo-alignment diamine, photo-alignment material, and the like used.
  • the upper limit of the modification ratio can be set higher when the introduction ratio of the second structural unit is higher than when it is relatively low as described above.
  • the photo-alignment film includes a film formed using the alignment film material and a film formed using other materials, and the liquid crystal layer side surface portion of the photo-alignment film uses the alignment film material.
  • the modification ratio is preferably more than 70% by weight.
  • a preferable upper limit is 90% by weight or less.
  • a base polymer that is not localized on the liquid crystal layer side surface is referred to as a modification treatment material.
  • the modification ratio is, in other words, the alignment film material and modification of the solid content of the modification treatment material. This is the ratio of the solid content of the treatment material to the total weight.
  • the above-mentioned “film of other materials” means a film (hereinafter referred to as the above-mentioned film) formed in the technical field of the present invention using the alignment film material on the liquid crystal layer side surface portion of the photo-alignment film. It may be different from the film formed on the liquid crystal layer side surface portion of the photo-alignment film.
  • the above-mentioned “film of other materials” preferably has a higher introduction ratio of the second structural unit than the film formed on the liquid crystal layer side surface portion of the photo-alignment film.
  • the usage-amount of the said raw material which has the photo-alignment diamine or photo-alignment property can be reduced as mentioned above.
  • a mode in which the photo-alignment film layer of the photo-alignment film is localized on the surface of the liquid crystal layer side of at least one substrate is preferable. The localization need not be completely localized as long as it is localized to the extent that the effects of the present invention are exhibited.
  • the introduction ratio of the second structural unit is more than 4 mol% and 8 mol% or less, and the modification ratio is more than 70 wt% and 90 wt% or less is preferable.
  • the form comprised by mixing the polymer which comprises the substrate side layer of a photo-alignment film and the polymer which comprises the liquid crystal side layer of a photo-alignment film is suitable.
  • the photo-alignment film preferably controls the alignment of liquid crystal molecules so that the average pretilt angle of the liquid crystal layer is 88.6 ° ⁇ 0.3 °. Within such a range, it can be said that it is within an allowable range in the technical field of the present invention, and the amount of gradation shift can be sufficiently reduced. If the gradation shift amount is within ⁇ 2 gradations, a more desirable range is 88.6 ° ⁇ 0.15 °. Further, when the gradation shift amount is within ⁇ 1 gradation, an even more preferable range is 88.6 ° ⁇ 0.1 °.
  • the photo-alignment film is composed of a film formed using the alignment film material and a film of other materials, and a liquid crystal layer side surface portion of the photo-alignment film is formed using the alignment film material.
  • the ratio of the solid content of the other material to the solid content of 100% by weight of the alignment film material and other materials is defined as the modification ratio.
  • the introduction ratio of the second structural unit is 0 mol% or more and less than 4 mol%, it is 0 to 63% by weight.
  • the introduction ratio of the second structural unit is 4 mol%, it is 30 to 90% by weight, and 4 mol%.
  • the ratio is more than 6 mol% and not more than 6 mol%, it is preferably 63 to 90 wt%, and when the introduction ratio of the second structural unit exceeds 6 mol% and not more than 8 mol%, it is preferably 83 to 90 wt%.
  • Such a configuration is preferable in that a range of a pretilt angle desirable from the viewpoint of optical characteristics can be satisfied.
  • the range in which the modification ratio is set preferably exceeds 70% by weight as described above. Therefore, it is more preferable that the modification ratio is more than 70 wt% and 90 wt% or less when the introduction ratio of the second structural unit is more than 4 mol% and 6 mol% or less.
  • the diamine unit that is not photo-aligned is introduced in an amount exceeding 4 mol%.
  • the introduction ratio and the modification ratio may be in the above-described preferable pretilt range without any problem in reliability.
  • the photo-alignment film allows the liquid crystal display panel to have a difference in pretilt angle of ⁇ 0.05 ° or more when the application time of AC voltage to the liquid crystal display panel is 0 hour and an average value of 36 to 40 hours. It is preferable to control the orientation of molecules.
  • the photo-alignment film in the liquid crystal display panel has a difference in pretilt angle when the application time of the AC voltage to the liquid crystal display panel is 0 hour and a simple average of 36 to 40 hours (in this specification, , Which is also referred to as ⁇ tilt) is preferably one in which the orientation of liquid crystal molecules is controlled so that it is ⁇ 0.05 ° or more.
  • the simple average means that the average value was calculated by the 5-point average value method recently in consideration of the measurement error, that is, the ⁇ tilt value was measured every other hour from 36 hours to 40 hours later, It means that those 5 points are averaged. More preferably, for example, the difference in pretilt angle between the application time of 0 hour and 36 hours is ⁇ 0.05 ° or more.
  • the modification ratio is 0 to 85 wt% when the introduction ratio of the second structural unit is 4 mol% or more and less than 6 mol%, and 0 to 90 wt% when the introduction ratio is 6 mol% or more and 10 mol% or less. It is particularly preferred that With such a configuration, it is possible to satisfy a desirable ⁇ tilt range from the viewpoint of image sticking characteristics.
  • the first structural unit of the polymer in the alignment film material preferably has a side chain having a photofunctional group. Moreover, it is preferable that the 2nd structural unit of the polymer in the said alignment film material has a side chain which has an orientational functional group.
  • the first structural unit has a vertical alignment (VA) side chain having a photofunctional group (first structural unit (1)) and another type of side chain (first structural unit).
  • (2nd structural unit (2)) etc. which are mentioned are mentioned as a suitable form.
  • the different types of side chains include those having different bonding groups to the main chain.
  • the essential constituent unit of the polymer in the alignment film material preferably has the same orientation control direction.
  • the said same direction should just be what can be said that an orientation control direction is the same direction in the technical field of this invention, and should just be substantially the same direction.
  • the photo-alignment film preferably controls the alignment of liquid crystal molecules uniformly in the plane of the alignment film.
  • the term “uniform” may be anything that can be said to uniformly control the orientation of liquid crystal molecules in the technical field of the present invention, and may be substantially uniform.
  • the photo-alignment film is preferably a vertical alignment film that controls the vertical alignment of liquid crystal molecules.
  • the vertical alignment film preferably controls the vertical alignment of liquid crystal molecules when no voltage is applied.
  • the second structural unit of the polymer in the alignment film material preferably has a side chain having a vertical alignment functional group.
  • the orientation functional group is preferably a vertical orientation functional group.
  • the “vertical alignment” in the above “vertical alignment control” and “vertical alignment” may be anything that can be said to be vertical alignment in the technical field of the present invention.
  • the first structural unit of the polymer in the alignment film material preferably has a side chain having at least one photofunctional group selected from the group consisting of a coumarin group, a cinnamate group, a chalcone group, an azobenzene group, and a stilbene group.
  • the photofunctional group is preferably at least one selected from the group consisting of a coumarin group, a cinnamate group, a chalcone group, an azobenzene group, and a stilbene group.
  • the second structural unit of the polymer in the alignment film material preferably has a side chain having a steroid skeleton.
  • the orientation functional group is preferably a steroid skeleton.
  • Examples of the second structural unit of the polymer in the alignment film material include 3 to 4 rings selected from 1,4-cyclohexylene and 1,4-phenylene either directly or via 1,2-ethylene. It is preferable to have a side chain having a linearly bonded structure.
  • the second structural unit may have 3 or 4 1,4-cyclohexylenes, 3 or 4 1,4-phenylenes, 1 , 4-cyclohexylene and 1,4-phenylene, and the total number thereof may be 3 or 4.
  • the polymer in the alignment film material preferably has at least one main chain structure selected from the group consisting of polyamic acid, polyimide, polyamide, and polysiloxane.
  • the polymer may have the main chain structure in a portion that can be called a side chain portion branched from the main chain in the technical field of the present invention.
  • the essential constituent unit of the polymer in the alignment film material is preferably formed of diamine.
  • formed by diamine means that the polymer is composed of monomer units derived from monomer components essentially containing diamine, and the polymer is composed only of monomer units derived from diamine. It is not limited to the form.
  • the polymer in the alignment film material is a copolymer of monomer components containing diamine and at least one of acid dianhydride and dicarboxylic acid.
  • the polymer in the alignment film material is such that the monomer component of the second structural unit is 0 mol% or more and 10 mol% with respect to 100 mol% of the total amount of the monomer component of the first structural unit and the monomer component of the second structural unit.
  • the following is preferable. More preferably, it is 4 mol% or more, still more preferably 4 mol% or more, and particularly preferably 6 mol% or more.
  • the liquid crystal display panel has pixels arranged in a matrix including pixel electrodes arranged in a matrix on the liquid crystal layer side of one substrate and a common electrode arranged on the liquid crystal layer side of the other substrate.
  • the pixel preferably has two or more domains arranged adjacent to each other.
  • the domains preferably have liquid crystal pretilts in different directions. For example, in the case of having two domains, it is preferable that the two domains have liquid crystal pretilts in opposite directions.
  • one of the substrates is divided into two equal pitches, By arranging both substrates so that the dividing directions are perpendicular to each other, it is preferable to form four-divided domains in which the alignment directions of the liquid crystal molecules are four different directions.
  • the present invention is also a liquid crystal display panel having a configuration in which a liquid crystal layer containing liquid crystal molecules is sandwiched between a pair of substrates, and having a photo-alignment film on the liquid crystal layer side surface of at least one substrate,
  • the film is formed using an alignment film material including a polymer having a third structural unit having a structure derived from a photofunctional group as an essential structural unit.
  • the polymer includes a photofunctional group and a photofunctional group.
  • the introduction ratio of the fourth constitutional unit having no orientation group and having the structure derived from the group is 0 mol% or more when the total of the third constitutional unit and the fourth constitutional unit is 100 mol%
  • the photo-alignment film is composed of a film formed using the alignment film material and a film of other materials, and a film in which the liquid crystal layer side surface portion of the photo-alignment film is formed using the alignment film material The alignment film material and the alignment film material.
  • the modification ratio is such that the introduction ratio of the fourth constituent unit is 0 mol% or more and less than 6 mol%.
  • the liquid crystal display panel (also referred to as the second invention) is 0 to 85% by weight, and when the introduction ratio is 6 mol% or more, it is 0 to 90% by weight. Also according to the said form, it is possible to exhibit the effect of this invention similarly.
  • the third structural unit having a structure derived from the photofunctional group is, for example, light of the trans isomer (or cis isomer) through the excited state of the photofunctional group of the cis isomer (or trans isomer) by light irradiation. It has a structure changed to a functional group.
  • the photorealignment structure of the photofunctional group is a structure in which the photofunctional group is photoreoriented.
  • the photoreorientation means that only the direction of the photofunctional group is changed by light irradiation without isomerization of the photofunctional group. Therefore, the third structural unit has, for example, a structure in which the photofunctional group of the cis isomer (or trans isomer) undergoes an excited state by light irradiation, and the direction of the photofunctional group is changed as it is. That is, the structure derived from the above photofunctional group means that the reversible change of the photoisomerization reaction is the main functional group in the case of low energy light even though it has the property of dimerization reaction. In other words, the structure derived from the photofunctional group may be any structure that causes a reversible change in the photoisomerization reaction.
  • the preferable form of the second aspect of the present invention is the same as the preferable aspect of the first aspect of the present invention described above.
  • the preferable forms of the first structural unit and the second structural unit in the first aspect of the present invention are the second form.
  • the present invention can be appropriately applied after replacing the preferred form of the third structural unit and the fourth structural unit in the present invention.
  • the polymer constituting the substrate layer side is preferably a polymer of a horizontal alignment film
  • the polymer constituting the liquid crystal layer side is preferably a polymer of a vertical alignment film.
  • the film formed of the modification treatment material is a horizontal alignment film
  • the film formed using the alignment film material is a vertical alignment film. This reduces the amount of material used to form the polymer of the vertical alignment film, thereby reducing the cost of the photo-alignment film material and providing a vertical alignment type liquid crystal display panel when voltage is applied. It can be suitably obtained.
  • the present invention is also a liquid crystal display device including the liquid crystal display panel of the present invention.
  • the preferred form of the liquid crystal display panel provided in the liquid crystal display device of the present invention is the same as the preferred form of the liquid crystal display panel of the present invention described above.
  • the present invention also includes a polymer having the first structural unit as an essential structural unit, or a third structural unit, which is included in the alignment film material for forming the photo-alignment film provided in the liquid crystal display panel of the present invention. It is also a polymer for alignment film material characterized by including a polymer as a structural unit.
  • the preferred form of the polymer for alignment film material of the present invention is the same as the preferred form of the polymer for alignment film material used for the liquid crystal display panel of the present invention.
  • a liquid crystal display panel and a liquid crystal display apparatus are usually used. It can have other components to configure. The same applies to the configuration of the polymer for alignment film material of the present invention. Such other components are not particularly limited.
  • the polymer has a desirable composition as a photo-alignment film while having excellent display quality, reliability, and electro-optical characteristics. can do.
  • FIG. 3 is a schematic diagram illustrating a basic structure of a molecule of a photo-alignment film polymer that can be used in Embodiment 1.
  • FIG. 2 is a conceptual cross-sectional view illustrating a configuration after firing of a substrate according to Embodiment 1 and a conceptual diagram illustrating a configuration of a photopolymer.
  • FIG. 3 is a schematic perspective view illustrating a relationship between a UV light alignment treatment direction and a pretilt direction of liquid crystal molecules in the first embodiment.
  • FIG. 3 is a diagram showing a photo-alignment mechanism of Embodiment 1.
  • FIG. 3 is a diagram showing a photo-alignment mechanism of Embodiment 1.
  • FIG. 1 A schematic plan view showing the direction of a liquid crystal director in one pixel (one pixel or one subpixel) and the photo-alignment processing direction for a pair of substrates (upper and lower substrates) when the liquid crystal display device of Embodiment 1 has a monodomain.
  • FIG. A schematic plan view showing the direction of a liquid crystal director in one pixel (one pixel or one subpixel) and the photo-alignment processing direction for a pair of substrates (upper and lower substrates) when the liquid crystal display device of Embodiment 1 has a monodomain.
  • FIG. 6 is a schematic plan view showing a liquid crystal display device, a liquid crystal division pattern of one picture element, a photo-alignment processing direction, and an average liquid crystal director direction when a 7.5 V voltage is applied.
  • 3 is a schematic plan view showing a liquid crystal division pattern of one picture element, a UV light irradiation direction, and a liquid crystal alignment direction in the liquid crystal display device of Embodiment 1.
  • FIG. 12 is a cross-sectional view taken along the line AB of FIG.
  • VHR voltage holding ratio
  • VHR voltage holding ratio
  • VHR voltage holding ratio
  • FIG. 10 is a graph of voltage holding ratio (%) against reliability test time (hr) in the second embodiment.
  • 10 is a graph of voltage holding ratio (%) against reliability test time (hr) in the second embodiment.
  • 10 is a graph of voltage holding ratio (%) against reliability test time (hr) in the second embodiment.
  • FIG. 10 is a window pattern display video diagram in the second embodiment.
  • FIG. 10 is a video diagram for evaluating burn-in in a halftone (V16) display in the second embodiment.
  • the introduction ratio of the second structural unit is a value when the total of the first structural unit and the second structural unit is 100 mol%.
  • the introduction ratio of the fourth structural unit is a value when the total of the third structural unit and the fourth structural unit is 100 mol%.
  • Embodiment 1 (Photo-alignment film material)
  • the photo-alignment film material in the present embodiment exhibits a vertical alignment that can be used in a VA (Vertical Alignment) mode, and a photochemical reaction (the material of the example of the present invention has a dimerization property, It is thought that the reaction mainly using isomerization is used.)
  • Examples of those that can give a pretilt to the liquid crystal include cinnamate, cinnamoyl, azobenzene, polyimide or polyamide having coumarin, and polysiloxane derivatives. It is done.
  • Examples of those that cause a photodegradation reaction and give a pretilt to the liquid crystal include polyvinyl alcohol, polyamide, polyimide, and polysiloxane. It should be noted that not only in the present embodiment, but also in horizontally oriented TN, ECB, and IPS (In-Plane-Switching) applications, imides and amides having no photofunctional group and imides and amides having no photofunctional group. Application can also be expected to a horizontal alignment film made into a copolymer (copolymer) with a derivative such as.
  • FIG. 1A and FIG. 1B are schematic views showing the basic structure of the molecules of the photo-alignment film polymer that can be used in the first embodiment.
  • FIG. 1A shows a polyimide structure
  • FIG. 1B shows a polyamic acid structure. Note that the photopolymer and the base polymer actually used in this embodiment both have a polyamic acid structure, and both are partially thermally imidized after firing.
  • a copolymer copolymer
  • the portion surrounded by a solid line is a unit derived from an acid dianhydride (acid dianhydride unit), and the portion surrounded by a broken line is a light beam.
  • a unit derived from a diamine having a side chain having a functional group photo-alignment diamine unit
  • a portion surrounded by an alternate long and short dash line is a unit derived from a diamine having a side chain having a vertical alignment functional group (vertical Oriented diamine unit).
  • the introduction composition of the photo-alignment side chain having a photofunctional group and the side chain unit not having a photofunctional group of the present invention can be applied even to a main chain having a polysiloxane structure.
  • Embodiment 1 Preferred examples of the acid dianhydride used in Embodiment 1 include those represented by the following formulas (1-1) to (1-8).
  • the acid dianhydride (4,10-dioxatricyclo (6,3,0) dodecane-3,5,9,11-tetraone) represented by the following (1-6) is particularly preferred.
  • the alphabet written together with a formula number is an abbreviation of each compound.
  • a material having a structure represented by the following formulas (2-1) to (2-13) is preferable. Moreover, it is a form which uses 2 or more types of these, Especially, with respect to 100 mol% of diamines, a plurality of different structural units may be introduced at 1 mol% or more.
  • diamines described in JP-A Nos. 2004-67589 and 2008-299317 can be used as appropriate.
  • the photo-aligning diamine used in Embodiment 1 may be any one having a photofunctional group (photoreactive group), but cinnamoyl having the structures shown in the following formulas (3-1) to (3-5) A substance having a group, a cinnamate group, a chalcone group, an azo group, a stilbene group, or a coumarin group is preferable.
  • the photofunctional group may be any functional group that can cause a photoreaction in the technical field of the present invention. For example, photocrosslinking (dimerization), photoisomerization (cis cis) -Trans reaction), and can undergo both photocrosslinking and photoisomerization.
  • a diamine compound described in JP-T-2009-520702 can be suitably used. Moreover, it is preferable that it is a compound represented by following Chemical formula (4). Among these, a form having a cinnamate group and / or a form having 1 to 5 fluorine atoms are preferable.
  • R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 12 carbon atoms
  • A represents an aromatic group having 5 to 14 carbon atoms
  • the aromatic group The hydrogen atom may have a part or all substituted with fluorine or chlorine atoms
  • B represents an alkyl group having 1 to 16 carbon atoms
  • D represents a diamine having 1 to 40 carbon atoms.
  • E represents an aromatic group, an oxygen atom, a sulfur atom, —NR 3 —, or —CR 4 R 5 —
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 4 and R 5 are the same or different and are a hydrogen atom or an alkyl group having 1 to 24 carbon atoms
  • X and Y are the same or different and are hydrogen, fluorine, chlorine, cyano group, or unsubstituted Or an alkyl group having 1 to 15 carbon atoms substituted with fluorine (preferably Details, represents an alkyl group) having 1 to 12 carbon atoms, m and n are the same or different, is an integer of 1-4.
  • the fluorine atom (F) is substituted with a dialkylamino group having 2 to 32 carbon atoms, an alkyloxy group having 1 to 6 carbon atoms, a nitro group, and / or chlorine. Also good.
  • n is particularly preferably 1.
  • the photo-aligned diamine in the present invention is preferably not branched and composed of a single main chain.
  • the phrase “consisting of a single main chain” may be anything that can be said to be substantially composed of a single main chain in the technical field of the present invention.
  • photo-aligned diamine examples include, for example, a compound represented by the following formula (5) (4- (4,4,4-trifluorobutoxy) benzoic acid 4- ⁇ 2- [2- (2 , 4-diaminophenyl) ethoxycarbonyl] -2- (E) -vinyl ⁇ phenyl ester).
  • the above-described polymerization of the photo-alignment film material can be synthesized by a conventionally disclosed technique (JP 2007-224273 A, JP 2007-256484 A, etc.).
  • the introduction ratio of imides, amides and other derivatives that do not have a photofunctional group is 0 mol%, 4 mol%, 6 mol%, and 10 mol%, and the photoalignment diamine is unified to polymerize the photoalignment film material. Then, the varnish was adjusted with a solvent for inkjet printing. Regarding the pretilt, ⁇ tilt, VHR, and residual DC characteristics, the dependence on the introduction rate of derivatives such as imide and amide having no photofunctional group was examined.
  • a mixed solvent of ⁇ -butyllactone (BL), N-methylpyrrolidone (NMP), dietine glycol diethyl ether (DEDG), and diisobutyl ketone (DIBK) is suitable.
  • NMP N-methylpyrrolidone
  • DEDG dietine glycol diethyl ether
  • DIBK diisobutyl ketone
  • a mixed solvent of BL, NMP and BC is suitable.
  • FIG. 2 is a conceptual cross-sectional view illustrating a configuration of the substrate according to Embodiment 1 after firing and a conceptual diagram illustrating a configuration of a photopolymer.
  • the photo-alignment film of this embodiment has two layers of the modification treatment material (base polymer) 4 and the photopolymer 2 laminated in this order from the substrate 6. .
  • base polymer base polymer
  • the alignment film formed using the base polymer as a substrate is modified by the photopolymer on the surface on the liquid crystal layer side and in the vicinity thereof.
  • modified material means a material that becomes a substrate to be modified by a photopolymer.
  • the alignment film In 100% by weight of the alignment film, if the base polymer is 0% by weight, it is non-modified, and the modification rate increases as the weight% of the photopolymer decreases.
  • the alignment function of the liquid crystal molecules in the alignment film is expressed by the photopolymer. As the entire alignment film, the volume of the alignment film exposed on the liquid crystal side described above is reduced, the use of new chemical substances is reduced, and the film thickness of the alignment film. The function of realizing maintenance and residual DC reduction will be exhibited.
  • the boundary between the base polymer and the photopolymer is clearly shown. However, in the actual embodiment, the boundary may not be clear, and the photopolymer is inclined in a gradient.
  • a preferred embodiment is one in which a photopolymer and a base polymer are divided into two layers and an alignment film is formed, but the photopolymer is a liquid crystal of the alignment film so that the alignment function of liquid crystal molecules can be achieved. It only has to be unevenly distributed on the side surface.
  • the substrate side is a non-fluorine polymer, surface side It was confirmed that the fluoropolymer separated into layers.
  • a vertical alignment film of a non-fluorine-introduced side chain polymer capable of causing layer separation from the fluorine-containing photoalignment film as described above can also be used as the base polymer of the modified material.
  • a monomer unit 2a formed from an acid dianhydride, photo-alignment A monomer unit 2b formed from a diamine and a monomer unit 2c formed from a non-fluorine diamine are included as constituent units.
  • the non-fluorine diamine may be a vertical diamine having a so-called vertical alignment function of liquid crystal molecules, and may have a fluorine atom.
  • the distribution mode of the monomer unit may be any of random, block, alternating, etc., but is formed from the monomer unit 2a formed from an acid dianhydride and a photo-aligned diamine.
  • the form in which the monomer units 2b formed and the monomer units 2c formed from non-fluorine diamine are alternately present is preferable.
  • the monomer unit 2c formed from the non-fluorine diamine is also distributed in the polymer to some extent without being too biased.
  • F fluorine atom
  • bonded with the side chain terminal part of this is preferable, as long as the alignment film formed by light irradiation fulfill
  • Non-fluorine diamine which is a constituent of the above photopolymer copolymer, plays a role in making the pretilt stand in the vertical direction, improves the uniform alignment of liquid crystal molecules when a voltage is applied, and changes the pretilt with respect to the voltage.
  • the ACM can be suppressed.
  • the vertical alignment diamine unit may be any component (0 mol% or more), but from the viewpoint of reducing the amount of photoalignment diamine used, the vertical diamine unit is an essential component. It is preferable to do.
  • the introduction ratio of the vertical diamine as the second structural unit is more than 4 mol% and 10 mol% or less when the total of the photo-aligned diamine as the first structural unit and the vertical diamine as the second structural unit is 100 mol%.
  • a desirable polymer structural composition can be proposed. More preferably, it is 8 mol% or less.
  • the preparation method of the alignment film of this embodiment is demonstrated.
  • the monomer components of the first structural unit and the second structural unit and acid dianhydride are copolymerized (copolymerized) by a conventionally known method.
  • a varnish for inkjet coating (printing) the copolymerized polymer on the substrate is prepared.
  • a mixed solvent containing a solvent such as ⁇ -butyllactone (BL), N-methylpyrrolidone (NMP), diethylene glycol diethyl ether (DEDG), diisobutyl ketone (DIBK) (including isomer mixture) is preferable. It is.
  • a form using 30% by weight of ⁇ -butyllactone, 20% by weight of N-methylpyrrolidone, 40% by weight of diethyl ether dibutyl glycol, and 10% by weight of diisobutyl ketone (including isomer mixture) is preferable.
  • varnish is applied to the substrate.
  • spin coating, flexographic printing, inkjet, and the like are preferable.
  • main baking is performed on the main baking hot plate.
  • the heating temperature and heating time in temporary baking and main baking can be set suitably.
  • the film thickness of the alignment film of this embodiment can also be set suitably.
  • the alignment film of the present embodiment may be formed by a method called a modification process, a two-layer process, or a hybrid process.
  • residual DC has been considered as the main cause of image sticking in liquid crystal display devices.
  • the residual DC becomes larger as the thickness (volume) of the alignment film is thicker (larger). Therefore, the residual DC becomes smaller as the film thickness (volume) of the alignment film is thinner (smaller).
  • the polymer of the vertical alignment film and the polymer of the horizontal alignment film, or the fluorine-introducing polymer as the vertical alignment film and the non-fluorine-introducing polymer as the horizontal alignment film have a certain ratio (for example, 30:70 to 5 : 95. More preferably, by applying a uniformly mixed varnish at 25:75 to 10:90) to the substrate, phase separation occurs between the polymers immediately after coating or in the baking process after alignment film coating. By utilizing this action, a horizontal alignment film is formed on the substrate side, and a vertical alignment film is formed on the liquid crystal layer side. Thereby, the volume of the alignment film exposed to the liquid crystal layer side can be reduced, and the image sticking caused by the residual DC and the residual DC can be reduced.
  • the above-described processing can be performed if necessary. Accordingly, it is possible to realize a liquid crystal display device in which both the image sticking caused by the residual DC and the image sticking in the AC mode are reduced. From the viewpoint of reliability, it is preferable that the above-described modification ratio exceeds 70% by weight and is 90% by weight or less. Further, by setting the upper limit to 90% by weight or less, the photo-alignment film on the liquid crystal layer side surface can sufficiently function as the photo-alignment film.
  • Preferred examples of the diamine for modification treatment used in Embodiment 1 include compounds represented by the following formulas (6-1) to (6-6).
  • the alphabet written together with a formula number is an abbreviation of each compound.
  • Examples of the acid dianhydride for modification treatment include the above-mentioned acid dianhydrides. Furthermore, when a photo-alignment film material is required, a photopolymer having similar material characteristics and electro-optical characteristics can be produced by changing the other diamine of the copolymer composition without changing the photo-alignment diamine. By blending them, it becomes possible to stably supply and use necessary materials.
  • a photo-aligned diamine is 4- (4,4,4-trifluorobutoxy) benzoic acid 4- ⁇ 2- [2- (2,4-diaminophenyl) ethoxycarbonyl] -2- (E) -vinyl ⁇ phenyl.
  • esters and vertically oriented diamines 5 ⁇ -cholestan-3 ⁇ -ol diamine, acid dihydrate, 4,10-dioxatricyclo (6,3,1,0) dodecane-3,5,9,11 -Copolymers were formed by known techniques as tetraone.
  • Base polymer of this embodiment For example, a polymer was formed by a known technique using diamine as MBDA, acid dianhydride, and cyclohexanetetracarboxylic dianhydride.
  • an epoxy compound described in JP-A-2008-299317 and an epoxy group-containing compound described in Japanese Patent No. 4434862 are appropriately used. Is possible.
  • a cell thickness holding material for example, micropearl (plastic beads) 3.5 ⁇ m diameter manufactured by Sekisui Fine Chemical Co., Ltd. may be dry-sprayed in a desired amount (density: about 4 to 5 per 100 ⁇ m 2 ).
  • the ink containing the cell thickness holding material may be inkjet-printed at a desired position, or a photo spacer is used at a predetermined position by using a photosensitive resin material before forming the photo-alignment film. May be formed.
  • a method of screen printing or dispensing a sealing agent for example, Structbond XN-21S manufactured by Mitsui Chemicals, or a photothermal sealing agent manufactured by Kyoritsu Chemical Industry, is suitable.
  • a vacuum injection method or a drop injection method is suitable.
  • a photocurable bond manufactured by Three Bond Co., Ltd. and Sekisui Fine Chemical Co., Ltd. is suitable as the sealant.
  • FIG. 3 is a schematic perspective view showing the relationship between the UV light alignment treatment direction and the pretilt direction of the liquid crystal molecules in the first embodiment.
  • 4 and 5 are diagrams showing the photo-alignment mechanism of the first embodiment.
  • FIGS. 6 and 7 show the case where the photo-alignment processing in the case where the liquid crystal alignment domain is a monodomain is perpendicular to the upper and lower substrates (FIG. 6) and the case where the upper and lower substrates are antiparallel (FIG. 7). That is, FIG.
  • FIG. 6 shows the direction of the liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment processing for a pair of substrates (upper and lower substrates) when the liquid crystal display device of Embodiment 1 has a monodomain. It is a plane schematic diagram which shows a direction (VATN).
  • FIG. 7 shows the direction of the liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment processing direction for a pair of substrates (upper and lower substrates) when the liquid crystal display device of Embodiment 1 has a monodomain. It is a plane schematic diagram which shows (VAECB).
  • FIGS. 8 and 9 are schematic cross-sectional views showing the first and second positional relationships between the substrate and the photomask in the split light alignment processing process by mask alignment by the proxy UV exposure method, respectively.
  • FIG. 10 clearly shows a liquid crystal display device, a liquid crystal division pattern of one picture element, a photo-alignment processing direction, and an average liquid crystal director direction when a voltage of 7.5 V is applied. The operation principle of the liquid crystal display device of the present invention will be described with reference to FIGS.
  • a liquid crystal layer composed of liquid crystal molecules having negative dielectric anisotropy is sandwiched between a pair of glass substrates.
  • a transparent electrode is formed on each surface of the pair of glass substrates in contact with the liquid crystal layer, and a vertical alignment photo-alignment film layer is formed thereon.
  • FIG. 3 when UV light polarized parallel to the incident surface is irradiated at an angle of, for example, 40 degrees from the normal direction of the substrate, the UV irradiation direction 5 is directed in the direction as shown in FIG.
  • a liquid crystal pretilt angle 1 can be generated.
  • the liquid crystal molecules are 90 Although the structure is twisted, the liquid crystal molecules are almost aligned in the direction shown in FIG. 6 (the average liquid crystal director direction 18 when an AC voltage is applied) that bisects the irradiation direction.
  • the solid line arrow indicates the light irradiation direction (upper substrate 1 direction photo-alignment processing direction) with respect to the upper substrate
  • the dotted line arrow indicates the light irradiation direction (lower substrate 1 direction photo-alignment processing direction) with respect to the lower substrate.
  • FIG. 5 is a schematic diagram in which the photosensitive side chain 10 parallel to the electric vector E reacts, the unreacted side chain 12 remains, and the reoriented side chain is generated, and the orientation direction of the resulting structure (that is, The easy axis 14), the original average side chain distribution 16 and the correlation diagram of the electric vector E are shown.
  • the polarized light (P wave having an electric vector E parallel to the incident surface) is ideally linearly polarized in order to efficiently photoreact the photoalignment side chain for aligning the liquid crystal.
  • elliptical polarization or partial polarization is used.
  • the pretilt absolute value angle from the normal line
  • the extinction ratio of polarized light increases.
  • polarized light having an extinction ratio of 30: 1 is lower by about 0.2 ° than polarized light having an extinction ratio of 10: 1.
  • the solid line arrow indicates the light irradiation direction (upper substrate 1 direction photo-alignment processing direction) with respect to the upper substrate
  • the dotted line arrow indicates the light irradiation direction (lower substrate 1 direction photo-alignment processing direction) with respect to the lower substrate.
  • the VA mode has been described in detail.
  • the present technology can also be applied to a diamine that does not have a vertical alignment functional group or a side chain portion with hydrophilicity. It is expected that ACM can be suppressed by adapting to a copolymer (copolymer) of a diamine having a photo-alignment or horizontal alignment functional group and a diamine having a horizontal alignment type photo-alignment functional group. That is, as described above, application can be expected to a horizontal alignment film of a fluorine-free polymer that can generate layer separation with a horizontal alignment photo-alignment film.
  • (Divided orientation) 8 and 9 are diagrams for explaining a proxy UV exposure process using an alignment mask (photomask 29).
  • the width of one pixel (one pixel or sub-pixel) of the liquid crystal display device is divided into two, half is exposed in one direction (the light irradiation direction 27 is the back direction from the paper surface), and half is shielded by using the photomask shading unit 23. (FIG. 8).
  • the substrate 22 is, for example, a drive element substrate or a color filter.
  • the photomask light-shielding portion 23 is shifted by a half pitch to shield the exposed portion, and the light-shielded portion is exposed in the direction opposite to that in FIG.
  • the light irradiation direction 31 is the front side from the paper surface.
  • FIG. 9 Accordingly, one pixel (one pixel or sub-pixel) width of the liquid crystal display device is divided into two, and regions having liquid crystal pretilts in opposite directions are present in stripes.
  • the proxy gap 21 is a gap between the photomask 29 and the photo-alignment film (vertical alignment film) 25.
  • the irradiation direction of the substrate fixing and mask shifting alignment method, the driving element substrate, and the color filter substrate are 180 ° different within the same substrate and 90 ° between different types of substrates.
  • a scanning exposure method may be used in which two types of exposure unit groups each having a dedicated mask of 0 ° and 180 ° are prepared.
  • Each of the substrates is divided into two equal pitches, and the two substrates are arranged so that the dividing directions are perpendicular to each other, whereby the alignment directions of the liquid crystal molecules are four different I, II, III, and IV.
  • Split domains are formed (FIG. 10). In each domain boundary, the liquid crystal alignment direction on one substrate coincides with the polarizing plate absorption axis, and the liquid crystal alignment direction on one substrate is almost perpendicular to the substrate. It becomes a dark line when voltage is applied.
  • dotted arrows indicate the light irradiation direction (driving element side UV alignment processing direction) with respect to the lower substrate (driving display element (TFT) substrate).
  • a solid line arrow indicates a light irradiation direction (color filter substrate side UV light alignment processing direction) with respect to the upper substrate (color filter substrate).
  • the up / down arrow 415 indicates the drive display element side polarizing plate absorption axis direction
  • the left / right arrow 416 indicates the color filter side polarizing plate absorption axis direction.
  • FIG. 11 is a schematic plan view showing a liquid crystal division pattern of one picture element, a UV light irradiation direction, and a liquid crystal alignment direction in the liquid crystal display device of Embodiment 1.
  • FIG. 12 is a cross-sectional view taken along the line AB of FIG. 11 when a voltage is applied, and is a cross-sectional view of alignment of liquid crystal molecules.
  • liquid crystal display device of the present invention a liquid crystal layer composed of liquid crystal molecules having negative dielectric anisotropy is sandwiched between a pair of glass substrates.
  • Transparent electrodes are formed on the surfaces of the pair of glass substrates in contact with the liquid crystal layer, respectively, and a vertical alignment layer is formed thereon.
  • Each substrate is divided into two equal divisions, and both substrates are arranged with a half-pitch shift, so that four different domains i, ii, iii, and iv are divided into four domains.
  • Form (FIG. 11).
  • the liquid crystal molecules When no voltage is applied, the liquid crystal molecules are aligned in a direction perpendicular to the substrate by the alignment regulating force of the vertical alignment layer.
  • a voltage As shown in FIG. 12, there are four different alignment states in the four domains in which the liquid crystal molecules are twisted approximately 90 degrees between the upper and lower substrates. It is considered that the average liquid crystal director in the liquid crystal cell thickness direction when a voltage is applied is aligned in a direction of approximately 45 degrees between the photo alignment processing directions perpendicular to the upper and lower substrates.
  • a dotted line arrow indicates a light irradiation direction (a driving display element side two-direction photo-alignment processing direction) with respect to the lower substrate (driving display element (TFT) substrate).
  • a solid line arrow indicates a light irradiation direction (color filter side two-direction light alignment processing direction) with respect to the upper substrate (color filter substrate).
  • the up / down arrow 515 indicates the drive display element side polarizing plate absorption axis direction
  • the left / right arrow 516 indicates the color filter side polarizing plate absorption axis direction.
  • dotted lines indicate domain boundaries.
  • the substrate is heated to a predetermined temperature after drying the ink in order to fix the PB.
  • the voltage transmittance characteristics of liquid crystal cells having different pretilts of 88 ° to 89 ° were converted into gradation transmittance characteristics, and the amount of gradation deviation was evaluated. As a result, it was found that the permissible range was 88.6 ° ⁇ 0.3 °.
  • This pretilt is generated using a P-polarized light irradiation device having an extinction ratio of 10: 1. When the extinction ratio is high, the absolute value of the pretilt becomes small, but the ⁇ relative range of the pretilt is considered not to change.
  • FIG. 13 is a graph showing the normalized transmittance with respect to voltage in the pretilt allowable range analysis.
  • a voltage of 0 to 10 V was applied to each cell having a different pretilt, and the transmitted light at each voltage value was measured. The voltage vs. transmitted light intensity was plotted.
  • (2) Normalization of transmitted light intensity (transmittance) Normalization was performed with the intensity when the applied voltage was 0.5 V being 0, and the intensity when being 7.5 V being 1 (VT curve).
  • LC Liquid crystal material name
  • PI alignment film name
  • photo-alignment film A introduction ratio of the second structural unit 4 mol% and modification ratio 70 wt%)
  • Reference evaluation cell ⁇ Pretilt: 88.6 ° -Cell thickness: 3.4 ⁇ m
  • FIG. 14 is a graph showing normalized transmittance (au) for each gradation (gray scale level).
  • FIG. 15 is a graph showing normalized transmittance (au) for each gradation (gray scale level).
  • FIG. 16 is a graph showing each gradation (grayscale level (au)) with respect to each gradation (grayscale level (au)) of the reference evaluation cell.
  • each gradation transmittance (T gradation ) was analyzed from the VT curve data of the evaluation target cell (two-point interpolation of measured transmittance).
  • FIG. 17 is a graph showing the gray scale level difference (au) with respect to the gray scale level (au) of the reference evaluation cell.
  • FIG. 20 is a graph showing a gray scale level difference (au) with respect to a gray scale level (au).
  • the allowable value of pretilt was found to be 88.6 ° ⁇ 0.3 °.
  • FIG. 21 is a graph showing the amount of gradation shift with respect to the pretilt angle / degree (Pretilt angle / degree).
  • a liquid crystal display device subjected to the photo-alignment treatment shown in FIG. 6 is manufactured, the pretilt angle when no voltage is applied is evaluated, the voltage-luminance characteristic curves of liquid crystal display devices with different pretilt angles are measured, and 7.5 V is applied.
  • Each characteristic curve was normalized by setting the time to 255 gradations and 0.5V to 0 gradations, and the voltage-luminance characteristic at a pretilt of 88.6 ° was set to a ⁇ 2.2 curve.
  • the maximum gradation shift amount from the ⁇ 2.2 curve was analyzed with 100 gradations or less, and plotted for each pretilt angle.
  • the pretilt angle measuring device used was OPTI-Pro manufactured by Shintech. Assuming that the deviation tolerance value of the gradation luminance characteristic of the liquid crystal display device is ⁇ 4 gradations, the desirable range of the pretilt angle is 88.6 ° ⁇ 0.3 ° as described above (the hatched square area) ). If the gradation shift amount is within ⁇ 2 gradations, a more desirable range is 88.6 ° ⁇ 0.15 °. Further, when the gradation shift amount is within ⁇ 1 gradation, an even more preferable range is 88.6 ° ⁇ 0.1 °.
  • FIG. 22 is a graph showing the pretilt angle / degree with respect to the modification ratio in the first embodiment.
  • a liquid crystal display device subjected to the photo-alignment treatment shown in FIG. 6 was prepared, and the pretilt angle characteristics when no voltage was applied depended on the modification ratio and the introduction ratio of the second component of the copolymer (from 0% to 10%) dependence was examined.
  • the pretilt angle measuring device used was OPTI-Pro manufactured by Shintech.
  • the desirable pretilt angle range is 88.6 ° ⁇ 0.3 ° (more desirably, 88.6 ° ⁇ 0.15 °)
  • the hatched range is a preferable condition. That is, when the introduction ratio of the second constituent is 0 mol%, the modification ratio is 0 to 63 wt%, when the introduction ratio of the second constituent is 4 mol%, the modification ratio is 30 to 90 wt%, and the introduction ratio of the second constituent is
  • the desired pretilt angle range can be achieved when the modification ratio is 63 to 90% by weight at 6 mol% and the modification ratio is 83 to 90% by weight when the introduction ratio of the second constituent is 8 mol%. it can.
  • the modification ratio is such that the introduction ratio of the second structural unit exceeds 4 mol%, and 6 mol%. In the following cases, it is 63 to 90% by weight, and when the introduction ratio of the second structural unit exceeds 6 mol% and is 8 mol% or less, a desirable pretilt angle range is achieved even under the condition of 83 to 90% by weight. be able to.
  • the lower limit of the modification ratio that solves the above-mentioned image sticking is preferably more than 70% by weight
  • the modification ratio is such that the introduction ratio of the second structural unit is more than 4 mol% and not more than 6 mol%.
  • One of the particularly preferred embodiments is a form in which it is more than 70% by weight and 90% by weight or less, and when the introduction ratio of the second structural unit is more than 6% by mole and less than 8% by mole, it is 83 to 90% by weight. It can be said that there is. Furthermore, the conditions showing the same value as 88.6 ° of the condition where the modification ratio is 70% by weight and the introduction ratio of the second constituent is 4 mol% are the introduction ratio of the second constituent is 6 mol% and the modification ratio is 85% by weight. .
  • FIG. 23 is a graph showing ⁇ tilt with respect to the modification ratio in the first embodiment.
  • the liquid crystal display device subjected to the photo-alignment treatment shown in FIG. 6 was manufactured, and the ⁇ tilt characteristics depended on the modification ratio and the copolymer introduction ratio (0% to 10%).
  • ACM applies AC voltage application stress 30Hz, 7.5V, AC voltage application is set to 0V after a certain time, pretilt angle is measured, the AC voltage is applied again, and AC voltage is applied again after a certain time. Was turned off, and the pretilt angle was measured repeatedly for a cumulative AC voltage application time of 0 to 40 hours.
  • the average value of the most recent five points of the difference ( ⁇ tilt) of the pretilt angle of each hour was evaluated at the initial stage (AC voltage application time was 0 hour) and after 36 to 40 hours.
  • ⁇ tilt measuring device OPTI-Pro manufactured by Shintech Co., Ltd. was used.
  • the modification ratio is 0 to 85% by weight.
  • the ratio is 6 mol% to 10 mol%, the modification ratio can be achieved from 0 to 90 wt%.
  • the introduction ratio of the second structure Is 4 to 5 mol%, the modification ratio is 30 to 85% by weight, the second component introduction ratio is 6 mol%, the modification ratio 63 to 90% by weight, and the second component introduction ratio is 8 mol%, the modification ratio 83 to The condition is 90% by weight.
  • FIG. 24 is a graph showing the voltage holding ratio (VHR) /% with respect to the denaturation ratio in the first embodiment.
  • the liquid crystal display device subjected to the photo-alignment treatment shown in FIG. 6 was prepared, and the voltage holding ratio (VHR) characteristics were modified with the dependency of the modification ratio and the introduction ratio of the second component of the copolymer being 4 mol%. The dependence of the ratio 70-85% by weight was investigated.
  • the evaluation device used was a liquid crystal property measuring system manufactured by Toyo Technica. The pulse width was 60 ⁇ sec, the frame period was 16.7 msec, the voltage application was 5 V and 1 V, the measurement temperature was 70 ° C., and the area ratio was evaluated. It has been found that there is no dependence on the introduction ratio of 4 mol% and the modification ratio of 70 to 85 wt% of the second component of the copolymer having voltage holding ratio (VHR) characteristics.
  • FIG. 25 is a bar graph showing the voltage holding ratio (VHR) /% with respect to the modification ratio and the introduction ratio of the second constituent in the first embodiment.
  • the VHR was evaluated in the same manner as described above for two photo-alignment film materials having a second component introduction ratio of 4 mol% and a modification ratio of 70 wt% and a second component introduction ratio of 6 mol% and a modification ratio of 85 wt%. Since the values were almost the same, it was found that there was no dependency and the two were almost the same.
  • FIG. 26 is a graph showing residual DC / V with respect to the denaturation ratio in the first embodiment.
  • the liquid crystal display device subjected to the photo-alignment treatment shown in FIG. 6 is manufactured, and the dependency of the modification ratio is 70 to 85% by weight as the dependency of the modification ratio and the introduction ratio of the second component of the copolymer is 4 mol%.
  • the evaluation procedure is stress conditions: AC 2.9 V (30 Hz) + DC 2.0 V, the temperatures are 40 ° C. and 70 ° C., and the flicker erase voltage is measured after applying stress for 2 hours at each temperature.
  • the offset voltage difference before and after stress was defined as residual DC. It was found that there was almost no dependence under the conditions where the introduction ratio of the second constituent of the copolymer having residual DC characteristics was 4 mol% and the modification ratio was 70 to 85 wt%.
  • FIG. 27 is a bar graph showing residual DC / V with respect to the modification ratio and the introduction ratio of the second component in the first embodiment. Residual DC was evaluated in the same manner as described above under the conditions of two photo-alignment film materials having an introduction ratio of the second constituent of 4 mol% and a modification ratio of 70 wt% and an introduction ratio of the second constituent of 6 mol% and a modification ratio of 85 wt%. However, it was almost the same within the measurement error.
  • Tilt liquid crystal dependency 28 and 29 are graphs showing the liquid crystal dependence of the pretilt angle generated by the alignment film.
  • the difference in physical properties (relative values of response characteristics) of the liquid crystals A to D used is shown in Table 1 below, and the non-photoamine introduction ratio (mol%), the modification ratio (wt%), and the pretilt in the alignment film The angle values are shown in Table 2 below. From the results of FIG. 28, it is clear that the pretilt angle of the liquid crystal hardly depends on the type of the alignment film. From the results of FIG. 29, the pretilt value can be made constant by adjusting the photo-alignment film composition.
  • this pretilt evaluation is performed in a state where no voltage is applied to the liquid crystal cell twisted 90 degrees between the upper and lower substrates, and as described above, using a P-polarized light irradiation device with an extinction ratio of 10: 1. Pretilt is generated. When the extinction ratio is high, the absolute value of the pretilt becomes small, but the ⁇ relative range of the pretilt is considered not to change.
  • Embodiment 2 (VHR change by reliability test) A liquid crystal display device (VATN) subjected to the photo-alignment process shown in FIG. 6 in Embodiment 1 was manufactured, and the change in the reliability test time was examined for the voltage holding ratio (VHR) characteristics.
  • the configuration of the liquid crystal display device is the same as that of the first embodiment, except for what is explicitly described in the second embodiment.
  • the term “storage” means that the liquid crystal display device is left in a dark room at room temperature.
  • BL storage refers to storage on a CCFL backlight (20,000 cd / m 2 ).
  • BL energization means that an AC voltage application stress of 30 Hz and 7.5 V is applied to the liquid crystal display device on the CCFL backlight.
  • the energization at 60 ° C. means that the liquid crystal display device was energized by applying an AC voltage application stress of 30 Hz and 7.5 V in a 60 ° C. environment. In these tests, the polarizing film is not attached to the liquid crystal display device.
  • FIG. 30 to 32 are graphs of voltage holding ratio (%) against reliability test time (hr).
  • FIG. 30 shows a photo-alignment film having a copolymer introduction ratio of 6 mol% and a modification ratio of 85 wt%.
  • FIG. 31 shows a copolymer introduction ratio of 6 mol% and a modification ratio of the copolymer second composition.
  • FIG. 32 shows the results of examining the photo-alignment film having a copolymer introduction ratio of 4 mol% and a modification ratio of 70% by weight.
  • liquid crystal liquid crystal B was used as the liquid crystal B was used.
  • the evaluation device used was a liquid crystal property measuring system manufactured by Toyo Technica.
  • the evaluation was performed with a pulse width of 60 ⁇ sec, a frame period of 16.7 msec, a voltage application of 1 V, a measurement temperature of 70 ° C., and an area ratio.
  • a voltage application of 1 V is likely to cause a large deterioration in VHR, and is suitable for determining whether the reliability is superior or inferior.
  • VHR voltage holding ratio
  • FIG. 33 is a window pattern display image at this time. As an example of the case where the reliability is not good, as shown in the image in FIG.
  • FIG. 34 is a video diagram for evaluating burn-in in the halftone (V16) display according to the second embodiment.
  • V16 halftone
  • the introduction ratio of the second structural unit exceeds 4 mol%.
  • the above-mentioned modification ratio is particularly preferably 85 to 90% by weight.
  • the liquid crystal display panel or the liquid crystal display device preferably has a photo-alignment film having the same introduction ratio and modification ratio on the liquid crystal layer side surfaces of the pair of substrates.
  • a photo-alignment film having the same introduction ratio and modification ratio may be any film that can be said to be substantially the same in the technical field of the present invention.
  • the amount of raw material used, the amount used with respect to the substrate area, the film forming process, and the like are the same.
  • indicates that the liquid crystal display device is very good
  • indicates that the liquid crystal display device has reached a sufficient standard
  • indicates that the liquid crystal display device is sufficient.
  • ⁇ to ⁇ are intermediate evaluations between ⁇ and ⁇ .
  • the item “determination” indicates the result of comprehensive evaluation of image sticking, spots, unevenness, and flicker.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶パネル及び液晶表示装置の基本性能と高画質化を向上するため、均一な表示品位と高信頼性の光配向性、優れた電気光学特性(透過率、コントラスト、視野角、応答)を達成することができる光配向液晶パネルにおいて、光配向膜として、望ましい重合体の構造組成が不明であった。本発明は、光配向膜として、光配向性を有する化合物を含有させて光配向性を有することができるようフォトポリマー共重合比と変性比を最適化し、望ましい重合体の構造組成を見出してなされた。本発明は、優れた電気特性光学特性を有し、充分な液晶表示品位、信頼性を有する表示パネル及び液晶表示装置を効率よく生産し、提供することを目的とするものである。

Description

液晶表示パネル、液晶表示装置及び配向膜材料用重合体
本発明は、液晶表示パネル、液晶表示装置及び配向膜材料用重合体に関する。より詳しくは、大人数に使用される携帯情報端末、パーソナルコンピュータ、ワードプロセッサ、アミューズメント機器、教育用機器、テレビジョン装置等の平面ディスプレイ、液晶のシャッター効果を利用した表示板、表示窓、表示扉、表示壁等に好適な広視野角特性を有する液晶表示装置、並びに、それに用いられる液晶表示パネル及び配向膜材料用重合体に関するものである。
液晶表示装置は、薄型、軽量及び低消費電力といった特長を活かし、幅広い分野で用いられている。液晶表示装置は、液晶層を狭持する一対の基板を備え、液晶層側の基板上に設けられた電極に対して電圧を適宜印加し、液晶層に含まれる液晶分子の配向方向を制御することによって液晶表示を可能にしている。また、液晶表示装置は、通常、液晶分子の配向方向を制御するために基板の液晶層側の表面に設けられる配向膜を有する。
液晶表示装置を構成する配向膜の材料としては、従来、ポリアミック酸、ポリイミド、ポリアミド、ポリシロキサン、ポリエステル等の樹脂(それぞれ誘導体を含む)が用いられている。なかでも、ポリイミドは、有機樹脂の中では耐熱性、液晶との親和性、機械的強度等に優れた物性を示すため、多くの液晶表示装置に使用されてきた。
また、配向膜は、通常、配向膜表面の液晶分子に一定のプレチルト角を付与するために、配向処理が行われる。配向処理の方法としては、ラビング法、光配向法等が挙げられる。ラビング法は、ローラに巻き付けられた布で配向膜表面を擦ることによって配向処理を行う。一方、光配向法は、配向膜材料に光配向膜を用い、光配向膜に紫外線等の光を照射(露光)することによって、配向膜に配向規制力を生じさせる、及び/又は、配向膜の配向規制方向を変化させる配向方法である。
しかしながら、従来の配向膜を備えた液晶表示装置においては、長時間の点灯時に画面に焼き付きが発生することがあり、長時間点灯した後においても焼き付きの発生を抑制するという点で改善の余地があった。
それに対して、表示不良を防止し、長時間駆動後も残像特性の良好な、液晶を配向させる能力を低下させることなく、かつ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成することができる液晶配向剤を与える技術として、テトラカルコキシシランの如き4官能性珪素化合物、トリアルコキシシランの如き3官能性化合物及びアルコキシ基の如き官能基1モル当り0.8~3.0モルの水との反応生成物並びにグリコールエーテル系溶媒を含有する液晶配向剤組成物が開示されている(例えば、特許文献1参照。)。
また、良好な塗膜性、液晶配向特性を発現できるとともに、液晶表示素子において電圧の印加を解除してから残像が消去されるまでの時間の短い液晶配向膜を形成できる液晶配向剤を提供する技術として、モノアミン化合物に由来する構造を有するポリアミック酸又はそのイミド化重合体からなる液晶配向剤が開示されている(例えば、特許文献2参照。)。
また、反射電極と共に用いた場合にも、焼き付き特性と信頼性とに優れた垂直液晶配向膜を与える液晶配向剤を提供する技術として、アミック酸繰り返し単位及び/又はイミド繰り返し単位を有する重合体100重量部と、分子内に少なくとも2つのエポキシ基を有する化合物を少なくとも5重量部を含有してなる垂直液晶配向剤が開示されている(例えば、特許文献3参照。)。
更に、光配向膜に関する文献において、光配向膜の電気抵抗率が小さいほど焼き付き時間が短くなると報告されている(例えば、非特許文献1参照。)。
そして、配向膜の材料開発に関する文献において、縦電界の液晶セルについては、残留DCを低下させることで焼き付きを低減できると報告されている(例えば、非特許文献2参照。)。
なお、残留DCは、交流駆動の液晶表示装置においては、通常、対向する基板に形成された電極間のオフセット電圧のズレによって発生する。
他方、偏光を照射したとき、定義された傾斜角を有し、同時に隣接液晶媒体において充分に高い抵抗値(保持割合)を有する、安定な高解像度配向パターンを製造する光反応性ポリマーに関して、3-アリールアクリル酸から構造的に由来することができる側鎖基として更に含むポリイミドが開示されている(例えば、特許文献4参照。)。
また、偏光で照射された場合、非常に大きいチルト角を有する、安定した高解像度の配向パターンを生成し、同時に、隣接する液晶媒体において充分に高い保持率を生じさせる光反応性ポリマーに関して、ケイ皮酸基誘導体を、ケイ皮酸基が屈曲性のスペーサ(flexible spacer)によりカルボキシル基を介してポリイミド主鎖に結合しているように含むポリイミドが開示されている(例えば、特許文献5参照。)。
更に、液晶の配向用材料に用いられる、2個の不飽和環構造へ直接に結合した不飽和を持つ特定の分子構造に、特定の電子求引基を付加した官能化された光反応性化合物が開示されている(例えば、特許文献6参照。)。
そして、光架橋性材料として、特定のジアミン化合物、並びにそのような化合物に基づいたポリマー、コポリマー、ポリアミック酸、ポリアミック酸エステル、またはポリイミドが提案されている(例えば、特許文献7参照。)。
特開2005-250244号公報 特開2006-52317号公報 特開2006-10896号公報 特表2001-517719号公報 特表2003-520878号公報 特表2009-511431号公報 特表2009-520702号公報
長谷川雅樹、「光配向-生産プロセスの観点からみた配向処理」、液晶、日本液晶学会、1999年1月25日、第3巻、第1号、p.3-16 沢畑清、「LCD用配向膜の材料開発動向」、液晶、日本液晶学会、2004年10月25日、第8巻、第4号、p.216-224
しかしながら、液晶パネル及び液晶表示装置の基本性能と高画質化を向上するため、均一な表示品位と高信頼性の光配向性、優れた電気光学特性(透過率、コントラスト、視野角、応答)を達成することができる光配向液晶パネルにおいて、光配向膜として、望ましい重合体の構造組成が不明であった。
また、液晶パネルに含有される配向膜である樹脂(ポリマー)とその構成材料について、新規の化学物質である場合、液晶パネル製造のためには、環境への負荷低減のため、使用量を極力抑える配慮が必要不可欠である。
特に、配向膜において、異なる種類のポリマーの混合は、インク溶媒での析出の問題や、液晶配向の均一性が低下したり、焼き付きの原因となる電圧保持率や残留DCといった電気特性が悪化したりして、表示品位と信頼性の低下の原因となることがある。
上記特許文献5、6の垂直光配向膜では、強い残留DCモードの焼き付きのみならず、AC電圧印加でのプレチルト角度の変化によるACモードの焼き付き(ACメモリー(ACM))が同時に発生し、同時に解決する必要があった。
そして、光化学反応(光架橋反応(光二量化反応を含む)、光異性化反応、光分解反応)を生じて液晶分子にプレチルト角を与えることができる光官能基を有する光配向膜(ホモポリマー)では、光官能基を有する材料の分子構造が類似していても、AC電圧印加による焼き付き(ACM)が固有のレベルで異なっていた。
さらに、光配向性を有する化合物を含有させて光配向性を有することができる光配向膜材料が望まれる。
なお、TN(Twisted Nematic)モード、ECB(Electrically Controlled Birefringence)モードやVATN(Vertical Alignment Twisted Nematic)モード等のように基板面内において一方向の液晶配向処理が施された液晶表示装置では、視野角依存性があるため、焼き付き現象が観察されうる方向は、正面方向のほかに液晶配向モードの視野角特性に依存していた。他方、液晶TVやインフォメーション用大画面ディスプレイにおいては、白表示時の視野角補償のために液晶の配向分割がされている。このように、視野角補償された配向分割モードでは、全方位で均一に焼き付き現象が見えてしまうため、焼き付き現象を改善することは必要不可欠であった。なお、VATNモードは、RTN(リバースツイストTN;垂直配向のTN)モードと呼ばれるものであってもよい。ECBモードは、電圧無印加時に垂直配向で、電圧印加時に水平配向のタイプ(VAECB)、及び、電圧無印加時に水平配向で、電圧印加時に垂直配向のタイプのものでもよい。
本発明は、上記現状に鑑みてなされたものであり、優れた電気特性光学特性を有し、均一な表示品位、充分な信頼性を有する表示パネル及び液晶表示装置を効率よく生産し、提供することを目的とするものである。
液晶表示パネルにおける配向膜の作製方法としては、基板上に異なったポリマーによる層を形成することによって、配向膜に機能性を付与する手法があり、このような配向膜の形成手法としては、変性処理、2層化処理、又は、ハイブリット化処理と呼ばれる方法がある。例えば、水平配向膜のポリマーと垂直配向膜のポリマーとを、または、非フッ素導入ポリマーとフッ素導入ポリマーとを、例えば、非フッ素導入ポリマーで光配向性のない垂直配向膜とフッ素導入ポリマーで光配向性のある垂直配向膜とを、一定の固形分の重量比率(例えば、30:70~5:95)でブレンドすることにより、基板に塗布直後、又は、配向膜塗布後の焼成過程において、ポリマー間で相分離が発生する作用を利用して、基板側には水平配向膜、液晶側には垂直配向膜が形成される。この作用によって、液晶側に露出する配向膜の体積(液晶側に形成された垂直配向膜の体積)を少なくすることができ、配向膜材料(例えば、新規化学物質である配向膜材料、及び/又は、光官能基を有する光配向膜材料)を当該液晶側に露出する配向膜だけに含有させればよいため、当該配向膜材料の使用を削減することができる。配向膜の膜厚を維持しながら、焼き付きの原因となる残留DCを低減することが可能であるので、必要であれば、上記の処理をすることが可能である。本発明の変性比率とは、光配向ポリマーと非光配向ポリマーの全固形分の重量を100%として、非光配向ポリマーの固形分の重量比率(重量%(wt%))のことを言う。たとえば、変性比率が70重量%以下での、液晶パネルの製造条件の変動、信頼性試験条件にもよるが、高温通電エージングにより、残留DC起因の焼き付きやシミムラが顕著に発生することがあり、より高い変性比率の構成が望ましい。しかし、高すぎる変性比率の場合、液晶側への光配向膜の露出が十分でないために、変性処理材料が液晶側表面に存在し、AC焼き付きが悪化することがある。したがって、残留DC焼き付き、及び、AC焼き付きを同時に解決する変性比率が望まれる。
また、液晶吸着や側鎖変形を防止することができる化学物質を導入することで、AC焼き付きを抑制することが期待できる。さらに、スピンコート、フレキソ印刷、インクジェット等の印刷塗布性の向上も期待できる。
これまで、光配向ジアミンユニットのみ使用したホモポリマー、及び、光配向ジアミンユニットと光配向でないジアミンユニットの導入比率4mol%(全ジアミンユニットを100mol%として)(または、全ユニット組成比率を100%とすれば、単位は%のみである。言い換えれば、単量体成分の導入比率の単位は、mol%で表すことができるが、構成単位の組成比率として%で表してもよい。)以下とのコポリマー化では、液晶パネルの製造条件の変動にもよるが、高温通電エージングにより、液晶チルト起因の配向ムラが発生することがあり、表示品位と信頼性の問題があった。光配向でないジアミンユニットを導入することで、前記不具合は軽減傾向である。さらに、光配向ジアミンユニットと光配向でないジアミンユニットとの高導入率のコポリマー化は、光官能基の密度低下により、光感度低下で、光照射時間が長くなることや透過率、応答特性などの表示特性悪化が懸念されていた。本発明によると、電気特性、光学特性を同等にした光配向膜材料を複数種類提供することが可能となる。
本発明者は、光配向性を有する化合物を含有させて光配向性を有することができ、表示品位、信頼性、表示特性に優れる配向膜材料用重合体、及び、それを用いた液晶表示パネル及び液晶表示装置について検討し、配向膜に含まれるそれぞれの構造物、及び、配向膜材料用重合体について種々検討したところ、主鎖と側鎖の分子構造と組成に着目した。
本発明者は、光配向性を有する化合物を含有させて光配向性を有することができるようフォトポリマー共重合比を最適化し、電気光学特性に全く問題の生じない使用量範囲を見出した。更に、変性比についても最適化を行い、同様に電気光学特性が優れたものとなる範囲を見出した。そして、電気光学特性を優れたものとしながら光配向膜として、望ましい重合体の構造組成を見出した。これにより、本発明において、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、一対の基板間に液晶分子を含む液晶層が挟持された構成を有し、少なくとも一方の基板の液晶層側表面に光配向膜を有する液晶表示パネルであって、上記光配向膜は、液晶分子を配向制御する特性を光照射によって発現する第一構成単位を必須構成単位とする重合体を含む配向膜材料を用いて形成された膜に光照射による配向処理が施されたものであり、上記第一構成単位は、光架橋反応と光異性化反応の少なくとも一方の光化学反応により液晶分子を配向制御する特性を発現するものであり、上記重合体は、液晶分子を配向制御する特性を光照射によらず発現する第二構成単位の導入比率が、該第一構成単位及び第二構成単位の合計を100mol%とすると、0mol%以上であり、上記光配向膜は、該配向膜材料を用いて形成された膜とそれ以外の材料の膜とによって構成され、光配向膜の液晶層側表面部が該配向膜材料を用いて形成された膜が必須となって構成されたものであり、該配向膜材料及び該それ以外の材料の固形分100重量%に対する該それ以外の材料の固形分の割合を変性比率とすると、該変性比率が、第二構成単位の導入比率が0mol%以上、6mol%未満のとき、0~85重量%であり、該導入比率が6mol%以上のとき、0~90重量%である液晶表示パネル(第1の本発明ともいう。)である。なお、0~85重量%は、0重量%以上、85重量%以下を意味する。0~90重量%は、0重量%以上、90重量%以下を意味する。
上記第二構成単位は、液晶分子を配向制御する特性を光照射によらず発現する重合体中の構成単位(単量体単位)であるが、液晶分子の配向制御技術において、液晶分子を配向制御する特性を発現し、かつ、そのような特性を光照射以外の手法によって発現すると評価されるものであればよい。第二構成単位の導入比率としては、第一構成単位及び第二構成単位の合計を100mol%とすると、0mol%以上である。このことは、重合体中に第二構成単位がなくてもよいこと、すなわち第二構成単位が任意成分であることを意味するが、新規化学物質でないものを用いて形成された膜とする等の有利な効果を奏するためには、第二構成単位が重合体中に存在することが好ましい。上記第二構成単位の導入比率は、10mol%以下であることが好ましい。より好ましくは、8mol%以下である。また、下限値としては、4mol%以上であることが好ましいが、より好ましくは4mol%を超えるものである。このような形態とすることにより、プレチルト角をより好適な範囲内とすることが可能である。
上記変性比率は、光配向膜を形成するための該配向膜材料及び該それ以外の材料の固形分100重量%に対する該配向膜材料以外の材料の固形分の割合であるが、第二構成単位の導入比率が0mol%以上(特に好ましくは、4mol%以上)、6mol%未満のとき、変性比率が0~85重量%であり、第二構成単位の導入比率が6mol%以上のとき、変性比率が0~90重量%であるのは、後述する実施例における信頼性試験の結果から裏付けられるものである。また、光配向ジアミンや光配向性を有する材料等の使用量を削減するために、変性比率を最適化したことにもとづくものである。
ここで、第二構成単位の導入比率が上記のように比較的低い場合よりも高い場合の方が変性比率の上限を高く設定することができる。
上記光配向膜は、上記配向膜材料を用いて形成された膜とそれ以外の材料を用いて形成された膜とによって構成され、光配向膜の液晶層側表面部が上記配向膜材料を用いて形成された膜が必須となって構成されたものであり、該配向膜材料及び該それ以外の材料の固形分100重量%に対する該それ以外の材料の固形分の割合を変性比率とすると、該変性比率が70重量%を超えるものであることが好ましい。好ましい上限値としては、90重量%以下である。なお、本明細書中、液晶層側表面に局在しないベースポリマーのことを変性処理材料と呼ぶところ、上記変性比とは、言い換えれば、変性処理材料の固形分の、上記配向膜材料及び変性処理材料の固形分の総重量に対する比率である。
これにより、電気光学特性を優れたものとしながら、光配向膜として、望ましい重合体の構造組成を明らかにできる。本明細書中、上記「それ以外の材料の膜」とは、本発明の技術分野において、上記光配向膜の液晶層側表面部に上記配向膜材料を用いて形成された膜(以下、上記光配向膜の液晶層側表面部に形成された膜ともいう。)と異なるといえるものであればよい。中でも、上記「それ以外の材料の膜」は、上記光配向膜の液晶層側表面部に形成された膜よりも、第二構成単位の導入比率が高いものであることが好ましく、該導入比率が100mol%であること、すなわち、第一構成単位を実質的に含まない重合体、かつ、新規化学物質でないものを用いて形成された膜であることが特に好ましい。これにより、上記光配向ジアミンや光配向性を有する原材料の使用量を上述したように削減することができる。また、言い換えれば、少なくとも一方の基板の液晶層側表面に光配向膜の光配向膜層が局在化している形態が好適である。上記局在化は、完全に局在化している必要はなく、本発明の効果を発揮する程度に局在化しているものであればよい。例えば、上記第二構成単位の導入比率が4mol%を超え、8mol%以下であり、変性比率は70重量%を超え、90重量%以下である形態が好適である。なお、光配向膜の基板側層を構成する重合体と光配向膜の液晶側層を構成する重合体とが混合して構成される形態が好適である。
上記光配向膜は、液晶層の平均プレチルト角を88.6°±0.3°となるように液晶分子を配向制御するものであることが好ましい。このような範囲内であれば、本発明の技術分野において許容範囲内ということができ、階調ズレ量を充分に低減することができる。なお、階調ズレ量を±2階調以内とすると、より望ましい範囲は88.6°±0.15°である。また、階調ズレ量を±1階調以内とすると、さらにより好ましい範囲は88.6°±0.1°である。
上記光配向膜は、上記配向膜材料を用いて形成された膜とそれ以外の材料の膜とによって構成され、光配向膜の液晶層側表面部が前記配向膜材料を用いて形成された膜が必須となって構成されたものであり、上記配向膜材料及びそれ以外の材料の固形分100重量%に対する上記それ以外の材料の固形分の割合を変性比率とすると、該変性比率が、上記第二構成単位の導入比率が0mol%以上、4mol%未満のとき、0~63重量%であり、上記第二構成単位の導入比率が4mol%のとき、30~90重量%であり、4mol%を超え、6mol%以下のとき、63~90重量%であり、該第二構成単位の導入比率が6mol%を超え、8mol%以下のとき、83~90重量%であることが好ましい。
このような形態により、光学特性の観点からの望ましいプレチルト角の範囲を満たすことができる点で好ましい。
残留DC起因の焼き付きやシミムラ発生を解決する作用効果を発揮するため、変性比率の設定する範囲は、上述のように70重量%を超えることが好ましい。したがって、上記変性比率が、上記第二構成単位の導入比率が4mol%を超え、6mol%以下のとき、70重量%を超え、90重量%以下である形態がより好ましい。
上述のように光配向でないジアミンユニットが4mol%を超えて導入されることが、液晶パネルの品位と信頼性の観点で望ましい。本発明においては、上述した上記第二構成単位の導入比率及び/又は上記変性比率の数値範囲や、上記第二構成単位の導入比率と上記変性比率との関係を満たすことが好ましいが、表示品位と信頼性面が問題なく、上述の好ましいプレチルト範囲で、該導入比率と変性比率の構成の形態であってもよい。
上記光配向膜は、液晶表示パネルに対する交流電圧の印加時間を0時間としたときと36時間~40時間の平均値としたときのプレチルト角の差が-0.05°以上となるように液晶分子を配向制御するものであることが好ましい。言い換えれば、上記液晶表示パネルにおける光配向膜は、液晶表示パネルに対する交流電圧の印加時間を0時間としたときと36時間~40時間の単純平均としたときのプレチルト角の差(本明細書中、Δチルトともいう。)が-0.05°以上となるように液晶分子を配向制御するものであることが好ましい。なお、単純平均とは、測定誤差を考慮して、最近5点平均値法で平均値を求めたこと、すなわち、36時間後から40時間後まで1時間おきにΔチルトの値を測定し、それら5点を平均していることを意味する。
より好ましくは、例えば、上記印加時間を0時間としたときと36時間としたときのプレチルト角の差が-0.05°以上となる形態である。
上記変性比率は、第二構成単位の導入比率が4mol%以上、6mol%未満のとき、0~85重量%であり、該導入比率が6mol%以上、10mol%以下のとき、0~90重量%であることが特に好ましい。このような形態により、焼き付き特性の観点からの望ましいΔチルトの範囲を満たすことができる。 
上記配向膜材料における重合体の第一構成単位は、光官能基を有する側鎖を持つことが好ましい。また、上記配向膜材料における重合体の第二構成単位は、配向性官能基を有する側鎖を持つことが好ましい。例えば、構成単位の組み合わせとしては、第一構成単位が光官能基を有する垂直配向性(VA)側鎖(第一構成単位(1))と別種類の側鎖を有するもの(第一構成単位(2))を2種類持つ形態や、第一構成単位が光官能基を有する垂直配向性側鎖を持ち、第二構成単位が光官能基を有さない垂直配向性側鎖を持つ形態、第一構成単位が光官能基を有する垂直配向性側鎖を持ち、第二構成単位が光官能基を有さない垂直配向性側鎖(第二構成単位(1))と別種類の側鎖を有するもの(第二構成単位(2))等が好適な形態として挙げられる。ここで別種類の側鎖とは、主鎖への結合基が異なるものも含む。
上記配向膜材料における重合体の必須構成単位は、配向制御方向が同方向であることが好ましい。上記同方向とは、本発明の技術分野において配向制御方向が同方向といえるものであればよく、実質的に同方向であればよい。
上記光配向膜は、配向膜面内における液晶分子を均一に配向制御することが好ましい。上記均一とは、本発明の技術分野において液晶分子を均一に配向制御するといえるものであればよく、実質的に均一であればよい。
上記光配向膜は、液晶分子を垂直配向制御する垂直配向膜であることが好ましい。上記垂直配向膜は、例えば、電圧無印可時に液晶分子を垂直配向制御するものであることが好ましい。
前記配向膜材料における重合体の第二構成単位は、垂直配向性官能基を有する側鎖を持つことが好ましい。言い換えれば、上記配向性官能基は、垂直配向性官能基であることが好ましい。上記「垂直配向制御」、「垂直配向性」における「垂直配向」とは、本発明の技術分野において垂直配向といえるものであればよく、実質的に垂直配向制御するものであればよい。
上記配向膜材料における重合体の第一構成単位は、クマリン基、シンナメート基、カルコン基、アゾベンゼン基及びスチルベン基からなる群より選ばれる少なくとも一つの光官能基を有する側鎖を持つことが好ましい。言い換えれば、上記光官能基は、クマリン基、シンナメート基、カルコン基、アゾベンゼン基及びスチルベン基からなる群より選ばれる少なくとも一つであることが好ましい。
上記配向膜材料における重合体の第二構成単位は、ステロイド骨格を有する側鎖を持つことが好ましい。言い換えれば、上記配向性官能基は、ステロイド骨格であることが好ましい。
上記配向膜材料における重合体の第二構成単位は、例えば、1,4-シクロヘキシレン及び1,4-フェニレンのいずれかから選ばれる3~4個の環が直接又は1,2-エチレンを介して直線状に結合された構造を有する側鎖を持つことが好ましい。言い換えれば、上記第二構成単位は、1,4-シクロヘキシレンを3個又は4個有するものであってもよく、1,4-フェニレンを3個又は4個有するものであってもよく、1,4-シクロヘキシレンと1,4-フェニレンとを両方有し、その合計数が3個又は4個であってもよい。
上記配向膜材料における重合体は、ポリアミック酸、ポリイミド、ポリアミド、及び、ポリシロキサンからなる群より選ばれる少なくとも一つの主鎖構造を有することが好ましい。なお、本発明の効果を発揮する限りにおいて、上記重合体は、本発明の技術分野において、主鎖から分岐された側鎖部分といえる部分において上記主鎖構造を有するものであってもよい。
上記配向膜材料における重合体の必須構成単位は、ジアミンによって形成されるものであることが好ましい。ジアミンによって形成されるとは、ジアミンを必須とする単量体成分由来の単量体単位によって重合体が構成されるものであればよく、重合体がジアミン由来の単量体単位だけで構成される形態に限定されるものではない。例えば、上記配向膜材料における重合体は、ジアミンと、酸二無水物及びジカルボン酸の少なくとも一方とを含む単量体成分の共重合体であることが特に好ましい形態である。
上記配向膜材料における重合体は、第一構成単位の単量体成分及び第二構成単位の単量体成分の合計量100mol%に対する第二構成単位の単量体成分が0mol%以上、10mol%以下であることが好ましい。より好ましくは、4mol%以上であり、更に好ましくは、4mol%を超える形態であり、特に好ましくは、6mol%以上である形態である。
上記液晶表示パネルは、一方の基板の液晶層側にマトリクス状に配置された画素電極と、他方の基板の液晶層側に配置された共通電極とを備えるマトリクス状に配置された画素を有し、上記画素は、隣接して配置される2以上のドメインを有することが好ましい。
上記ドメインは、それぞれ異なる方向に液晶プレチルトを有するものであることが好ましい。例えば、2つのドメインを有する場合は、2つのドメインが互いに逆方向に液晶プレチルトを持つことが好ましく、4つのドメインを有する場合は、それぞれ片方の基板を2分割の等ピッチで分割しておき、分割方向が互いに直行するように両基板を配置することによって、液晶分子の配向方向が4つの異なる方向となる4分割ドメインを形成することが好ましい。
本発明はまた、一対の基板間に液晶分子を含む液晶層が挟持された構成を有し、少なくとも一方の基板の液晶層側表面に光配向膜を有する液晶表示パネルであって、上記光配向膜は、光官能基に由来する構造を有する第三構成単位を必須構成単位とする重合体を含む配向膜材料を用いて形成されたものであり、上記重合体は、光官能基及び光官能基に由来する構造を有さず、配向性官能基を有する第四構成単位の導入比率が、該第三構成単位及び第四構成単位の合計を100mol%とすると、0mol%以上であり、上記光配向膜は、該配向膜材料を用いて形成された膜とそれ以外の材料の膜とによって構成され、光配向膜の液晶層側表面部が該配向膜材料を用いて形成された膜が必須となって構成されたものであり、該配向膜材料及び該それ以外の材料の固形分100重量%に対する該それ以外の材料の固形分の割合を変性比率とすると、該変性比率が、第四構成単位の導入比率が0mol%以上、6mol%未満のとき、0~85重量%であり、該導入比率が6mol%以上のとき、0~90重量%である液晶表示パネル(第2の本発明ともいう。)でもある。
上記形態によっても、同様に本発明の作用効果を発揮することが可能である。
上記光官能基に由来する構造を有する第三構成単位は、例えば、光照射によりシス異性体(又はトランス異性体)の光官能基が励起状態を経てトランス異性体(又はシス異性体)の光官能基に変化した構造を有する。上記光官能基の光再配向構造は、光官能基が光再配向した構造である。なお、光再配向とは、光官能基が異性化することなく光照射によってその光官能基の方向のみが変化するものである。したがって、上記第三構成単位は、例えば、光照射によりシス異性体(又はトランス異性体)の光官能基が励起状態を経て、その異性のまま光官能基の方向を変えた構造を有する。つまり、上記光官能基に由来する構造とは、二量化反応の性質は持っていても、低エネルギーの光では、光異性化反応の可逆変化がメインの官能基という意味である。言い換えれば、上記光官能基に由来する構造とは、光異性化反応の可逆変化を起こすものであればよい。
第2の本発明の好ましい形態は、上述した第1の本発明の好ましい形態と同様である。なお、第2の本発明における液晶表示パネルの好ましい形態としては、本発明の作用効果を発揮する限り、第1の本発明における第一構成単位及び第二構成単位の好ましい形態を、それぞれ第2の本発明における第三構成単位及び第四構成単位の好ましい形態と読み替えたうえで適宜適用することができる。
上記光配向膜は、基板層側を構成する重合体が水平配向膜の重合体であり、液晶層側を構成する重合体が垂直配向膜の重合体であることが好ましい。言い換えれば、上記変性処理材料により形成される膜が水平配向膜であり、上記配向膜材料を用いて形成された膜が垂直配向膜である形態が好ましい。
これにより、垂直配向膜の重合体を形成するための材料の使用量が削減されるので、光配向膜材料をコストダウンすることが可能であり、電圧印可時に垂直配向のタイプの液晶表示パネルを好適に得ることができる。
本発明はそして、本発明の液晶表示パネルを備える液晶表示装置でもある。
本発明の液晶表示装置が備える液晶表示パネルの好ましい形態は、上述した本発明の液晶表示パネルの好ましい形態と同様である。
本発明はまた、本発明の液晶表示パネルに設けられた光配向膜を形成するための配向膜材料に含まれる第一構成単位を必須構成単位とする重合体、又は、第三構成単位を必須構成単位とする重合体を含むことを特徴とする配向膜材料用重合体でもある。本発明の配向膜材料用重合体の好ましい形態は、本発明の液晶表示パネルに用いられる配向膜材料用重合体の好ましい形態と同様である。
本発明の液晶表示パネル及び液晶表示装置の構成としては、上述した特定の光配向膜等を有するという必須の構成要素や上述した好ましい構成要素以外にも、通常、液晶表示パネル及び液晶表示装置を構成するその他の構成要素を有することができる。本発明の配向膜材料用重合体の構成についても同様である。このような他の構成要素については、特に限定されるものではない。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の液晶表示パネル、液晶表示装置及び配向膜材料用重合体によれば、表示品位、信頼性、電気光学特性を優れたものとしながら、光配向膜として、望ましい重合体の構造組成を提案することができる。
実施形態1で使用可能な光配向膜重合体の分子の基本構造を示す模式図である。 実施形態1に係る基板の焼成後の構成を示す概念断面図及びフォトポリマーの構成を示す概念図である。 実施形態1におけるUV光配向処理方向と液晶分子のプレチルト方向との関係を示す斜視模式図である。 実施形態1の光配向メカニズムを示す図である。 実施形態1の光配向メカニズムを示す図である。 実施形態1の液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向とを示す平面模式図である。 実施形態1の液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向とを示す平面模式図である。 プロキシUV露光法によるマスクアライメントによる分割光配向処理プロセスにおける基板及びフォトマスクの第一の配置関係を示す断面模式図である。 プロキシUV露光法によるマスクアライメントによる分割光配向処理プロセスにおける基板及びフォトマスクの第二の配置関係を示す断面模式図である。 液晶表示装置と1絵素の液晶分割パターンと光配向処理方向、7.5V電圧印加時の平均の液晶ダイレクター方向を示す平面模式図である。 実施形態1の液晶表示装置における1絵素の液晶分割パターンとUV光照射方向、液晶配向方向を示す平面模式図である。 電圧印加時での図11のA-B断面図を示し、液晶分子の配向断面図である。 プレチルト許容範囲解析における、電圧に対する規格化透過率を示すグラフである。 グレイスケールレベルに対する規格化透過率(a.u.)を示すグラフである。 グレイスケールレベルに対する規格化透過率(a.u.)を示すグラフである。 基準評価セルのグレイスケールレベル(a.u.)に対するグレイスケールレベル(a.u.)を示すグラフである。 基準評価セルのグレイスケールレベル(a.u.)に対するグレイスケールレベル差(a.u.)示すグラフである。 グレイスケールレベル(a.u.)に対する規格化透過率(a.u.)を示すグラフである。 グレイスケールレベル(a.u.)に対するγ=2.2での実グレイスケールレベル(a.u.)を示すグラフである。 グレイスケールレベル(a.u.)に対するグレイスケールレベル差(a.u.)を示すグラフである。 プレチルト角/度(Pretilt angle/degree)に対する階調ズレ量を示すグラフである。 実施形態1における変性比率に対するプレチルト角/度を示すグラフである。 実施形態1における変性比率に対するΔチルトを示すグラフである。 実施形態1における変性比率に対する電圧保持率(VHR)/%を示すグラフである。 実施形態1における変性比率及び第二構成体の導入比率に対する電圧保持率(VHR)/%を示す棒グラフである。 実施形態1における変性比率に対する残留DC/Vを示すグラフである。 実施形態1における変性比率及び第二構成体の導入比率に対する残留DC/Vを示す棒グラフである。 配向膜により生じるプレチルト角の液晶依存性を示すグラフである。 配向膜により生じるプレチルト角の液晶依存性を示すグラフである。 実施形態2における信頼性試験時間(hr)に対する電圧保持率(%)のグラフである。 実施形態2における信頼性試験時間(hr)に対する電圧保持率(%)のグラフである。 実施形態2における信頼性試験時間(hr)に対する電圧保持率(%)のグラフである。 実施形態2におけるウインドウパターン表示映像図である。 実施形態2における中間調(V16)表示にて焼き付き評価する映像図である。
本明細書中、第二構成単位の導入比率は、該第一構成単位及び第二構成単位の合計を100mol%としたときの値である。第四構成単位の導入比率も同様に、該第三構成単位及び第四構成単位の合計を100mol%としたときの値である。
実施形態1
(光配向膜材料)
本実施形態における光配向膜材料は、VA(Vertical Alignment)モードで使用可能な垂直配向性を示すものであり、光化学反応(本発明の実施例の材料は、二量化の性質はもつが、光異性化をメインにした反応を使っていると考えられる。)を生じて液晶にプレチルトを与えることができるものとしては、シンナメート、シンナモイル、アゾベンゼン、クマリンを有するポリイミド又はポリアミド、ポリシロキサン誘導体等が挙げられる。また、光分解反応を生じて液晶にプレチルトを与えるものとしては、ポリビニルアルコール、ポリアミド、ポリイミド、ポリシロキサン等が挙げられる。なお、本実施形態に限らず、水平配向のTNやECB、IPS(In-Plane-Switching)用途においても、光官能基を有するイミド、アミド等の誘導体と光官能基を有さないイミド、アミド等の誘導体とのコポリマー(共重合体)にした水平配向膜にも適用が期待できる。
図1(a)及び図1(b)は、実施形態1で使用可能な光配向膜重合体の分子の基本構造を示す模式図である。
図1(a)には、ポリイミド構造を示し、図1(b)は、ポリアミック酸構造を示している。なお、本実施形態で実際に用いられているフォトポリマーとベースポリマーとはどちらもポリアミック酸構造であり、焼成後にどちらも部分熱イミド化する。
上記の光官能基を有するイミド、アミド等の誘導体と、光官能基を有さないイミド、アミド等の誘導体とのコポリマー(共重合体)を形成した垂直型光配向膜を形成した。なお、図1(a)及び図1(b)において、実線で囲まれた部分は、酸二無水物から誘導されるユニット(酸二無水物ユニット)であり、破線で囲まれる部分は、光官能基を有する側鎖を持つジアミンから誘導されるユニット(光配向ジアミンユニット)であり、一点鎖線で囲まれる部分は、垂直配向性官能基を有する側鎖を持つジアミンから誘導されるユニット(垂直配向性ジアミンユニット)である。また、本発明の光官能基を有する光配向側鎖及び光官能基を有さない側鎖のユニットの導入組成は、主鎖がポリシロキサン構造のものにも適応が可能である。
(酸二無水物の例)
実施形態1において用いられる酸二無水物の例としては、以下の式(1-1)~(1-8)に示したものが好適なものとして挙げられる。下記(1-6)で表される酸二無水物(4,10-ジオキサトリシクロ(6,3,1,0)ドデカン-3,5,9,11-テトラオン)が特に好適である。なお、式番号と併記されるアルファベットは、それぞれの化合物の略称である。
Figure JPOXMLDOC01-appb-C000001
実施形態1において用いられる垂直ジアミン物質の例としては、下記式(2-1)~(2-13)に示した構造を有する物質等が好適である。また、これらの2種以上を用いる形態であり、特に、ジアミン100mol%に対して、異なる構成単位が、1mol%以上で、複数導入されていてもよい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
また、例えば特開2004-67589号公報、特開2008-299317号公報に記載のジアミンを適宜用いることが可能である。
実施形態1において用いられる光配向ジアミンとしては、光官能基(光反応基)を有するものであればよいが、下記式(3-1)~(3-5)に示した構造の図のシンナモイル基、シンナメート基、カルコン基、アゾ基、スチルベン基、クマリン基を有する物質などが好適である。なお、本明細書中、光官能基とは、本発明の技術分野において光反応を起こすことができる官能基といえるものであればよく、例えば、光架橋(2量化)、光異性化(シス-トランス反応)、光架橋と光異性化との両方を起こすことができるものであることが好適である。
Figure JPOXMLDOC01-appb-C000004
実施形態1において用いられる光配向ジアミンは、特表2009-520702号公報に記載のジアミン化合物を好適に用いることができる。また、下記化学式(4)で表される化合物であることが好ましい。中でも、シンナメート基を有する形態、及び/又は、1から5つのフッ素原子を有する形態が好ましい。下記化学式(4)中、R及びRは、同一又は異なって、炭素数1~12のアルキル基を表し、Aは、炭素数が5~14の芳香族基を表し、該芳香族基が有する水素原子の一部又は全部がフッ素もしくは塩素原子に置換された形態であっても良く、Bは、炭素数1~16のアルキル基を表し、Dは、炭素数1~40を有するジアミン基を表し、Eは、芳香族基、酸素原子、硫黄原子、-NR-、又は、-CR-を表し、Rは、水素原子又は炭素数1~6のアルキル基であり、R及びRは、同一又は異なって、水素原子又は炭素原子1~24のアルキル基であり、X及びYは、同一又は異なって、水素、フッ素、塩素、シアノ基、又は、非置換若しくはフッ素で置換されている炭素数1~15を有するアルキル基(好ましくは、炭素数1~12を有するアルキル基)を表し、m及びnは、同一又は異なって、1~4の整数である。また、式(4)中、フッ素原子(F)は、炭素数2~32を有するジアルキルアミノ基、炭素数1~6を有するアルキルオキシ基、ニトロ基、及び/又は、塩素で置換されていてもよい。更に、上記nは、1であることが特に好適である。言い換えれば、本発明における上記光配向ジアミンは、枝分かれしておらず、一本の主鎖から構成されるものが好適である。一本の主鎖から構成されるとは、本発明の技術分野において、一本の主鎖から実質的に構成されるといえるものであればよい。
Figure JPOXMLDOC01-appb-C000005
上記光配向ジアミンの好適な具体例としては、例えば、以下の式(5)に示される化合物(4-(4,4,4-トリフルオロブトキシ)安息香酸4-{2-[2-(2,4-ジアミノフェニル)エトキシカルボニル]-2-(E)-ビニル}フェニルエステル)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
なお、上記した、光配向膜材料のポリマー化は従来の開示技術(特開2007-224273号公報、特開2007-256484号公報等)で合成可能である。
光官能基を有さないイミド、アミド等の誘導体の導入率(垂直ジアミン物質)を0mol%、4mol%、6mol%、10mol%として、光配向ジアミンを統一して、光配向膜材料をポリマー化して、インクジェット印刷用の溶剤で、ワニスを調整した。プレチルト、Δチルト、VHR、残留DC特性について、光官能基を有さないイミド、アミド等の誘導体の導入率依存を調べた。
基板へのインクジェット印刷のためのワニスの溶剤として、γ-ブチルラクトン(BL)、N-メチルピロリドン(NMP)、ジエチングリコールジエチルエーテル(DEDG)、ジイソブチルケトン(DIBK)の混合溶媒が好適である。また、輪転機印刷では、BLやNMPとBCとの混合溶媒が好適である。
図2は、実施形態1に係る基板の焼成後の構成を示す概念断面図及びフォトポリマーの構成を示す概念図である。基板の焼成後の構成断面図に示されるように、本実施形態の光配向膜は、基板6から、変性処理材料(ベースポリマー)4及びフォトポリマー2の2層がこの順で積層している。このような形態においては、いわばベースポリマーを基体として形成される配向膜が、その液晶層側の表面及びその近傍部がフォトポリマーによって変性されているといえる。変性処理材料との表現は、フォトポリマーによって変性処理が施される基体となる材料ということを意味している。配向膜100重量%において、ベースポリマーが0重量%であれば非変性ということになり、フォトポリマーの重量%が少なくなるにしたがって変性率が高くなる。配向膜における液晶分子の配向機能は、フォトポリマーによって発現されることになり、配向膜全体として、上述した液晶側に露出する配向膜の体積減少、新規化学物質の使用削減、配向膜の膜厚維持と残留DC低減とを実現といった機能を発揮することになる。なお、図2の概念断面図においては、ベースポリマーとフォトポリマーとの境界が明瞭に示されているが、実際の形態においては、境界が明瞭でなくてもよく、また傾斜的にフォトポリマーの割合が配向膜の液晶側から減少していくような形態であってもよい。すなわち、フォトポリマーとベースポリマーとが2層に分かれて配向膜が形成された形態が好ましい形態の1つであるが、液晶分子の配向機能を果たすことができるようにフォトポリマーが配向膜の液晶側表面に偏在していればよい。なお、垂直配向膜用のポリマー同士の変性処理において、フッ素非導入側鎖のポリマーと側鎖にフッ素を導入(側鎖末端置換)したポリマーであれば、基板側には非フッ素ポリマー、表面側にフッ素ポリマーが層分離することを確認した。したがって、上述のようにフッ素含有の光配向膜との層分離を発生させることができるフッ素非導入側鎖のポリマーの垂直配向膜でも、変性処理材料のベースポリマーとして使用できる。
図2のフォトポリマーの構成を示す概念図において、液晶層側表面部に形成された膜であるフォトポリマー2の好ましい形態としては、酸二無水物から形成された単量体単位2a、光配向ジアミンから形成された単量体単位2b、非フッ素ジアミン(例えば、上記した垂直ジアミン)から形成された単量体単位2cを構成単位として有する。非フッ素ジアミンは、いわゆる液晶分子の垂直配向機能を有する垂直ジアミンであればよく、フッ素原子を有するものであってもよい。これによって光配向ジアミンの使用量を抑制することができ、コストを削減することができる。このような形態において、上記単量体単位の分布態様は、ランダム、ブロック、交互等のいずれであってもよいが、酸二無水物から形成された単量体単位2aと光配向ジアミンから形成された単量体単位2b又は非フッ素ジアミンから形成された単量体単位2cとが交互に存在する形態が好適である。ここで、非フッ素ジアミンから形成された単量体単位2cも偏り過ぎずにある程度疎らに重合体中に分布していることが好ましい。図2の概念図中、光配向ジアミンから形成された単量体単位2bの側鎖末端部にF(フッ素原子)が結合したように示されているが、そのようにFが単量体単位の側鎖末端部に結合した形態が好ましいが、光照射によって形成される配向膜において光照射の方向に液晶分子を配向させる機能を果たす限り特に限定されるものではない。
上記フォトポリマーの共重合体の構成物質である非フッ素ジアミンは、プレチルトを垂直方向に立たせる役目を果たすものであり、電圧印加時の液晶分子の均一配向性を向上させ、プレチルトの電圧に対する変化のACMを抑えることができるものである。
本実施形態におけるフォトポリマーにおいて、垂直配向性ジアミンユニット(垂直ジアミンユニット)は任意成分(0mol%以上)であればよいが、光配向ジアミン使用量削減の観点からは、垂直ジアミンユニットを必須成分とすることが好ましい。例えば、第二構成単位である垂直ジアミンの導入比率が、該第一構成単位である光配向ジアミン及び第二構成単位である垂直ジアミンの合計を100mol%とすると、4mol%を超え、10mol%以下であるようにすることにより、後述するように、変性比率をより高く設定しながら、実用上、均一な表示品位、充分な信頼性を有し、優れた電気光学特性を持つことが可能となり、光配向膜として、望ましい重合体の構造組成を提案できる。より好ましくは、8mol%以下である。
(配向膜の作製方法)
以下に、本実施形態の配向膜の作製方法について説明する。
まず、第一構成単位及び第二構成単位の単量体成分と、酸二無水物とを従来公知の方法により共重合(コポリマー化)する。
次に、コポリマー化された重合体を基板にインクジェット塗布(印刷)するためのワニスを調整する。ワニスの溶剤としては、γ-ブチルラクトン(BL)、N-メチルピロリドン(NMP)、ジエチレングリコールジエチルエーテル(DEDG)、ジイソブチルケトン(DIBK)(異性体混合物含む)等の溶媒を含有する混合溶媒が好適である。例えば、γ-ブチルラクトン30重量%、N-メチルピロリドン20重量%、ジエチルエーテルジブチルグリコール40重量%、ジイソブチルケトン(異性体混合物含む)10重量%を用いる形態が好ましい。
次に、ワニスを基板に塗布する。ワニスの塗布方法としては、スピンコート、フレキソ印刷、インクジェット等が好適である。
ワニスを印刷後、仮焼成用ホットプレートにて仮焼成を行い、続いて本焼成用ホットプレートにて本焼成を行う。なお、仮焼成及び本焼成における加熱温度及び加熱時間は適宜設定できる。また、本実施形態の配向膜の膜厚も適宜設定できる。
本実施形態の配向膜は、変性処理、2層化処理又はハイブリット化処理と呼ばれる方法により形成されてもよい。これまで、液晶表示装置の焼き付きの主な原因としては、残留DCが考えられていた。残留DCは、配向膜の膜厚(体積)が厚い(大きい)ほど、大きくなる。したがって、配向膜の膜厚(体積)が薄い(小さい)ほど残留DCは小さくなる。それに対して、パネル製造の配向膜印刷工程での塗布欠陥を防止するためには、配向膜はある程度の膜厚、例えば60nm以上を維持することは必要不可欠である。そこで、これを解決する手段としては、変性処理、2層化処理又はハイブリット化処理と呼ばれる方法がある。すなわち、垂直配向膜のポリマーと水平配向膜のポリマーとが、または、垂直配向膜であるフッ素導入ポリマーと水平配向膜である非フッ素導入ポリマーとが、一定の比率(例えば、30:70~5:95。より好ましくは、25:75~10:90)で均一混合されたワニスを基板に塗布することにより、塗布直後又は配向膜塗布後の焼成過程において、ポリマー間で相分離が発生する。そして、この作用を利用することにより、基板側には水平配向膜が形成され、液晶層側には垂直配向膜が形成される。これにより、液晶層側に露出する配向膜の体積を少なくすることができ、残留DCと残留DCに起因する焼き付きを低減することができる。本実施形態においても、必要であれば、上記の処理をすることが可能である。これにより、残留DCに起因する焼き付きと、ACモードでの焼き付きとがともに低減された液晶表示装置を実現することができる。なお、信頼性の観点からは、上述した変性比率が70重量%を超え、90重量%以下となるようにすることが好適である。また、上限を90重量%以下とすることにより、液晶層側表面の光配向膜を光配向膜として充分に機能させることができる。
実施形態1において用いられる変性処理用のジアミンの例としては、以下の式(6-1)~(6-6)に示した化合物が好適なものとして挙げられる。なお、式番号と併記されるアルファベットは、それぞれの化合物の略称である。
Figure JPOXMLDOC01-appb-C000007
なお、変性処理用の酸二無水物の例としては、前記の酸二無水物の例が挙げられる。
更に、光配向膜材料が必要となる場合、光配向ジアミンを変えずに、共重合体の組成物の他のジアミンが異ならせることにより、類似材料特性、電気光学特性のフォトポリマーを作製することができ、それらをブレンドすることにより、必要材料の安定供給と使用が可能となる。
(本実施形態のフォトポリマー)
例えば、光配向ジアミンを4-(4,4,4-トリフルオロブトキシ)安息香酸4-{2-[2-(2,4-ジアミノフェニル)エトキシカルボニル]-2-(E)-ビニル}フェニルエステル、垂直配向性ジアミンには5α-コレスタン-3β-オール系ジアミン、酸二水物を、4,10-ジオキサトリシクロ(6,3,1,0)ドデカン-3,5,9,11-テトラオンとして、共重合体を公知の技術にて形成した。
(本実施形態のベースポリマー)
例えば、ジアミンをMBDA、酸二無水物として、シクロヘキサンテトラカルボン酸二無水物として、重合体を公知の技術にて形成した。
また上記信頼性向上のために含有することができる化合物としては、例えば特開2008-299317号公報に記載のエポキシ系化合物、特許第4434862号明細書に記載のエポキシ基含有化合物を適宜用いることが可能である。
(液晶セル作製工程)
該光配向膜のワニスを印刷後、仮焼成ホットプレート上で90℃、1分(このときの該光配向膜厚は100nm)、本焼成ホットプレート上で200℃、60分後、基板を室温まで冷却し、消光比10:1のP偏光UV光を基板法線から40度の方向から20mJ/cm照射した。一方の基板にはセル厚保持材、例えば、積水ファインケミカル社製ミクロパール(プラスチックビーズ)3.5μm径のものを所望の量(密度:100μmあたり4~5個程度)を乾式散布しても良いし、セル厚保持材(固着ビーズ)を含有するインクを所望の位置にインクジェット印刷しても良いし、該光配向膜の形成前に感光性樹脂材料を用いて、所定の位置にフォトスペーサを形成しても良い。他の基板には、シール剤、例えば、三井化学社製のストラクトボンドXN-21Sや協立化学産業社製の光熱シール剤をスクリーン印刷、又は、ディスペンスする方法が好適である。液晶注入は、真空注入法、滴下注入法が好適である。真空注入法では、封止剤として、スリーボンド社製、積水ファインケミカル社製の光硬化性ボンドが好適である。
(基本動作-モノドメイン)
図3は、実施形態1におけるUV光配向処理方向と液晶分子のプレチルト方向との関係を示す斜視模式図である。図4、5は、実施形態1の光配向メカニズムを示す図である。図6、7は、液晶配向ドメインがモノドメインの場合の光配向処理が上下基板で直行する場合(図6)と上下基板で反平行の場合(図7)を示すものである。すなわち、図6は、実施形態1の液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向とを示す平面模式図である(VATN)。図7は、実施形態1の液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向とを示す平面模式図である(VAECB)。図8、9は、それぞれ、プロキシUV露光法によるマスクアライメントによる分割光配向処理プロセスにおける基板及びフォトマスクの第一、第二の配置関係を示す断面模式図である。図10は、液晶表示装置と1絵素の液晶分割パターンと光配向処理方向、7.5V電圧印加時の平均の液晶ダイレクター方向が明記されている。図3~10を参照しながら、本発明の液晶表示装置の動作原理を説明する。
本発明の液晶表示装置は、一対のガラス基板の間に、誘電異方性が負の液晶分子からなる液晶層が挟持されている。一対のガラス基板の液晶層に接する側の面には、それぞれ透明電極が形成され、さらに、その上に垂直配向性の光配向膜層が形成されている。図3に示すように、入射面に平行に偏光したUV光が基板法線方向から、例えば40度傾けて、照射されると、そのUV照射方向5に対して図3に示すような方向に液晶プレチルト角1を発生することができる。
図6に示すように、照射方向を上下基板で直行させて、上下基板の液晶プレチルトがほぼ同じで、カイラル材を含まない液晶材料を注入した場合、電圧印加時には液晶分子は上下基板間で90度ねじれた構造になるが、ほとんど液晶分子は照射方向を二分する図6に示す向き(AC電圧印可時の平均の液晶ダイレクター方向18)に配向する。また、図6中、実線矢印は、上基板に対する光照射方向(上基板1方向光配向処理方向)を示し、点線矢印は、下基板に対する光照射方向(下基板1方向光配向処理方向)を示す。
(光配向メカニズム)
例えば、シンナメート系の光配向側鎖での光反応においては、図4に示されるように、未照射配向膜15においては、未反応側鎖11から配向膜平面に対して略垂直方向に容易軸13が形成されていたが、これに対して光を斜め照射すると、容易軸113が生じることになる。これは、電気ベクトルと平行な感光性側鎖が反応し、未反応側鎖111が残る、及び、再配向側鎖が発生する結果、その方向の配向規制力が失われるためであると考えられる。結果として、液晶を配向させるためのプレチルトは、偏光斜め照射の入射面内に平行にかつ、照射方向に相対するように液晶が傾くように発現する。
上述したように、未反応の光配向側鎖が、あらかじめ、基板法線方向を中心に分布しているとすれば、光軸方向へのチルトを説明できる。図5に、電気ベクトルEと平行な感光性側鎖10が反応し、未反応側鎖12が残る、及び、再配向側鎖が発生する模式図と、これにより生じる構造の配向方位(すなわち、容易軸14)、もともとの平均側鎖分布16、及び、電気ベクトルEの相関図を示す。また、偏光(入射面に平行な電気ベクトルEを持つP波)は、液晶を配向させるための光配向側鎖を効率よく光反応させるためには、理想的には直線偏光が好ましいが、現実的には、照度ロスによる光照射時間が長くなるのを抑えるため、楕円偏光や部分偏光となる。プレチルト角発生量は、偏光の消光比が大きいほど、プレチルト絶対値(法線からの角度)はより小さくなり、すなわちより傾く。例えば、P波として、30:1の消光比の偏光では、10:1の消光比の偏光に比べ、0.2°程度低くなることが、検証実験にて判明している。
図7に示すように、照射方向が上下基板で反平行させて、上下基板の液晶プレチルトがほぼ同じで、カイラル材を含まない液晶材料を注入した場合、電圧印加時には液晶分子は上下基板間で、界面付近は液晶プレチルトが88度程度のホモジニアスの構造になり、図7に示す向き(AC電圧印加時の平均の液晶ダイレクター方向18′)に配向する。なお、図7中、実線矢印は、上基板に対する光照射方向(上基板1方向光配向処理方向)を示し、点線矢印は、下基板に対する光照射方向(下基板1方向光配向処理方向)を示す。
本基本動作では、VAモードについて、詳細に述べたが、本技術は、水平配向タイプのTN、IPS、ECBにおいても、垂直配向官能基を導入していないジアミン、又は、側鎖部に、親水性又は水平配向官能基を導入したジアミンと水平配向タイプの光配向官能基を有するジアミンの共重合体(コポリマー)にも適応することで、ACMを抑制することが期待できる。つまり、上述のようにフッ素含有のポリマーで水平配向の光配向膜と層分離を発生させることができるフッ素非導入のポリマーの水平配向膜にも、適応が期待できる。
(分割配向)
図8、9は、アライメントマスク(フォトマスク29)を用いたプロキシUV露光の工程を説明する図である。液晶表示装置の1画素(1ピクセルまたはサブピクセル)幅を二分し、半分は一方向(光照射方向27は、紙面から奥方向)に露光し、半分はフォトマスク遮光部23を用いて遮光する(図8)。基板22は、例えば、駆動素子基板、又は、カラーフィルタである。次のステップでは、フォトマスク遮光部23を半ピッチずらして、露光済みのところを遮光して、遮光したところを図8とは逆方向(光照射方向31は、紙面から手前方向)に露光する(図9)。したがって、液晶表示装置の1画素(1ピクセルまたはサブピクセル)幅を二分して、互いに逆方向に液晶プレチルトを持つ領域がストライプ状に存在することになる。なお、プロキシギャップ21は、フォトマスク29と光配向膜(垂直配向膜)25との間のギャップである。また、露光方式については、基板固定でマスクずらしアライメント方式や、駆動素子基板、カラーフィルタ基板の照射方向は、それぞれ同一基板内で180°異なり、異種基板間では、90°異なるので、照射方向を0°と180°のそれぞれ専用のマスクを備えた露光ユニット群を2種用意しておき、走査露光する方式でもよい。
それぞれ片方の基板は2分割の等ピッチで分割しておき、分割方向が互いに直行するように両基板を配置することによって、液晶分子の配向方向が4つの異なるI、II、III、IVの4分割ドメインを形成する(図10)。それぞれのドメイン境界は一方基板上の液晶配向方位が偏光板吸収軸と一致し、一方の基板上の液晶配向は液晶配向方位がほぼ基板に対して垂直となっているので、偏光板クロスニコルで電圧印加時は暗線となる。
なお、図10中、点線矢印は、下基板(駆動表示素子(TFT)基板)に対する光照射方向(駆動素子側UV配向処理方向)を示す。実線矢印は、上基板(カラーフィルタ基板)に対する光照射方向(カラーフィルタ基板側UV光配向処理方向)を示す。上下矢印415は、駆動表示素子側偏光板吸収軸方向を、左右矢印416は、カラーフィルタ側偏光板吸収軸方向を示す。
図11は、実施形態1の液晶表示装置における1絵素の液晶分割パターンとUV光照射方向、液晶配向方向を示す平面模式図である。図12は、電圧印加時での図11のA-B断面図を示し、液晶分子の配向断面図である。
本発明の液晶表示装置は、一対のガラス基板の間に、誘電異方性が負の液晶分子からなる液晶層が挟持されている。一対のガラス基板の液晶層に接する側の面には、それぞれ透明電極が形成され、さらに、その上に垂直配向層が形成されている。
それぞれ片方の基板は2分割の等ピッチで分割しておき、半ピッチずらして両基板を配置することによって、液晶分子の配向方向が4つの異なるドメインi、ii、iii、ivの4分割ドメインを形成する(図11)。
電圧無印加時には、液晶分子は、垂直配向層の配向規制力によって、基板に垂直な方向に配向している。電圧印加時には図12に示すように、上下基板間で液晶分子はほぼ90度ツイストしている4つのドメインで異なる4つの配向状態が存在することになる。電圧印加時の液晶セル厚み方向での平均の液晶ダイレクターは上下基板の直行する光配向処理方向間のほぼ45度方向に配向すると考えられる。
なお、図11中、点線矢印は、下基板(駆動表示素子(TFT)基板)に対する光照射方向(駆動表示素子側2方向光配向処理方向)を示す。実線矢印は、上基板(カラーフィルタ基板)に対する光照射方向(カラーフィルタ側2方向光配向処理方向)を示す。上下矢印515は、駆動表示素子側偏光板吸収軸方向を、左右矢印516は、カラーフィルタ側偏光板吸収軸方向を示す。また、図12中、点線は、ドメイン境界を示す。
また、必要であれば、PBの固着のため、インク乾燥後に基板を所定の温度に加熱する。セル厚保持材形成後に、図3又は、図8、9のUV配向処理を行う。
(階調ズレ評価によるプレチルト許容範囲解析)
液晶パネルは、CRTとのコンパチビリティ(Compatibility:両立性、共用性)を持たせるため、CRTと同じような特性になるように補正を行っている。つまり、液晶パネルのガンマ特性は、γ=2.2近くにしてあるのが周知のとおりである。液晶モジュール実機(駆動回路込み)の階調輝度特性はγ=2.2±0.2の範囲にすることが映像表示上、要求されている。
新規の配向膜材料を開発する場合、配向膜材料に許容される階調輝度特性の範囲はγ=2.2±0.1と設定したとき、許容される階調ズレ量は±4階調であり、要求されるプレチルト角の許容範囲を調べるため、プレチルトが88°~89°で異なる液晶セルの電圧透過率特性を階調透過率特性に変換し、階調ズレ量を評価した。その結果、当該許容範囲が88.6°±0.3°であることが判明した。本プレチルトは、消光比10:1のP偏光の照射装置を用いて発生させている。消光比が高いと、プレチルトの絶対値は小さくなるものの、プレチルトの±相対範囲は変動しないものと考えられる。
I.液晶セルの電圧vs透過強度の測定
図13は、プレチルト許容範囲解析における、電圧に対する規格化透過率を示すグラフである。A.U.は、Arbitrary Unit(任意の単位)を意味する。
(1)プレチルトの異なるそれぞれのセルに0~10Vの電圧を印加し、各電圧値での透過光を測定した。電圧vs透過光強度をプロットした。
(2)透過光強度の規格化(透過率)
印加電圧が0.5Vの時の強度を0、7.5Vの時を1として規格化した(VTカーブ)。
実験条件は、以下の通りである。
・LC(液晶材料名):液晶A
・PI(配向膜名):光配向膜A(第二構成単位の導入比率4mol%、かつ、変性比率70重量%)
・照射条件数種
(プレチルト角変化のため、UV照射エネルギー量10mJ/cm~100mJ/cmの範囲で調節)
基準評価セル:
・プレチルト;88.6°
・セル厚;3.4μm
II.階調(0~255)vs透過率特性に変換
図14は、各階調(グレイスケールレベル)に対する規格化透過率(a.u.)を示すグラフである。
CRTの階調vs輝度特性になるように、液晶の表示特性(階調透過率特性)をγ=2.2に補正する。
γ=1ではなく、このγ=2.2の補正により人間の目では階調透過率(輝度)特性が正比例の関係に視認される。
γ=2.2の階調透過率カーブとは、透過率=(階調)2.2/2552.2で表される。 
(3)基準評価セルの階調電圧の設定
0.5Vの透過率を0階調、7.5Vの透過率を255階調とし、基準に選定したセル(プレチルト;88.6°、セル厚;3.4μm)のVTカーブの透過率データから、各階調に対応する階調電圧(V階調)を設定した(測定電圧2点補間で算出)。
(4)セルの階調透過率(T階調)の算出
図15は、各階調(グレイスケールレベル)に対する規格化透過率(a.u.)を示すグラフである。図16は、基準評価セルの各階調(グレイスケールレベル(a.u.))に対する各階調(グレイスケールレベル(a.u.))を示すグラフである。
基準の各階調電圧に対して、評価対象のセルのVTカーブデータより、各階調透過率(T階調)を解析した(測定透過率の2点補間)。
(5)基準階調(γ=2.2)での実階調値の算出
評価対象のセルの階調透過率カーブデータから、γ=2.2の階調透過率カーブの各階調透過率と等しい実階調を計算した(2点補間)。
(6)階調ズレ評価
図17は、基準評価セルのグレイスケールレベル(a.u.)に対するグレイスケールレベル差(a.u.)を示すグラフである。
100階調以下で、γ=2.2の基準階調と評価対象セルの実階調との最大ズレ(差)を計算した。
III.階調ズレ許容値について
図18は、グレイスケールレベル(a.u.)に対する規格化透過率(a.u.)を示すグラフである。γ=2.2の階調透過率カーブの各階調透過率と等しい実階調を計算した(2点補間)。図19は、グレイスケールレベル(a.u.)に対するγ=2.2での実グレイスケールレベル(a.u.)を示すグラフである。図20は、グレイスケールレベル(a.u.)に対するグレイスケールレベル差(a.u.)を示すグラフである。
セルギャップ変動の影響と駆動回路の制約から、新規配向膜材料のプレチルトの設計では、より視認性が高い100階調以下で、最大±4階調以内のズレが許容値と設定された。したがって、プレチルトの許容値は88.6°±0.3°と判明した。
(プレチルト角の望ましい範囲)
図21は、プレチルト角/度(Pretilt angle/degree)に対する階調ズレ量を示すグラフである。図6に示される光配向処理がされた液晶表示装置を作製し、電圧無印加時のプレチルト角を評価し、プレチルト角が異なる液晶表示装置の電圧-輝度特性カーブを測定し、7.5V印加時を255階調、0.5V時を0階調として、それぞれの特性カーブを規格化して、プレチルト88.6°の電圧-輝度特性をγ2.2カーブに設定した。100階調以下で、γ2.2カーブからの最大階調ズレ量を解析して、それぞれのプレチルト角に対してプロットした。なお、プレチルト角度測定装置はシンテック社製のOPTI-Proを使用した。液晶表示装置の階調輝度特性のズレ許容値を±4階調とすると、上述したように、プレチルト角の望ましい範囲は88.6°±0.3°となる(ハッチングを施した四角のエリア)。なお、階調ズレ量を±2階調以内とすると、より望ましい範囲は88.6°±0.15°である。また、階調ズレ量を±1階調以内とすると、さらにより好ましい範囲は88.6°±0.1°である。
(プレチルト評価)
図22は、実施形態1における変性比率に対するプレチルト角/度を示すグラフである。図6に示される光配向処理がされた液晶表示装置を作製し、電圧無印加時のプレチルト角特性について、変性比率の依存、及び、共重合体の第二構成体の導入比率(0%~10%)の依存を調べた。なお、プレチルト角度測定装置はシンテック社製のOPTI-Proを使用した。
光学特性の観点から、望ましいプレチルト角の範囲を88.6°±0.3°(より望ましくは、88.6°±0.15°)とすると、ハッチングの範囲が好ましい条件である。つまり、第二構成体の導入比率が0mol%のとき変性比率0~63重量%、第二構成体の導入比率が4mol%のとき変性比率30~90重量%、第二構成体の導入比率が6mol%のとき変性比率63~90重量%、第二構成体の導入比率が8mol%のとき変性比率83~90重量%のそれぞれの条件であるとき、前記望ましいプレチルト角の範囲を達成することができる。また、上述した品位と信頼性の観点から、第二構成単位の導入比率が4mol%を超えることが好ましいことから、該変性比率が、第二構成単位の導入比率が4mol%を超え、6mol%以下のとき、63~90重量%であり、該第二構成単位の導入比率が6mol%を超え、8mol%以下のとき、83~90重量%の条件によっても、望ましいプレチルト角の範囲を達成することができる。上述した焼き付きを解決する変性比率の下限値が70重量%を超えることが好ましいことも考え合わせると、該変性比率は、該第二構成単位の導入比率が4mol%を超え、6mol%以下のとき、70重量%を超え、90重量%以下であり、該第二構成単位の導入比率が6mol%を超え、8mol%以下のとき、83~90重量%である形態が特に好ましい形態の一つであるといえる。さらに、変性比率70重量%かつ第二構成体の導入比率が4mol%の条件の88.6°と同値を示す条件は、第二構成体の導入比率が6mol%で変性比率85重量%である。
(ACM評価(Δチルト評価))
図23は、実施形態1における変性比率に対するΔチルトを示すグラフである。図6に示される光配向処理がされた液晶表示装置を作製し、Δチルト特性について、変性比率の依存、及び、共重合体の第二構成体の導入比率(0%~10%)の依存を調べた。ACMはAC電圧印加ストレス30Hz、7.5Vを印加し、一定時間後にAC電圧印加を0Vとし、プレチルト角度を測定し、再び、該AC電圧を印加して、一定時間後に、再び、AC電圧印加をOFFし、プレチルト角度を測定について、累積AC電圧印加時間が0~40時間まで、繰り返し実施した。さらに、初期(AC電圧印加時間が0時間)と36~40時間後でそれぞれ1時間ごとの値のプレチルト角度の差(Δチルト)の最近5点平均値を評価した。なお、Δチルト測定装置はシンテック社製のOPTI-Proを使用した。
焼き付き特性の観点から、Δチルトの望ましい範囲を-0.05°以上とすると、第二構成体の導入比率が4mol%のとき、変性比率は0~85重量%まで、第二構成体の導入比率が6mol%~10mol%のとき、変性比率は0~90重量%まで、達成できる。
さらに、前記の望ましいプレチルト角の88.6°±0.3°(より望ましくは、88.6°±0.15°)を達成する条件とをあわせて考慮すると、第二構成体の導入比率が4mol%のとき変性比率は30~85重量%、第二構成体の導入比率が6mol%のとき変性比率63~90重量%、第二構成体の導入比率が8mol%のとき変性比率83~90重量%の条件となる。
(VHR評価)
図24は、実施形態1における変性比率に対する電圧保持率(VHR)/%を示すグラフである。図6に示される光配向処理がされた液晶表示装置を作製し、電圧保持率(VHR)特性について、変性比率の依存、及び、共重合体の第二構成体の導入比率4mol%として、変性比率70~85重量%の依存を調べた。なお、評価装置は東陽テクニカ社製の液晶物性測定システムを使用した。パルス幅60μsec、フレーム周期16.7msec、電圧印加5V及び1V、測定温度70℃、面積比にて評価した。電圧保持率(VHR)特性の共重合体の第二構成体の導入比率4mol%及び変性比率70~85重量%の依存はないことがわかった。
図25は、実施形態1における変性比率及び第二構成体の導入比率に対する電圧保持率(VHR)/%を示す棒グラフである。第二構成体の導入比率4mol%かつ変性比率70重量%と第二構成体の導入比率6mol%かつ変性比率85重量%の2つの光配向膜材料の条件につき、前記同様にVHRを評価したところ、ほぼ同値であったので、依存性はなく、両者はほぼ同等であることがわかった。
(残留DC評価)
図26は、実施形態1における変性比率に対する残留DC/Vを示すグラフである。図6に示される光配向処理がされた液晶表示装置を作製し、変性比率の依存、及び、共重合体の第二構成体の導入比率4mol%として、変性比率70~85重量%の依存を調べた。なお、評価手順は、ストレス条件:AC2.9V(30Hz)+DC2.0V、温度は40℃及び70℃とし、それぞれの温度で、2時間ストレス印加後のフリッカの消去電圧を測定。ストレス前後のオフセット電圧差を残留DCとした。残留DC特性の共重合体の第二構成体の導入比率4mol%及び変性比率70~85重量%の条件で、ほぼ依存はないことがわかった。
図27は、実施形態1における変性比率及び第二構成体の導入比率に対する残留DC/Vを示す棒グラフである。第二構成体の導入比率4mol%かつ変性比率70重量%と第二構成体の導入比率6mol%かつ変性比率85重量%の2つの光配向膜材料の条件につき、前記同様に残留DCを評価したところ、測定誤差内のほぼ同等であった。
(チルト液晶依存性について)
図28及び図29は、配向膜により生じるプレチルト角の液晶依存性を示すグラフである。
また、用いた液晶A~Dの物性の違い(応答特性の相対値)を下記表1に示し、配向膜への非フォトアミン導入比率(mol%)、変性比率(重量%)、及び、プレチルト角度の値を下記表2に示す。図28の結果から、液晶のプレチルト角が、配向膜の種類にはほとんど依存しないことが明らかである。図29の結果から、光配向膜組成を調整することで、プレチルト値を一定にすることができる。すなわち、上述した望ましいプレチルト角の範囲、Δチルトの範囲等は、配向膜及び液晶の種類に影響をほとんど受けないといえる。
しかしながら、上下基板間で90度ツイストさせた液晶セルの電圧無印加時の状態で、本プレチルト評価を実施しており、前記のように、消光比10:1のP偏光の照射装置を用いてプレチルトを発生させている。消光比が高いと、プレチルトの絶対値は小さくなるものの、プレチルトの±相対範囲は変動しないものと考えられる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
実施形態2
(信頼性試験によるVHR変化)
実施形態1における図6に示される光配向処理がされた液晶表示装置(VATN)を作製し、電圧保持率(VHR)特性について、信頼性試験時間の変化を調べた。なお、液晶表示装置の構成は、実施形態2において明記したもの以外は、実施形態1と同様である。図30~図32中、保存とは、液晶表示装置を室温暗室放置したことをいう。BL保存とは、CCFLバックライト(2万cd/m)上にて保存したことをいう。BL通電とは、CCFLバックライト上にて、液晶表示装置にAC電圧印加ストレス30Hz、7.5Vを印加し通電したことをいう。60℃通電とは、60℃環境下、液晶表示装置にAC電圧印加ストレス30Hz、7.5Vを印加し通電したことをいう。前記これらの試験時には偏光フィルムは液晶表示装置には貼り付けていない。
図30~図32は、信頼性試験時間(hr)に対する電圧保持率(%)のグラフである。図30は、共重合体の第二構成体の導入比率を6mol%、変性比率85重量%の光配向膜について、図31は、共重合体の第二構成体の導入比率6mol%、変性比率90重量%の光配向膜について、図32は、共重合体の第二構成体の導入比率4mol%、変性比率70重量%の光配向膜について、それぞれ調べたものである。液晶としては、それぞれ液晶Bを使用した。なお、評価装置は東陽テクニカ社製の液晶物性測定システムを使用した。パルス幅60μsec、フレーム周期16.7msec、電圧印加1V、測定温度70℃、面積比にて評価した。配向膜材料の評価として電圧印加1Vは、VHRの劣化変化が大きくなりやすく、信頼性の優劣を判定するのに好適である。
電圧保持率(VHR)特性の共重合体の第二構成体の導入比率6mol%及び変性比率85重量%と90重量%は、ほぼ同等のVHR劣化変化であり、共重合体の第二構成体の導入比率4mol%かつ変性比率70重量%より少しVHR劣化変化が小さいものであった。
(60℃環境下焼き付き評価試験)
TFT(駆動素子基板)とCF(カラーフィルター基板)で形成された1画素又はサブ画素において、例えば図10の4分割ドメインを形成した液晶表示装置において、液晶駆動回路及びバックライト付き液晶モジュールの信頼性の評価として、60℃環境下高温焼き付き評価試験を実施した。
背景の黒表示は0階調(V0)表示、ウインドウパターン表示部の白表示は255階調(V255)表示させている。図33は、このときの、ウインドウパターン表示映像図である。信頼性が良くない場合の例としては、図34にイメージを示すように、エッジ焼き付きが白表示部のエッジに発生している。なお、図34は、実施形態2における中間調(V16)表示にて焼き付き評価する映像図である。
60℃環境下3,000時間後に表示品を確認したところ、結果は下記表3のように、共重合体の第二構成体の導入比率6mol%として、変性比率85重量%の光配向膜をCF、TFTの両基板に形成したものは、共重合体の第二構成体の導入比率4mol%かつ変性比率70重量%のCF、TFTの両基板に形成したものより優れた信頼性特性を有することがわかった。また、CF基板とTFT基板とで異種光配向膜が形成されたものは、信頼性が不十分であることがわかった。
実施形態2に示した信頼性試験から、信頼性の観点からは例えば以下のことがいえる。すなわち、前記第二構成単位の導入比率が、4mol%を超えるものであることが好ましい。更に、上述した変性比率は、85~90重量%であることが特に好ましい。また、液晶表示パネル又は液晶表示装置は、一対の基板の液晶層側表面にそれぞれ導入比率及び変性比率が同じ光配向膜を有するものが好適であるといえる。導入比率及び変性比率が同じ光配向膜とは、本発明の技術分野において実質的に同じといえるものであればよい。また、原材料の種類及び基板面積に対する使用量、成膜工程等が同じであることが特に好適である。なお、下記表3中、○は、液晶表示装置として非常に良好であることを示し、△は、液晶表示装置として充分な基準に達していることを示し、×は、液晶表示装置として充分な基準に達していることを示す。○~△は、上記○と上記△との中間の評価である。また、「判定」の項目は、焼付き、シミ、ムラ発生、フリッカ発生を総合的に評価した結果を示す。
Figure JPOXMLDOC01-appb-T000010
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2010年8月30日に出願された日本国特許出願2010-192955号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。

Claims (26)

  1. 一対の基板間に液晶分子を含む液晶層が挟持された構成を有し、少なくとも一方の基板の液晶層側表面に光配向膜を有する液晶表示パネルであって、
    該光配向膜は、液晶分子を配向制御する特性を光照射によって発現する第一構成単位を必須構成単位とする重合体を含む配向膜材料を用いて形成された膜に光照射による配向処理が施されたものであり、
    該第一構成単位は、光架橋反応と光異性化反応の少なくとも一方の光化学反応により液晶分子を配向制御する特性を発現するものであり、
    該重合体は、液晶分子を配向制御する特性を光照射によらず発現する第二構成単位の導入比率が、該第一構成単位及び第二構成単位の合計を100mol%とすると、0mol%以上であり、
    該光配向膜は、該配向膜材料を用いて形成された膜とそれ以外の材料の膜とによって構成され、光配向膜の液晶層側表面部が該配向膜材料を用いて形成された膜が必須となって構成されたものであり、該配向膜材料及び該それ以外の材料の固形分100重量%に対する該それ以外の材料の固形分の割合を変性比率とすると、該変性比率が、第二構成単位の導入比率が0mol%以上、6mol%未満のとき、0~85重量%であり、該導入比率が6mol%以上のとき、0~90重量%である
    ことを特徴とする液晶表示パネル。
  2. 前記第二構成単位の導入比率は、4mol%以上、10mol%以下であることを特徴とする請求項1に記載の液晶表示パネル。
  3. 前記変性比率は、70重量%を超えることを特徴とする請求項1又は2に記載の液晶表示パネル。
  4. 前記光配向膜は、液晶層の平均プレチルト角を88.6°±0.3°となるように液晶分子を配向制御するものであることを特徴とする請求項1~3のいずれかに記載の液晶表示パネル。
  5. 前記変性比率は、前記第二構成単位の導入比率が4mol%を超え、6mol%以下のとき、70重量%を超え、90重量%以下であり、第二構成単位の導入比率が6mol%を超え、8mol%以下のとき、83~90重量%である
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示パネル。
  6. 前記光配向膜は、液晶表示パネルに対する交流電圧の印加時間を0時間としたときと36時間~40時間の平均値としたときのプレチルト角の差が-0.05°以上となるように液晶分子を配向制御するものであることを特徴とする請求項1~5のいずれかに記載の液晶表示パネル。
  7. 前記配向膜材料における重合体の第一構成単位は、光官能基を有する側鎖を持つことを特徴とする請求項1~6のいずれかに記載の液晶表示パネル。
  8. 前記配向膜材料における重合体の第二構成単位は、配向性官能基を有する側鎖を持つことを特徴とする請求項1~7のいずれかに記載の液晶表示パネル。
  9. 前記配向膜材料における重合体の必須構成単位は、配向制御方向が同方向であることを特徴とする請求項1~8のいずれかに記載の液晶表示パネル。
  10. 前記光配向膜は、配向膜面内における液晶分子を均一に配向制御することを特徴とする請求項1~9のいずれかに記載の液晶表示パネル。
  11. 前記光配向膜は、液晶分子を垂直配向制御する垂直配向膜であることを特徴とする請求項1~10のいずれかに記載の液晶表示パネル。
  12. 前記配向膜材料における重合体の第二構成単位は、垂直配向性官能基を有する側鎖を持つことを特徴とする請求項11に記載の液晶表示パネル。
  13. 前記配向膜材料における重合体の第一構成単位は、クマリン基、シンナメート基、カルコン基、アゾベンゼン基及びスチルベン基からなる群より選ばれる少なくとも一つの光官能基を有する側鎖を持つことを特徴とする請求項11に記載の液晶表示パネル。
  14. 前記配向膜材料における重合体の第二構成単位は、ステロイド骨格を有する側鎖を持つことを特徴とする請求項11に記載の液晶表示パネル。
  15. 前記配向膜材料における重合体の第二構成単位は、1,4-シクロヘキシレン及び1,4-フェニレンのいずれかから選ばれる3~4個の環が直接又は1,2-エチレンを介して直線状に結合された構造を有する側鎖を持つことを特徴とする請求項11に記載の液晶表示パネル。
  16. 前記配向膜材料における重合体は、ポリアミック酸、ポリイミド、ポリアミド、及び、ポリシロキサンからなる群より選ばれる少なくとも一つの主鎖構造を有することを特徴とする請求項11に記載の液晶表示パネル。
  17. 前記配向膜材料における重合体の必須構成単位は、ジアミンによって形成されるものであることを特徴とする請求項11に記載の液晶表示パネル。
  18. 前記配向膜材料における重合体は、ジアミンと、酸二無水物及びジカルボン酸の少なくとも一方とを含む単量体成分の共重合体であることを特徴とする請求項11に記載の液晶表示パネル。
  19. 前記配向膜材料における重合体は、第一構成単位の単量体成分及び第二構成単位の単量体成分の合計量100mol%に対する第二構成単位の単量体成分が0mol%以上、10mol%以下であることを特徴とする請求項1~18のいずれかに記載の液晶表示パネル。
  20. 前記液晶表示パネルは、一方の基板の液晶層側にマトリクス状に配置された画素電極と、他方の基板の液晶層側に配置された共通電極とを備えるマトリクス状に配置された画素を有し、
    該画素は、隣接して配置される2以上のドメインを有することを特徴とする請求項1~19のいずれかに記載の液晶表示パネル。
  21. 一対の基板間に液晶分子を含む液晶層が挟持された構成を有し、少なくとも一方の基板の液晶層側表面に光配向膜を有する液晶表示パネルであって、
    該光配向膜は、光官能基に由来する構造を有する第三構成単位を必須構成単位とする重合体を含む配向膜材料を用いて形成されたものであり、
    該重合体は、光官能基及び光官能基に由来する構造を有さず、配向性官能基を有する第四構成単位の導入比率が、該第三構成単位及び第四構成単位の合計を100mol%とすると、0mol%以上であり、
    該光配向膜は、該配向膜材料を用いて形成された膜とそれ以外の材料の膜とによって構成され、光配向膜の液晶層側表面部が該配向膜材料を用いて形成された膜が必須となって構成されたものであり、該配向膜材料及び該それ以外の材料の固形分100重量%に対する該それ以外の材料の固形分の割合を変性比率とすると、該変性比率が、第四構成単位の導入比率が0mol%以上、6mol%未満のとき、0~85重量%であり、該導入比率が6mol%以上のとき、0~90重量%である
    ことを特徴とする液晶表示パネル。
  22. 前記光配向膜は、基板層側を構成する重合体が水平配向膜の重合体であり、液晶層側を構成する重合体が垂直配向膜の重合体である
    ことを特徴とする請求項1~21のいずれかに記載の液晶表示パネル。
  23. 前記第二構成単位の導入比率は、4mol%を超えるものである
    ことを特徴とする請求項1~20のいずれかに記載の液晶表示パネル。
  24. 前記液晶表示パネルは、一対の基板の液晶層側表面にそれぞれ導入比率及び変性比率が同じ光配向膜を有する
    ことを特徴とする請求項1~23のいずれかに記載の液晶表示パネル。
  25. 請求項1~24のいずれかに記載の液晶表示パネルを備えることを特徴とする液晶表示装置。
  26. 請求項1~24のいずれかに記載の液晶表示パネルに設けられた光配向膜を形成するための配向膜材料に含まれる第一構成単位を必須構成単位とする重合体、又は、第三構成単位を必須構成単位とする重合体を含むことを特徴とする配向膜材料用重合体。
PCT/JP2011/068936 2010-08-30 2011-08-23 液晶表示パネル、液晶表示装置及び配向膜材料用重合体 WO2012029589A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180042140.XA CN103097948B (zh) 2010-08-30 2011-08-23 液晶显示面板、液晶显示装置和取向膜材料用聚合物
US13/819,820 US20130162920A1 (en) 2010-08-30 2011-08-23 Liquid crystal display panel, liquid crystal display device, and polymer for alignment film material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-192955 2010-08-30
JP2010192955 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012029589A1 true WO2012029589A1 (ja) 2012-03-08

Family

ID=45772684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068936 WO2012029589A1 (ja) 2010-08-30 2011-08-23 液晶表示パネル、液晶表示装置及び配向膜材料用重合体

Country Status (3)

Country Link
US (1) US20130162920A1 (ja)
CN (1) CN103097948B (ja)
WO (1) WO2012029589A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079634B2 (en) 2016-02-24 2021-08-03 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305342B2 (en) * 2013-12-20 2016-04-05 Shenzhen China Star Optoelectronics Technology Co., Ltd Method for acquiring a boundary line of an alignment film and method for inspecting the alignment film
CN104049414A (zh) * 2014-06-28 2014-09-17 中能柔性光电(滁州)有限公司 一种降低液晶光取向工艺温度的方法
US9810950B2 (en) * 2014-07-30 2017-11-07 Sharp Kabushiki Kaisha Method for producing liquid crystal display device with favorable voltage holding ratio reliability and reduced image sticking
US11130847B2 (en) * 2018-06-05 2021-09-28 Drexel University Externally activated shape changing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083504A1 (ja) * 2004-02-26 2005-09-09 Nissan Chemical Industries, Ltd. 光配向用液晶配向剤およびそれを用いた液晶表示素子
WO2008117615A1 (ja) * 2007-03-26 2008-10-02 Sharp Kabushiki Kaisha 液晶表示装置及び配向膜材料用重合体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69806618T2 (de) * 1997-09-25 2003-02-27 Rolic Ag Zug Photovernetzbare polyimide
KR100663661B1 (ko) * 2000-01-24 2007-01-03 롤리크 아게 측쇄 광가교결합성 그룹을 함유하는 광활성 폴리이미드, 폴리아미드 산 또는 폴리아미드 산 에스테르, 및 이를 포함하는 액정 배향층, 광학 소자 및 광학 또는 전자 광학 장치
KR100465445B1 (ko) * 2001-07-31 2005-01-13 삼성전자주식회사 액정배향막용 광배향재
JP4513950B2 (ja) * 2004-03-05 2010-07-28 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2006052317A (ja) * 2004-08-11 2006-02-23 Jsr Corp ポリアミック酸、イミド化重合体、液晶配向剤および液晶表示素子ならびにポリアミック酸またはポリイミド重合体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083504A1 (ja) * 2004-02-26 2005-09-09 Nissan Chemical Industries, Ltd. 光配向用液晶配向剤およびそれを用いた液晶表示素子
WO2008117615A1 (ja) * 2007-03-26 2008-10-02 Sharp Kabushiki Kaisha 液晶表示装置及び配向膜材料用重合体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079634B2 (en) 2016-02-24 2021-08-03 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing same

Also Published As

Publication number Publication date
US20130162920A1 (en) 2013-06-27
CN103097948A (zh) 2013-05-08
CN103097948B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP4995267B2 (ja) 液晶表示装置及び配向膜材料用重合体
JP5492516B2 (ja) 液晶表示装置
JP4653421B2 (ja) 液晶表示装置
JP4944217B2 (ja) 液晶表示装置
WO2012029591A1 (ja) 液晶表示パネル、液晶表示装置及び配向膜材料用重合体
CN102356351B (zh) 液晶显示装置和其制造方法
WO2004053582A1 (ja) 液晶表示装置およびその製造方法
KR20110103439A (ko) 액정 표시 장치 및 그 제조 방법
CN106010582B (zh) 液晶取向剂、液晶取向膜、液晶显示元件、相位差膜及其制造方法、聚合物以及二胺
JP6241058B2 (ja) 液晶表示装置
WO2015020083A1 (ja) 液晶表示装置及び液晶配向剤
WO2011155413A1 (ja) 液晶表示装置
WO2012029589A1 (ja) 液晶表示パネル、液晶表示装置及び配向膜材料用重合体
JP6314488B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
KR102025168B1 (ko) 액정 디스플레이 장치 및 그의 제조 방법
TWI633375B (zh) 液晶配向劑、液晶配向膜及其製造方法、液晶顯示元件、相位差膜及其製造方法、聚合物以及化合物
WO2012056947A1 (ja) 液晶表示パネル、液晶表示装置及び配向膜材料用重合体
TWI395769B (zh) 液晶配向劑及液晶配向膜之形成方法
CN104099106B (zh) 液晶取向剂、液晶取向膜、液晶显示元件、相位差膜及这些的制造方法
JP6897791B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP5181066B2 (ja) 配向制御膜
JP6099785B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
WO2012056936A1 (ja) 液晶表示パネル、液晶表示装置及び配向膜材料用重合体
JP3357502B2 (ja) 液晶表示素子の製造方法
JP7396177B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042140.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13819820

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11821606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP