WO2012029559A1 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
WO2012029559A1
WO2012029559A1 PCT/JP2011/068749 JP2011068749W WO2012029559A1 WO 2012029559 A1 WO2012029559 A1 WO 2012029559A1 JP 2011068749 W JP2011068749 W JP 2011068749W WO 2012029559 A1 WO2012029559 A1 WO 2012029559A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
nanoparticles
organic
conversion element
Prior art date
Application number
PCT/JP2011/068749
Other languages
French (fr)
Japanese (ja)
Inventor
晃矢子 和地
伊東 宏明
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012029559A1 publication Critical patent/WO2012029559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element, and more particularly to a bulk heterojunction type organic photoelectric conversion element.
  • the efficiency of the solar cell is expressed by the product of open circuit voltage (Voc) ⁇ short circuit current (Jsc) ⁇ fill factor (FF), and the short circuit current Jsc is the theoretical Jsc obtained when the solar spectrum is completely absorbed.
  • Voc open circuit voltage
  • Jsc short circuit current
  • FF fill factor
  • EQE external quantum efficiency
  • this external quantum efficiency is as low as 0.3 to 0.5, which hinders further improvement in efficiency.
  • the external quantum efficiency of Non-Patent Document 1 is about 0.5.
  • Non-Patent Document 2 When metal nanoparticles are provided on the photoelectric conversion layer, for example, by vapor deposition, the plasmon resonance generated on the nanoparticle surface locally enhances the photoelectric field around the nanoparticles, thereby increasing the absorption of P3HT and improving the EQE of the device. (See Non-Patent Document 2).
  • the nanoparticles created by vapor deposition are metal-only nanoparticles and are in close contact with the metal electrode with good conductivity, so the plasmons generated around the gold nanoparticles have energy on the metal electrode side with good conductivity. Due to the movement, there was a problem that plasmons did not stand around the metal nanoparticles or were weak.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a photoelectric conversion element having a high external quantum efficiency (EQE) by improving p-type semiconductor light absorption by plasmons generated around metal fine particles. There is to do.
  • EQE external quantum efficiency
  • the present inventors have found that it is useful to contain metal nanoparticles in which a thin insulating layer is coated with an organic substance in the photoelectric conversion layer in order to improve the external quantum efficiency (EQE) of the organic photoelectric conversion element. Furthermore, it has been found that precise control of the particle shape by a method specific to the chemical synthesis method can further contribute to the improvement of EQE.
  • EQE external quantum efficiency
  • any layer of the organic photoelectric conversion element contains nanoparticles whose surface is covered with an organic substance.
  • a characteristic organic photoelectric conversion element
  • the metal fine particles coated with the organic matter are arranged in the photoelectric conversion layer or in an adjacent layer to improve the p-type semiconductor light absorption amount by the plasmons generated around the metal fine particles, and the high external quantum efficiency (EQE). Can be obtained.
  • the metal electrode and the metal nanoparticles are insulated, to prevent the energy of plasmons generated around metal nanoparticles from flowing to the metal electrode side with good conductivity, to make plasmons stand around metal nanoparticles, and to contribute to the improvement of EQE (external quantum efficiency) I found out that I can do it.
  • EQE internal quantum efficiency
  • nanoparticles synthesized chemically by liquid phase synthesis it is possible to control the shape of the particles, and in particular, metal nanoparticles having angles rather than spheres such as octahedral and hexahedral. It is found that the effect of enhancing the local electric field generated as a result of the interaction between incident light and plasmons generated around metal nanoparticles is more remarkable than spherical nanoparticles, and can contribute to the improvement of EQE more. It was.
  • FIG. 1 is a cross-sectional view showing an example of a solar cell having a single configuration (a configuration having one bulk heterojunction layer) composed of a bulk heterojunction type organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion element 10 has a transparent electrode (anode) 12, a hole transport layer 17, a bulk heterojunction type photoelectric conversion layer 14, and an electron transport layer (or an electron transport layer) on one surface of a substrate 11.
  • Also referred to as a buffer layer) 18 and a counter electrode (cathode) 13 are sequentially stacked, and organic-coated metal nanoparticles 16 are contained between the layers or in the photoelectric conversion layer 14.
  • the substrate 11 is a member that holds the anode 12, the photoelectric conversion layer 14, and the cathode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
  • the substrate 11 for example, a glass substrate or a resin substrate is used.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the anode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion layer 14.
  • the photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • FIG. 1 light incident from the anode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion layer 14, and electrons move from the electron donor to the electron acceptor. A hole-electron pair (charge separation state) is formed.
  • the generated electric charge passes through the electron acceptor due to the internal electric field, for example, in the case where the work functions of the transparent electrode (anode) 12 and the counter electrode (cathode) 13 are different, the potential difference between the transparent electrode 12 and the counter electrode 13.
  • the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
  • the transport direction of electrons and holes can be controlled.
  • a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.
  • nanoparticles whose surface is covered with an organic substance are contained in any layer of an organic photoelectric conversion element such as a charge transport layer (hole transport layer 17, electron transport layer 18, etc.), photoelectric conversion layer 14, and the like.
  • an organic photoelectric conversion element such as a charge transport layer (hole transport layer 17, electron transport layer 18, etc.), photoelectric conversion layer 14, and the like.
  • the nanoparticles whose surface is coated with an organic substance are contained in the photoelectric conversion layer 14, and more preferably, the nanoparticles whose surface is coated with an organic substance are closer to the metal electrode, 14 is arranged in contact with 14.
  • Reflected light from a metal electrode can also be used in plasmon resonance. That is, when formed by coating, it is laminated adjacent to the photoelectric conversion layer, and then an electron transport layer, a buffer layer, or a metal electrode is formed on the photoelectric conversion layer in which nanoparticles are laminated. .
  • the nanoparticles are laminated adjacent to the photoelectric conversion layer, and then an electron transport layer (in particular, a buffer layer using an alkali metal compound (for example, lithium fluoride)) and a metal electrode, or a metal electrode
  • an electron transport layer in particular, a buffer layer using an alkali metal compound (for example, lithium fluoride)
  • a metal electrode or a metal electrode
  • Nanoparticles whose surfaces are coated with organic substances are thus preferably arranged on the metal electrode side of the photoelectric conversion layer, and in the case of a normal layer structure, on the cathode side made of a metal such as aluminum as described above.
  • a reverse layer structure in which the work functions of the transparent electrode (anode) 12 and the counter electrode (cathode) 13 are reversed, it is preferably disposed on the photoelectric conversion layer in contact with the anode side made of Ag or the like.
  • the nanoparticle is a conductive nanoparticle, and is preferably an inorganic nanoparticle, especially a metal nanoparticle.
  • the metal nanoparticles according to the present invention are characterized by ultrafine particles having a metal portion having a particle size of 10 nm to 100 nm, preferably about 10 nm to 50 nm, and the metal fine particles are covered with an organic layer. .
  • the characteristics of coating the particle surface with organic matter are that the particle size is easily controlled, the shape of the particles is easy to control, and the film thickness of the organic layer covering the metal nanoparticles is easy to control. It is mentioned.
  • metal nanoparticles having a high dielectric constant are preferable, and thus, noble metal nanoparticles such as gold, silver, copper, and metal nanoparticle examples are preferably used. Gold nanoparticles and silver nanoparticles are particularly preferred.
  • Nanoparticle size measurement method The average particle size of metal nanoparticles can be measured by taking an electron micrograph of a sufficient number of nanoparticles using a scanning electron microscope or a transmission electron microscope and measuring the measured values of individual nanoparticle images. It can be obtained from the arithmetic average. Note that the average particle diameter is obtained as the diameter of a circle having an area equivalent to the calculated area of the nanoparticle from an electron micrograph using an image analyzer.
  • the number of metal nanoparticles to be measured is preferably at least 100, more preferably 300 or more.
  • Nanoparticle production method Organic-coated nanoparticle synthesis methods include hot soap method, reverse micelle method, sol-gel method, and reduction method. Easily coat a few nanometers of organic material around metal nanoparticles. Therefore, the reduction method is preferable.
  • the chemical reduction method which is well known as a wet method, is a method of generating nanoparticles by reducing metal ions by adding a reducing agent to the metal ion solution or heating a metal salt solution containing the reducing agent. is there.
  • a dry method a gas evaporation method is known.
  • the gas evaporation method is a method in which a metal is evaporated in an inert gas and cooled and aggregated by collision with the gas to generate nanoparticles.
  • the organic-coated metal nanoparticles are preferably formed by a wet method, for example, in a wet method, for example, in the presence of an organic material that serves as a dispersion stabilizer or the like and can be prepared by reducing metal ions. Nanoparticles having different particle shapes, which will be described later, can also be formed by adjusting stabilizers, formation conditions, and the like.
  • the organic substance that coats the metal nanoparticles is not limited as long as it is an organic compound that can coat the metal balance surface by preparing the metal nanoparticles in the presence of the organic substance.
  • a compound is preferable, and a compound having an aliphatic group having 4 or more carbon atoms having a group having affinity for a metal surface such as a hydroxyl group, a mercapto group, a carboxylic acid, an amino group, or a quaternary ammonium group is preferable. Also good.
  • aliphatic carboxylic acids such as citric acid, lauric acid and stearic acid
  • alkane thiols such as dodecanethiol
  • alkyl-substituted quaternary ammonium salt compounds such as CTAB (Cetyltrimethylammonium Bromide)
  • CTAB Cetyltrimethylammonium Bromide
  • alkylamine An organic compound having a group having an affinity for the surface, or a compound in which these form a polymer may be used. Examples thereof include polymers such as (poly (diallydimethylammonium chloride)).
  • the enhancement of the photoelectric field in the near field of the metal nanoparticles is caused by a vibration mode called surface plasmon on the very surface of the metal, which is caused by interaction with light.
  • the enhancement of the photoelectric field by this interaction is about 15 nm. It is known to show the spread, and this effect can be obtained if nanoparticles are contained in the vicinity of the photoelectric conversion layer.
  • the nanoparticles may be laminated adjacent to the photoelectric conversion layer, or may be contained in the photoelectric conversion layer.
  • the organic layer covering the metal nanoparticles is preferably 1 nm or more and less than 10 nm, and more preferably 1 nm or more and 5 nm or less.
  • the organic layer includes a layer from the level at which the monomolecular layer is adsorbed on the surface of the metal nanoparticle to a layer on which the organic material is deposited and deposited.
  • the nanoparticle has a thickness of 1 nm or more as the organic layer. It is preferable that sufficient insulation can be secured.
  • the thickness of the organic substance is preferably less than 10 nm, more preferably 5 nm or less.
  • the thickness of the organic layer is not direct, a nanoparticle dispersion solution dropped on a carbon grid and dried is observed with a transmission electron microscope (TEM). Furthermore, the thickness of the organic layer can be calculated.
  • the darker (darker) part of the contrast is thought to be the metal core part and the surrounding area is covered with organic matter, but it can be observed from the difference in contrast of the organic matter, but clearly In this case, half of the distance between the metal cores can be calculated as the thickness of the organic coating layer. Since the nanoparticles behave as if the organic layer has the thickness, in the present invention, the thickness measured by this method is defined as the thickness of the organic coating layer.
  • the metal nanoparticles are said to be an insulator when the specific resistance (resistivity) of the metal nanoparticles covering the organic matter covering the metal nanoparticles according to the present invention is 10 8 ⁇ cm or more.
  • the specific resistance value of the metal nanoparticles was measured by the following method.
  • this sample is prepared using a superinsulator (R-503, manufactured by Kawaguchi Electric Co., Ltd.). Used to measure surface resistivity (23 ° C., 50% RH).
  • the shape of the metal nanoparticles can be created by known methods such as spherical, elliptical, rod-shaped, flat plate-shaped, octahedral, cubic, rectangular parallelepiped, prism-shaped, etc., and any particle can induce plasmon. It can be used, but rather than a sphere, a polyhedron, such as an octahedron, a cube, or a cuboid shaped particle, has a higher local electric field when plasmon and incident light interact. Since the effect is great, it is preferable for improving the external quantum efficiency (EQE).
  • EQE external quantum efficiency
  • Nanoparticle shape control method As for the shape of the particles, various nanoparticles having a spherical shape or a corner shape can be prepared by the methods described in the above-mentioned documents.
  • a chloroauric acid solution is adsorbed on the gold surface as seed particles of gold nanoparticles.
  • Gold nanoparticles with different shapes can be obtained by adjusting the addition rate and the like in an atmosphere in which the concentration and pH of the solution are adjusted in the presence of an organic compound having affinity (affinity) .
  • CAB cetyltrimethylammonium bromide
  • particles such as cubes can be obtained, and a gold surface such as citric acid can be obtained.
  • a compound having a different adsorptivity to is used, spherical particles are obtained.
  • nanoparticles having another shape such as an octahedron can be obtained by adjusting the kind and amount of the organic compound adsorbed on the seed particles, the pH, the addition rate of the additive liquid, and the like.
  • Metal nanoparticle insertion method As a method for incorporating the organic-coated gold nanoparticles in any layer of the organic photoelectric conversion element, it is preferable to apply the organic-coated nanoparticles dispersed in a solution to any location of each layer of the organic photoelectric conversion element.
  • Examples of the coating method include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating.
  • the organic-coated metal nanoparticles may be contained in an arbitrary layer, and in that case, the type of the organic-coated metal nanoparticles can be changed in accordance with the solvent of the contained layer.
  • the organic-coated metal nanoparticles may be contained in the photoelectric conversion layer or in a layer adjacent to the photoelectric conversion layer, but inserted between the layers adjacent to the photoelectric conversion layer. It is preferable to arrange
  • the photoelectric conversion layer contains a p-type semiconductor material that transports holes and an n-type semiconductor material that transports electrons. In order to efficiently perform charge separation of excitons generated by light absorption, it is fundamental to have a two-layer structure of these p-type semiconductor material and n-type semiconductor material. Furthermore, in the present invention, it is preferable in terms of photoelectric conversion efficiency to form a bulk heterojunction structure in which the p-type semiconductor material and the n-type semiconductor material are mixed in one layer of the photoelectric conversion layer.
  • a configuration in which a photoelectric conversion layer having a bulk heterojunction structure is sandwiched between layers composed of a p-type semiconductor material and a single n-type semiconductor material (also referred to as a pin configuration) may be used.
  • a normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed, but is sandwiched between a p-layer made of a single p-type semiconductor material and an n-layer made of a single n-type semiconductor material.
  • the material forming the pin structure is used as a layer that clearly functions as a part of the photoelectric conversion layer.
  • Examples of the p-type semiconductor material used for the bulk heterojunction layer of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, circobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene ( BEDTTTTF) -perchloric acid complexes, and derivatives and precursors thereof.
  • TTF
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and its oligomer, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, polythiophene-thienothiophene copolymer, WO2008 / 000664, polythiophene-diketopyrrolopyrrole copolymer, Adv Mater, polythiophene-thiazolothiazole copolymer described in 2007p4160, APPLIED PHYSICS LETTERS vol. 92, p033307 (2008). AM.
  • P3HT poly-3-hexylthiophene
  • the present invention is a low band gap polymer having absorption up to a wavelength longer than 650 nm, Adv. Mater. , Vol. 19 (2007) p2295, polythiophene-carbazole-benzothiadiazole copolymer (PCDTBT), Nature Mat. vol. 6 (2007), p497, a polythiophene copolymer such as PCPDTBT is preferable.
  • the n-type semiconductor material used for the bulk heterojunction layer of the present invention is not particularly limited.
  • fullerene, octaazaporphyrin and the like, p-type semiconductor perfluoro products (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetra examples thereof include aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, perylene tetracarboxylic acid anhydrides, and perylene tetracarboxylic acid diimides, and polymer compounds containing the imidized product thereof as a skeleton.
  • fullerene derivatives that can be expected to have high charge separation ability (up to 50 fs high-speed electron injection) particularly in interaction with p-type semiconductor materials are most preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donating pair are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where the hole and electron are separated from each other and to create an element having high photoelectric conversion efficiency.
  • the coating method is also excellent in production speed.
  • the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • the photoelectric conversion part (bulk heterojunction layer) 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but a plurality of the mixture ratios of the electron acceptor and the electron donor are changed. It may consist of layers.
  • the organic photoelectric conversion element positive and negative charges generated in the bulk heterojunction layer are taken out from the transparent electrode and the counter electrode via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, and function as a battery. To do.
  • Each electrode is required to have characteristics suitable for carriers passing through the electrode.
  • the counter electrode is preferably an electrode for taking out electrons.
  • the conductive material may be a single layer, but in addition to a conductive material, a resin that holds these may be used in combination.
  • the counter electrode material is required to have sufficient conductivity, a work function close to the extent that no Schottky barrier is formed when bonded to the n-type semiconductor material, and no deterioration. That is, it is preferably a metal having a work function 0 to 0, 3 eV deeper than the LUMO of the n-type semiconductor material used for the bulk heterojunction layer, and the preferred LUMO of the n-type semiconductor material used for the second bulk heterojunction layer of the present invention. Since the level is ⁇ 4.3 to ⁇ 4.6 eV, the work function is preferably ⁇ 4.3 to ⁇ 4.9 eV.
  • the work function is deeper than that of the transparent electrode (anode) for extracting holes, and a metal having a work function shallower than that of the n-type semiconductor material may cause interlayer resistance.
  • a metal having a work function of ⁇ 4.8 eV is preferable. Therefore, aluminum, gold, silver, copper, indium, or oxide materials such as zinc oxide, ITO, and titanium oxide are also preferable. More preferably, they are aluminum, silver, and copper, More preferably, it is silver.
  • the work function of these metals can be similarly measured using ultraviolet photoelectron spectroscopy (UPS).
  • UPS ultraviolet photoelectron spectroscopy
  • An alloy may be used if necessary.
  • a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and aluminum are preferable. It is.
  • the counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the counter electrode side is made light transmissive
  • a conductive material suitable for the counter electrode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the conductive light
  • a film of a transmissive material By providing a film of a transmissive material, a light transmissive counter electrode can be obtained.
  • the transparent electrode is preferably an electrode for extracting holes.
  • the transparent electrode when used as an anode, it is preferably an electrode that transmits light of 380 to 800 nm.
  • materials that can be used include transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , and ZnO, metal thin films such as gold, silver, and platinum, metal nanowires, and carbon nanotubes.
  • Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.
  • the intermediate electrode material required in the case of the tandem structure is preferably a layer using a compound having both transparency and conductivity, and the materials (ITO, AZO, FTO, etc.) used in the transparent electrode , Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc.) Can do.
  • Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc.
  • hole transport layer and electron transport layer that work as an intermediate electrode (charge recombination layer) by stacking them in an appropriate combination. With such a configuration, the step of forming one layer is omitted. Is preferable.
  • a hole transport layer is provided between the bulk heterojunction layer and the transparent electrode, and charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have.
  • a hole transport layer manufactured by Stark Vitec, PEDOT such as trade name BaytronP, polyaniline and a doping material thereof, a cyanide compound described in WO2006 / 019270, etc., Etc.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the transparent electrode side.
  • the electronic block function is provided.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • octaazaporphyrin a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
  • a p-type semiconductor material used for a bulk heterojunction layer is used.
  • the electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the counter electrode side.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • n-type inorganic oxide such as zinc oxide or gallium oxide, a layer made of a single n-type semiconductor material used for the bulk heterojunction layer, or the like can also be used.
  • alkali metal compounds such as lithium fluoride, sodium fluoride, cesium fluoride, and the like can be used.
  • an alkali metal compound that has a function of further doping an organic semiconductor molecule and improving electrical junction with the metal electrode (cathode).
  • an alkali metal compound layer it may be called a buffer layer.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • a transparent resin film from the viewpoint of light weight and flexibility.
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin films vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like.
  • the resin film transmittance of 80% or more at 0 ⁇ 800 nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate for the purpose of suppressing the permeation of oxygen and water vapor.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter the light reflected by the counter electrode and enter the bulk heterojunction layer again can be provided. Good.
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • Gold nanoparticle synthesis method Synthesis of spherical gold nanoparticles A-1 and A-2) J. et al. Am. Chem. Soc. With reference to 2007, 129, 13939-13948, spherical gold nanoparticles having a citric acid particle size of 30 nm and 70 nm in the coating layer (coating layer thickness: 1 nm) were synthesized. The pH of the mother liquor at the time of preparation was changed to synthesize cubic gold nanoparticles having a particle size of 20 nm and 40 nm, respectively. Gold nanoparticles A-1 (30 nm) and A-2 (70 nm) were dispersed in an equivalent amount of isopropanol with respect to the aqueous solution of the synthesized gold nanoparticles.
  • resistivity of A-1 and A-2 was 10 8 ⁇ cm or more as a result of measurement by the above method.
  • the thicknesses of the coating layers for A-3 and A-4 were both 1.3 nm and the resistivity was 10 8 ⁇ cm or more.
  • the resistivity of A-5 was 10 8 ⁇ cm or more.
  • octahedral gold nanoparticles with a particle size of 30 nm and 50 nm were synthesized using a polymer (poly (dimethyldimethylammonium chloride)) as a coating layer (coating layer thickness; 2.0 nm), respectively.
  • the synthesized gold nanoparticles were centrifuged and the precipitate was dispersed in isopropanol to obtain gold nanoparticles A-6 and A-7.
  • the resistivity of A-6 and A-7 were both 10 8 ⁇ cm or more.
  • Comparative Example 1 A first indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 150 nm (sheet resistance 10 ⁇ / ⁇ ) is patterned to a width of 2 mm using a normal photolithography technique and wet etching. An electrode was formed.
  • ITO indium tin oxide
  • the patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was applied and dried to a film thickness of 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. .
  • the substrate was brought into a nitrogen chamber and created in a nitrogen atmosphere.
  • the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere.
  • 3.0% by mass of chlorobenzene with P3HT manufactured by Prectronics: regioregular poly-3-hexylthiophene
  • PCBM manufactured by Frontier Carbon: [6,6] -phenyl C61-butyric acid methyl ester
  • a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm while being filtered through a filter, and was left to dry at room temperature.
  • heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.
  • the substrate on which a series of functional layers has been formed is moved into a vacuum deposition apparatus chamber, the pressure inside the vacuum deposition apparatus is reduced to 1 ⁇ 10 ⁇ 4 Pa or less, and then lithium fluoride is reduced to 0 at a deposition rate of 0.01 nm / second.
  • the second metal layer is formed by laminating 100 nm of Al metal at a deposition rate of 0.2 nm / sec through a 2 mm width shadow mask (deposited perpendicularly so that the light receiving portion is 2 ⁇ 2 mm).
  • An electrode was formed.
  • the obtained organic photoelectric conversion element SC-101 was moved to a nitrogen chamber and sealed with a sealing cap and a UV curable resin, so that the light receiving part had an organic photoelectric conversion element SC-101 of 2 ⁇ 2 mm size. Created.
  • Ester was mixed at a ratio of 1: 0.8 so as to be 3.0% by mass, and 30 ⁇ l of gold nanoparticle solution A-5 was added at a concentration of 0.6 mmol / ml and dissolved, and the solution was filtered through a membrane The coating was performed so that the thickness was 100 nm, and the film was left to dry at room temperature. Subsequently, the organic photoelectric conversion according to the present invention was performed in the same manner as the photoelectric conversion element SC-101 except that a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer and no Ag nanoparticles were applied and laminated. Element SC-107 was produced.
  • Example 7 ⁇ Preparation of Organic Photoelectric Conversion Device SC-109: Present Invention (Example 7)> The organic photoelectric conversion element SC-103 was prepared except that the gold nanoparticle solution A-1 applied on the photoelectric conversion layer was changed to a 1: 1 mixture of A-6 and A-7 in the preparation of the organic photoelectric conversion element SC-103. In the same manner as in Example 103, an organic photoelectric conversion element SC-109 according to the present invention was produced.

Abstract

Disclosed is an organic photoelectric conversion element having a high external quantum efficiency (EQE) and increased p-type semiconductor light absorption due to plasmons generated around metallic microparticles. The disclosed organic photoelectric conversion element has a charge transport layer and a photoelectric conversion layer between a transparent electrode and a counter electrode, wherein either of the layers of the aforementioned organic photoelectric conversion element contains nanoparticles coated on the surface with organic matter.

Description

有機光電変換素子Organic photoelectric conversion element
 本発明は、有機光電変換素子に関し、さらに詳しくは、バルクヘテロジャンクション型の有機光電変換素子に関する。 The present invention relates to an organic photoelectric conversion element, and more particularly to a bulk heterojunction type organic photoelectric conversion element.
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS等の化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。 Due to the recent rise in fossil energy, there is a demand for a system that can generate power directly from natural energy. Solar cells using single-crystal / polycrystalline / amorphous Si, compound-based solar cells such as GaAs and CIGS, or Dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put into practical use.
 しかしながら、これらの太陽電池で発電するコストは未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。 However, the cost of generating electricity with these solar cells is still higher than the price of electricity generated and transmitted using fossil fuels, which has hindered widespread use. In addition, since heavy glass must be used for the substrate, reinforcement work is required at the time of installation, which is one of the causes that increase the power generation cost.
 この様な状況に対し、化石燃料による発電コストよりも低コストな発電コストを達成しうる太陽電池として、陽極と陰極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合されたバルクヘテロジャンクション層を挟んだバルクヘテロジャンクション型光電変換素子が提案されている(例えば、非特許文献1、特許文献1参照)。 For such a situation, as a solar cell that can achieve a power generation cost lower than that of fossil fuel, an electron donor layer (p-type semiconductor layer) and an electron acceptor layer ( There has been proposed a bulk heterojunction photoelectric conversion element sandwiching a bulk heterojunction layer mixed with an n-type semiconductor layer (see, for example, Non-Patent Document 1 and Patent Document 1).
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電出来るシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS等の化合物系の太陽電池、或いは色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。 Due to the recent rise in fossil energy, a system capable of generating electric power directly from natural energy has been demanded. Solar cells using single-crystal / polycrystalline / amorphous Si, compound-based solar cells such as GaAs and CIGS, or Dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put into practical use.
 太陽電池の効率は、開放電圧(Voc)×短絡電流(Jsc)×曲線因子(FF)の積で表されるが、短絡電流Jscは太陽光スペクトルを完全に吸収した場合に得られる理論Jscと外部量子効率(EQE)との積であるが、この外部量子効率が0.3~0.5と低く、いっそうの効率向上を阻んでいた。たとえば前記非特許文献1の外部量子効率は0.5程度である。 The efficiency of the solar cell is expressed by the product of open circuit voltage (Voc) × short circuit current (Jsc) × fill factor (FF), and the short circuit current Jsc is the theoretical Jsc obtained when the solar spectrum is completely absorbed. Although it is a product of external quantum efficiency (EQE), this external quantum efficiency is as low as 0.3 to 0.5, which hinders further improvement in efficiency. For example, the external quantum efficiency of Non-Patent Document 1 is about 0.5.
 光電変換層上に金属ナノ粒子を、例えば蒸着によって設けると、ナノ粒子表面に発生するプラズモン共鳴によりナノ粒子の周りの光電場が局所的に増強、それによりP3HTの吸収が増えデバイスのEQEが向上する(非特許文献2参照)。 When metal nanoparticles are provided on the photoelectric conversion layer, for example, by vapor deposition, the plasmon resonance generated on the nanoparticle surface locally enhances the photoelectric field around the nanoparticles, thereby increasing the absorption of P3HT and improving the EQE of the device. (See Non-Patent Document 2).
 しかし、蒸着により作成されたナノ粒子は金属のみのナノ粒子であり、導電性のよい金属電極と密接に接しているため金ナノ粒子の周りに発生したプラズモンが導電性のよい金属電極側にエネルギー移動するため、金属ナノ粒子の周りにプラズモンが立たないもしくは弱いといった問題があった。 However, the nanoparticles created by vapor deposition are metal-only nanoparticles and are in close contact with the metal electrode with good conductivity, so the plasmons generated around the gold nanoparticles have energy on the metal electrode side with good conductivity. Due to the movement, there was a problem that plasmons did not stand around the metal nanoparticles or were weak.
 また、絶縁体として酸化物を被覆した金属ナノ粒子をタンデム素子の再結合層として用いている技術が報告されている(特許文献2参照)。 Also, a technique using metal nanoparticles coated with an oxide as an insulator as a recombination layer of a tandem element has been reported (see Patent Document 2).
 この報告では、絶縁層として酸化物が用いられており、その他の絶縁体に関しての記載は一切なく、また粒子の形状に関しては球状と楕円状にとどまるのみで詳細な記述はなかった。鋭意検討の結果でも、酸化物が絶縁層として被覆された金属ナノ粒子は絶縁層(酸化物層)の膜厚を5nm以下に精密に制御することは難しく、金属ナノ粒子表面に発生するプラズモンの効果を充分に生かすことはできなかった。 In this report, an oxide is used as the insulating layer, and there is no description about other insulators, and the shape of the particles is only spherical and elliptical, and there is no detailed description. Even as a result of intensive studies, it is difficult to precisely control the thickness of the insulating layer (oxide layer) to 5 nm or less for metal nanoparticles coated with an oxide as an insulating layer. The effect could not be fully utilized.
 いずれにしても、上記の構成においては、入射光と金属ナノ粒子の周りに発生するプラズモンとの相互作用の結果生じる局所電場の増強の効果が充分でなく、有機光電変換素子のEQE向上の効果が今ひとつであった。 In any case, in the above configuration, the effect of enhancing the local electric field resulting from the interaction between the incident light and the plasmon generated around the metal nanoparticles is not sufficient, and the effect of improving the EQE of the organic photoelectric conversion element. Was one more thing.
国際公開第2008/066933号パンフレットInternational Publication No. 2008/066933 Pamphlet 特表2008-510305公報Special table 2008-510305
 本発明は、上記課題に鑑みなされたものであり、その目的は金属微粒子の周りに発生するプラズモンによりp型半導体光吸収量を向上させ、高い外部量子効率(EQE)を有する光電変換素子を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a photoelectric conversion element having a high external quantum efficiency (EQE) by improving p-type semiconductor light absorption by plasmons generated around metal fine particles. There is to do.
 本発明者らは、有機光電変換素子の外部量子効率(EQE)向上のため、有機物により薄い絶縁層を被覆した金属ナノ粒子を光電変換層中に含有させることが有用であることを見出した。さらに、化学的合成法に特有の方法で粒子の形状を精密に制御することにより、より一層EQEの向上に寄与できることを見出した。 The present inventors have found that it is useful to contain metal nanoparticles in which a thin insulating layer is coated with an organic substance in the photoelectric conversion layer in order to improve the external quantum efficiency (EQE) of the organic photoelectric conversion element. Furthermore, it has been found that precise control of the particle shape by a method specific to the chemical synthesis method can further contribute to the improvement of EQE.
 本発明の上記課題は具体的には以下の手段により達成される。 The above-mentioned problem of the present invention is specifically achieved by the following means.
 1.透明電極と対極の間に電荷輸送層および光電変換層を有する有機光電変換素子において、前記有機光電変換素子のいずれかの層に、有機物で表面を被覆されたナノ粒子が含有されていることを特徴とする有機光電変換素子。 1. In an organic photoelectric conversion element having a charge transport layer and a photoelectric conversion layer between a transparent electrode and a counter electrode, any layer of the organic photoelectric conversion element contains nanoparticles whose surface is covered with an organic substance. A characteristic organic photoelectric conversion element.
 2.前記ナノ粒子が無機ナノ粒子であることを特徴とする前記1に記載の有機光電変換素子。 2. 2. The organic photoelectric conversion element as described in 1 above, wherein the nanoparticles are inorganic nanoparticles.
 3.前記ナノ粒子が金属ナノ粒子であることを特徴とする前記1または2に記載の有機光電変換素子。 3. 3. The organic photoelectric conversion element as described in 1 or 2 above, wherein the nanoparticles are metal nanoparticles.
 4.前記有機物で表面を被覆されたナノ粒子が絶縁体であることを特徴とする前記1~3のいずれか1項に記載の有機光電変換素子。 4. 4. The organic photoelectric conversion element as described in any one of 1 to 3 above, wherein the nanoparticles whose surface is coated with an organic substance is an insulator.
 5.前記有機物で被覆されたナノ粒子が、光電変換層に接して配置されていることを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。 5. 5. The organic photoelectric conversion device according to any one of 1 to 4, wherein the nanoparticles covered with the organic substance are disposed in contact with the photoelectric conversion layer.
 6.前記有機物で被覆されたナノ粒子において、該ナノ粒子の平均粒径が、10~100nmであることを特徴とする前記1~5のいずれか1項に記載の有機光電変換素子。 6. 6. The organic photoelectric conversion device according to any one of 1 to 5, wherein the nanoparticles coated with the organic substance have an average particle size of 10 to 100 nm.
 7.前記有機物で被覆されたナノ粒子の形状が、多面体から選ばれる少なくとも一つであることを特徴とする前記1~6のいずれか1項に記載の有機光電変換素子。 7. 7. The organic photoelectric conversion device according to any one of 1 to 6, wherein the shape of the nanoparticles coated with the organic material is at least one selected from polyhedrons.
 8.前記有機物で被覆されたナノ粒子が、塗布法により、光電変換層に接して配置されることを特徴とする前記1~7のいずれか1項に記載の有機光電変換素子。 8. 8. The organic photoelectric conversion element as described in any one of 1 to 7 above, wherein the nanoparticles coated with the organic substance are disposed in contact with the photoelectric conversion layer by a coating method.
 本発明により、有機物で被覆された金属微粒子を光電変換層中また隣接層に配置することで金属微粒子の周りに発生するプラズモンによりp型半導体光吸収量を向上させ、高い外部量子効率(EQE)を有する光電変換素子を得ることができる。 According to the present invention, the metal fine particles coated with the organic matter are arranged in the photoelectric conversion layer or in an adjacent layer to improve the p-type semiconductor light absorption amount by the plasmons generated around the metal fine particles, and the high external quantum efficiency (EQE). Can be obtained.
バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which consists of a bulk hetero junction type organic photoelectric conversion element.
 本発明では、例えば光電変換層上に金属ナノ粒子を設けた光電変換素子において、有機物の絶縁体をシェルに有する金属ナノ粒子を用いることにより、金属電極と金属ナノ粒子が絶縁されているため、金属ナノ粒子の周りに発生したプラズモンのエネルギーが導電性のよい金属電極側に流れることを防ぎ、確実に金属ナノ粒子の周りにプラズモンを立たせ、EQE(外部量子効率)の向上に寄与させることができることを見出した。 In the present invention, for example, in a photoelectric conversion element in which metal nanoparticles are provided on a photoelectric conversion layer, by using metal nanoparticles having an organic insulator in a shell, the metal electrode and the metal nanoparticles are insulated, To prevent the energy of plasmons generated around metal nanoparticles from flowing to the metal electrode side with good conductivity, to make plasmons stand around metal nanoparticles, and to contribute to the improvement of EQE (external quantum efficiency) I found out that I can do it.
 また、液相合成により化学的に合成されたナノ粒子を用いることにより、粒子の形状をコントロールすることが可能で、特に八面体ナノ粒子や六面体のような球状よりも角を有する金属ナノ粒子の方が球状のナノ粒子よりも入射光と金属ナノ粒子の周りに発生するプラズモンとの相互作用の結果生じる局所電場の増強の効果が顕著であり、よりEQEの向上に寄与させることができることを見出した。 In addition, by using nanoparticles synthesized chemically by liquid phase synthesis, it is possible to control the shape of the particles, and in particular, metal nanoparticles having angles rather than spheres such as octahedral and hexahedral. It is found that the effect of enhancing the local electric field generated as a result of the interaction between incident light and plasmons generated around metal nanoparticles is more remarkable than spherical nanoparticles, and can contribute to the improvement of EQE more. It was.
 以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 (有機光電変換素子及び太陽電池の構成)
 図1は、バルクヘテロジャンクション型の有機光電変換素子からなるシングル構成(バルクヘテロジャンクション層が1層の構成)の太陽電池の一例を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極(陽極)12、正孔輸送層17、バルクヘテロジャンクション型の光電変換層14、電子輸送層(またはバッファ層ともいう)18及び対極(陰極)13が順次積層されており、層の間もしくは光電変換層14中に有機物被覆金属ナノ粒子16が含有されていることを特徴としている。
(Configuration of organic photoelectric conversion element and solar cell)
FIG. 1 is a cross-sectional view showing an example of a solar cell having a single configuration (a configuration having one bulk heterojunction layer) composed of a bulk heterojunction type organic photoelectric conversion element. In FIG. 1, a bulk heterojunction type organic photoelectric conversion element 10 has a transparent electrode (anode) 12, a hole transport layer 17, a bulk heterojunction type photoelectric conversion layer 14, and an electron transport layer (or an electron transport layer) on one surface of a substrate 11. (Also referred to as a buffer layer) 18 and a counter electrode (cathode) 13 are sequentially stacked, and organic-coated metal nanoparticles 16 are contained between the layers or in the photoelectric conversion layer 14.
 基板11は、順次積層された陽極12、光電変換層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11には、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、光電変換層14の両面に陽極12及び対極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。 The substrate 11 is a member that holds the anode 12, the photoelectric conversion layer 14, and the cathode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member. For the substrate 11, for example, a glass substrate or a resin substrate is used. The substrate 11 is not essential. For example, the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the anode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion layer 14.
 光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 The photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 図1において、基板11を介して陽極12から入射された光は、光電変換層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極(陽極)12と対極(陰極)13の仕事関数が異なる場合では透明電極12と対極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、透明電極12の仕事関数が対極13の仕事関数よりも大きい場合では、電子は透明電極12へ、正孔は対極13へ輸送される。なお、仕事関数の大小が逆転すれば、電子と正孔はこれとは逆方向に輸送される。また、透明電極12と対極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。 In FIG. 1, light incident from the anode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion layer 14, and electrons move from the electron donor to the electron acceptor. A hole-electron pair (charge separation state) is formed. The generated electric charge passes through the electron acceptor due to the internal electric field, for example, in the case where the work functions of the transparent electrode (anode) 12 and the counter electrode (cathode) 13 are different, the potential difference between the transparent electrode 12 and the counter electrode 13. The holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected. For example, when the work function of the transparent electrode 12 is larger than the work function of the counter electrode 13, electrons are transported to the transparent electrode 12 and holes are transported to the counter electrode 13. If the work function is reversed, electrons and holes are transported in the opposite direction. In addition, by applying a potential between the transparent electrode 12 and the counter electrode 13, the transport direction of electrons and holes can be controlled.
 なお図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。 Although not shown in FIG. 1, other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.
 本発明においては、電荷輸送層(正孔輸送層17、電子輸送層18等)、光電変換層14等有機光電変換素子のいずれかの層に有機物で表面を被覆されたナノ粒子が含有されるものである。中でも、有機物で表面を被覆されたナノ粒子が光電変換層14に含有されていることが好ましく、さらに好ましいのは、有機物で表面を被覆されたナノ粒子が金属電極に近い側に、光電変換層14に接して配置される場合である。プラズモン共鳴において金属電極からの反射光も利用できる。即ち、塗布により形成する場合には、光電変換層に隣接して積層され、その後、電子輸送層、バッファ層が、或いは金属電極が、ナノ粒子が積層配置された光電変換層上に形成される。 In the present invention, nanoparticles whose surface is covered with an organic substance are contained in any layer of an organic photoelectric conversion element such as a charge transport layer (hole transport layer 17, electron transport layer 18, etc.), photoelectric conversion layer 14, and the like. Is. Among them, it is preferable that the nanoparticles whose surface is coated with an organic substance are contained in the photoelectric conversion layer 14, and more preferably, the nanoparticles whose surface is coated with an organic substance are closer to the metal electrode, 14 is arranged in contact with 14. Reflected light from a metal electrode can also be used in plasmon resonance. That is, when formed by coating, it is laminated adjacent to the photoelectric conversion layer, and then an electron transport layer, a buffer layer, or a metal electrode is formed on the photoelectric conversion layer in which nanoparticles are laminated. .
 より好ましいのは、ナノ粒子は光電変換層に隣接して積層され、その後、電子輸送層(中でも、アルカリ金属化合物(例えばフッ化リチウム)を用いたバッファ層)及び金属電極が、或いは金属電極が、ナノ粒子が積層された光電変換層上に、積層形成される場合である。 More preferably, the nanoparticles are laminated adjacent to the photoelectric conversion layer, and then an electron transport layer (in particular, a buffer layer using an alkali metal compound (for example, lithium fluoride)) and a metal electrode, or a metal electrode This is a case where a nanoparticle is laminated on a photoelectric conversion layer.
 有機物で表面を被覆されたナノ粒子は、このように、光電変換層の金属電極側に配置されるのが好ましく、順層構成の場合には上記のようにアルミニウム等の金属からなる陰極側に、また透明電極(陽極)12と対極(陰極)13の仕事関数が逆転した逆層構成の場合には例えばAg等からなる陽極側に接して光電変換層上に配置されるのが好ましい。 Nanoparticles whose surfaces are coated with organic substances are thus preferably arranged on the metal electrode side of the photoelectric conversion layer, and in the case of a normal layer structure, on the cathode side made of a metal such as aluminum as described above. In addition, in the case of a reverse layer structure in which the work functions of the transparent electrode (anode) 12 and the counter electrode (cathode) 13 are reversed, it is preferably disposed on the photoelectric conversion layer in contact with the anode side made of Ag or the like.
 以下、これらの層に用いることができる材料について説明する。 Hereinafter, materials that can be used for these layers will be described.
 (金属ナノ粒子)
 本発明においてナノ粒子とは、導電性のナノ粒子であり、無機ナノ粒子、中でも金属ナノ粒子であることが好ましい。本発明に係る金属ナノ粒子とは、金属部分の粒径が10nm~100nm、好ましくは10nm~50nm程度の超微粒子で、さらに金属微粒子の周りが有機物の層で被覆されていることが特徴である。
(Metal nanoparticles)
In the present invention, the nanoparticle is a conductive nanoparticle, and is preferably an inorganic nanoparticle, especially a metal nanoparticle. The metal nanoparticles according to the present invention are characterized by ultrafine particles having a metal portion having a particle size of 10 nm to 100 nm, preferably about 10 nm to 50 nm, and the metal fine particles are covered with an organic layer. .
 有機物で粒子表面を被覆することの特徴としては、粒径の制御が容易なことと、粒子の形の制御が容易なこと、金属ナノ粒子を被覆する有機層の膜厚を制御するのが容易というのが挙げられる。プラズモンをより強く誘起するには誘電率の高い金属ナノ粒子であることが好ましいことから、金、銀、銅などの貴金属ナノ粒子、金属ナノ粒子例が好ましく用いられるが、合成法の容易さから金ナノ粒子、銀ナノ粒子が特に好ましい。 The characteristics of coating the particle surface with organic matter are that the particle size is easily controlled, the shape of the particles is easy to control, and the film thickness of the organic layer covering the metal nanoparticles is easy to control. It is mentioned. In order to induce plasmon more strongly, metal nanoparticles having a high dielectric constant are preferable, and thus, noble metal nanoparticles such as gold, silver, copper, and metal nanoparticle examples are preferably used. Gold nanoparticles and silver nanoparticles are particularly preferred.
 ナノ粒子粒径測定法
 金属ナノ粒子の平均粒径は、走査型電子顕微鏡や透過型電子顕微鏡を用いて充分な数のナノ粒子について電子顕微鏡写真を撮影し、個々のナノ粒子像の計測値の算術平均から求めることができる。尚、平均粒径は、電子顕微鏡写真から画像解析装置を用いてナノ粒子の投影面積を算出し、その値と等価な面積を有する円の直径として求めるものとする。計測対象の金属ナノ粒子は、少なくとも100個以上が好ましく、300個以上の粒子を計測するのがさらに好ましい。
Nanoparticle size measurement method The average particle size of metal nanoparticles can be measured by taking an electron micrograph of a sufficient number of nanoparticles using a scanning electron microscope or a transmission electron microscope and measuring the measured values of individual nanoparticle images. It can be obtained from the arithmetic average. Note that the average particle diameter is obtained as the diameter of a circle having an area equivalent to the calculated area of the nanoparticle from an electron micrograph using an image analyzer. The number of metal nanoparticles to be measured is preferably at least 100, more preferably 300 or more.
 ナノ粒子製造法
 有機物被覆ナノ粒子の合成法としては、ホットソープ法や逆ミセル法、ゾルゲル法、還元法があるが、金属ナノ粒子の周りに数ナノ程度の極薄い有機物の層を容易に被覆させることができることから、還元法が好ましい。
Nanoparticle production method Organic-coated nanoparticle synthesis methods include hot soap method, reverse micelle method, sol-gel method, and reduction method. Easily coat a few nanometers of organic material around metal nanoparticles. Therefore, the reduction method is preferable.
 湿式法としてよく知られている化学還元法は、金属イオン溶液に還元剤を添加するか、或いは還元剤を含む金属塩溶液を加熱することで金属イオンを還元し、ナノ粒子を生成する方法である。また、乾式法としては、ガス中蒸発法が知られている。ガス中蒸発法は、不活性ガス中で金属を蒸発させ、ガスとの衝突により冷却凝集させてナノ粒子を生成する方法である。 The chemical reduction method, which is well known as a wet method, is a method of generating nanoparticles by reducing metal ions by adding a reducing agent to the metal ion solution or heating a metal salt solution containing the reducing agent. is there. As a dry method, a gas evaporation method is known. The gas evaporation method is a method in which a metal is evaporated in an inert gas and cooled and aggregated by collision with the gas to generate nanoparticles.
 有機物被覆金属ナノ粒子は、例えば湿式法において、例えば、分散安定剤等となる有機物の存在下、これを被覆させ金属イオンを還元し調製することができるので、湿式法により形成するのが好ましい。後述の粒子形状の異なったナノ粒子の形成も、安定剤等、また形成条件等を調整することで行うことができる。 The organic-coated metal nanoparticles are preferably formed by a wet method, for example, in a wet method, for example, in the presence of an organic material that serves as a dispersion stabilizer or the like and can be prepared by reducing metal ions. Nanoparticles having different particle shapes, which will be described later, can also be formed by adjusting stabilizers, formation conditions, and the like.
 金属ナノ粒子を被覆する有機物としては、この存在下、金属ナノ粒子を調製することで、金属収支表面を被覆できる有機化合物であれば限定はないが、金属表面に親和性を有する基を持つ有機化合物が好ましく、水酸基、メルカプト基、カルボン酸、アミノ基、4級アンモニウム基等の金属表面に親和性を有する基を有する炭素原子数4以上の脂肪族基を有する化合物が好ましく、ポリマーであってもよい。 The organic substance that coats the metal nanoparticles is not limited as long as it is an organic compound that can coat the metal balance surface by preparing the metal nanoparticles in the presence of the organic substance. A compound is preferable, and a compound having an aliphatic group having 4 or more carbon atoms having a group having affinity for a metal surface such as a hydroxyl group, a mercapto group, a carboxylic acid, an amino group, or a quaternary ammonium group is preferable. Also good.
 具体的には、クエン酸、ラウリン酸、ステアリン酸等の脂肪族カルボン酸、ドデカンチオール等アルカンチオール類、CTAB(Cetyltrimethylammonium Bromide)等のアルキル置換4級アンモニウム塩化合物、また、アルキルアミン等、前記金属表面に親和性を有する基を持つ有機化合物、また、これらがポリマーを形成したものでよい。例えば、(poly(diallyldimethylammonium chloride))等のポリマーが挙げられる。 Specifically, aliphatic carboxylic acids such as citric acid, lauric acid and stearic acid, alkane thiols such as dodecanethiol, alkyl-substituted quaternary ammonium salt compounds such as CTAB (Cetyltrimethylammonium Bromide), and alkylamine An organic compound having a group having an affinity for the surface, or a compound in which these form a polymer may be used. Examples thereof include polymers such as (poly (diallydimethylammonium chloride)).
 金属ナノ粒子の近接場内の光電場増強は、金属のごく表面には表面プラズモンと呼ばれる振動モードが生じ、これは光と相互作用することにより起こるが、この相互作用による光電場の増強は15nm程度広がりを見せることが知られており、光電変換層近傍にナノ粒子を含有していればこの効果を得ることがでる。ナノ粒子は、光電変換層に隣接して積層されていてもよいし、光電変換層内に含有されていてもよい。 The enhancement of the photoelectric field in the near field of the metal nanoparticles is caused by a vibration mode called surface plasmon on the very surface of the metal, which is caused by interaction with light. The enhancement of the photoelectric field by this interaction is about 15 nm. It is known to show the spread, and this effect can be obtained if nanoparticles are contained in the vicinity of the photoelectric conversion layer. The nanoparticles may be laminated adjacent to the photoelectric conversion layer, or may be contained in the photoelectric conversion layer.
 ナノ粒子有機層の厚さ
 金属ナノ粒子の周りを被覆している有機物の層は、1nm以上10nm未満であることが好ましく、さらに1nm以上5nm以内であることが好ましい。有機物の層は、金属ナノ粒子表面に単分子層が吸着したレベルから、更にこの上に、有機物が析出・沈着したものまで含むものであるが、有機物層として1nm以上の厚みがあることが、ナノ粒子の充分な絶縁性を確保出来好ましい。
Nanoparticle Organic Layer Thickness The organic layer covering the metal nanoparticles is preferably 1 nm or more and less than 10 nm, and more preferably 1 nm or more and 5 nm or less. The organic layer includes a layer from the level at which the monomolecular layer is adsorbed on the surface of the metal nanoparticle to a layer on which the organic material is deposited and deposited. The nanoparticle has a thickness of 1 nm or more as the organic layer. It is preferable that sufficient insulation can be secured.
 他の導電性材料の影響を受けず、金属ナノ粒子の周りのプラズモンと入射光を相互作用させるためには、1nm以上の有機物を被覆していることが好ましいが、プラズモンと入射光との相互作用により起こった光電場の増強は金属ナノ粒子の周り15nm程度の範囲に及ぶことから、有機物の厚さは10nm未満が好ましく、5nm以下がより好ましい。 In order to interact the plasmon around the metal nanoparticle and the incident light without being influenced by other conductive materials, it is preferable to coat an organic substance of 1 nm or more. However, the mutual interaction between the plasmon and the incident light is preferable. Since the enhancement of the photoelectric field caused by the action extends in the range of about 15 nm around the metal nanoparticles, the thickness of the organic substance is preferably less than 10 nm, more preferably 5 nm or less.
 有機物の層の厚さは、直接的ではないが、カーボングリッド上にナノ粒子の分散溶液を滴下し乾燥させたものを透過型電子顕微鏡(TEM)で観察し、ナノ粒子の形状及び粒径、更に有機物層の厚さを算出することができる。 Although the thickness of the organic layer is not direct, a nanoparticle dispersion solution dropped on a carbon grid and dried is observed with a transmission electron microscope (TEM). Furthermore, the thickness of the organic layer can be calculated.
 透過型電子顕微鏡で観察した像では、コントラストがより黒い(濃い)部分が金属コアの部分でありその周りを有機物が覆っていると考えられるが、有機物のコントラストの違いから観察できるが、はっきりと観察できる場合は少なく、この場合は金属コア間の距離の半分を有機物の被覆層の厚みとして算出することができる。有機物の層があたかもその厚みをもつようにナノ粒子同士が挙動することから、本発明においては、この方法により測定したものを有機物被覆層の厚みとする。 In the image observed with a transmission electron microscope, the darker (darker) part of the contrast is thought to be the metal core part and the surrounding area is covered with organic matter, but it can be observed from the difference in contrast of the organic matter, but clearly In this case, half of the distance between the metal cores can be calculated as the thickness of the organic coating layer. Since the nanoparticles behave as if the organic layer has the thickness, in the present invention, the thickness measured by this method is defined as the thickness of the organic coating layer.
 本発明に係る金属ナノ粒子の周りを被覆している有機物を被覆している金属ナノ粒子の比抵抗(抵抗率)が10Ωcm以上である際に金属ナノ粒子は絶縁体であるという。 The metal nanoparticles are said to be an insulator when the specific resistance (resistivity) of the metal nanoparticles covering the organic matter covering the metal nanoparticles according to the present invention is 10 8 Ωcm or more.
 金属ナノ粒子の比抵抗値の測定は、以下の方法により測定した。 The specific resistance value of the metal nanoparticles was measured by the following method.
 ガラス基板上にナノ粒子溶液を塗布し真空乾燥させることにより厚さ約200μmのナノ粒子膜を製膜したのち、この試料を、超絶縁計(R-503、(株)川口電機製作所製)を用いて表面抵抗率を測定する(23℃、50%RH)。 After a nanoparticle film having a thickness of about 200 μm is formed by applying a nanoparticle solution on a glass substrate and vacuum-drying, this sample is prepared using a superinsulator (R-503, manufactured by Kawaguchi Electric Co., Ltd.). Used to measure surface resistivity (23 ° C., 50% RH).
 (金属ナノ粒子の形状)
 金属ナノ粒子の形状は、球状、楕円状、ロッド状、平面プレート状、八面体、立方体、直方体、プリズム状等が公知の方法で作成することが可能であり、いずれの粒子もプラズモンの誘起に用いることができるが、球状よりも、多面体、例えば、八面体、立方体、直方体のような角を有する形状の粒子の方が、プラズモンと入射光が相互作用した際の局所的な電場の増強の効果が大きいため、より外部量子効率(EQE)の向上には好ましい。
(Shape of metal nanoparticles)
The shape of the metal nanoparticles can be created by known methods such as spherical, elliptical, rod-shaped, flat plate-shaped, octahedral, cubic, rectangular parallelepiped, prism-shaped, etc., and any particle can induce plasmon. It can be used, but rather than a sphere, a polyhedron, such as an octahedron, a cube, or a cuboid shaped particle, has a higher local electric field when plasmon and incident light interact. Since the effect is great, it is preferable for improving the external quantum efficiency (EQE).
 なおこれらの粒子は、ACSNANO VOL2 NO.9 1760-1769、J.Phys.Chem.C,vol113,NO.13 2009、Langmuir 2009,25,1692-1698、J.Phys.Chem.B,2003,107,2719-2724等を参考にして合成することができる。 These particles are ACSNANO VOL2 NO. 9 1760-1769, J.H. Phys. Chem. C, vol 113, NO. 13 2009, Langmuir 2009, 25, 1692-1698, J.A. Phys. Chem. B, 2003, 107, 2719-2724 and the like can be synthesized.
 ナノ粒子形状制御の方法
 粒子の形状については、上記各文献に記載の方法で球状、また角を有する種々のナノ粒子の作成が可能である。例えば、湿式法による金ナノ粒子の調製の場合、“Langmuir 2009,25,1692-1698”に記載の方法を参考にして、金ナノ粒子の種粒子に、塩化金酸溶液を、金表面に吸着性(親和性)がある有機化合物の存在下において、この濃度、また溶液のpH等を調整した雰囲気で、添加速度等を調整し添加することで形状の異なった金ナノ粒子を得ることができる。例えば、セチルトリメチルアンモニウムブロミド(CTAB)のような金表面への吸着に面選択性がある(と思われる)有機化合物を用いると、立方体等の粒子がえられ、また、クエン酸等の金表面に対する吸着性がこれとは異なる化合物を用いると球状の粒子が得られる。
Nanoparticle shape control method As for the shape of the particles, various nanoparticles having a spherical shape or a corner shape can be prepared by the methods described in the above-mentioned documents. For example, in the case of preparation of gold nanoparticles by a wet method, referring to the method described in “Langmuir 2009, 25, 1692-1698”, a chloroauric acid solution is adsorbed on the gold surface as seed particles of gold nanoparticles. Gold nanoparticles with different shapes can be obtained by adjusting the addition rate and the like in an atmosphere in which the concentration and pH of the solution are adjusted in the presence of an organic compound having affinity (affinity) . For example, when an organic compound such as cetyltrimethylammonium bromide (CTAB) that has a surface selectivity for adsorption onto a gold surface is used, particles such as cubes can be obtained, and a gold surface such as citric acid can be obtained. When a compound having a different adsorptivity to is used, spherical particles are obtained.
 同様に、種粒子に吸着する有機化合物の種類、量、またpH、添加液の添加速度等を調整することで八面体等の他の形状をもつナノ粒子が得られる。 Similarly, nanoparticles having another shape such as an octahedron can be obtained by adjusting the kind and amount of the organic compound adsorbed on the seed particles, the pH, the addition rate of the additive liquid, and the like.
 (金属ナノ粒子の挿入法)
 有機物被覆金ナノ粒子を、有機光電変換素子のいずれかの層に含有させる方法としては、溶液中に分散させた有機物被覆ナノ粒子を有機光電変換素子各層の任意の場所に塗布することが好ましい。
(Metal nanoparticle insertion method)
As a method for incorporating the organic-coated gold nanoparticles in any layer of the organic photoelectric conversion element, it is preferable to apply the organic-coated nanoparticles dispersed in a solution to any location of each layer of the organic photoelectric conversion element.
 塗布の方法としては、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。 Examples of the coating method include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating.
 また、有機物被覆金属ナノ粒子は任意の層内に含有されていてもよく、その場合は含有する層の溶媒に合わせて有機物被覆金属ナノ粒子の種類を変更することが可能である。有機物被覆金属ナノ粒子が挿入され含有される場所としては、光電変換層中、また、光電変換層に隣接する層中に含有されても良いが、光電変換層に隣接する層との間に挿入される等、光電変換層に接して配置されることが好ましい。 In addition, the organic-coated metal nanoparticles may be contained in an arbitrary layer, and in that case, the type of the organic-coated metal nanoparticles can be changed in accordance with the solvent of the contained layer. As a place where the organic-coated metal nanoparticles are inserted and contained, it may be contained in the photoelectric conversion layer or in a layer adjacent to the photoelectric conversion layer, but inserted between the layers adjacent to the photoelectric conversion layer. It is preferable to arrange | position in contact with a photoelectric converting layer.
 (光電変換層・バルクヘテロジャンクション層)
 光電変換層は正孔を輸送するp型半導体材料と、電子を輸送するn型半導体材料を含有する。光吸収によって発生した励起子を効率よく電荷分離させるために、これらp型半導体材料とn型半導体材料との、2層構造を有することが基本となる。更に、本発明においては、光電変換層の1層に該p型半導体材料とn型半導体材料とを混合した状態のバルクヘテロジャンクション構造を形成させることが光電変換効率の点で好ましい。
(Photoelectric conversion layer / bulk heterojunction layer)
The photoelectric conversion layer contains a p-type semiconductor material that transports holes and an n-type semiconductor material that transports electrons. In order to efficiently perform charge separation of excitons generated by light absorption, it is fundamental to have a two-layer structure of these p-type semiconductor material and n-type semiconductor material. Furthermore, in the present invention, it is preferable in terms of photoelectric conversion efficiency to form a bulk heterojunction structure in which the p-type semiconductor material and the n-type semiconductor material are mixed in one layer of the photoelectric conversion layer.
 更には、p型半導体材料とn型半導体材料単体からなる層でバルクヘテロジャンクション構造の光電変換層を挟み込むような構成(p-i-n構成ともいう)であっても良い。 Furthermore, a configuration in which a photoelectric conversion layer having a bulk heterojunction structure is sandwiched between layers composed of a p-type semiconductor material and a single n-type semiconductor material (also referred to as a pin configuration) may be used.
 通常のバルクヘテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層、およびn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。 A normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed, but is sandwiched between a p-layer made of a single p-type semiconductor material and an n-layer made of a single n-type semiconductor material. As a result, the rectification of holes and electrons becomes higher, loss due to recombination of charge-separated holes and electrons is reduced, and higher photoelectric conversion efficiency can be obtained.
 本発明においては、発電に寄与するp型半導体材料もしくはn型半導体材料を用いた場合、p-i-n構造を形成する材料は明確に光電変換層の一部として機能する層として用いられる。 In the present invention, when a p-type semiconductor material or an n-type semiconductor material contributing to power generation is used, the material forming the pin structure is used as a layer that clearly functions as a part of the photoelectric conversion layer.
 (p型半導体材料)
 本発明のバルクヘテロジャンクション層に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
(P-type semiconductor material)
Examples of the p-type semiconductor material used for the bulk heterojunction layer of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。 Examples of the condensed polycyclic aromatic low-molecular compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, circobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene ( BEDTTTTF) -perchloric acid complexes, and derivatives and precursors thereof.
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。 Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A. A pentacene derivative having a substituent described in JP-A No. 2003-136964, a pentacene precursor described in US Patent Application Publication No. 2003/136964, and the like; Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008/000664号に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,APPLIED PHYSICS LETTERS vol.92,p033307(2008)に記載のPFDTBT、J.AM.CHEM.SOC.,vol.131,p7792(2009)に記載のPTB1~6などが挙げられるが、中でも本発明においては650nmよりも長波長まで吸収を有する低バンドギャップポリマーである、Adv.Mater.,vol.19(2007)p2295に記載のポリチオフェン-カルバゾール-ベンゾチアジアゾール共重合体(PCDTBT)、Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体が好ましい。 As the conjugated polymer, for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and its oligomer, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, polythiophene-thienothiophene copolymer, WO2008 / 000664, polythiophene-diketopyrrolopyrrole copolymer, Adv Mater, polythiophene-thiazolothiazole copolymer described in 2007p4160, APPLIED PHYSICS LETTERS vol. 92, p033307 (2008). AM. CHEM. SOC. , Vol. 131, p7792 (2009), and the like. Among them, the present invention is a low band gap polymer having absorption up to a wavelength longer than 650 nm, Adv. Mater. , Vol. 19 (2007) p2295, polythiophene-carbazole-benzothiadiazole copolymer (PCDTBT), Nature Mat. vol. 6 (2007), p497, a polythiophene copolymer such as PCPDTBT is preferable.
 (n型半導体材料)
 本発明のバルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
(N-type semiconductor material)
The n-type semiconductor material used for the bulk heterojunction layer of the present invention is not particularly limited. For example, fullerene, octaazaporphyrin and the like, p-type semiconductor perfluoro products (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetra Examples thereof include aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, perylene tetracarboxylic acid anhydrides, and perylene tetracarboxylic acid diimides, and polymer compounds containing the imidized product thereof as a skeleton.
 上述したn型半導体材料の中で、特にp型半導体材料との相互作用において、高い電荷分離能(~50fsの高速な電子注入)が期待できるフラーレン誘導体が最も好ましい。 Among the above-mentioned n-type semiconductor materials, fullerene derivatives that can be expected to have high charge separation ability (up to 50 fs high-speed electron injection) particularly in interaction with p-type semiconductor materials are most preferable.
 フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。 Among them, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PCBM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PCBnB), [6,6] -phenyl C61-buty Rick acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A-2006-199674, metallocene fullerenes such as JP-A-2008-130889, and cyclics such as US Pat. No. 7,329,709. It is preferable to use a fullerene derivative having a substituent and having improved solubility, such as fullerene having an ether group.
 (バルクヘテロジャンクション層の形成方法)
 電子受容体と電子供与対とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作成するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
(Bulk heterojunction layer formation method)
Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donating pair are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method). Among these, the coating method is preferable in order to increase the area of the interface where the hole and electron are separated from each other and to create an element having high photoelectric conversion efficiency. The coating method is also excellent in production speed.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が配列または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, part of the arrangement or crystallization is microscopically promoted, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
 光電変換部(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。 The photoelectric conversion part (bulk heterojunction layer) 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but a plurality of the mixture ratios of the electron acceptor and the electron donor are changed. It may consist of layers.
 次に、有機光電変換素子を構成する電極について説明する。 Next, the electrodes constituting the organic photoelectric conversion element will be described.
 有機光電変換素子は、バルクヘテロジャンクション層で生成した正電荷と負電荷とが、それぞれp型有機半導体材料、及びn型有機半導体材料を経由して、それぞれ透明電極及び対極から取り出され、電池として機能するものである。それぞれの電極には、電極を通過するキャリアに適した特性が求められる。 In the organic photoelectric conversion element, positive and negative charges generated in the bulk heterojunction layer are taken out from the transparent electrode and the counter electrode via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, and function as a battery. To do. Each electrode is required to have characteristics suitable for carriers passing through the electrode.
 〔対極〕
 本発明において対極(陰極)とは、電子を取り出す電極のことが好ましい。例えば、陰極として用いる場合、導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
[Counter electrode]
In the present invention, the counter electrode (cathode) is preferably an electrode for taking out electrons. For example, when used as a cathode, the conductive material may be a single layer, but in addition to a conductive material, a resin that holds these may be used in combination.
 対極材料としては、十分な導電性を有し、かつ前記n型半導体材料と接合したときにショットキーバリアを形成しない程度に近い仕事関数を有し、かつ劣化しないことが求められる。つまりバルクヘテロジャンクション層に用いるn型半導体材料のLUMOよりも0~0、3eV深い仕事関数を有する金属であることが好ましく、本発明の第2のバルクヘテロジャンクション層に用いられるn型半導体材料の好ましいLUMO準位が、-4.3~-4.6eVであることから、-4.3~-4.9eVの仕事関数であることが好ましい。他方で正孔を取り出す透明電極(陽極)より仕事関数が深くなることは好ましくなく、n型半導体材料より浅い仕事関数の金属では層間抵抗が発生することがあるため、実際には-4.4~-4.8eVの仕事関数を有する金属であることが好ましい。したがって、アルミニウム、金、銀、銅、インジウム、あるいは酸化亜鉛、ITO、酸化チタン等の酸化物系の材料でも好ましい。より好ましくは、アルミニウム、銀、銅であり、さらに好ましくは銀である。 The counter electrode material is required to have sufficient conductivity, a work function close to the extent that no Schottky barrier is formed when bonded to the n-type semiconductor material, and no deterioration. That is, it is preferably a metal having a work function 0 to 0, 3 eV deeper than the LUMO of the n-type semiconductor material used for the bulk heterojunction layer, and the preferred LUMO of the n-type semiconductor material used for the second bulk heterojunction layer of the present invention. Since the level is −4.3 to −4.6 eV, the work function is preferably −4.3 to −4.9 eV. On the other hand, it is not preferable that the work function is deeper than that of the transparent electrode (anode) for extracting holes, and a metal having a work function shallower than that of the n-type semiconductor material may cause interlayer resistance. A metal having a work function of ˜−4.8 eV is preferable. Therefore, aluminum, gold, silver, copper, indium, or oxide materials such as zinc oxide, ITO, and titanium oxide are also preferable. More preferably, they are aluminum, silver, and copper, More preferably, it is silver.
 なおこれらの金属の仕事関数は、同様に紫外光電子分光法(UPS)を利用して測定することができる。 In addition, the work function of these metals can be similarly measured using ultraviolet photoelectron spectroscopy (UPS).
 なお、必要に応じて合金にしても良く、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 An alloy may be used if necessary. For example, a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and aluminum are preferable. It is. The counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 また、対極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、導電性光透過性材料の膜を設けることで、光透過性対極とすることができる。 In the case where the counter electrode side is made light transmissive, for example, a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the conductive light By providing a film of a transmissive material, a light transmissive counter electrode can be obtained.
 〔透明電極〕
 本発明において透明電極とは、正孔を取り出す電極のことが好ましい。例えば、陽極として用いる場合、好ましくは380~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ等を用いることができる。
[Transparent electrode]
In the present invention, the transparent electrode is preferably an electrode for extracting holes. For example, when used as an anode, it is preferably an electrode that transmits light of 380 to 800 nm. Examples of materials that can be used include transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , and ZnO, metal thin films such as gold, silver, and platinum, metal nanowires, and carbon nanotubes.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。 Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.
 〔中間電極〕
 また、タンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
[Intermediate electrode]
The intermediate electrode material required in the case of the tandem structure is preferably a layer using a compound having both transparency and conductivity, and the materials (ITO, AZO, FTO, etc.) used in the transparent electrode , Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc.) Can do.
 なお正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。 There are combinations of hole transport layer and electron transport layer that work as an intermediate electrode (charge recombination layer) by stacking them in an appropriate combination. With such a configuration, the step of forming one layer is omitted. Is preferable.
 次に、電極及びバルクヘテロジャンクション層以外を構成する材料について述べる。 Next, materials that constitute components other than the electrode and the bulk heterojunction layer will be described.
 〔正孔輸送層・電子ブロック層〕
 本発明の有機光電変換素子は、バルクヘテロジャンクション層と透明電極との中間には正孔輸送層を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Hole Transport Layer / Electron Blocking Layer]
In the organic photoelectric conversion device of the present invention, a hole transport layer is provided between the bulk heterojunction layer and the transparent electrode, and charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have.
 これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号パンフレット等に記載のシアン化合物、等を用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を透明電極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。 As a material constituting these layers, for example, as a hole transport layer, manufactured by Stark Vitec, PEDOT such as trade name BaytronP, polyaniline and a doping material thereof, a cyanide compound described in WO2006 / 019270, etc., Etc. can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the transparent electrode side. The electronic block function is provided. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function. As such materials, triarylamine compounds described in JP-A-5-271166, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used. A layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
 〔電子輸送層・正孔ブロック層・バッファ層〕
 本発明の有機光電変換素子10は、バルクヘテロジャンクション層と対極との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Electron transport layer, hole blocking layer, buffer layer]
In the organic photoelectric conversion element 10 of the present invention, by forming the electron transport layer 18 in the middle of the bulk heterojunction layer and the counter electrode, it becomes possible to extract charges generated in the bulk heterojunction layer more efficiently, It is preferable to have these layers.
 また電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を対極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層等を用いることもできる。 As the electron transport layer 18, octaazaporphyrin, a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, etc.) can be used. Similarly, a p-type semiconductor material used for a bulk heterojunction layer is used. The electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the counter electrode side. Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function. Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. An n-type inorganic oxide such as zinc oxide or gallium oxide, a layer made of a single n-type semiconductor material used for the bulk heterojunction layer, or the like can also be used.
 また、フッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。 Moreover, alkali metal compounds such as lithium fluoride, sodium fluoride, cesium fluoride, and the like can be used.
 これらの中でも、さらに有機半導体分子をドープし、前記金属電極(陰極)との電気的接合を改善する機能も有する、アルカリ金属化合物を用いることが好ましい。アルカリ金属化合物層の場合には、特にバッファ層と言うこともある。 Among these, it is preferable to use an alkali metal compound that has a function of further doping an organic semiconductor molecule and improving electrical junction with the metal electrode (cathode). In the case of an alkali metal compound layer, it may be called a buffer layer.
 〔その他の層〕
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
[Other layers]
For the purpose of improving energy conversion efficiency and improving the lifetime of the element, a structure having various intermediate layers in the element may be employed. Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
 〔基板〕
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
〔substrate〕
When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted. As the substrate, for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things. For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 ~ 800 nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよい。 Moreover, a barrier coat layer may be formed in advance on the transparent substrate for the purpose of suppressing the permeation of oxygen and water vapor.
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、対極で反射した光を散乱させて再度バルクヘテロジャンクション層に入射させることができるような光拡散層等を設けてもよい。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter the light reflected by the counter electrode and enter the bulk heterojunction layer again can be provided. Good.
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれにより限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 金ナノ粒子合成法
 (球状金ナノ粒子A-1、A-2の合成)
 J.Am.Chem.Soc.2007,129,13939-13948を参考にして粒径30nmと70nmのクエン酸を被覆層(被覆層厚み;1nm)に有する球状の金ナノ粒子をそれぞれ合成した。調製時の母液のpHを変化させ粒径20nmと40nmの立方体金ナノ粒子をそれぞれ合成した。合成した金ナノ粒子の水溶液に対して等量のイソプロパノールに分散させ、金ナノ粒子A-1(30nm)、A-2(70nm)とした。
Gold nanoparticle synthesis method (Synthesis of spherical gold nanoparticles A-1 and A-2)
J. et al. Am. Chem. Soc. With reference to 2007, 129, 13939-13948, spherical gold nanoparticles having a citric acid particle size of 30 nm and 70 nm in the coating layer (coating layer thickness: 1 nm) were synthesized. The pH of the mother liquor at the time of preparation was changed to synthesize cubic gold nanoparticles having a particle size of 20 nm and 40 nm, respectively. Gold nanoparticles A-1 (30 nm) and A-2 (70 nm) were dispersed in an equivalent amount of isopropanol with respect to the aqueous solution of the synthesized gold nanoparticles.
 尚、A-1,A-2の抵抗率については、前記方法にて測定した結果いずれも10Ωcm以上であった。 Note that the resistivity of A-1 and A-2 was 10 8 Ωcm or more as a result of measurement by the above method.
 (立方体型金ナノ粒子A-3、A-4の合成)
 Langmuir 2009,25,1692-1698、J.Phys.Chem.B.2003,107,2719-2724を参考にして、CTAB(Cetyltrimethylammonium Bromide)を用いて種粒子を形成した後、同じくCTAB(Cetyltrimethylammonium Bromide)を被覆層として有する、粒径20nmと40nmの立方体金ナノ粒子をそれぞれ合成した。合成したナノ粒子は遠心分離した後沈殿物をイソプロパノールに分散させ、金ナノ粒子A-3(20nm)、A-4(40nm)とした。
(Synthesis of cubic gold nanoparticles A-3 and A-4)
Langmuir 2009, 25, 1692-1698, J. Am. Phys. Chem. B. After forming seed particles using CTAB (Cetyltrimethylammonium Bromide) with reference to 2003, 107, 2719-2724, cubic gold nanoparticles having a particle size of 20 nm and 40 nm, which also have CTAB (Cetyltrimethylammonium Bromide) as a coating layer. Each was synthesized. The synthesized nanoparticles were centrifuged, and the precipitate was dispersed in isopropanol to obtain gold nanoparticles A-3 (20 nm) and A-4 (40 nm).
 被覆層の厚みは
 A-3,A-4について被覆層の厚みはいずれも1.3nmであり、抵抗率はいずれも10Ωcm以上であった。
The thicknesses of the coating layers for A-3 and A-4 were both 1.3 nm and the resistivity was 10 8 Ωcm or more.
 (球状金ナノ粒子A-5の合成)
 Adv.Mater.2001,13,No.22,1699を参考にして、ドデカンチオールを被覆層として有する粒径10nmの球状の金ナノ粒子を合成した(被覆層厚み;1.3nm)。合成した金ナノ粒子は遠心分離で精製後、トルエンに分散させ金ナノ粒子A-5とした。
(Synthesis of spherical gold nanoparticles A-5)
Adv. Mater. 2001, 13, no. 22, 1699, spherical gold nanoparticles having a particle diameter of 10 nm having dodecanethiol as a coating layer were synthesized (coating layer thickness: 1.3 nm). The synthesized gold nanoparticles were purified by centrifugation and then dispersed in toluene to obtain gold nanoparticles A-5.
 A-5の抵抗率は10Ωcm以上であった。 The resistivity of A-5 was 10 8 Ωcm or more.
 (八面体金ナノ粒子A-6、A-7の合成)
 ACSNANO VOL2 NO.9 1760-1769を参考にして、ポリマー(poly(diallyldimethylammonium chloride))を被覆層とした粒径30nmと50nmの八面体金ナノ粒子をそれぞれ合成した(被覆層厚み;2.0nm)。合成した金ナノ粒子は遠心分離した後沈殿物をイソプロパノールに分散させ、金ナノ粒子A-6、A-7とした。
(Synthesis of octahedral gold nanoparticles A-6 and A-7)
ACSNANO VOL2 NO. 9 With reference to 1760-1769, octahedral gold nanoparticles with a particle size of 30 nm and 50 nm were synthesized using a polymer (poly (dimethyldimethylammonium chloride)) as a coating layer (coating layer thickness; 2.0 nm), respectively. The synthesized gold nanoparticles were centrifuged and the precipitate was dispersed in isopropanol to obtain gold nanoparticles A-6 and A-7.
 A-6,A-7の抵抗率はいずれも10Ωcm以上であった。 The resistivity of A-6 and A-7 were both 10 8 Ωcm or more.
 〈有機光電変換素子SC-101の作成:比較例1〉
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィー技術と湿式エッチングとを用いて2mm幅にパターニングし第一の電極を形成した。
<Preparation of Organic Photoelectric Conversion Element SC-101: Comparative Example 1>
A first indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 150 nm (sheet resistance 10 Ω / □) is patterned to a width of 2 mm using a normal photolithography technique and wet etching. An electrode was formed.
 パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。 The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
 この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を成膜した。 On this transparent substrate, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, was applied and dried to a film thickness of 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. .
 これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作成した。 After this, the substrate was brought into a nitrogen chamber and created in a nitrogen atmosphere.
 先ず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:[6,6]-フェニルC61-ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタで濾過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を成膜した。 First, the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere. Next, 3.0% by mass of chlorobenzene with P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon: [6,6] -phenyl C61-butyric acid methyl ester) Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm while being filtered through a filter, and was left to dry at room temperature. Subsequently, heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.
 次いで、J.Phys.Chem.B,107,2003,7312-7326を参考にして作製した10nmのSiOを被覆した粒径15nmのAgナノ粒子を作製し、N,N-dimethylformamide(DMF)とエタノールの1:1の混合溶媒に分散させ、光電変換層上に目付量が80mg/mになるように塗布積層した。 Then, J.H. Phys. Chem. B, 107, 2003, 7312-7326 A 10 nm SiO 2 coated Ag nanoparticle coated with 10 nm SiO 2 was prepared, and a 1: 1 mixed solvent of N, N-dimethylformamide (DMF) and ethanol And coated and laminated on the photoelectric conversion layer so that the basis weight is 80 mg / m 2 .
 一連の機能層を成膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下まで真空蒸着装置内を減圧にした後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、さらに続けて2mm幅のシャドウマスクを通して(受光部が2×2mmになるように直交させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第二の電極を形成した。得られた有機光電変換素子SC-101を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子SC-101を作成した。 The substrate on which a series of functional layers has been formed is moved into a vacuum deposition apparatus chamber, the pressure inside the vacuum deposition apparatus is reduced to 1 × 10 −4 Pa or less, and then lithium fluoride is reduced to 0 at a deposition rate of 0.01 nm / second. Then, the second metal layer is formed by laminating 100 nm of Al metal at a deposition rate of 0.2 nm / sec through a 2 mm width shadow mask (deposited perpendicularly so that the light receiving portion is 2 × 2 mm). An electrode was formed. The obtained organic photoelectric conversion element SC-101 was moved to a nitrogen chamber and sealed with a sealing cap and a UV curable resin, so that the light receiving part had an organic photoelectric conversion element SC-101 of 2 × 2 mm size. Created.
 〈有機光電変換素子SC-102の作成:比較例2〉
 有機光電変換素子SC-101の作成において、光電変換層を積層したのちAuを、真空蒸着装置を用いて6nm積層した以外は有機光電変換素子SC-101と同様にして、比較となる有機光電変換素子SC-102を作成した。
<Preparation of Organic Photoelectric Conversion Element SC-102: Comparative Example 2>
In the production of the organic photoelectric conversion element SC-101, a comparative organic photoelectric conversion is performed in the same manner as the organic photoelectric conversion element SC-101, except that after the photoelectric conversion layer is stacked, Au is stacked by 6 nm using a vacuum deposition apparatus. Element SC-102 was produced.
 〈有機光電変換素子SC-103の作成:本発明(実施例1)〉
 有機光電変換素子SC-101の作成において、光電変換層を積層したのち、金ナノ粒子A-1を目付量0.25g/mになるように有機光電変換層上にスピンコートで成膜した以外は有機光電変換素子SC-101と同様にして、本発明に係る有機光電変換素子SC-103を作成した。
<Preparation of Organic Photoelectric Conversion Element SC-103: Present Invention (Example 1)>
In the production of the organic photoelectric conversion element SC-101, after the photoelectric conversion layer was laminated, the gold nanoparticles A-1 were formed on the organic photoelectric conversion layer by spin coating so that the basis weight was 0.25 g / m 2 . An organic photoelectric conversion element SC-103 according to the present invention was produced in the same manner as in the organic photoelectric conversion element SC-101 except for the above.
 〈有機光電変換素子SC-104~SC-106の作成:本発明(実施例2~4)〉
 有機光電変換素子SC-103の作成において、光電変換層上に塗布する金ナノ粒子溶液A-1をA-2~A-4にそれぞれ変更して、本発明に関わる有機光電変換素子SC-104~SC-106を作成した。
<Preparation of Organic Photoelectric Conversion Elements SC-104 to SC-106: Present Invention (Examples 2 to 4)>
In the production of the organic photoelectric conversion element SC-103, the gold nanoparticle solution A-1 applied on the photoelectric conversion layer is changed to A-2 to A-4, respectively, and the organic photoelectric conversion element SC-104 according to the present invention is changed. SC-106 was made.
 〈有機光電変換素子SC-107の作成:本発明(実施例5)〉
 有機光電変換素子SC-101の作成において、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:[6,6]-フェニルC61-ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した溶液に金ナノ粒子溶液A-5を濃度0.6mmol/mlで30μl加え溶解させた溶液をフィルタで濾過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を成膜し、Agナノ粒子を塗布積層しなかった以外は光電変換素子SC-101と同様にして、本発明に係る有機光電変換素子SC-107を作成した。
<Preparation of Organic Photoelectric Conversion Device SC-107: Present Invention (Example 5)>
In the production of the organic photoelectric conversion device SC-101, P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon: [6,6] -phenyl C61-butyric acid methyl) were used for the production of the organic photoelectric conversion device SC-101. Ester) was mixed at a ratio of 1: 0.8 so as to be 3.0% by mass, and 30 μl of gold nanoparticle solution A-5 was added at a concentration of 0.6 mmol / ml and dissolved, and the solution was filtered through a membrane The coating was performed so that the thickness was 100 nm, and the film was left to dry at room temperature. Subsequently, the organic photoelectric conversion according to the present invention was performed in the same manner as the photoelectric conversion element SC-101 except that a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer and no Ag nanoparticles were applied and laminated. Element SC-107 was produced.
 〈有機光電変換素子SC-108の作成:本発明(実施例6)〉
 有機光電変換素子SC-103の作成において、光電変換層上に塗布する金ナノ粒子溶液A-1をA-6に変更した以外は有機光電変換素子SC-103と同様にして、本発明に係る有機光電変換素子SC-108を作成した。
<Preparation of Organic Photoelectric Conversion Device SC-108: Present Invention (Example 6)>
In the production of the organic photoelectric conversion element SC-103, the present invention is the same as the organic photoelectric conversion element SC-103 except that the gold nanoparticle solution A-1 applied on the photoelectric conversion layer is changed to A-6. An organic photoelectric conversion element SC-108 was produced.
 〈有機光電変換素子SC-109の作成:本発明(実施例7)〉
 有機光電変換素子SC-103の作成において、光電変換層上に塗布する金ナノ粒子溶液A-1をA-6とA-7の1:1混合液に変更した以外は有機光電変換素子SC-103と同様にして、本発明に係る有機光電変換素子SC-109を作成した。
<Preparation of Organic Photoelectric Conversion Device SC-109: Present Invention (Example 7)>
The organic photoelectric conversion element SC-103 was prepared except that the gold nanoparticle solution A-1 applied on the photoelectric conversion layer was changed to a 1: 1 mixture of A-6 and A-7 in the preparation of the organic photoelectric conversion element SC-103. In the same manner as in Example 103, an organic photoelectric conversion element SC-109 according to the present invention was produced.
 〔有機光電変換素子の評価〕
 (変換効率の評価)
 上記作製した有機光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。また、Jsc、Voc、FFから式1に従って光電変換効率η(%)を求めた。
[Evaluation of organic photoelectric conversion elements]
(Evaluation of conversion efficiency)
The organic photoelectric conversion device prepared above, was irradiated with light having an intensity of 100 mW / cm 2 solar simulator (AM1.5G filter), a superposed mask in which the effective area 4.0 mm 2 on the light receiving portion, the short circuit current density Jsc Four light receiving portions formed on the same element were measured for (mA / cm 2 ), open circuit voltage Voc (V), and fill factor (fill factor) FF, and average values were obtained. In addition, the photoelectric conversion efficiency η (%) was obtained from Jsc, Voc, and FF according to Equation 1.
 式1   Jsc(mA/cm)×Voc(V)×FF=η(%)
 (外部量子効率の測定)
 上記作製した有機光電変換素子を、相馬光学製分光感度測定装置S-9210を用いて、400~1100nmまでの外部量子効率を測定し、500nmでの外部量子効率(EQE(%))を評価した。
Formula 1 Jsc (mA / cm 2 ) × Voc (V) × FF = η (%)
(Measurement of external quantum efficiency)
The organic photoelectric conversion element produced above was measured for external quantum efficiency from 400 to 1100 nm using a spectral sensitivity measuring device S-9210 manufactured by Soma Optics, and the external quantum efficiency (EQE (%)) at 500 nm was evaluated. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 粒径が5nm程度の微細な金ナノ粒子(蒸着金)を用いても、光電場増強の効果は小さく、EQE向上の寄与は少ない。大きい粒子を用いると電場増強の効果は大きいが、デバイスとしてのFFの低下があり、10~50nm程度の粒径がFFの低下もなく好ましい。また、同じ粒径でも角を持った粒子の方が局所的な増強効果があり、球状よりも好ましい。複数の粒径を加えることも好ましい。 Even if fine gold nanoparticles (evaporated gold) with a particle size of about 5 nm are used, the effect of enhancing the photoelectric field is small and the contribution of improving EQE is small. When large particles are used, the effect of enhancing the electric field is great, but there is a decrease in FF as a device, and a particle size of about 10 to 50 nm is preferable without a decrease in FF. In addition, even with the same particle size, the angled particles have a local enhancement effect and are preferable to the spherical shape. It is also preferable to add a plurality of particle sizes.
 10 有機光電変換素子10
 11 基板
 12 透明電極(陽極)
 13 対極(陰極)
 14 光電変換層
 16 有機物被覆金属ナノ粒子
 17 正孔輸送層
 18 電子輸送層
10 Organic photoelectric conversion element 10
11 Substrate 12 Transparent electrode (anode)
13 Counter electrode (cathode)
14 Photoelectric conversion layer 16 Organic-coated metal nanoparticles 17 Hole transport layer 18 Electron transport layer

Claims (8)

  1.  透明電極と対極の間に電荷輸送層および光電変換層を有する有機光電変換素子において、前記有機光電変換素子のいずれかの層に、有機物で表面を被覆されたナノ粒子が含有されていることを特徴とする有機光電変換素子。 In an organic photoelectric conversion element having a charge transport layer and a photoelectric conversion layer between a transparent electrode and a counter electrode, any layer of the organic photoelectric conversion element contains nanoparticles whose surface is covered with an organic substance. A characteristic organic photoelectric conversion element.
  2.  前記ナノ粒子が無機ナノ粒子であることを特徴とする請求項1に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1, wherein the nanoparticles are inorganic nanoparticles.
  3.  前記ナノ粒子が金属ナノ粒子であることを特徴とする請求項1または2に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1, wherein the nanoparticles are metal nanoparticles.
  4.  前記有機物で表面を被覆されたナノ粒子が絶縁体であることを特徴とする請求項1~3のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 3, wherein the nanoparticles whose surface is coated with an organic substance are insulators.
  5.  前記有機物で被覆されたナノ粒子が、光電変換層に接して配置されていることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 4, wherein the nanoparticles covered with the organic substance are disposed in contact with the photoelectric conversion layer.
  6.  前記有機物で被覆されたナノ粒子において、該ナノ粒子の平均粒径が、10~100nmであることを特徴とする請求項1~5のいずれか1項に記載の有機光電変換素子。 6. The organic photoelectric conversion device according to claim 1, wherein the nanoparticles coated with the organic substance have an average particle size of 10 to 100 nm.
  7.  前記有機物で被覆されたナノ粒子の形状が、多面体から選ばれる少なくとも一つであることを特徴とする請求項1~6のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 6, wherein the shape of the nanoparticles covered with the organic substance is at least one selected from polyhedrons.
  8.  前記有機物で被覆されたナノ粒子が、塗布法により、光電変換層に接して配置されることを特徴とする請求項1~7のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 7, wherein the nanoparticles coated with the organic substance are disposed in contact with the photoelectric conversion layer by a coating method.
PCT/JP2011/068749 2010-09-01 2011-08-19 Organic photoelectric conversion element WO2012029559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195419 2010-09-01
JP2010-195419 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029559A1 true WO2012029559A1 (en) 2012-03-08

Family

ID=45772663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068749 WO2012029559A1 (en) 2010-09-01 2011-08-19 Organic photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2012029559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074569A (en) * 2010-09-29 2012-04-12 Jx Nippon Oil & Energy Corp Photoelectric conversion element
JP2016507893A (en) * 2012-12-21 2016-03-10 ベネルギー エルエルシー Apparatus, system and method for collecting and converting solar energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538573A (en) * 2002-09-05 2005-12-15 ナノシス・インク. Compositions based on nanostructures and nanocomposites
US20070175507A1 (en) * 2006-01-28 2007-08-02 Banpil Photonics, Inc. High efficiency photovoltaic cells
JP2008503880A (en) * 2004-06-18 2008-02-07 ウルトラドッツ・インコーポレイテッド Nanostructured material and photovoltaic device comprising nanostructured material
JP2008510305A (en) * 2004-08-11 2008-04-03 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive device
WO2009043340A2 (en) * 2007-10-01 2009-04-09 Buskuehl Martin Photovoltaic module having at least one solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538573A (en) * 2002-09-05 2005-12-15 ナノシス・インク. Compositions based on nanostructures and nanocomposites
JP2008503880A (en) * 2004-06-18 2008-02-07 ウルトラドッツ・インコーポレイテッド Nanostructured material and photovoltaic device comprising nanostructured material
JP2008510305A (en) * 2004-08-11 2008-04-03 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive device
US20070175507A1 (en) * 2006-01-28 2007-08-02 Banpil Photonics, Inc. High efficiency photovoltaic cells
WO2009043340A2 (en) * 2007-10-01 2009-04-09 Buskuehl Martin Photovoltaic module having at least one solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074569A (en) * 2010-09-29 2012-04-12 Jx Nippon Oil & Energy Corp Photoelectric conversion element
JP2016507893A (en) * 2012-12-21 2016-03-10 ベネルギー エルエルシー Apparatus, system and method for collecting and converting solar energy

Similar Documents

Publication Publication Date Title
Liu et al. High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer
Wang et al. Carbon nanotube-based heterostructures for solar energy applications
JP5682571B2 (en) Organic photoelectric conversion element
Yu et al. Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer
Ghosekar et al. Review on performance analysis of P3HT: PCBM-based bulk heterojunction organic solar cells
Wanninayake et al. Performance enhancement of polymer solar cells using copper oxide nanoparticles
Wang et al. BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells
JP2013254912A (en) Organic photoelectric conversion element and solar cell using the same
JP5515598B2 (en) Method for producing organic photoelectric conversion element and organic photoelectric conversion element
Ruankham et al. Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells
JP5098957B2 (en) Organic photoelectric conversion element
Roy et al. Realization of poly (methyl methacrylate)-encapsulated solution-processed carbon-based solar cells: an emerging candidate for buildings’ comfort
Tessema Mola et al. Nanocomposite for solar energy application
JP5444743B2 (en) Organic photoelectric conversion element
Wang et al. Delicate energy-level adjustment and interfacial defect passivation of ZnO electron transport layers in organic solar cells by constructing ZnO/In nanojunctions
JP2013089685A (en) Organic photoelectric conversion element and solar cell using the same
Rueda-Delgado et al. Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics
Wang et al. Urea-doped ZnO films as the electron transport layer for high efficiency inverted polymer solar cells
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
KR101386617B1 (en) Organic solar cell comprising self-assembled nanocomposite in photoactive layer and Method for preparing the same
Chen et al. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells
JP5375066B2 (en) Method for producing organic photoelectric conversion element, and organic photoelectric conversion element
JP5304448B2 (en) Organic photoelectric conversion element
JP2012129278A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
WO2012029559A1 (en) Organic photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP