WO2012028097A1 - 一种用户设备空间归属判决方法及基站 - Google Patents

一种用户设备空间归属判决方法及基站 Download PDF

Info

Publication number
WO2012028097A1
WO2012028097A1 PCT/CN2011/079152 CN2011079152W WO2012028097A1 WO 2012028097 A1 WO2012028097 A1 WO 2012028097A1 CN 2011079152 W CN2011079152 W CN 2011079152W WO 2012028097 A1 WO2012028097 A1 WO 2012028097A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
srs
base station
rru
measurement value
Prior art date
Application number
PCT/CN2011/079152
Other languages
English (en)
French (fr)
Inventor
李晓皎
张健飞
索士强
张静
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2012028097A1 publication Critical patent/WO2012028097A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and a base station for determining a user equipment space. Background technique
  • the space division multiplexing technology can be widely used in indoor and outdoor scenarios, which can improve the capacity of the cell, the data transmission rate, and the spectrum utilization of the system, and can also improve the coverage performance of the special scene.
  • indoor space-division multiplexing between floors allows multiple floors of users to multiplex the same resources, thereby greatly increasing system capacity while reducing cell switching when users cross floors.
  • space division multiplexing is applied to a high-speed railway, which can reduce frequent cell handover in a short period of time due to high-speed movement of user equipment, thereby effectively improving system coverage performance.
  • the base station is composed of a BBU (Base Band Unit) and a Radio Remote Unit (RRU), and is a distributed device that can be flexibly and distributedly installed.
  • BBU Base Band Unit
  • RRU Radio Remote Unit
  • SDMA Space Division Multiple Access
  • a BBU Base Band Unit
  • RRU Radio Remote Unit
  • SDMA Space Division Multiple Access
  • the implementation of SDMA technology requires different RRUs to meet certain isolation requirements.
  • isolation is mainly achieved by penetration loss between floors, and outdoor can be directional antennas and physical distances (such as street coverage, cross or T-junction, high-speed railway, etc.) ) Implement isolation.
  • the part of the indoor BBU station responsible for data processing determines the transmission data on each RRU.
  • the RRU is the radio frequency transmitting part of the base station.
  • Each independent space corresponds to one RRU.
  • One RRU can support data transmission of one or more channels. Each channel can be connected to one or more antennas, but multiple antennas on the same channel. The data is merged and transmitted.
  • the number of channels in each independent space is related to the actual network. When each independent space is configured as a single channel, only one port can be used.
  • Multiport mode transmission such as 4-port.
  • the BBU and the RRU are connected together by optical fibers.
  • a BBU can process data on multiple RRUs at the same time.
  • the BBU processing capability is related to the processing capacity and number of boards in the BBU.
  • the processing capability determines the number of RRUs that a BBU can connect. .
  • the signal processing model diagrams of the BBU and RRU are:
  • Each RRU receives the transmission signal of the user equipment, and the measurement module determines the RRU attribution of the user equipment by comparing the received signal strengths on the RRUs, and submits the attribution information to the scheduling module.
  • the scheduling module performs time-frequency resource allocation on the user equipments of each floor, and pairs the user equipments that can be SDMA on the different RRUs, allocates the same time-frequency resources to the paired user equipments, and transmits the pairing information and scheduling information to the measurement module and
  • the data receiving module is used for the next signal reception.
  • the measurement module transmits the corresponding measurement data to the data receiving module according to the previous pairing information, and is used for user equipment data detection.
  • the scheduling module transmits the current scheduling information to the data sending module, which is used to determine the sending data on each RRU.
  • the HSPA (High Speed Packet Access) system in the current network uses a weighted weighting algorithm to determine the user equipment's home RRU, that is, the base station calculates the weight on each RRU by using a weighting algorithm, and As a basis for the decision, when the weight is greater than the threshold, it is determined that the user equipment belongs to the RRU, otherwise it is determined that the user equipment does not belong to the RRU, and one user determines that the user can belong to multiple RRUs.
  • a weighted weighting algorithm to determine the user equipment's home RRU, that is, the base station calculates the weight on each RRU by using a weighting algorithm, and As a basis for the decision, when the weight is greater than the threshold, it is determined that the user equipment belongs to the RRU, otherwise it is determined that the user equipment does not belong to the RRU, and one user determines that the user can belong to multiple RRUs.
  • the shortcomings of the existing algorithms are as follows: The computational complexity is high. In addition, the algorithm also has a threshold value determination problem. Because the absolute threshold is used to determine the floor attribution, the threshold value is determined to be difficult, and the threshold value may be too high. A RRU signal slightly lower than the threshold will cause strong interference to its neighboring RRUs. If the threshold exceeds ⁇ , most users may decide to belong to multiple RRUs. The attribution judgment is inaccurate. The total capacity of the system. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a user equipment space attribution decision method and a base station.
  • the embodiment of the present invention provides a user equipment space attribution decision method, which includes the following steps:
  • the base station configures a SRS (Sounding Reference Signals) transmission parameter for the user equipment, and the base station determines a home decision period of the user equipment;
  • SRS Sounding Reference Signals
  • the base station calculates the SRS measurement value on each RRU
  • the base station After reaching the home decision period of the user equipment, the base station performs a spatial attribution decision based on the SRS measurement value.
  • a base station is provided in the embodiment of the present invention, including:
  • An SRS configuration module configured to configure an SRS sending parameter for the user equipment
  • a period determining module configured to determine a home decision period of the user equipment
  • An SRS measurement value module configured to calculate an SRS measurement value on each RRU
  • the attribution decision module is configured to perform a spatial attribution decision according to the SRS measurement value after the home decision period of the user equipment is reached.
  • the base station configures an SRS transmission parameter for the user equipment, and after reaching the home decision period of the user equipment, the base station performs a spatial attribution decision according to the SRS measurement value on each RRU, and thus may be periodically Acquiring and updating the user RRU attribution information, the attribution information is time-sensitive, thereby ensuring the accuracy of the scheduling basis.
  • FIG. 1 is a schematic diagram of a signal processing model of a BBU+RRU in the background art
  • FIG. 2 is a schematic flowchart of a method for implementing a method for determining a space of a user equipment according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method for determining a mode 1 according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the spatial attribution decision of the user equipment is the key to multi-user equipment scheduling in the system.
  • a reasonable home space decision algorithm can provide an accurate basis for scheduling, and reduce the interference value between the paired user equipments.
  • any kind of uplink known signal can be used as the basis for the user equipment to perform home space decision.
  • the SRS Sounding Reference Signals
  • the configuration of the SRS is flexible.
  • the SRS bandwidth, the hop bandwidth, the resource location, and the cyclic shift value of the ZC sequence of each user equipment are all specified by the base station.
  • the base station can enable the user equipment to send the full-bandwidth SRS to obtain the channel information of the user equipment in the entire frequency domain, and also enable the user to send the SRS on the specified bandwidth according to the frequency domain information of the user equipment, thereby obtaining the frequency domain information on the specified bandwidth.
  • Each user SRS is independent of each other, and the base station can flexibly configure the period in which each user equipment transmits the SRS, and the resources are relatively abundant with respect to other channels. Therefore, the space division can be omitted, and the basis for determining the floor attribution of each user equipment can be performed.
  • the technical solution provided by the embodiment of the present invention is to provide a decision scheme for periodically acquiring user home space information.
  • the base station allocates periodic SRS resources to each user equipment in the system, and is used to periodically acquire user equipment.
  • the spatial attribution information provides a basis for multi-user device scheduling.
  • FIG. 2 is a schematic diagram of a process for implementing a user equipment space assignment decision method. As shown in the figure, when performing a user equipment space attribution decision, the following steps may be included:
  • Step 201 The base station configures an SRS sending parameter for the user equipment.
  • Step 202 The base station determines a home decision period of the user equipment.
  • Step 203 The base station calculates an SRS measurement value on each RRU.
  • Step 204 After reaching the home decision period of the user equipment, the base station performs a spatial attribution decision according to the SRS measurement value.
  • step 201 There is no necessary timing relationship between step 201 and step 202.
  • the two steps may be implemented simultaneously or separately, as long as the SRS and the determination decision period can be configured for the user equipment.
  • the SRS measurement may include one or a combination of the following parameters:
  • SRS received power, frequency domain average channel response of SRS, and uplink CQI (Channel Quality Indicator) calculated by SRS.
  • uplink CQI Channel Quality Indicator
  • the SRS measurement may be the SRS measurement received by the base station last time, or the average of multiple SRS measurements. That is, after the home decision period is reached, the base station performs a spatial homence decision based on the last received SRS measurement value or the average of multiple SRS measurements.
  • the base station calculates the SRS measurement value on each RRU, and may calculate the SRS measurement value on each RRU according to the uplink sounding channel of the user equipment. That is, the base station can calculate the SRS measurement value on each RRU according to the uplink sounding channel of the user equipment.
  • the base station performs a spatial homing decision according to the SRS measurement value, and may include one or a combination of the following:
  • Method 1 sorting the SRS measurement values of the user equipment on each RRU from large to small, starting from the first element of the queue, successively calculating the ratio of the two adjacent elements; if the ratio is greater than the preset first threshold Then, the user equipment belongs to the RRU corresponding to each element before the next element, otherwise the user equipment belongs to all RRUs in the queue.
  • the measurement values of the user equipment on each RRU may be sorted from large to small; starting from the first element of the queue, calculating the ratio of the adjacent two elements one by one; if the ratio is greater than a certain threshold, The user belongs to the RRU corresponding to each element before the next element, otherwise the user belongs to all RRUs in the queue.
  • the mode 2 calculates the ratio of the SRS measurement value of the user equipment on each RRU to the maximum value of the SRS measurement value of the user equipment. If the ratio is greater than the preset second threshold, the user equipment belongs to the RRU. Specifically, the ratio of the measured value on each RRU to the maximum value in the measured value may be separately calculated, and if the ratio is greater than a certain threshold, the user belongs to the RRU.
  • Mode 3 The SRS measurement value is traversed on all the RRUs. When the SRS measurement value of the user equipment on a certain RRU is greater than the preset third threshold, the user equipment belongs to the RRU.
  • all RRUs can be traversed.
  • the measured value on a certain RRU is greater than a certain threshold, the user belongs to the RRU.
  • the first threshold value, the second threshold value, and the third threshold value may be determined by simulation or determined empirically.
  • One simulation method is: determining the coverage radius of each independent space according to the actual scene, and then simulating the SRS transmission and RRU reception measurement process of the user equipment in multiple adjacent spatial overlapping areas, the overlapping area can be obtained in The sides of the junction are taken 5%/10%/20%, and the number of adjacent spaces is determined according to the actual scene.
  • Multiple user equipment sprinkles sorting the measured values on each RRU from large to small each time it is sprinkled. The ratio of the neighboring measured values is counted, and the maximum value is the first threshold value; the maximum value of the ratio of the statistical maximum value to the minimum value is the second threshold value; and the statistical minimum value is the third threshold value.
  • the overlap region is taken at 5%/10%/20% on both sides of the junction, but not limited to the three values of 5%/10%/20%.
  • other Values are also possible, as long as the difference in RRU measurements of the user equipment on different areas can be ascertained, and then an appropriate threshold value is determined, 5%/10%/20% is only used to teach those skilled in the art.
  • how to implement the present invention but does not mean that only 5%/10%/20% can be used, and the corresponding values can be determined in the implementation process in combination with practical needs.
  • the above simulation method may have errors due to different methods of overlapping regions, and the obtained threshold may not be optimal, and may be fine-tuned according to another simulation manner.
  • the method is as follows: The threshold values on both sides of the threshold value are obtained by the above simulation at a certain interval, for example, the threshold value obtained by the simulation is 2, and if the interval is 0.2, the simulated statistical threshold value is 1.8, 2, 2.2 respectively.
  • the throughput of the space division multiplexing system determines the threshold value of the maximum throughput as the final threshold.
  • the value can be further adjusted according to the actual scene measurement.
  • Figure 3 is a schematic diagram of the decision of the mode 1, as shown in Figure 3, taking 1BBU+8RRU as an example, When using Mode 1 to make a decision, you can do the following:
  • RRUs There are 8 RRUs in the figure, which are identified by sequence numbers 1-8. After obtaining the SRS measurements of the user equipment on 8 RRUs, they are sorted into 3, 4, 5, 6, and 2 respectively. 7, 7, 1,
  • the user equipment is determined to belong to the RRUs 3, 4, and 5.
  • a base station is also provided in the embodiment of the present invention.
  • the principle of the problem solved by the base station is similar to the method for determining the spatial location of the user equipment. Therefore, the implementation of the base station can be implemented by referring to the method, and the repeated description is not repeated.
  • FIG. 4 is a schematic structural diagram of a base station, as shown in the figure, the base station may include:
  • the SRS configuration module 401 is configured to configure an SRS sending parameter for the user equipment.
  • a period determining module 402 configured to determine a home decision period of the user equipment
  • the attribution decision module 404 is configured to perform a spatial attribution decision according to the SRS measurement value after the home decision period of the user equipment is reached.
  • the attribution decision module may be further configured to perform a spatial attribution decision based on SRS measurements including one or a combination of the following parameters:
  • the attribution decision module may be further configured to perform a spatial attribution decision based on the last received SRS measurement value, or an average of multiple SRS measurement values.
  • the SRS measurement module may be further configured to calculate an SRS measurement value on each RRU according to an uplink sounding channel of the user equipment.
  • the attribution decision module may include one or a combination of the following units:
  • a first determining unit configured to sort the SRS measurement values of the user equipment on each RRU from large to small, starting from the first element of the queue, and sequentially calculating the ratio of the two adjacent elements; if the ratio is greater than the preset number A threshold value corresponds to the user equipment belonging to the previous element
  • a second determining unit configured to separately calculate SRS measurement values and users of the user equipment on each RRU The ratio of the maximum value of the SRS measurements of the device, if the ratio is greater than the preset second threshold, the user equipment belongs to the RRU;
  • the third determining unit is configured to traverse the SRS measurement value on all the RRUs.
  • the SRS measurement value of the user equipment on a certain RRU is greater than the preset third threshold, the user equipment belongs to the RRU.
  • the user's home space decision information is periodically obtained by using the user's SRS signal periodically, thereby solving the RRU attribution decision problem of the user in the space division multiplexing system, and realizing the cycle.
  • sexually acquire and update user attribution information to provide a more accurate basis for multi-user scheduling.
  • the user home space decision period is determined by the base station
  • the decision basis may include an average of the last received SRS measurement value or multiple SRS measurement values
  • the SRS measurement value is obtained by the SRS signal of the user mode, and the measurement value may include, but is not limited to, the SRS received power, the frequency domain average channel response of the SRS, the uplink CQI calculated by the SRS, and the like;
  • decision method can be:
  • the technical solution proposed by the embodiment of the present invention has wide applicability and can be applied to any space division multiplexing system, arbitrary scene independent space attribution decision (indoor or outdoor), arbitrary duplex system (TDD system or FDD system).
  • the user RRU attribution information can be obtained and updated periodically, and the attribution information is time-sensitive.
  • the method of the ratio threshold reduces the difficulty of determining the absolute threshold and improves the accuracy of the threshold setting.
  • the base station configures an SRS transmission parameter for the user equipment, and after reaching the home decision period of the user equipment, the base station performs a spatial attribution decision according to the SRS measurement value on each RRU, and thus may be periodically Acquiring and updating the user RRU attribution information, the attribution information is time-sensitive, thereby ensuring the accuracy of the scheduling basis.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation in the flowchart The steps of a process or a plurality of processes and/or block diagrams of a function specified in a block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用户设备空间归属判决方法及基站,包括:基站为用户设备配置信道探测参考信号发送参数,基站确定用户设备的归属判决周期;基站计算各射频拉远单元上的信道探测参考信号测量值;当到达用户设备的归属判决周期后,基站根据信道探测参考信号测量值进行空间归属判决,从而可以周期性的获取和更新用户射频拉远单元归属信息,归属信息具有时效性,保证了调度依据的准确性。

Description

一种用户设备空间归属判决方法及基站 本申请要求在 2011年 9月 3日提交中国专利局、 申请号为 201010273097. 5、 发明名称为"一种用户设备空间归属判决方法及基站"的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域, 特别涉及一种用户设备空间归属判决方法及 基站。 背景技术
空分复用技术可以广泛的用于室内和室外场景, 既可以提升小区的容量、 数据传输速率和***频谱利用率, 也可以提高特殊场景的覆盖性能。 例如在 室内进行楼层间的空分复用可以使多个楼层的用户复用相同的资源, 从而大 幅提高***容量, 同时减少用户跨越楼层时的小区切换。 又例如, 在室外, 将空分复用应用于高速铁路, 可以减少用户设备由于高速移动造成的短时间 内频繁的小区切换, 从而有效改善***覆盖性能。
目前, 基站是由 BBU ( Base Band Unit, 基带处理单元)和 RRU ( Radio Remote Unit, 射频拉远单元)构成, 是一种可以灵活分布式安装的分布式设 备。 从本质上说, SDMA ( Space Division Multiple Access, 空分多址接入)技 术就是利用不同 RRU之间的空间隔离实现空分复用, 为归属不同 RRU的用 户设备分配相同的时频资源, 从而达到提升频谱利用率和***吞吐量的效果。 在理想情况下, ***吞吐量可以随复用重数的增长而不断增加, 其上限仅取 决于 BBU的实际处理能力。 SDMA技术的实现需要不同 RRU满足一定的隔 离度要求, 对于室内 SDMA主要通过楼层间的穿透损耗实现隔离, 室外则可 以通过定向天线以及物理距离 (如街道覆盖、 十字或者丁字路口、 高速铁路 等) 实现隔离。 室内 BBU 站中负责数据处理的部分, 决定每个 RRU上的发送数据。 RRU是基站的射频发射部分, 每个独立空间对应一个 RRU, —个 RRU可以 支持一个或多个通道的数据发送, 每个通道可以连接一根或多根天线, 但同 一通道上的多根天线的数据合并传输。 每个独立空间内的通道数和实际布网 有关, 当每个独立空间内配置为单通道时只能釆用单端口传输; 每个独立空 间内配置为多通道时, 可以釆用 2端口、 4端口等多端口模式传输。 BBU和 RRU之间通过光纤连接在一起,一个 BBU可以同时处理多个 RRU上的数据, BBU处理能力和 BBU中的板卡处理能力以及数目有关,其处理能力决定了一 个 BBU可以连接的 RRU数目。 如图 1所示, BBU和 RRU的信号处理模型 示意图中:
每个 RRU都会接收到用户设备的发送信号, 测量模块通过比较各 RRU 上的接收信号强度, 对用户设备的 RRU归属进行判决, 并将归属信息提交调 度模块。 调度模块对各楼层用户设备进行时频资源分配, 为归属不同 RRU上 可进行 SDMA的用户设备进行配对, 为配对用户设备分配相同的时频资源, 同时将配对信息和调度信息传送给测量模块和数据接收模块, 用于下次信号 接收。 测量模块根据前一次的配对信息将相应的测量数据传递到数据接收模 块, 用于用户设备数据检测。 同时调度模块将本次调度信息传送到数据发送 模块, 用于确定每个 RRU上的发送数据。
目前现网的 HSPA ( High Speed Packet Access , 高速分组接入 ) ***中使 用赋形权值算法对用户设备归属 RRU进行判决, 即基站通过赋形权值算法计 算每个 RRU上的权值, 并作为判决依据, 当权值大于门限值时, 判定用户设 备归属该 RRU, 否则判定用户设备不归属于该 RRU, —个用户判定可归属于 多个 RRU。
现有算法的不足在于: 计算复杂度较高, 此外该算法还存在门限值确定 问题, 由于釆用绝对门限值判决楼层归属, 门限值的确定较为困难, 门限值 过高可能导致略低于门限值的 RRU信号会对其相邻 RRU产生较强干扰, 门 限值过 ^可能导致大部分用户判定归属多个 RRU, 归属判断不准确, 影响系 统的总容量。 发明内容
本发明所解决的技术问题在于提供了一种用户设备空间归属判决方法及 基站。
本发明实施例中提供了一种用户设备空间归属判决方法, 包括如下步骤: 基站为用户设备配置 SRS ( Sounding Reference Signals, 信道探测参考信 号)发送参数, 基站确定用户设备的归属判决周期;
基站计算各 RRU上的 SRS测量值;
当到达用户设备的归属判决周期后, 基站根据 SRS测量值进行空间归属 判决。
本发明实施例中提供了一种基站, 包括:
SRS配置模块, 用于为用户设备配置 SRS发送参数;
周期确定模块, 用于确定用户设备的归属判决周期;
SRS测量值模块, 用于计算各 RRU上的 SRS测量值;
归属判决模块, 用于当到达用户设备的归属判决周期后, 根据 SRS测量 值进行空间归属判决。
本发明有益效果如下:
由于在本发明实施例提供的技术方案中, 基站为用户设备配置 SRS发送 参数, 当到达用户设备的归属判决周期后,基站根据各 RRU上的 SRS测量值 进行空间归属判决, 因此可以周期性的获取和更新用户 RRU归属信息, 归属 信息具有时效性, 从而也保证调度依据的准确性。 附图说明
图 1为背景技术中 BBU+RRU的信号处理模型示意图;
图 2为本发明实施例中用户设备空间归属判决方法实施流程示意图; 图 3为本发明实施例中方式 1的判决示意图; 图 4为本发明实施例中基站结构示意图。 具体实施方式
发明人在发明过程中注意到:
对于空分复用***来说, 用户设备的空间归属判决是***中多用户设备 调度的关键, 合理的归属空间判决算法能够为调度提供准确依据, 将配对用 户设备间的干扰值降低在一个可控的范围内。 从原理上来说, 任何一种上行 已知信号都可以作为用户设备进行归属空间判决的依据。 而从实用性上考虑, 为了保证用户设备的归属信息准确, 最好能够在用户设备移动时及时更新用 户归属信息。
探测信号 SRS ( Sounding Reference Signals, 信道探测参考信号) 的工作 原理是: 基站通过检测用户设备发送的已知的 ZC ( Zadoff-Chu )扩展序列来 获取用户信道信息。 SRS的配置较为灵活, 各用户设备的 SRS带宽、 跳频带 宽、 资源位置和 ZC序列的循环移位值均由基站指定。基站可以令用户设备发 送全带宽 SRS用于获取用户设备在整个频域上的信道信息, 也可以根据用户 设备的频域信息令用户在指定带宽上发送 SRS, 从而获得指定带宽上的频域 信息。各用户 SRS相互独立,基站可以灵活配置各用户设备发送 SRS的周期, 且资源相对其他信道来说也较为充裕, 因此可以不进行空分, 作为各用户设 备进行楼层归属判决的依据。
本发明实施例提供的技术方案正在于提供了一种周期性获取用户归属空 间信息的判决方案, 方案中, 基站为***中每个用户设备分配周期性的 SRS 资源, 用于周期性获取用户设备的空间归属信息, 从而为多用户设备调度提 供依据。 下面结合附图对本发明的具体实施方式进行说明。
图 2 为用户设备空间归属判决方法实施流程示意图, 如图所示, 在进行 用户设备空间归属判决时可以包括如下步骤:
步骤 201、 基站为用户设备配置 SRS发送参数;
步骤 202、 基站确定用户设备的归属判决周期; 步骤 203、 基站计算各 RRU上的 SRS测量值;
步骤 204、 当到达用户设备的归属判决周期后, 基站根据 SRS测量值进 行空间归属判决。
其中, 步骤 201与步骤 202没有必然的时序关系, 两个步骤可以同时实 施, 也可以分开实施, 只要能为用户设备配置 SRS与确定判决周期即可。
实施中, SRS测量值可以包括以下参数之一或者其组合:
SRS接收功率、 SRS的频域平均信道响应、 由 SRS计算得到的上行 CQI ( Channel Quality Indicator, 信道质量指示 )。
实施中, SRS测量值可以是基站最近一次接收到的 SRS测量值, 或多次 SRS 测量值的平均值。 也即, 当到达归属判决周期后, 基站根据最近一次接 收到的 SRS测量值或多次 SRS测量值的平均值进行空间归属判决。
实施中,基站计算各 RRU上的 SRS测量值,可以是根据用户设备的上行 探测信道计算各 RRU上的 SRS测量值。也即,基站可以根据用户设备的上行 sounding (探测 )信道计算各 RRU上的 SRS测量值。
实施中, 基站根据 SRS测量值进行空间归属判决, 可以包括以下方式之 一或者其组合:
方式 1、 将用户设备在各 RRU上的 SRS测量值从大到小进行排序, 从队 列的第一个元素开始, 逐次计算相邻两个元素的比值; 如果比值大于预设第 一门限值则该用户设备归属于后一个元素之前各元素所对应的 RRU, 否则该 用户设备归属于队列中所有 RRU。
具体的, 可以将用户设备在各 RRU上的测量值从大到小进行排序; 从队 列的第一个元素开始, 逐次计算相邻两个元素的比值; 如果比值大于某个门 限值则该用户归属于后一个元素之前各元素所对应的 RRU, 否则用户归属于 队列中所有 RRU。
方式 2、分别计算用户设备在各 RRU上的 SRS测量值与用户设备的 SRS 测量值中的最大值之比, 如果比值大于预设第二门限值, 则用户设备归属于 该 RRU。 具体的, 可以分别计算各 RRU上的测量值与测量值中的最大值之比, 如 果比值大于某个门限值则用户归属于该 RRU。
方式 3、 遍历所有 RRU上的 SRS测量值, 当用户设备在某个 RRU上的 SRS测量值大于预设第三门限值时, 则用户设备归属于此 RRU。
具体的,可以遍历所有 RRU,当某个 RRU上的测量值大于某个门限值时, 则用户归属于此 RRU。
在上述实施方式中, 第一门限值、 第二门限值、 第三门限值可以通过仿 真来确定, 或者根据经验来确定。
例如: 一种仿真方式是: 按照实际场景确定每个独立空间的覆盖半径, 之后模拟在多个相邻空间交叠区域的用户设备的 SRS发送和 RRU接收测量过 程, 交叠区域的取法可在交界处两侧各取 5%/10%/20%,相邻空间的个数根据 实际场景决定。 多次用户设备撒点, 每次撒点后将各 RRU上测量值从大到小 排序。 统计相邻测量值之比, 取最大值为第一门限值; 统计最大值和最小值 之比的最大值为第二门限值; 统计最小值为第三门限值。
在实施中交叠区域的取法是在交界处两侧各取 5%/10%/20%,但并不限于 5%/10%/20%这三个值, 从理论上来说, 用其它的值也是可以的, 只要能够探 知用户设备在不同区域上的 RRU测量值的不同, 并进而确定出适宜的门限值 即可,取 5%/10%/20%仅用于教导本领域技术人员具体如何实施本发明,但不 意味仅能使用 5%/10%/20%, 实施过程中可以结合实践需要来确定相应的取 值。
上述仿真方式由于交叠区域的不同取法会存在误差, 得到的门限值可能 并非最优, 则可以按照另外一种仿真方式进行微调。 方式是: 以一定间隔取 上述仿真得到门限值的两侧的门限值, 如仿真得到的门限值为 2 , 如以 0.2为 间隔, 则分别仿真统计门限值为 1.8, 2 , 2.2下的空分复用***的吞吐量, 则 使吞吐量最大的门限值确定为最终门限值。
门限值确定后, 还可以进一步根据实际场景测量对该值进行调整。
图 3为方式 1的判决示意图, 如图 3所示, 以 1BBU+8RRU为例, 在釆 用方式 1进行判决时可以如下:
图中所示的 RRU有 8个, 分别以序号 1-8标识, 在获取到用户设备在 8 个 RRU上的 SRS测量值后, 对它们进行排序, 分别为 3、 4、 5、 6、 2、 7、 1、
8。 然后经过判决计算, 确定 5与 6的比值大于预设的门限值, 则判决该用户 设备归属于 RRU3、 4、 5。
基于同一发明构思, 本发明实施例中还提供了一种基站, 由于基站解决 问题的原理与用户设备空间归属判决方法相似, 因此基站的实施可以参见方 法的实施, 重复之处不再赘述。
图 4为基站结构示意图, 如图所示, 在基站中可以包括:
SRS配置模块 401 , 用于为用户设备配置 SRS发送参数;
周期确定模块 402 , 用于确定用户设备的归属判决周期;
SRS测量值模块 403 , 用于计算各 RRU上的 SRS测量值;
归属判决模块 404 , 用于当到达用户设备的归属判决周期后, 根据 SRS 测量值进行空间归属判决。
实施中, 归属判决模块还可以进一步用于根据包括以下参数之一或者其 组合的 SRS测量值进行空间归属判决:
SRS接收功率、 SRS的频域平均信道响应、 由 SRS计算得到的上行 CQI。 实施中, 归属判决模块还可以进一步用于根据最近一次接收到的 SRS测 量值, 或多次 SRS测量值的平均值进行空间归属判决。
实施中, SRS 测量值模块还可以进一步用于根据用户设备的上行探测信 道计算各 RRU上的 SRS测量值。
实施中, 归属判决模块可以包括以下单元之一或者其组合:
第一判决单元,用于将用户设备在各 RRU上的 SRS测量值从大到小进行 排序, 从队列的第一个元素开始, 逐次计算相邻两个元素的比值; 如果比值 大于预设第一门限值则该用户设备归属于后一个元素之前各元素所对应的
RRU, 否则该用户设备归属于队列中所有 RRU;
第二判决单元,用于分别计算用户设备在各 RRU上的 SRS测量值与用户 设备的 SRS测量值中的最大值之比, 如果比值大于预设第二门限值则用户设 备归属于该 RRU;
第三判决单元,用于遍历所有 RRU上的 SRS测量值, 当用户设备在某个 RRU上的 SRS测量值大于预设第三门限值时, 则用户设备归属于此 RRU。
为了描述的方便, 以上所述装置的各部分以功能分为各种模块或单元分 别描述。 当然, 在实施本发明时可以把各模块或单元的功能在同一个或多个 软件或硬件中实现。
由上述实施例可见,在本发明实施例提出的技术方案中,利用用户的 SRS 信号周期性来获取用户归属空间判决信息, 从而解决空分复用***中用户的 RRU归属判决问题, 实现了周期性的获取和更新用户归属信息, 为多用户调 度提供较准确的依据。
进一步的, 用户归属空间判决周期由基站确定;
进一步的, 判决依据可以包括最近一次接收到的 SRS测量值或多次 SRS 测量值的平均值;
进一步的, SRS测量值由用户方式的 SRS信号得到, 该测量值可以包括 但不限于 SRS接收功率、 SRS的频域平均信道响应、 SRS计算得到的上行 CQI 等;
进一步的, 判决方式可以是:
判断测量值是否大于门限值;
判断测量值与最大测量值之比是否大于门限值;
排序后判断相邻测量值的比值是否大于门限值。
本发明实施例提出的技术方案具有广泛的适用性, 可以用于任意空分复 用***, 任意场景独立空间归属判决(室内或室外)、 任意双工***(TDD系 统或者 FDD***)。
可以有效解决空分复用***中用户方式的 RRU归属判决的问题, 判决的 准确性较高, 判决算法的复杂度较低;
可以周期性的获取和更新用户 RRU归属信息, 归属信息具有时效性, 保 证调度依据的准确性;
比值门限的方法降低了绝对门限值确定的难度, 提高了门限值设定的准 确性。
由于在本发明实施例提供的技术方案中, 基站为用户设备配置 SRS发送 参数, 当到达用户设备的归属判决周期后,基站根据各 RRU上的 SRS测量值 进行空间归属判决, 因此可以周期性的获取和更新用户 RRU归属信息, 归属 信息具有时效性, 从而也保证调度依据的准确性。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 ***、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(***)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种用户设备空间归属判决方法, 其特征在于, 包括如下步骤: 基站为用户设备配置信道探测参考信号 SRS发送参数, 确定用户设备的 归属判决周期;
所述基站计算各射频拉远单元 RRU上的 SRS测量值;
当到达用户设备的归属判决周期后, 所述基站根据 SRS测量值进行空间 归属判决。
2、 如权利要求 1所述的方法, 其特征在于, 所述 SRS测量值包括以下参 数之一或者其组合:
SRS接收功率、 SRS的频域平均信道响应、 由 SRS计算得到的上行信道 质量指示 CQI。
3、 如权利要求 1所述的方法, 其特征在于, 所述基站进行空间归属判决 包括:
所述基站根据最近一次接收到的 SRS测量值, 或多次 SRS测量值的平均 值进行空间归属判决。
4、 如权利要求 1所述的方法, 其特征在于, 所述基站计算各 RRU上的 SRS测量值包括:
所述基站根据用户设备的上行探测信道计算各 RRU上的 SRS测量值。
5、 如权利要求 1至 4任一所述的方法, 其特征在于, 所述基站根据 SRS 测量值进行空间归属判决, 包括以下方式之一或者其组合:
所述基站将用户设备在各 RRU上的 SRS测量值从大到小进行排序,从队 列的第一个元素开始, 逐次计算相邻两个元素的比值; 如果比值大于预设第 一门限值则该用户设备归属于后一个元素之前各元素所对应的 RRU, 否则该 用户设备归属于队列中所有 RRU;
所述基站分别计算用户设备在各 RRU上的 SRS测量值与用户设备的 SRS 测量值中的最大值之比, 如果比值大于预设第二门限值则用户设备归属于该 RRU;
所述基站遍历所有 RRU上的 SRS测量值, 当用户设备在某个 RRU上的 SRS测量值大于预设第三门限值时, 用户设备归属于此 RRU。
6、 一种用户设备空间归属判决的基站, 其特征在于, 包括:
SRS配置模块, 用于为用户设备配置 SRS发送参数;
周期确定模块, 用于确定用户设备的归属判决周期;
SRS测量值模块, 用于计算各 RRU上的 SRS测量值;
归属判决模块, 用于当到达用户设备的归属判决周期后, 根据 SRS测量 值进行空间归属判决。
7、 如权利要求 6所述的基站, 其特征在于, 归属判决模块进一步用于根 据包括以下参数之一或者其组合的 SRS测量值进行空间归属判决:
SRS接收功率、 SRS的频域平均信道响应、 由 SRS计算得到的上行 CQI。
8、 如权利要求 6所述的基站, 其特征在于, 归属判决模块具体用于: 根据最近一次接收到的 SRS测量值, 或多次 SRS测量值的平均值进行空 间归属判决。
9、 如权利要求 6所述的基站, 其特征在于, SRS测量值模块具体用于: 根据用户设备的上行探测信道计算各 RRU上的 SRS测量值。
10、 如权利要求 6至 9任一所述的基站, 其特征在于, 归属判决模块包 括以下单元之一或者其组合:
第一判决单元,用于将用户设备在各 RRU上的 SRS测量值从大到小进行 排序, 从队列的第一个元素开始, 逐次计算相邻两个元素的比值; 如果比值 大于预设第一门限值则该用户设备归属于后一个元素之前各元素所对应的 RRU, 否则该用户设备归属于队列中所有 RRU;
第二判决单元,用于分别计算用户设备在各 RRU上的 SRS测量值与用户 设备的 SRS测量值中的最大值之比, 如果比值大于预设第二门限值则用户设 备归属于该 RRU;
第三判决单元,用于遍历所有 RRU上的 SRS测量值, 当用户设备在某个 RRU上的 SRS测量值大于预设第三门限值时, 则用户设备归属于此 RRU。
PCT/CN2011/079152 2010-09-03 2011-08-31 一种用户设备空间归属判决方法及基站 WO2012028097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010273097.5 2010-09-03
CN201010273097.5A CN102387488B (zh) 2010-09-03 2010-09-03 一种终端空间归属判决方法及基站

Publications (1)

Publication Number Publication Date
WO2012028097A1 true WO2012028097A1 (zh) 2012-03-08

Family

ID=45772167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079152 WO2012028097A1 (zh) 2010-09-03 2011-08-31 一种用户设备空间归属判决方法及基站

Country Status (2)

Country Link
CN (1) CN102387488B (zh)
WO (1) WO2012028097A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252760A1 (zh) * 2021-05-31 2022-12-08 深圳市中兴微电子技术有限公司 多用户多输入多输出检测方法和装置、电子设备、介质
CN116133000A (zh) * 2022-12-24 2023-05-16 深圳金信诺高新技术股份有限公司 空分复用方法、装置、计算机设备和存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222299B (zh) * 2012-12-06 2016-09-28 华为技术有限公司 下行方向射频拉远单元选择判决方法和装置
CN103051370B (zh) * 2012-12-28 2016-12-28 华为技术有限公司 一种用户设备的工作拉远射频单元选择方法和基站
US9173118B2 (en) 2012-12-28 2015-10-27 Huawei Technologies Co., Ltd. Method and base station for selecting working remote radio unit for user equipment
CN106572435B (zh) * 2015-10-08 2019-11-12 华为技术有限公司 调度终端设备的方法和装置
CN105516930B (zh) * 2015-12-04 2019-01-18 京信通信***(中国)有限公司 一种室分***定位方法及装置
CN105451333B (zh) * 2015-12-04 2019-01-18 京信通信***(中国)有限公司 一种定位方法及其装置
CN108075783B (zh) * 2016-11-15 2020-02-14 华为技术有限公司 一种通信的方法及设备
CN110278585B (zh) * 2018-03-14 2020-09-11 大唐移动通信设备有限公司 一种低速用户的迁出方法及装置
CN111147220B (zh) * 2019-12-27 2021-09-03 京信网络***股份有限公司 Srs传输方法、装置、设备、***和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和***
CN101640947A (zh) * 2009-08-05 2010-02-03 上海无线通信研究中心 中继***终端的归属方法
CN101800584A (zh) * 2009-02-11 2010-08-11 大唐移动通信设备有限公司 一种室内分布式***的空分多址接入方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和***
CN101800584A (zh) * 2009-02-11 2010-08-11 大唐移动通信设备有限公司 一种室内分布式***的空分多址接入方法及设备
CN101640947A (zh) * 2009-08-05 2010-02-03 上海无线通信研究中心 中继***终端的归属方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252760A1 (zh) * 2021-05-31 2022-12-08 深圳市中兴微电子技术有限公司 多用户多输入多输出检测方法和装置、电子设备、介质
CN116133000A (zh) * 2022-12-24 2023-05-16 深圳金信诺高新技术股份有限公司 空分复用方法、装置、计算机设备和存储介质
CN116133000B (zh) * 2022-12-24 2023-12-08 深圳金信诺高新技术股份有限公司 空分复用方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN102387488A (zh) 2012-03-21
CN102387488B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
WO2012028097A1 (zh) 一种用户设备空间归属判决方法及基站
CN105122871B (zh) 无线网络中自适应传输的***和方法
CN103582085B (zh) 异构网络中的接入方法和装置
EP2575404B1 (en) Communication method using spatial division multiple access (sdma), and base station
KR101988506B1 (ko) 무선 이동통신 시스템에서 디스커버리 신호를 송/수신하는 방법 및 장치
KR101487375B1 (ko) 간섭을 측정하는 방법, 시스템 및 장치
WO2013166932A1 (zh) 参考信号接收功率的上报方法和设备
WO2013127324A1 (zh) 一种基站及进行tdd基站上下行子帧配置的方法
CN105491641B (zh) 一种发现信号的传输方法、小区发现的方法及装置
JP2018538735A (ja) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
CN104521268A (zh) 一种信号质量测量信息的上报方法和设备
CN102387489B (zh) 终端归属空间判决方法和设备
WO2013166705A1 (zh) 参考信号处理方法及用户设备、基站
JP2020532185A5 (zh)
CN104254102A (zh) 一种测量报告的上报方法、通信节点和***
WO2022206328A1 (zh) 一种通信协作方法及装置
WO2016127369A1 (zh) 一种信号传输的装置、***及方法
CN107113106B (zh) 一种共小区网络下的多天线传输方法及基站
JP6593733B2 (ja) データ伝送方法および装置
WO2011116704A1 (zh) 一种无线资源管理方法及无线网络控制器
CN107645783A (zh) 一种上行参考信号的传输方法和装置
CN107645352A (zh) 一种上行参考信号的传输方法和装置
WO2013113276A1 (zh) 一种无线网络信道分配方法、设备及***
WO2014139439A1 (zh) 一种基站间测量时的通信处理方法及设备
Zhang et al. Congestion-aware user-centric cooperative base station selection in ultra-dense networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821123

Country of ref document: EP

Kind code of ref document: A1