WO2012028910A1 - Synchronised system for the production of crude oil by means of in-situ combustion - Google Patents

Synchronised system for the production of crude oil by means of in-situ combustion Download PDF

Info

Publication number
WO2012028910A1
WO2012028910A1 PCT/IB2011/000975 IB2011000975W WO2012028910A1 WO 2012028910 A1 WO2012028910 A1 WO 2012028910A1 IB 2011000975 W IB2011000975 W IB 2011000975W WO 2012028910 A1 WO2012028910 A1 WO 2012028910A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
wells
combustion
producing
synchronizing
Prior art date
Application number
PCT/IB2011/000975
Other languages
Spanish (es)
French (fr)
Inventor
Ronald Pantin
Luis Andres Rojas
Mkac Fuenmayor
Original Assignee
Pacific Rubiales Energy Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Rubiales Energy Corp. filed Critical Pacific Rubiales Energy Corp.
Priority to CA2809204A priority Critical patent/CA2809204C/en
Priority to US13/820,056 priority patent/US20130206384A1/en
Publication of WO2012028910A1 publication Critical patent/WO2012028910A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ

Definitions

  • a synchronized crude oil production system using the in-situ combustion process that uses the measurement, monitoring and control of real-time operational conditions comprising at least one injector well (1) and at least one producing well (2) and at least one inclined synchronizing well (3), characterized in that the tip of the at least one producing well (2) and that of the at least one inclined synchronizing well (3) found within the reservoir have the tip of the
  • the pipe has an outward orientation with respect to the injector well (1), characterized by comprising measuring, monitoring and control elements where, said measuring and monitoring elements send the signals and information detected by them, to one or more units of processing, joint or independent, that are responsible for evaluating, by an analytical model, the combustion conditions in the well-subsoil system and the advance of the combustion front and, depending on the results, synchronize the production operations, so that each well is operated or manipulated remotely in its control valves in order to influence the direction of travel of the combustion front.
  • Heavy crude oil or extra heavy crude oil is any type of crude oil with high densities that does not flow easily. It is called “heavy” because its API gravity is less than 21, 9 0 API.
  • the largest heavy oil reserve in the world is located north of the Orinoco River in Venezuela, but it is known that 30 or more countries have reserves of the same type. Canada has large reserves of heavy crude mainly in the provinces of Alberta and Saskatchewan. In this sense, different techniques have been developed in recent decades to efficiently and economically produce such deposits.
  • SAGD Steam Assisted Gravity Drainage
  • thermal energy allows the displacement of a considerable oil bank from the injector wells to the producing wells, mainly due to the reduction in the viscosity of the oil, the vaporization and the thrust of the gases formed in the combustion process.
  • this type of process has existed for many years, it has had some technical-operational difficulties that have discouraged its application, one of them is the control and monitoring of the combustion front, which directly affects the volumetric efficiency of sweeping and, by therefore, the recovery of the existing oil in the field.
  • Oxidation The combustion zone acts as a piston that moves fluids in front of the combustion front towards the producers.
  • Coking Oxygen combines with oil forming carbon dioxide and heat. The combustion reaction is maintained by injecting air and C0 2 released in the reservoir creates an effect of reducing water relative permeability, minimizing the mobility of this fluid with respect to oil.
  • Cracking The thermal cracking causes a deposit of coke in the fire front, generating in some cases, an improvement of the oil in the subsoil, the combustion gases vaporize the water, improve the displacement of the fluids and increase the sweep efficiency of the process.
  • the in situ combustion process has several benefits, mainly in reservoirs with high water saturation or direct influence of aquifers with strong hydraulic thrust: benefits due to the improvement of the oil mobility ratio.
  • water by reducing the water relative permeability, positively influence gravity segregation by generating a secondary layer of high pressure gas and reduction benefits oil viscosity by heating and miscibility of CO2 generated.
  • the saturation of residual oil is reduced and the saturation of irreducible water increases due to the increase in temperature as it has been reported in the oil literature, which increases the oil flow and decreases the water flow.
  • the main objective of the present invention is to provide a synchronized system of crude oil production using the in-situ combustion process that has elements of measurement, monitoring and control in real time, of the combustion front and, additionally , contemplate a geometry and type of wells that facilitate and make the management of monitoring and control operations of said combustion front more efficient.
  • Another objective of the present invention is to provide a synchronized system of production of crude oil by in-situ combustion that has a type of well identified as an inclined "synchronizer", also equipped with measuring and monitoring elements, which can fulfill different functions within of the system and make the combustion front control operations more efficient.
  • the main function of inclined synchronizing wells (3) is not only to produce a larger volume of hydrocarbons, but to complement the functions of measurement, monitoring and control of the combustion front. All this in order to make the process more efficient and obtain a greater recovery of hydrocarbon reserves.
  • Figure 1 Representation according to the state of the art of an arrangement for extracting crude oil from a reservoir by in-situ combustion, in which the two main areas of the well-subsoil system and the front that moves from the well are shown. injector 1 towards the horizontal producer 2. The combustion zone C and the area adjacent to the combustion front, non-combustion zone D.
  • Figure 2. Top view of an arrangement for extracting crude oil from a reservoir according to the state of the art in which an ideal theoretical displacement is presented for the combustion front of the well-subsoil system from an injector well 1 to the producing wells vertical 2.
  • the arrows indicate the direction of the combustion front.
  • Figure 3 Top view of an arrangement for extracting crude oil from a reservoir in which one of the many theoretical forms that the combustion front could have in the well-subsoil system, due to the irregular displacement of crude oil.
  • This figure seeks to highlight that in real life the combustion front is not homogeneous and this undoubtedly affects the productivity of the process, the volumetric efficiency of sweeping and therefore, the recovery of hydrocarbon reserves.
  • the arrows indicate the direction of the combustion front.
  • Figure 4a Top view of an arrangement for extracting crude oil from a well-subsoil system according to a first possible embodiment of the invention with producing wells inclined at the instant ti (referential), showing an irregular combustion front, under undesired operational conditions, without applying concepts of Synchronized Operations Management, "GSO" to monitor and control the combustion front and improve the efficiency of displacement or sweeping and recovery of hydrocarbon reserve.
  • GSO Synchronized Operations Management
  • Figure 4b - top view of an arrangement for removing oil from a well-ground system according to the embodiment presented in figure 4a at time t 2 ( for reference and later in time with respect to ti) showing a front uniform and optimal combustion under desired operational conditions, after the synchronization tasks by monitoring and control of the invention.
  • integrated Operations Management concepts have been applied to measure, monitor and control the combustion front.
  • the arrows indicate the direction of the combustion front.
  • Figure 5. Side view of the interior of the zone X of Figure 4b, where the relative position between the injector wells, inclined producers and synchronizers is observed, where a first possible configuration of the invention is highlighted with producing wells and synchronizers inclined Figure 6.
  • FIG. 6 Top view of an arrangement for extracting crude oil from a well-subsoil system according to a second possible embodiment of the invention in which multilateral wells are used, such as producers and strategically located inclined synchronizing wells.
  • This configuration of the multilateral producing wells and inclined synchronizers represents the optional configuration of the invention. Note that the direction of the multilateral section of the inclined producing and synchronizing wells is outward, that is, " outward " (by its English name). In this figure the arrows indicate the direction of the combustion front.
  • Figure 7. Side view of the interior of zone X of Figure 6, where the relative position between the injector wells, multilateral producers is observed and inclined synchronizers and the optional configuration of the invention is highlighted.
  • Figure 8. Top view of an arrangement for extracting crude oil from a well-subsoil system according to the optional modality of the invention showing a uniform and optimal combustion front under desired operational conditions, after the synchronization tasks by monitoring and control of the invention.
  • the arrows indicate the direction of the combustion front.
  • Figure 9.- Map that represents a reference deposit used to simulate an arrangement according to figure 6 in the invention where several layers, sands, oil from which oil is extracted are represented and the last layer represents a water zone or aquifer and from there is where the main source of water is produced.
  • Figure 10. Graph with the production behavior of the synchronizing wells (3a), (3b), (3c) and (3d), according to figure 9, in barrels per day as a function of time, obtained by simulation. These wells are usually useful to support producing wells in the extraction of crude.
  • Figure 11. Graph of estimated production of daily barrels as a function of time for multilateral wells 2a, 2b, 2c and 3d product of the referential simulation carried out.
  • the present invention proposes a synchronized arrangement of wells in an oil field that allows to measure, monitor and control the parameters of the in-situ combustion front to achieve a more efficient hydrocarbon extraction from the well-subsoil system.
  • the in-situ combustion extraction process In order for the in-situ combustion extraction process to be efficient, mainly in reservoirs that have a strong hydraulic thrust, it is necessary to improve the water / oil mobility ratio, by reducing the relative permeability of the water with respect to oil and the reduction in oil viscosity due to the effect of the heat generated in the reservoir, taking advantage of the positive effects of the miscibility of CO 2 in the oil. The result will be, a better efficiency of displacement or volumetric sweeping and therefore, a greater recovery of hydrocarbon reserves.
  • a combustion oil recovery system is shown in Figure 2, with an arrangement of 5 inverted wells, which by way of reference, comprises a vertical injector well (1) and four vertical producing wells (2 ).
  • the injector well (1) is located inside the arrangement, inside the area defined by the producing wells (2).
  • the function of the injector well (1) is to provide air, oxygen or a mixture of oxidizing gases, to displace the oil in its area of influence and maintain the combustion reaction in the reservoir.
  • the zone (A) represents the limits of the combustion front within the reservoir and the arrows on it represent the theoretical direction of the front as it advances to reach the producing wells (2) and, in this way, extract the crude of the site.
  • zone A In real life, the combustion front does not travel in a homogeneous manner, so that, as time goes by, the shape of zone A generally moves away from being symmetrical.
  • a referential example of a combustion oil recovery system is shown in Figure 3 where zone B represents a combustion front close to reality, when no forecasts are taken to control it.
  • zone B represents a combustion front close to reality, when no forecasts are taken to control it.
  • the combustion front is amorphous and, consequently, the crude oil that is in the vicinity of the producing well (2c) cannot be extracted from the reservoir, considerably affecting the productivity of the producing wells, the volumetric efficiency of sweeping and the recovery of hydrocarbon reserves.
  • the synchronized crude oil production system using the in-situ combustion process of the present application proposes: to include elements of measurement, monitoring and control in vertical injection wells (1), producers (2) present in a well arrangement and , in addition, the introduction of a new type of well called "synchronizing well” (3), inclined, which includes, in turn, measuring elements, variables of formation pressure and temperature, among other parameters, at different levels in the well, also, for monitoring and control of the gases generated by the combustion front
  • a system according to the invention comprises at least one injector well (1), at least one producing well (2) and at least one synchronizing well (3).
  • four inclined synchronizing wells (3) have been included in a referential manner in an arrangement comprising an injector well (1) and four inclined producing wells (2).
  • each well (s) injector (1), producers (2) and synchronizers (3) have elements of measurement, monitoring and control of the combustion front (zone B) and these are related to the functions provided Each well in the arrangement. In general, through the injector well
  • the inclined synchronizing wells (3) duly instrumented with remote pressure and temperature sensors, among others, will have several functions: First, they will serve as support or support for the wells producers (2) to measure, monitor and control the combustion front, through synchronized operations management; secondly, they will serve as additional producers and, thirdly, they can serve as wells for the removal of unwanted gases in the well-subsoil system, when required. Finally, these inclined synchronizing wells (3) could be converted into oxidizing gas injectors, if the process conditions require it and allow it. Their construction is done in such a way that it is technically feasible to do so (see figures 5 and 7).
  • measurement and monitoring elements to be installed are pressure and temperature sensors, which operate in real time from a distance, however, other control elements of the combustion front are not discarded, such as 4D seismic or flow or flow registers. images installed in some or all wells. Said measurement and monitoring elements send the signals and information collected by them to a processing unit, which is responsible for assessing the combustion conditions of the subsoil system and the advance of the combustion front. If the measurements obtained in each type of well are within the desired operational conditions, the injector wells (1), producers (2) and inclined synchronizing wells (3) will continue their basic functions within the arrangement.
  • the "Synchronized Operations Management, GSO” process is activated, which consists in synchronizing the production operations in such a way that each well or group of them, is remotely manipulated in its control valves to influence the direction of travel of the combustion front and standardize it.
  • GSO Synchronization Operations Management
  • These instructions will consist of the synchronized and remote management of the production control valves of said wells, forcing the modification of the production pattern and therefore, the advance of the combustion front, redirecting it towards the desired direction.
  • the operator could even send instructions to the injector well to decrease, increase or regulate the amount of oxidizing gas it is injecting into the subsoil system.
  • the instructions could also be given to completely close wells, even operate the water injection systems to control any abnormal situation that occurs in a well or in the same reservoir.
  • the inclined synchronizing wells (3) can act as relief wells or valves in case the concentration of gases within the reservoir exceeds the permitted values; in that case, the control unit would send an instruction to activate the gas relief or extraction function.
  • the number and geometry of the injector (1), producer (2) and synchronizer (3) wells inclined in the arrangement of the system of the invention, will depend on the type of reservoirs, type of arrangements and conditions of exploitation of the reservoir.
  • the injector (1), producer (2) and inclined synchronizer (3) wells are in a particular geometric arrangement according to the requirements of the well-subsoil system to be produced.
  • each well of the arrangement of Fig. 4a and 4b, whether injector (1), inclined producer (2) or inclined synchronizers (3), will be connected to one or more joint or independent processing units.
  • the processing unit is able to interpret the measurements of each well and send the signals so that the operator takes the necessary corrective measures.
  • the invention proposes an intelligent measurement, monitoring and control system whose stages include: assessing in real time and constantly the conditions of the in-situ combustion reaction in the well-subsoil system (in different duly identified points of interest), sending the results to the processing unit, analyzing the independent evaluations for each of the wells and, based on the results, automatically determining the corrections necessary for the use of a computer program or computer model Uniform the combustion front.
  • the injection wells (1) are vertical
  • the production wells (2) are of the inclined type
  • the synchronizing wells (3) are inclined as shown in Figure 5.
  • This configuration It allows greater coverage of the area of the well-subsoil system to be produced, making the monitoring process and, therefore, the production process more efficient.
  • the use of vertical producing wells in general, has the limitation that the function of the well in question is limited to a single point of the well and / or the area adjacent to it.
  • this preferential configuration of the invention considers the use of vertical injector wells (1) and inclined producers (2), in order to access a specific region considered relevant to the well-subsoil system.
  • synchronizing wells (3) strategically located within the arrangement of the invention, its configuration is inclined, which allows a better position with greater flow area and orientation towards the points inside the well-subsoil system that is they have considered relevant for monitoring.
  • the injection wells (1) are vertical
  • the production wells (2) are of the multilateral type
  • the synchronizing wells (3) are inclined as shown in Figures 6 and 7.
  • This configuration allows a greater coverage of the area of the well-subsoil system to be produced, making the monitoring process and, therefore, the production process more efficient.
  • This preferential configuration of the invention considers the use of injector wells (1) vertical and producers (2) multilateral, so as to cover a greater area of the subsoil system.
  • inclined synchronizing wells (3) strategically located within the arrangement of the invention, its configuration is always inclined, which allows a better position with greater flow area and orientation towards the points inside the well-subsoil system. which have been considered relevant for monitoring.
  • the relative position of the synchronizing wells (3) inclined in the arrangement is relatively close to the producing well (2) and, if there is more than one producing well (2), it will preferably be in the area adjacent to the two closest producing wells (2).
  • synchronizing wells (3) will be in an equidistant and strategic position from the geological point of view, to the injection well and producing wells (2), and placed inside the Z zone (shown in figures 4a, 4b, 5, 6, 7 and 8).
  • producing wells (2) and inclined synchronizers (3) In the case of the producing wells (2) and inclined synchronizers (3), they will be directed so that the tip of the producing wells (2) and that of the inclined synchronizing wells (3) that are within the reservoir it has an outward orientation with respect to the injector well (1), that is, an "outward" orientation.
  • producing wells (2) will have a single inclined or multilateral portion, however, they are considered to have a substantially vertical section and / or one or more inclined sections, which will make them multilateral.
  • the number of producing wells (2) and inclined synchronizers (3) may vary depending on the characteristics of the reservoir and the situation of existing wells in which the field is at the beginning of the on-site combustion process.
  • EXAMPLE NUMERICAL SIMULATION
  • CMS STARS numerical simulator of the company CMG in one of the Pacific Rubiales Energy fields.
  • STARS includes the multiphase flow of oil, water and gas, heat transfer, compositional changes and chemical physical reactions of kinetics that are considered to occur in the field during in situ combustion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Incineration Of Waste (AREA)

Abstract

The invention relates to a synchronised crude oil production system using in-situ combustion. The system measures, monitors and controls the operating conditions in real time and comprises at least one injection well (1), at least one production well (2) and at least one inclined synchronisation well (3). According to the invention, the point of at least one production well (2) and the point of at least one inclined synchronisation well (3) are oriented away from the injection well (1). In addition, the system comprises measurement, monitoring and control elements that transmit signals and information detected thereby to one or more processing units which, together or independently, use an analytical model to assess the combustion conditions and the advance of the combustion front and, as a function of the results, synchronise the production operations, each well being operated and handled remotely at the control valves thereof.

Description

SISTEMA SINCRONIZADO DE PRODUCCIÓN DE CRUDO POR COMBUSTIÓN IN-SITU  SYNCHRONIZED SYSTEM OF IN-SITU COMBUSTION CRUDE PRODUCTION
Un sistema sincronizado de producción de crudo utilizando el proceso de combustión in-situ que utiliza la medición, el monitoreo y el control de las condiciones operacionales en tiempo real que comprende, al menos un pozo inyector (1 ) y, al menos un pozo productor (2) y al menos un pozo sincronizador (3) inclinado, caracterizados porque la punta del al menos un pozo productor (2) y aquella del al menos un pozo sincronizador (3) inclinado que se encuentran dentro del yacimiento tienen la punta de la tubería tiene una orientación hacia afuera con respecto al pozo inyector (1 ), caracterizados por comprender elementos de medición, monitoreo y control en donde, dichos elementos de medición y monitoreo envían las señales e información detectada por los mismos, a una o varias unidades de procesamiento, conjunta o independiente, que se encargan de evaluar, mediante un modelo analítico, las condiciones de combustión en el sistema pozo-subsuelo y el avance del frente de combustión y, en función de los resultados, sincronizar las operaciones de producción, de tal manera que cada pozo sea operado o manipulado remotamente en sus válvulas de control para así influir en la dirección de desplazamiento del frente de combustión. A synchronized crude oil production system using the in-situ combustion process that uses the measurement, monitoring and control of real-time operational conditions comprising at least one injector well (1) and at least one producing well (2) and at least one inclined synchronizing well (3), characterized in that the tip of the at least one producing well (2) and that of the at least one inclined synchronizing well (3) found within the reservoir have the tip of the The pipe has an outward orientation with respect to the injector well (1), characterized by comprising measuring, monitoring and control elements where, said measuring and monitoring elements send the signals and information detected by them, to one or more units of processing, joint or independent, that are responsible for evaluating, by an analytical model, the combustion conditions in the well-subsoil system and the advance of the combustion front and, depending on the results, synchronize the production operations, so that each well is operated or manipulated remotely in its control valves in order to influence the direction of travel of the combustion front.
ANTECEDENTES TECNICOS TECHNICAL BACKGROUND
Crudo pesado o crudo extra pesado es cualquier tipo de petróleo crudo con altas densidades que no fluye con facilidad. Se le denomina "pesado" debido a que su gravedad API es inferior a 21 ,9 0 API. La mayor reserva de petróleo pesado en el mundo se encuentra al norte del Río Orinoco en Venezuela, pero se sabe que 30 o más países tienen reservas del mismo tipo. Canadá cuenta con grandes reservas de crudo pesado principalmente en las provincias de Alberta y Saskatchewan. En este sentido, se han desarrollado en las últimas décadas diferentes técnicas para producir de manera eficiente y económica dichos depósitos. Heavy crude oil or extra heavy crude oil is any type of crude oil with high densities that does not flow easily. It is called "heavy" because its API gravity is less than 21, 9 0 API. The largest heavy oil reserve in the world is located north of the Orinoco River in Venezuela, but it is known that 30 or more countries have reserves of the same type. Canada has large reserves of heavy crude mainly in the provinces of Alberta and Saskatchewan. In this sense, different techniques have been developed in recent decades to efficiently and economically produce such deposits.
La producción de crudo pesado y extra-pesado presenta problemas particulares en comparación a la del crudo ligero debido a su alta viscosidad, y por consiguiente, baja movilidad y baja gravedad API. The production of heavy and extra-heavy crude oil presents particular problems compared to that of light crude oil due to its high viscosity, and consequently, low mobility and low API gravity.
Para superar estos problemas, se han desarrollado diferentes técnicas de Recuperación Térmica. Entre estas técnicas se encuentran los métodos de inyección de vapor en sus diferentes modalidades entre ellos el llamado Drenaje por Gravedad Asistido con Vapor (por sus siglas en ingles: SAGD). Esta última técnica implica el uso de dos pozos horizontales en lugar de verticales, donde los operadores inyectan vapor a altas temperaturas en el pozo superior, el vapor fluye en el yacimiento y por transferencia de calor, reduce la viscosidad del crudo, el cual luego fluye por gravedad hacia el pozo de producción horizontal que se encuentra en la zona inferior. Según la bibliografía disponible, el SAGD tiene una tasa de recuperación estimada entre 20% y 50% del petróleo en sitio, sin embargo, el rango de aplicación se circunscribe a un tipo de yacimiento, principalmente no afectados por fuertes acuíferos y con excelente comunicación vertical. To overcome these problems, different techniques of Thermal Recovery have been developed. Among these techniques are the methods of steam injection in its different modalities, among them the so-called Steam Assisted Gravity Drainage (SAGD). The latter technique involves the use of two horizontal wells instead of vertical wells, where operators inject steam at high temperatures in the upper well, steam flows into the reservoir and by heat transfer, reduces the viscosity of the oil, which then flows by gravity towards the horizontal production well located in the lower zone. According to the available literature, the SAGD has an estimated recovery rate between 20% and 50% of the oil on site, however, the range of application is limited to a type of reservoir, mainly not affected by strong aquifers and with excellent vertical communication .
Otro método térmico ampliamente utilizado, y de mayor rango de aplicación, es la combustión in situ. Este método consiste en calentar y oxidar una pequeña porción del petróleo existente en el yacimiento para generar energía térmica. Esta energía, permite el desplazamiento de un banco de petróleo considerable desde los pozos inyectores hacia los pozos productores, debido principalmente a la reducción de la viscosidad del crudo, la vaporización y el empuje de los gases formados en el proceso de combustión. Si bien este tipo de proceso existe desde hace muchos años, ha tenido algunas dificultades técnicas- operacionales que ha desmotivado su aplicación, una de ellas es el control y monitoreo del frente de combustión, el cual afecta directamente la eficiencia volumétrica de barrido y, por ende, la recuperación del petróleo existente en el yacimiento. Aun así, se han realizado esfuerzos para superar estas dificultades, lográndose porcentajes de recuperación mayores a 60 % del petróleo en el yacimiento, como ha sido reportado en algunas fuentes bibliográficas, así como en proyectos pilotos y comerciales realizados en el mundo. Los yacimientos con crudos pesados sometidos a empuje hidráulico responden favorablemente a este tipo de proceso. Another widely used thermal method, and of greater range of application, is combustion in situ. This method consists of heating and oxidizing a small portion of the existing oil in the deposit to generate thermal energy. This energy allows the displacement of a considerable oil bank from the injector wells to the producing wells, mainly due to the reduction in the viscosity of the oil, the vaporization and the thrust of the gases formed in the combustion process. Although this type of process has existed for many years, it has had some technical-operational difficulties that have discouraged its application, one of them is the control and monitoring of the combustion front, which directly affects the volumetric efficiency of sweeping and, by therefore, the recovery of the existing oil in the field. Even so, efforts have been made to overcome these difficulties, achieving recovery percentages greater than 60% of the oil in the field, as it has been reported in some bibliographical sources, as well as in pilot and commercial projects carried out in the world. Heavy crude deposits under hydraulic thrust respond favorably to this type of process.
En general, tres procesos químicos toman lugar en un proceso de combustión ¡n situ: Oxidación: La zona de combustión actúa como un pistón que desplaza los fluidos delante del frente de combustión hacia los productores. Coquización: El oxígeno se combina con el petróleo formando dióxido de carbono y calor. La reacción de combustión es mantenida mediante la inyección de aire, y el C02 liberado en el yacimiento crea un efecto de reducción de la permeabilidad relativa al agua, minimizando la movilidad de este fluido con respecto al petróleo. Craqueo: El craqueo térmico ocasiona un depósito del coque en el frente de fuego, generando en algunos casos, un mejoramiento del crudo en el subsuelo, los gases de combustión vaporizan el agua, mejoran el desplazamiento de los fluidos e incrementan la eficiencia de barrido del proceso. En resumen, el proceso de combustión in situ tiene varios beneficios, principalmente en yacimientos con alta saturación de agua o influencia directa de acuíferos con fuerte empuje hidráulico: beneficios por mejoramiento de la razón movilidad del crudo vs. agua, al reducirse la permeabilidad relativa al agua, influencia positiva en la segregación gravitacional por generación de una capa de gas secundaria a alta presión y, beneficios por reducción de la viscosidad del crudo por el calentamiento y miscibilidad del CO2 generado. Además, la saturación de petróleo residual se reduce y la saturación de agua irreducible aumenta por el incremento de la temperatura tal como ha sido reportado en la literatura petrolera, lo cual aumenta el flujo de petróleo y disminuye el flujo de agua. In general, three chemical processes take place in an in situ combustion process: Oxidation: The combustion zone acts as a piston that moves fluids in front of the combustion front towards the producers. Coking: Oxygen combines with oil forming carbon dioxide and heat. The combustion reaction is maintained by injecting air and C0 2 released in the reservoir creates an effect of reducing water relative permeability, minimizing the mobility of this fluid with respect to oil. Cracking: The thermal cracking causes a deposit of coke in the fire front, generating in some cases, an improvement of the oil in the subsoil, the combustion gases vaporize the water, improve the displacement of the fluids and increase the sweep efficiency of the process. In summary, the in situ combustion process has several benefits, mainly in reservoirs with high water saturation or direct influence of aquifers with strong hydraulic thrust: benefits due to the improvement of the oil mobility ratio. water, by reducing the water relative permeability, positively influence gravity segregation by generating a secondary layer of high pressure gas and reduction benefits oil viscosity by heating and miscibility of CO2 generated. In addition, the saturation of residual oil is reduced and the saturation of irreducible water increases due to the increase in temperature as it has been reported in the oil literature, which increases the oil flow and decreases the water flow.
Debido al volumen importante de reservas de crudo pesado y extra-pesado a nivel mundial, ha sido una preocupación de la industria petrolera mundial, la búsqueda de tecnologías que optimicen los procesos arriba descritos. En particular, una técnica de producción que monitoree y controle las condiciones especificas que se generan en un proceso de combustión in-situ y, de esta manera, se aumente la producción y reservas de hidrocarburos, entendiéndose como reservas, la cantidad de petróleo extraíble de los yacimientos en condiciones de rentabilidad económica. En este sentido, el principal objetivo de la presente invención es proveer de un sistema sincronizado de producción de crudo utilizando el proceso de combustión in-situ que cuente con elementos de medición, monitoreo y control en tiempo real, del frente de combustión y, adicionalmente, contemple una geometría y tipo de pozos que faciliten y hagan más eficiente la gerencia de operaciones de monitoreo y control de dicho frente de combustión. Due to the significant volume of heavy and extra-heavy crude oil reserves worldwide, it has been a concern of the global oil industry, the search for technologies that optimize the processes described above. In particular, a production technique that monitors and controls conditions specific that are generated in an in-situ combustion process and, in this way, increase the production and reserves of hydrocarbons, being understood as reserves, the amount of extractable oil from the deposits under conditions of economic profitability. In this sense, the main objective of the present invention is to provide a synchronized system of crude oil production using the in-situ combustion process that has elements of measurement, monitoring and control in real time, of the combustion front and, additionally , contemplate a geometry and type of wells that facilitate and make the management of monitoring and control operations of said combustion front more efficient.
Otro objetivo de la presente invención es la de proveer un sistema sincronizado de producción de crudo por combustión in-situ que presenta un tipo de pozo identificado como "sincronizador" inclinado, también equipado con elementos de medición y monitoreo, que puede cumplir deferentes funciones dentro del sistema y que hagan más eficiente las operaciones de control del frente de combustión. La función principal de los pozos sincronizadores (3) inclinados no solo es producir un mayor volumen de hidrocarburos, sino complementar las funciones de medición, monitoreo y control del frente de combustión. Todo esto con el fin de hacer el proceso más eficiente y obtener una mayor recuperación de reservas de hidrocarburos. Existe una justificación económica importante en relación a los pozos inclinados. Un pozo inclinado es mucho mas económico y sencillo de perforar que un pozo horizontal, aun cuando este tiene sus ventajas por la mayor área de flujo que representa. Su geometría o arquitectura no requiere la utilización de equipos sofisticados de perforación como las de los horizontales donde se tiene que "navegar" en arenas con espesores muchas veces muy pequeños que dificultan su trayectoria. Esos equipos, "Measurement While Drilling" (por sus siglas en inglés: MWD) son muy costosos y encarecen el costo del pozo. En campos con grandes volúmenes de reservas y donde convenga implantar procesos de combustión in situ y se requiere perforar pozos económicos, el costo de los pozos es extremadamente importante porque representa más del 60 % del costo total de las inversiones de un proyecto. De aquí el fundamento de disponer de pozos inclinados, sincronizadores, estratégicamente ubicados en el campo, que permitan monitorear y controlar el frente de combustión y mejorar la eficiencia volumétrica de barrido, maximizando la recuperación de reservas. Another objective of the present invention is to provide a synchronized system of production of crude oil by in-situ combustion that has a type of well identified as an inclined "synchronizer", also equipped with measuring and monitoring elements, which can fulfill different functions within of the system and make the combustion front control operations more efficient. The main function of inclined synchronizing wells (3) is not only to produce a larger volume of hydrocarbons, but to complement the functions of measurement, monitoring and control of the combustion front. All this in order to make the process more efficient and obtain a greater recovery of hydrocarbon reserves. There is an important economic justification in relation to inclined wells. An inclined well is much cheaper and easier to drill than a horizontal well, even though it has its advantages due to the greater flow area it represents. Its geometry or architecture does not require the use of sophisticated drilling equipment such as horizontal ones where you have to " navigate " in sands with often very small thicknesses that hinder your trajectory. These equipment, " Measurement While Drilling" (MWD) are very expensive and make the cost of the well more expensive. In fields with large volumes of reserves and where it is convenient to implement combustion processes in situ and it is necessary to drill economic wells, the cost of the wells is extremely important because it represents more than 60% of the total cost of investments of a project Hence the basis of having inclined wells, synchronizers, strategically located in the field, which allow monitoring and control of the combustion front and improve the volumetric efficiency of sweeping, maximizing the recovery of reserves.
DESCRIPCION DE LA INVENCION Descripción de los dibujos DESCRIPTION OF THE INVENTION Description of the drawings
Figura 1.- Representación según el estado de la técnica de un arreglo para extracción de crudo de un reservorio por combustión in-situ, en el cual se muestran las dos zonas principales del sistema pozo-subsuelo y el frente que se desplaza desde el pozo inyector 1 hacia el productor horizontal 2. La zona de combustión C y la zona adyacente al frente de combustión, zona de no combustión D. Figure 1.- Representation according to the state of the art of an arrangement for extracting crude oil from a reservoir by in-situ combustion, in which the two main areas of the well-subsoil system and the front that moves from the well are shown. injector 1 towards the horizontal producer 2. The combustion zone C and the area adjacent to the combustion front, non-combustion zone D.
Figura 2.- Vista superior de un arreglo para extracción de crudo de un reservorio según el estado de la técnica en el cual se presenta un desplazamiento teórico ideal para el frente de combustión del sistema pozo- subsuelo desde un pozo inyector 1 hasta los pozos productores verticales 2. En esta figura las flechas indican la dirección del frente de combustión. Figure 2.- Top view of an arrangement for extracting crude oil from a reservoir according to the state of the art in which an ideal theoretical displacement is presented for the combustion front of the well-subsoil system from an injector well 1 to the producing wells vertical 2. In this figure the arrows indicate the direction of the combustion front.
Figura 3.- Vista superior de un arreglo para extracción de crudo de un reservorio en el cual se presenta una de las tantas formas teóricas que podría tener el frente de combustión en el sistema pozo-subsuelo, por efecto de un desplazamiento irregular de crudo. Con esta figura se busca resaltar que en la vida real el frente de combustión no es homogéneo y esto afecta sin duda la productividad del proceso, la eficiencia volumétrica de barrido y por ende, la recuperación de las reservas de hidrocarburos. En esta figura las flechas indican la dirección del frente de combustión. Figure 3.- Top view of an arrangement for extracting crude oil from a reservoir in which one of the many theoretical forms that the combustion front could have in the well-subsoil system, due to the irregular displacement of crude oil. This figure seeks to highlight that in real life the combustion front is not homogeneous and this undoubtedly affects the productivity of the process, the volumetric efficiency of sweeping and therefore, the recovery of hydrocarbon reserves. In this figure the arrows indicate the direction of the combustion front.
Figura 4a.- Vista superior de un arreglo para extracción de crudo de un sistema pozo-subsuelo de acuerdo a una primera modalidad posible de la invención con pozos productores inclinados en el instante ti (referencial), mostrando un frente de combustión irregular, bajo condiciones operacionales no-deseadas, sin aplicar conceptos de Gerencia Sincronizada de Operaciones, "GSO" para monitorear y controlar el frente de combustión y mejorar la eficiencia de desplazamiento o de barrido y la recuperación de reserva de hidrocarburos. En esta figura las flechas indican la dirección del frente de combustión. Figure 4a.- Top view of an arrangement for extracting crude oil from a well-subsoil system according to a first possible embodiment of the invention with producing wells inclined at the instant ti (referential), showing an irregular combustion front, under undesired operational conditions, without applying concepts of Synchronized Operations Management, "GSO" to monitor and control the combustion front and improve the efficiency of displacement or sweeping and recovery of hydrocarbon reserve. In this figure the arrows indicate the direction of the combustion front.
Figura 4b.- Vista superior de un arreglo para extracción de crudo de un sistema pozo-subsuelo de acuerdo a la modalidad presentada en la figura 4a en el instante t2 (referencial y posterior en el tiempo con respecto a t-i) mostrando un frente de combustión uniforme y óptimo bajo condiciones operacionales deseadas, después de las tareas de sincronización por monitoreo y control de la invención. En este caso, se han aplicado conceptos de Gerencia integrada de Operaciones para medir, monitorear y controlar el frente de combustión. En esta figura las flechas indican la dirección del frente de combustión. Figure 4b.- top view of an arrangement for removing oil from a well-ground system according to the embodiment presented in figure 4a at time t 2 ( for reference and later in time with respect to ti) showing a front uniform and optimal combustion under desired operational conditions, after the synchronization tasks by monitoring and control of the invention. In this case, integrated Operations Management concepts have been applied to measure, monitor and control the combustion front. In this figure the arrows indicate the direction of the combustion front.
Figura 5.- Vista lateral del interior de la zona X de la figura 4b, en donde se observa la posición relativa entre los pozos inyector, productores inclinados y sincronizadores, en donde se resalta una primera configuración posible de la invención con pozos productores y sincronizadores inclinados. Figura 6.- Vista superior de un arreglo para extracción de crudo de un sistema pozo-subsuelo de acuerdo a una segunda modalidad posible de la invención en la cual se emplean pozos multilaterales, cómo productores y pozos sincronizadores inclinados estratégicamente ubicados. Está configuración de los pozos productores multilaterales y sincronizadores inclinados representa la configuración opcional de la invención. Nótese que la dirección de la sección multilateral de los pozos productores y sincronizadores inclinados es hacia afuera, es decir, "outward" (por su nombre en ingles). En esta figura las flechas indican la dirección del frente de combustión. Figure 5.- Side view of the interior of the zone X of Figure 4b, where the relative position between the injector wells, inclined producers and synchronizers is observed, where a first possible configuration of the invention is highlighted with producing wells and synchronizers inclined Figure 6.- Top view of an arrangement for extracting crude oil from a well-subsoil system according to a second possible embodiment of the invention in which multilateral wells are used, such as producers and strategically located inclined synchronizing wells. This configuration of the multilateral producing wells and inclined synchronizers represents the optional configuration of the invention. Note that the direction of the multilateral section of the inclined producing and synchronizing wells is outward, that is, " outward " (by its English name). In this figure the arrows indicate the direction of the combustion front.
Figura 7.- Vista lateral del interior de la zona X de la figura 6, en donde se observa la posición relativa entre los pozos inyector, productores multilaterales y sincronizadores inclinados y se resalta la configuración opcional de la invención . Figure 7.- Side view of the interior of zone X of Figure 6, where the relative position between the injector wells, multilateral producers is observed and inclined synchronizers and the optional configuration of the invention is highlighted.
Figura 8.- Vista superior de un arreglo para extracción de crudo de un sistema pozo-subsuelo de acuerdo a la modalidad opcional de la invención mostrando un frente de combustión uniforme y óptimo bajo condiciones operacionales deseadas, después de las tareas de sincronización por monitoreo y control de la invención. En esta figura las flechas indican la dirección del frente de combustión. Figure 8.- Top view of an arrangement for extracting crude oil from a well-subsoil system according to the optional modality of the invention showing a uniform and optimal combustion front under desired operational conditions, after the synchronization tasks by monitoring and control of the invention. In this figure the arrows indicate the direction of the combustion front.
Figura 9.- Mapa que representa un yacimiento referencial empleado para simulación de un arreglo de acuerdo a la figura 6 en la invención donde se representan varias capas, arenas, petrolíferas de donde se extrae el petróleo y la ultima capa representa una zona de agua o acuífero y desde allí es donde viene la principal fuente de agua que se produce. Figure 9.- Map that represents a reference deposit used to simulate an arrangement according to figure 6 in the invention where several layers, sands, oil from which oil is extracted are represented and the last layer represents a water zone or aquifer and from there is where the main source of water is produced.
Figura 10.- Gráfica con el comportamiento de producción de los pozos sincronizadores (3a), (3b), (3c) y (3d), según figura 9, en barriles por día en función del tiempo, obtenido por simulación. Estos pozos normalmente son útiles para apoyar a los pozos productores en la extracción de crudo. Figure 10.- Graph with the production behavior of the synchronizing wells (3a), (3b), (3c) and (3d), according to figure 9, in barrels per day as a function of time, obtained by simulation. These wells are usually useful to support producing wells in the extraction of crude.
Figura 11.- Gráfica de producción estimada de barriles diarios en función del tiempo para los pozos multilaterales 2a, 2b, 2c y 3d producto de la simulación referencial efectuada. Figure 11.- Graph of estimated production of daily barrels as a function of time for multilateral wells 2a, 2b, 2c and 3d product of the referential simulation carried out.
Descripción Description
La presente invención, propone un arreglo sincronizado de pozos en un yacimiento de petróleo que permite medir, monitorear y controlar los parámetros del frente de combustión in-situ para lograr una extracción de hidrocarburos más eficiente del sistema pozo-subsuelo. Para que el proceso de extracción por combustión in-situ sea eficiente, principalmente en yacimientos que cuenten con un fuerte empuje hidráulico, es necesario mejorar la relación de movilidad agua/petróleo, por la reducción de la permeabilidad relativa del agua con respecto al petróleo y por la reducción de la viscosidad del crudo debido al efecto del calor generado en el yacimiento, aprovechando los efectos positivos de la miscibilidad del CO2 en el crudo. El resultado será, una mejor eficiencia de desplazamiento o volumétrica de barrido y por ende, una mayor recuperación de reservas de hidrocarburos. The present invention proposes a synchronized arrangement of wells in an oil field that allows to measure, monitor and control the parameters of the in-situ combustion front to achieve a more efficient hydrocarbon extraction from the well-subsoil system. In order for the in-situ combustion extraction process to be efficient, mainly in reservoirs that have a strong hydraulic thrust, it is necessary to improve the water / oil mobility ratio, by reducing the relative permeability of the water with respect to oil and the reduction in oil viscosity due to the effect of the heat generated in the reservoir, taking advantage of the positive effects of the miscibility of CO 2 in the oil. The result will be, a better efficiency of displacement or volumetric sweeping and therefore, a greater recovery of hydrocarbon reserves.
Los procesos térmicos y reacciones cinéticas que ocurren en un proceso de combustión in situ serán los tradicionales. Por un lado, habrá un frente caliente de crudo en la zona de combustión C (ver figura 1 ), que ocasionará una disminución de la viscosidad del crudo y, por ende, incrementara la movilidad con respecto al agua, facilitando la entrada de petróleo en el pozo productor (2) más cercano. Con respecto al crudo que se encuentra en la zona de no combustión D o zona no influenciada directamente por el frente de combustión (ver figura 1 ), el calor transferido también tendrá un efecto positivo al reducir la viscosidad del crudo, que ocasionará una mejor movilidad del petróleo y por lo tanto, un mayor chance de recuperar más reservas de hidrocarburos. The thermal processes and kinetic reactions that occur in an in situ combustion process will be the traditional ones. On the one hand, there will be a hot front of crude oil in the combustion zone C (see figure 1), which will cause a decrease in the viscosity of the oil and, therefore, increase mobility with respect to water, facilitating the entry of oil into the nearest producing well (2). With respect to the oil that is in the non-combustion zone D or zone not directly influenced by the combustion front (see figure 1), the heat transferred will also have a positive effect by reducing the viscosity of the crude, which will cause better mobility of oil and therefore, a greater chance of recovering more hydrocarbon reserves.
Otra condición positiva, se presenta al fluir los gases producto del proceso de combustión hacia las zonas más altas en la estructura de la arena o tope del yacimiento. El efecto combinado de la transferencia de calor, la reducción de viscosidad de petróleo, y la segregación gravitacional por efecto de la formación de una capa de gas secundaria a mayor presión, hará que el petróleo fluya hacia abajo con el consiguiente beneficio en la eficiencia de barrido, mejor desplazamiento de petróleo y, por ende, en la recuperación de reservas de hidrocarburos. Another positive condition is presented by the flow of gases from the combustion process to the highest areas in the structure of the sand or top of the field. The combined effect of heat transfer, reduction of oil viscosity, and gravitational segregation due to the formation of a secondary gas layer at higher pressure, will cause oil to flow down with the consequent benefit in the efficiency of sweeping, better oil displacement and, therefore, in the recovery of hydrocarbon reserves.
En la figura 2 se muestra un sistema de recuperación de crudo por combustión de acuerdo al estado de la técnica, con un arreglo de 5 pozos invertidos, que a modo referencial, comprende un pozo inyector vertical (1 ) y cuatro pozos productores verticales (2). En esta figura, el pozo inyector (1 ) se encuentra ubicado dentro del arreglo, en el interior del área definida por los pozos productores (2). La función del pozo inyector (1 ) es la de proveer aire, oxígeno ó una mezcla de gases oxidantes, para desplazar el crudo en su área de influencia y mantener la reacción de combustión en el yacimiento. La zona (A) representa los límites del frente de combustión dentro del reservorio y las flechas sobre la misma representan la dirección teórica del frente a medida que el mismo avanza para alcanzar los pozos productores (2) y, de esta manera, extraer el crudo del yacimiento. En la vida real, el frente de combustión no viaja de manera homogénea por lo cual, a medida que trascurre el tiempo, la forma de la zona A se aleja generalmente de ser simétrica. En la figura 3 se muestra un ejemplo referencial de un sistema de recuperación de crudo por combustión en donde la zona B represente un frente de combustión cercano a la realidad, cuando no se toman previsiones para controlarlo. Como se puede observar el frente de combustión es amorfo y, en consecuencia, el crudo que se encuentra en la cercanía del pozo productor (2c) no podrá ser extraído del reservorio, afectando considerablemente la productividad de los pozos productores, la eficiencia volumétrica de barrido y la recuperación de reservas de hidrocarburos. Esta realidad podría ser subsanada incluyendo un mayor número de pozos productores (2) dentro del arreglo que a su vez cuenten con sistemas de monitoreo y control de las reacciones de combustión y del avance del frente de combustión, de manera de influir para que tome la dirección deseada. Sin embargo, esta adición de pozos productores adicionales (2) implicaría costos adicionales para perforar y completar los mismos, los cuales se convertirían en inútiles una vez que el frente de combustión (zona B) ha superado la zona por debajo de los mismos. A combustion oil recovery system according to the state of the art is shown in Figure 2, with an arrangement of 5 inverted wells, which by way of reference, comprises a vertical injector well (1) and four vertical producing wells (2 ). In this figure, the injector well (1) is located inside the arrangement, inside the area defined by the producing wells (2). The function of the injector well (1) is to provide air, oxygen or a mixture of oxidizing gases, to displace the oil in its area of influence and maintain the combustion reaction in the reservoir. The zone (A) represents the limits of the combustion front within the reservoir and the arrows on it represent the theoretical direction of the front as it advances to reach the producing wells (2) and, in this way, extract the crude of the site. In real life, the combustion front does not travel in a homogeneous manner, so that, as time goes by, the shape of zone A generally moves away from being symmetrical. A referential example of a combustion oil recovery system is shown in Figure 3 where zone B represents a combustion front close to reality, when no forecasts are taken to control it. As you can see the combustion front is amorphous and, consequently, the crude oil that is in the vicinity of the producing well (2c) cannot be extracted from the reservoir, considerably affecting the productivity of the producing wells, the volumetric efficiency of sweeping and the recovery of hydrocarbon reserves. This reality could be remedied by including a greater number of producing wells (2) within the arrangement that in turn have monitoring and control systems for combustion reactions and the combustion front advance, so as to influence the taking of the desired address However, this addition of additional producing wells (2) would imply additional costs to drill and complete them, which would become useless once the combustion front (zone B) has exceeded the area below them.
DESCRIPCION DETALLADA DE LA INVENCION DETAILED DESCRIPTION OF THE INVENTION
El sistema sincronizado de producción de crudo utilizando el proceso de combustión in-situ de la presente solicitud propone: incluir elementos de medición, monitoreo y control en los pozos de inyección (1 ) vertical, productores (2) presentes en un arreglo de pozos y, adicionalmente, la introducción de un nuevo tipo de pozo llamado "pozo sincronizador" (3), inclinado, el cual incluye, a su vez, elementos de medición, de variables de presión de formación y temperatura, entre otros parámetros, a distintos niveles en el pozo, asimismo, de monitoreo y control de los gases generados por el frente de combustión. Un sistema de acuerdo a la invención comprende al menos un pozo inyector (1 ), al menos un pozo productor (2) y al menos un pozo sincronizador (3). En las figuras 4a y 4b se han incluido, de manera referencial, cuatro pozos sincronizadores inclinados (3) en un arreglo que comprende un pozo inyector (1 ) y cuatro pozos productores (2) inclinados. The synchronized crude oil production system using the in-situ combustion process of the present application proposes: to include elements of measurement, monitoring and control in vertical injection wells (1), producers (2) present in a well arrangement and , in addition, the introduction of a new type of well called "synchronizing well" (3), inclined, which includes, in turn, measuring elements, variables of formation pressure and temperature, among other parameters, at different levels in the well, also, for monitoring and control of the gases generated by the combustion front A system according to the invention comprises at least one injector well (1), at least one producing well (2) and at least one synchronizing well (3). In figures 4a and 4b, four inclined synchronizing wells (3) have been included in a referential manner in an arrangement comprising an injector well (1) and four inclined producing wells (2).
La palabra "inclinado" utilizada en referencia a ciertos pozos, debe entenderse de manera que la inclinación del pozo puede ir desde la superficie hasta la punta del mismo, o comprender una sección vertical y luego una sección inclinada, pero en donde la sección inclinada está en contraposición a una sustancial mente horizontal o una sustancialmente vertical. En este sentido, un pozo productor (2) inclinado, así como un pozo sincronizador (3) inclinado de la presente invención, no contempla una configuración de pozo horizontal como se conocen en el arte, que incluyen una sección sustancialmente vertical y una sección sustancialmente horizontal conectada a la primera. Como se mencionó antes, cada pozo(s) inyector (1 ), productores (2) y sincronizadores (3) cuenta con elementos de medición, monitoreo y control del frente de combustión (zona B) y estos están relacionados con las funciones que presta cada pozo dentro del arreglo. En general, a través del pozo inyectorThe word "inclined" used in reference to certain wells, should be understood so that the inclination of the well can go from the surface to the tip of the well, or comprise a vertical section and then an inclined section, but where the inclined section is as opposed to a substantially horizontal mind or a substantially vertical one. In this regard, an inclined producing well (2), as well as an inclined synchronizing well (3) of the present invention, does not contemplate a horizontal well configuration as known in the art, which includes a substantially vertical section and a substantially section horizontal connected to the first. As mentioned before, each well (s) injector (1), producers (2) and synchronizers (3) have elements of measurement, monitoring and control of the combustion front (zone B) and these are related to the functions provided Each well in the arrangement. In general, through the injector well
(1 ) , se inyecta el aire, gas oxidante, mezcla de gases oxidantes y otros fluidos requeridos para desplazar el crudo y mantener la reacción de combustión hacia los pozos productores (2) y sincronizadores (3) de una manera más eficiente. En cuanto a los pozos productores nuevos o que pudieran existir en el campo(1), the air, oxidizing gas, mixture of oxidizing gases and other fluids required to displace the oil and maintain the combustion reaction towards the producing wells (2) and synchronizers (3) in a more efficient manner are injected. As for new or well producing wells in the field
(2) , los mismos cumplirán una doble función: en primer lugar, servirán para producir el crudo desplazado por el frente de combustión (zona de combustión) y de zonas adyacentes (zona influenciadas indirectamente por la transferencias de calor), incluyendo crudo desplazado por segregación gravitacional. En segundo lugar, los eventuales pozos productores (2) servirán de pozos de monitoreo de las condiciones de combustión en el sistema pozo-subsuelo. Los pozos sincronizadores (3) inclinados, debidamente instrumentadas con sensores remotos de presión y temperatura, entre otros, tendrán varias funciones: En primer lugar, servirán de soporte o apoyo a los pozos productores (2) para medir, monitorear y controlar el frente de combustión, mediante gerencia sincronizada de operaciones; en segundo lugar, servirán como productores adicionales y, en tercer lugar, pueden servir de pozos de desahogo de gases no deseados en el sistema pozo-subsuelo, cuando así se requiera. Finalmente, estos pozos sincronizadores (3) inclinados podrían ser convertidos en inyectores de gas oxidante, si las condiciones del proceso lo requieren y permiten. La construcción de ellos se hace de tal manera que sea factible técnicamente hacerlo (ver figuras 5 y 7). (2), they will fulfill a double function: first, they will serve to produce the oil displaced by the combustion front (combustion zone) and adjacent areas (zone indirectly influenced by heat transfers), including oil displaced by gravitational segregation. Second, the eventual producing wells (2) will serve as wells for monitoring combustion conditions in the well-subsoil system. The inclined synchronizing wells (3), duly instrumented with remote pressure and temperature sensors, among others, will have several functions: First, they will serve as support or support for the wells producers (2) to measure, monitor and control the combustion front, through synchronized operations management; secondly, they will serve as additional producers and, thirdly, they can serve as wells for the removal of unwanted gases in the well-subsoil system, when required. Finally, these inclined synchronizing wells (3) could be converted into oxidizing gas injectors, if the process conditions require it and allow it. Their construction is done in such a way that it is technically feasible to do so (see figures 5 and 7).
Entre los elementos de medición y monitoreo a instalar se encuentran sensores de presión y temperatura, que operan en tiempo real a distancia, sin embargo, no se descartan otros elementos de control del frente de combustión, como la sísmica 4D o registros de flujo o de imágenes instalados en alguno o en todos los pozos. Dichos elementos de medición y monitoreo envían las señales e información recogida por los mismos a una unidad de procesamiento, la cual se encarga de evaluar las condiciones de combustión del sistema pozo- subsuelo y el avance del frente de combustión. Si las mediciones obtenidas en cada tipo de pozo se encuentran dentro de las condiciones operacionales deseadas, los pozos inyector (1 ), productores (2) y pozos sincronizadores (3) inclinados, continuarán sus funciones básicas dentro del arreglo. Por el contrario, si las mediciones obtenidas, muestran que una zona está siendo influenciada negativamente o, preferencialmente por el proceso de combustión hacia una dirección indeseada, se activa el proceso de "Gerencia Sincronizada de Operaciones, GSO", el cual consiste en sincronizar las operaciones de producción de tal manera que cada pozo o grupo de ellos, sea manipulado remotamente en sus válvulas de control para influir en la dirección de desplazamiento del frente de combustión y uniformarlo. Por ejemplo, si en determinado momento el frente de combustión avanza de manera preferencial o prematura hacia una determinada dirección, se detectará un cambio en el perfil de temperatura y presión de algún pozo sincronizador (3) inclinado o productor (2), esos cambios serán registrados inmediatamente en la unidad de procesamiento de datos y en ellas, los operadores pueden emitir instrucciones a control remoto, a distancia y en tiempo real a algún o algunos pozos sincronizadores (3) inclinados o productores (2). Esas instrucciones, consistirán en la gerencia sincronizada y a distancia de las válvulas de control de producción de dichos pozos obligando a modificar el patrón de producción y por ende, el avance del frente de combustión, re direccionándolo hacia la dirección que se desee. El operador podría incluso enviar instrucciones al pozo inyector para disminuir, incrementar o regular la cantidad de gas oxidante que está inyectando al sistema pozo-subsuelo. Among the measurement and monitoring elements to be installed are pressure and temperature sensors, which operate in real time from a distance, however, other control elements of the combustion front are not discarded, such as 4D seismic or flow or flow registers. images installed in some or all wells. Said measurement and monitoring elements send the signals and information collected by them to a processing unit, which is responsible for assessing the combustion conditions of the subsoil system and the advance of the combustion front. If the measurements obtained in each type of well are within the desired operational conditions, the injector wells (1), producers (2) and inclined synchronizing wells (3) will continue their basic functions within the arrangement. On the contrary, if the measurements obtained show that an area is being negatively influenced or, preferably by the combustion process towards an undesired direction, the "Synchronized Operations Management, GSO" process is activated, which consists in synchronizing the production operations in such a way that each well or group of them, is remotely manipulated in its control valves to influence the direction of travel of the combustion front and standardize it. For example, if at any given time the combustion front moves preferentially or prematurely towards a certain direction, a change in the temperature and pressure profile of some inclined synchronizer (3) well or producer (2) will be detected, those changes will be Registered immediately in the data processing unit and in them, operators can issue instructions remotely, remotely and in real time to some or some wells synchronizers (3) inclined or producers (2). These instructions will consist of the synchronized and remote management of the production control valves of said wells, forcing the modification of the production pattern and therefore, the advance of the combustion front, redirecting it towards the desired direction. The operator could even send instructions to the injector well to decrease, increase or regulate the amount of oxidizing gas it is injecting into the subsoil system.
Las instrucciones, también podrían ser dadas para cerrar por completo pozos, incluso accionar los sistemas de inyección de agua para controlar cualquier situación anormal que se presente en algún pozo o en el mismo yacimiento The instructions could also be given to completely close wells, even operate the water injection systems to control any abnormal situation that occurs in a well or in the same reservoir.
Otro escenario planteado es que los pozos sincronizadores (3) inclinados pueden actuar como pozos o válvulas de desahogo en caso que la concentración de gases dentro del reservorio sobre pase los valores permitidos; en dicho caso, la unidad de control enviaría una instrucción para activar la función de desahogo o extracción de gases. Another scenario proposed is that the inclined synchronizing wells (3) can act as relief wells or valves in case the concentration of gases within the reservoir exceeds the permitted values; in that case, the control unit would send an instruction to activate the gas relief or extraction function.
El número y geometría de los pozos inyector (1 ), productor (2) y sincronizador (3) inclinado en el arreglo del sistema de la invención, dependerá del tipo de yacimientos, tipo de arreglos y condiciones de explotación del yacimiento. Los pozos inyector (1 ), productor (2) y sincronizador (3) inclinado, se encuentran en un arreglo geométrico particular según los requerimientos del sistema pozo- subsuelo a producir. The number and geometry of the injector (1), producer (2) and synchronizer (3) wells inclined in the arrangement of the system of the invention, will depend on the type of reservoirs, type of arrangements and conditions of exploitation of the reservoir. The injector (1), producer (2) and inclined synchronizer (3) wells are in a particular geometric arrangement according to the requirements of the well-subsoil system to be produced.
Cada pozo del arreglo de la figura 4a y 4b, ya sea inyector (1 ), productor (2) inclinado o sincronizadores (3) inclinados, estarán conectado a una o varias unidades de procesamiento conjunta o independiente. En cualquiera de las configuraciones de conexión, la unidad de procesamiento es capaz de interpretar las mediciones de cada pozo y de enviar las señales para que el operador tome los correctivos necesarios. De esta manera, la invención propone un sistema de medición, monitoreo y control inteligente cuyas etapas comprenden: evaluar en tiempo real y constantemente las condiciones de la reacción de combustión in-situ en el sistema pozo-subsuelo (en diferentes puntos de interés debidamente identificados), envío de los resultados a la unidad de procesamiento, analizar las evaluaciones independientes para cada uno de los pozos y, en función a los resultados, determinar automáticamente por uso de programa informático o modelo computarizado, los correctivos necesarios para uniformar el frente de combustión. Each well of the arrangement of Fig. 4a and 4b, whether injector (1), inclined producer (2) or inclined synchronizers (3), will be connected to one or more joint or independent processing units. In any of the connection configurations, the processing unit is able to interpret the measurements of each well and send the signals so that the operator takes the necessary corrective measures. In this way, the invention proposes an intelligent measurement, monitoring and control system whose stages include: assessing in real time and constantly the conditions of the in-situ combustion reaction in the well-subsoil system (in different duly identified points of interest), sending the results to the processing unit, analyzing the independent evaluations for each of the wells and, based on the results, automatically determining the corrections necessary for the use of a computer program or computer model Uniform the combustion front.
CONFIGURACIONES PREFERENCIALES DE LA INVENCION PREFERENTIAL CONFIGURATIONS OF THE INVENTION
En una primera configuración preferencial de la invención, los pozos de inyección (1 ) son verticales, los de producción (2) son del tipo inclinados, y los pozos sincronizadores (3) son inclinados tal como se muestra en la figura 5. Esta configuración permite una mayor cobertura del área del sistema pozo- subsuelo a producir, haciendo más eficiente el proceso de monitoreo y, por ende, de producción. El empleo de pozos productores verticales, en general, presenta la limitación que la función del pozo en cuestión está limitada a un solo punto del pozo y/o el área adyacente al mismo. Por el contrario, esta configuración preferencial de la invención considera el empleo de pozos inyectores (1 ) verticales y productores (2) inclinados, de manera de acceder a una región específica considerada como relevante del sistema pozo-subsuelo. En el caso de los pozos sincronizadores (3), estratégicamente ubicados dentro del arreglo de la invención, su configuración es inclinada, lo cual permite una mejor posición con mayor área de flujo y orientación hacia los puntos al interior del sistema pozo-subsuelo que se han considerado como relevantes para el monitoreo. In a first preferential configuration of the invention, the injection wells (1) are vertical, the production wells (2) are of the inclined type, and the synchronizing wells (3) are inclined as shown in Figure 5. This configuration It allows greater coverage of the area of the well-subsoil system to be produced, making the monitoring process and, therefore, the production process more efficient. The use of vertical producing wells, in general, has the limitation that the function of the well in question is limited to a single point of the well and / or the area adjacent to it. On the contrary, this preferential configuration of the invention considers the use of vertical injector wells (1) and inclined producers (2), in order to access a specific region considered relevant to the well-subsoil system. In the case of synchronizing wells (3), strategically located within the arrangement of the invention, its configuration is inclined, which allows a better position with greater flow area and orientation towards the points inside the well-subsoil system that is they have considered relevant for monitoring.
En una segunda configuración preferencial de la invención, los pozos de inyección (1 ) son verticales, los de producción (2) son de tipo multilaterales, y los pozos sincronizadores (3) son inclinados tal como se muestra en las figuras 6 y 7. Esta configuración permite una mayor cobertura del área del sistema pozo-subsuelo a producir, haciendo más eficiente el proceso de monitoreo y, por ende, de producción. Esta configuración preferencial de la invención considera el empleo de pozos inyectores (1) verticales y productores (2) multilaterales, de manera de cubrir una mayor área del sistema pozo-subsuelo. En el caso de los pozos sincronizadores (3) inclinados, estratégicamente ubicados dentro del arreglo de la invención, su configuración es siempre inclinada, lo cual permite una mejor posición con mayor área de flujo y orientación hacia los puntos al interior del sistema pozo-subsuelo que se han considerado como relevantes para el monitoreo. In a second preferred configuration of the invention, the injection wells (1) are vertical, the production wells (2) are of the multilateral type, and the synchronizing wells (3) are inclined as shown in Figures 6 and 7. This configuration allows a greater coverage of the area of the well-subsoil system to be produced, making the monitoring process and, therefore, the production process more efficient. This preferential configuration of the invention considers the use of injector wells (1) vertical and producers (2) multilateral, so as to cover a greater area of the subsoil system. In the case of inclined synchronizing wells (3), strategically located within the arrangement of the invention, its configuration is always inclined, which allows a better position with greater flow area and orientation towards the points inside the well-subsoil system. which have been considered relevant for monitoring.
Para las dos configuraciones preferenciales descritas arriba, la posición relativa de los pozos sincronizadores (3) inclinados en el arreglo es relativamente cercanos al pozo productor (2) y, en caso de haber más de un pozo productor (2) será, de preferencia, en la zona adyacente a los dos pozos productores (2) más cercanos. Sin embargo, de preferencia, los pozos sincronizadores (3) se encontrarán en una posición equidistante y estratégica desde el punto de vista geológico, al pozo de inyección y los pozos productores (2), y colocados en el interior de la zona Z (mostrada en las figuras 4a, 4b, 5, 6, 7 y 8). For the two preferred configurations described above, the relative position of the synchronizing wells (3) inclined in the arrangement is relatively close to the producing well (2) and, if there is more than one producing well (2), it will preferably be in the area adjacent to the two closest producing wells (2). However, preferably, synchronizing wells (3) will be in an equidistant and strategic position from the geological point of view, to the injection well and producing wells (2), and placed inside the Z zone (shown in figures 4a, 4b, 5, 6, 7 and 8).
Para el caso de los pozos productores (2) y sincronizadores (3) inclinados, los mismos estarán dirigidos de manera que la punta de de los pozos productores (2) y aquella de los pozos sincronizadores (3) inclinados que se encuentra dentro del yacimiento presenta una orientación hacia afuera con respecto al pozo inyector (1 ), es decir, un orientación "outward". En general, los pozos productores (2) presentaran una sola porción inclinada o multilateral sin embargo, se considera que los mismos contemplen una sección sustancialmente vertical y/o una o varias secciones inclinadas, con lo cual se convierten en multilaterales. El número de pozos productores (2) y sincronizadores (3) inclinados, puede variar dependiendo de las características del yacimiento y situación de pozos existentes en que se encuentre el campo al inicio del proceso de combustión in sitio. Estas configuraciones preferenciales y disposiciones relativas de los pozos de inyección (1 ), producción (2) y sincronizadores (3) inclinados, para llevar a cabo la invención, se muestran en las figuras 4a, 4b, 5, 6, 7 y 8. In the case of the producing wells (2) and inclined synchronizers (3), they will be directed so that the tip of the producing wells (2) and that of the inclined synchronizing wells (3) that are within the reservoir it has an outward orientation with respect to the injector well (1), that is, an "outward" orientation. In general, producing wells (2) will have a single inclined or multilateral portion, however, they are considered to have a substantially vertical section and / or one or more inclined sections, which will make them multilateral. The number of producing wells (2) and inclined synchronizers (3) may vary depending on the characteristics of the reservoir and the situation of existing wells in which the field is at the beginning of the on-site combustion process. These preferential configurations and relative arrangements of the injection wells (1), production (2) and inclined synchronizers (3), to carry out the invention, are shown in Figures 4a, 4b, 5, 6, 7 and 8.
EJEMPLO (SIMULACIÓN NUMÉRICA) Con el objetivo de conocer las bondades del sistema de acuerdo a la invención se realizó una simulación numérica utilizando el simulador numérico STARS de la empresa CMG en uno de los campos de Pacific Rubiales Energy. STARS incluye el flujo multifásico de petróleo, agua y gas, la transferencia de calor, los cambios composicionales y las reacciones físicas químicas de cinéticas que se consideran ocurren en el yacimiento durante la combustión in situ. Para evaluar el comportamiento del yacimiento bajo el proceso de combustión in situ utilizando diferentes arreglos de pozos y en este caso combinación de pozos inyector (1 ), pozos productores multilaterales (2) y pozos sincronizadores (3) inclinados, se realizó un cotejamiento histórico de la producción de los pozos productores existentes en el campo y se aplicaron las reacciones cinéticas típicas del proceso, entre otras variables de yacimiento y de diseño tales como: Cuatro pozos sincronizadores (3) inclinados, cuatro pozos productores multilaterales (2), un pozo inyector vertical (1 ) inyectando constantemente 2,5 millones de pies cúbicos de aire por dia durante 5 años, en un área de 25 acres en un yacimiento de mas de 2.800 pies de profundidad y de crudo pesado. EXAMPLE (NUMERICAL SIMULATION) In order to know the benefits of the system according to the invention, a numerical simulation was carried out using the CMS STARS numerical simulator of the company CMG in one of the Pacific Rubiales Energy fields. STARS includes the multiphase flow of oil, water and gas, heat transfer, compositional changes and chemical physical reactions of kinetics that are considered to occur in the field during in situ combustion. To evaluate the behavior of the deposit under the combustion process in situ using different well arrangements and in this case combination of injector wells (1), multilateral producing wells (2) and inclined synchronizing wells (3), a historical comparison of the production of the existing producing wells in the field and the typical kinetic reactions of the process were applied, among other reservoir and design variables such as: Four inclined synchronizing wells (3), four multilateral producing wells (2), an injector well vertical (1) constantly injecting 2.5 million cubic feet of air per day for 5 years, in an area of 25 acres in a reservoir more than 2,800 feet deep and heavy crude.
El espaciamiento y ubicación de los pozos pueden verse en la figura 9, donde se muestra un mapa esquemático del yacimiento y donde se hicieron las simulaciones para determinar el comportamiento de producción de cada uno de los pozos involucrados y las reservas de hidrocarburos que podrían recuperarse utilizando el proceso y arreglo de pozos descrito. Este espaciamiento y ubicación de los pozos está relacionada con el arreglo representado en la figura 6. El sector del yacimiento seleccionado se presenta en la Figura 9. The spacing and location of the wells can be seen in Figure 9, where a schematic map of the reservoir is shown and where simulations were made to determine the production behavior of each of the wells involved and the hydrocarbon reserves that could be recovered using the process and arrangement of wells described. This spacing and location of the wells is related to the arrangement represented in Figure 6. The sector of the selected reservoir is presented in Figure 9.
Resultados de las Simulaciones Numéricas Results of the Numerical Simulations
Los resultados de las simulaciones numéricas se resumen a continuación: The results of the numerical simulations are summarized below:
La producción estimada de los pozos sincronizadores (3) inclinados que se emplearon en la simulación se muestran en la Figura 10. Las producciones de los pozos verticales fue superior a 1.000 BPD al inicio y se mantuvieron por un tiempo razonable como consecuencia del proceso de combustión in situ utilizando la técnica de sincronización, explicada en capítulos anteriores. The estimated production of the inclined synchronizing wells (3) that were used in the simulation are shown in Figure 10. The productions of the vertical wells exceeded 1,000 BPD at the beginning and were maintained by a reasonable time as a result of the in situ combustion process using the synchronization technique, explained in previous chapters.
Igualmente, se presentan en la Figura 11 , la producción de petróleo de los pozos productores multilaterales "outward" 2a, 2b, 2c y 2d, en el sector seleccionado. Estos pozos se inician con producciones superior a los 3.000 BPD y se mantuvieron por encima de los 1.000 BPD. Likewise, the production of oil from the "outward" multilateral producing wells 2a, 2b, 2c and 2d, in the selected sector, is presented in Figure 11. These wells begin with productions exceeding 3,000 BPD and remained above 1,000 BPD.
El comportamiento anterior y el de los pozos sincronizadores permiten concluir que el arreglo de pozos propuestos es conveniente, el proceso de sincronización resulta exitoso al lograr incrementar la eficiencia volumétrica de barrido y por ende la recuperación de las reservas de hidrocarburos en mas 40 % del petróleo originalmente en sitio. The previous behavior and that of the synchronizing wells allow us to conclude that the arrangement of proposed wells is convenient, the synchronization process is successful in increasing the volumetric efficiency of sweeping and therefore the recovery of hydrocarbon reserves by more than 40% of oil Originally on site.
La descripción presenta a la invención de manera referencial por lo cual, contempla y se debe entender de manera amplia. De igual manera, los dibujos y ejemplos presentados son representaciones referenciales para facilitar la visualización de los principios y aportes al estado de la técnica y, en este sentido, se deben interpretar de manera amplia y no restrictiva. The description presents the invention in a referential manner whereby it contemplates and should be understood in a broad manner. Likewise, the drawings and examples presented are referential representations to facilitate the visualization of the principles and contributions to the state of the art and, in this sense, they should be interpreted in a broad and non-restrictive manner.

Claims

REIVINDICACIONES
1 . Un sistema sincronizado de producción de crudo utilizando el proceso de combustión in-situ que utiliza la medición, el monitoreo y el control de las condiciones operacionales en tiempo real que comprende, al menos un pozo inyector (1 ) y, al menos un pozo productor (2) y al menos un pozo sincronizador (3) inclinado caracterizados porque la punta de de los pozos productores (2) y aquella de los pozos sincronizadores (3) inclinados que se encuentra dentro del yacimiento presenta una orientación hacia afuera con respecto al pozo inyector (1 ), caracterizados por comprender elementos de medición, monitoreo y control en donde, dichos elementos de medición y monitoreo envían las señales e información detectada por los mismos, a una o varias unidades de procesamiento, conjunta o independiente, que se encargan de evaluar, mediante un modelo analítico, las condiciones de combustión en el sistema pozo-subsuelo y el avance del frente de combustión y, en función de los resultados, sincronizar las operaciones de producción, de tal manera que cada pozo sea operado o manipulado remotamente en sus válvulas de control para así influir en la dirección de desplazamiento del frente de combustión. one . A synchronized crude oil production system using the in-situ combustion process that uses the measurement, monitoring and control of real-time operational conditions comprising at least one injector well (1) and at least one producing well (2) and at least one inclined synchronizing well (3) characterized in that the tip of the producing wells (2) and that of the inclined synchronizing wells (3) inside the reservoir have an outward orientation with respect to the well injector (1), characterized by comprising elements of measurement, monitoring and control where, said elements of measurement and monitoring send the signals and information detected by them, to one or several processing units, joint or independent, that are responsible for evaluate, by an analytical model, the combustion conditions in the well-subsoil system and the combustion front advance and, depending on the results, without chronicle production operations, so that each well is operated or manipulated remotely in its control valves in order to influence the direction of travel of the combustion front.
2. Un sistema de acuerdo a una de las reivindicaciones 1 , caracterizado en que los pozos productores (2) son inclinados. 2. A system according to one of claims 1, characterized in that the producing wells (2) are inclined.
3. Un sistema de acuerdo a una de las reivindicaciones 1 , caracterizado en que los pozos productores (2) son multilaterales. 3. A system according to one of claims 1, characterized in that the producing wells (2) are multilateral.
4. Un sistema de acuerdo a la reivindicación 1 -3, caracterizado en que al menos un pozo inyector (1 ), al menos un pozo productor (2) y al menos un pozo sincronizador (3) inclinado, se encuentran en un arreglo geométrico particular según los requerimientos del sistema pozo-subsuelo a producir. 4. A system according to claim 1 -3, characterized in that at least one injector well (1), at least one producing well (2) and at least one inclined synchronizing well (3), are in a geometric arrangement particular according to the requirements of the well-subsoil system to be produced.
5. Un sistema de acuerdo a una de las reivindicación 1-4, caracterizado en que los pozos sincronizadores (3) inclinados se encuentran en una posición relativa en el arreglo relativamente cercanos al pozo productor (2) y, en caso de haber más de un pozo productor (2) será, de preferencia, en la zona adyacente a los dos pozos productores (2) más cercanos. 5. A system according to one of claims 1-4, characterized in that the inclined synchronizing wells (3) are in a relative position in the arrangement relatively close to the producing well (2) and, in case of having more than one producing well (2) will preferably be in the area adjacent to the two closest producing wells (2).
6. Un sistema de acuerdo a una de las reivindicaciones precedentes, caracterizado en que los pozos sincronizadores (3) inclinados se encontrarán colocados en el interior de la zona Z entre los pozos productores (2) el pozo inyector (1 ). A system according to one of the preceding claims, characterized in that the inclined synchronizing wells (3) will be located inside the zone Z between the producing wells (2) the injector well (1).
PCT/IB2011/000975 2010-08-31 2011-05-07 Synchronised system for the production of crude oil by means of in-situ combustion WO2012028910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2809204A CA2809204C (en) 2010-08-31 2011-05-07 Synchronized system for the production of crude oil by means of in-situ combustion
US13/820,056 US20130206384A1 (en) 2010-08-31 2011-05-07 Synchronised system for the production of crude oil by means of in-situ combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO10107350A CO6310134A1 (en) 2010-08-31 2010-08-31 SYNCHRONIZED CRUDE PRODUCTION SYSTEM BY COMBUSTION IN SITU
CO10-107350 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012028910A1 true WO2012028910A1 (en) 2012-03-08

Family

ID=44718315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/000975 WO2012028910A1 (en) 2010-08-31 2011-05-07 Synchronised system for the production of crude oil by means of in-situ combustion

Country Status (4)

Country Link
US (1) US20130206384A1 (en)
CA (1) CA2809204C (en)
CO (1) CO6310134A1 (en)
WO (1) WO2012028910A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286773B2 (en) * 2020-03-11 2022-03-29 Neubrex Co., Ltd. Using fiber-optic distributed sensing to optimize well spacing and completion designs for unconventional reservoirs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472318A (en) * 1967-06-29 1969-10-14 Texaco Inc Hydrocarbon production by secondary recovery
US4120354A (en) * 1977-06-03 1978-10-17 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by pressure monitoring
US5016710A (en) * 1986-06-26 1991-05-21 Institut Francais Du Petrole Method of assisted production of an effluent to be produced contained in a geological formation
US5211230A (en) * 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
US5934371A (en) * 1995-02-09 1999-08-10 Baker Hughes Incorporated Pressure test method for permanent downhole wells and apparatus therefore
US6263965B1 (en) * 1998-05-27 2001-07-24 Tecmark International Multiple drain method for recovering oil from tar sand
EP1868748A1 (en) 2005-04-07 2007-12-26 ARVEDI, Giovanni Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling
WO2009065840A1 (en) 2007-11-22 2009-05-28 Siemens Vai Metals Technologies Gmbh & Co Method for continuous austenitic rolling of a preliminary strip, which is produced in a continuous casting process, and combined casting and rolling facility for performing the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997004A (en) * 1975-10-08 1976-12-14 Texaco Inc. Method for recovering viscous petroleum
US7841404B2 (en) * 2008-02-13 2010-11-30 Archon Technologies Ltd. Modified process for hydrocarbon recovery using in situ combustion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472318A (en) * 1967-06-29 1969-10-14 Texaco Inc Hydrocarbon production by secondary recovery
US4120354A (en) * 1977-06-03 1978-10-17 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by pressure monitoring
US5016710A (en) * 1986-06-26 1991-05-21 Institut Francais Du Petrole Method of assisted production of an effluent to be produced contained in a geological formation
US5211230A (en) * 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
US5934371A (en) * 1995-02-09 1999-08-10 Baker Hughes Incorporated Pressure test method for permanent downhole wells and apparatus therefore
US6263965B1 (en) * 1998-05-27 2001-07-24 Tecmark International Multiple drain method for recovering oil from tar sand
EP1868748A1 (en) 2005-04-07 2007-12-26 ARVEDI, Giovanni Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling
WO2009065840A1 (en) 2007-11-22 2009-05-28 Siemens Vai Metals Technologies Gmbh & Co Method for continuous austenitic rolling of a preliminary strip, which is produced in a continuous casting process, and combined casting and rolling facility for performing the method

Also Published As

Publication number Publication date
CA2809204C (en) 2017-02-28
CA2809204A1 (en) 2012-03-08
CO6310134A1 (en) 2011-08-22
US20130206384A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
US8863839B2 (en) Enhanced convection for in situ pyrolysis of organic-rich rock formations
AU2001250938B2 (en) Method for production of hydrocarbons from organic-rich rock
US7516787B2 (en) Method of developing a subsurface freeze zone using formation fractures
US7621326B2 (en) Petroleum extraction from hydrocarbon formations
CA2740158C (en) Harvesting by-passed resource
US20110272153A1 (en) Method and System For Enhancing A Recovery Process Employing One or More Horizontal Wellbores
CA2847759C (en) A method of enhancing resource recovery from subterranean reservoirs
US20150096748A1 (en) Systems and methods for enhancing steam distribution and production in sagd operations
US20130292114A1 (en) Methods For Containment and Improved Recovery in Heated Hydrocarbon Containing Formations By Optimal Placement of Fractures and Production Wells
CA2762439C (en) Improving recovery from a hydrocarbon reservoir
WO2012119076A2 (en) In situ combustion following sagd
US10400561B2 (en) Method for accelerating heavy oil production
US9284827B2 (en) Hydrocarbon recovery facilitated by in situ combustion
Gallois The formation of the hot springs at Bath Spa, UK
WO2012028910A1 (en) Synchronised system for the production of crude oil by means of in-situ combustion
Malik et al. Steamflood with vertical injectors and horizontal producers in multiple zones
Dietrich Steamflooding in a Waterdrive Reservoirs Upper Tulare Sands, South Belridge Field
Canbolat et al. Experimental and numerical investigation of mining assisted heavy oil production for the Bati Raman field, Turkey
Zeng et al. Studies on seepage law considering stratigraphic dips
Edafiaga The Application of Fishbone Wells in Steam-Assisted Gravity Drainage
CA2911737C (en) Process and system for increasing mobility of a reservoir fluid in a hydrocarbon-bearing formation
Shen Enhanced Oil Recovery Field Case Studies: Chapter 17. SAGD for Heavy Oil Recovery
Wang Reservoir Modeling to Investigate the Impacts of Geological Properties on Steam-Assisted Gravity Drainage (SAGD) at the Orion Project, Lower Cretaceous Clearwater Formation, Alberta

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2809204

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13820056

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 12.06.2013"

122 Ep: pct application non-entry in european phase

Ref document number: 11821178

Country of ref document: EP

Kind code of ref document: A1