WO2012027241A1 - Commande de détendeur électrique pour système de réfrigération - Google Patents

Commande de détendeur électrique pour système de réfrigération Download PDF

Info

Publication number
WO2012027241A1
WO2012027241A1 PCT/US2011/048554 US2011048554W WO2012027241A1 WO 2012027241 A1 WO2012027241 A1 WO 2012027241A1 US 2011048554 W US2011048554 W US 2011048554W WO 2012027241 A1 WO2012027241 A1 WO 2012027241A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
condenser
evaporator
refrigeration system
refrigerant
Prior art date
Application number
PCT/US2011/048554
Other languages
English (en)
Inventor
Lee Seunghyeon
Hoon Lee
Byoungjoo Yoo
Young Man Cho
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to US13/818,203 priority Critical patent/US20150027149A1/en
Publication of WO2012027241A1 publication Critical patent/WO2012027241A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Exemplary embodiments pertain to the art of refrigeration systems and, more particularly to an electric expansion valve (EEV) control for a refrigeration system.
  • EAV electric expansion valve
  • the expansion valve is controlled to prevent liquid refrigerant from entering the compressor. Liquid refrigerant entering the compressor causes in "slugging” or “flooding". Slugging can result in dame to internal compressor components.
  • Many existing systems control the flow of refrigerant through the expansion valve by sensing "superheat” or change between refrigerant temperature or equivalent pressure in the evaporator and temperature of the refrigerant exiting the evaporator.
  • Early refrigeration systems designed the expansion valve control to have a large safety margin to ensure liquid refrigerant does not enter the compressor. With the development of electric expansion valves (EEV), the safety margin can be reduced to enhance system efficiency.
  • EEV electric expansion valves
  • a refrigeration system including a condenser having a condenser inlet and a condenser outlet, a compressor fluidly connected to the condenser inlet, and an evaporator including an evaporator inlet and an evaporator outlet.
  • the evaporator outlet is fluidly connected to the compressor.
  • a compressor speed sensor senses an operational speed of the compressor.
  • An electric expansion valve (EEV) is fluidly connected to the condenser outlet and the evaporator inlet.
  • the EEV includes a valve member that is selectively positioned to establish a desired opening to pass refrigerant from the condenser to the evaporator.
  • a controller is electrically connected to the EEV and the compressor speed sensor. The controller establishes the desired opening of the valve member based on one of a cooling mode superheat value and a heating mode super heat value, and the operational speed of the compressor.
  • the method includes sensing a temperature of refrigerant entering a compressor of the refrigeration system, detecting a temperature of refrigerant at an evaporator of the refrigeration system, sensing a temperature of refrigerant at a condenser of the refrigeration system, calculating one of a cooling mode superheat value and a heating mode superheat value, determining an operational speed of the compressor, and establishing a degree of opening of an electric expansion valve (EEV) based on the one of the cooling mode superheat value and the heating mode superheat value, and the operational speed of the compressor.
  • EEV electric expansion valve
  • FIG. 1 depicts a schematic diagram of a refrigeration system in accordance with an exemplary embodiment
  • FIG. 2 depicts a control system block diagram for controlling the refrigeration system of FIG. 1;
  • FIG. 3 depicts a baseline control configuration of an electric expansion valve of the refrigeration system of FIG. 1;
  • FIG. 4 is a graph comparing compressor speed changes with an opening sequence of the EEV in accordance with an exemplary embodiment
  • FIG. 5 is a flow chart illustrating a method of controlling the EEV in accordance with an exemplary embodiment.
  • Refrigeration system 2 includes a compressor 4 having a compressor inlet (suction side) 5 and a compressor outlet (discharge side) 6.
  • compressor 4 takes the form of a variable speed compressor.
  • Refrigeration system 2 is also shown to including a condenser 10 having a condenser inlet 11 and a condenser outlet 12.
  • Condenser inlet 11 is fluidly connected to compressor outlet 6 through a first refrigerant line 15.
  • Condenser 10 is a first heat exchange member of refrigeration system 2.
  • Condenser 10 is fluidly connected to an evaporator 25 having an evaporator inlet 26 and an evaporator outlet 27.
  • Evaporator 25 is a second heat exchange member of refrigeration system 2.
  • condenser 10 is connected to evaporator 25 through an electric expansion valve (EEV) 30.
  • EEV 30 includes an EEV inlet 32 and an EEV outlet 33 and a valve member 36.
  • EEV inlet 32 is fluidly connected to condenser outlet 12 through a second refrigerant line 39.
  • EEV outlet 33 is connected to evaporator inlet 26 through a third refrigerant line 40.
  • a fourth refrigerant line 44 connects evaporator outlet 27 with compressor inlet 5 to establish a closed loop refrigerant system.
  • refrigeration system 2 includes a compressor discharge temperature sensor 60 arranged in first refrigerant line 15.
  • Compressor discharge temperature sensor 60 senses a temperature of refrigerant passing from compressor 4.
  • Refrigeration system 2 also includes a condenser temperature sensor 62, and an ambient temperature sensor 65.
  • Condenser temperature sensor 62 determines a temperature of refrigerant passing though condenser 10 and ambient temperature sensor 65 senses an ambient or outside air temperature.
  • a condenser temperature 68 detects a temperature of refrigerant passing through condenser 25 and an indoor air temperature 72 is arranged to sense indoor air temperature.
  • Refrigeration system 2 is also shown to include a compressor suction temperature sensor 77 arranged in fourth refrigerant line 44 and a compressor speed sensor 80 arranged at compressor 4.
  • Compressor suction temperature sensor 77 measures a temperature of refrigerant passing into inlet 5 of compressor 4 while compressor speed sensor 80 monitors a rotational speed of compressor 4.
  • Refrigeration system 2 is also shown to include a controller 86 linked to EEV 30 and each of sensors 60, 62, 65, 68, 72, 77, and 80 as best shown in FIG. 2.
  • controller 86 processes signals from sensors 60, 62, 65, 68, 72, 77, and 80.
  • controller 86 determines a cooling superheat value and a rate of change of the cooling superheat value.
  • the cooling superheat value is defined as a difference between temperature sensed at compressor suction temperature sensor 77 and a temperature sensed at evaporator temperature sensor 68.
  • controller 86 determines a heating superheat value and a rate of change of the heating superheat value.
  • the heating superheat value is defined as a difference between temperature sensed at compressor suction temperature sensor 77 and a temperature sensed at condenser temperature sensor 62.
  • Controller 86 then establishes a degree of opening of valve member 36 of EEV 30 based on either the heating superheat value and rate of change of the heating superheat value or the cooling superheat value and rate of change of the cooling superheat value depending upon the operational mode of refrigerant system 2.
  • controller 86 includes a compressor speed control 96, a feedback control 94 and a feed forward control 99, such as shown in FIG. 3.
  • Feed forward control 99 anticipates and cancels changes in the degree of opening of valve member 36 resulting from superheat and rate of change of superheat vales due to changes in speed of compressor 4. More specifically, controller 86 preemptively adjusts the degree of opening of valve member 36 based on compressor speed changes sensed by compressor speed sensor 80.
  • FIG. 4 illustrates the relationship between the opening of valve member 36 and speed changes of compressor 4.
  • An increase in speed of compressor 4 or a positive compressor speed change value (drps) is shown at region "A"
  • no speed change i.e. compressor speed value (drps) equals zero, or compressor 4 is operating at a constant speed
  • drps a decrease in speed of compressor 4 or a negative compressor speed value (drps) is shown in regions "C”.
  • the opening of valve member 36 is fixed, the superheat value (either heating or cooling) generally increases with compressor speed and vice versa. As a result, as compressor speed is increased, the superheat value tends to go up higher and higher.
  • the degree of opening of valve member 36 is adjusted preemptively to compensate for any increase in superheat value due to speed changes of compressor 4.
  • the speed of compressor 4 is monitored every 5 sec.
  • the increase in speed of compressor 4 leads to an increase of the degree of opening of valve member 36 to prevent the superheat values from becoming too large.
  • the degree of opening of valve member 36 is adjusted simultaneously with decreases in the speed of compressor 4. In this manner, the any increase in superheat value resulting from a decrease in the opening of valve member 36 would not lag behind any decrease in superheat values due to a decrease in compressor speed. In this manner, any potential undershoot of the superheat value is avoided.
  • a desired superheat value e.g., heating or cooling
  • a desired superheat value e.g., heating or cooling
  • drps compressor speed change value
  • dEEV EEV change value
  • a determination is made in block 220 whether the compressor change value (drps) has increased. If the compressor change value (drps) is negative, an EEV change value (dEEV) based on a negative change in compressor speed value (drps) is calculated and a degree of opening of valve member 36 is set in block 222. The degree of opening is established by feed forward control 99 based on, for example, dEEV(n) k 3 *drps. . In this manner controller 82 determines the whether a change in opening of valve member 32 is required to preemptively account for negative changes in the operational speed of compressor 4.
  • controller 82 adjusts the degree of opening of valve member 32. Once the degree of opening is set, feed forward control 99 is reset in block 223 and any fine tuning of the degree of opening is made in block 216. At this point, feedback control 94 is reset in block 223 and adjustments are made on block 216.
  • drps compressor change value
  • dEEV EEV change value
  • controller 82 determines the whether a change in opening of valve member 32 is required to preemptively account for positive changes in the operational speed of compressor 4. If changes are required, controller 82 adjusts the degree of opening of valve member 32. Once the degree of opening is set, feed forward control 99 is reset in block 223 and any fine tuning of the degree of opening is made in block 216.
  • the exemplary embodiment describes an apparatus and method that adjust refrigerant flow from a condenser to an evaporator based not only on the superheat value, but also on compressor speed. By accounting for compressor speed, the degree of opening of the EEV is fine tuned so as to enhance the overall operational efficiency of the refrigeration system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention porte sur un système de réfrigération qui comprend un condenseur (10) ayant une entrée de condenseur et une sortie de condenseur, un compresseur (4) relié de façon fluidique à l'entrée du condenseur et un évaporateur (25) comprenant une entrée d'évaporateur et une sortie d'évaporateur. La sortie d'évaporateur est reliée de façon fluidique au compresseur. Un capteur de vitesse de compresseur (80) détecte une vitesse de fonctionnement du compresseur. Un détendeur électrique (30) (EEV) est relié de façon fluidique à la sortie de condenseur et à l'entrée d'évaporateur. Le détendeur électrique (EEV) comprend un élément obturateur qui est positionné de manière sélective pour établir une ouverture souhaitée afin de laisser passer le fluide frigorigène du condenseur à l'évaporateur. Une unité de commande (86) est connectée électriquement au détendeur électrique (EEV) et au capteur de vitesse de compresseur. L'unité de commande établit l'ouverture voulue de l'élément obturateur sur la base d'une valeur parmi les valeurs de surchauffe de mode de refroidissement et de surchauffe de mode chauffage, et de la vitesse de fonctionnement du compresseur.
PCT/US2011/048554 2010-08-23 2011-08-22 Commande de détendeur électrique pour système de réfrigération WO2012027241A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/818,203 US20150027149A1 (en) 2010-08-23 2011-08-22 Electric expansion valve control for a refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37603810P 2010-08-23 2010-08-23
US61/376,038 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012027241A1 true WO2012027241A1 (fr) 2012-03-01

Family

ID=44515066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/048554 WO2012027241A1 (fr) 2010-08-23 2011-08-22 Commande de détendeur électrique pour système de réfrigération

Country Status (2)

Country Link
US (1) US20150027149A1 (fr)
WO (1) WO2012027241A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999691A1 (fr) * 2012-12-19 2014-06-20 Valeo Systemes Thermiques Systeme de regulation electrique d'une detente d'un fluide refrigerant et procede de commande d'un tel systeme
US20150300715A1 (en) * 2014-04-22 2015-10-22 Lg Electronics Inc. Method for controlling an air conditioner
WO2016144929A1 (fr) * 2015-03-09 2016-09-15 Carrier Corporation Régulation de soupape de détente
WO2017175014A1 (fr) * 2016-04-07 2017-10-12 ELIE KFOURY ASWAD, Emilie Dispositif de commande et de protection de système frigorifique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242777B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기
CN111765670A (zh) * 2019-04-02 2020-10-13 开利公司 电子膨胀阀,热交换***以及控制电子膨胀阀的方法
CN112078806B (zh) * 2020-09-25 2022-12-30 中国直升机设计研究所 一种直升机液冷综合控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457054A (en) * 1987-08-28 1989-03-03 Nippon Denso Co Controller for refrigeration cycle
JPH01222164A (ja) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd 冷凍サイクル制御装置
JPH10160273A (ja) * 1996-12-02 1998-06-19 Hitachi Ltd 空気調和装置
DE19706663A1 (de) * 1997-02-20 1998-08-27 Behr Gmbh & Co Verfahren zur Regelung einer Klimaanlage in einem Kraftfahrzeug
JP2008215648A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 空気調和機
EP2306124A1 (fr) * 2009-09-28 2011-04-06 Fujitsu General Limited Pompe à chaleur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031055A (ja) * 1989-05-29 1991-01-07 Sharp Corp 冷暖房装置
US5257508A (en) * 1990-09-14 1993-11-02 Nartron Corporation Environmental control system
EP1988345A4 (fr) * 2006-01-20 2016-10-26 Sanyo Electric Co Climatiseur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457054A (en) * 1987-08-28 1989-03-03 Nippon Denso Co Controller for refrigeration cycle
JPH01222164A (ja) * 1988-02-29 1989-09-05 Nippon Denso Co Ltd 冷凍サイクル制御装置
JPH10160273A (ja) * 1996-12-02 1998-06-19 Hitachi Ltd 空気調和装置
DE19706663A1 (de) * 1997-02-20 1998-08-27 Behr Gmbh & Co Verfahren zur Regelung einer Klimaanlage in einem Kraftfahrzeug
JP2008215648A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 空気調和機
EP2306124A1 (fr) * 2009-09-28 2011-04-06 Fujitsu General Limited Pompe à chaleur

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999691A1 (fr) * 2012-12-19 2014-06-20 Valeo Systemes Thermiques Systeme de regulation electrique d'une detente d'un fluide refrigerant et procede de commande d'un tel systeme
WO2014095591A1 (fr) * 2012-12-19 2014-06-26 Valeo Systemes Thermiques Systeme de regulation electrique d'une detente d'un fluide refrigerant et procede de commande d'un tel systeme
US20150300715A1 (en) * 2014-04-22 2015-10-22 Lg Electronics Inc. Method for controlling an air conditioner
CN105020846A (zh) * 2014-04-22 2015-11-04 Lg电子株式会社 空气调节器的控制方法
WO2016144929A1 (fr) * 2015-03-09 2016-09-15 Carrier Corporation Régulation de soupape de détente
CN107429958A (zh) * 2015-03-09 2017-12-01 开利公司 膨胀阀控制
US20180066879A1 (en) * 2015-03-09 2018-03-08 Carrier Corporation Expansion valve control
US10704814B2 (en) 2015-03-09 2020-07-07 Carrier Corporation Expansion valve control
CN107429958B (zh) * 2015-03-09 2021-03-30 开利公司 膨胀阀控制
EP3268682B1 (fr) * 2015-03-09 2022-08-24 Carrier Corporation Régulation de soupape de détente
WO2017175014A1 (fr) * 2016-04-07 2017-10-12 ELIE KFOURY ASWAD, Emilie Dispositif de commande et de protection de système frigorifique
US10876778B2 (en) 2016-04-07 2020-12-29 Emilie Elie Kfourt Aswad Refrigeration system control and protection device

Also Published As

Publication number Publication date
US20150027149A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US20150027149A1 (en) Electric expansion valve control for a refrigeration system
JP3688267B2 (ja) 空気調和機の過熱度制御システム及びその制御方法
JPH087313Y2 (ja) 冷凍装置の制御装置
EP3059515B1 (fr) Climatiseur
US20120291984A1 (en) Kind Of Air Conditioner System And Control Method Of Its Condensing Fan
US7992398B2 (en) Refrigeration control system
EP3189288B1 (fr) Procédé de commande d'une unité d'éjecteur à capacité variable
US9719700B2 (en) Method for matching refrigeration load to compressor capacity
CN109405379B (zh) 一种制冷电子膨胀阀控制方法
KR101943325B1 (ko) 공기조화기 및 그 제어방법
US20070137231A1 (en) Refrigeration system
EP3164648A1 (fr) Refroidissement de fluide frigorigène pour variateur de vitesse
EP1725816A1 (fr) Commande multi-variables pour systemes de refrigerant
CN102401524A (zh) 电子膨胀阀在变频空调制冷运行时的控制方法
EP3545242B1 (fr) Procédé de commande d'un système de compression de vapeur lors d'un dysfonctionnement de soupape de dérivation de gaz
JP2006200890A (ja) 空気調和機
US20090216377A1 (en) Air conditioner and method of controlling the same
KR101677031B1 (ko) 공기조화기 및 그 운전방법
US11499766B2 (en) Electric expansion valve, a heat exchange system and a method of controlling the electric expansion valve
JP7496817B2 (ja) 冷却システム
JPH04222349A (ja) 冷凍装置の運転制御装置
JPH09264616A (ja) 空気調和機の冷凍サイクル制御装置
JP2011099587A (ja) 空気調和機の制御装置
US20170328617A1 (en) A method for controlling a supply of refrigerant to an evaporator including calculating a reference temperature
JPH08110129A (ja) セパレート形ヒートポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13818203

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11749316

Country of ref document: EP

Kind code of ref document: A1