WO2012029522A1 - Battery system, electric vehicle, moving body, power storage device, power source device, and battery control device - Google Patents

Battery system, electric vehicle, moving body, power storage device, power source device, and battery control device Download PDF

Info

Publication number
WO2012029522A1
WO2012029522A1 PCT/JP2011/068302 JP2011068302W WO2012029522A1 WO 2012029522 A1 WO2012029522 A1 WO 2012029522A1 JP 2011068302 W JP2011068302 W JP 2011068302W WO 2012029522 A1 WO2012029522 A1 WO 2012029522A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
unit
failure
output
Prior art date
Application number
PCT/JP2011/068302
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 瀬尾
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012029522A1 publication Critical patent/WO2012029522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Battery overcharge is highly important for safety. Therefore, as described above, charging of the battery may be prohibited when a failure is detected by the failure detection unit. On the other hand, by permitting discharge of the battery, it is possible to extract electric power from the voltage source while avoiding overcharging.
  • the internal circuit of the protection circuit 17 is the same as that of the protection circuit 16. However, the protection resistor 62 in the protection circuit 17 is interposed in series between the branch point 22 and the voltage level determination unit 13, and the surge protection element 63 in the protection circuit 17 includes the protection resistor 62 and the voltage level in the protection circuit 17. It is interposed in series between the connection point between the determination units 13 and the reference potential point 6.
  • Each part in the voltage detection device 101 operates with the potential at the reference potential point 7 as a reference.
  • Reference numerals 2 [1] to 2 [8] denote voltage sources as voltage measurement targets, and each of the voltage sources 2 [1] to 2 [8] has the same characteristics as the voltage source 2 now.
  • the voltage sources 2 [1] to 2 [8] are supplied from the high voltage side from the voltage sources 2 [1], 2 [2], 2 [3], 2 [4], 2 [5], 2 [6], 2 [7] and 2 [8] are connected in series, and the negative output terminal of the voltage source 2 [8] is connected to the reference potential point 6.
  • the digital circuit unit 114 accurately calculates the output voltage of the voltage source 2 [1] from the output signals of the four comparators at the timing when the output signals of the four comparators included in the level determination unit 130 [1] change. Can be detected. Further, at the timing, the in-range failure is detected by comparing the determination voltage value VL [1] indicated by the output signals of the four comparators in the level determination unit 130 [1] with the corresponding detection voltage value Vdet [1]. The presence or absence of can be detected.
  • the detected voltage value Vdet [j] is an AD converter when an analog voltage between the voltage detection lines 23 [j] and 23 [j + 1] is input to the AD converter 112 as an AD conversion target voltage. The detected voltage value based on the output signal 112.
  • the voltage input switching unit 160 may not be provided.
  • the charge / discharge prohibiting process by the charge / discharge control unit 105 is a process for prohibiting the discharge of the voltage sources 2 [1] to [8] to the load 3 and the charging of the voltage sources 2 [1] to [8] by the charging circuit 4 (in other words, In this case, the discharge of the voltage sources 2 [1] to [8] with respect to the load 3 and the charging of the voltage sources 2 [1] to [8] by the charging circuit 4 are completely limited.
  • the operation flowchart of FIG. 17 includes the processes of steps S11 to S15, which are the same as the processes of steps S11 to S15 in the sixth embodiment. That is, the normal operation is executed in step S11, and when it is determined in step S12 that the determination voltage value VL [j] of the voltage level determination unit 113 has changed, the process proceeds from step S12 to step S13, and the AD converter
  • of the difference between the detection voltage value Vdet [j] 112 and the determination voltage value VL [j] of the voltage level determination unit 113 is set to a predetermined failure determination threshold V TH . Compare.
  • step S13 when the inequality “
  • step S20 the charge / discharge control unit 105 controls the charging circuit 4 so that the voltage source 2 [1] by the charging circuit 4 is removed until the occurrence factor is eliminated thereafter.
  • the PTC thermistor is a resistor having a relatively large positive temperature coefficient, and its own resistance value increases as its own temperature increases.
  • a PTC thermistor that has a relatively low resistance value (eg, several ohms) in a normal temperature range (eg, 0 ° C. to 80 ° C.), and the resistance value suddenly increases when its own temperature exceeds a certain temperature. It is good to use.
  • the negative electrode (negative output terminal) of the battery having the lowest potential and the positive electrode (positive output terminal) of the battery having the highest potential are connected via the power line 431. And connected to the power converter 420.
  • the current detection unit 413 detects the current flowing through the power line 431, that is, the value of the current between the battery system unit 411 and the power converter 420, and outputs the detected current value to the main controller 412.

Abstract

A battery system comprising: a rechargeable voltage source (2); an AD converter (12) for receiving the input of an analog voltage signal, which is the signal of an analog voltage value from the voltage source (2), converting the analog voltage signal of the voltage source (2) into a digital voltage signal, and outputting the digital voltage signal; a voltage level determination unit (13) that includes an overcharge/overdischarge detection circuit for receiving an input of the analog voltage signal and detecting overcharging and overdischarging of the voltage source (2), the voltage level determination unit determining, by using the output from the overcharge/overdischarge detection circuit, the voltage level of the analog voltage value from the voltage source (2) and outputting the determination result; and a fault detection unit (14) for detecting, from the result of comparing the output of the AD converter (12) and the output of the voltage level determination unit (13), that the AD converter (12) is malfunctioning in a state in which the voltage value of the digital voltage signal is within a predetermined voltage range that extends from a first threshold, which is a value indicating a voltage at which the voltage source (2) is in an overcharged state, to a second threshold, which is a value indicating a voltage at which the voltage source (2) is in an overdischarged state.

Description

電池システム、電動車両、移動体、電力貯蔵装置、電源装置及び電池制御装置Battery system, electric vehicle, moving object, power storage device, power supply device, and battery control device
 本発明は、電池システム、電動車両、移動体、電力貯蔵装置、電源装置及び電池制御装置に関する。 The present invention relates to a battery system, an electric vehicle, a moving body, a power storage device, a power supply device, and a battery control device.
 蓄電デバイスとして、複数の電池セルを直列に接続した電池モジュールが使用されてきている。モジュールにおいては、性能劣化や故障等が起きないように、過充電、過放電とならないように対策が施されている。 Battery modules in which a plurality of battery cells are connected in series have been used as power storage devices. In the module, measures are taken to prevent overcharge and overdischarge so that performance degradation or failure does not occur.
 さて、AD変換器を用いて測定対象のアナログ電圧をデジタル値で検出する電圧検出装置において、アナログ電圧信号を伝播する信号線が断線したりAD変換器自体が故障したりすると、アナログ電圧の検出値に異常が発生する。即ち、アナログ電圧の正確な検出ができなくなる。なお、このような電圧検出装置では、測定対象のアナログ電圧が通常状態において取りうる電圧範囲は予め分かっていることが多い。 Now, in a voltage detection device that detects an analog voltage to be measured as a digital value using an AD converter, if the signal line that propagates the analog voltage signal is disconnected or the AD converter itself fails, the analog voltage is detected. An error occurs in the value. That is, the analog voltage cannot be accurately detected. In such a voltage detection device, the voltage range that the analog voltage to be measured can take in the normal state is often known in advance.
 従って、AD変換器の出力デジタル電圧値が、測定対象のアナログ電圧がとりえないような高い電圧値又は低い電圧値を示していたならば、即ち、上記電圧範囲内に収まっていない場合は、異常であると検知する必要がある。一方で、AD変換器の出力電圧値が、上記電圧範囲内に収まっているものの実際の値とは異なる値となる(以後、精度異常とも呼ぶ)といったような種類の故障も存在する。このような故障を、以後インレンジ故障と呼ぶ。 Therefore, if the output digital voltage value of the AD converter indicates a high voltage value or a low voltage value that cannot be taken by the analog voltage to be measured, that is, if it is not within the above voltage range, It is necessary to detect that it is abnormal. On the other hand, there is a type of failure in which the output voltage value of the AD converter falls within the voltage range but is different from the actual value (hereinafter also referred to as an accuracy error). Such a failure is hereinafter referred to as an in-range failure.
 例えば、測定対象がリチウムイオン二次電池である場合、リチウムイオン二次電池の過充電及び過放電の目安となる電圧値として、例えば、約4.0V及び約2.0V(ボルト)が採用される。従って、AD変換器の出力電圧値が4.0Vを超える場合又は2.0Vを下回る場合は、過充電又は過放電の異常を検出する。しかしながら、測定対象の実際の電圧値が3.6Vである時に、AD変換器の異常によってAD変換器の出力電圧値が3.3Vを示している場合、AD変換器以降の制御系は測定対象の電圧値が3.3Vであると認識して制御を行なってしまう。3.6Vを3.3Vと誤検出させる精度異常は、インレンジ故障の一種である。 For example, when the measurement target is a lithium ion secondary battery, for example, about 4.0 V and about 2.0 V (volts) are adopted as voltage values that serve as a standard for overcharge and overdischarge of the lithium ion secondary battery. The Therefore, when the output voltage value of the AD converter exceeds 4.0 V or falls below 2.0 V, an overcharge or overdischarge abnormality is detected. However, when the actual voltage value of the measurement target is 3.6 V, if the output voltage value of the AD converter indicates 3.3 V due to an abnormality of the AD converter, the control system after the AD converter is the measurement target. Control is performed by recognizing that the voltage value of 3.3V is 3.3V. An accuracy abnormality that misdetects 3.6V as 3.3V is a kind of in-range failure.
 図13に、このようなインレンジ故障の検出に寄与する電圧検出装置900の全体ブロック図を示す(例えば、下記特許文献1参照)。図14は、電圧入力切替部911の等価回路図を含む、電圧検出装置900の一部を表すブロック図である。電圧検出装置900では、測定対象のアナログ電圧のアナログ電圧信号が伝播される電圧検出線910をマルチプレクサ等から成る電圧入力切替部911の1つの入力端子に接続する一方で、電圧入力切替部911の他方の入力端子に既知の基準電圧値を有する基準電圧を入力する。電圧入力切替部911における選択動作により、測定対象のアナログ電圧と基準電圧が時分割でAD変換器912に入力される。比較器913は、基準電圧をAD変換器912に入力している時におけるAD変換器912の出力電圧値と基準電圧値との差から、インレンジ故障の有無を検出することができる。即ち、その差の絶対値が所定の閾値(例えば、10mV)以上であれば、精度異常があるとしてインレンジ故障が発生していると判断することができる。 FIG. 13 shows an overall block diagram of a voltage detection apparatus 900 that contributes to the detection of such an in-range failure (for example, see Patent Document 1 below). FIG. 14 is a block diagram showing a part of the voltage detection device 900 including an equivalent circuit diagram of the voltage input switching unit 911. In the voltage detection device 900, the voltage detection line 910 through which the analog voltage signal of the analog voltage to be measured is propagated is connected to one input terminal of the voltage input switching unit 911 composed of a multiplexer or the like. A reference voltage having a known reference voltage value is input to the other input terminal. By the selection operation in the voltage input switching unit 911, the analog voltage to be measured and the reference voltage are input to the AD converter 912 in a time division manner. The comparator 913 can detect the presence or absence of an in-range failure from the difference between the output voltage value of the AD converter 912 and the reference voltage value when the reference voltage is input to the AD converter 912. That is, if the absolute value of the difference is equal to or greater than a predetermined threshold (for example, 10 mV), it can be determined that an in-range failure has occurred due to an abnormality in accuracy.
 他方、AD変換器により変換された測定値と、この測定値から2つの領域レベルに量子化された所定信号レベルの信号とを比較し、それらの信号値の間に許容範囲以上の偏差が検出されたときに、測定値検出の範囲内のエラー状態を検出する方法も開示されている(例えば、下記特許文献2参照)。 On the other hand, the measured value converted by the AD converter is compared with a signal of a predetermined signal level quantized into two region levels from this measured value, and a deviation exceeding the allowable range is detected between these signal values. A method for detecting an error state within the range of detection of a measured value when it is performed is also disclosed (for example, see Patent Document 2 below).
特開平10-209864号公報JP-A-10-209864 特開平8-303292号公報JP-A-8-303292
 しかしながら、電圧検出装置900の回路構成では、電圧検出線910及びAD変換器912間に介在する、電圧入力切替部911内のスイッチ部920に異常があった場合、それを検出することはできない。例えば、スイッチ部920におけるオン抵抗が異常に高い場合やスイッチ部920におけるリーク電流が異常に高い場合、測定対象の電圧値が真の値よりも低めに検出されてしまうが、基準電圧のAD変換結果はスイッチ部911に関与しないため、スイッチ部920に関するインレンジ故障を検出することはできない。 However, in the circuit configuration of the voltage detection device 900, when there is an abnormality in the switch unit 920 in the voltage input switching unit 911 that is interposed between the voltage detection line 910 and the AD converter 912, it cannot be detected. For example, when the on-resistance in the switch unit 920 is abnormally high or the leakage current in the switch unit 920 is abnormally high, the voltage value to be measured is detected lower than the true value, but AD conversion of the reference voltage Since the result is not related to the switch unit 911, an in-range failure relating to the switch unit 920 cannot be detected.
 また、リチウムイオン二次電池等の測定対象を短絡から保護したり、電圧検出装置をサージから保護すべく、電圧検出線910と測定対象との間に、保護抵抗やサージ保護素子等を含む保護回路が設けられることも多いが、電圧検出装置900の回路構成では、その保護回路における故障(例えば、保護抵抗の抵抗値異常やサージ保護素子のリーク電流異常)を検出することもできない。 In addition, in order to protect a measurement object such as a lithium ion secondary battery from a short circuit or to protect a voltage detection device from a surge, a protection including a protective resistor or a surge protection element is provided between the voltage detection line 910 and the measurement object. Although a circuit is often provided, the circuit configuration of the voltage detection device 900 cannot detect a failure in the protection circuit (for example, an abnormal resistance value of the protective resistor or an abnormal leakage current of the surge protection element).
 尚、特許文献2の方法は、AD変換器出力の異常検知のためには、所定レベルのレベル信号を出力する構成が新たに必要となる。 Note that the method of Patent Document 2 newly requires a configuration for outputting a level signal of a predetermined level in order to detect an abnormality in the AD converter output.
 そこで本発明は、インレンジ故障が検出可能でありインレンジ故障の検出時に適切な措置を講じえ、かつ、インレンジ故障検出のための新たな構成の追加を低減させるなどすることで、構成の複雑化およびコスト増加を抑制させた電池システム及び電池制御装置を提供することを目的とする。また本発明は、そのような電池システムを利用した電動車両、移動体、電力貯蔵装置及び電源装置を提供することを目的とする。 Therefore, the present invention can detect an in-range failure, take appropriate measures when detecting an in-range failure, and reduce the addition of a new configuration for in-range failure detection. An object of the present invention is to provide a battery system and a battery control device in which complexity and cost increase are suppressed. Another object of the present invention is to provide an electric vehicle, a moving body, a power storage device, and a power supply device using such a battery system.
 本発明に係る電池システムは、充電可能な電池と、前記電池のアナログ電圧値の信号であるアナログ電圧信号の入力を受けて、前記電池のアナログ電圧信号をデジタル電圧信号に変換して出力するAD変換機能を有する電圧検出部と、前記アナログ電圧信号の入力を受けて前記電池の過充電および過放電を検出する過充電過放電検出回路を含み、前記過充電過放電検出回路からの出力を用いて前記電池のアナログ電圧値の電圧レベルを判定して判定結果を出力する電圧レベル判定部と、前記電圧検出部の出力及び前記電圧レベル判定部の出力を比較した結果から、前記デジタル電圧信号の電圧値が、前記電池が過充電状態にある電圧であることを表す第1閾値から前記電池が過放電状態にある電圧であることを表す第2閾値までの範囲である所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する故障検出部を備えたことを特徴とする。 The battery system according to the present invention receives an input of a rechargeable battery and an analog voltage signal that is an analog voltage value signal of the battery, converts the analog voltage signal of the battery into a digital voltage signal, and outputs AD A voltage detection unit having a conversion function; and an overcharge / overdischarge detection circuit that receives an input of the analog voltage signal to detect overcharge and overdischarge of the battery, and uses an output from the overcharge / overdischarge detection circuit The voltage level determination unit that determines the voltage level of the analog voltage value of the battery and outputs a determination result, and the result of comparing the output of the voltage detection unit and the output of the voltage level determination unit, The voltage value ranges from a first threshold value indicating that the battery is in an overcharged state to a second threshold value indicating that the battery is in an overdischarged state. Characterized by comprising a failure detecting section detecting a failure of the voltage detection unit in a state in which within a predetermined voltage range.
 このように、AD変換機能を有する電圧検出部とは別個に電圧レベル判定部を設けておき、電圧検出部の出力(即ち、例えば電圧検出部に含まれるAD変換器の出力等)と電圧レベル判定部の出力の双方を参照するようにすれば、インレンジ故障とも言うべき、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を、故障要因によらず検出できるようになる。また、アナログ電圧信号の入力を受けて、前記電池の過充電および過放電を検出する過充電過放電検出回路を含むことから、インレンジ故障検出のための新たな構成の追加を低減させることができ、構成の複雑化およびコスト増加を抑制させた電池システム及び電池制御装置を提供することができる。 In this way, the voltage level determination unit is provided separately from the voltage detection unit having the AD conversion function, and the output of the voltage detection unit (that is, the output of the AD converter included in the voltage detection unit, for example) and the voltage level If both the outputs of the determination unit are referred to, the failure of the voltage detection unit in the state where the voltage value of the digital voltage signal is within the predetermined voltage range, which should be called an in-range failure, Can be detected regardless. In addition, since it includes an overcharge / overdischarge detection circuit that receives an analog voltage signal and detects overcharge and overdischarge of the battery, the addition of a new configuration for in-range failure detection can be reduced. It is possible to provide a battery system and a battery control device capable of suppressing the complexity of the configuration and the increase in cost.
 具体的に例えば、前記電圧レベル判定部の前記過充電過放電検出回路は、前記電池のアナログ電圧値と前記第1の閾値である基準電圧と比較する第1の比較器と、前記電池のアナログ電圧値と過放電判定用の前記第2の閾値である基準電圧と比較する第2の比較器を備え、前記電圧レベル判定部は、前記過充電過放電検出回路に加えて、前記電池のアナログ電圧値を前記所定電圧範囲内の所定基準電圧と比較する第3の比較器を含んでもよい。すなわち前記過充電過放電検出回路は、前記測定対象アナログ電圧値と基準電圧と比較する比較器である第1の比較器および第2の比較器を含み、前記第1の比較器は、前記電池のアナログ電圧値と過充電判定用の基準電圧と比較する前記比較器であり、前記第2の比較器は、前記電池のアナログ電圧値と過放電判定用の基準電圧と比較する前記比較器であり、前記電圧レベル判定部は、前記過充電過放電検出回路に加えて前記電池のアナログ電圧値を前記所定電圧範囲内の所定基準電圧と比較する前記比較器である第3の比較器を含む。 Specifically, for example, the overcharge / overdischarge detection circuit of the voltage level determination unit includes a first comparator that compares an analog voltage value of the battery with a reference voltage that is the first threshold, and an analog of the battery. A second comparator that compares a voltage value with a reference voltage that is the second threshold value for overdischarge determination, and the voltage level determination unit includes an analog of the battery in addition to the overcharge / overdischarge detection circuit. A third comparator that compares a voltage value with a predetermined reference voltage within the predetermined voltage range may be included. That is, the overcharge / overdischarge detection circuit includes a first comparator and a second comparator that are comparators for comparing the analog voltage value to be measured with a reference voltage, and the first comparator includes the battery. The comparator compares the analog voltage value of the battery with the reference voltage for overcharge determination, and the second comparator compares the analog voltage value of the battery with the reference voltage for overdischarge determination. In addition to the overcharge / overdischarge detection circuit, the voltage level determination unit includes a third comparator which is the comparator that compares the analog voltage value of the battery with a predetermined reference voltage within the predetermined voltage range. .
 このように、過充電過放電検出回路は、前記測定対象アナログ電圧と基準電圧と比較する比較器を含み、電池のアナログ電圧と過充電判定用の基準電圧と比較する前記比較器である第1の比較器、前記電池のアナログ電圧と過放電判定用の基準電圧と比較する前記比較器である前記第2の比較器を含むことでインレンジ故障とも言うべき、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を、故障要因によらず検出することが可能となる。また、前記所定電圧範囲内の所定基準電圧と比較する前記比較器である第3の比較器を含むことでインレンジ内(所定電圧範囲内)における故障を検出することが可能となる。 As described above, the overcharge / overdischarge detection circuit includes the comparator that compares the analog voltage to be measured with the reference voltage, and is the first comparator that compares the analog voltage of the battery with the reference voltage for overcharge determination. The voltage value of the digital voltage signal that should be said to be an in-range failure by including the second comparator that is the comparator for comparing the analog voltage of the battery and the reference voltage for overdischarge determination It becomes possible to detect a failure of the voltage detection unit in a state of being within the predetermined voltage range regardless of the failure factor. Further, it is possible to detect a failure in the in-range (within the predetermined voltage range) by including a third comparator which is the comparator for comparing with a predetermined reference voltage within the predetermined voltage range.
 更に具体的には例えば、前記故障検出部により前記故障が検出された際、前記電池の放電に制限を加える、或いは、前記電池の充電に制限を加える、或いは、前記電池の放電及び充電に制限を加える制御部と、を備えてもよい。その故障の検出時に、電池の放電に制限を加える、或いは、電池の充電に制限を加える、或いは、電池の放電及び充電に制限を加えるようにすることで、安全なシステムを形成することが可能となる。 More specifically, for example, when the failure is detected by the failure detection unit, the discharge of the battery is restricted, the charge of the battery is restricted, or the discharge and the charge of the battery are restricted. And a control unit for adding. When a failure is detected, a safe system can be formed by limiting the discharge of the battery, limiting the charging of the battery, or limiting the discharging and charging of the battery. It becomes.
 また具体的には例えば前記制御部は、前記故障検出部により前記故障が検出された際、前記電池の充電を禁止する一方で前記電池の放電を許可してもよい。 More specifically, for example, when the failure is detected by the failure detection unit, the control unit may prohibit charging of the battery while permitting discharge of the battery.
 電池の過充電は、安全上、回避の重要性が高い。そこで、上述の如く、故障検出部による故障の検出時には電池の充電を禁止すると良い。一方で、電池の放電は許可することで、過充電を避けつつ電圧源から電力を取り出すことが可能となる。 ∙ Battery overcharge is highly important for safety. Therefore, as described above, charging of the battery may be prohibited when a failure is detected by the failure detection unit. On the other hand, by permitting discharge of the battery, it is possible to extract electric power from the voltage source while avoiding overcharging.
 更に具体的には例えば、前記制御部は、前記故障検出部により前記故障が検出された際、前記電圧検出部の出力に基づく電圧値と前記電圧レベル判定部の出力に基づく電圧値の内、小さい方の電圧値を前記電池の出力電圧値として用いた上で、前記電池の放電を制御する。 More specifically, for example, when the failure is detected by the failure detection unit, the control unit, among the voltage value based on the output of the voltage detection unit and the voltage value based on the output of the voltage level determination unit, The discharge of the battery is controlled after using the smaller voltage value as the output voltage value of the battery.
 小さい方の電圧値を電池の出力電圧値として用いた上で電池の放電を制御することで、電池の過放電は発生しにくくなる。即ち、上記故障の検出時における放電制御を、より安全に成すことが可能となる。 By controlling the discharge of the battery after using the smaller voltage value as the output voltage value of the battery, overdischarge of the battery is less likely to occur. That is, the discharge control at the time of detecting the failure can be performed more safely.
 また具体的には例えば、前記電池の前記アナログ電圧信号が伝播し、前記電圧検出部と前記電圧レベル判定部に接続される電圧検出線を備え、前記アナログ電圧信号を前記電圧検出部と前記電圧レベル判定部へ個別に導くための分岐点が前記電圧検出線上に設けられ、前記電圧検出部は、前記分岐点と前記電圧検出部との間に設けられた保護回路部を含み、前記故障検出部による前記故障の検出対象には、前記電圧検出部だけでなく前記保護回路部も含まれる。 More specifically, for example, the analog voltage signal of the battery propagates and includes a voltage detection line connected to the voltage detection unit and the voltage level determination unit, and the analog voltage signal is connected to the voltage detection unit and the voltage. A branch point for individually leading to a level determination unit is provided on the voltage detection line, and the voltage detection unit includes a protection circuit unit provided between the branch point and the voltage detection unit, and the failure detection The failure detection targets by the unit include not only the voltage detection unit but also the protection circuit unit.
 また具体的には例えば、前記電池のアナログ電圧は、複数の電池のアナログ電圧から成り、前記電圧検出部は、前記複数の電池のアナログ電圧を表す複数のアナログ電圧信号を択一的に前記電圧検出部に与える電圧入力切替部を更に有し、かつ、前記電圧検出部は、前記電圧入力切替部から順次与えられる各アナログ電圧信号をデジタル電圧信号に変換して出力し、前記電圧レベル判定部は、前記複数のアナログ電圧信号の入力を受けて前記所定電圧範囲内において各電池のアナログ電圧値の電圧レベルを判定して判定結果を出力し、前記故障検出部は、前記電圧検出部の出力及び前記電圧レベル判定部の出力に基づき、各デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出してもよい。 More specifically, for example, the analog voltage of the battery is composed of analog voltages of a plurality of batteries, and the voltage detector alternatively selects a plurality of analog voltage signals representing the analog voltages of the plurality of batteries. A voltage input switching unit provided to the detection unit; and the voltage detection unit converts each analog voltage signal sequentially applied from the voltage input switching unit into a digital voltage signal and outputs the digital voltage signal, and the voltage level determination unit Receives the input of the plurality of analog voltage signals, determines the voltage level of the analog voltage value of each battery within the predetermined voltage range, and outputs a determination result, and the failure detection unit outputs the voltage detection unit And a failure of the voltage detection unit in a state where the voltage value of each digital voltage signal is within the predetermined voltage range based on the output of the voltage level determination unit. .
 上記構成により、複数の電池を使用する場合でも、AD変換器を含む電圧検出部とは別個に電圧レベル判定部を設けておき、電圧検出部の出力(即ちAD変換器の出力)と電圧レベル判定部の出力の双方を参照するようにすることで、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障(インレンジ故障)を、故障要因によらず検出できるようになる。また、アナログ電圧信号の入力を受けて、前記電池の過充電および過放電を検出する過充電過放電検出回路を含むことから、インレンジ故障検出のための新たな構成の追加を低減させることができ、構成の複雑化およびコスト増加を抑制させた電池システム及び電池制御装置を提供することができる。 With the above configuration, even when a plurality of batteries are used, a voltage level determination unit is provided separately from the voltage detection unit including the AD converter, and the output of the voltage detection unit (that is, the output of the AD converter) and the voltage level By referring to both the outputs of the determination unit, a failure of the voltage detection unit (in-range failure) in a state where the voltage value of the digital voltage signal is within the predetermined voltage range is used as a failure factor. It can be detected regardless. In addition, since it includes an overcharge / overdischarge detection circuit that receives an analog voltage signal and detects overcharge and overdischarge of the battery, the addition of a new configuration for in-range failure detection can be reduced. It is possible to provide a battery system and a battery control device capable of suppressing the complexity of the configuration and the increase in cost.
 この場合例えば、前記電圧レベル判定部は、各測定対象アナログ電圧を前記所定電圧範囲内の所定基準電圧と比較する比較器を含み、前記故障検出部は、前記比較器の出力が変化するタイミングにおいて前記電圧検出部の出力と前記電圧レベル判定部の出力を対比することで、各デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出してもよい。 In this case, for example, the voltage level determination unit includes a comparator that compares each measurement target analog voltage with a predetermined reference voltage within the predetermined voltage range, and the failure detection unit has a timing at which the output of the comparator changes. By comparing the output of the voltage detection unit and the output of the voltage level determination unit, it is possible to detect a failure of the voltage detection unit in a state where the voltage value of each digital voltage signal is within the predetermined voltage range. Good.
 そして例えば、前記複数のアナログ電圧信号を前記電圧検出部と前記電圧レベル判定部へ個別に導くための分岐点が各電圧検出線上に設けられ、前記電圧検出部は、前記分岐点と前記電圧検出部との間に設けられた保護回路部を含み、前記電圧入力切替部は、前記保護回路部に含まれ、前記故障検出部による前記故障の検出対象には、前記電圧検出部だけでなく前記保護回路部も含まれる。 For example, a branch point for individually guiding the plurality of analog voltage signals to the voltage detection unit and the voltage level determination unit is provided on each voltage detection line, and the voltage detection unit includes the branch point and the voltage detection unit. The voltage input switching unit is included in the protection circuit unit, and the failure detection target by the failure detection unit includes not only the voltage detection unit but also the voltage detection unit. A protection circuit section is also included.
 また例えば、前記電池の前記アナログ電圧信号が伝播し、前記電圧検出部と前記電圧レベル判定部に接続される電圧検出線を備え、前記アナログ電圧信号を前記電圧検出部と前記電圧レベル判定部へ個別に導くための分岐点を前記電圧検出線上に設け、前記電池及び前記分岐点間の配線を通る電流の流れを抑制するための電流抑制素子を前記配線上に設けてもよい。 For example, the analog voltage signal of the battery propagates and includes a voltage detection line connected to the voltage detection unit and the voltage level determination unit, and the analog voltage signal is transmitted to the voltage detection unit and the voltage level determination unit. A branch point for individually guiding may be provided on the voltage detection line, and a current suppressing element for suppressing a current flow through the wiring between the battery and the branch point may be provided on the wiring.
 これにより、電圧検出線が短絡した場合等において、電圧源から大きな短絡電流が電圧検出線を介して流れることが抑制される。 This prevents a large short-circuit current from flowing through the voltage detection line when the voltage detection line is short-circuited.
 本発明に係る電動車両は、前記電池システムを搭載し、前記電池システムにおける前記電池を駆動源として走行することを特徴とする。 The electric vehicle according to the present invention includes the battery system and travels using the battery in the battery system as a drive source.
 尚、前記電動車両は、電池システムにおける電池のみではなく、電池以外のエネルギー源をも駆動源として用いた上で走行するものであっても良い。 Note that the electric vehicle may travel using not only the battery in the battery system but also an energy source other than the battery as a drive source.
 また例えば、本発明に係る電動車両は、前記電池システム内の前記電圧検出装置を用いて当該電動車両の走行を制御する走行制御部を備えている。そして、前記走行制御部は、前記電池システム内の前記故障検出部によって前記電圧検出部の故障が検出されたとき、前記電圧検出部の出力に基づく電圧値と前記電圧レベル判定部の出力に基づく電圧値の内、小さい方の電圧値を前記電池の出力電圧値として用いた上で当該電動車両の走行を制御するようにしてもよい。 For example, the electric vehicle according to the present invention includes a travel control unit that controls the travel of the electric vehicle using the voltage detection device in the battery system. The travel control unit is based on the voltage value based on the output of the voltage detection unit and the output of the voltage level determination unit when a failure of the voltage detection unit is detected by the failure detection unit in the battery system. You may make it control driving | running | working of the said electric vehicle, after using the smaller voltage value as an output voltage value of the said battery among voltage values.
 また例えば、本発明に係る移動体は、前記電池システムと、移動本体部と、前記電池システム内の電池からの電力を動力に変換する動力源と、前記動力源からの前記動力により前記移動本体部を移動させる駆動部と、を備えたことを特徴とする。 Further, for example, the moving body according to the present invention includes the battery system, the moving main body, a power source that converts electric power from the battery in the battery system into power, and the moving main body by the power from the power source. And a drive unit for moving the unit.
 また例えば、本発明に係る電力貯蔵装置は、前記電池システムと、前記電池システム内の電池の充電又は放電に関する制御を行う充放電制御ユニットと、を備えたことを特徴とする。 For example, the power storage device according to the present invention includes the battery system and a charge / discharge control unit that performs control related to charging or discharging of the battery in the battery system.
 また例えば、本発明に係る電源装置は、前記電力貯蔵装置と、前記電力貯蔵装置内の充放電制御ユニットの制御の下で、前記電力貯蔵装置内の電池と外部機器又は電力系統との間における電力変換を行う電力変換装置と、を備え、前記外部機器又は前記電力系統と接続可能であることを特徴とする。 Further, for example, the power supply device according to the present invention is provided between the battery in the power storage device and an external device or a power system under the control of the power storage device and a charge / discharge control unit in the power storage device. And a power conversion device that performs power conversion, and is connectable to the external device or the power system.
 上記のように移動体、電力貯蔵装置又は電源装置を構成すれば、インレンジ故障とも言うべき、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を、故障要因によらず検出できるようになる。また、上述の電池システムと同様、移動体、電力貯蔵装置又は電源装置における構成の複雑化及びコスト増加を抑制させることができる。 If the mobile body, the power storage device or the power supply device is configured as described above, the voltage detection unit in the state where the voltage value of the digital voltage signal is within the predetermined voltage range, which should be called an in-range failure. Can be detected regardless of the failure factor. Further, similarly to the battery system described above, it is possible to suppress a complicated configuration and an increase in cost in the mobile object, the power storage device, or the power supply device.
 本発明に係る電池制御装置は、測定対象アナログ電圧のアナログ電圧信号をデジタル電圧信号に変換して出力するAD変換器を含む電圧検出部、前記アナログ電圧信号が伝播される電圧検出線に接続され、前記測定対象アナログ電圧の電圧レベルを判定して判定結果を出力する電圧レベル判定部、及び、前記電圧検出部の出力及び前記電圧レベル判定部の出力に基づき、前記デジタル電圧信号の電圧値が所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する故障検出部を備えた電圧検出装置と、前記故障検出部により前記故障が検出された際、前記測定対象アナログ電圧の電圧源としての電池の放電に制限を加える、或いは、前記電池の充電に制限を加える、或いは、前記電池の放電及び充電に制限を加える制御部と、を備えたことを特徴とする。 The battery control device according to the present invention is connected to a voltage detection unit including an AD converter that converts an analog voltage signal of a measurement target analog voltage into a digital voltage signal and outputs the digital voltage signal, and a voltage detection line through which the analog voltage signal is propagated. A voltage level determination unit that determines a voltage level of the analog voltage to be measured and outputs a determination result; and the voltage value of the digital voltage signal is based on the output of the voltage detection unit and the output of the voltage level determination unit. A voltage detection device including a failure detection unit that detects a failure of the voltage detection unit in a state of being within a predetermined voltage range; and when the failure is detected by the failure detection unit, the voltage of the measurement target analog voltage Control unit for limiting the discharge of the battery as a source, or limiting the charging of the battery, or limiting the discharging and charging of the battery , Characterized by comprising a.
 本発明に係る他の電池制御装置は、所定電圧範囲内に収まることが想定される測定対象アナログ電圧のアナログ電圧信号をデジタル電圧信号に変換して出力するAD変換器を含む電圧検出部、前記アナログ電圧信号が伝播される電圧検出線に接続され、前記所定電圧範囲内において前記測定対象アナログ電圧の電圧レベルを判定して判定結果を出力する電圧レベル判定部、及び、前記電圧検出部の出力及び前記電圧レベル判定部の出力に基づき、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する故障検出部を備えた電圧検出装置と、前記故障検出部により前記故障が検出された際、前記測定対象アナログ電圧の電圧源としての電池の放電に制限を加える、或いは、前記電池の充電に制限を加える、或いは、前記電池の放電及び充電に制限を加える制御部と、を備えたことを特徴とする。 Another battery control device according to the present invention includes a voltage detection unit including an AD converter that converts an analog voltage signal of a measurement target analog voltage assumed to be within a predetermined voltage range into a digital voltage signal and outputs the digital voltage signal, A voltage level determination unit that is connected to a voltage detection line through which an analog voltage signal is propagated, determines a voltage level of the measurement target analog voltage within the predetermined voltage range, and outputs a determination result; and an output of the voltage detection unit And a voltage detection device including a failure detection unit that detects a failure of the voltage detection unit in a state where the voltage value of the digital voltage signal is within the predetermined voltage range based on the output of the voltage level determination unit; When the failure is detected by the failure detection unit, a limit is imposed on discharging of the battery as a voltage source of the measurement target analog voltage, or the battery To limit the charging, or characterized by comprising a control unit to restrict the discharge and charge of the battery.
 このように、AD変換器を含む電圧検出部とは別個に電圧レベル判定部を設けておき、電圧検出部の出力と電圧レベル判定部の出力の双方を参照するようにすれば、インレンジ故障とも言うべき、前記デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を、故障要因によらず正確に検出できるようになる。更に、その故障の検出時に、電池の放電に制限を加える、或いは、電池の充電に制限を加える、或いは、電池の放電及び充電に制限を加えるようにすることで、安全なシステムを形成することが可能となる。 In this way, if a voltage level determination unit is provided separately from the voltage detection unit including the AD converter and both the output of the voltage detection unit and the output of the voltage level determination unit are referred to, an in-range failure will occur. In other words, a failure of the voltage detection unit in a state where the voltage value of the digital voltage signal is within the predetermined voltage range can be accurately detected regardless of the failure factor. Furthermore, when a failure is detected, a safe system is formed by limiting the discharge of the battery, limiting the charging of the battery, or limiting the discharging and charging of the battery. Is possible.
 本発明によれば、インレンジ故障が検出可能でありインレンジ故障の検出時に適切な措置を講じえ、かつ、構成の複雑化およびコスト増加を抑制させた電池システム、電池制御装置、電動車両、移動体、電力貯蔵装置及び電源装置を提供することが可能となる。 According to the present invention, a battery system, a battery control device, an electric vehicle, which can detect an in-range failure, can take appropriate measures at the time of detecting the in-range failure, and suppress the complexity and cost increase of the configuration, It becomes possible to provide a mobile object, a power storage device, and a power supply device.
 本発明の意義ないし効果は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。 The significance or effect of the present invention will be further clarified by the following description of embodiments. However, the following embodiment is merely one embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the following embodiment. .
本発明の第1実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。1 is a block diagram of a voltage detection device and a portion associated therewith according to a first embodiment of the present invention. 図1のAD前段部の内部回路の例を示す図である。It is a figure which shows the example of the internal circuit of AD front stage part of FIG. インレンジ故障の故障箇所及び故障要因を列挙した図である。It is the figure which enumerated the failure location and failure factor of an in-range failure. 図1の電圧レベル判定部の内部回路を示す図である。It is a figure which shows the internal circuit of the voltage level determination part of FIG. 本発明の第2実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。It is a block diagram of the voltage detection apparatus which concerns on 2nd Embodiment of this invention, and the site | part accompanying it. 図5の保護回路の内部回路を示す図である。It is a figure which shows the internal circuit of the protection circuit of FIG. 本発明の第3実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。It is a block diagram of the voltage detection apparatus which concerns on 3rd Embodiment of this invention, and the site | part accompanying it. 図7の電圧レベル判定部の内部構成の第1例を示す図である。It is a figure which shows the 1st example of an internal structure of the voltage level determination part of FIG. 図7の電圧レベル判定部の内部構成の第2例を示す図である。It is a figure which shows the 2nd example of an internal structure of the voltage level determination part of FIG. 本発明の第3実施形態に係るパルス変換回路を説明するための図である。It is a figure for demonstrating the pulse converter circuit which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る電池システムのブロック図である。It is a block diagram of the battery system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る電動車両の構成図である。It is a block diagram of the electric vehicle which concerns on 5th Embodiment of this invention. 従来の電圧検出装置の全体ブロック図である。It is a whole block diagram of the conventional voltage detection apparatus. 図13の電圧入力切替部の等価回路図を含む、電圧検出装置の一部ブロック図である。It is a partial block diagram of a voltage detection apparatus including the equivalent circuit schematic of the voltage input switching part of FIG. 本発明の第6実施形態に係る電池システムの動作フローチャートである。It is an operation | movement flowchart of the battery system which concerns on 6th Embodiment of this invention. 本発明の第6及び第7実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。It is a block diagram of the voltage detection apparatus which concerns on 6th and 7th embodiment of this invention, and the site | part accompanying it. 本発明の第7実施形態に係る電池システムの動作フローチャートである。It is an operation | movement flowchart of the battery system which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。It is a block diagram of the voltage detection apparatus which concerns on 8th Embodiment of this invention, and the site | part accompanying it. 本発明に係る構成に電池制御装置が内在している様子を示す図である。It is a figure which shows a mode that the battery control apparatus is inherent in the structure which concerns on this invention. 複数の電圧源と負荷及び充電回路との接続関係の変形例を示す図である。It is a figure which shows the modification of the connection relation of a several voltage source, load, and a charging circuit. (a1)、(a2)、(b1)及び(b2)は、本発明に係る構成と従来の構成を比較する図である。(A1), (a2), (b1) and (b2) are diagrams for comparing the configuration according to the present invention with the conventional configuration. (a1)、(a2)、(b1)及び(b2)は、本発明に係る構成と従来の構成を比較する図である。(A1), (a2), (b1) and (b2) are diagrams for comparing the configuration according to the present invention with the conventional configuration. 本発明の第9実施形態に係る電動車両のブロック図である。It is a block diagram of the electric vehicle which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る電源装置のブロック図である。It is a block diagram of the power supply device which concerns on 10th Embodiment of this invention.
 以下、本発明の実施の形態につき、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。以下に第1~第10実施形態を説明するが、矛盾なき限り、或る実施形態の説明において記載した事項を他の実施形態に適用することもできる。
<<第1実施形態>>
 本発明の第1実施形態に係る電圧検出装置を説明する。第1実施形態では、電圧の測定対象が1つであって且つ測定対象を短絡等から保護するための保護回路が電圧検出装置に設けられていないことを想定する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In each of the drawings to be referred to, the same part is denoted by the same reference numeral, and redundant description regarding the same part is omitted in principle. The first to tenth embodiments will be described below. However, as long as there is no contradiction, the matters described in the description of a certain embodiment can be applied to other embodiments.
<< First Embodiment >>
A voltage detection apparatus according to a first embodiment of the present invention will be described. In the first embodiment, it is assumed that there is one voltage measurement target and no protection circuit for protecting the measurement target from a short circuit or the like is provided in the voltage detection device.
 図1に、第1実施形態に係る電圧検出装置1の内部ブロック図を示す。図1には、電圧検出装置1に接続される他の要素も示されている。電圧検出装置1は、符号11~15によって参照される各部位を備える。図1において、符号2は、電圧の測定対象としての電圧源を表す。本実施形態及び後述の各実施形態においては、特に述べない限り、測定対象は充電可能なリチウムイオン二次電池(以下、LIBと表記する)であるとする。 FIG. 1 shows an internal block diagram of the voltage detection apparatus 1 according to the first embodiment. FIG. 1 also shows other elements connected to the voltage detection device 1. The voltage detection apparatus 1 includes each part referred to by reference numerals 11 to 15. In FIG. 1, reference numeral 2 denotes a voltage source as a voltage measurement target. In this embodiment and each of the embodiments described later, it is assumed that a measurement target is a rechargeable lithium ion secondary battery (hereinafter referred to as LIB) unless otherwise specified.
 符号3は、電圧源2の出力電圧にて駆動する負荷を表し、符号4は、電圧源2を充電するための充電回路を表す。符号5は、充電回路4を用いた電圧源2の充電及び負荷3に対する電圧源2の放電(即ち、電圧源2から負荷3への電力出力)を制御するための充放電制御部を表す。尚、電圧源2の出力電圧を記号Voによって表現することもある。 Numeral 3 represents a load driven by the output voltage of the voltage source 2, and numeral 4 represents a charging circuit for charging the voltage source 2. Reference numeral 5 represents a charge / discharge control unit for controlling charging of the voltage source 2 using the charging circuit 4 and discharging of the voltage source 2 with respect to the load 3 (that is, power output from the voltage source 2 to the load 3). The output voltage of the voltage source 2 may be expressed by the symbol Vo.
 電圧源2と負荷3及び充電回路4とを接続する環状の主電力線20から、電圧源2の正出力端子に接続された電圧検出線21が引き出されている。電圧源2の負出力端子は基準電位点6に接続されている。符号11~15によって参照される各部位は、基準電位点7における電位を基準にして動作する。 A voltage detection line 21 connected to the positive output terminal of the voltage source 2 is drawn out from an annular main power line 20 that connects the voltage source 2 to the load 3 and the charging circuit 4. The negative output terminal of the voltage source 2 is connected to the reference potential point 6. Each part referred to by reference numerals 11 to 15 operates based on the potential at the reference potential point 7.
 電圧検出装置1は、電圧検出線21上のアナログ電圧信号から、電圧源2の正出力端子及び負出力端子間の電圧(即ち、電圧源2の出力電圧Vo)を検出する。電圧検出線21は分岐点22にて2つに分岐しており、一方はAD前段部11に接続され且つ他方は電圧レベル判定部13に接続される。分岐点22からAD前段部11に向かう電圧検出線を符号23によって参照し、分岐点22から電圧レベル判定部13に向かう電圧検出線を符号24によって参照する。従って、電圧源2の出力電圧Voを表すアナログ電圧信号は、電圧検出線21を伝播した後、分岐点22にて分岐し、更に電圧検出線23及び24上を伝播する。 The voltage detection device 1 detects the voltage between the positive output terminal and the negative output terminal of the voltage source 2 (that is, the output voltage Vo of the voltage source 2) from the analog voltage signal on the voltage detection line 21. The voltage detection line 21 is branched into two at a branch point 22, one connected to the AD pre-stage unit 11 and the other connected to the voltage level determination unit 13. A voltage detection line from the branch point 22 toward the AD pre-stage unit 11 is referred to by reference numeral 23, and a voltage detection line from the branch point 22 to the voltage level determination unit 13 is referred to by reference numeral 24. Therefore, the analog voltage signal representing the output voltage Vo of the voltage source 2 propagates through the voltage detection line 21, branches at the branch point 22, and further propagates on the voltage detection lines 23 and 24.
 AD前段部11は、自身の入力端子11INに加わったアナログ電圧をAD変換器12の入力端子12INに伝達するためのバッファ回路であり、例えば、差動アンプや、図2に示すような回路構成を有するフライングキャパシタから構成される。AD前段部11から伝達されて入力端子12INに加わる電圧は基準電位点7の電位を基準とする電圧である一方、入力端子11INに加わるアナログ電圧は基準電位点6の電位を基準とする電圧である。基準電位点6及び7の電位は一致していても不一致であっても良いが、今、説明の簡単化のため、両者の電位が同じである場合を考える。この場合、入力端子11INに加わるアナログ電圧とは、基準電位点6及び7の電位を基準とする、電圧検出線23上の電圧である。AD前段部11に差動アンプやフライングキャパシタを用いれば、両者の電位の一致性は要求されない。 The AD pre-stage unit 11 is a buffer circuit for transmitting an analog voltage applied to its own input terminal 11 IN to the input terminal 12 IN of the AD converter 12, for example, a differential amplifier, as shown in FIG. It consists of a flying capacitor having a circuit configuration. The voltage transmitted from the AD pre-stage unit 11 and applied to the input terminal 12 IN is a voltage based on the potential at the reference potential point 7, while the analog voltage applied to the input terminal 11 IN is based on the potential at the reference potential point 6. Voltage. The potentials at the reference potential points 6 and 7 may or may not coincide with each other. However, for the sake of simplification of explanation, a case where both potentials are the same is considered. In this case, the analog voltage applied to the input terminal 11 IN is a voltage on the voltage detection line 23 with reference to the potentials of the reference potential points 6 and 7. If a differential amplifier or a flying capacitor is used for the AD pre-stage unit 11, matching between the potentials of the two is not required.
 AD変換器12は、基準電圧発生部15より発生される基準電圧VrefADを基準にしつつ、周期的に入力端子12INにおけるアナログ電圧信号をデジタル電圧信号に変換し、得られたデジタル電圧信号をデジタル回路部14に出力する。電圧検出装置1は、基準電圧VrefADの電圧値を予め認識している。電圧レベル判定部13は、電圧検出線24におけるアナログ電圧信号に基づいて電圧源2の出力電圧Voの電圧レベルを判定する。即ち、電圧源2の出力電圧Voの電圧値が、互いに異なる複数の電圧範囲の何れに属するかを判定する(後で図4を参照して詳述する)。更に換言すれば、電圧源2の出力電圧Voを、AD変換器12の電圧検出分解能よりも粗い分解能にて検出する。電圧レベル判定部13の判定結果を表すデジタル信号はデジタル回路部14に出力される。尚、電圧レベル判定部13によって判定された電圧源2の出力電圧値を、判定電圧値とも言う。 The AD converter 12 periodically converts the analog voltage signal at the input terminal 12 IN into a digital voltage signal while using the reference voltage Vref AD generated by the reference voltage generator 15 as a reference, and the obtained digital voltage signal is converted into the digital voltage signal. Output to the digital circuit unit 14. The voltage detection device 1 recognizes the voltage value of the reference voltage Vref AD in advance. The voltage level determination unit 13 determines the voltage level of the output voltage Vo of the voltage source 2 based on the analog voltage signal on the voltage detection line 24. That is, it is determined which of a plurality of different voltage ranges the voltage value of the output voltage Vo of the voltage source 2 is described in detail later with reference to FIG. In other words, the output voltage Vo of the voltage source 2 is detected with a resolution that is coarser than the voltage detection resolution of the AD converter 12. A digital signal representing the determination result of the voltage level determination unit 13 is output to the digital circuit unit 14. The output voltage value of the voltage source 2 determined by the voltage level determination unit 13 is also referred to as a determination voltage value.
 デジタル回路部14は、故障検出部としての機能を有し、AD変換器12及び電圧レベル判定部13の出力信号に基づいて、電圧源2としてのLIBの過充電状態及び過放電状態を検出すると共に後で述べるインレンジ故障についての有無を検出する。 The digital circuit unit 14 has a function as a failure detection unit, and detects an overcharged state and an overdischarged state of the LIB as the voltage source 2 based on output signals of the AD converter 12 and the voltage level determination unit 13. In addition, the presence / absence of an in-range failure described later is detected.
 電圧源2(及び後述の電圧源2[1]~2[n]の夫々)の出力電圧Voに対して、予め所定の電圧範囲である通常電圧範囲が定められている。通常使用時において、電圧源2(及び後述の電圧源2[1]~2[n]の夫々)の出力電圧Voは、その通常電圧範囲内に収まると想定される。上述したように、今、電圧の測定対象としてLIBを想定している。従って、具体的な数値例として、通常電圧範囲は2V以上であって且つ4.0V以下であることを想定する。電圧源2の出力電圧Voが2V以上であって且つ4.0V以下である状態を、通常使用状態と呼ぶ。電圧源2の出力電圧Voが通常電圧範囲の上限である4Vを上回っている状態は電圧源2の過充電状態であり、電圧源2の出力電圧Voが通常電圧範囲の下限である2Vを下回っている状態は電圧源2の過放電状態である。よって本実施形態においては、電池(電圧源)が過充電状態にある電圧であることを表す第1閾値は4Vであり、電池が過放電状態にある電圧であることを表す第2閾値は2Vである。 A normal voltage range, which is a predetermined voltage range, is determined in advance for the output voltage Vo of the voltage source 2 (and each of voltage sources 2 [1] to 2 [n] described later). During normal use, the output voltage Vo of the voltage source 2 (and each of voltage sources 2 [1] to 2 [n] described later) is assumed to be within the normal voltage range. As described above, LIB is now assumed as a voltage measurement target. Therefore, as a specific numerical example, it is assumed that the normal voltage range is 2 V or more and 4.0 V or less. A state where the output voltage Vo of the voltage source 2 is 2V or more and 4.0V or less is called a normal use state. The state in which the output voltage Vo of the voltage source 2 exceeds the upper limit of 4V, which is the upper limit of the normal voltage range, is the overcharged state of the voltage source 2, and the output voltage Vo of the voltage source 2 is lower than 2V, which is the lower limit of the normal voltage range. In this state, the voltage source 2 is overdischarged. Therefore, in the present embodiment, the first threshold value indicating that the battery (voltage source) is a voltage in an overcharge state is 4V, and the second threshold value indicating that the battery is a voltage in an overdischarge state is 2V. It is.
 さて、本実施形態及び後述の各実施形態におけるインレンジ故障とは、電圧源2(又は後述の電圧源2[1]~2[n]の何れか)の出力電圧が通常電圧範囲内に収まりつつも、AD変換器12の出力信号による電圧源2の検出電圧値Vdetが、期待される検出精度を満たさないような比較的軽度の故障を指す。例えば、許容される検出誤差の絶対値が10mV以下であって且つ電圧源2の真の出力電圧Voが3.600Vである場合、不等式「3.590≦Vdet≦3.610」が満たされる時にはインレンジ故障は発生していないが、不等式「2.000≦Vdet<3.590」又は「3.610<Vdet≦4.000」が成立する場合にはインレンジ故障が発生している(上記の各不等式の単位はボルトである)。 An in-range failure in the present embodiment and each of the embodiments described later refers to the output voltage of the voltage source 2 (or any of the voltage sources 2 [1] to 2 [n] described later) within the normal voltage range. However, it indicates a relatively minor failure in which the detection voltage value Vdet of the voltage source 2 based on the output signal of the AD converter 12 does not satisfy the expected detection accuracy. For example, when the absolute value of the allowable detection error is 10 mV or less and the true output voltage Vo of the voltage source 2 is 3.600 V, when the inequality “3.590 ≦ Vdet ≦ 3.610” is satisfied An in-range failure has not occurred, but an in-range failure has occurred when the inequality “2.000 ≦ Vdet <3.590” or “3.610 <Vdet ≦ 4.0000” holds (see above). The unit of each inequality is a bolt).
 図3に、インレンジ故障を招く故障箇所及び故障要因を表にして例示する。図3には、故障箇所及び故障要因として、第1~第5の故障箇所及び故障要因を例示している。但し、図3には、本実施形態だけでなく後述の他の実施形態における故障箇所及び故障要因も列挙されており、第4及び第5の故障箇所は本実施形態には関与しない。 Fig. 3 shows an example of the failure location and failure factors that lead to in-range failure. FIG. 3 illustrates the first to fifth failure locations and failure factors as failure locations and failure factors. However, FIG. 3 lists not only the present embodiment but also failure locations and failure factors in other embodiments described later, and the fourth and fifth failure locations are not involved in this embodiment.
 第1の故障箇所は、AD変換器12であり、その故障要因としては、例えば、AD変換における積分非直線性誤差(INL)及微分非直線性誤差(DNL)の精度異常が挙げられる。第2の故障箇所は、基準電圧発生部15、即ちAD変換用の基準電圧VrefADの発生部であり、その故障要因としては、例えば、基準電圧VrefADの精度異常が挙げられる。第3の故障箇所は、AD前段部11であり、その故障要因としては、例えば、AD前段部11としての差動アンプにおけるオフセット電圧の異常やリーク電流の異常(AD前段部11への入力電流値の異常)が挙げられる。各故障要因における異常とは、或る物理量(オフセット電圧の値など)の設計値と実際の値との間の誤差が、所定の許容量よりも大きいことを指す。 The first failure location is the AD converter 12, and the cause of the failure is, for example, an abnormality in accuracy of integral nonlinearity error (INL) and differential nonlinearity error (DNL) in AD conversion. The second failure location is the reference voltage generation unit 15, that is, the generation unit of the AD conversion reference voltage Vref AD , and the failure factor includes, for example, an abnormality in accuracy of the reference voltage Vref AD . The third failure location is the AD pre-stage unit 11, and the cause of the failure is, for example, an offset voltage abnormality or a leakage current abnormality (input current to the AD pre-stage unit 11) in the differential amplifier as the AD pre-stage unit 11. Abnormal value). An abnormality in each failure factor means that an error between a design value and an actual value of a certain physical quantity (such as an offset voltage value) is larger than a predetermined allowable amount.
 例えば、AD変換器12が10ビットのAD変換器であって且つVrefADの設計電圧値が5Vであって且つ電圧源2の出力電圧Voが4Vである場合において、第2の故障要因によりVrefADが実際には5.5Vであったとすると、4V÷(5.5V/1024)×(1024/5V)=3.64Vより、電圧源2の出力電圧Voは3.64Vであると誤検出されてしまう。 For example, when the AD converter 12 is a 10-bit AD converter, the design voltage value of Vref AD is 5 V, and the output voltage Vo of the voltage source 2 is 4 V, Vref is caused by the second failure factor. Assuming that AD is actually 5.5V, 4V ÷ (5.5V / 1024) × (1024 / 5V) = 3.64V, so that the output voltage Vo of the voltage source 2 is falsely detected as 3.64V. It will be.
 また例えば、電圧源2の真の出力電圧Voが4.5Vである時に故障要因により検出電圧値Vdetが4.0Vになった場合、実際には電圧源2(電池)は過充電状態にあるにも拘らず、充放電制御部5は電圧源2(電池)は通常使用状態にあると判断して電圧源2の充電を許可することになり、危険が生じる。また例えば、電圧源2の真の出力電圧Voが2.5Vである時に故障要因により検出電圧値Vdetが1.9Vになった場合、実際には電圧源2(電池)は通常使用状態にあって電力の出力が可能であるにも拘らず、充放電制御部5は電圧源2が過放電状態にあると判断して電圧源2の放電を無意味に禁止してしまう(即ち、電池の電圧使用範囲が縮小してしまう)。このように、インレンジ故障の存在は、危険性の増大や電圧源2の電圧使用範囲の縮小等を招く。 In addition, for example, when the true output voltage Vo of the voltage source 2 is 4.5V and the detected voltage value Vdet becomes 4.0V due to a failure factor, the voltage source 2 (battery) is actually in an overcharged state. Nevertheless, the charge / discharge control unit 5 determines that the voltage source 2 (battery) is in a normal use state and permits the voltage source 2 to be charged, resulting in danger. Further, for example, when the true output voltage Vo of the voltage source 2 is 2.5V, and the detected voltage value Vdet becomes 1.9V due to a failure factor, the voltage source 2 (battery) is actually in a normal use state. Although the power can be output, the charge / discharge control unit 5 determines that the voltage source 2 is in an overdischarged state and prohibits the discharge of the voltage source 2 meaninglessly (that is, the battery The voltage usage range will be reduced). Thus, the presence of an in-range failure leads to an increase in danger and a reduction in the voltage usage range of the voltage source 2.
 図4に、電圧レベル判定部13の内部回路図を示す。電圧レベル判定部13は、4つの基準電圧Vref[1]~Vref[4]を発生する基準電圧発生部61と、電圧検出線24及び基準電圧発生部61に接続され、電圧源2の出力電圧と基準電圧Vref[1]~Vref[4]を比較するコンパレータ(比較器)CMP[1]~CMP[4]と、を備える。今、基準電圧Vref[1]、Vref[2]、Vref[3]及びVref[4]は、夫々、4.0V、3.8V、3.5V及び2.0Vに設定されているものとする。なお、4Vは既出の第1閾値でもある過充電判定用の基準電圧であり、2Vは既出の第2閾値でもある過放電判定用の基準電圧である。基準電圧発生部61において、基準電圧Vref[1]~Vref[4]を個別回路にて個別に生成するようにしても良いし、半導体のバンドギャップ電圧を利用するなどして基準電圧Vref[1]を生成した後、基準電圧Vref[1]を複数の分圧抵抗(不図示)を用いて分圧することにより基準電圧Vref[2]~Vref[4]を生成するようにしてもよい。勿論、電圧レベル判定部13で用いられる基準電圧の個数を4以外とすることもできる。 FIG. 4 shows an internal circuit diagram of the voltage level determination unit 13. The voltage level determination unit 13 is connected to the reference voltage generation unit 61 that generates the four reference voltages Vref [1] to Vref [4], the voltage detection line 24, and the reference voltage generation unit 61, and the output voltage of the voltage source 2 And comparators (comparators) CMP [1] to CMP [4] for comparing the reference voltages Vref [1] to Vref [4]. Now, it is assumed that the reference voltages Vref [1], Vref [2], Vref [3], and Vref [4] are set to 4.0V, 3.8V, 3.5V, and 2.0V, respectively. . Note that 4V is a reference voltage for overcharge determination that is also the first threshold value, and 2V is a reference voltage for overdischarge determination that is also the second threshold value. In the reference voltage generation unit 61, the reference voltages Vref [1] to Vref [4] may be individually generated by individual circuits, or the reference voltage Vref [1] may be generated by using a semiconductor bandgap voltage. ] May be generated, and the reference voltages Vref [2] to Vref [4] may be generated by dividing the reference voltage Vref [1] using a plurality of voltage dividing resistors (not shown). Of course, the number of reference voltages used in the voltage level determination unit 13 may be other than four.
 尚、電圧源2の過充電および過放電を検出する過充電過放電検出回路(図4に示す符号13a)を転用することにより電圧レベル判定部13が形成されている。すなわち電圧レベル判定部13は、過充電過放電検出回路13aの過充電過放電検出機能を、基準電圧Vref[1]、Vref[4]と比較して電圧レベルの判定をする機能として転用(兼用)することで、または、過充電過放電検出回路13aの過充電過放電検出機能を、当該過充電過放電検出も行いつつ基準電圧Vref[1]、Vref[4]と比較して電圧レベルの判定も行う機能として兼用することで構成されている(以下、当該転用、兼用の事をまとめて転用と呼ぶ)。なお本実施形態では、過充電過放電検出回路13aは過充電過放電検出を行いつつ、基準電圧Vref[1]、Vref[4]と比較して電圧レベルの判定も行っている例(兼用の例)である。 Note that the voltage level determination unit 13 is formed by diverting an overcharge / overdischarge detection circuit (reference numeral 13a shown in FIG. 4) that detects overcharge and overdischarge of the voltage source 2. That is, the voltage level determination unit 13 diverts the overcharge / overdischarge detection function of the overcharge / overdischarge detection circuit 13a as a function of determining the voltage level by comparing with the reference voltages Vref [1] and Vref [4]. ) Or the overcharge / overdischarge detection function of the overcharge / overdischarge detection circuit 13a is compared with the reference voltages Vref [1] and Vref [4] while performing the overcharge / overdischarge detection. This function is also used as a function for performing the determination (hereinafter, the diversion and common use are collectively referred to as diversion). In the present embodiment, the overcharge / overdischarge detection circuit 13a performs overcharge / overdischarge detection, and also performs determination of the voltage level compared to the reference voltages Vref [1] and Vref [4]. Example).
 過充電過放電検出回路13aでは、過充電判定用の基準電圧及び過放電判定用の基準電圧の夫々を測定対象アナログ電圧である電圧源2の出力電圧と比較することで電圧源2の過充電又は過放電を検出する。すなわち、過充電過放電検出回路13aでは、基準電圧発生部61は2つの基準電圧Vref[1]、Vref[4]を発生し、過充電判定用の基準電圧及び過放電判定用の基準電圧を夫々Vref[1]及びVref[4]として用い、上記コンパレータCMP[1]、CMP[4]を使用している。この過充電過放電検出回路13aの構成により、充放電制御部5(図1)を通じて、主電力線20上に存在するコンタクタ等の開閉器(不図示)をオンオフするなどして、電圧源2の充電及び放電を制御することができる。この結果、過放電または過充電による電圧源2の安全性を確保することができる。 The overcharge / overdischarge detection circuit 13a compares the overcharge determination reference voltage and the overdischarge determination reference voltage with the output voltage of the voltage source 2 that is the analog voltage to be measured, thereby overcharging the voltage source 2. Or, overdischarge is detected. That is, in the overcharge / overdischarge detection circuit 13a, the reference voltage generator 61 generates two reference voltages Vref [1] and Vref [4], and sets the reference voltage for overcharge determination and the reference voltage for overdischarge determination. The comparators CMP [1] and CMP [4] are used as Vref [1] and Vref [4], respectively. With the configuration of the overcharge / overdischarge detection circuit 13a, a switch (not shown) such as a contactor on the main power line 20 is turned on / off through the charge / discharge control unit 5 (FIG. 1). Charging and discharging can be controlled. As a result, the safety of the voltage source 2 due to overdischarge or overcharge can be ensured.
 電圧レベル判定部13は、前記過充電過放電検出回路13aを含み、上記以外の2つの基準電圧Vref[2]及びVref[3]を発生する機能、2つの基準電圧Vref[2]及びVref[3]と電圧源2の出力電圧と比較する機能(後で述べるようにインレンジ故障を検出するために使用する)を過充電過放電検出回路13aの機能に対して加えられている構成となっている。なお本実施形態では、基準電圧Vref[1]、Vref[4]と電圧検出線上のアナログ電圧信号との比較は過充電、過放電の検出だけでなく、インレンジ故障を検出するためにも使用されている。 The voltage level determination unit 13 includes the overcharge / overdischarge detection circuit 13a and has a function of generating two reference voltages Vref [2] and Vref [3] other than the above, two reference voltages Vref [2] and Vref [ 3] and the function of comparing the output voltage of the voltage source 2 (used to detect an in-range failure as described later) are added to the function of the overcharge / overdischarge detection circuit 13a. ing. In the present embodiment, the comparison between the reference voltages Vref [1] and Vref [4] and the analog voltage signal on the voltage detection line is used not only to detect overcharge and overdischarge but also to detect an in-range failure. Has been.
 従来、電圧源2の過充電および過放電を検出するために、上記構成の過充電過放電検出回路13aが用いられていた。本例においては、基準電圧Vref[1]、Vref[4]との比較は過充電、過放電の検出だけでなくインレンジ故障を検出するためにも使用され、加えて、従来の過充電過放電検出回路13aにおける基準電圧発生部61に中間電圧(上記通常電圧範囲内の所定電圧)たる基準電圧Vref[2]及びVref[3]を出力する機能を加えることにより、また上記コンパレータCMP[2]、CMP[3]を追加する事により、従来の過充電過放電検出回路13aが電圧レベル判定部13に転用される。 Conventionally, in order to detect overcharge and overdischarge of the voltage source 2, the overcharge / overdischarge detection circuit 13a having the above configuration has been used. In this example, the comparison with the reference voltages Vref [1] and Vref [4] is used not only to detect overcharge and overdischarge but also to detect an in-range failure. By adding a function of outputting reference voltages Vref [2] and Vref [3], which are intermediate voltages (predetermined voltages within the normal voltage range), to the reference voltage generator 61 in the discharge detection circuit 13a, the comparator CMP [2 ], CMP [3] is added, so that the conventional overcharge / overdischarge detection circuit 13a is diverted to the voltage level determination unit 13.
 これにより、構成の複雑化およびコストの増加が抑制される。このことを図21(a1)、(a2)、(b1)及び(b2)を用いて説明する。なお説明の分かり易さの上から、中間電圧たる基準電圧Vref[2]及びVref[3]と比較する機能部分を含まず、2つの基準電圧Vref[1](=4.0V)、Vref[4](=2.0V)と比較する機能部分だけで説明する。当該基準電圧Vref[1]、Vref[4]と比較する機能部分により、過充電、過放電の検出と、電圧Vref[1]~Vref[4]の範囲におけるインレンジ故障の検出が可能となる。 This suppresses the complexity of the configuration and the increase in cost. This will be described with reference to FIGS. 21 (a1), (a2), (b1) and (b2). For ease of explanation, it does not include a functional part to be compared with the reference voltages Vref [2] and Vref [3], which are intermediate voltages, and two reference voltages Vref [1] (= 4.0V), Vref [ 4] Only the functional part to be compared with (= 2.0V) will be described. The functional part to be compared with the reference voltages Vref [1] and Vref [4] makes it possible to detect overcharge and overdischarge and to detect an in-range failure in the range of voltages Vref [1] to Vref [4]. .
 図21(a1)、(a2)、(b1)及び(b2)は、従来の過充電過放電検出回路13aを含む電圧レベル判定部13を説明する図である。 21 (a1), (a2), (b1), and (b2) are diagrams illustrating a voltage level determination unit 13 including a conventional overcharge / overdischarge detection circuit 13a.
 過充電判定用の基準電圧及び過放電判定用の基準電圧であるVref[1]及びVref[4]と電圧源2の出力電圧と比較する過充電過放電検出回路13aの外に、電圧Vref[1]、Vref[4]周りにおけるインレンジ故障の検出を行なう機能部13bを別途設けた場合には、両回路を別チップ(またはシリコン基板上の別領域)で構成した場合には設置面積が倍必要である(図21(a1)及び(a2)において、例えばLL1<LL2)。また、電源において別途の電源・グランドプレーンが各々必要である、別途の部品(パスコンなど)が各々必要となる(図21(a2)におけるパスコンpc’、パスコンpc’’)などの理由から、構成が複雑となり得、製造コスト等が増加する。さらに、基準電圧発生部が各々両方に必要となり、上記分圧抵抗による分圧回路において各々電源給電部が要るなど冗長性が増し、構成が複雑となり得、製造コスト等が増加する(図21(b1)及び(b2)において、例えばLL3<LL4+LL5)。 In addition to the overcharge / overdischarge detection circuit 13a that compares the reference voltage for overcharge determination and the reference voltage for overdischarge determination Vref [1] and Vref [4] with the output voltage of the voltage source 2, the voltage Vref [ 1] When the function unit 13b for detecting in-range faults around Vref [4] is separately provided, if both circuits are configured as separate chips (or separate areas on the silicon substrate), the installation area is large. Double is required (in FIG. 21 (a1) and (a2), for example, LL1 <LL2). In addition, a separate power source / ground plane is required for the power supply, and separate components (pass capacitors, etc.) are required (pass capacitors pc ′ and pass capacitors pc ″ in FIG. 21A2). Can be complicated and increase the manufacturing cost. Furthermore, the reference voltage generators are required for both, and redundancy is increased, such as the need for power supply units in the voltage dividing circuit using the voltage dividing resistor, the configuration can be complicated, and the manufacturing cost increases (FIG. 21). In (b1) and (b2), for example, LL3 <LL4 + LL5).
 一方、過充電過放電検出回路13aが電圧Vref[1]、Vref[4]周りにおけるインレンジ故障の検出を行なう機能部13bを兼用して一つの電圧レベル判定部13として構成した場合は、両回路は同一チップ(またはシリコン基板上で同一領域)で構成され、設置面積は倍までは必要とされない(図21(a1)及び(a2)において、例えばLL1<LL2)。また電源面において、電源・グランドプレーンが同一でよく、電源周りで必要とされるパスコンなどの部品(図21(a1)におけるパスコンpc)が一回路分でよい。よってこの場合は、構成の複雑化およびコストの増加が抑制される。さらに、基準電圧発生部が単一でよくなり、上述の冗長性が抑制され構成の複雑化およびコストの増加が抑制される(図21(b1)及び(b2)において、例えばLL3<LL4+LL5)。 On the other hand, when the overcharge / overdischarge detection circuit 13a is configured as one voltage level determination unit 13 that also functions as the function unit 13b that detects an in-range failure around the voltages Vref [1] and Vref [4], The circuit is composed of the same chip (or the same region on the silicon substrate), and the installation area is not required to be doubled (in FIG. 21 (a1) and (a2), for example, LL1 <LL2). Further, on the power source side, the power source and the ground plane may be the same, and a part such as a bypass capacitor (pass capacitor pc in FIG. 21A1) required around the power source may be equivalent to one circuit. Therefore, in this case, the complexity of the configuration and the increase in cost are suppressed. Furthermore, a single reference voltage generator is sufficient, and the above-described redundancy is suppressed, and the complexity of the configuration and the increase in cost are suppressed (in FIGS. 21B1 and 21B2, for example, LL3 <LL4 + LL5).
 なお、中間電圧たる基準電圧Vref[2]及びVref[3]を出力する機能を追加した場合でも同様に構成の複雑化およびコストの増加が抑制される。 Even when a function for outputting the reference voltages Vref [2] and Vref [3], which are intermediate voltages, is added, the configuration is complicated and the cost is similarly suppressed.
 次に、過充電過放電検出回路13aに中間電圧Vref[2]、Vref[3]と電圧源2の出力電圧と比較する機能部を加える場合について、構成の複雑化、コストの増加を抑制できる構成を図22(a1)、(a2)、(b1)及び(b2)を用いて説明する。 Next, in the case where a functional unit that compares the intermediate voltages Vref [2], Vref [3] and the output voltage of the voltage source 2 is added to the overcharge / overdischarge detection circuit 13a, it is possible to suppress the complexity of the configuration and the increase in cost. The configuration will be described with reference to FIGS. 22 (a1), (a2), (b1), and (b2).
 図22(a1)、(a2)、(b1)及び(b2)は、中間電圧に対応した従来の過充電過放電検出回路13aを含む電圧レベル判定部13を説明する図である。 22 (a1), (a2), (b1), and (b2) are diagrams illustrating the voltage level determination unit 13 including the conventional overcharge / overdischarge detection circuit 13a corresponding to the intermediate voltage.
 過充電判定用の基準電圧及び過放電判定用の基準電圧であるVref[1]及びVref[4]と電圧源2の出力電圧と比較する過充電過放電検出回路13aの外に、中間電圧である2つの基準電圧Vref[2]及びVref[3]と電圧源2の出力電圧と比較する中間電圧比較回路(機能部)13’を別途設けた場合には、両回路を別チップ(またはシリコン基板上の別領域)で構成した場合には設置面積が倍必要である(図22(a1)及び(a2)において、例えばL1<L2)。また、電源において別途の電源・グランドプレーンが各々必要である、別途の部品(パスコンなど)が各々必要となる(図22(a2)におけるパスコンpc’、パスコンpc’’)などの理由から、構成が複雑となり得、製造コスト等が増加する。さらに、基準電圧発生部が各々両方に必要となり、上記分圧抵抗による分圧回路において各々電源給電部が要るなど冗長性が増し、構成が複雑となり得、製造コスト等が増加する(図22(b1)及び(b2)において、例えばL3<L4+L5)。 In addition to the overcharge detection circuit 13a that compares the reference voltage for overcharge determination and the reference voltage for overdischarge determination Vref [1] and Vref [4] with the output voltage of the voltage source 2, an intermediate voltage is used. When an intermediate voltage comparison circuit (function unit) 13 ′ for comparing two reference voltages Vref [2] and Vref [3] with the output voltage of the voltage source 2 is separately provided, both circuits are provided in different chips (or silicon). In the case of being configured with another region on the substrate), the installation area needs to be doubled (in FIGS. 22A1 and 22A2, for example, L1 <L2). Further, a separate power source / ground plane is required for the power supply, and separate components (pass capacitors, etc.) are required (pass capacitors pc ′, pass capacitors pc ″ in FIG. 22 (a2)). Can be complicated and increase the manufacturing cost. Furthermore, the reference voltage generators are required for both, and redundancy is increased, such as the need for power supply units in the voltage dividing circuit using the voltage dividing resistor, the configuration can be complicated, and the manufacturing cost increases (FIG. 22). In (b1) and (b2), for example, L3 <L4 + L5).
 一方、過充電過放電検出回路13aと中間電圧比較回路を備え一つの電圧レベル判定部13として構成した場合は、両回路は同一チップ(またはシリコン基板上で同一領域)で構成され、設置面積は倍までは必要とされない(図22(a1)及び(a2)において、例えばL1<L2)。また電源面において、電源・グランドプレーンが同一でよく、電源周りで必要とされるパスコンなどの部品(図22(a1)におけるパスコンpc)が一回路分でよい。よってこの場合は、構成の複雑化およびコストの増加が抑制される。さらに、基準電圧発生部が単一でよくなり、上述の冗長性が抑制され構成の複雑化およびコストの増加が抑制される(図22(b1)及び(b2)において、例えばL3<L4+L5)。 On the other hand, when the overcharge / overdischarge detection circuit 13a and the intermediate voltage comparison circuit are provided and configured as one voltage level determination unit 13, both circuits are configured by the same chip (or the same region on the silicon substrate), and the installation area is It is not required up to twice (in FIG. 22 (a1) and (a2), for example, L1 <L2). Further, on the power supply side, the power supply and the ground plane may be the same, and a part such as a bypass capacitor (pass capacitor pc in FIG. 22 (a1)) required around the power supply may be one circuit. Therefore, in this case, the complexity of the configuration and the increase in cost are suppressed. In addition, a single reference voltage generation unit is required, and the above-described redundancy is suppressed, so that the configuration is complicated and the increase in cost is suppressed (in FIGS. 22B1 and 22B, for example, L3 <L4 + L5).
 図4、図8、図9に示した構成により、過充電過放電検出回路13aは、測定対象アナログ電圧(電圧源2の出力電圧)と基準電圧Vrefと比較する比較器CMPを含み、比較器CMPは、測定対象アナログ電圧と過充電判定用の基準電圧Vref[1]と比較する比較器CMP[1]、および、測定対象アナログ電圧と過放電判定用の基準電圧Vref[4]と比較する比較器CMP[4]であり、電圧レベル判定部13は、さらに測定対象アナログ電圧を所定電圧範囲内(上記通常電圧範囲内)の中間電圧たる基準電圧Vref[2]及びVref[3]と比較する前記比較器CMP[2]、CMP[3]を含んでいる。 4, 8, and 9, the overcharge / overdischarge detection circuit 13 a includes the comparator CMP that compares the measurement target analog voltage (the output voltage of the voltage source 2) with the reference voltage Vref. The CMP is compared with the comparator CMP [1] that compares the measurement target analog voltage and the overcharge determination reference voltage Vref [1], and the measurement target analog voltage and the overdischarge determination reference voltage Vref [4]. The comparator CMP [4], and the voltage level determination unit 13 further compares the analog voltage to be measured with reference voltages Vref [2] and Vref [3] which are intermediate voltages within a predetermined voltage range (within the normal voltage range). The comparators CMP [2] and CMP [3] are included.
 コンパレータCMP[i]は、電圧検出線24に加わる電圧と基準電圧Vref[i]とを比較し、前者が後者(Vref[i])よりも高い場合に「1」のデジタル信号を出力する一方、前者が後者(Vref[i])よりも低い場合に「0」のデジタル信号を出力する。コンパレータCMP[i]の出力信号はデジタル回路部14に与えられる。ここで、iは、1、2、3又は4である。 The comparator CMP [i] compares the voltage applied to the voltage detection line 24 with the reference voltage Vref [i], and outputs a digital signal of “1” when the former is higher than the latter (Vref [i]). When the former is lower than the latter (Vref [i]), a digital signal of “0” is output. The output signal of the comparator CMP [i] is given to the digital circuit unit 14. Here, i is 1, 2, 3 or 4.
 デジタル回路部14は、コンパレータCMP[1]~CMP[4]から出力されるデジタル信号が変化するタイミングにおいて、コンパレータCMP[1]~CMP[4]の出力信号が指し示す判定電圧値とAD変換器12の出力信号による検出電圧値Vdetとを比較することにより、インレンジ故障の有無を検出する。また、上記判定電圧値及び検出電圧値Vdetの少なくとも一方に基づいて、電圧源2の状態が過充電状態又は過放電状態であるか否かを検出することもできる。 The digital circuit section 14 determines the determination voltage value indicated by the output signals of the comparators CMP [1] to CMP [4] and the AD converter at the timing when the digital signals output from the comparators CMP [1] to CMP [4] change. The presence or absence of an in-range failure is detected by comparing the detected voltage value Vdet with 12 output signals. Further, based on at least one of the determination voltage value and the detection voltage value Vdet, it can be detected whether the state of the voltage source 2 is an overcharge state or an overdischarge state.
 なお、デジタル回路部14がインレンジ故障の有無を検出するタイミングは、上記デジタル信号が変化するタイミングだけに限らず、コンパレータCMP[1]~CMP[4]からの出力デジタル信号が変化しない状態で電圧検出線23の値がVref[i]以上、またはVref[i]~Vref[i+1]間、またはVref[i+1]以下(i=1、2、3)にある場合であってもよい。 Note that the timing at which the digital circuit unit 14 detects the presence or absence of an in-range failure is not limited to the timing at which the digital signal changes, but in a state where the output digital signals from the comparators CMP [1] to CMP [4] do not change. The value of the voltage detection line 23 may be equal to or higher than Vref [i], between Vref [i] and Vref [i + 1], or lower than Vref [i + 1] (i = 1, 2, 3).
 例えば、電圧源2としてのLIBの放電過程において、電圧源2の出力電圧Voが4.0Vより低いが3.8Vより高い状態から3.8Vより低いが3.5Vより高い状態へと遷移した場合、コンパレータCMP[1]、CMP[3]及びCMP[4]の出力デジタル信号は「0」、「1」及び「1」に維持される一方で、コンパレータCMP[2]の出力デジタル信号は「1」から「0」へと変化する。この変化のタイミングにおいてコンパレータCMP[1]~CMP[4]の出力信号が指し示す判定電圧値は、コンパレータCMP[2]に対応する基準電圧値Vref[2]である。デジタル回路部14は、この変化の直前又は直後に得られたAD変換器12の出力信号による検出電圧値Vdetと、コンパレータCMP[2]に対応する基準電圧値Vref[2]とを比較し、それらの差の絶対値|Vdet-Vref[2]|が所定の故障判定閾値VTH(例えば、10mV)よりも大きければインレンジ故障が発生していると判断する一方で、そうでない場合は、インレンジ故障は発生していないと判断する。 For example, in the discharging process of the LIB as the voltage source 2, the output voltage Vo of the voltage source 2 transitions from a state lower than 4.0V but higher than 3.8V to a state lower than 3.8V but higher than 3.5V. The output digital signals of the comparators CMP [1], CMP [3] and CMP [4] are maintained at “0”, “1” and “1”, while the output digital signals of the comparator CMP [2] are It changes from “1” to “0”. The determination voltage value indicated by the output signals of the comparators CMP [1] to CMP [4] at the timing of the change is the reference voltage value Vref [2] corresponding to the comparator CMP [2]. The digital circuit unit 14 compares the detected voltage value Vdet based on the output signal of the AD converter 12 obtained immediately before or after this change with the reference voltage value Vref [2] corresponding to the comparator CMP [2], If the absolute value of the difference | Vdet−Vref [2] | is larger than a predetermined failure determination threshold value V TH (for example, 10 mV), it is determined that an in-range failure has occurred. Judge that no in-range failure has occurred.
 電圧源2の出力電圧VoがVref[2]を上から下へ横切る時の動作例を説明したが、電圧源2の出力電圧VoがVref[2]を下から上へ横切る時の動作も同様であり、電圧源2の出力電圧VoがVref[1]、[3]又は[4]を上から下へ又は下から上へ横切る時の動作も同様である。また、コンパレータCMP[1]~CMP[4]の出力信号が全て「1」の時には電圧源2が過充電状態にあると検出することができ、コンパレータCMP[1]~CMP[4]の出力信号が全て「0」の時には電圧源2が過放電状態にあると検出することができる。 Although the operation example when the output voltage Vo of the voltage source 2 crosses Vref [2] from the top to the bottom has been described, the operation when the output voltage Vo of the voltage source 2 crosses Vref [2] from the bottom to the top is the same. The operation when the output voltage Vo of the voltage source 2 crosses Vref [1], [3] or [4] from top to bottom or from bottom to top is the same. Further, when the output signals of the comparators CMP [1] to CMP [4] are all “1”, it can be detected that the voltage source 2 is in an overcharged state, and the outputs of the comparators CMP [1] to CMP [4] When the signals are all “0”, it can be detected that the voltage source 2 is in an overdischarged state.
 上記では、コンパレータCMP[1]及びCMP[4]の出力デジタル信号が「0」及び「1」であることから、故障が2V~4.0Vの範囲である通常電圧範囲において発生しており、当該故障がインレンジ故障である事が把握される。なお、この故障が通常電圧範囲において発生していることは、AD変換器12の出力信号による検出電圧値であるVdetが通常電圧範囲内にあることを検出することによって把握されてもよい。 In the above, since the output digital signals of the comparators CMP [1] and CMP [4] are “0” and “1”, the failure occurs in the normal voltage range of 2V to 4.0V, It is understood that the failure is an in-range failure. In addition, it may be grasped | ascertained that this failure has generate | occur | produced in the normal voltage range by detecting that Vdet which is the detection voltage value by the output signal of AD converter 12 exists in a normal voltage range.
 充放電制御部5は、デジタル回路部14による過充電状態及び過放電状態の検出結果並びにインレンジ故障の有無の検出結果に基づいて、電圧源2の充電及び放電を制御する。電圧源2の充電中において過充電状態又はインレンジ故障の発生が検出された場合は充電回路4による電圧源2の充電が停止されるように、且つ、電圧源2の放電中において過放電状態又はインレンジ故障の発生が検出された場合は負荷3に対する電圧源2の放電が停止されるように、充放電制御部5は、負荷3及び充電回路4を含む充放電部を制御する。尚、電圧源2の放電の停止は、電圧源2及び負荷3間に設けられた図示されないスイッチを遮断することで実現可能である。また、電圧源2が過充電状態若しくは過放電状態にあると判断された場合、又は、インレンジ故障が発生していると判断された場合、電圧検出装置1又は充放電制御部5に接続された表示部(不図示)やスピーカ(不図示)等を用いて、ユーザに対し警告報知を行うようにしてもよい。 The charge / discharge control unit 5 controls charging and discharging of the voltage source 2 based on the detection result of the overcharge state and the overdischarge state by the digital circuit unit 14 and the detection result of the presence or absence of the in-range failure. When charging of the voltage source 2 is detected, an overcharged state or an in-range failure is detected, so that charging of the voltage source 2 by the charging circuit 4 is stopped, and an overdischarged state is generated while the voltage source 2 is being discharged. Alternatively, the charging / discharging control unit 5 controls the charging / discharging unit including the load 3 and the charging circuit 4 so that the discharge of the voltage source 2 with respect to the load 3 is stopped when the occurrence of an in-range failure is detected. The stop of the discharge of the voltage source 2 can be realized by cutting off a switch (not shown) provided between the voltage source 2 and the load 3. Further, when it is determined that the voltage source 2 is in an overcharge state or an overdischarge state, or when it is determined that an in-range failure has occurred, the voltage source 2 is connected to the voltage detection device 1 or the charge / discharge control unit 5. A warning notification may be given to the user using a display unit (not shown), a speaker (not shown), or the like.
 本実施形態によれば、電圧源2の出力電圧Voの検出値をAD変換器12より出力させるための、分岐点22以降の電圧検出回路部分(電圧検出部)におけるインレンジ故障の有無を、故障の程度や要因によらず高精度に検出することが可能となる。加えて、インレンジ故障検出のための新たな構成の追加を低減させることで、構成の複雑化およびコスト増加を抑制させることができる。該電圧検出回路部分には、AD前段部11、AD変換器12及び基準電圧発生部15並びにそれらを接続する配線が含まれる。 According to the present embodiment, whether or not there is an in-range failure in the voltage detection circuit portion (voltage detection unit) after the branch point 22 for outputting the detection value of the output voltage Vo of the voltage source 2 from the AD converter 12, It is possible to detect with high accuracy regardless of the degree and cause of the failure. In addition, by reducing the addition of a new configuration for in-range failure detection, it is possible to suppress the complexity of the configuration and the increase in cost. The voltage detection circuit portion includes an AD pre-stage unit 11, an AD converter 12, a reference voltage generation unit 15, and a wiring for connecting them.
 また、上述したように、図13の電圧検出装置900では(図14も参照)、電圧入力切替部911内のスイッチ部920の異常によるインレンジ故障を検出することができないため、スイッチ部920に異常がある場合、測定対象の電圧値を誤検出し続けることになる。しかしながら、本実施形態の構成によれば、電圧入力切替部そのものが不要となるため、インレンジ故障の検出漏れがない。また仮に、分岐点22とAD前段部11との間に電圧入力切替部を設けた場合でも、電圧入力切替部を通る経路とは異なる経路に設けられた電圧レベル判定部13により、電圧入力切替部の異常に起因するインレンジ故障をも検出可能である。 Further, as described above, in the voltage detection device 900 of FIG. 13 (see also FIG. 14), an in-range failure due to an abnormality of the switch unit 920 in the voltage input switching unit 911 cannot be detected. If there is an abnormality, the voltage value to be measured will continue to be erroneously detected. However, according to the configuration of the present embodiment, the voltage input switching unit itself is not necessary, so that there is no omission of detection of an in-range failure. Even if a voltage input switching unit is provided between the branch point 22 and the AD pre-stage unit 11, the voltage level determination unit 13 provided on a path different from the path passing through the voltage input switching unit causes the voltage input switching to be performed. It is also possible to detect an in-range failure caused by an abnormality in the section.
 また、上記の電圧検出回路部分にインレンジ故障が含まれていなかった場合において、仮に基準電圧発生部61が発生する基準電圧Vref[i]に異常があったとき、上記の差の絶対値|Vdet-Vref[i]|が異常に大きくなるため、インレンジ故障が発生していると判断される。このため、電圧検出装置1は電圧レベル判定部の異常に起因するインレンジ故障をも検出可能である、とも言える。これは、後述の電圧検出装置1a及び101(図5及び図7参照)に対しても当てはまる。 In addition, when the above-described voltage detection circuit portion does not include an in-range failure, if the reference voltage Vref [i] generated by the reference voltage generation unit 61 is abnormal, the absolute value of the difference | Since Vdet−Vref [i] | becomes abnormally large, it is determined that an in-range failure has occurred. For this reason, it can be said that the voltage detection apparatus 1 can also detect an in-range failure caused by an abnormality in the voltage level determination unit. This also applies to voltage detection devices 1a and 101 (see FIGS. 5 and 7) described later.
 尚、基準電位点6及び7の電位が同じであるならば、電圧検出装置1からAD前段部11を削除することも可能である(後述の他の実施形態においても同様)。この場合、入力端子11INに接続されていた配線を入力端子12INに直接接続することができる。 If the potentials at the reference potential points 6 and 7 are the same, the AD pre-stage unit 11 can be deleted from the voltage detection device 1 (the same applies to other embodiments described later). In this case, it is possible to directly connect the input terminal 12 IN the wiring is connected to the input terminal 11 IN.
 電圧源2がLIBであることを想定したが、電圧源2(及び後述の電圧源2[1]~2[8])は、LIB以外の任意の二次電池であっても良いし、充電の不可能な電池又は充電が適さない電池であっても良いし、電池以外の電圧源であっても良い。充電の不可能な電池又は充電が適さない電池には、アルカリ電池のような一次電池、燃料電池が含まれる。 Although it is assumed that the voltage source 2 is a LIB, the voltage source 2 (and voltage sources 2 [1] to 2 [8] described later) may be any secondary battery other than the LIB, or may be charged. It may be a battery that cannot be charged, a battery that is not suitable for charging, or a voltage source other than the battery. A battery that cannot be charged or a battery that cannot be charged includes a primary battery such as an alkaline battery and a fuel cell.
 また、電圧源2の出力電圧の電圧レベルを4つのコンパレータを用いて判定する構成を上述したが、電圧レベルを判定するためのコンパレータの個数は4以外であっても良い(後述の他の実施例においても同様)。但し、コンパレータにて電圧源2の出力電圧と比較されるべき1又は複数の基準電圧の中に、通常電圧範囲内の電圧(本例において、例えば3.8V)を含めるべきである。
<<第2実施形態>>
 本発明の第2実施形態に係る電圧検出装置を説明する。第2実施形態では、電圧の測定対象が1つであって且つ測定対象を短絡等から保護するための保護回路が電圧検出装置に設けられていることを想定する。
Further, although the configuration for determining the voltage level of the output voltage of the voltage source 2 using four comparators has been described above, the number of comparators for determining the voltage level may be other than four (other implementations described later). The same applies to the example). However, a voltage within the normal voltage range (for example, 3.8 V in this example) should be included in one or more reference voltages to be compared with the output voltage of the voltage source 2 by the comparator.
<< Second Embodiment >>
A voltage detection apparatus according to a second embodiment of the present invention will be described. In the second embodiment, it is assumed that there is one voltage measurement target and a protection circuit for protecting the measurement target from a short circuit or the like is provided in the voltage detection device.
 図5に、第2実施形態に係る電圧検出装置1aの内部ブロック図を示す。図5には、電圧検出装置1aに接続される他の要素も示されている。電圧検出装置1aは、図1の電圧検出装置1に対して保護回路16及び17を追加したものであり、この追加を除いて、電圧検出装置1と電圧検出装置1aは同様である。従って、以下では、保護回路16及び17に関する説明を行う。 FIG. 5 shows an internal block diagram of the voltage detection device 1a according to the second embodiment. FIG. 5 also shows other elements connected to the voltage detection device 1a. The voltage detection device 1a is obtained by adding protection circuits 16 and 17 to the voltage detection device 1 of FIG. 1, and the voltage detection device 1 and the voltage detection device 1a are the same except for this addition. Therefore, the protection circuits 16 and 17 will be described below.
 保護回路16は、分岐点22及びAD前段部11間の電圧検出線23上に直列に設けられており、保護回路17は、分岐点22及び電圧レベル判定部13間の電圧検出線24上に直列に設けられている。 The protection circuit 16 is provided in series on the voltage detection line 23 between the branch point 22 and the AD pre-stage unit 11, and the protection circuit 17 is provided on the voltage detection line 24 between the branch point 22 and the voltage level determination unit 13. It is provided in series.
 図6に、保護回路16の内部回路図を示す。保護回路16は、分岐点22とAD前段部11の入力端子11INとの間に直列に介在する保護抵抗62と、保護抵抗62及び入力端子11IN間の接続点と基準電位点6との間に直列に介在するサージ保護素子63を備える。保護抵抗62は、保護抵抗62よりAD前段部11側の回路部分(配線含む)が基準電位点6等と短絡した場合に、電圧源2から保護抵抗62を介して流れる電流を制限する。サージ保護素子63は、ツェナーダイオード等から成り、保護抵抗62よりAD前段部11側の回路部分(配線含む)に加わったサージ電流を基準電位点6に逃がす。 FIG. 6 shows an internal circuit diagram of the protection circuit 16. The protection circuit 16 includes a protection resistor 62 interposed in series between the branch point 22 and the input terminal 11 IN of the AD pre-stage unit 11, and a connection point between the protection resistor 62 and the input terminal 11 IN and the reference potential point 6. A surge protection element 63 interposed in series is provided. The protective resistor 62 limits the current flowing from the voltage source 2 via the protective resistor 62 when a circuit portion (including wiring) on the AD pre-stage unit 11 side of the protective resistor 62 is short-circuited to the reference potential point 6 or the like. The surge protection element 63 is formed of a Zener diode or the like, and releases the surge current applied to the circuit portion (including wiring) on the AD front stage 11 side from the protection resistor 62 to the reference potential point 6.
 保護回路17の内部回路も保護回路16のそれと同様である。但し、保護回路17における保護抵抗62は、分岐点22と電圧レベル判定部13との間に直列に介在し、保護回路17におけるサージ保護素子63は、保護回路17内の保護抵抗62及び電圧レベル判定部13間の接続点と基準電位点6との間に直列に介在する。 The internal circuit of the protection circuit 17 is the same as that of the protection circuit 16. However, the protection resistor 62 in the protection circuit 17 is interposed in series between the branch point 22 and the voltage level determination unit 13, and the surge protection element 63 in the protection circuit 17 includes the protection resistor 62 and the voltage level in the protection circuit 17. It is interposed in series between the connection point between the determination units 13 and the reference potential point 6.
 尚、上述の保護回路16及び17の回路構成は例示であり、それらの回路構成を様々に変更することができる。また、保護回路16の回路構成と保護回路17の回路構成を異ならせることも可能である。また、電圧検出装置1aから保護回路17を削除することも可能である。 The circuit configurations of the protection circuits 16 and 17 described above are examples, and the circuit configurations can be variously changed. Further, the circuit configuration of the protection circuit 16 and the circuit configuration of the protection circuit 17 may be different. It is also possible to delete the protection circuit 17 from the voltage detection device 1a.
 保護回路16を設けた場合、保護回路16がインレンジ故障における第4の故障箇所となりうる(図3参照)。その故障要因としては、例えば、保護抵抗62の抵抗値の異常、サージ保護素子63のリーク電流の異常が挙げられる。 When the protection circuit 16 is provided, the protection circuit 16 can be a fourth failure location in the in-range failure (see FIG. 3). As the cause of the failure, for example, an abnormal resistance value of the protective resistor 62 and an abnormal leakage current of the surge protection element 63 can be cited.
 仮に、電圧源2からAD前段部11INへ10μAの電流が引き込まれる場合において、保護回路16における保護抵抗62の実際の抵抗値が設計値1kΩの100倍である100kΩとなった場合、AD変換器12の出力信号に基づく検出電圧値Vdetは、実際の出力電圧Voの値よりも約1V小さくなってしまう。しかしながら、電圧検出装置1aでは、電圧レベル判定部13の出力を用いることで、そのようなインレンジ故障を高精度に検出することができる。 If a current of 10 μA is drawn from the voltage source 2 to the AD pre-stage 11 IN, and the actual resistance value of the protective resistor 62 in the protective circuit 16 becomes 100 kΩ, which is 100 times the design value 1 kΩ, AD conversion The detected voltage value Vdet based on the output signal of the device 12 is about 1 V smaller than the actual output voltage Vo. However, the voltage detection device 1a can detect such an in-range failure with high accuracy by using the output of the voltage level determination unit 13.
 即ち、本実施形態によれば、電圧源2の出力電圧Voの検出値をAD変換器12より出力させるための、分岐点22以降の電圧検出回路部分(電圧検出部)におけるインレンジ故障の有無を、故障の程度や要因によらず高精度に検出することが可能となる。該電圧検出回路部分には、保護回路16、AD前段部11、AD変換器12及び基準電圧発生部15並びにそれらを接続する配線が含まれる。
<<第3実施形態>>
 本発明の第3実施形態を説明する。第3実施形態では、電圧の測定対象が複数であることを想定する。
That is, according to the present embodiment, whether or not there is an in-range failure in the voltage detection circuit portion (voltage detection unit) after the branch point 22 for outputting the detection value of the output voltage Vo of the voltage source 2 from the AD converter 12. Can be detected with high accuracy regardless of the degree and cause of the failure. The voltage detection circuit portion includes a protection circuit 16, an AD pre-stage unit 11, an AD converter 12, a reference voltage generation unit 15, and a wiring connecting them.
<< Third Embodiment >>
A third embodiment of the present invention will be described. In the third embodiment, it is assumed that there are a plurality of voltage measurement targets.
 図7に、第3実施形態に係る電圧検出装置101の内部ブロック図を示す。図7には、電圧検出装置101に接続される他の要素も示されている。電圧検出装置101は、符号111~115及び118によって参照される各部位を備える。尚、矛盾なき限り、第1又は第2実施形態にて記載した事項を第3実施形態に適用することができるが、この適用の際、同一名称部位間の符号の相違(例えば、AD前段部を表す符号11と符号111の相違)は、適宜、無視される。 FIG. 7 shows an internal block diagram of the voltage detection apparatus 101 according to the third embodiment. FIG. 7 also shows other elements connected to the voltage detection device 101. The voltage detection apparatus 101 includes each part referred to by reference numerals 111 to 115 and 118. As long as there is no contradiction, the matters described in the first or second embodiment can be applied to the third embodiment. The difference between the reference numeral 11 and the reference numeral 111) is appropriately ignored.
 電圧検出装置101内の各部位は、基準電位点7の電位を基準として動作する。符号2[1]~2[8]の夫々は、電圧の測定対象としての電圧源を表し、今、各電圧源2[1]~2[8]が電圧源2と同様の特性を有するLIBである場合を考える。電圧源2[1]~2[8]は、高電圧側から、電圧源2[1]、2[2]、2[3]、2[4]、2[5]、2[6]、2[7]及び2[8]の順番で直列接続されており、電圧源2[8]の負出力端子は基準電位点6に接続されている。 Each part in the voltage detection device 101 operates with the potential at the reference potential point 7 as a reference. Reference numerals 2 [1] to 2 [8] denote voltage sources as voltage measurement targets, and each of the voltage sources 2 [1] to 2 [8] has the same characteristics as the voltage source 2 now. Consider the case. The voltage sources 2 [1] to 2 [8] are supplied from the high voltage side from the voltage sources 2 [1], 2 [2], 2 [3], 2 [4], 2 [5], 2 [6], 2 [7] and 2 [8] are connected in series, and the negative output terminal of the voltage source 2 [8] is connected to the reference potential point 6.
 電圧源2[1]の正出力端子と電圧源2[8]の負出力端子との間には負荷3及び充電回路4から成る充放電部が接続されている。電圧源2[1]~2[8]としてのLIBの放電時において、負荷3は、電圧源2[1]の正出力端子と電圧源2[8]の負出力端子との間の電圧にて駆動される。電圧源2[1]~2[8]としてのLIBを充電する際には、充電回路4の働きにより、電圧源2[1]~2[8]の充電が成される。充放電制御部105は、上述の充放電制御部5と同様の機能を有し、充電回路4を用いた電圧源2[1]~2[8]の充電及び負荷3に対する電圧源2[1]~2[8]の放電を制御する。 Between the positive output terminal of the voltage source 2 [1] and the negative output terminal of the voltage source 2 [8], a charging / discharging unit including the load 3 and the charging circuit 4 is connected. At the time of discharging the LIB as the voltage sources 2 [1] to 2 [8], the load 3 has a voltage between the positive output terminal of the voltage source 2 [1] and the negative output terminal of the voltage source 2 [8]. Driven. When the LIBs as the voltage sources 2 [1] to 2 [8] are charged, the charging circuit 4 functions to charge the voltage sources 2 [1] to 2 [8]. The charge / discharge control unit 105 has the same function as the above-described charge / discharge control unit 5, charges the voltage sources 2 [1] to 2 [8] using the charging circuit 4, and the voltage source 2 [1 to the load 3. ] To control the discharge of 2 [8].
 電圧源2[1]~2[8]の出力電圧を個別に検出するために、各電圧源2[1]~2[8]の正出力端子及び電圧源2[8]の負出力端子から電圧検出線が引き出される。電圧源2[j]の正出力端子から引き出された電圧検出線を符号21[j]によって表し(1≦j≦8)、電圧源2[8]の負出力端子から引き出された電圧検出線を符号21[9]によって表す。電圧検出線21[jj]上には(1≦jj≦9)、負荷3への電圧源2[1]~2[8]の放電電流及び充電回路4から電圧源2[1]~2[8]への充電電流は流れない。 In order to individually detect the output voltages of the voltage sources 2 [1] to 2 [8], the positive output terminals of the voltage sources 2 [1] to 2 [8] and the negative output terminal of the voltage source 2 [8] are used. The voltage detection line is pulled out. The voltage detection line drawn from the positive output terminal of the voltage source 2 [j] is represented by reference numeral 21 [j] (1 ≦ j ≦ 8), and the voltage detection line drawn from the negative output terminal of the voltage source 2 [8]. Is represented by reference numeral 21 [9]. On the voltage detection line 21 [jj] (1 ≦ jj ≦ 9), the discharge current of the voltage sources 2 [1] to 2 [8] to the load 3 and the voltage sources 2 [1] to 2 [ 8] does not flow.
 電圧検出装置101は、電圧検出線21[j]及び21[j+1]間の電圧をAD変換の対象電圧として、電圧入力切替部118及びAD前段部111を介してAD変換器112に与えることで、電圧検出線21[j]及び21[j+1]間の電圧、即ち、電圧源2[j]の出力電圧をデジタル電圧信号として検出する。 The voltage detection apparatus 101 supplies the voltage between the voltage detection lines 21 [j] and 21 [j + 1] as an AD conversion target voltage to the AD converter 112 via the voltage input switching unit 118 and the AD pre-stage unit 111. The voltage between the voltage detection lines 21 [j] and 21 [j + 1], that is, the output voltage of the voltage source 2 [j] is detected as a digital voltage signal.
 電圧検出線21[jj]は分岐点22[jj]にて2つに分岐しており、一方は電圧入力切替部118に接続され且つ他方は電圧レベル判定部113に接続される。分岐点22[jj]から電圧入力切替部118に向かう電圧検出線を符号23[jj]によって参照し、分岐点22[jj]から電圧レベル判定部113に向かう電圧検出線を符号24[jj]によって参照する。電圧源2[j]の出力電圧を表すアナログ電圧信号は、電圧検出線21[j+1]の電位を基準としつつ電圧検出線21[j]を伝播した後、分岐点22[jj]にて分岐し、更に電圧検出線23[jj]及び24[jj]上を伝播する。 The voltage detection line 21 [jj] branches into two at a branch point 22 [jj], one of which is connected to the voltage input switching unit 118 and the other is connected to the voltage level determination unit 113. A voltage detection line from the branch point 22 [jj] to the voltage input switching unit 118 is referred to by reference numeral 23 [jj], and a voltage detection line from the branch point 22 [jj] to the voltage level determination unit 113 is referred to by reference numeral 24 [jj]. Reference by. The analog voltage signal representing the output voltage of the voltage source 2 [j] propagates through the voltage detection line 21 [j] with reference to the potential of the voltage detection line 21 [j + 1], and then branches at the branch point 22 [jj]. Further, it propagates on the voltage detection lines 23 [jj] and 24 [jj].
 電圧入力切替部118は、マルチプレクサ等から成り、電圧検出線23[1]及び23[2]間、23[2]及び23[3]間、23[3]及び23[4]間、23[4]及び23[5]間、23[5]及び23[6]間、23[6]及び23[7]間、23[7]及び23[8]間、23[8]及び23[9]間のアナログ電圧信号が順番に且つ周期的に選択されてAD変換器112にてデジタル電圧信号に変換されるように(以下、この選択における周期のことを同期周期と呼ぶ)、電圧検出線23[1]~23[9]の内の2本を選択してAD前段部111に接続する。即ち、電圧検出線23[1]及び23[2]と、電圧検出線23[2]及び23[3]と、電圧検出線23[3]及び23[4]と、電圧検出線23[4]及び23[5]と、電圧検出線23[5]及び23[6]と、電圧検出線23[6]及び23[7]と、電圧検出線23[7]及び23[8]と、電圧検出線23[8]及び23[9]とを、順番に且つ周期的に選択してAD前段部111に接続する。 The voltage input switching unit 118 includes a multiplexer and the like, and is between the voltage detection lines 23 [1] and 23 [2], between 23 [2] and 23 [3], between 23 [3] and 23 [4], and 23 [ 4] and 23 [5], 23 [5] and 23 [6], 23 [6] and 23 [7], 23 [7] and 23 [8], 23 [8] and 23 [9] ] Are sequentially and periodically selected and converted into digital voltage signals by the AD converter 112 (hereinafter, this selection cycle is referred to as a synchronization cycle). Two of 23 [1] to 23 [9] are selected and connected to the AD pre-stage unit 111. That is, the voltage detection lines 23 [1] and 23 [2], the voltage detection lines 23 [2] and 23 [3], the voltage detection lines 23 [3] and 23 [4], and the voltage detection line 23 [4]. ] And 23 [5], voltage detection lines 23 [5] and 23 [6], voltage detection lines 23 [6] and 23 [7], voltage detection lines 23 [7] and 23 [8], The voltage detection lines 23 [8] and 23 [9] are selected sequentially and periodically and connected to the AD pre-stage unit 111.
 なお、電圧検出装置101においては電圧入力切替部118を有していなくてもよい。その場合は、電圧検出線23[1]~23[9]全ての信号がAD前段部111に接続される。 Note that the voltage detection apparatus 101 does not have to include the voltage input switching unit 118. In that case, all signals of the voltage detection lines 23 [1] to 23 [9] are connected to the AD pre-stage unit 111.
 AD前段部111は、電圧入力切替部118にて選択された2本の電圧検出線[j]及び[j+1]間の電圧を、AD変換の対象電圧として、AD変換器112に伝達するバッファ回路であり、例えば、先述の差動アンプやフライングキャパシタから形成される。 The AD pre-stage unit 111 transmits a voltage between the two voltage detection lines [j] and [j + 1] selected by the voltage input switching unit 118 to the AD converter 112 as an AD conversion target voltage. For example, it is formed from the above-described differential amplifier or flying capacitor.
 AD変換器112は、基準電圧発生部115より発生される基準電圧VrefADを基準にしつつ、AD前段部111から伝達されたAD変換の対象電圧を周期的にデジタル電圧に変換する。換言すれば、AD変換の対象電圧を表すアナログ電圧信号をデジタル電圧信号に変換する。なお、この周期は上述の同期周期に対して同期を取った周期となる。得られたデジタル電圧信号はデジタル回路部114に出力される。電圧検出装置101は、基準電圧VrefADの電圧値を予め認識している。 The AD converter 112 periodically converts the AD conversion target voltage transmitted from the AD pre-stage unit 111 into a digital voltage while using the reference voltage Vref AD generated by the reference voltage generation unit 115 as a reference. In other words, an analog voltage signal representing a target voltage for AD conversion is converted into a digital voltage signal. This period is a period synchronized with the above-described synchronization period. The obtained digital voltage signal is output to the digital circuit unit 114. The voltage detection device 101 recognizes the voltage value of the reference voltage Vref AD in advance.
 電圧レベル判定部113は、電圧検出線24[1]~24[9]上のアナログ電圧信号に基づいて電圧源2[1]~2[8]の出力電圧の電圧レベルを個別に判定する。即ち、電圧源2[1]~2[8]ごとに、電圧源の出力電圧の電圧値が、互いに異なる複数の電圧範囲の何れに属するかを判定する。更に換言すれば、周期的に電圧源2[1]~2[8]ごとに、電圧源の出力電圧を、AD変換器112の電圧検出分解能よりも粗い分解能にて検出する。電圧レベル判定部113の判定結果を表すデジタル信号はデジタル回路部114に出力される。電圧レベル判定部113によって判定された各電圧源の出力電圧値を、判定電圧値とも言う。 The voltage level determination unit 113 individually determines the voltage levels of the output voltages of the voltage sources 2 [1] to 2 [8] based on the analog voltage signals on the voltage detection lines 24 [1] to 24 [9]. That is, for each of the voltage sources 2 [1] to 2 [8], it is determined to which of a plurality of different voltage ranges the voltage value of the output voltage of the voltage source belongs. In other words, the output voltage of the voltage source is periodically detected at a resolution coarser than the voltage detection resolution of the AD converter 112 for each of the voltage sources 2 [1] to 2 [8]. A digital signal representing the determination result of the voltage level determination unit 113 is output to the digital circuit unit 114. The output voltage value of each voltage source determined by the voltage level determination unit 113 is also referred to as a determination voltage value.
 デジタル回路部114は、故障検出部としての機能を有し、AD変換器112及び電圧レベル判定部113の出力信号に基づいて、電圧源2[1]~2[8]としてのLIBの過充電状態及び過放電状態を検出すると共にインレンジ故障の有無を検出する。 The digital circuit unit 114 has a function as a failure detection unit, and overcharges the LIB as the voltage sources 2 [1] to 2 [8] based on the output signals of the AD converter 112 and the voltage level determination unit 113. The state and overdischarge state are detected, and the presence or absence of an in-range failure is detected.
 電圧検出装置101では、インレンジ故障の故障箇所に、上述の第1~第3の故障箇所に加えて第5の故障箇所が含まれる(図3参照)。第5の故障箇所は、電圧入力切替部118であり、その故障要因として、例えば、マルチプレクサ内のスイッチ部におけるオン抵抗の抵抗値異常や該スイッチ部のリーク電流異常が挙げられる。例えば、電圧入力切替部118としてのマルチプレクサ内のスイッチ部のオン抵抗は、通常数Ω程度であることが見込まれるが、そのオン抵抗が10kΩになった場合、電圧検出線23[j]を介して該スイッチ部に流れる電流と該オン抵抗(10kΩ)との積の分だけ、AD変換器112の出力電圧に基づく検出電圧値Vdetが真値からずれてしまう。 In the voltage detection apparatus 101, the fifth failure location is included in the failure location of the in-range failure in addition to the first to third failure locations described above (see FIG. 3). The fifth failure location is the voltage input switching unit 118, and the failure factor includes, for example, an abnormal resistance value of the on-resistance in the switch unit in the multiplexer and an abnormal leakage current in the switch unit. For example, the on-resistance of the switch unit in the multiplexer as the voltage input switching unit 118 is normally expected to be about several Ω, but when the on-resistance becomes 10 kΩ, the voltage detection line 23 [j] is used. Therefore, the detected voltage value Vdet based on the output voltage of the AD converter 112 is shifted from the true value by the product of the current flowing through the switch section and the on-resistance (10 kΩ).
 電圧レベル判定部113は、その内部に第1実施形態で述べた電圧レベル判定部13と同様の回路を8つ分設けることで構成することができる。この場合、図8に示す如く、電圧レベル判定部113として採用可能な電圧レベル判定部113a内に8つのレベル判定部130[1]~130[8]を設けておき(レベル判定部130[1]~130[8]の各々は電圧レベル判定部13に対応)、各レベル判定部に、4つずつコンパレータを含めておく。即ち、レベル判定部130[j]に、電圧検出線24[j]及び24[j+1]間のアナログ電圧を基準電圧Vref[1]~Vref[4]と比較して比較結果を出力する4つのコンパレータを含めておく。なお、各レベル判定部130[j](1≦j≦8)には、各々電圧検出線24[j]、24[j+1]が入力される。 The voltage level determination unit 113 can be configured by providing eight circuits similar to the voltage level determination unit 13 described in the first embodiment. In this case, as shown in FIG. 8, eight level determination units 130 [1] to 130 [8] are provided in the voltage level determination unit 113a that can be adopted as the voltage level determination unit 113 (level determination unit 130 [1 ] To 130 [8] correspond to the voltage level determination unit 13), and each level determination unit includes four comparators. That is, the level determination unit 130 [j] compares the analog voltage between the voltage detection lines 24 [j] and 24 [j + 1] with the reference voltages Vref [1] to Vref [4] and outputs a comparison result. Include a comparator. Note that voltage detection lines 24 [j] and 24 [j + 1] are input to each level determination unit 130 [j] (1 ≦ j ≦ 8), respectively.
 そうすると、例えば、デジタル回路部114は、レベル判定部130[1]に含まれる4つのコンパレータの出力信号が変化するタイミングにおいて該4つのコンパレータの出力信号から電圧源2[1]の出力電圧を正確に検知することができる。更に、該タイミングにおいて、レベル判定部130[1]内の4つのコンパレータの出力信号が指し示す判定電圧値VL[1]と対応する検出電圧値Vdet[1]とを比較することにより、インレンジ故障の有無を検出することができる。ここで、検出電圧値Vdet[j]は、AD変換の対象電圧として電圧検出線23[j]及び23[j+1]間のアナログ電圧がAD変換器112に入力されている時における、AD変換器112の出力信号に基づく検出電圧値である。 Then, for example, the digital circuit unit 114 accurately calculates the output voltage of the voltage source 2 [1] from the output signals of the four comparators at the timing when the output signals of the four comparators included in the level determination unit 130 [1] change. Can be detected. Further, at the timing, the in-range failure is detected by comparing the determination voltage value VL [1] indicated by the output signals of the four comparators in the level determination unit 130 [1] with the corresponding detection voltage value Vdet [1]. The presence or absence of can be detected. Here, the detected voltage value Vdet [j] is an AD converter when an analog voltage between the voltage detection lines 23 [j] and 23 [j + 1] is input to the AD converter 112 as an AD conversion target voltage. The detected voltage value based on the output signal 112.
 判定電圧値VL[1]と検出電圧値Vdet[1]との比較結果に基づくインレンジ故障の有無検出方法は、第1実施形態で述べたものと同様である。即ち、より具体的には例えば、|Vdet[1]-VL[1]|が所定の故障判定閾値VTH(例えば、10mV)よりも大きければインレンジ故障が発生していると判断する一方で、そうでない場合は、インレンジ故障が発生していないと判断する。尚、電圧源2[1]に対応するレベル判定部130[1]について例示したが、電圧源2[2]~2[8]に対応するレベル判定部130[2]~130[8]についても同様である。 The in-range failure presence / absence detection method based on the comparison result between the determination voltage value VL [1] and the detection voltage value Vdet [1] is the same as that described in the first embodiment. More specifically, for example, if | Vdet [1] −VL [1] | is greater than a predetermined failure determination threshold value V TH (for example, 10 mV), it is determined that an in-range failure has occurred. Otherwise, it is determined that no in-range failure has occurred. Although the level determination unit 130 [1] corresponding to the voltage source 2 [1] is illustrated, the level determination units 130 [2] to 130 [8] corresponding to the voltage source 2 [2] to 2 [8] are illustrated. Is the same.
 デジタル回路部114は、上述の同期周期に従って、電圧レベル判定部113の出力とAD変換器112の出力の同期を取り、すなわち電圧レベル判定部113の出力とAD変換器112の出力が同じ電圧源2[j]の出力値を扱っているようにタイミングの整合性をとって、Vdet[j]とVL[j]の差分を求める(1≦j≦8)。 The digital circuit unit 114 synchronizes the output of the voltage level determination unit 113 and the output of the AD converter 112 according to the above-described synchronization cycle, that is, a voltage source in which the output of the voltage level determination unit 113 and the output of the AD converter 112 are the same. The timing consistency is obtained as if the output value of 2 [j] is handled, and the difference between Vdet [j] and VL [j] is obtained (1 ≦ j ≦ 8).
 なお、デジタル回路部114とAD変換器112(すなわち電圧入力切替部118)の上記同期周期による同期動作は、例えば図7の同期周期発生部synregから発せられる同期周期信号に同期することで達成される。同期周期発生部synregから発せられる同期周期信号は、例えば8カウント値の信号であり、3ビット信号線のアサート/ディアサート信号である(2=8)。 Note that the synchronization operation of the digital circuit unit 114 and the AD converter 112 (that is, the voltage input switching unit 118) by the above-described synchronization cycle is achieved by synchronizing with a synchronization cycle signal generated from the synchronization cycle generation unit synreg of FIG. The The synchronization period signal generated from the synchronization period generator synreg is, for example, an 8-count signal, and is an assert / deassert signal of a 3-bit signal line (2 3 = 8).
 また、レベル判定部130[j]による判定電圧値、及び、AD変換器112の出力信号に基づく検出電圧値Vdet[j]の内の、少なくとも一方に基づいて、電圧源[j]の状態が過充電状態又は過放電状態であるか否かを検出することもできる。 The state of the voltage source [j] is based on at least one of the determination voltage value by the level determination unit 130 [j] and the detection voltage value Vdet [j] based on the output signal of the AD converter 112. It is also possible to detect whether the battery is in an overcharge state or an overdischarge state.
 また、電圧レベル判定部113として、図9に示す電圧レベル判定部113bを用いることもできる。図9には、電圧レベル判定部113bの内部回路が示されている。電圧レベル判定部113bは、電圧入力切替部160、基準電圧発生部161及びコンパレータCMP[1]~CMP[4]を備えている。 Further, as the voltage level determination unit 113, a voltage level determination unit 113b shown in FIG. 9 can also be used. FIG. 9 shows an internal circuit of the voltage level determination unit 113b. The voltage level determination unit 113b includes a voltage input switching unit 160, a reference voltage generation unit 161, and comparators CMP [1] to CMP [4].
 電圧入力切替部160は、電圧検出線24[1]~24[9]に接続され、電圧検出線24[1]及び24[2]間、24[2]及び24[3]間、24[3]及び24[4]間、24[4]及び24[5]間、24[5]及び24[6]間、24[6]及び24[7]間、24[7]及び24[8]間、24[8]及び24[9]間のアナログ電圧信号を順番に且つ周期的に選択し、選択したアナログ電圧信号を、コンパレータCMP[1]~CMP[4]の非反転入力端子(+入力端子)に与える。換言すれば、選択したアナログ電圧信号が表しているアナログ電圧を、コンパレータCMP[1]~CMP[4]の非反転入力端子に印加する。 The voltage input switching unit 160 is connected to the voltage detection lines 24 [1] to 24 [9], and between the voltage detection lines 24 [1] and 24 [2], between 24 [2] and 24 [3], and 24 [ 3] and 24 [4], 24 [4] and 24 [5], 24 [5] and 24 [6], 24 [6] and 24 [7], 24 [7] and 24 [8] ], And the analog voltage signal between 24 [8] and 24 [9] is sequentially and periodically selected, and the selected analog voltage signal is supplied to the non-inverting input terminals of the comparators CMP [1] to CMP [4] ( + Input terminal). In other words, the analog voltage represented by the selected analog voltage signal is applied to the non-inverting input terminals of the comparators CMP [1] to CMP [4].
 なお、電圧レベル判定部113bにおいては、図8を用いて述べたように、各々電圧検出線24[1]~24[9]が入力される8つのレベル判定部130[1]~130[8]を設けておくことで、電圧入力切替部160を有していなくてもよい。 In the voltage level determination unit 113b, as described with reference to FIG. 8, eight level determination units 130 [1] to 130 [8] to which the voltage detection lines 24 [1] to 24 [9] are input, respectively. ], The voltage input switching unit 160 may not be provided.
 先述のように電圧検出装置101が電圧入力切替部118を有していない場合は、原則電圧レベル判定部113bは各々電圧検出線24[1]~24[9]が入力される8つのレベル判定部130[1]~130[8]を有し、電圧入力切替部160を有していない構成となる。すなわち、電圧検出線23[1]~23[9]の各線間電圧とレベル判定部130[1]~130[8]の各出力がデジタル回路部114で比較されることとなる。よってこの場合、同期動作が不要となるので、上記同期周期信号を発する図7の同期周期発生部synregは原則不要となる。 As described above, when the voltage detection apparatus 101 does not have the voltage input switching unit 118, the voltage level determination unit 113b generally determines eight levels to which the voltage detection lines 24 [1] to 24 [9] are input, respectively. Units 130 [1] to 130 [8], and the voltage input switching unit 160 is not included. That is, the line voltage of the voltage detection lines 23 [1] to 23 [9] and the outputs of the level determination units 130 [1] to 130 [8] are compared by the digital circuit unit 114. Therefore, in this case, since the synchronization operation is unnecessary, the synchronization cycle generation unit synreg of FIG. 7 for generating the synchronization cycle signal is not necessary in principle.
 また、電圧レベル判定部113が電圧入力切替部160を有しておらず電圧検出装置101が電圧入力切替部118を有している場合、また、電圧レベル判定部113が電圧入力切替部160を有しており電圧検出装置101が電圧入力切替部118を有していない場合があってもよい。この場合デジタル回路部114では、たとえば、レベル判定部113の出力においてセル2[i]に対応する信号のHi/Lowの状態が変化した場合に、電圧検出線23[i]~23[i+1]の線間電圧と比較する事でインレンジ故障かどうかを判定する。 When the voltage level determination unit 113 does not have the voltage input switching unit 160 and the voltage detection apparatus 101 has the voltage input switching unit 118, the voltage level determination unit 113 also changes the voltage input switching unit 160. The voltage detection device 101 may not include the voltage input switching unit 118. In this case, in the digital circuit unit 114, for example, when the Hi / Low state of the signal corresponding to the cell 2 [i] changes in the output of the level determination unit 113, the voltage detection lines 23 [i] to 23 [i + 1] It is judged whether it is an in-range failure by comparing with the line voltage.
 基準電圧発生部161は、図4の基準電圧発生部61と同様の部位であり、4つの基準電圧Vref[1]~Vref[4]を発生して、基準電圧Vref[1]~Vref[4]を、夫々、コンパレータCMP[1]~CMP[4]の反転入力端子(-入力端子)に与える。各コンパレータCMP[1]~CMP[4]において、非反転入力端子及び反転入力端子に加わるアナログ電圧及び基準電圧は、共に基準電位点7の電位を基準とする電圧である。 The reference voltage generator 161 is the same part as the reference voltage generator 61 of FIG. 4, generates four reference voltages Vref [1] to Vref [4], and generates reference voltages Vref [1] to Vref [4]. ] Are applied to the inverting input terminals (−input terminals) of the comparators CMP [1] to CMP [4], respectively. In each of the comparators CMP [1] to CMP [4], the analog voltage and the reference voltage applied to the non-inverting input terminal and the inverting input terminal are both voltages based on the potential at the reference potential point 7.
 電圧検出線24[j]及び24[j+1]間のアナログ電圧がコンパレータCMP[1]~CMP[4]の非反転入力端子に与えられる時において、電圧検出線23[j]及び23[j+1]間のアナログ電圧がAD変換の対象電圧としてAD変換器112に与えられるように、電圧入力切替部160とAD変換器側の電圧入力切替部118との間で同期がとられている。電圧入力切替部160を、電圧入力切替部118と同様、マルチプレクサを用いて形成することができる。電圧検出線24[j]及び24[j+1]間のアナログ電圧を、基準電位点7の電位を基準としてコンパレータCMP[1]~CMP[4]の非反転入力端子に与えるために、電圧入力切替部160内のマルチプレクサとコンパレータCMP[1]~CMP[4]との間に、AD前段部111と同等の差動アンプやフライングキャパシタを設けるようにしてもよい。 When the analog voltage between the voltage detection lines 24 [j] and 24 [j + 1] is applied to the non-inverting input terminals of the comparators CMP [1] to CMP [4], the voltage detection lines 23 [j] and 23 [j + 1] The voltage input switching unit 160 and the voltage input switching unit 118 on the AD converter side are synchronized so that the analog voltage between them is supplied to the AD converter 112 as a target voltage for AD conversion. Similarly to the voltage input switching unit 118, the voltage input switching unit 160 can be formed using a multiplexer. In order to apply an analog voltage between the voltage detection lines 24 [j] and 24 [j + 1] to the non-inverting input terminals of the comparators CMP [1] to CMP [4] with reference to the potential at the reference potential point 7, the voltage input switching is performed. A differential amplifier or flying capacitor equivalent to the AD pre-stage unit 111 may be provided between the multiplexer in the unit 160 and the comparators CMP [1] to CMP [4].
 電圧入力切替部118によって電圧検出線23[j]及び23[j+1]間のアナログ電圧信号が選択され且つ電圧入力切替部160によって電圧検出線24[j]及び24[j+1]間のアナログ電圧信号が選択されている区間を、第jの検出区間と呼ぶ。上述の説明から明らかなように、第jの検出区間では、電圧源2[j]の出力電圧がAD変換器112におけるAD変換の対象電圧となる。1つの検出区間及びそれに対応する1つの電圧源にのみ注目すれば、電圧レベル判定部113b内のコンパレータCMP[1]~CMP[4]の出力信号とAD変換器112の出力信号とに基づく、インレンジ故障の有無検出方法並びに過充電状態及び過放電状態の検出方法は、第1実施形態におけるそれらと同様である。 The analog voltage signal between the voltage detection lines 23 [j] and 23 [j + 1] is selected by the voltage input switching unit 118, and the analog voltage signal between the voltage detection lines 24 [j] and 24 [j + 1] is selected by the voltage input switching unit 160. The section in which is selected is called the jth detection section. As is clear from the above description, in the jth detection interval, the output voltage of the voltage source 2 [j] is the target voltage for AD conversion in the AD converter 112. If attention is paid only to one detection section and one voltage source corresponding thereto, based on the output signals of the comparators CMP [1] to CMP [4] in the voltage level determination unit 113b and the output signal of the AD converter 112, The in-range failure presence / absence detection method and the overcharge state and overdischarge state detection method are the same as those in the first embodiment.
 例えば、第1の検出区間及び電圧源2[1]にのみ注目した場合において、電圧源2[1]の出力電圧が4.0Vより低いが3.8Vより高い状態から3.8Vより低いが3.5Vより高い状態へと遷移することを想定したならば、コンパレータCMP[2]の出力デジタル信号は「1」から「0」へと変化する。デジタル回路部114は、この変化の直前又は直後に得られたAD変換器112の出力信号による検出電圧値Vdet[1]と、コンパレータCMP[2]に対応する基準電圧値Vref[2]とを比較し、それらの差の絶対値|Vdet[1]-Vref[2]|が所定の故障判定閾値VTH(例えば、10mV)よりも大きければインレンジ故障が発生していると判断する一方で、そうでない場合は、インレンジ故障は発生していないと判断する。また、第1の検出区間において、コンパレータCMP[1]~CMP[4]の出力信号が全て「1」の時には電圧源2[1]が過充電状態にあると検出することができ、コンパレータCMP[1]~CMP[4]の出力信号が全て「0」の時には電圧源2[1]が過放電状態にあると検出することができる。第2~第8の検出区間及び電圧源2[2]~2[8]についても同様である。 For example, when focusing only on the first detection interval and the voltage source 2 [1], the output voltage of the voltage source 2 [1] is lower than 4.0V but higher than 3.8V, but lower than 3.8V. Assuming a transition to a state higher than 3.5 V, the output digital signal of the comparator CMP [2] changes from “1” to “0”. The digital circuit unit 114 obtains the detection voltage value Vdet [1] based on the output signal of the AD converter 112 obtained immediately before or after this change and the reference voltage value Vref [2] corresponding to the comparator CMP [2]. In comparison, if the absolute value | Vdet [1] −Vref [2] | of the difference between them is larger than a predetermined failure determination threshold value V TH (for example, 10 mV), it is determined that an in-range failure has occurred. Otherwise, it is determined that no in-range failure has occurred. In the first detection period, when all the output signals of the comparators CMP [1] to CMP [4] are “1”, it can be detected that the voltage source 2 [1] is in an overcharged state, and the comparator CMP When the output signals of [1] to CMP [4] are all “0”, it can be detected that the voltage source 2 [1] is in an overdischarged state. The same applies to the second to eighth detection intervals and the voltage sources 2 [2] to 2 [8].
 充放電制御部105は、デジタル回路部114による過充電状態及び過放電状態の検出結果並びにインレンジ故障の有無の検出結果に基づいて、電圧源2[1]~2[8]の充電及び放電を制御する。電圧源2[1]~2[8]の充電中において過充電状態又はインレンジ故障の発生が検出された場合は充電回路4による電圧源2[1]~2[8]の充電が停止されるように、且つ、電圧源2[1]~2[8]の放電中において過放電状態又はインレンジ故障の発生が検出された場合は負荷3に対する電圧源2[1]~2[8]の放電が停止されるように、充放電制御部105は、負荷3及び充電回路4を含む充放電部を制御する。尚、電圧源2[1]~2[8]の放電の停止は、電圧源2[1]~2[8]及び負荷3間に設けられた図示されないスイッチを遮断することで実現可能である。また、電圧源2[1]~2[8]が過充電状態若しくは過放電状態にあると判断された場合、又は、インレンジ故障が発生していると判断された場合、電圧検出装置101又は充放電制御部105に接続された表示部(不図示)やスピーカ(不図示)等を用いて、ユーザに対し警告報知を行うようにしてもよい。 The charge / discharge control unit 105 charges and discharges the voltage sources 2 [1] to 2 [8] based on the detection result of the overcharge state and the overdischarge state by the digital circuit unit 114 and the detection result of the presence / absence of the in-range failure. To control. When the overcharge state or the occurrence of an in-range failure is detected during charging of the voltage sources 2 [1] to 2 [8], the charging of the voltage sources 2 [1] to 2 [8] by the charging circuit 4 is stopped. As described above, and when an overdischarge state or occurrence of an in-range failure is detected during the discharge of the voltage sources 2 [1] to 2 [8], the voltage sources 2 [1] to 2 [8] for the load 3 are detected. The charging / discharging control unit 105 controls the charging / discharging unit including the load 3 and the charging circuit 4 so as to stop the discharge. The stop of the discharge of the voltage sources 2 [1] to 2 [8] can be realized by cutting off a switch (not shown) provided between the voltage sources 2 [1] to 2 [8] and the load 3. . When it is determined that the voltage sources 2 [1] to 2 [8] are in an overcharge state or an overdischarge state, or when it is determined that an in-range failure has occurred, the voltage detection device 101 or You may make it alert | report a warning with respect to a user using the display part (not shown), the speaker (not shown), etc. which were connected to the charging / discharging control part 105. FIG.
 また、図1の電圧検出装置1を図5の電圧検出装置1aへと変形できるように、図7の電圧検出装置101に保護回路を設けるようにしてもよい。例えば、分岐点22[1]~22[9]及び電圧入力切替部118間の電圧検出線23[1]~23[9]上に直列に、1つずつ、保護回路16と同様の保護回路を挿入することができる。更に例えば、分岐点22[1]~22[9]及び電圧レベル判定部113間の電圧検出線24[1]~24[9]上に直列に、1つずつ、保護回路17と同様の保護回路を挿入することができる。 7 may be provided with a protection circuit so that the voltage detection device 1 of FIG. 1 can be transformed into the voltage detection device 1a of FIG. For example, a protection circuit similar to the protection circuit 16 one by one in series on the voltage detection lines 23 [1] to 23 [9] between the branch points 22 [1] to 22 [9] and the voltage input switching unit 118. Can be inserted. Further, for example, protection similar to that of the protection circuit 17 is provided in series on the voltage detection lines 24 [1] to 24 [9] between the branch points 22 [1] to 22 [9] and the voltage level determination unit 113. A circuit can be inserted.
 また、図10に示されるようなパルス変換回路150を、電圧検出装置101内又は電圧検出装置101外に更に設けるようにしても良い。パルス変換回路150は、図8のレベル判定部130[1]~130[8]内の各コンパレータの出力信号、又は、図9の電圧レベル判定部113b内の各コンパレータの出力信号を、パルス信号に変換する。このパルス信号は、電圧レベル判定部113による電圧源2[1]~2[8]それぞれの判定電圧値を、パルスのデューティ比によって表現する。例えば、基準電圧Vref[1]~Vref[4]に、夫々、80%、60%、40%及び20%のデューティ比を割り当て、電圧源2[1]の判定電圧値に対応するデューティ比のパルス、電圧源2[2]の判定電圧値に対応するデューティ比のパルス、・・・、電圧源2[8]の判定電圧値に対応するデューティ比のパルスを時間方向に結合したパルス列を、上記パルス信号として出力することができる。上記パルス信号を、主として、各電圧源の過充電状態及び過放電状態の伝達に利用することができる。 Further, a pulse conversion circuit 150 as shown in FIG. 10 may be further provided inside the voltage detection apparatus 101 or outside the voltage detection apparatus 101. The pulse conversion circuit 150 outputs the output signal of each comparator in the level determination units 130 [1] to 130 [8] in FIG. 8 or the output signal of each comparator in the voltage level determination unit 113b in FIG. Convert to This pulse signal represents the determination voltage value of each of the voltage sources 2 [1] to 2 [8] by the voltage level determination unit 113 by the duty ratio of the pulse. For example, 80%, 60%, 40%, and 20% duty ratios are assigned to the reference voltages Vref [1] to Vref [4], respectively, and duty ratios corresponding to the determination voltage values of the voltage source 2 [1] are assigned. Pulse, a pulse having a duty ratio corresponding to the determination voltage value of the voltage source 2 [2],..., A pulse train obtained by combining pulses having a duty ratio corresponding to the determination voltage value of the voltage source 2 [8] in the time direction, The pulse signal can be output. The pulse signal can be used mainly for transmitting the overcharge state and overdischarge state of each voltage source.
 本実施形態によれば、電圧源2[1]~2[8]の出力電圧の検出値をAD変換器112より出力させるための、分岐点22[1]~22[9]以降の電圧検出回路部分(電圧検出部)におけるインレンジ故障の有無を、故障の程度や要因によらず高精度に検出することが可能となる。加えて、インレンジ故障検出のための新たな構成の追加を低減させることで、構成の複雑化およびコスト増加を抑制させることができる。該電圧検出回路部分には、電圧入力切替部118、AD前段部111、AD変換器112及び基準電圧発生部115並びにそれらを接続する配線が含まれる。電圧検出線23[1]~23[9]上に保護回路を設けている場合は、該保護回路も上記電圧検出回路部分に含まれる。また、電圧レベル判定部113として図9の電圧レベル判定部113bを採用するようにすれば、図8の電圧レベル判定部113aを採用する場合と比べて、基準電圧の個数やコンパレータの個数を削減することができる。 According to the present embodiment, voltage detection after the branch points 22 [1] to 22 [9] for causing the AD converter 112 to output the detected values of the output voltages of the voltage sources 2 [1] to 2 [8]. It is possible to detect the presence / absence of an in-range failure in the circuit part (voltage detection unit) with high accuracy regardless of the degree and cause of the failure. In addition, by reducing the addition of a new configuration for in-range failure detection, it is possible to suppress the complexity of the configuration and the increase in cost. The voltage detection circuit portion includes a voltage input switching unit 118, an AD pre-stage unit 111, an AD converter 112, a reference voltage generation unit 115, and wirings connecting them. When a protection circuit is provided on the voltage detection lines 23 [1] to 23 [9], the protection circuit is also included in the voltage detection circuit portion. Further, if the voltage level determination unit 113b of FIG. 9 is adopted as the voltage level determination unit 113, the number of reference voltages and the number of comparators are reduced as compared with the case of using the voltage level determination unit 113a of FIG. can do.
 尚、本実施形態では、複数の電圧源から成る電圧源部として8つの電圧源が直列接続された電圧源部を例示したが、電圧源部に含まれる電圧源の個数は8以外であっても良いし、電圧源部に含まれる複数の電圧源が並列接続されていても構わない。 In the present embodiment, a voltage source unit in which eight voltage sources are connected in series is illustrated as a voltage source unit including a plurality of voltage sources. However, the number of voltage sources included in the voltage source unit is other than eight. Alternatively, a plurality of voltage sources included in the voltage source unit may be connected in parallel.
 また、インレンジ故障の検出方法に特に注目して第1~第3実施形態に係る電圧検出装置(1、1a又は101)の動作を説明したが、第1~第3実施形態に係る電圧検出装置(1、1a又は101)の構成にて、アウトレンジ故障をも検出することが可能である。アウトレンジ故障とは、インレンジ故障に分類されない比較的重度の故障を指す。アウトレンジ故障の発生時には、インレンジ故障の発生時よりも、AD変換器(12又は112)による検出電圧値Vdetが真の電圧値から大きくずれる。アウトレンジ故障の検出の際には、インレンジ故障検出用の上記故障判定閾値VTHの代わりにアウトレンジ故障検出用の故障判定閾値VTH’を用いればよい(但し、VTH’>VTH)。用いる故障判定閾値が異なる点を除き、インレンジ故障の検出方法とアウトレンジ故障の検出方法は同様である。電圧レベル判定部(13又は113)による判定電圧値とAD変換器(12又は112)による検出電圧値Vdetとの差を故障判定閾値VTH及びVTH’の夫々と比較するようにすれば、インレンジ故障とアウトレンジ故障を区別して検出することも可能である。 The operation of the voltage detection device (1, 1a, or 101) according to the first to third embodiments has been described with particular attention to the in-range failure detection method. The voltage detection according to the first to third embodiments has been described. With the configuration of the device (1, 1a or 101), it is possible to detect an out-range failure. Out-range failures refer to relatively severe failures that are not classified as in-range failures. When an out-range failure occurs, the detected voltage value Vdet detected by the AD converter (12 or 112) is greatly deviated from the true voltage value when an in-range failure occurs. Upon detection of the out-range fault, 'may be used (although, V TH' failure determination threshold value for out-range fault V TH in place of the failure determination threshold value V TH for in-range fault> V TH ). The in-range failure detection method and the out-range failure detection method are the same except that the failure determination threshold used is different. If the difference between the determination voltage value by the voltage level determination unit (13 or 113) and the detection voltage value Vdet by the AD converter (12 or 112) is compared with each of the failure determination threshold values V TH and V TH ′, It is also possible to detect in-range failure and out-range failure separately.
 また、電圧源の出力電圧が取り得ると想定される電圧範囲の下限値がVaであって且つ上限値がVbであるとすると(0<Va<Vb)、Va以下又はVb以上の電圧が電圧源の出力電圧として検出された場合に、アウトレンジ故障が発生していると判断するようにしてもよい。即ち、AD変換器(12又は112)による検出電圧値VdetがVa以下又はVb以上である場合に、アウトレンジ故障が発生していると判断するようにしてもよい。この方法を用いても、インレンジ故障とアウトレンジ故障を区別して検出することができる。但し、それらを区別して検出する必要が無いのであれば、上述してきたインレンジ故障の検出のみを実行するようにしてもよい。アウトレンジ故障の発生時には、インレンジ故障の発生時よりも検出電圧値Vdetが真の電圧値から大きくずれるため、インレンジ故障の検出のみを行うことで、アウトレンジ故障が発生した場合でも、故障の検知がなされるからである。
<<第4実施形態>>
 本発明の第4実施形態に係る電池システムを説明する。図11は、第4実施形態に係る電池システム200のブロック図である。
Also, assuming that the lower limit value of the voltage range that can be taken by the output voltage of the voltage source is Va and the upper limit value is Vb (0 <Va <Vb), a voltage of Va or less or Vb or more is a voltage. When it is detected as the output voltage of the source, it may be determined that an out-range failure has occurred. That is, when the detected voltage value Vdet by the AD converter (12 or 112) is Va or less or Vb or more, it may be determined that an out-range failure has occurred. Even with this method, it is possible to distinguish and detect in-range faults and out-range faults. However, if it is not necessary to distinguish and detect them, only the in-range failure detection described above may be executed. When an out-range failure occurs, the detected voltage value Vdet deviates from the true voltage value more significantly than when an in-range failure occurs. This is because it is detected.
<< Fourth Embodiment >>
A battery system according to a fourth embodiment of the present invention will be described. FIG. 11 is a block diagram of a battery system 200 according to the fourth embodiment.
 電池システム200は、電圧検出装置201及び電圧源部202を少なくとも含む。電池システム200に、充放電部203若しくは充放電制御部204、又は、それらの双方が、更に含まれていると考えてもかまわない。また、電池システム200に、図10のパルス変換回路150を含めるようにしても良い。 The battery system 200 includes at least a voltage detection device 201 and a voltage source unit 202. It may be considered that the battery system 200 further includes the charging / discharging unit 203 or the charging / discharging control unit 204, or both of them. Further, the battery system 200 may include the pulse conversion circuit 150 of FIG.
 第1又は第2実施形態で述べた構成を電池システム200に適用することができ、その場合、電圧検出装置201は電圧検出装置1又は1aであり、電圧源部202は電圧源2であり、充放電部203は、負荷3及び充電回路4を含む充放電部であり、充放電制御部204は充放電制御部5である。 The configuration described in the first or second embodiment can be applied to the battery system 200. In this case, the voltage detection device 201 is the voltage detection device 1 or 1a, the voltage source unit 202 is the voltage source 2, The charging / discharging unit 203 is a charging / discharging unit including the load 3 and the charging circuit 4, and the charging / discharging control unit 204 is the charging / discharging control unit 5.
 第3実施形態で述べた構成を電池システム200に適用することができ、その場合、電圧検出装置201は電圧検出装置101であり、電圧源部202は電圧源2[1]~2[8]から構成され、充放電部203は負荷3及び充電回路4を含む充放電部であり、充放電制御部204は充放電制御部105である。 The configuration described in the third embodiment can be applied to the battery system 200. In this case, the voltage detection device 201 is the voltage detection device 101, and the voltage source unit 202 is the voltage sources 2 [1] to 2 [8]. The charging / discharging unit 203 is a charging / discharging unit including the load 3 and the charging circuit 4, and the charging / discharging control unit 204 is the charging / discharging control unit 105.
 電圧源部202が1又は複数の電池(例えば、LIB)から形成されることを想定しているため、符号200によって表されるシステムを電池システムと表現しているが、電圧源部202を1又は複数の電池以外の電圧源から形成することもでき、その場合、電池システムは電圧源システムと読み替えられる。 Since it is assumed that the voltage source unit 202 is formed of one or a plurality of batteries (for example, LIB), the system represented by the reference numeral 200 is expressed as a battery system. Or it can also form from voltage sources other than a some battery, and a battery system is read as a voltage source system in that case.
 図11によると、充放電制御部204が充放電部203に対して、フィードバック制御を行なっている。
<<第5実施形態>>
 本発明の第5実施形態に係る電動車両を説明する。図12は、第5実施形態に係る電動車両300の構成図である。電動車両300には、第4実施形態に係る電池システム200と車両ECU(Electrical Control Unit)210が搭載されており、電池システム200と車両ECU210との間で、CAN(Controller Area Network)を介した通信が可能となっている。図11も参照しつつ、電動車両300の構成を説明する。
According to FIG. 11, the charge / discharge control unit 204 performs feedback control on the charge / discharge unit 203.
<< Fifth Embodiment >>
An electric vehicle according to a fifth embodiment of the present invention will be described. FIG. 12 is a configuration diagram of an electric vehicle 300 according to the fifth embodiment. The electric vehicle 300 is equipped with a battery system 200 and a vehicle ECU (Electrical Control Unit) 210 according to the fourth embodiment, and between the battery system 200 and the vehicle ECU 210 via a CAN (Controller Area Network). Communication is possible. The configuration of the electric vehicle 300 will be described with reference to FIG.
 電動車両300において、充放電部203内における負荷は、電動車両300を走行させるためのモータ(不図示)である。電動車両300は、電池システム200の電圧源部202の出力電圧(即ち、例えば、図7の電圧源2[1]~2[8]の出力電圧)を駆動源として用いて走行する。 In the electric vehicle 300, the load in the charging / discharging unit 203 is a motor (not shown) for causing the electric vehicle 300 to travel. The electric vehicle 300 travels using the output voltage of the voltage source unit 202 of the battery system 200 (that is, the output voltage of the voltage sources 2 [1] to 2 [8] in FIG. 7, for example) as a drive source.
 電動車両300の走行には比較的大きな電圧出力が必要となるため、本実施形態では、電池システム200に第3実施形態で述べた構成が採用されていることを想定する。従って、電池システム200内の電圧源部202には、複数の電圧源としての複数の電池(例えば、LIB)が設けられている。以下、本実施形態で、単に電池といった場合、それは、電圧源部202に含まれる電圧源としての電池を指す。 Since traveling of the electric vehicle 300 requires a relatively large voltage output, in the present embodiment, it is assumed that the configuration described in the third embodiment is adopted for the battery system 200. Therefore, the voltage source unit 202 in the battery system 200 is provided with a plurality of batteries (for example, LIB) as a plurality of voltage sources. Hereinafter, in this embodiment, when it is simply referred to as a battery, it refers to a battery as a voltage source included in the voltage source unit 202.
 図11の充放電制御部204が電池システム200内に含まれていると考えることも可能であるが、第5実施形態では、充放電制御部204が、電池システム200内ではなく、車両ECU210内に含まれていると考える。第4実施形態で述べたように、図11の充放電制御部204として図7の充放電制御部105を用いることができる。 Although it can be considered that the charge / discharge control unit 204 of FIG. 11 is included in the battery system 200, in the fifth embodiment, the charge / discharge control unit 204 is not in the battery system 200 but in the vehicle ECU 210. I think that it is included. As described in the fourth embodiment, the charge / discharge control unit 105 in FIG. 7 can be used as the charge / discharge control unit 204 in FIG. 11.
 充放電制御部204を含む車両ECU210には、各電池の過充電状態及び過放電状態の検出結果並びにインレンジ故障の有無の検出結果を表す異常情報が図7のデジタル回路部114から与えられると共に、AD変換器112による各電池の出力電圧の検出値を表す電池電圧情報がデジタル回路部114を介して与えられる。また、上記異常情報に、アウトレンジ故障の有無の検出結果を表す情報をも含めるようにしてもよい。車両ECU210は、走行制御部としての機能を備え、運転手から与えられた走行に関する指示と上記の異常情報及び電池電圧情報に基づいて各電池の充放電を制御することにより電動車両300の走行を制御する。 The vehicle ECU 210 including the charge / discharge control unit 204 is provided with abnormality information representing the detection results of the overcharge state and overdischarge state of each battery and the presence / absence of in-range failure from the digital circuit unit 114 of FIG. Battery voltage information representing the detected value of the output voltage of each battery by the AD converter 112 is given via the digital circuit unit 114. Further, the abnormality information may include information indicating a detection result of the presence / absence of an out-range failure. The vehicle ECU 210 has a function as a traveling control unit, and controls the charging / discharging of each battery based on the traveling instruction given by the driver and the above-described abnormality information and battery voltage information, thereby allowing the electric vehicle 300 to travel. Control.
 車両ECU210は、何れかの電池の状態が過充電状態又は過放電状態にあると検出された時、各電池の充放電を停止させ、その旨を、電動車両300に搭載された表示部やスピーカを用いて運転手に報知する。電動車両300に搭載された表示部及びスピーカとして、電動車両300に搭載されたカーナビゲショーンシステムのそれらを利用することができる。 When the vehicle ECU 210 detects that any of the batteries is in an overcharged state or an overdischarged state, the vehicle ECU 210 stops charging / discharging of each battery, and notifies the display unit or speaker mounted on the electric vehicle 300. To inform the driver. As a display unit and a speaker mounted on the electric vehicle 300, those of the car navigation system mounted on the electric vehicle 300 can be used.
 また、車両ECU210は、インレンジ故障又はアウトレンジ故障が発生していると検出された時にも、各電池の充放電を停止させることができる。そして、その旨を、上記の表示部やスピーカを用いて運転手に報知することもできる。 The vehicle ECU 210 can also stop charging / discharging of each battery when it is detected that an in-range failure or an out-range failure has occurred. And it can also alert | report to the driver using said display part and a speaker.
 但し、インレンジ故障は比較的軽度の故障であるため、インレンジ故障の発生検出時に、電動車両300の走行を直ちに停止させることが最良の策であるとは必ずしも言えない。これを考慮し、インレンジ故障の発生時には、以下のような特殊制御を行うことも可能である。 However, since the in-range failure is a relatively minor failure, it is not necessarily the best measure to immediately stop the traveling of the electric vehicle 300 when the occurrence of the in-range failure is detected. Considering this, when an in-range failure occurs, it is possible to perform the following special control.
 この特殊制御を説明する。インレンジ故障の発生が検出されると、車両ECU210は、AD変換器112の出力信号に基づく各電池の出力電圧の検出電圧値と、電圧レベル判定部113による各電池の出力電圧の判定電圧値とを比較し、両電圧値の内、小さい方の電圧値を各電池の実際の出力電圧値であるとみなした上で各電池の充放電を許可する。このような充放電制御が特殊制御である。各電池の充放電が許可されている期間には、各電池の出力に基づく電動車両300の走行が可能である。勿論、実際の出力電圧値であるとみなされた電圧値が、過充電状態又は過放電状態における電圧値である場合は、安全性を優先し、直ちに各電池の充放電を停止させる。 This special control will be explained. When the occurrence of the in-range failure is detected, the vehicle ECU 210 detects the output voltage value of each battery based on the output signal of the AD converter 112 and the determination voltage value of the output voltage of each battery by the voltage level determination unit 113. And charging / discharging of each battery is permitted after considering the smaller one of the two voltage values as the actual output voltage value of each battery. Such charge / discharge control is special control. During the period when charging / discharging of each battery is permitted, the electric vehicle 300 can travel based on the output of each battery. Of course, when the voltage value regarded as the actual output voltage value is a voltage value in an overcharged state or an overdischarged state, safety is prioritized and charging / discharging of each battery is immediately stopped.
 インレンジ故障の発生時において、AD変換器112による各電池の検出電圧値(例えば3.0V)が実際の値(1.9V)よりも大きい場合がある。このような場合に、AD変換器112による検出電圧値に基づいて各電池の放電を許可すると電池の過放電の発生又は進行が引き起こされる。これを考慮し、上記の如く、検出電圧値と判定電圧値の内の小さい方の電圧値を用いた上で電動車両300の走行を許可する(上記例では、判定電圧値の方が小さいことが見込まれる)。また仮に、インレンジ故障の発生時において、AD変換器112による各電池の検出電圧値(例えば1.9V)が実際の値(3.0V)よりも小さいならば、AD変換器112の検出電圧値が小さい方の電圧値となるため(但し、電圧レベル判定部の故障はないと仮定)、過放電の発生又は進行は防がれる。 When the in-range failure occurs, the detected voltage value (for example, 3.0V) of each battery by the AD converter 112 may be larger than the actual value (1.9V). In such a case, if discharge of each battery is permitted based on the detected voltage value by the AD converter 112, the occurrence or progress of overdischarge of the battery is caused. Considering this, as described above, the electric vehicle 300 is allowed to travel after using the smaller one of the detection voltage value and the determination voltage value (in the above example, the determination voltage value is smaller). Is expected). Further, if an in-range failure occurs, if the detected voltage value (for example, 1.9 V) of each battery by the AD converter 112 is smaller than the actual value (3.0 V), the detected voltage of the AD converter 112 is detected. Since the voltage value is the smaller value (assuming that there is no failure in the voltage level determination unit), the occurrence or progression of overdischarge is prevented.
 特殊制御の実行を無制限に許可することも可能であるが、特殊制御は、電池電圧を正確に検出できていない状態おいて車両走行を許可するものであるため、特殊制御の実行に一定の制限を加えた方が望ましい。例えば、インレンジ故障の発生の検出時点から起算して、一定の期間だけ或いは一定の走行距離だけ特殊制御の実行を許可するようにしてもよい。 Although it is possible to allow the execution of special control without limitation, special control allows the vehicle to run in a state where the battery voltage cannot be accurately detected. It is desirable to add For example, the execution of the special control may be permitted only for a certain period or a certain traveling distance, starting from the time when the occurrence of the in-range failure is detected.
 電動車両300は、電池システム200内の電池のみを駆動源として用いて走行する電動車両であっても良いし、電池システム200内の電池と該電池以外のエネルギー源(例えば化石燃料)を駆動源として併用した上で走行するハイブリッド式電動車両であっても良い。また、電池システム200内の電池として燃料電池を用いた場合、電動車両300は燃料電池車両とも呼ばれる。また、図12では、電動車両300として自動車が示されているが、電動車両300は、自動二輪車等であっても良い。 The electric vehicle 300 may be an electric vehicle that travels using only the battery in the battery system 200 as a drive source, or the battery in the battery system 200 and an energy source other than the battery (for example, fossil fuel) as a drive source. It may be a hybrid electric vehicle that travels in combination. When a fuel cell is used as the battery in battery system 200, electric vehicle 300 is also called a fuel cell vehicle. In FIG. 12, an automobile is shown as the electric vehicle 300, but the electric vehicle 300 may be a motorcycle or the like.
 以上により、インレンジ故障が検出可能でありインレンジ故障の検出時に適切な措置を講じえ、かつ、インレンジ故障検出のための新たな構成の追加を低減させるなどすることで、構成の複雑化およびコスト増加を抑制させた電池システムを利用した電動車両を提供することができる。
<<第6実施形態>>
 本発明の第6実施形態を説明する。第6実施形態及び後述の第7実施形態では、インレンジ故障の発生が検出された時における上記の特殊制御の内容を、図面を用いて説明する。第6及び第7実施形態に係る電池システムの構成は第4実施形態に係る電池システム200(図11参照)のそれと同様であるため、第6及び第7実施形態に係る電池システムも、符号200によって参照する。第6及び第7実施形態に係る電池システム200を用いて図12の電動車両300を形成することもできる。尚、第1~第5実施形態とは別個に第6及び第7実施形態を設けてはいるが、第6及び第7実施形態で述べられる技術は上述の何れかの実施形態にて既に述べられている技術と言える。
As described above, in-range faults can be detected, and appropriate measures can be taken when in-range faults are detected, and the addition of new configurations for detecting in-range faults can be reduced, resulting in complex configurations. And the electric vehicle using the battery system which suppressed the cost increase can be provided.
<< Sixth Embodiment >>
A sixth embodiment of the present invention will be described. In the sixth embodiment and the seventh embodiment described later, the contents of the special control when the occurrence of an in-range failure is detected will be described with reference to the drawings. Since the configuration of the battery system according to the sixth and seventh embodiments is the same as that of the battery system 200 according to the fourth embodiment (see FIG. 11), the battery systems according to the sixth and seventh embodiments are also denoted by reference numeral 200. Reference by. The electric vehicle 300 of FIG. 12 can also be formed using the battery system 200 according to the sixth and seventh embodiments. Although the sixth and seventh embodiments are provided separately from the first to fifth embodiments, the techniques described in the sixth and seventh embodiments have already been described in any of the above-described embodiments. It can be said that it is a technology.
 図15は、インレンジ故障に特に注目した、第6実施形態に係る電池システム200の動作フローチャートである。図15及び図16を参照しつつ、電池システム200の電圧検出装置201、電圧源部202、充放電部203、充放電制御部204(図11参照)として、夫々、電圧検出装置101、電圧源2[1]~2[8]から成る電圧源部、負荷3及び充電回路4を含む充放電部、充放電制御部105が用いられた場合の動作を説明する。図16は、第6及び第7実施形態に係る電圧検出装置及びそれに付随する部位のブロック図である。 FIG. 15 is an operation flowchart of the battery system 200 according to the sixth embodiment, particularly focusing on the in-range failure. With reference to FIG. 15 and FIG. 16, the voltage detection device 101, the voltage source, and the voltage detection device 201, the voltage source unit 202, the charge / discharge unit 203, and the charge / discharge control unit 204 (see FIG. 11) of the battery system 200 The operation when the voltage source unit composed of 2 [1] to 2 [8], the charge / discharge unit including the load 3 and the charging circuit 4, and the charge / discharge control unit 105 are used will be described. FIG. 16 is a block diagram of a voltage detection device and associated parts according to the sixth and seventh embodiments.
 まず、ステップS11において、電池システム200は通常動作を実行する。通常動作とは、電圧源2[1]~2[8]としてのLIBの充電及び放電を許可した状態における動作を指す。従って、通常動作の実行時において、電圧源2[1]~2[8]としてのLIBの充電が必要な際には充電回路4による電圧源2[1]~2[8]の充電が成され、電圧源2[1]~2[8]としてのLIBの放電が必要な際には負荷3に対する電圧源2[1]~2[8]の放電が成される。上述したように、電圧源2[1]~2[8]の充電及び放電の制御は、充放電制御部105によって成される。 First, in step S11, the battery system 200 performs a normal operation. The normal operation refers to an operation in a state where charging and discharging of the LIB as the voltage sources 2 [1] to 2 [8] are permitted. Therefore, when the LIB as the voltage sources 2 [1] to 2 [8] needs to be charged during the normal operation, the charging circuit 4 charges the voltage sources 2 [1] to 2 [8]. When the LIB as the voltage sources 2 [1] to 2 [8] needs to be discharged, the voltage sources 2 [1] to 2 [8] are discharged to the load 3. As described above, the charging and discharging control unit 105 controls the charging and discharging of the voltage sources 2 [1] to 2 [8].
 ステップS11の通常動作の実行時において、ステップS12の処理が成される。ステップS12において、デジタル回路部114は、電圧レベル判定部113の判定電圧値VL[j]が変化したか否かを判定する。例えば、電圧レベル判定部113として図8の電圧レベル判定部113aを用いる場合には、レベル判定部130[j]内の4つのコンパレータの出力信号によって判定電圧値VL[j]が示されるため、レベル判定部130[j]内のコンパレータの出力信号の何れかが変化したときに、判定電圧値VL[j]が変化したと判定する。判定電圧値VL[j]の変化がないと判定された場合にはステップS11に戻ってステップS11及びS12の処理が繰り返し実行されるが、判定電圧値VL[j]の変化があると判定された場合には、ステップS12からステップS13への遷移が発生する。ここで、判定電圧値VL[1]~VL[8]の内、1以上の判定電圧値に変化があると判定された場合に、ステップS12からステップS13への遷移が実行されるものとする。以下、説明の具体化のため、判定電圧値VL[1]に変化があると判定された場合の動作を説明するが、判定電圧値VL[2]~VL[8]の何れかに変化があると判定された場合も同様である。 At the time of executing the normal operation in step S11, the process in step S12 is performed. In step S12, the digital circuit unit 114 determines whether or not the determination voltage value VL [j] of the voltage level determination unit 113 has changed. For example, when the voltage level determination unit 113a of FIG. 8 is used as the voltage level determination unit 113, the determination voltage value VL [j] is indicated by the output signals of four comparators in the level determination unit 130 [j]. It is determined that the determination voltage value VL [j] has changed when any of the output signals of the comparators in the level determination unit 130 [j] has changed. When it is determined that there is no change in the determination voltage value VL [j], the process returns to step S11 and the processes of steps S11 and S12 are repeatedly executed, but it is determined that there is a change in the determination voltage value VL [j]. If this happens, a transition from step S12 to step S13 occurs. Here, when it is determined that one or more determination voltage values among the determination voltage values VL [1] to VL [8] are changed, the transition from step S12 to step S13 is executed. . Hereinafter, for the sake of concrete explanation, the operation when it is determined that there is a change in the determination voltage value VL [1] will be described. However, there is a change in any of the determination voltage values VL [2] to VL [8]. The same applies to the case where it is determined that there is.
 ステップS13において、デジタル回路部114は、AD変換器112の検出電圧値Vdet[1]と電圧レベル判定部113の判定電圧値VL[1]との差の絶対値|Vdet[1]-VL[1]|を、所定の故障判定閾値VTHと比較する。故障判定閾値VTHの具体的数値は任意であるが、例えば、VTHは0.1V(ボルト)とされる。 In step S13, the digital circuit unit 114 determines the absolute value | Vdet [1] −VL [of the difference between the detection voltage value Vdet [1] of the AD converter 112 and the determination voltage value VL [1] of the voltage level determination unit 113. 1] | is compared with a predetermined failure determination threshold value V TH . Although the specific numerical value of the failure determination threshold value VTH is arbitrary, for example, VTH is set to 0.1 V (volt).
 ステップS13において不等式「|Vdet[1]-VL[1]|≧VTH」が成立しない場合、デジタル回路部114によってインレンジ故障の発生はないと判定され(ステップS14)、その後、ステップS11に戻って通常動作が継続される。一方、ステップS13において上記不等式が成立する場合、デジタル回路部114によってインレンジ故障が発生していると判定され(ステップS15)、充放電制御部105によりステップS16の充放電禁止処理が成される。尚、上記不等式「|Vdet[1]-VL[1]|≧VTH」の不等号“≧”を“>”に置き換えることも可能である(後述の第7実施形態においても同様)。充放電制御部105による充放電禁止処理は、負荷3に対する電圧源2[1]~[8]の放電及び充電回路4による電圧源2[1]~[8]の充電を禁止する処理(換言すれば、負荷3に対する電圧源2[1]~[8]の放電及び充電回路4による電圧源2[1]~[8]の充電を完全に制限する処理)である。 If the inequality “| Vdet [1] −VL [1] | ≧ V TH ” is not satisfied in step S13, the digital circuit unit 114 determines that no in-range failure has occurred (step S14), and then proceeds to step S11. Return to normal operation. On the other hand, if the above inequality holds in step S13, it is determined by the digital circuit unit 114 that an in-range failure has occurred (step S15), and the charge / discharge control unit 105 performs the charge / discharge prohibition process in step S16. . The inequality sign “≧” in the inequality “| Vdet [1] −VL [1] | ≧ V TH ” can be replaced with “>” (the same applies to the seventh embodiment described later). The charge / discharge prohibiting process by the charge / discharge control unit 105 is a process for prohibiting the discharge of the voltage sources 2 [1] to [8] to the load 3 and the charging of the voltage sources 2 [1] to [8] by the charging circuit 4 (in other words, In this case, the discharge of the voltage sources 2 [1] to [8] with respect to the load 3 and the charging of the voltage sources 2 [1] to [8] by the charging circuit 4 are completely limited.
 充放電制御部105による充放電禁止処理を実現するために、図16に示す如く例えば、主電力線120を遮断又は導通させるためのスイッチ131を主電力線120上に直列に設け、スイッチ131のオン/オフを充放電制御部105にて制御すれば良い。主電力線120は、電圧源2[1]~2[8]を直列接続した回路と負荷3及び充電回路4とを接続する環状の配線である。通常動作においては、スイッチ131がオンとされて主電力線120の導通が確保されるが、充放電禁止処理の実行時には、充放電制御部105によりスイッチ131がオフとされて主電力線120が遮断されるため、電圧源2[1]~2[8]の放電及び充電が禁止される。スイッチ131は、機械的なスイッチであっても良いし、半導体を用いたスイッチであっても良く、例えば、コンタクタと呼ばれる電磁接触器をスイッチ131として採用することができる。 In order to realize the charge / discharge prohibiting process by the charge / discharge control unit 105, for example, as shown in FIG. 16, a switch 131 for interrupting or conducting the main power line 120 is provided in series on the main power line 120, and the switch 131 is turned on / off. The charge / discharge control unit 105 may control off. The main power line 120 is an annular wiring that connects a circuit in which the voltage sources 2 [1] to 2 [8] are connected in series to the load 3 and the charging circuit 4. In normal operation, the switch 131 is turned on and the conduction of the main power line 120 is ensured. However, when the charge / discharge prohibiting process is executed, the charge / discharge control unit 105 turns off the switch 131 and the main power line 120 is cut off. Therefore, discharging and charging of the voltage sources 2 [1] to 2 [8] are prohibited. The switch 131 may be a mechanical switch or a switch using a semiconductor. For example, an electromagnetic contactor called a contactor can be adopted as the switch 131.
 尚、インレンジ故障の程度、電圧源2[1]~2[8]の性質などにも依存するが、充放電禁止処理において、負荷3に対する電圧源2[1]~2[8]の放電及び充電回路4による電圧源2[1]~2[8]の充電の内、放電のみを禁止する、或いは、充電のみを禁止するといったことも可能である。また、図11の電圧源部202が電圧源2[1]~2[8]から成る場合における図15の動作を説明したが、図11の電圧源部202が1つの電圧源2(図1又は図5参照)から成る場合におけるそれも同様である。 Although depending on the degree of in-range failure and the nature of the voltage sources 2 [1] to 2 [8], the discharge of the voltage sources 2 [1] to 2 [8] to the load 3 in the charge / discharge prohibiting process Of the charging of the voltage sources 2 [1] to 2 [8] by the charging circuit 4, it is also possible to prohibit only discharging or prohibit charging only. 11 has been described in the case where the voltage source unit 202 of FIG. 11 includes the voltage sources 2 [1] to 2 [8]. However, the voltage source unit 202 of FIG. The same applies to the case where the image is composed of (see FIG. 5).
 本実施形態では、インレンジ故障の発生が検出された際、その検出と同時に或いは速やかに、電圧源の充電が禁止される、或いは、電圧源の放電が禁止される、或いは、電圧源の充電及び放電が禁止される。このため、非常に安全なシステムを形成することができる。
<<第7実施形態>>
 本発明の第7実施形態を説明する。図17は、インレンジ故障に特に注目した、第7実施形態に係る電池システム200の動作フローチャートである。図16及び図17を参照しつつ、電池システム200の電圧検出装置201、電圧源部202、充放電部203、充放電制御部204(図11参照)として、夫々、電圧検出装置101、電圧源2[1]~2[8]から成る電圧源部、負荷3及び充電回路4を含む充放電部、充放電制御部105が用いられた場合の動作を説明する。
In the present embodiment, when an occurrence of an in-range failure is detected, charging of the voltage source is prohibited, or discharging of the voltage source is prohibited, or charging of the voltage source is performed simultaneously or promptly. And discharge is prohibited. For this reason, a very safe system can be formed.
<< Seventh Embodiment >>
A seventh embodiment of the present invention will be described. FIG. 17 is an operation flowchart of the battery system 200 according to the seventh embodiment, particularly focusing on the in-range failure. Referring to FIGS. 16 and 17, the voltage detection device 101, the voltage source, and the voltage detection device 201, the voltage source unit 202, the charge / discharge unit 203, and the charge / discharge control unit 204 (see FIG. 11) of the battery system 200, respectively. The operation when the voltage source unit composed of 2 [1] to 2 [8], the charge / discharge unit including the load 3 and the charging circuit 4, and the charge / discharge control unit 105 are used will be described.
 図17の動作フローチャートはステップS11~S15の処理を含み、それらは、第6実施形態におけるステップS11~S15の処理と同様である。即ち、ステップS11において通常動作を実行し、ステップS12において電圧レベル判定部113の判定電圧値VL[j]が変化したと判定された場合に、ステップS12からステップS13に移行して、AD変換器112の検出電圧値Vdet[j]と電圧レベル判定部113の判定電圧値VL[j]との差の絶対値|Vdet[j]-VL[j]|を、所定の故障判定閾値VTHと比較する。第6実施形態でも述べたように、判定電圧値VL[1]~VL[8]の内、1以上の判定電圧値に変化があると判定された場合に、ステップS12からステップS13への遷移が実行される。以下、説明の具体化のため、判定電圧値VL[1]に変化があると判定された場合の動作を説明するが、判定電圧値VL[2]~VL[8]の何れかに変化があると判定された場合も同様である。 The operation flowchart of FIG. 17 includes the processes of steps S11 to S15, which are the same as the processes of steps S11 to S15 in the sixth embodiment. That is, the normal operation is executed in step S11, and when it is determined in step S12 that the determination voltage value VL [j] of the voltage level determination unit 113 has changed, the process proceeds from step S12 to step S13, and the AD converter The absolute value | Vdet [j] −VL [j] | of the difference between the detection voltage value Vdet [j] 112 and the determination voltage value VL [j] of the voltage level determination unit 113 is set to a predetermined failure determination threshold V TH . Compare. As described in the sixth embodiment, when it is determined that one or more determination voltage values among the determination voltage values VL [1] to VL [8] are changed, the process proceeds from step S12 to step S13. Is executed. Hereinafter, for the sake of concrete explanation, the operation when it is determined that there is a change in the determination voltage value VL [1] will be described. However, there is a change in any of the determination voltage values VL [2] to VL [8]. The same applies to the case where it is determined that there is.
 判定電圧値VL[1]に変化があると判定された場合、ステップS13において絶対値|Vdet[1]-VL[1]|と故障判定閾値VTHとが比較される。そして、不等式「|Vdet[1]-VL[1]|≧VTH」が成立しない場合、デジタル回路部114によってインレンジ故障の発生はないと判定されて(ステップS14)、その後ステップS11に戻って通常動作が継続される。一方、ステップS13において不等式「|Vdet[1]-VL[1]|≧VTH」が成立する場合、ステップS13からステップS15への遷移が発生し、ステップS15においてデジタル回路部114によりインレンジ故障の発生はあると判定される。 If it is determined that there is a change in the determination voltage value VL [1], the absolute value in step S13 | Vdet [1] -VL [ 1] | and the failure determination threshold value V TH are compared. If the inequality “| Vdet [1] −VL [1] | ≧ V TH ” is not established, the digital circuit unit 114 determines that no in-range failure has occurred (step S14), and then returns to step S11. Normal operation continues. On the other hand, if the inequality “| Vdet [1] −VL [1] | ≧ V TH ” is satisfied in step S13, a transition from step S13 to step S15 occurs, and the digital circuit unit 114 causes an in-range failure in step S15. Is determined to occur.
 第7実施形態では、ステップS13において不等式「|Vdet[1]-VL[1]≧VTH」が成立する場合、ステップS13からステップS15を介してステップS20に移行し、ステップS20及びS21の処理を順次実行する。インレンジ故障の発生が検出された場合、ステップS20において、充放電制御部105は、充電回路4を制御することにより、以後、その発生要因が排除されるまで充電回路4による電圧源2[1]~2[8]の充電を禁止し、一方で負荷3に対する電圧源2の放電2[1]~2[8]は許可する(尚、仮に電圧源ごとの充電制御が可能であるならば、ステップS20において、電圧源2[1]~2[8]の内、電圧源2[1]の充電のみを禁止するようにしても良い)。但し、電圧源2[1]~2[8]の過放電を回避するべく、ステップS21の分岐処理を介してステップS22及びS23の何れかの処理を実行する。 In the seventh embodiment, when the inequality “| Vdet [1] −VL [1] ≧ V TH ” is satisfied in step S13, the process proceeds from step S13 to step S20 via step S15, and the processes in steps S20 and S21 are performed. Are executed sequentially. When the occurrence of the in-range failure is detected, in step S20, the charge / discharge control unit 105 controls the charging circuit 4 so that the voltage source 2 [1] by the charging circuit 4 is removed until the occurrence factor is eliminated thereafter. ] To 2 [8] are prohibited, while discharging 2 [1] to 2 [8] of the voltage source 2 with respect to the load 3 is permitted (if charge control for each voltage source is possible) In step S20, charging of the voltage source 2 [1] among the voltage sources 2 [1] to 2 [8] may be prohibited. However, in order to avoid overdischarge of the voltage sources 2 [1] to 2 [8], the process of any of steps S22 and S23 is executed via the branch process of step S21.
 ステップS21の分岐処理では、デジタル回路部114又は充放電制御部105により、AD変換器112の検出電圧値Vdet[1]と電圧レベル判定部113の判定電圧値VL[1]が比較される。そして、検出電圧値Vdet[1]が判定電圧値VL[1]よりも大きい場合には、ステップS21からステップS22に移行し、充放電制御部105は判定電圧値VL[1]を電圧源2[1]の実際の出力電圧値VCONT[1]であるとみなした上で電圧源2[1]~2[8]の放電制御を行う。一方、検出電圧値Vdet[1]が判定電圧値VL[1]よりも大きくない場合にはステップS21からステップS23に移行し、充放電制御部105は検出電圧値Vdet[1]を電圧源2[1]の実際の出力電圧値VCONT[1]であるとみなした上で電圧源2[1]~2[8]の放電制御を行う。例えば、Vdet[1]及びVL[1]が夫々3.6V及び3.8VであるならばVCONT[1]は3.6Vとなり、Vdet[1]及びVL[1]が夫々4.0V及び3.8Vであるならば、VCONT[1]は3.8Vとなる(但し、VTHが0.2V以下であると仮定)。 In the branch process of step S21, the digital circuit unit 114 or the charge / discharge control unit 105 compares the detection voltage value Vdet [1] of the AD converter 112 with the determination voltage value VL [1] of the voltage level determination unit 113. When the detected voltage value Vdet [1] is larger than the determination voltage value VL [1], the process proceeds from step S21 to step S22, and the charge / discharge control unit 105 uses the determination voltage value VL [1] as the voltage source 2. The discharge control of the voltage sources 2 [1] to 2 [8] is performed after regarding the actual output voltage value V CONT [1] of [1]. On the other hand, when the detected voltage value Vdet [1] is not larger than the determination voltage value VL [1], the process proceeds from step S21 to step S23, and the charge / discharge control unit 105 uses the detected voltage value Vdet [1] as the voltage source 2. The discharge control of the voltage sources 2 [1] to 2 [8] is performed after regarding the actual output voltage value V CONT [1] of [1]. For example, if Vdet [1] and VL [1] are 3.6V and 3.8V, respectively, V CONT [1] will be 3.6V, and Vdet [1] and VL [1] will be 4.0V and If it is 3.8V, V CONT [1] will be 3.8V (assuming V TH is 0.2V or less).
 ステップS22又はS23における電圧源2[1]~2[8]の放電制御において、出力電圧値VCONT[1]が通常電圧範囲の下限である2Vを下回った場合には、電圧源2[1]において過放電が発生していると判断し、充放電制御部105は、負荷3に対する電圧源2[1]~2[8]の放電をも禁止する。例えば、第6実施形態で述べたようにスイッチ131を主電力線120上に設けておき(図16参照)、出力電圧値VCONT[1]が通常電圧範囲の下限である2Vを下回った場合には、スイッチ131をオフにして主電力線120を遮断することで、電圧源2[1]~2[8]の放電及び充電を共に禁止すればよい。電圧源2[2]~2[8]の検出電圧値Vdet[2]~Vdet[8]にインレンジ故障による検出誤差が含まれていないと仮定した場合において、検出電圧値Vdet[2]~Vdet[8]の何れかが2Vを下回った場合にも、同様にして、負荷3に対する電圧源2[1]~2[8]の放電が禁止される。 In the discharge control of the voltage sources 2 [1] to 2 [8] in step S22 or S23, when the output voltage value V CONT [1] falls below 2V, which is the lower limit of the normal voltage range, the voltage source 2 [1 ], The charge / discharge control unit 105 also prohibits the discharge of the voltage sources 2 [1] to 2 [8] to the load 3. For example, as described in the sixth embodiment, when the switch 131 is provided on the main power line 120 (see FIG. 16), and the output voltage value V CONT [1] falls below 2 V that is the lower limit of the normal voltage range. In other words, both the discharge and charging of the voltage sources 2 [1] to 2 [8] may be prohibited by turning off the switch 131 and cutting off the main power line 120. When it is assumed that the detection voltage values Vdet [2] to Vdet [8] of the voltage sources 2 [2] to 2 [8] do not include a detection error due to an in-range failure, the detection voltage values Vdet [2] to Similarly, when any of Vdet [8] falls below 2V, the discharge of the voltage sources 2 [1] to 2 [8] with respect to the load 3 is similarly prohibited.
 尚、ステップS21~S23の処理は、第5実施形態で述べた特殊制御において実行される処理に相当する。また、図11の電圧源部202が電圧源2[1]~2[8]から成る場合における図17の動作を説明したが、図11の電圧源部202が1つの電圧源2(図1又は図5参照)から成る場合におけるそれも同様である。 Note that the processing in steps S21 to S23 corresponds to the processing executed in the special control described in the fifth embodiment. 11 has been described in the case where the voltage source unit 202 of FIG. 11 includes the voltage sources 2 [1] to 2 [8]. However, the voltage source unit 202 of FIG. The same applies to the case where the image is composed of (see FIG. 5).
 本実施形態によれば、インレンジ故障の発生が検出された際、その検出と同時に或いは速やかに電圧源の充電が禁止されるため、安全上、最も避けるべき過充電の発生を回避することが可能である。一方、インレンジ故障の発生が検出された際、直ちに放電を禁止するのではなく、AD変換器の検出電圧値と電圧レベル判定部の判定電圧値の内、小さい方の電圧値(即ち、安全側の電圧値)を用いて放電制御を行うことで、インレンジ故障の発生時にも、暫くの間、過放電の発生又は進行を招くことなく安全に電圧源から電力を取り出すことが可能となる。
<<第8実施形態>>
 本発明の第8実施形態を説明する。上述の各実施形態における電池システムにおいて電圧源と電圧検出装置とを結ぶ配線上に、大きな短絡電流の流れを抑制するための電流抑制素子を設けるようにしても良い。
According to the present embodiment, when the occurrence of an in-range failure is detected, charging of the voltage source is prohibited simultaneously with the detection or promptly. Therefore, it is possible to avoid the occurrence of overcharge that should be avoided most safely. Is possible. On the other hand, when the occurrence of an in-range failure is detected, the discharge is not immediately prohibited, but the smaller one of the detection voltage value of the AD converter and the determination voltage value of the voltage level determination unit (that is, safety By performing discharge control using the voltage value on the side, even when an in-range failure occurs, it is possible to safely extract power from the voltage source for a while without causing overdischarge or progress. .
<< Eighth Embodiment >>
An eighth embodiment of the present invention will be described. In the battery system in each of the embodiments described above, a current suppressing element for suppressing the flow of a large short-circuit current may be provided on the wiring connecting the voltage source and the voltage detection device.
 例えば、第2実施形態で述べた図5の構成を、図18のように変形しても良い。図18の構成は、図5に示される電圧検出装置1a、電圧源2、負荷3、充電回路4及び充放電制御部5から成る構成に電流抑制素子41を追加した構成であり、その追加を除き、図18の構成は図5のそれと同じである。図18において、符号42は、主電力線20及び電圧検出線21間の接続点である引き出し点を表している。電流抑制素子41は、分岐点22と引き出し点42を接続する配線、即ち、電圧検出線21上に直列に設けられる。また、引き出し点42のなるだけ近くに電流抑制素子41を設けると良い。 For example, the configuration of FIG. 5 described in the second embodiment may be modified as shown in FIG. The configuration of FIG. 18 is a configuration in which a current suppressing element 41 is added to the configuration including the voltage detection device 1a, the voltage source 2, the load 3, the charging circuit 4, and the charge / discharge control unit 5 shown in FIG. Except for this, the configuration of FIG. 18 is the same as that of FIG. In FIG. 18, reference numeral 42 represents a lead point that is a connection point between the main power line 20 and the voltage detection line 21. The current suppression element 41 is provided in series on the wiring connecting the branch point 22 and the lead point 42, that is, the voltage detection line 21. Further, the current suppressing element 41 may be provided as close as possible to the lead point 42.
 電流抑制素子41は、抵抗体であり、電圧源2から引き出し点42及び電流抑制素子41を介して流れようとする電流の大きさを抑制する。例えば、電圧検出線21の内、電流抑制素子41よりも分岐点22側の配線が基準電位点6と短絡した場合や、電圧検出線23及び24が基準電位点6と短絡した場合、電流抑制素子41がなければ非常に大きな短絡電流が電圧検出線21を介して流れるが、電流抑制素子41の存在により、これらの場合における短絡電流の大きさが抑制される。 The current suppression element 41 is a resistor, and suppresses the magnitude of the current that is about to flow from the voltage source 2 via the lead point 42 and the current suppression element 41. For example, when the wiring on the branch point 22 side of the voltage suppression line 21 is short-circuited to the reference potential point 6 or the voltage detection lines 23 and 24 are short-circuited to the reference potential point 6, the current suppression is performed. If there is no element 41, a very large short-circuit current flows through the voltage detection line 21, but the presence of the current suppression element 41 suppresses the magnitude of the short-circuit current in these cases.
 電流抑制素子41として、単なる抵抗(炭素皮膜抵抗など)を用いることもできる。但し、電流抑制素子41として単なる抵抗を用いた場合において、電圧検出装置1a内のどこかで大きなリーク電流が流れると(例えば、AD前段部11の入力端子11INを介して流れるリーク電流が比較的大きくなると)、リーク電流による電流抑制素子41の電圧降下が大きくなって、電圧源2の電圧値検出精度が劣化する共にインレンジ故障の検出精度も劣化する。 As the current suppressing element 41, a simple resistance (carbon film resistance or the like) can also be used. However, in the case of using a simple resistor as the current suppressing element 41, it flows a large leakage current somewhere in the voltage detecting device 1a (e.g., a leakage current flowing through the input terminal 11 IN of the AD front portion 11 compares The voltage drop of the current suppressing element 41 due to the leakage current is increased, and the voltage value detection accuracy of the voltage source 2 is degraded and the in-range failure detection accuracy is also degraded.
 従って、PTC(positive temperature coefficient)サーミスタを電流抑制素子41として用いることが望ましい。PTCサーミスタは比較的大きな正の温度係数を有する抵抗体であり、自身の温度の増加に伴って自身の抵抗値が増大する。特に、通常温度範囲(例えば、0℃~80℃)では比較的低い抵抗値(例えば、数オーム)を持ち、自身の温度が或る温度を超えると急激に抵抗値が増大するようなPTCサーミスタを用いると良い。このようなPTCサーミスタを電流抑制素子41として用いることで、短絡発生時における電流抑制効果を十分に発揮しつつ、定常状態においては抵抗値が小さくなることで電圧源2の電圧値検出精度及びインレンジ故障の検出精度の劣化を回避することが可能となる。 Therefore, it is desirable to use a PTC (positive temperature coefficient) thermistor as the current suppressing element 41. The PTC thermistor is a resistor having a relatively large positive temperature coefficient, and its own resistance value increases as its own temperature increases. In particular, a PTC thermistor that has a relatively low resistance value (eg, several ohms) in a normal temperature range (eg, 0 ° C. to 80 ° C.), and the resistance value suddenly increases when its own temperature exceeds a certain temperature. It is good to use. By using such a PTC thermistor as the current suppression element 41, the resistance value becomes small in a steady state while sufficiently exhibiting the current suppression effect at the time of occurrence of a short circuit, and the voltage value detection accuracy and the input of the voltage source 2 are reduced. It becomes possible to avoid deterioration in detection accuracy of the range failure.
 図18を参照して、電圧検出線21上に電流抑制素子41を設ける構成を説明したが、同様にして、図1の電圧検出線21上に電流抑制素子41を直列に設けるようにしても良い。同様に、図7又は図16の電圧検出線21[1]~21[8]上に一つずつ電流抑制素子41を直列に設けるようにしても良い。
<<第9実施形態>> 
 第9実施形態を説明する。第5実施形態で述べた電動車両300の構成例を図23に示す。図23の電動車両300は、電池システム200を備えると共に、車体310と、電池システム200内の電池の放電による直流電力を他の電力(交流電力等)に変換する電力変換部301と、該他の電力を動力に変換するモータ302と、その動力によって回転せしめられる駆動輪303と、アクセルペダル304a及びアクセル検出部304bを含み車体310の加速を指示するためのアクセル部304と、ブレーキペダル305a及びブレーキ検出部305bを含み車体310の減速を指示するためのブレーキ部305と、モータ306の回転数又は磁極位置を検出するセンサ306と、上記動力の発生用途以外の電力を蓄える非動力用電池BATと、電動車両300内の各部位の動作を統括的に制御する主制御部MCと、を備える。主制御部MCは、図12の車両ECU210の機能を有しており、電池システム200から与えられる電池電圧情報及びインレンジ故障の有無の検出結果を含む異常情報と、アクセル部304から与えられる上記加速の指示状態を表す加速指示信号と、ブレーキ部305から与えられる上記減速の指示状態を表す減速指示信号と、センサ306の検出結果とに基づき、電力変換部301による電力変換動作を制御する。尚、回生によって電池システム200内の電池を充電することも可能である。上述の如く、電動車両300においては、モータ302が電池システム200内の電池からの電力を受けて該電力を動力に変換し、その動力によって駆動輪303が回転せしめられることにより車体310が移動する。電動車両300において、車体310が移動本体部に相当し、モータ302が動力源に相当し、駆動輪303が駆動部に相当する、と考えることができる。
Although the configuration in which the current suppression element 41 is provided on the voltage detection line 21 has been described with reference to FIG. 18, the current suppression element 41 may be provided in series on the voltage detection line 21 in FIG. good. Similarly, the current suppressing elements 41 may be provided in series one by one on the voltage detection lines 21 [1] to 21 [8] in FIG.
<< Ninth Embodiment >>
A ninth embodiment will be described. FIG. 23 shows a configuration example of the electric vehicle 300 described in the fifth embodiment. An electric vehicle 300 of FIG. 23 includes a battery system 200, a vehicle body 310, a power conversion unit 301 that converts DC power generated by discharging a battery in the battery system 200 into other power (AC power, etc.), A motor 302 for converting the electric power of the vehicle into power, a driving wheel 303 rotated by the power, an accelerator pedal 304 for instructing acceleration of the vehicle body 310 including an accelerator pedal 304a and an accelerator detector 304b, a brake pedal 305a, A brake unit 305 including a brake detection unit 305b for instructing deceleration of the vehicle body 310, a sensor 306 for detecting the number of rotations or the magnetic pole position of the motor 306, and a non-power battery BAT for storing electric power other than for the purpose of generating the power And a main control unit MC that comprehensively controls the operation of each part in the electric vehicle 300. The main control unit MC has the function of the vehicle ECU 210 in FIG. 12, and includes battery voltage information given from the battery system 200 and abnormality information including the detection result of the presence or absence of in-range failure, and the above-mentioned given from the accelerator unit 304. Based on the acceleration instruction signal representing the acceleration instruction state, the deceleration instruction signal representing the deceleration instruction state given from the brake unit 305, and the detection result of the sensor 306, the power conversion operation by the power conversion unit 301 is controlled. It is also possible to charge the battery in the battery system 200 by regeneration. As described above, in the electric vehicle 300, the motor 302 receives the electric power from the battery in the battery system 200, converts the electric power into motive power, and the driving wheel 303 is rotated by the motive power, whereby the vehicle body 310 moves. . In the electric vehicle 300, it can be considered that the vehicle body 310 corresponds to a moving main body, the motor 302 corresponds to a power source, and the driving wheels 303 correspond to a driving unit.
 電動車両300は、電池システム200が搭載された移動体の例であり、船、航空機、エレベータ又は歩行ロボット等の他の移動体に電池システム200が搭載されても良い。 The electric vehicle 300 is an example of a moving body on which the battery system 200 is mounted, and the battery system 200 may be mounted on another moving body such as a ship, an aircraft, an elevator, or a walking robot.
 電池システム200が搭載された船は、例えば、モータ302を備えると共に、電動車両300の車体310、駆動輪303、アクセル部304及びブレーキ部305の代わりに、夫々、船体、スクリュー、加速入力部及び減速入力部を備える。運転者は、船体を加速させる際にはアクセル部304の代わりに加速入力部を操作し、船体を減速させる際にはブレーキ部305の代わりに減速入力部を操作する(後述の航空機等においても同様)。但し、減速入力部が設けられない船を構成してもよい。このような船においては、モータ302が電池システム200内の電池からの電力を受けて該電力を動力に変換し、その動力によってスクリューが回転せしめられることにより船体が移動する。上記の船において、船体が移動本体部に相当し、モータ302が動力源に相当し、スクリューが駆動部に相当する、と考えることができる。 The ship on which the battery system 200 is mounted includes, for example, a motor 302, and a hull, a screw, an acceleration input unit, and a vehicle body 310, a driving wheel 303, an accelerator unit 304, and a brake unit 305 of the electric vehicle 300, respectively. A deceleration input unit is provided. The driver operates the acceleration input unit instead of the accelerator unit 304 when accelerating the hull, and operates the deceleration input unit instead of the brake unit 305 when decelerating the hull. The same). However, you may comprise the ship which is not provided with the deceleration input part. In such a ship, the motor 302 receives electric power from the battery in the battery system 200 and converts the electric power into motive power, and the hull moves as the screw is rotated by the motive power. In the above-described ship, it can be considered that the hull corresponds to the moving main body, the motor 302 corresponds to the power source, and the screw corresponds to the drive unit.
 電池システム200が搭載された航空機は、例えば、モータ302を備えると共に、電動車両300の車体310、駆動輪303、アクセル部304及びブレーキ部305の代わりに、夫々、機体、プロペラ、加速入力部及び減速入力部を備える。但し、減速入力部が設けられない航空機を構成してもよい。このような航空機においては、モータ302が電池システム200内の電池からの電力を受けて該電力を動力に変換し、その動力によってプロペラが回転せしめられることにより機体が移動する。上記の航空機において、機体が移動本体部に相当し、モータ302が動力源に相当し、プロペラが駆動部に相当する、と考えることができる。 The aircraft on which the battery system 200 is mounted includes, for example, a motor 302, and instead of the vehicle body 310, the drive wheel 303, the accelerator unit 304, and the brake unit 305 of the electric vehicle 300, an airframe, a propeller, an acceleration input unit, and A deceleration input unit is provided. However, you may comprise the aircraft in which the deceleration input part is not provided. In such an aircraft, the motor 302 receives electric power from the battery in the battery system 200 and converts the electric power into motive power, and the propeller is rotated by the motive power, so that the aircraft moves. In the above-described aircraft, it can be considered that the airframe corresponds to the moving main body, the motor 302 corresponds to the power source, and the propeller corresponds to the driving unit.
 電池システム200が搭載されたエレベータは、例えば、モータ302を備えると共に、電動車両300の車体310、駆動輪303、アクセル部304及びブレーキ部305の代わりに、夫々、籠、籠に取り付けられた昇降用ロープ、加速入力部及び減速入力部を備える。このようなエレベータにおいては、モータ302が電池システム200内の電池からの電力を受けて該電力を動力に変換し、その動力によって昇降用ロープが巻き上げられることにより籠が昇降する。上記のエレベータにおいて、籠が移動本体部に相当し、モータ302が動力源に相当し、昇降用ロープが駆動部に相当する、と考えることができる。 The elevator on which the battery system 200 is mounted includes, for example, a motor 302, and lifts attached to the eaves and the eaves instead of the vehicle body 310, the drive wheels 303, the accelerator unit 304, and the brake unit 305 of the electric vehicle 300, respectively. A rope, an acceleration input unit, and a deceleration input unit are provided. In such an elevator, the motor 302 receives electric power from the battery in the battery system 200 and converts the electric power into motive power, and the elevating rope is wound up by the motive power, so that the kite moves up and down. In the elevator described above, it can be considered that the kite corresponds to the moving main body, the motor 302 corresponds to the power source, and the lifting rope corresponds to the drive unit.
 電池システム200が搭載された歩行ロボットは、例えば、モータ302を備えると共に、電動車両300の車体310、駆動輪303、アクセル部304及びブレーキ部305の代わりに、夫々、胴体、足、加速入力部及び減速入力部を備える。このような歩行ロボットにおいては、モータ302が電池システム200内の電池からの電力を受けて該電力を動力に変換し、その動力によって足が駆動せしめられることにより胴体が移動する。上記の歩行ロボットにおいて、胴体が移動本体部に相当し、モータ302が動力源に相当し、足が駆動部に相当する、と考えることができる。 The walking robot on which the battery system 200 is mounted includes, for example, a motor 302, and instead of the vehicle body 310, the drive wheel 303, the accelerator unit 304, and the brake unit 305 of the electric vehicle 300, a torso, a foot, and an acceleration input unit, respectively. And a deceleration input unit. In such a walking robot, the motor 302 receives electric power from the battery in the battery system 200 and converts the electric power into motive power, and the torso moves by driving the foot with the motive power. In the above walking robot, it can be considered that the body corresponds to the moving main body, the motor 302 corresponds to the power source, and the foot corresponds to the driving unit.
 上述の如く、電池システム200が搭載された移動体においては、動力源が電池システム200内の電池からの電力を動力に変換し、動力源によって得られた動力を用いて駆動部が移動本体部を移動させる。
<<第10実施形態>> 
 第10実施形態を説明する。図24は、第10実施形態に係る電源装置400の構成を示すブロック図である。電源装置400は、電力貯蔵装置410及び電力変換装置(電力変換部)420を備える。電力貯蔵装置410は、m個の電池システム200[1]~200[m]から成る電池システムユニット(電池システム群)411と、メインコントローラ412と、電流検出部413と、を備える。本実施形態において、mは2以上の整数である。但し、mは1であっても良い。
As described above, in the mobile body on which the battery system 200 is mounted, the power source converts the power from the battery in the battery system 200 into motive power, and the driving unit uses the motive power obtained by the motive power source. Move.
<< Tenth Embodiment >>
A tenth embodiment will be described. FIG. 24 is a block diagram illustrating a configuration of a power supply device 400 according to the tenth embodiment. The power supply device 400 includes a power storage device 410 and a power conversion device (power conversion unit) 420. The power storage device 410 includes a battery system unit (battery system group) 411 including m battery systems 200 [1] to 200 [m], a main controller 412, and a current detection unit 413. In the present embodiment, m is an integer of 2 or more. However, m may be 1.
 電池システム200[1]~200[m]の夫々は、上述の電池システム200と同じものであって、電圧検出装置201、電圧源部202及び充放電制御部204を含む(図11参照)。電池システム200[1]~200[m]は、互いに直列に又は並列に接続される。本例では、電池システム200[1]~200[m]が互いに直列に接続されており、結果、電池システム200[1]~200[m]における全電池は互いに直列接続されているものとする。電池システム200[1]~200[m]の全電池の内、最低電位を有する電池の負電極(負出力端子)及び最高電位を有する電池の正電極(正出力端子)は、電力線431を介して、電力変換装置420に接続されている。電流検出部413は、電力線431に流れる電流、即ち、電池システムユニット411及び電力変換装置420間の電流の値を検出し、検出電流値をメインコントローラ412に出力する。 Each of the battery systems 200 [1] to 200 [m] is the same as the battery system 200 described above, and includes a voltage detection device 201, a voltage source unit 202, and a charge / discharge control unit 204 (see FIG. 11). The battery systems 200 [1] to 200 [m] are connected to each other in series or in parallel. In this example, the battery systems 200 [1] to 200 [m] are connected in series with each other, and as a result, all the batteries in the battery systems 200 [1] to 200 [m] are connected in series with each other. . Among all the batteries of the battery systems 200 [1] to 200 [m], the negative electrode (negative output terminal) of the battery having the lowest potential and the positive electrode (positive output terminal) of the battery having the highest potential are connected via the power line 431. And connected to the power converter 420. The current detection unit 413 detects the current flowing through the power line 431, that is, the value of the current between the battery system unit 411 and the power converter 420, and outputs the detected current value to the main controller 412.
 電池システム200[i]において、充放電制御部204は、電圧検出装置201にて検出された電池の出力電圧値に基づき状態信号ST[i]を出力する(図11参照、iは整数)。電圧検出装置201にて検出された電池の出力電圧値は、通常、AD変換器12又は112(図1、図5及び図7参照)の出力信号に基づく電池の出力電圧の検出電圧値であるが、特に例えばインレンジ故障発生時には、電圧レベル判定部13又は113(図1、図5及び図7参照)による電池の出力電圧の判定電圧値でありうる。状態信号ST[i]は、例えば、電池システム200[i]内の電池の充電許可を示す充電許可信号、電池システム200[i]内の電池の充電禁止を示す充電禁止信号、電池システム200[i]内の電池の放電許可を示す放電許可信号、及び、電池システム200[i]内の電池の放電禁止を示す放電禁止信号を含み、更に必要に応じて、電池システム200[i]内の電池の充電を要求する充電要求信号及び電池システム200[i]内の電池の放電を要求する放電要求信号を含む。更に、状態信号ST[i]は、電池システム200[i]内にインレンジ故障が発生している場合には、インレンジ故障発生を表すインレンジ故障発生信号を含む。メインコントローラ412に対する状態信号ST[i]の出力は、電池システム200[1]~200[m]の夫々において成される。 In the battery system 200 [i], the charge / discharge control unit 204 outputs a state signal ST [i] based on the output voltage value of the battery detected by the voltage detection device 201 (see FIG. 11, i is an integer). The output voltage value of the battery detected by the voltage detection device 201 is usually a detection voltage value of the output voltage of the battery based on the output signal of the AD converter 12 or 112 (see FIGS. 1, 5, and 7). However, particularly when an in-range failure occurs, for example, it may be a determination voltage value of the output voltage of the battery by the voltage level determination unit 13 or 113 (see FIGS. 1, 5, and 7). The state signal ST [i] includes, for example, a charge permission signal indicating permission to charge a battery in the battery system 200 [i], a charge prohibition signal indicating prohibition of charging of the battery in the battery system 200 [i], and the battery system 200 [ i] includes a discharge permission signal indicating discharge permission of the battery and a discharge prohibition signal indicating discharge prohibition of the battery in the battery system 200 [i]. A charge request signal for requesting charging of the battery and a discharge request signal for requesting discharging of the battery in the battery system 200 [i]. Further, the state signal ST [i] includes an in-range failure occurrence signal indicating the occurrence of an in-range failure when an in-range failure has occurred in the battery system 200 [i]. The status signal ST [i] is output to the main controller 412 in each of the battery systems 200 [1] to 200 [m].
 電力変換装置420は、DC/DCコンバータ421及びDC/ACコンバータ422を備える。DC/DCコンバータ421は、入出力端子421a及び421bを備え、DC/ACコンバータ422は、入出力端子422a及び422bを備える。DC/DCコンバータ421の入出力端子421aは、電力線431を介して電池システムユニット411に接続される。入出力端子421b及び422aは互いに接続されると共に電力出力部PU1に接続される。入出力端子422bは電力出力部PU2に接続されると共に電源装置400とは別の電力系統である電力系統432に接続されうる。尚、電力変換装置400と電力出力部PU1及びPU2との接続は必須ではない。 The power converter 420 includes a DC / DC converter 421 and a DC / AC converter 422. The DC / DC converter 421 includes input / output terminals 421a and 421b, and the DC / AC converter 422 includes input / output terminals 422a and 422b. The input / output terminal 421a of the DC / DC converter 421 is connected to the battery system unit 411 via the power line 431. The input / output terminals 421b and 422a are connected to each other and to the power output unit PU1. The input / output terminal 422b can be connected to the power output unit PU2 and to the power system 432, which is a power system different from the power supply device 400. Note that the connection between the power conversion device 400 and the power output units PU1 and PU2 is not essential.
 外部機器の例としての電力出力部PU1及びPU2は、コンセントを含む。電力出力部PU1及びPU2には、例えば様々な負荷が接続される。電力出力部PU1及びPU2の夫々が負荷であると考えても良い。電力系統432は、商用電源又は太陽電池を含む。太陽電池を入出力端子421bに接続することも可能であり、この場合、太陽電池の発電に基づく直流電圧を入出力端子421bに供給することができる。太陽電池及びパワーコンディショナを備えた太陽電池システムを電力系統432として用いる場合、パワーコンディショナのAC出力部(交流出力部)を入出力端子422bに接続することができる。電力変換装置420は、メインコントローラ412による制御の下、DC/DCコンバータ421及びDC/ACコンバータ422を用い、電池システム200[1]~200[m]内の電池と、電力出力部PU1及びPU2又は電力系統432と、の間で電力変換を行う。 The power output units PU1 and PU2 as examples of external devices include outlets. For example, various loads are connected to the power output units PU1 and PU2. It may be considered that each of the power output units PU1 and PU2 is a load. The electric power system 432 includes a commercial power source or a solar battery. A solar cell can be connected to the input / output terminal 421b. In this case, a DC voltage based on the power generation of the solar cell can be supplied to the input / output terminal 421b. When a solar cell system including a solar cell and a power conditioner is used as the power system 432, the AC output unit (AC output unit) of the power conditioner can be connected to the input / output terminal 422b. The power conversion device 420 uses the DC / DC converter 421 and the DC / AC converter 422 under the control of the main controller 412, the batteries in the battery systems 200 [1] to 200 [m], and the power output units PU 1 and PU 2. Alternatively, power conversion is performed with the power system 432.
 メインコントローラ412は、電流検出部413による検出電流値及び状態信号ST[1]~ST[m]に基づき、DC/DCコンバータ421及びDC/ACコンバータ422を制御することにより、電池システム200[1]~200[m]内の各電池の充電及び放電を制御する。但し、メインコントローラ412は、電池システム200[1]~200[m]内の各電池の充電のみ又は放電のみを制御するものであっても良い。 The main controller 412 controls the DC / DC converter 421 and the DC / AC converter 422 based on the current value detected by the current detection unit 413 and the state signals ST [1] to ST [m], so that the battery system 200 [1 ] To control charging and discharging of each battery within 200 [m]. However, the main controller 412 may control only charging or discharging of each battery in the battery systems 200 [1] to 200 [m].
 例えば、状態信号ST[1]~ST[m]の夫々に放電許可信号又は放電要求信号が含まれている場合、メインコントローラ412による制御の下、DC/DCコンバータ421は、電池システム200[1]~200[m]内の各電池の出力電力に基づく電池システムユニット411の出力直流電力を他の直流電力に変換して該他の直流電力を入出力端子421bから出力し、DC/ACコンバータ422は入出力端子421bからの直流電力を交流電力に変換して該交流電力を入出力端子422bから出力する。 For example, when each of the status signals ST [1] to ST [m] includes a discharge permission signal or a discharge request signal, the DC / DC converter 421 controls the battery system 200 [1 under the control of the main controller 412. The DC power output of the battery system unit 411 based on the output power of each battery in the range of 200 to 200 [m] is converted into other DC power, and the other DC power is output from the input / output terminal 421b. 422 converts the DC power from the input / output terminal 421b into AC power and outputs the AC power from the input / output terminal 422b.
 或いは、状態信号ST[1]~ST[m]の夫々に充電許可信号又は充電要求信号が含まれている場合、例えば、メインコントローラ412による制御の下、DC/ACコンバータ422は、電力系統432からの交流電力を直流電力に変換して該直流電力を入出力端子422aから出力し、DC/DCコンバータ421は、入出力端子422aからの直流電力を他の直流電力に変換して該他の直流電力を入出力端子421aから出力する。これにより、入出力端子421aからの直流電力にて、電池システム200[1]~200[m]内の各電池が充電される。 Alternatively, when each of the status signals ST [1] to ST [m] includes a charge permission signal or a charge request signal, for example, the DC / AC converter 422 controls the power system 432 under the control of the main controller 412. The AC power from is converted into DC power and the DC power is output from the input / output terminal 422a, and the DC / DC converter 421 converts the DC power from the input / output terminal 422a into another DC power and outputs the other DC power. DC power is output from the input / output terminal 421a. As a result, the batteries in the battery systems 200 [1] to 200 [m] are charged with the DC power from the input / output terminal 421a.
 上述の構成において、メインコントローラ412は、電池システム200[1]~200[m]内の電池の充電又は放電に関する制御を行う充放電制御ユニットの例である。メインコントローラ412が、電池システム200[1]~200[m]内の充放電制御部204(図11参照)と共に充放電制御ユニットを形成していると考えても良い。 In the configuration described above, the main controller 412 is an example of a charge / discharge control unit that performs control related to charging or discharging of batteries in the battery systems 200 [1] to 200 [m]. It may be considered that the main controller 412 forms a charge / discharge control unit together with the charge / discharge control unit 204 (see FIG. 11) in the battery systems 200 [1] to 200 [m].
 上述の構成例では、電池システム200[i]内に充放電制御部204が備えられていることを想定したが、電池システム200[1]~200[m]の夫々から充放電制御部204を削除し、電池システム200[1]~200[m]内の各電圧検出装置201にて検出された電池の出力電圧値をメインコントローラ412に与えるようにしても良い。この場合、メインコントローラ412は、削除された複数の充放電制御部204を統合した機能を有し、与えられた各電池の出力電圧値に基づき、電池システム200[1]~200[m]内の電池を充電すべきか否か、放電させるべきか否かを判断して、その判断結果に従い電力変換装置420を制御すればよい。 In the above configuration example, it is assumed that the charge / discharge control unit 204 is provided in the battery system 200 [i]. However, the charge / discharge control unit 204 is provided from each of the battery systems 200 [1] to 200 [m]. The battery output voltage value detected by each voltage detection device 201 in the battery systems 200 [1] to 200 [m] may be given to the main controller 412. In this case, the main controller 412 has a function of integrating the plurality of deleted charge / discharge control units 204, and in the battery systems 200 [1] to 200 [m] based on the output voltage values of the given batteries. Whether or not the battery should be charged or discharged should be determined, and the power converter 420 may be controlled according to the determination result.
 また、図24の構成例とは異なるが、電池システムユニット411に1つの電池システム200のみ(例えば、電池システム200[1])が含まれるように、電力貯蔵装置410及び電源装置400を形成しても構わない。
<<変形等>>
 尚、各実施形態の説明文中に示した具体的な数値や構成などは、単なる例示であって、当然の如く、それらを様々な数値や構成等に変更することができる。
24, the power storage device 410 and the power supply device 400 are formed so that the battery system unit 411 includes only one battery system 200 (for example, the battery system 200 [1]). It doesn't matter.
<< Deformation, etc. >>
It should be noted that the specific numerical values and configurations shown in the description of each embodiment are merely examples, and can naturally be changed to various numerical values and configurations.
 また、図19に示すように、電圧検出装置201及び充放電制御部204から成る装置は電池制御装置230である、と考えることができる。電圧検出装置201及び充放電制御部204を別々に集積回路上に形成するようにしても良いし、電圧検出装置201及び充放電制御部204を1つの集積回路上に形成するようにしても良い。即ち、電池制御装置230は、2チップの集積回路から形成されていても良いし、1チップの集積回路から形成されていても良い。 Further, as shown in FIG. 19, it can be considered that the device including the voltage detection device 201 and the charge / discharge control unit 204 is a battery control device 230. The voltage detection device 201 and the charge / discharge control unit 204 may be separately formed on the integrated circuit, or the voltage detection device 201 and the charge / discharge control unit 204 may be formed on one integrated circuit. . That is, the battery control device 230 may be formed from a two-chip integrated circuit or may be formed from a one-chip integrated circuit.
 また、図16のスイッチ131を限流器に置き換え、第6実施形態に係る充放電禁止処理(図15参照)において、限流器の抵抗値を制御することで電圧源2[1]~2[8]の充電及び放電を制限するようにしても良い。限流器の状態は、充放電制御部105の制御の下、低抵抗状態又は高抵抗状態になる。高抵抗状態における限流器の抵抗値(例えば数kΩの抵抗値)は、低抵抗状態における限流器の抵抗値(例えば1Ω以下の抵抗値)よりも随分大きい。充放電制御部105は、通常動作において限流器の状態が低抵抗状態となるように且つ充放電禁止処理の実行時において限流器の状態が高抵抗状態となるように、限流器の抵抗値を制御すればよい。これにより、通常動作と比べて、充放電禁止処理の実行時には電圧源2[1]~2[8]の放電及び充電の電流値が制限されることになる。 Also, the switch 131 in FIG. 16 is replaced with a current limiter, and the voltage sources 2 [1] to 2 [2] are controlled by controlling the resistance value of the current limiter in the charge / discharge prohibiting process (see FIG. 15) according to the sixth embodiment. [8] Charging and discharging may be limited. The state of the current limiter becomes a low resistance state or a high resistance state under the control of the charge / discharge control unit 105. The resistance value (for example, a resistance value of several kΩ) in the high resistance state is considerably larger than the resistance value (for example, a resistance value of 1Ω or less) in the low resistance state. The charge / discharge control unit 105 operates the current limiter so that the current limiter is in a low resistance state during normal operation and the current limiter is in a high resistance state during the charge / discharge prohibition process. The resistance value may be controlled. As a result, compared with the normal operation, the current values of the discharge and charge of the voltage sources 2 [1] to 2 [8] are limited when the charge / discharge prohibition process is executed.
 また、電圧源部202(図11参照)に含まれる複数の電圧源が並列接続されている場合には、第6実施形態において以下のような充放電禁止処理を成すことも可能である。例えば、電圧源2[1]~2[4]の直列回路と電圧源2[5]~2[8]の直列回路を並列接続することによって電圧源部202が形成されている場合を考える(図20参照)。この場合、図20に示す如く、電圧源2[1]~2[4]の直列回路に更に素子141を直列に接続すると共に電圧源2[5]~2[8]の直列回路に更に素子151を直列に接続する。そして、電圧源2[1]~2[4]及び素子141の直列回路と電圧源2[5]~2[8]及び素子151の直列回路とを並列接続した回路を、負荷3及び充電回路4に接続する。素子141及び151の夫々は、スイッチ131と同じスイッチ又は上記の限流器である。尚、ここでは、並列接続されるべき直列回路(電圧源の直列回路)の個数が2である場合を例示しているが、その個数は2に限定されない。 Further, when a plurality of voltage sources included in the voltage source unit 202 (see FIG. 11) are connected in parallel, the following charge / discharge prohibiting process can be performed in the sixth embodiment. For example, consider a case where the voltage source unit 202 is formed by connecting a series circuit of voltage sources 2 [1] to 2 [4] and a series circuit of voltage sources 2 [5] to 2 [8] in parallel ( FIG. 20). In this case, as shown in FIG. 20, the element 141 is further connected in series to the series circuit of the voltage sources 2 [1] to 2 [4] and the element circuit is further connected to the series circuit of the voltage sources 2 [5] to 2 [8]. 151 are connected in series. Then, a circuit in which a series circuit of the voltage sources 2 [1] to 2 [4] and the element 141 and a series circuit of the voltage sources 2 [5] to 2 [8] and the element 151 are connected in parallel is a load 3 and a charging circuit. Connect to 4. Each of the elements 141 and 151 is the same switch as the switch 131 or the current limiting device described above. Here, the case where the number of series circuits (voltage source series circuits) to be connected in parallel is two is illustrated, but the number is not limited to two.
 素子141及び151がスイッチである場合、通常動作においては、充放電制御部105により素子141及び151がオンとされて電圧源2[1]~2[8]の放電及び充電が可能となるが、充放電禁止処理の実行時には、インレンジ故障の要因に応じ、充放電制御部105により素子141及び151の少なくとも一方がオフとされる。即ち例えば、ステップS13において不等式「|Vdet[1]-VL[1]|≧VTH」が成立することによりステップS15への遷移が発生した場合、電圧源2[1]に対する電圧検出にインレンジ故障が発生していると考えられるため、ステップS16の充放電禁止処理において素子151をオンにしつ素子141のみをオフにする。これにより、電圧源2[1]~2[8]の内、電圧源2[1]~2[4]のみの放電及び充電が禁止されることになる。 When the elements 141 and 151 are switches, in the normal operation, the elements 141 and 151 are turned on by the charge / discharge control unit 105, and the voltage sources 2 [1] to 2 [8] can be discharged and charged. When the charge / discharge prohibition process is executed, at least one of the elements 141 and 151 is turned off by the charge / discharge control unit 105 according to the cause of the in-range failure. That is, for example, when the inequality “| Vdet [1] −VL [1] | ≧ V TH ” is satisfied in step S13 and the transition to step S15 occurs, the in-range detection is performed for the voltage source 2 [1]. Since it is considered that a failure has occurred, only the element 141 is turned off while turning on the element 151 in the charge / discharge prohibiting process of step S16. Accordingly, discharging and charging of only the voltage sources 2 [1] to 2 [4] among the voltage sources 2 [1] to 2 [8] are prohibited.
 素子141及び151が限流器である場合、充放電制御部105は、素子141及び151の抵抗値を個別に制御する。通常動作において、充放電制御部105は、素子141及び151としての限流器の状態が共に低抵抗状態となるように素子141及び151を制御する。そして例えば、ステップS13において不等式「|Vdet[1]-VL[1]|≧VTH」が成立することによりステップS15への遷移が発生した場合、電圧源2[1]に対する電圧検出にインレンジ故障が発生していると考えられるため、ステップS16の充放電禁止処理において、充放電制御部105は、素子141としての限流器の状態が高抵抗状態となり且つ素子151としての限流器の状態が低抵抗状態となるように素子141及び151を制御すればよい。素子141及び151がスイッチである場合にも限流器である場合にも、通常動作と比べて、充放電禁止処理の実行時には電圧源2[1]~2[8]の放電及び充電の全体の電流値が制限されることになる。 When the elements 141 and 151 are current limiters, the charge / discharge control unit 105 individually controls the resistance values of the elements 141 and 151. In normal operation, the charge / discharge control unit 105 controls the elements 141 and 151 so that both the current limiters as the elements 141 and 151 are in the low resistance state. For example, when the transition to step S15 occurs due to the establishment of the inequality “| Vdet [1] −VL [1] | ≧ V TH ” in step S13, the in-range detection is performed for the voltage source 2 [1]. Since it is considered that a failure has occurred, in the charge / discharge prohibiting process in step S16, the charge / discharge control unit 105 sets the current limiter as the element 141 to the high resistance state and the current limiter as the element 151. The elements 141 and 151 may be controlled so that the state becomes a low resistance state. Whether the elements 141 and 151 are switches or current limiters, the entire discharge and charging of the voltage sources 2 [1] to 2 [8] is performed when the charge / discharge prohibiting process is executed, as compared with the normal operation. Current value is limited.
 [請求項の各構成要素と実施の形態の各部との対応関係]
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが本発明は下記の例に限定されない。
[Correspondence between each component of claim and each part of embodiment]
Hereinafter, examples of correspondence between each component of the claims and each part of the embodiment will be described, but the present invention is not limited to the following examples.
 例えば、実施の形態における電圧源(電圧源部)が本発明で言う電池の例であり、AD変換器がAD変換機能を有する電圧検出部の例であり、デジタル回路部は故障検出部の例であり、CMP[1]は第1の比較器の例であり、CMP[4]は第2の比較器の例であり、CMP[2]およびCMP[3]は第3の比較器の例であり、充放電制御部は制御部の例である。なお、実施の形態と本発明とで同じ名称のものは原則同じものである。実施の形態における通常電圧範囲が本発明で言う所定電圧範囲内である。 For example, the voltage source (voltage source unit) in the embodiment is an example of a battery according to the present invention, the AD converter is an example of a voltage detection unit having an AD conversion function, and the digital circuit unit is an example of a failure detection unit. CMP [1] is an example of the first comparator, CMP [4] is an example of the second comparator, and CMP [2] and CMP [3] are examples of the third comparator. The charge / discharge control unit is an example of the control unit. In addition, the thing of the same name by embodiment and this invention is the same in principle. The normal voltage range in the embodiment is within the predetermined voltage range referred to in the present invention.
  1、1a、101 電圧検出装置
  2、2[1]~2[8] 電圧源
  3 負荷
  4 充電回路
  5、105 充放電制御部
  6、7 基準電位点
 11、111 AD前段部
 12、112 AD変換器
 13、113 電圧レベル判定部
 13a 過充電過放電検出回路
 14、114 デジタル回路部(故障検出部)
 15、115 基準電圧発生部
 16、17 保護回路
 21、21[1]~21[9] 電圧検出線
 22、22[1]~22[9] 分岐点
 23、24、23[1]~23[9]、24[1]~24[9] 電圧検出線
 31、131 スイッチ
 41 電流抑制素子
 CMP[1]~CMP[4] コンパレータ
200 電池システム
230 電池制御装置
300 電動車両
400 電源装置
410 電力貯蔵装置
DESCRIPTION OF SYMBOLS 1, 1a, 101 Voltage detection apparatus 2, 2 [1] -2 [8] Voltage source 3 Load 4 Charging circuit 5, 105 Charge / discharge control part 6, 7 Reference potential point 11, 111 AD front part 12, 112 AD conversion 13, 113 Voltage level determination unit 13 a Overcharge / overdischarge detection circuit 14, 114 Digital circuit unit (failure detection unit)
15, 115 Reference voltage generating unit 16, 17 Protection circuit 21, 21 [1] to 21 [9] Voltage detection line 22, 22 [1] to 22 [9] Branch point 23, 24, 23 [1] to 23 [9] 9], 24 [1] to 24 [9] Voltage detection line 31, 131 Switch 41 Current suppression element CMP [1] to CMP [4] Comparator 200 Battery system 230 Battery control device 300 Electric vehicle 400 Power supply device 410 Power storage device

Claims (13)

  1.  充電可能な電池と、
     前記電池のアナログ電圧値の信号であるアナログ電圧信号の入力を受けて、前記電池のアナログ電圧信号をデジタル電圧信号に変換して出力するAD変換機能を有する電圧検出部と、
     前記アナログ電圧信号の入力を受けて前記電池の過充電および過放電を検出する過充電過放電検出回路を含み、前記過充電過放電検出回路からの出力を用いて前記電池のアナログ電圧値の電圧レベルを判定して判定結果を出力する電圧レベル判定部と、
     前記電圧検出部の出力及び前記電圧レベル判定部の出力を比較した結果から、前記デジタル電圧信号の電圧値が、前記電池が過充電状態にある電圧であることを表す第1閾値から前記電池が過放電状態にある電圧であることを表す第2閾値までの範囲である所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する故障検出部
    を備えた電池システム。
    Rechargeable battery,
    A voltage detector having an AD conversion function for receiving an analog voltage signal that is a signal of an analog voltage value of the battery, converting the analog voltage signal of the battery into a digital voltage signal, and outputting the digital voltage signal;
    An overcharge / overdischarge detection circuit for detecting overcharge and overdischarge of the battery in response to an input of the analog voltage signal, and using the output from the overcharge / overdischarge detection circuit, the voltage of the analog voltage value of the battery A voltage level determination unit that determines a level and outputs a determination result;
    From the result of comparing the output of the voltage detection unit and the output of the voltage level determination unit, the voltage value of the digital voltage signal is determined from the first threshold value indicating that the battery is in an overcharged state. A battery system including a failure detection unit that detects a failure of the voltage detection unit in a state that is within a predetermined voltage range that is a range up to a second threshold that represents a voltage in an overdischarged state.
  2.  前記電圧レベル判定部の前記過充電過放電検出回路は、前記電池のアナログ電圧値と前記第1の閾値である基準電圧と比較する第1の比較器と、前記電池のアナログ電圧値と過放電判定用の前記第2の閾値である基準電圧と比較する第2の比較器を備え、
     前記電圧レベル判定部は、前記過充電過放電検出回路に加えて、前記電池のアナログ電圧値を前記所定電圧範囲内の所定基準電圧と比較する第3の比較器を含む
    請求項1に記載の電池システム。
    The overcharge / overdischarge detection circuit of the voltage level determination unit includes a first comparator that compares the analog voltage value of the battery with a reference voltage that is the first threshold, and the analog voltage value of the battery and the overdischarge. A second comparator for comparing with a reference voltage that is the second threshold for determination;
    The said voltage level determination part contains the 3rd comparator which compares the analog voltage value of the said battery with the predetermined reference voltage in the said predetermined voltage range in addition to the said overcharge overdischarge detection circuit. Battery system.
  3.  前記故障検出部により前記故障が検出された際、前記電池の放電に制限を加える、或いは、前記電池の充電に制限を加える、或いは、前記電池の放電及び充電に制限を加える制御部と、を備えた
    請求項1または請求項2に記載の電池システム。 
    When the failure is detected by the failure detection unit, a control unit that limits the discharging of the battery, or limits the charging of the battery, or limits the discharging and charging of the battery, and The battery system according to claim 1 or 2 provided.
  4.  前記制御部は、前記故障検出部により前記故障が検出された際、前記電池の充電を禁止する一方で前記電池の放電を許可する
    請求項3に記載の電池システム。
    The battery system according to claim 3, wherein when the failure is detected by the failure detection unit, the control unit prohibits charging of the battery and permits discharge of the battery.
  5.  前記制御部は、前記故障検出部により前記故障が検出された際、前記電圧検出部の出力に基づく電圧値と前記電圧レベル判定部の出力に基づく電圧値の内、小さい方の電圧値を前記電池の出力電圧値として用いた上で、前記電池の放電を制御する
    請求項4に記載の電池システム。
    When the failure is detected by the failure detection unit, the control unit sets the smaller voltage value among the voltage value based on the output of the voltage detection unit and the voltage value based on the output of the voltage level determination unit. The battery system according to claim 4, wherein discharge of the battery is controlled after being used as an output voltage value of the battery.
  6.  前記電池の前記アナログ電圧信号が伝播し、前記電圧検出部と前記電圧レベル判定部に接続される電圧検出線を備え、
     前記アナログ電圧信号を前記電圧検出部と前記電圧レベル判定部へ個別に導くための分岐点が前記電圧検出線上に設けられ、
     前記電圧検出部は、前記分岐点と前記電圧検出部との間に設けられた保護回路部を含み、
     前記故障検出部による前記故障の検出対象には、前記電圧検出部だけでなく前記保護回路部も含まれる
    ことを特徴とする請求項1~請求項5の何れかに記載の電池システム。
    The analog voltage signal of the battery propagates, and includes a voltage detection line connected to the voltage detection unit and the voltage level determination unit,
    A branch point for individually guiding the analog voltage signal to the voltage detection unit and the voltage level determination unit is provided on the voltage detection line,
    The voltage detection unit includes a protection circuit unit provided between the branch point and the voltage detection unit,
    6. The battery system according to claim 1, wherein the failure detection target by the failure detection unit includes not only the voltage detection unit but also the protection circuit unit.
  7.  前記電池のアナログ電圧は、複数の電池のアナログ電圧から成り、
     前記電圧検出部は、前記複数の電池のアナログ電圧を表す複数のアナログ電圧信号を択一的に前記電圧検出部に与える電圧入力切替部を更に有し、かつ
     前記電圧検出部は、前記電圧入力切替部から順次与えられる各アナログ電圧信号をデジタル電圧信号に変換して出力し、
     前記電圧レベル判定部は、前記複数のアナログ電圧信号の入力を受けて前記所定電圧範囲内において各電池のアナログ電圧値の電圧レベルを判定して判定結果を出力し、
     前記故障検出部は、前記電圧検出部の出力及び前記電圧レベル判定部の出力に基づき、各デジタル電圧信号の電圧値が前記所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する
    ことを特徴とする請求項1~請求項6の何れかに記載の電池システム。
    The battery analog voltage comprises a plurality of battery analog voltages,
    The voltage detection unit further includes a voltage input switching unit that alternatively supplies a plurality of analog voltage signals representing analog voltages of the plurality of batteries to the voltage detection unit, and the voltage detection unit includes the voltage input. Each analog voltage signal sequentially given from the switching unit is converted into a digital voltage signal and output,
    The voltage level determination unit receives the input of the plurality of analog voltage signals, determines a voltage level of an analog voltage value of each battery within the predetermined voltage range, and outputs a determination result,
    The failure detection unit detects a failure of the voltage detection unit in a state where the voltage value of each digital voltage signal is within the predetermined voltage range based on the output of the voltage detection unit and the output of the voltage level determination unit. The battery system according to any one of claims 1 to 6, wherein:
  8.  前記電池の前記アナログ電圧信号が伝播し、前記電圧検出部と前記電圧レベル判定部に接続される電圧検出線を備え、
     前記アナログ電圧信号を前記電圧検出部と前記電圧レベル判定部へ個別に導くための分岐点が前記電圧検出線上に設けられ、
     前記電池及び前記分岐点間の配線を通る電流の流れを抑制するための電流抑制素子を前記配線上に設けた
    ことを特徴とする請求項1~請求項7の何れかに記載の電池システム。
    The analog voltage signal of the battery propagates, and includes a voltage detection line connected to the voltage detection unit and the voltage level determination unit,
    A branch point for individually guiding the analog voltage signal to the voltage detection unit and the voltage level determination unit is provided on the voltage detection line,
    The battery system according to any one of claims 1 to 7, wherein a current suppressing element for suppressing a current flow through the wiring between the battery and the branch point is provided on the wiring.
  9.  請求項1~請求項8の何れかに記載の電池システムを搭載し、前記電池システムにおける前記電池を駆動源として走行する
    ことを特徴とする電動車両。
    An electric vehicle equipped with the battery system according to any one of claims 1 to 8 and running using the battery in the battery system as a drive source.
  10.  請求項1~請求項8の何れかに記載の電池システムと、
     移動本体部と、
     前記電池システム内の電池からの電力を動力に変換する動力源と、
     前記動力源からの前記動力により前記移動本体部を移動させる駆動部と、を備えた
    ことを特徴とする移動体。
    The battery system according to any one of claims 1 to 8,
    A moving body,
    A power source that converts power from the batteries in the battery system into power;
    And a drive unit that moves the moving main body by the power from the power source.
  11.  請求項1~請求項8の何れかに記載の電池システムと、
     前記電池システム内の電池の充電又は放電に関する制御を行う充放電制御ユニットと、を備えた
    ことを特徴とする電力貯蔵装置。
    The battery system according to any one of claims 1 to 8,
    A power storage device comprising: a charge / discharge control unit that performs control related to charging or discharging of a battery in the battery system.
  12.  請求項11に記載の電力貯蔵装置と、
     前記電力貯蔵装置内の充放電制御ユニットの制御の下で、前記電力貯蔵装置内の電池と外部機器又は電力系統との間における電力変換を行う電力変換装置と、を備え、
     前記外部機器又は前記電力系統と接続可能である
    ことを特徴とする電源装置。
    A power storage device according to claim 11;
    A power converter that performs power conversion between the battery in the power storage device and an external device or a power system under the control of the charge / discharge control unit in the power storage device;
    A power supply apparatus that can be connected to the external device or the power system.
  13.  充電可能な電池のアナログ電圧値の信号であるアナログ電圧信号の入力を受けて、前記電池のアナログ電圧信号をデジタル電圧信号に変換して出力するAD変換機能を有する電圧検出部と、
     前記アナログ電圧信号の入力を受けて前記電池の過充電および過放電を検出する過充電過放電検出回路を含み、前記過充電過放電検出回路からの出力を用いて前記電池のアナログ電圧値の電圧レベルを判定して判定結果を出力する電圧レベル判定部と、
     前記電圧検出部の出力及び前記電圧レベル判定部の出力を比較した結果から、前記デジタル電圧信号の電圧値が、前記電池が過充電状態にある電圧であることを表す第1閾値から前記電池が過放電状態にある電圧であることを表す第2閾値までの範囲である所定電圧範囲内に収まっている状態における前記電圧検出部の故障を検出する故障検出部
    を備えた電圧検出装置。
    A voltage detection unit having an AD conversion function of receiving an analog voltage signal that is a signal of an analog voltage value of a rechargeable battery, converting the analog voltage signal of the battery into a digital voltage signal, and outputting the digital voltage signal;
    An overcharge / overdischarge detection circuit for detecting overcharge and overdischarge of the battery in response to an input of the analog voltage signal, and using the output from the overcharge / overdischarge detection circuit, the voltage of the analog voltage value of the battery A voltage level determination unit that determines a level and outputs a determination result;
    From the result of comparing the output of the voltage detection unit and the output of the voltage level determination unit, the voltage value of the digital voltage signal is determined from the first threshold value indicating that the battery is in an overcharged state. The voltage detection apparatus provided with the failure detection part which detects the failure of the said voltage detection part in the state which is settled in the predetermined voltage range which is the range to the 2nd threshold value which represents that it is a voltage in an overdischarge state.
PCT/JP2011/068302 2010-09-03 2011-08-10 Battery system, electric vehicle, moving body, power storage device, power source device, and battery control device WO2012029522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010197335A JP2013234851A (en) 2010-09-03 2010-09-03 Battery system, electric vehicle, and battery control device
JP2010-197335 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029522A1 true WO2012029522A1 (en) 2012-03-08

Family

ID=45772627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068302 WO2012029522A1 (en) 2010-09-03 2011-08-10 Battery system, electric vehicle, moving body, power storage device, power source device, and battery control device

Country Status (2)

Country Link
JP (1) JP2013234851A (en)
WO (1) WO2012029522A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104139709A (en) * 2014-05-27 2014-11-12 中北大学 Control system and control method of fuel cell range extender
CN111246762A (en) * 2017-10-18 2020-06-05 日本烟草产业株式会社 Attraction component generation device, method for controlling attraction component generation device, and program
CN111308238A (en) * 2020-02-07 2020-06-19 中电科信息产业有限公司 Battery simulator and system of electric bicycle and charger detection method
CN112014753A (en) * 2019-05-28 2020-12-01 株式会社电装 Control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432302B2 (en) * 2014-11-19 2018-12-05 株式会社デンソー Failure determination device and motor control device for analog / digital converter
JP6543872B2 (en) * 2015-03-16 2019-07-17 三菱重工サーマルシステムズ株式会社 Control device, control method and program
JP6630151B2 (en) * 2015-12-28 2020-01-15 ラピスセミコンダクタ株式会社 Semiconductor device, battery monitoring system, and method of diagnosing semiconductor device
JP6822047B2 (en) * 2016-10-12 2021-01-27 株式会社豊田自動織機 Power storage device
KR20180062539A (en) * 2016-11-30 2018-06-11 현대로템 주식회사 Battery protection system for railroad train
JP2021125425A (en) * 2020-02-07 2021-08-30 Apb株式会社 Lithium-ion battery system and battery state estimation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032907A (en) * 2001-07-12 2003-01-31 Denso Corp Charging condition detection device
JP2006064639A (en) * 2004-08-30 2006-03-09 Renesas Technology Corp Cell voltage monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032907A (en) * 2001-07-12 2003-01-31 Denso Corp Charging condition detection device
JP2006064639A (en) * 2004-08-30 2006-03-09 Renesas Technology Corp Cell voltage monitoring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104139709A (en) * 2014-05-27 2014-11-12 中北大学 Control system and control method of fuel cell range extender
CN111246762A (en) * 2017-10-18 2020-06-05 日本烟草产业株式会社 Attraction component generation device, method for controlling attraction component generation device, and program
CN111246762B (en) * 2017-10-18 2023-07-18 日本烟草产业株式会社 Suction component generating device, method for controlling suction component generating device, and program
CN112014753A (en) * 2019-05-28 2020-12-01 株式会社电装 Control device
CN111308238A (en) * 2020-02-07 2020-06-19 中电科信息产业有限公司 Battery simulator and system of electric bicycle and charger detection method

Also Published As

Publication number Publication date
JP2013234851A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5627246B2 (en) Battery system, electric vehicle and battery control device
WO2012029522A1 (en) Battery system, electric vehicle, moving body, power storage device, power source device, and battery control device
JP5450812B2 (en) Battery system, electric vehicle, moving object, power storage device, power supply device, and battery voltage detection device
US10895603B2 (en) Voltage monitoring module and voltage monitoring system to detect a current leakage
US8970062B2 (en) Automotive power source apparatus and vehicle equipped with the power source apparatus
US9397371B2 (en) Storage system and storage controller for storage system
US10622685B2 (en) Problem detection apparatus
CN102549874B (en) Assembled battery control device
US10141737B2 (en) Mobile power packs, power control methods and electrical connection devices
US20190285669A1 (en) Management device and power supply system
US8933580B2 (en) On-board electrical system for a vehicle and also control apparatus for an on-board electrical system
KR20120071198A (en) A cell ballancing circuit and driving method thereof, and a battery management system including the cell ballancing circuit
JP5839047B2 (en) Surveillance system and vehicle
US20160197505A1 (en) Electric Energy Storage Device and Method for Increasing the Voltage at the Storage Device Terminals
US8860422B2 (en) Method for detecting the voltage in battery cells
JP6251136B2 (en) Battery system monitoring device and power storage device including the same
JP2014090635A (en) Power storage system
WO2020071290A1 (en) Electricity storage system
US20190375353A1 (en) Battery unit and method for operating a battery unit
KR20160071207A (en) Apparatus and method for protecting over charge of battery cell
US20150326043A1 (en) Battery System and Motor Vehicle with Battery System
KR102542960B1 (en) Fault diagnosis system of power converter for electric vehicle
JP6155854B2 (en) Battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP