WO2012026532A1 - Roof backing sheet and production method for same - Google Patents

Roof backing sheet and production method for same Download PDF

Info

Publication number
WO2012026532A1
WO2012026532A1 PCT/JP2011/069199 JP2011069199W WO2012026532A1 WO 2012026532 A1 WO2012026532 A1 WO 2012026532A1 JP 2011069199 W JP2011069199 W JP 2011069199W WO 2012026532 A1 WO2012026532 A1 WO 2012026532A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
film
base sheet
resin
roof base
Prior art date
Application number
PCT/JP2011/069199
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 出口
Original Assignee
セーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社 filed Critical セーレン株式会社
Priority to JP2012530710A priority Critical patent/JP5934096B2/en
Publication of WO2012026532A1 publication Critical patent/WO2012026532A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D12/00Non-structural supports for roofing materials, e.g. battens, boards
    • E04D12/002Sheets of flexible material, e.g. roofing tile underlay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/744Non-slip, anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes

Definitions

  • the present invention relates to a roof base sheet and a manufacturing method thereof.
  • the roof of a house is covered with roofing materials such as tiles, slate, colonial, metal plates.
  • roofing materials such as tiles, slate, colonial, metal plates.
  • the waterproof property is improved by spreading a roof base sheet made of asphalt roofing (JIS-A6005 standard), rubber modified asphalt roofing (JIS-A6013 standard), etc. between the base plate and the roofing material. It was.
  • these roof base sheet basis weight of about 1kg / m 2 or more and heavy. For this reason, it was difficult to lift to the roof, and there was a problem that hands and field boards were easily soiled by asphalt.
  • the roof base sheet expands and contracts due to the difference in temperature depending on the climate, or the roof base sheet contracts and cracks due to the influence of the temperature difference and solar heat, etc. There was a risk that a gap would occur in the overlapped portion of the water and water leaked, or that oil would fall out of the asphalt and become brittle and cracked.
  • Patent Document 1 describes a roof base sheet using a polyolefin-based nonwoven fabric by flash spinning.
  • this non-woven sheet is driven into a nail or the like to be fixed to the base plate, the non-woven sheet is easily broken and leaked from the nail hole.
  • Patent Document 2 describes a roofing roof material having a resin layer having adhesiveness on the surface of a fabric and having a resin layer having little adhesiveness thereon.
  • a resin having adhesiveness oozes out to the back surface of the fabric due to heat such as sunlight and adheres to the base plate, so that sufficient waterproofing cannot be obtained.
  • a load is applied to the nail hole portion, and the nail hole portion expands to impair the water stoppage.
  • Patent Document 3 describes a roof base sheet in which a resin having stretchability and adhesiveness is applied to at least a nail driving portion on the surface of a three-dimensional mesh-like nonwoven fabric by a flash spinning method.
  • the resin having stretchability and adhesiveness is greatly affected by heat, and cannot maintain the nail hole water resistance for a long time.
  • Patent Document 4 describes a moisture-permeable and waterproof sheet for building materials in which pores are perforated in a rubber-based sheet.
  • this structure has insufficient water resistance. Further, even if this sheet is laminated with a moisture permeable / waterproof nonwoven fabric, the gap generated by the nail or the tucker cannot be sufficiently filled, and the nail hole water blocking ability cannot be sufficiently secured.
  • the present invention has been made in view of such problems, and is a lightweight and easy-to-operate roof base sheet that is excellent in nail hole water stoppage and its durability, with little deterioration in slip resistance in rainy weather.
  • the purpose is to provide.
  • an object of this invention is to provide the roof base sheet excellent in waterproofness.
  • an object of this invention is to provide the manufacturing method of the roof base sheet excellent in waterproofness.
  • the roof base sheet according to the first aspect of the present invention is: In the roof base sheet provided on the field plate, Non-woven fabric, A layer of water-absorbing swelling resin provided on the side opposite to the base plate of the nonwoven fabric; A surface film having a non-slip treatment on the side opposite to the base plate laminated on the layer of the water-absorbing swelling resin; A back film having a tensile modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa laminated on the base plate side of the nonwoven fabric; Is provided.
  • the roof base sheet is preferably formed by laminating a protective film on the base plate side of the back film.
  • the protective film preferably has a flexural modulus of 100 to 300 MPa and a Type D durometer hardness of 50 or more.
  • the anti-slip treatment of the surface film is performed by embossing, activation treatment, and resin application treatment. Further, it is preferable that foamed resin or hollow microspheres are laminated on the surface film surface.
  • the field board side of a back film or a protective film is anti-slip processed.
  • slipping process of a back surface film or a protective film is based on embossing, activation process, and resin provision process.
  • a surface film is a linear low density polyethylene film.
  • the manufacturing method of the roof base sheet which concerns on the 2nd viewpoint of this invention,
  • the manufacturing method of the roof base sheet provided on the base plate Providing a layer of water-absorbing swelling resin on the opposite side of the non-woven fabric base plate, Laminating a surface film on the layer of the water-absorbing swelling resin; A step of anti-slip treatment on the side opposite to the base plate of the surface film; Laminating a back film having a tensile modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa on the base plate side of the nonwoven fabric; Is provided.
  • the method for manufacturing the roof base sheet further includes a step of laminating a protective film on the base plate side of the back film.
  • the roof base sheet of the present invention exhibits excellent water stoppage due to the two waterstop layers of the water-absorbing swelling resin and the back film.
  • the water-absorbing and swelling resin placed on the nonwoven fabric absorbs and swells moisture leaked from the nail holes and prevents moisture from penetrating, and the back film clings to the nail when nailing. Excellent performance.
  • the water-absorbing swelling resin that has absorbed water has a surface film and a back film, so that it does not ooze out to the surface of the roof base sheet or the base plate side, and it is possible to prevent danger such as the operator slipping due to the water-absorbing swelling resin that has oozed out. .
  • the roof base sheet according to the embodiment of the present invention will be described with reference to FIG.
  • the roof base sheet 10 according to the present embodiment is installed on a field board 7.
  • a layer of the water-absorbing swelling resin 3 is formed on the nonwoven fabric 4.
  • the surface film 2 is laminated on the layer of the water-absorbing swelling resin 3.
  • the surface of the surface film 2 is anti-slip treated to form the anti-slip layer 1.
  • a back film 5 is laminated under the nonwoven fabric 4.
  • a protective film 6 is laminated under the back film 5.
  • the surface film 2 of the roof base sheet 10 is preferably made of a resin having a melting point of 100 ° C. or higher, and more preferably made of a resin having a melting point of 110 ° C. or higher.
  • the melting point of the resin is less than 100 ° C., roofing materials such as tiles become high temperature due to solar radiation, which may cause softening and melting by heat.
  • Such resins include polyolefin resins such as polypropylene and polyethylene, polyvinyl acetate, ethylene vinyl acetate copolymers, vinyl acetate resins such as polyvinyl alcohol, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, Examples thereof include polyester resins such as polybutylene naphthalate and polyurethane resins.
  • linear low density polyethylene having good moldability, flexibility, tear strength, heat durability, and activation processability is preferably used.
  • the thickness of the surface film 2 is preferably 50 to 300 ⁇ m, particularly preferably 70 to 100 ⁇ m.
  • the thickness of the surface film 2 is less than 50 ⁇ m, it is difficult to obtain a sufficient tear strength, and it is easy to tear when an operator works on the roof base sheet.
  • the thickness of the surface film 2 is less than 50 ⁇ m, there is a risk of tearing when the roof base sheet 10 is fixed to the base plate 7 with a nail or the like, and when the water-absorbing swelling resin 3 is swollen by water absorption, the surface film 2 is torn. There is a possibility that the water-absorbing swelling resin 3 oozes out from the portion, and the waterproofness and anti-slip property are impaired.
  • the thickness of the surface film 2 is less than 50 ⁇ m, there is a possibility that a hole will be opened during the activation process described later.
  • the thickness of the surface film 2 is greater than 300 ⁇ m, the roof base sheet 10 itself is hard and difficult to wind and becomes heavier, so that the workability may be deteriorated.
  • the side opposite to the base plate 7 of the surface film 2 is anti-slip treated to form the anti-slip layer 1.
  • the anti-slip treatment include embossing the surface film 2, an activation treatment, and a method of forming an unevenness by applying a synthetic resin, and these are preferably used in combination.
  • the height of the unevenness by embossing is preferably 20 to 200 ⁇ m, more preferably 50 to 100 ⁇ m. If the uneven height is less than 20 ⁇ m, sufficient anti-slip properties may not be obtained.
  • corrugated height is larger than 200 micrometers, there exists a possibility that slipperiness may be impaired because a contact part with a shoe sole becomes only a convex surface and a contact area becomes small.
  • Examples of the embossed pattern include a lattice shape, a rhombus shape, a round dot shape, and a diamond dot shape.
  • the shape, the number of dots, the size, and the like are not particularly limited as long as anti-slip properties are exhibited.
  • corrugation in order to provide anti-slip property polyolefin-type, polyester-type, and acrylic-type synthetic resins are mentioned.
  • a modified polyolefin synthetic resin is preferable in terms of easy adhesion, slip resistance, and water repellency.
  • the activation treatment is to improve the wettability of the surface of the surface film 2 and is performed to increase the adhesion between the surface film 2 and a synthetic resin for imparting anti-slip properties.
  • Examples of the activation treatment include corona treatment, plasma treatment, glow treatment, and ozone treatment.
  • the corona treatment can be performed by a method in which discharge is performed in atmospheric pressure with a corona treatment machine.
  • the plasma treatment can be performed by a method in which discharge is performed in a normal pressure air or an inert gas atmosphere such as nitrogen or argon by a plasma discharge machine.
  • Other glow treatments and ozone treatments can also be performed according to conventional methods.
  • corona treatment is preferably used in terms of equipment costs and processing costs.
  • the wettability of the anti-slip layer 1 of the surface film 2 is 34 to 42 dyne by the activation treatment.
  • the discharge amount is 80 to 200 W / m 2 ⁇ min, preferably 120 to 180 W / m 2 ⁇ min.
  • the discharge amount is less than 80 W / m 2 ⁇ min, the resin adhesion is not sufficiently obtained when the synthetic resin is applied, and the synthetic resin is peeled off when the worker walks on the roof base sheet 10 during construction. There is a risk that.
  • the discharge amount exceeds 200 W / m 2 ⁇ min, the strength of the surface film 2 is lowered and may be broken during construction.
  • the synthetic resin for forming irregularities on the surface film 2 in order to impart anti-slip properties is preferably applied as a resin solution using a solvent as a solvent.
  • a solvent it is preferable to use toluene, ethyl acetate, methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF) or the like.
  • the applied amount of the synthetic resin is preferably 1 to 15 g / m 2 , more preferably 5 to 10 g / m 2 in terms of resin solids. If the applied amount of the synthetic resin is less than 1 g / m 2 , the anti-slip property may not be exhibited sufficiently.
  • the applied amount of the synthetic resin is more than 15 g / m 2 , the embossed uneven portions on the film surface are filled, and the anti-slip property may be hardly exhibited.
  • a coating method, a gravure roll method, a screen printing method, or the like is used as a method for applying the synthetic resin.
  • the thickness of the anti-slip imparting synthetic resin formed on the surface film 2 is preferably 2 to 14 ⁇ m.
  • the static friction coefficient of the surface of the anti-slip layer 1 and the synthetic rubber used as the shoe sole material of the worker is 0.50 or more.
  • the anti-slip property can be further improved by mixing 1 to 3 wt% of a foamed resin such as a heat-foamable microcapsule or hollow microspheres in this resin solution. If the mixing ratio of the thermally foamable microcapsules or hollow microspheres is less than 1 wt%, foaming may be insufficient and slip resistance may be reduced. On the other hand, if the mixing rate is more than 3 wt%, a gap is formed between the resin and the surface film 2, and the resin may easily fall off.
  • the average particle diameter of the microcapsules or hollow microspheres is preferably 10 to 20 ⁇ m. If the average particle diameter is less than 10 ⁇ m, the unevenness to be formed becomes fine, and the anti-slip effect may be weakened. On the other hand, when the average particle size is larger than 20 ⁇ m, the unevenness increases, and the contact area decreases, which may weaken the anti-slip effect.
  • thermally foamable microcapsules examples include low-boiling hydrocarbons such as n-butane, i-butane, pentane and neopentane as the core material, and vinylidene chloride, acrylonitrile and methyl methacrylate as the wall film agent.
  • a microcapsule using a thermoplastic resin whose main component is an aromatic vinyl compound such as (meth) acrylic acid ester or styrene is used.
  • examples of commercially available products include Matsumoto Microsphere (registered trademark) F (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) and EXPANSEL WU (manufactured by EXPANSEL).
  • the hollow microsphere examples include glass bubbles (glass micro hollow sphere manufactured by Sumitomo 3M Limited).
  • the microcapsules are foamed by heating after applying the capsule-containing resin solution.
  • the heating temperature at that time may be appropriately selected depending on the softening temperature of the capsule membrane wall to be used, the treatment time, etc. In the case of the commercially available capsule, it is preferably set to 70 to 170 ° C.
  • a heating method a conventionally known method such as hot air, a hot roll, an infrared heater or a microwave is used.
  • the nonwoven fabric 4 used for the roof base sheet 10 is comprised from a polyester-type, polyamide-type, or polyolefin-type filament fiber.
  • polyester fibers are preferably used in terms of strength and durability.
  • the nonwoven fabric 4 include spun bond, chemical bond, thermal bond, spun lace, and needle punch. In particular, spunbond is preferable from the viewpoint of strength and post-processability.
  • the basis weight of the nonwoven fabric 4 is preferably 40 to 200 g / m 2 , more preferably 60 to 100 g / m 2 . If the basis weight of the nonwoven fabric 4 is less than 40 g / m 2 , the strength required for the roof base sheet 10 may not be ensured. On the other hand, when the basis weight of the nonwoven fabric 4 is 200 g / m 2 or more, the basis weight becomes large, so that the workability may be impaired.
  • the layer of the water-absorbing swelling resin 3 of the roof base sheet 10 is formed on the side opposite to the base plate 7 of the non-woven fabric 4, and absorbs water and swells when kept in contact with water to maintain a non-flowing state. Anything consisting of can be used.
  • a water-soluble electrolyte polymer is introduced with a crosslink, and either a natural water-absorbing swelling resin or a synthetic water-absorbing swelling resin can be used.
  • natural water-absorbing swelling resins include starch-based acrylonitrile graft polymer hydrolyzate, starch-acrylic acid graft polymer, cellulose-based cellulose-acrylonitrile graft polymer, cross-linked carboxymethyl cellulose, etc.
  • polysaccharides such as hyaluronic acid and agarose, and proteins such as collagen are listed.
  • synthetic water-absorbing swelling resins include polyvinyl alcohol-based polyvinyl alcohol cross-linked polymers, acrylic-based polyacrylate cross-linked products, sodium acrylate-vinyl alcohol copolymers, etc., polyether-based polyethylene glycol
  • diacrylate cross-linked polymers include maleic anhydride polymers, vinyl pyrrolidone polymers, and other condensation resins.
  • the water absorption swelling ratio of the water absorbent swelling resin 3 used for the roof base sheet 10 is preferably 200 times or more, and more preferably 400 times or more. When the water absorption swelling ratio is less than 200 times, there is a possibility that water may leak due to insufficient filling of the gap even if water is absorbed when water enters the nail hole.
  • the water-absorbing swelling resin 3 is preferably fixed to the nonwoven fabric 4 through a binder resin.
  • binder resins that can be used include vinyl resins, urethane resins, silicone resins, acrylic resins, epoxy resins, ester resins, and the like. In particular, an acrylic resin is preferably used from the viewpoint of good handleability during processing and cost.
  • a resin liquid comprising a water-absorbing swelling resin 3, a binder resin, and a solvent such as toluene is applied to the non-woven fabric 4 by a method such as a coating method, a gravure roll method, a screen printing method, etc.
  • a method such as a coating method, a gravure roll method, a screen printing method, etc.
  • a coating method such as a gravure roll method, a screen printing method, etc.
  • the application area ratio of the water-absorbing swelling resin 3 to the nonwoven fabric 4 is preferably 40 to 90% of the nonwoven fabric 4. If the coating area ratio is less than 40%, there is a possibility that water-stopping property cannot be obtained. On the other hand, if the coating area ratio is greater than 90%, the nonwoven fabric 4 may be peeled off during water absorption swelling.
  • the amount of the water-absorbing swelling resin 3 applied to the nonwoven fabric 4 is preferably 5 to 40 g / m 2 in terms of resin solids. More preferably, it is 10 to 30 g / m 2 . When the coating amount is less than 5 g / m 2 , when water enters the nail hole, even if water is absorbed, the gap cannot be sufficiently filled and water may leak. If the coating amount is more than 40 g / m 2, the surface film layer 2 and the nonwoven fabric 4 may be peeled off by the water-absorbing swelling resin 3 that has absorbed water.
  • the lamination of the surface film 2 and the nonwoven fabric 4 having the layer of the water-absorbing swelling resin 3 is performed by laminating the surface film 2 with a T-die by heat fusion or
  • stacking the film 2 and this nonwoven fabric 4 using binder resin is mentioned, it does not specifically limit.
  • the binder resin to be used vinyl resin, urethane resin, silicone resin, acrylic resin, epoxy resin, ester resin and the like are employed.
  • an acrylic resin is preferably used from the viewpoint of good handleability during processing and cost.
  • the thickness of the binder resin layer is preferably 15 to 50 ⁇ m, and more preferably 25 to 35 ⁇ m. If the thickness is less than 15 ⁇ m, sufficient adhesive strength may not be obtained and peeling may occur. When it is larger than 50 ⁇ m, the basis weight is increased and the workability may be deteriorated.
  • the back film 5 follows the nail at the nail hole portion of the roof base sheet 10 that is formed when the roof base sheet 10 is hit against the base plate 7 with a nail, tucker or the like, and has a water-stop function around the nail hole. Demonstrate.
  • the water-absorbing swelling resin 3 is water-absorbing and swelling, the base plate 7 is prevented from corroding due to the seepage of the water-absorbing swelling resin 3.
  • the tensile modulus of the back film 5 used for the roof base sheet 10 is 300 to 1000 MPa, and the tensile stress at 100% strain is 10 to 40 MPa.
  • the back film 5 When the tensile elastic modulus is less than 300 MPa, the back film 5 is easily broken at the time of construction, and water stoppage cannot be obtained. On the other hand, if the tensile modulus is greater than 1000 MPa, the back film 5 hardly follows the nail during construction, and sufficient water stoppage cannot be obtained. Further, if the tensile stress at the time of 100% strain of the back film 5 is less than 10 MPa, a tightening effect around the nail cannot be obtained at the time of construction, so that it is difficult to obtain a water stop effect.
  • the back film 5 is difficult to stretch during construction and the back film 5 is difficult to follow the nail, so a sufficient nail hole water stop effect cannot be obtained. .
  • a protective film 6 is further laminated on the base plate 7 side of the back film 5.
  • the protective film 6 can protect the water-resistant back film 5 and further increase the strength of the entire roof base sheet 10.
  • the bending elastic modulus of the protective film 6 is preferably 100 to 300 MPa. If the bending elastic modulus of the protective film 6 is less than 100 MPa, there is no stiffness and creases are likely to occur, which may make construction difficult.
  • the durometer hardness of the type D of the protective film 6 is 50 or more. This is because if the durometer hardness of the type D of the protective film 6 is less than 50, the protective film 6 may be scratched during construction, and the waterproof property may be impaired.
  • the resin used for the back film 5 and the protective film 6 is preferably a polyolefin, polyester, polyurethane, polystyrene, or a combination thereof.
  • polyethylene is preferable in terms of film formability, flexibility, tear strength, and thermal durability.
  • linear low density polyethylene is more preferable in terms of the balance between tensile strength and elongation.
  • Each thickness of the back film 5 and the protective film 6 is preferably 20 to 50 ⁇ m, and more preferably 25 to 35 ⁇ m. If the thickness is less than 20 ⁇ m, sufficient adhesive strength cannot be obtained and there is a risk of peeling. Moreover, there exists a possibility that the intensity
  • the height of the unevenness by embossing is preferably 20 to 200 ⁇ m, more preferably 50 to 100 ⁇ m. If the uneven height is less than 20 ⁇ m, the slip resistance may not be exhibited. On the other hand, if the uneven height is larger than 200 ⁇ m, the contact area becomes small and the slip resistance may be impaired.
  • the embossed pattern include a lattice shape, a rhombus shape, a round dot shape, and a diamond dot shape. However, the shape, the number of dots, the size, and the like are not particularly limited as long as the slip resistance is exhibited.
  • an adhesive layer can be formed on the back film 5 or the protective film 6 on the side in contact with the base plate 7.
  • the pressure-sensitive adhesive include acrylic resins, urethane resins, and butyl rubber resins.
  • an acrylic resin is preferable from the viewpoint of adhesion to polyethylene and durability.
  • the coating amount is preferably 10 to 50 g / m 2 in order to exhibit sufficient adhesive strength.
  • the static friction coefficient (JIS-K7125) of the back film 5 or the protective film 6 on the side in contact with the base plate 7 is preferably 0.2 to 0.6, and more preferably 0.3 to 0.5. If it is less than 0.2, the roof base sheet 10 placed on the base plate 7 at the time of construction slides down, or when it is wound in a roll shape, there is a risk that winding misalignment will occur and the workability will be hindered.
  • the lamination method of the nonwoven fabric 4, the back film 5, and the protective film 6 can be laminated
  • the total basis weight is preferably 100 ⁇ 500g / m 2 of roof bed sheet 10, and more preferably 200 ⁇ 300g / m 2. If the total basis weight of the roof base sheet 10 is less than 100 g / m 2, it is easy to turn up due to the influence of wind during construction and the workability may be deteriorated. If the total basis weight of the roof base sheet 10 is 500 g / m 2 or more, it becomes difficult to transport and the workability may be affected.
  • the total thickness of the roof base sheet 10 is preferably 200 to 1000 ⁇ m. There exists a possibility that the intensity
  • the tensile strength of the roof base sheet 10 is preferably 150 to 500 MPa. If the tensile strength of the roof base sheet 10 is less than 150 MPa, the strength required during construction may not be obtained. If the tensile strength of the roof base sheet 10 is greater than 500 MPa, it is difficult to cut during construction, and work efficiency may be reduced.
  • or Example 6 which concerns on this invention was produced, and the physical-property value was measured.
  • the roof base sheets of Comparative Examples 1 to 4 were prepared and the physical properties were measured.
  • Each physical property value in Examples and Comparative Examples was measured by the following method. (1) Tensile modulus of back film It was measured according to JIS K7161. (2) Tensile stress at 100% strain of back film Measured according to JIS K7161. (3) Flexural modulus of protective film Measured according to JIS K7171. (4) Type D durometer hardness of protective film Measured according to JIS K7215.
  • test sheet was fixed to the plywood by using No. 3 U staple nail (MAX, T3-10MB) specified in JIS-S6030, and the inner diameter was 4cm and the height was 200mm.
  • the edge portion of the acrylic cylinder in contact with the test sheet was sealed so that the staple nail was centered on the inner diameter of the cylinder.
  • water was put in a cylinder to a height of 150 mm by a method according to ISA 5430 5.6 and the Building Research Institute method, and the water reduction height mm after standing for 24 hours was measured.
  • the test sheet was fixed to the plywood with No. 3 U staple nail (MAX, T3-10MB) stipulated in JIS-S6030.
  • Example 1 A water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd.) comprising a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule (registered trademark) 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times.
  • Neo Sticker WP-01 was applied using a polyacrylic binder resin so that the solid content would adhere to 12 g / m 2 using a gravure coater.
  • the application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
  • This nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 ⁇ min, and a linear low density polyethylene film having a thickness of 80 ⁇ m (manufactured by Sakai Chemical Co., Ltd.) the surface film consisting of a density 0.95 g / cm 3) was laminated by a pressure roll.
  • Example 2 The back film was processed in the same manner as in Example 1 except that the back film was changed to a film having a thickness of 25 ⁇ m made of a linear low density polyethylene film having a tensile modulus of 383 MPa and a tensile stress at 100% strain of 11 MPa. A roof base sheet with 301 ⁇ m and a basis weight of 229 g / m 2 was obtained. The evaluation results are shown in Table 1.
  • Example 3 A water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd., Neo Sticker WP) made of a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. -01) was applied using a polyacrylic binder resin by a gravure coater so that the solid content was 12 g / m 2 . The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
  • Neo Sticker WP a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. -01) was applied using a polyacrylic binder resin by a gravure coater so that the
  • the surface of this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 ⁇ min, and a linear low density polyethylene film having a thickness of 80 ⁇ m (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll. Furthermore, from the linear low density polyethylene film having a tensile elastic modulus of 697 MPa and a tensile stress at 100% strain of 26 MPa formed on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin by a T-die extrusion method.
  • a 25 ⁇ m-thick back film is laminated and further formed by a T-die extrusion method, and a 25 ⁇ m-thickness film made of linear low-density polyethylene having a flexural modulus of 249 MPa and a type D durometer hardness of 66 is formed.
  • the protective film was laminated with a pressure roll having a dot-like embossment on the convex portion.
  • Example 4 The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 ⁇ m thick one made of linear low density polyethylene having a flexural modulus of 110 MPa and a type D durometer hardness of 51, and a thickness of 334 ⁇ m. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
  • Example 5 The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 ⁇ m thickness made of linear low density polyethylene having a flexural modulus of 327 MPa and a Type D durometer hardness of 60, and the thickness was 334 ⁇ m. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
  • Example 6 The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 ⁇ m thickness made of linear low density polyethylene having a flexural modulus of 86 MPa and a type D durometer hardness of 33, and the thickness was 334 ⁇ m. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
  • this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 ⁇ min, and a linear low density polyethylene film having a thickness of 80 ⁇ m (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll. Further, the non-woven fabric is formed of a linear low density polyethylene film having a tensile modulus of 1204 MPa and a tensile stress at 100% strain of 46 MPa formed by a T-die extrusion method on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin.
  • a back film having a thickness of 25 ⁇ m was laminated. Thereafter, 97 wt% of a modified polyolefin resin agent (Hirono Chemical Co., Ltd., Eulock P3639-2) was added to the corona-treated surface of the surface film by a gravure coater, and a thermal foaming agent microcapsule (Matsumoto Yushi Co., Ltd., Microsphere F-36D). 3 g / m 2 was applied to the surface and dried at 100 ° C. for 10 seconds to obtain a roof base sheet having a thickness of 301 ⁇ m and a basis weight of 229 g / m 2 . The evaluation results are shown in Table 1.
  • a water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd., Neo Sticker WP) made of a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. -01) was applied using a polyacrylic binder resin by a gravure coater so that the solid content was 12 g / m 2 . The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
  • This nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 ⁇ min, and a linear low density polyethylene film having a thickness of 80 ⁇ m (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll.
  • the non-woven fabric is formed of a linear low-density polyethylene film having a tensile modulus of 194 MPa and a tensile stress at 100% strain of 7 MPa, which is formed by a T-die extrusion method on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin.
  • a back film having a thickness of 25 ⁇ m was laminated.
  • 97 wt% of a modified polyolefin resin agent Hirono Chemical Co., Ltd., Eulock P3639-2
  • the roof base sheets according to Examples 1 to 6 have an initial water reduction amount of 1 to 13 mm in general and 3 to 44 mm even when pulled, and have excellent nail hole water stoppage. ing. Further, the tensile strength is as high as 286 to 467 N / 50 mm in the vertical direction and 160 to 272 N / 50 mm in the horizontal direction, and the strength is also excellent. Furthermore, the amount of water reduction after the durability test is usually 2 to 20 mm, and even when pulled, it is as small as 9 to 47 mm. And no seepage of the water-absorbing swelling resin is observed.
  • the roof base sheet of Comparative Example 1 having no back film is usually 15 mm in initial water loss, 71 mm after pulling, 17 mm after normal durability test, and 79 mm after pulling. Many are inferior in nail hole sealing. And seepage of the water-absorbing swelling resin is also seen.
  • the roof base sheet of Comparative Example 2 having no water-absorbing swelling resin has an initial water reduction amount of 94 mm, 107 mm after pulling, 101 mm after the endurance test, and 123 mm after pulling. Many are very inferior in nail hole sealing.
  • the roof base sheet of Comparative Example 3 where the tensile modulus of the back film is 1204 MPa and the tensile stress at 100% strain is as large as 46 MPa, the water-absorbing swelling resin oozes out.
  • the roof base sheet of Comparative Example 4 in which the tensile modulus of the back film is 194 MPa and the tensile stress at 100% strain is as small as 7 MPa, the initial water reduction amount is usually 20 mm, the tension is 52 mm, and the durability test. The amount of water loss afterwards is usually 34 mm, and the pulled water amount is as high as 78 mm. Furthermore, it is inferior also in strength, and the tensile strength retention after the durability test is as small as 85% in the vertical direction and 88% in the horizontal direction. And seepage of the water-absorbing swelling resin is also seen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A roof backing sheet (10) disposed on top of sarking (7), comprising: a non-woven fabric (4); a water-swelling resin (3) layer disposed on the opposite side to the sarking (7) for the non-woven fabric (4); a surface film (2) anti-slip treated on the opposite side to the sarking (7) and laminated on the water-swelling resin (3) layer; a rear surface film (5) with a tensile elastic modulus of 300-1,000 MPa and a tensile stress of 10-40 MPa at 100% distortion and laminated on the sarking (7) side of the non-woven fabric (4); and a protective film (6). The roof backing sheet is light-weight, which enables easily installation of same on the sarking (7) during house construction, has excellent cut-off properties against water from nail holes etc., which enables prevention of water incursion from rain during construction or from gaps in tiles after roofing material has been fitted, and has excellent durability.

Description

屋根下地シート及びその製造方法Roof base sheet and manufacturing method thereof
 本発明は、屋根下地シート及びその製造方法に関する。 The present invention relates to a roof base sheet and a manufacturing method thereof.
 住宅の屋根は、瓦やスレート、コロニアル、金属板等の屋根材で被覆されている。しかし、屋根材だけでは雨水の浸入を完全に防止することは困難である。そこで、野地板と屋根材の間に、アスファルトルーフィング(JIS-A6005規定)、ゴム改質アスファルトルーフィング(JIS-A6013規定)等から形成された屋根下地シートを葺くことで防水性を向上させていた。
 しかし、これらの屋根下地シートは、目付が約1kg/m以上と重い。このため、屋根に持ち上げるのが困難であり、また、アスファルトによって手や野地板が汚れ易いという問題があった。
 また、冬などの低温時には、折れ曲がった際に亀裂が入り易く、釘やタッカー等で固定する際にも破れて漏水するおそれがあった。
 さらに、長期間使用することにより、気候による寒暖の差により屋根下地シートが伸縮し亀裂が生じたり、寒暖の差や太陽熱等の影響で屋根下地シートが収縮し亀裂が生じたり、屋根下地シート同士の重ね合わせ部分に隙間が生じて漏水したり、アスファルトから油分が抜けて脆くなって亀裂が生じたりするおそれがあった。
The roof of a house is covered with roofing materials such as tiles, slate, colonial, metal plates. However, it is difficult to completely prevent the intrusion of rainwater only with the roofing material. Therefore, the waterproof property is improved by spreading a roof base sheet made of asphalt roofing (JIS-A6005 standard), rubber modified asphalt roofing (JIS-A6013 standard), etc. between the base plate and the roofing material. It was.
However, these roof base sheet, basis weight of about 1kg / m 2 or more and heavy. For this reason, it was difficult to lift to the roof, and there was a problem that hands and field boards were easily soiled by asphalt.
Further, at low temperatures such as in winter, cracks are likely to occur when bent, and there is a risk of tearing and water leakage when fixing with nails or tuckers.
In addition, when used for a long period of time, the roof base sheet expands and contracts due to the difference in temperature depending on the climate, or the roof base sheet contracts and cracks due to the influence of the temperature difference and solar heat, etc. There was a risk that a gap would occur in the overlapped portion of the water and water leaked, or that oil would fall out of the asphalt and become brittle and cracked.
 これらの問題を解決するものとして、アスファルト系やゴム改質アスファルト系の材料を用いない屋根下地シートが開発されている。例えば、特許文献1にはフラッシュ紡糸法によるポリオレフィン系不織布を用いた屋根下地シートが記載されている。しかし、この不織布シートは野地板に固定するために釘等を打ち込むと、釘穴部から破れ漏水し易くなる。 To solve these problems, roof base sheets that do not use asphalt or rubber-modified asphalt materials have been developed. For example, Patent Document 1 describes a roof base sheet using a polyolefin-based nonwoven fabric by flash spinning. However, when this non-woven sheet is driven into a nail or the like to be fixed to the base plate, the non-woven sheet is easily broken and leaked from the nail hole.
 また、特許文献2には、布帛の表面に粘着性を有する樹脂層を有し、その上に粘着性の少ない樹脂層を有する屋根下葺材が記載されている。しかし、この屋根下葺材は、太陽光などの熱により粘着性を有する樹脂が布帛の裏面に染み出し野地板と接着してしまうため、十分な止水性が得られない。また、施工時に屋根下葺材上を歩行した際等に、釘穴部に荷重が掛かって釘穴部が拡がり止水性を損なう。 Further, Patent Document 2 describes a roofing roof material having a resin layer having adhesiveness on the surface of a fabric and having a resin layer having little adhesiveness thereon. However, in this roof underlaying material, a resin having adhesiveness oozes out to the back surface of the fabric due to heat such as sunlight and adheres to the base plate, so that sufficient waterproofing cannot be obtained. In addition, when walking on the roof under the roofing material during construction, a load is applied to the nail hole portion, and the nail hole portion expands to impair the water stoppage.
 また、特許文献3には、フラッシュ紡糸法による三次元網目状の不織布の表面の少なくとも釘打ち込み部分に伸縮性と粘着性とを有する樹脂が塗布された屋根下地シートが記載されている。しかし、伸縮性と粘着性とを有する樹脂は熱による影響が大きく、長期的に釘穴止水性を維持することができない。また、雨天時には粘着性が無くなるため、施工中に滑り易くなるという問題がある。 Further, Patent Document 3 describes a roof base sheet in which a resin having stretchability and adhesiveness is applied to at least a nail driving portion on the surface of a three-dimensional mesh-like nonwoven fabric by a flash spinning method. However, the resin having stretchability and adhesiveness is greatly affected by heat, and cannot maintain the nail hole water resistance for a long time. In addition, there is a problem that it becomes slippery during construction because it is not sticky when it rains.
 また、特許文献4には、ゴム系シートに細孔を穿孔した建材用透湿・防水性シートが記載されている。しかし、この構造では、耐水性が不十分である。また、このシートを透湿・防水性の不織布とラミネートしても、釘やタッカーなどにより生じた隙間を十分に埋めることができず、釘穴止水性を十分に確保することができない。 Patent Document 4 describes a moisture-permeable and waterproof sheet for building materials in which pores are perforated in a rubber-based sheet. However, this structure has insufficient water resistance. Further, even if this sheet is laminated with a moisture permeable / waterproof nonwoven fabric, the gap generated by the nail or the tucker cannot be sufficiently filled, and the nail hole water blocking ability cannot be sufficiently secured.
特開平2-118177号公報Japanese Patent Laid-Open No. 2-118177 特開平2-269277号公報JP-A-2-269277 特開平4-309649号公報JP-A-4-309649 特開平9-324062号公報JP 9-324062 A
 本発明は、かかる問題点に鑑みてなされたものであって、軽量で作業性が良く、雨天時の防滑性の低下が少なく、釘穴止水性及びその耐久性に優れている屋根下地シートを提供することを目的とする。また、本発明は、防水性に優れた屋根下地シートを提供することを目的とする。さらに、本発明は、防水性に優れた屋根下地シートの製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and is a lightweight and easy-to-operate roof base sheet that is excellent in nail hole water stoppage and its durability, with little deterioration in slip resistance in rainy weather. The purpose is to provide. Moreover, an object of this invention is to provide the roof base sheet excellent in waterproofness. Furthermore, an object of this invention is to provide the manufacturing method of the roof base sheet excellent in waterproofness.
 上記目的を達成するために、本発明の第1の視点に係る屋根下地シートは、
 野地板の上に設けられる屋根下地シートにおいて、
 不織布と、
 該不織布の前記野地板とは反対側に設けられた吸水膨潤樹脂の層と、
 該吸水膨潤樹脂の層に積層された前記野地板とは反対側が防滑処理されてなる表面フィルムと、
 前記不織布の前記野地板側に積層された引張弾性率が300~1000MPaで、100%歪み時引張応力が10~40MPaである裏面フィルムと、
を備える。
In order to achieve the above object, the roof base sheet according to the first aspect of the present invention is:
In the roof base sheet provided on the field plate,
Non-woven fabric,
A layer of water-absorbing swelling resin provided on the side opposite to the base plate of the nonwoven fabric;
A surface film having a non-slip treatment on the side opposite to the base plate laminated on the layer of the water-absorbing swelling resin;
A back film having a tensile modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa laminated on the base plate side of the nonwoven fabric;
Is provided.
 ここで、屋根下地シートは、裏面フィルムの野地板側に保護フィルムが積層されてなることが好ましい。
 また、保護フィルムの曲げ弾性率が100~300MPaで、タイプDデュロメーター硬さが50以上であることが好ましい。
 また、表面フィルムの防滑処理がエンボス加工、活性化処理及び樹脂付与処理によることが好ましい。
 また、表面フィルム表面に発泡樹脂または中空微小球が積層されてなることが好ましい。
 また、裏面フィルムまたは保護フィルムの野地板側が防滑処理されてなることが好ましい。
 また、裏面フィルムまたは保護フィルムの防滑処理がエンボス加工、活性化処理及び樹脂付与処理によることが好ましい。
 また、表面フィルムが直鎖状低密度ポリエチレンフィルムであることが好ましい。
Here, the roof base sheet is preferably formed by laminating a protective film on the base plate side of the back film.
The protective film preferably has a flexural modulus of 100 to 300 MPa and a Type D durometer hardness of 50 or more.
Further, it is preferable that the anti-slip treatment of the surface film is performed by embossing, activation treatment, and resin application treatment.
Further, it is preferable that foamed resin or hollow microspheres are laminated on the surface film surface.
Moreover, it is preferable that the field board side of a back film or a protective film is anti-slip processed.
Moreover, it is preferable that the anti-slip | slipping process of a back surface film or a protective film is based on embossing, activation process, and resin provision process.
Moreover, it is preferable that a surface film is a linear low density polyethylene film.
 また、上記目的を達成するために、本発明の第2の視点に係る屋根下地シートの製造方法は、
 野地板の上に設けられる屋根下地シートの製造方法において、
 不織布の前記野地板とは反対側に吸水膨潤樹脂の層を設ける工程と、
 該吸水膨潤樹脂の層に表面フィルムを積層する工程と、
 該表面フィルムの前記野地板とは反対側を防滑処理する工程と、
 前記不織布の前記野地板側に引張弾性率が300~1000MPaで、100%歪み時引張応力が10~40MPaである裏面フィルムを積層する工程と、
を備える。
Moreover, in order to achieve the said objective, the manufacturing method of the roof base sheet which concerns on the 2nd viewpoint of this invention,
In the manufacturing method of the roof base sheet provided on the base plate,
Providing a layer of water-absorbing swelling resin on the opposite side of the non-woven fabric base plate,
Laminating a surface film on the layer of the water-absorbing swelling resin;
A step of anti-slip treatment on the side opposite to the base plate of the surface film;
Laminating a back film having a tensile modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa on the base plate side of the nonwoven fabric;
Is provided.
 ここで、屋根下地シートの製造方法は、さらに、裏面フィルムの野地板側に保護フィルムを積層する工程を備えることが好ましい。 Here, it is preferable that the method for manufacturing the roof base sheet further includes a step of laminating a protective film on the base plate side of the back film.
 本発明の屋根下地シートは、吸水膨潤樹脂と裏面フィルムの2層の止水層により優れた止水性を示す。不織布に配置された吸水膨潤樹脂が、釘穴などから漏れた水分を吸水膨潤し水分の浸透を防止し、さらに、裏面フィルムが、釘打ちの際に釘にまとわりつくため、釘穴周りの止水性能に優れたものとなる。
 また、吸水した吸水膨潤樹脂は、表面フィルム及び裏面フィルムがあるため屋根下地シートの表面や野地板側に染み出すことが無く、染み出した吸水膨潤樹脂により作業者が滑るなどの危険を防止できる。さらに、野地板が腐食するのを効果的に防止することができる。
The roof base sheet of the present invention exhibits excellent water stoppage due to the two waterstop layers of the water-absorbing swelling resin and the back film. The water-absorbing and swelling resin placed on the nonwoven fabric absorbs and swells moisture leaked from the nail holes and prevents moisture from penetrating, and the back film clings to the nail when nailing. Excellent performance.
In addition, the water-absorbing swelling resin that has absorbed water has a surface film and a back film, so that it does not ooze out to the surface of the roof base sheet or the base plate side, and it is possible to prevent danger such as the operator slipping due to the water-absorbing swelling resin that has oozed out. . Furthermore, it is possible to effectively prevent the base plate from corroding.
本発明の実施形態に係る屋根下地シートの断面を示す断面図である。It is sectional drawing which shows the cross section of the roof base sheet which concerns on embodiment of this invention.
 本発明の実施形態に係る屋根下地シートについて、図1を参照して説明する。図1に示されるように、本実施形態に係る屋根下地シート10は、野地板7の上に設置される。不織布4の上に、吸水膨潤樹脂3の層が形成される。吸水膨潤樹脂3の層には、表面フィルム2が積層される。表面フィルム2の表面は、防滑処理されて防滑層1を形成する。不織布4の下には、裏面フィルム5が積層される。裏面フィルム5の下には、保護フィルム6が積層される。 The roof base sheet according to the embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the roof base sheet 10 according to the present embodiment is installed on a field board 7. A layer of the water-absorbing swelling resin 3 is formed on the nonwoven fabric 4. The surface film 2 is laminated on the layer of the water-absorbing swelling resin 3. The surface of the surface film 2 is anti-slip treated to form the anti-slip layer 1. A back film 5 is laminated under the nonwoven fabric 4. A protective film 6 is laminated under the back film 5.
 屋根下地シート10の表面フィルム2は、融点が100℃以上である樹脂からなることが好ましく、さらに、融点が110℃以上である樹脂からなることが好ましい。樹脂の融点が100℃未満では、瓦等の屋根材が日射により高温になるので、熱で軟化・溶融するおそれがある。このような樹脂としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリ酢酸ビニル、エチレン酢酸ビニルコポリマー、ポリビニルアルコール等の酢酸ビニル系樹脂、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル系樹脂やポリウレタン系樹脂等が挙げられる。特に、成形性、柔軟性、引裂強度、熱耐久性、活性化処理性がよい直鎖状低密度ポリエチレンが好ましく用いられる。 The surface film 2 of the roof base sheet 10 is preferably made of a resin having a melting point of 100 ° C. or higher, and more preferably made of a resin having a melting point of 110 ° C. or higher. When the melting point of the resin is less than 100 ° C., roofing materials such as tiles become high temperature due to solar radiation, which may cause softening and melting by heat. Examples of such resins include polyolefin resins such as polypropylene and polyethylene, polyvinyl acetate, ethylene vinyl acetate copolymers, vinyl acetate resins such as polyvinyl alcohol, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, Examples thereof include polyester resins such as polybutylene naphthalate and polyurethane resins. In particular, linear low density polyethylene having good moldability, flexibility, tear strength, heat durability, and activation processability is preferably used.
 表面フィルム2の厚みは50~300μmであることが好ましく、特に70~100μmであることが好ましい。表面フィルム2の厚みが50μm未満では、十分な引裂強度が得にくく、作業者が屋根下地シート上で作業した際に破れやすい。また、表面フィルム2の厚みが50μm未満では、屋根下地シート10を野地板7に釘等で固定する際に破れるおそれがあり、吸水膨潤樹脂3が吸水膨潤した際に、表面フィルム2の破れた部分から吸水膨潤樹脂3が染み出し、防水性や防滑性が損なわれる可能性がある。さらに、表面フィルム2の厚みが50μm未満では、後述する活性化処理の際にも穴が開くおそれがある。一方、表面フィルム2の厚みが300μmより厚くなると屋根下地シート10自体が硬く巻きにくくなり、さらに重くなるため、施工性が悪くなる可能性がある。 The thickness of the surface film 2 is preferably 50 to 300 μm, particularly preferably 70 to 100 μm. When the thickness of the surface film 2 is less than 50 μm, it is difficult to obtain a sufficient tear strength, and it is easy to tear when an operator works on the roof base sheet. Further, when the thickness of the surface film 2 is less than 50 μm, there is a risk of tearing when the roof base sheet 10 is fixed to the base plate 7 with a nail or the like, and when the water-absorbing swelling resin 3 is swollen by water absorption, the surface film 2 is torn. There is a possibility that the water-absorbing swelling resin 3 oozes out from the portion, and the waterproofness and anti-slip property are impaired. Furthermore, if the thickness of the surface film 2 is less than 50 μm, there is a possibility that a hole will be opened during the activation process described later. On the other hand, when the thickness of the surface film 2 is greater than 300 μm, the roof base sheet 10 itself is hard and difficult to wind and becomes heavier, so that the workability may be deteriorated.
 表面フィルム2の野地板7とは反対側は、防滑処理されて防滑層1を形成している。防滑処理としては表面フィルム2にエンボス加工を施したり、活性化処理を施したり、合成樹脂を付与して凹凸を形成する方法などが挙げられ、これらを併用することが好ましい。
 エンボス加工による凹凸高さは20~200μmが好ましく、50~100μmがより好ましい。凹凸高さが20μm未満であると十分な防滑性を得られないおそれがある。また、凹凸高さが200μmより大きいと、靴底との接触部分が凸面のみとなり、接触面積が小さくなることで防滑性が損なわれるおそれがある。
The side opposite to the base plate 7 of the surface film 2 is anti-slip treated to form the anti-slip layer 1. Examples of the anti-slip treatment include embossing the surface film 2, an activation treatment, and a method of forming an unevenness by applying a synthetic resin, and these are preferably used in combination.
The height of the unevenness by embossing is preferably 20 to 200 μm, more preferably 50 to 100 μm. If the uneven height is less than 20 μm, sufficient anti-slip properties may not be obtained. Moreover, when uneven | corrugated height is larger than 200 micrometers, there exists a possibility that slipperiness may be impaired because a contact part with a shoe sole becomes only a convex surface and a contact area becomes small.
 エンボスの柄としては、格子状、ひし形状、丸型ドット状、ダイヤ型ドット状、などが挙げられるが、防滑性が発揮されるならば、特に形状やドット数、大きさ等は限定されない。
 また、防滑性を付与するために凹凸を形成するために付与する合成樹脂としては、ポリオレフィン系、ポリエステル系、アクリル系の合成樹脂が挙げられる。特に、密着性、防滑性、撥水性が得やすい点で変性ポリオレフィン系合成樹脂が好ましい。
Examples of the embossed pattern include a lattice shape, a rhombus shape, a round dot shape, and a diamond dot shape. However, the shape, the number of dots, the size, and the like are not particularly limited as long as anti-slip properties are exhibited.
Moreover, as a synthetic resin provided in order to form an unevenness | corrugation in order to provide anti-slip property, polyolefin-type, polyester-type, and acrylic-type synthetic resins are mentioned. In particular, a modified polyolefin synthetic resin is preferable in terms of easy adhesion, slip resistance, and water repellency.
 また、合成樹脂を付与する際に、表面フィルム2に活性化処理を行うことが好ましい。活性化処理は表面フィルム2の表面の濡れ性を改善するものであり、表面フィルム2と防滑性付与のための合成樹脂との密着性を上げるために施される。
 活性化処理としては、コロナ処理、プラズマ処理、グロー処理やオゾン処理等が挙げられる。コロナ処理はコロナ処理機により常圧空気中で放電する方式により行うことができる。プラズマ処理はプラズマ放電機により常圧空気中または窒素、アルゴン等の不活性ガス雰囲気中で放電する方式により行うことができる。その他グロー処理、オゾン処理についても、常法に従って行うことができる。これら活性化処理のなかでも、コロナ処理が設備費用や加工費の点で好適に用いられる。
Moreover, it is preferable to perform an activation treatment on the surface film 2 when applying the synthetic resin. The activation treatment is to improve the wettability of the surface of the surface film 2 and is performed to increase the adhesion between the surface film 2 and a synthetic resin for imparting anti-slip properties.
Examples of the activation treatment include corona treatment, plasma treatment, glow treatment, and ozone treatment. The corona treatment can be performed by a method in which discharge is performed in atmospheric pressure with a corona treatment machine. The plasma treatment can be performed by a method in which discharge is performed in a normal pressure air or an inert gas atmosphere such as nitrogen or argon by a plasma discharge machine. Other glow treatments and ozone treatments can also be performed according to conventional methods. Among these activation treatments, corona treatment is preferably used in terms of equipment costs and processing costs.
 また、活性化処理により、表面フィルム2の防滑層1の濡れ性が34~42dyneになるように処理されることが好ましい。例えば、コロナ処理においては、放電量は80~200W/m・min、好ましくは120~180W/m・minである。放電量が80W/m・min未満では、合成樹脂を付与した際に樹脂の密着性が十分に得られず、施工時に作業者が屋根下地シート10上を歩いた際に合成樹脂が剥がれてしまうおそれがある。一方、放電量が200W/m・minを超えると、表面フィルム2の強度が低下し、施工時に破れるおそれがある。 Further, it is preferable that the wettability of the anti-slip layer 1 of the surface film 2 is 34 to 42 dyne by the activation treatment. For example, in the corona treatment, the discharge amount is 80 to 200 W / m 2 · min, preferably 120 to 180 W / m 2 · min. When the discharge amount is less than 80 W / m 2 · min, the resin adhesion is not sufficiently obtained when the synthetic resin is applied, and the synthetic resin is peeled off when the worker walks on the roof base sheet 10 during construction. There is a risk that. On the other hand, when the discharge amount exceeds 200 W / m 2 · min, the strength of the surface film 2 is lowered and may be broken during construction.
 防滑性を付与するために表面フィルム2に凹凸を形成するための合成樹脂は、溶剤を溶媒とした樹脂溶液として付与されることが好ましい。用いられる溶剤としては、トルエン、酢酸エチル、メチルエチルケトン(MEK)、N,N-ジメチルホルムアミド(DMF)などを用いることが好ましい。
 該合成樹脂の付与量は樹脂固形分で1~15g/mが好ましく、より好ましくは5~10g/mである。合成樹脂の付与量が1g/m未満であると充分に防滑性を発揮できないおそれがある。一方、合成樹脂の付与量が15g/mより多いとフィルム表面のエンボス加工の凹凸部が埋まり、防滑性が発揮しにくくなるおそれがある。
 該合成樹脂の付与方法としてはコーティング法、グラビアロール法、スクリーン捺染法等などが用いられる。
 表面フィルム2の上に形成される防滑性付与合成樹脂の厚さは2~14μmであることが好ましい。また、防滑層1の表面と作業者の靴底素材として使用されている合成ゴムとの静摩擦係数が0.50以上になることが好ましい。
The synthetic resin for forming irregularities on the surface film 2 in order to impart anti-slip properties is preferably applied as a resin solution using a solvent as a solvent. As the solvent used, it is preferable to use toluene, ethyl acetate, methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF) or the like.
The applied amount of the synthetic resin is preferably 1 to 15 g / m 2 , more preferably 5 to 10 g / m 2 in terms of resin solids. If the applied amount of the synthetic resin is less than 1 g / m 2 , the anti-slip property may not be exhibited sufficiently. On the other hand, when the applied amount of the synthetic resin is more than 15 g / m 2 , the embossed uneven portions on the film surface are filled, and the anti-slip property may be hardly exhibited.
As a method for applying the synthetic resin, a coating method, a gravure roll method, a screen printing method, or the like is used.
The thickness of the anti-slip imparting synthetic resin formed on the surface film 2 is preferably 2 to 14 μm. Moreover, it is preferable that the static friction coefficient of the surface of the anti-slip layer 1 and the synthetic rubber used as the shoe sole material of the worker is 0.50 or more.
 この樹脂溶液に熱発泡性マイクロカプセル等の発泡樹脂や中空微小球を1~3wt%混入することによって、さらに防滑性を向上させることができる。熱発泡性マイクロカプセルや中空微小球の混入率が1wt%未満であると発泡が不十分で防滑性が弱くなるおそれがある。一方、混入率が3wt%より多いと、該樹脂と表面フィルム2との間に隙間ができ、該樹脂が脱落しやすくなるおそれがある。
 該マイクロカプセルや中空微小球の平均粒子径は10~20μmであることが好ましい。平均粒子径が10μm未満であると、形成する凹凸が微細になるため滑り止め効果が弱くなるおそれがある。一方、平均粒子径が20μmより大きいと凹凸が大きくなり、接触面積が減少することで滑り止め効果が弱くなるおそれがある。
The anti-slip property can be further improved by mixing 1 to 3 wt% of a foamed resin such as a heat-foamable microcapsule or hollow microspheres in this resin solution. If the mixing ratio of the thermally foamable microcapsules or hollow microspheres is less than 1 wt%, foaming may be insufficient and slip resistance may be reduced. On the other hand, if the mixing rate is more than 3 wt%, a gap is formed between the resin and the surface film 2, and the resin may easily fall off.
The average particle diameter of the microcapsules or hollow microspheres is preferably 10 to 20 μm. If the average particle diameter is less than 10 μm, the unevenness to be formed becomes fine, and the anti-slip effect may be weakened. On the other hand, when the average particle size is larger than 20 μm, the unevenness increases, and the contact area decreases, which may weaken the anti-slip effect.
 熱発泡性マイクロカプセルとしては、例えば、芯物質としてn-ブタン、i-ブタン、ペンタン、ネオペンタンのような低沸点の炭化水素を内包し、壁膜剤として塩化ビニリデン、アクリロニトリル、メチルメタクリレートのような(メタ)アクリル酸エステル、スチレンのような芳香族ビニル化合物等を主成分とする熱可塑性樹脂を使用したマイクロカプセルが用いられる。市販のものとしては、マツモトマイクロスフェア(登録商標)F(松本油脂製薬株式会社製)、エクスパンセルWU(エクスパンセル社製)が挙げられる。また、中空微小球としては、グラスバブルス(住友スリーエム株式会社製 ガラス微小中空球)等が挙げられる。
 また、マイクロカプセルの発泡は、該カプセル含有樹脂溶液を付与後加熱することにより行われる。その際の加熱温度は使用するカプセル膜壁の軟化温度や処理時間などにより適宜に選択すればよいが前記市販のカプセルの場合は70~170℃に設定することが好ましい。加熱方法としては熱風、熱ロール、赤外線ヒーターやマイクロ波など従来公知の方法が用いられる。
Examples of thermally foamable microcapsules include low-boiling hydrocarbons such as n-butane, i-butane, pentane and neopentane as the core material, and vinylidene chloride, acrylonitrile and methyl methacrylate as the wall film agent. A microcapsule using a thermoplastic resin whose main component is an aromatic vinyl compound such as (meth) acrylic acid ester or styrene is used. Examples of commercially available products include Matsumoto Microsphere (registered trademark) F (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) and EXPANSEL WU (manufactured by EXPANSEL). Examples of the hollow microsphere include glass bubbles (glass micro hollow sphere manufactured by Sumitomo 3M Limited).
The microcapsules are foamed by heating after applying the capsule-containing resin solution. The heating temperature at that time may be appropriately selected depending on the softening temperature of the capsule membrane wall to be used, the treatment time, etc. In the case of the commercially available capsule, it is preferably set to 70 to 170 ° C. As a heating method, a conventionally known method such as hot air, a hot roll, an infrared heater or a microwave is used.
 屋根下地シート10に使用される不織布4は、ポリエステル系、ポリアミド系、または、ポリオレフィン系のフィラメント繊維から構成されることが好ましい。特に、強度と耐久性の面からポリエステル系繊維が好ましく用いられる。
 不織布4の種類としては、スパンボンド、ケミカルボンド、サーマルボンド、スパンレース、ニードルパンチなどが挙げられる。特に、強度や後加工性の点からスパンボンドが好ましい。
 不織布4の目付は40~200g/mが好ましく、より好ましくは60~100g/mである。不織布4の目付が40g/m未満では、屋根下地シート10として必要な強度が確保できないおそれがある。一方、不織布4の目付が200g/m以上では目付が大きくなるため、施工性を損なうおそれがある。
It is preferable that the nonwoven fabric 4 used for the roof base sheet 10 is comprised from a polyester-type, polyamide-type, or polyolefin-type filament fiber. In particular, polyester fibers are preferably used in terms of strength and durability.
Examples of the nonwoven fabric 4 include spun bond, chemical bond, thermal bond, spun lace, and needle punch. In particular, spunbond is preferable from the viewpoint of strength and post-processability.
The basis weight of the nonwoven fabric 4 is preferably 40 to 200 g / m 2 , more preferably 60 to 100 g / m 2 . If the basis weight of the nonwoven fabric 4 is less than 40 g / m 2 , the strength required for the roof base sheet 10 may not be ensured. On the other hand, when the basis weight of the nonwoven fabric 4 is 200 g / m 2 or more, the basis weight becomes large, so that the workability may be impaired.
 屋根下地シート10の吸水膨潤樹脂3の層は、不織布4の野地板7とは反対側に形成され、水と接触した場合水を吸収し膨潤して非流動状態を維持しうる吸水膨潤樹脂3からなるものであればよい。典型的には、水溶性の電解質ポリマーに架橋結合を導入したものであり、天然吸水膨潤樹脂や合成吸水膨潤樹脂のいずれも用いることができる。
 天然吸水膨潤樹脂の例としては、デンプン系であるデンプン-アクリロニトリルグラフト重合体加水分解物、デンプン-アクリル酸グラフト重合体等、セルロース系であるセルロース-アクリロニトリルグラフト重合体、カルボキシメチルセルロースの架橋体等、その他の多糖類系であるヒアルロン酸、アガロース等、タンパク質系であるコラーゲン等の樹脂が挙げられる。
 合成吸水膨潤樹脂の例としては、ポリビニルアルコール系であるポリビニルアルコール架橋重合体等、アクリル系であるポリアクリル酸塩架橋体、アクリル酸ナトリウム-ビニルアルコール共重合体等、ポリエーテル系であるポリエチレングリコールジアクリレート架橋重合体等、その他の付加重合体では無水マレイン酸系重合体、ビニルピロリドン系重合体等、その他縮合系樹脂等が挙げられる。
The layer of the water-absorbing swelling resin 3 of the roof base sheet 10 is formed on the side opposite to the base plate 7 of the non-woven fabric 4, and absorbs water and swells when kept in contact with water to maintain a non-flowing state. Anything consisting of can be used. Typically, a water-soluble electrolyte polymer is introduced with a crosslink, and either a natural water-absorbing swelling resin or a synthetic water-absorbing swelling resin can be used.
Examples of natural water-absorbing swelling resins include starch-based acrylonitrile graft polymer hydrolyzate, starch-acrylic acid graft polymer, cellulose-based cellulose-acrylonitrile graft polymer, cross-linked carboxymethyl cellulose, etc. Other polysaccharides such as hyaluronic acid and agarose, and proteins such as collagen are listed.
Examples of synthetic water-absorbing swelling resins include polyvinyl alcohol-based polyvinyl alcohol cross-linked polymers, acrylic-based polyacrylate cross-linked products, sodium acrylate-vinyl alcohol copolymers, etc., polyether-based polyethylene glycol Other addition polymers such as diacrylate cross-linked polymers include maleic anhydride polymers, vinyl pyrrolidone polymers, and other condensation resins.
 屋根下地シート10に用いられる吸水膨潤樹脂3の吸水膨潤倍率は200倍以上であることが好ましく、より好ましくは400倍以上である。吸水膨潤倍率が200倍未満では、釘穴に水が浸入した際に水を吸収しても隙間を十分に充填できずに漏水するおそれがある。
 吸水膨潤樹脂3はバインダー樹脂を介して不織布4に固着させることが好ましい。使用できるバインダー樹脂としては、ビニル系樹脂、ウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、エステル系樹脂等が採用される。特に、加工時の取扱性のよさやコストの点で、アクリル系樹脂が好ましく使用される。
 固着方法としては、例えば、吸水膨潤樹脂3とバインダー樹脂とトルエンなどの溶剤からなる樹脂液をコーティング法、グラビアロール法、スクリーン捺染法等の方法により不織布4へ付与し、樹脂液付与後熱処理をして固化させる方法が挙げられるが、特に限定はされない。
The water absorption swelling ratio of the water absorbent swelling resin 3 used for the roof base sheet 10 is preferably 200 times or more, and more preferably 400 times or more. When the water absorption swelling ratio is less than 200 times, there is a possibility that water may leak due to insufficient filling of the gap even if water is absorbed when water enters the nail hole.
The water-absorbing swelling resin 3 is preferably fixed to the nonwoven fabric 4 through a binder resin. Examples of binder resins that can be used include vinyl resins, urethane resins, silicone resins, acrylic resins, epoxy resins, ester resins, and the like. In particular, an acrylic resin is preferably used from the viewpoint of good handleability during processing and cost.
As the fixing method, for example, a resin liquid comprising a water-absorbing swelling resin 3, a binder resin, and a solvent such as toluene is applied to the non-woven fabric 4 by a method such as a coating method, a gravure roll method, a screen printing method, etc. However, it is not particularly limited.
 吸水膨潤樹脂3の不織布4に対する塗布面積割合は不織布4の40~90%であることが好ましい。塗布面積割合が40%未満であると、止水性が得られないおそれがある。一方、塗布面積割合が90%より大きいと、吸水膨潤時に不織布4から剥がれ落ちるおそれがある。
 吸水膨潤樹脂3の不織布4への塗布量は、樹脂固形分で5~40g/mが好ましい。より好ましくは、10~30g/mである。塗布量が5g/m未満であると釘穴に水が浸入した際に、水を吸収しても隙間を十分に充填することができず、漏水するおそれがある。塗布量が40g/mより多いと水を吸収した吸水膨潤樹脂3により表面フィルム層2と不織布4が剥離するおそれがある。
The application area ratio of the water-absorbing swelling resin 3 to the nonwoven fabric 4 is preferably 40 to 90% of the nonwoven fabric 4. If the coating area ratio is less than 40%, there is a possibility that water-stopping property cannot be obtained. On the other hand, if the coating area ratio is greater than 90%, the nonwoven fabric 4 may be peeled off during water absorption swelling.
The amount of the water-absorbing swelling resin 3 applied to the nonwoven fabric 4 is preferably 5 to 40 g / m 2 in terms of resin solids. More preferably, it is 10 to 30 g / m 2 . When the coating amount is less than 5 g / m 2 , when water enters the nail hole, even if water is absorbed, the gap cannot be sufficiently filled and water may leak. If the coating amount is more than 40 g / m 2, the surface film layer 2 and the nonwoven fabric 4 may be peeled off by the water-absorbing swelling resin 3 that has absorbed water.
 屋根下地シート10において、表面フィルム2と吸水膨潤樹脂3の層を有する不織布4との積層は、表面フィルム2をTダイで製膜したものを該不織布4と熱融着により積層したり、表面フィルム2と該不織布4をバインダー樹脂を用いて積層する方法などが挙げられるが、特に限定されるものではない。
 用いられるバインダー樹脂としては、ビニル系樹脂、ウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、エステル系樹脂等が採用される。特に、加工時の取扱性のよさやコストの点で、アクリル系樹脂が好ましく使用される。
 バインダー樹脂層の厚みは15~50μmであることが好ましく、25~35μmであることがより好ましい。15μm未満では、充分な接着強度が得られずに剥離するおそれがある。50μmより大きいと、目付が大きくなり施工性が悪くなるおそれがある。
In the roof base sheet 10, the lamination of the surface film 2 and the nonwoven fabric 4 having the layer of the water-absorbing swelling resin 3 is performed by laminating the surface film 2 with a T-die by heat fusion or Although the method of laminating | stacking the film 2 and this nonwoven fabric 4 using binder resin is mentioned, it does not specifically limit.
As the binder resin to be used, vinyl resin, urethane resin, silicone resin, acrylic resin, epoxy resin, ester resin and the like are employed. In particular, an acrylic resin is preferably used from the viewpoint of good handleability during processing and cost.
The thickness of the binder resin layer is preferably 15 to 50 μm, and more preferably 25 to 35 μm. If the thickness is less than 15 μm, sufficient adhesive strength may not be obtained and peeling may occur. When it is larger than 50 μm, the basis weight is increased and the workability may be deteriorated.
 屋根下地シート10において、裏面フィルム5は、屋根下地シート10を釘、タッカー等で野地板7に打ち付ける際にできる屋根下地シート10の釘穴部分において、釘に追従し釘穴周りの止水機能を発揮する。それとともに、吸水膨潤樹脂3が吸水膨潤した際に、吸水膨潤樹脂3の染み出しによる野地板7の腐食を防止する。屋根下地シート10に用いる裏面フィルム5の引張弾性率は300~1000MPaで、100%歪み時の引張応力は10~40MPaであることが必要である。 In the roof base sheet 10, the back film 5 follows the nail at the nail hole portion of the roof base sheet 10 that is formed when the roof base sheet 10 is hit against the base plate 7 with a nail, tucker or the like, and has a water-stop function around the nail hole. Demonstrate. At the same time, when the water-absorbing swelling resin 3 is water-absorbing and swelling, the base plate 7 is prevented from corroding due to the seepage of the water-absorbing swelling resin 3. The tensile modulus of the back film 5 used for the roof base sheet 10 is 300 to 1000 MPa, and the tensile stress at 100% strain is 10 to 40 MPa.
 引張弾性率が300MPa未満であると、施工時に裏面フィルム5が破れやすく、止水性が得られない。一方、引張弾性率が1000MPaより大きいと、施工の際に裏面フィルム5が釘に追従しにくくなり十分な止水性が得られない。また、裏面フィルム5の100%歪み時の引張応力が10MPa未満であると、施工の際に釘周りの締め付け効果が得られないため止水効果が得られにくい。一方、裏面フィルム5の100%歪み時の引張応力が40MPaより大きいと、施工時に裏面フィルム5が伸びにくく、裏面フィルム5が釘に追従しにくいため、十分な釘穴止水効果が得られない。 When the tensile elastic modulus is less than 300 MPa, the back film 5 is easily broken at the time of construction, and water stoppage cannot be obtained. On the other hand, if the tensile modulus is greater than 1000 MPa, the back film 5 hardly follows the nail during construction, and sufficient water stoppage cannot be obtained. Further, if the tensile stress at the time of 100% strain of the back film 5 is less than 10 MPa, a tightening effect around the nail cannot be obtained at the time of construction, so that it is difficult to obtain a water stop effect. On the other hand, if the tensile stress at the time of 100% strain of the back film 5 is greater than 40 MPa, the back film 5 is difficult to stretch during construction and the back film 5 is difficult to follow the nail, so a sufficient nail hole water stop effect cannot be obtained. .
 ここで、裏面フィルム5の野地板7側に、さらに保護フィルム6を積層することが好ましい。保護フィルム6は、止水性のある裏面フィルム5を保護し、さらに、屋根下地シート10全体の強度を高めることができる。これによって、施工時に作業者が屋根下地シート10上で作業した際に釘穴部に荷重がかかっても釘穴が大きくならず止水性を保つことが可能になる。
 上記効果を得るために、保護フィルム6の曲げ弾性率は100~300MPaであることが好ましい。保護フィルム6の曲げ弾性率が100MPa未満であると、コシが無く折れ皺が発生しやすく施工が困難となるおそれがある。一方、保護フィルム6の曲げ弾性率が300MPaより大きいと折り曲げにくく施工が困難になるおそれがある。また、保護フィルム6のタイプDのデュロメーター硬さは50以上あることが好ましい。保護フィルム6のタイプDのデュロメーター硬さが50未満であると、施工時にキズが付いて防水性が損なわれるおそれがあるからである。
 裏面フィルム5や保護フィルム6に用いられる樹脂としては、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリスチレン系やそれらを組み合わせたものが好ましい。特に、成膜性、柔軟性、引裂強度、熱耐久性の点でポリエチレンが好ましい。さらに、引張強度と伸度のバランスの点で直鎖状低密度ポリエチレンがより好ましい。
Here, it is preferable that a protective film 6 is further laminated on the base plate 7 side of the back film 5. The protective film 6 can protect the water-resistant back film 5 and further increase the strength of the entire roof base sheet 10. Thereby, when an operator works on the roof base sheet 10 at the time of construction, even if a load is applied to the nail hole portion, the nail hole does not become large, and it becomes possible to keep water-stopping.
In order to obtain the above effect, the bending elastic modulus of the protective film 6 is preferably 100 to 300 MPa. If the bending elastic modulus of the protective film 6 is less than 100 MPa, there is no stiffness and creases are likely to occur, which may make construction difficult. On the other hand, when the bending elastic modulus of the protective film 6 is greater than 300 MPa, it is difficult to bend and the construction may be difficult. Moreover, it is preferable that the durometer hardness of the type D of the protective film 6 is 50 or more. This is because if the durometer hardness of the type D of the protective film 6 is less than 50, the protective film 6 may be scratched during construction, and the waterproof property may be impaired.
The resin used for the back film 5 and the protective film 6 is preferably a polyolefin, polyester, polyurethane, polystyrene, or a combination thereof. In particular, polyethylene is preferable in terms of film formability, flexibility, tear strength, and thermal durability. Furthermore, linear low density polyethylene is more preferable in terms of the balance between tensile strength and elongation.
 裏面フィルム5と保護フィルム6の各厚さは20~50μmが好ましく、さらに25~35μmであることが好ましい。厚さが20μm未満では充分な接着強度が得られず、剥離するおそれがある。また、屋根下地シート10としての強度が発揮されないおそれがある。厚さが50μmより大きいと、目付が大きくなるため施工性に支障をきたすおそれがある。
 さらに、裏面フィルム5または保護フィルム6の野地板7側の表面に凹凸を付与して防滑性を付与させることが好ましい。防滑性を付与することにより、施工時に屋根下地シート10が野地板7から滑り落ちないようすることができる。凹凸付与方法としてはエンボス加工などを挙げることができる。
Each thickness of the back film 5 and the protective film 6 is preferably 20 to 50 μm, and more preferably 25 to 35 μm. If the thickness is less than 20 μm, sufficient adhesive strength cannot be obtained and there is a risk of peeling. Moreover, there exists a possibility that the intensity | strength as the roof base sheet 10 may not be exhibited. If the thickness is larger than 50 μm, the basis weight becomes large, which may hinder the workability.
Furthermore, it is preferable to provide an anti-slip property by providing irregularities on the surface of the back film 5 or the protective film 6 on the side plate 7 side. By imparting anti-slip properties, the roof base sheet 10 can be prevented from sliding off from the base plate 7 during construction. An embossing process etc. can be mentioned as an uneven | corrugated provision method.
 エンボス加工による凹凸高さは20~200μmが好ましく、50~100μmがより好ましい。凹凸高さが20μm未満であると防滑性を発揮できないおそれがある。一方、凹凸高さが200μmより大きいと、接触面積が小さくなり防滑性が損なわれるおそれがある。
 エンボスの柄としては、格子状、ひし形状、丸型ドット状、ダイヤ型ドット状などが挙げられるが、防滑性が発揮されるならば特に形状やドット数、大きさ等は限定されない。
The height of the unevenness by embossing is preferably 20 to 200 μm, more preferably 50 to 100 μm. If the uneven height is less than 20 μm, the slip resistance may not be exhibited. On the other hand, if the uneven height is larger than 200 μm, the contact area becomes small and the slip resistance may be impaired.
Examples of the embossed pattern include a lattice shape, a rhombus shape, a round dot shape, and a diamond dot shape. However, the shape, the number of dots, the size, and the like are not particularly limited as long as the slip resistance is exhibited.
 さらに、裏面フィルム5または保護フィルム6の野地板7に接する側に粘着層を形成することができる。粘着剤としてはアクリル系樹脂、ウレタン系樹脂、ブチルゴム系樹脂などが挙げられる。特に、ポリエチレンとの密着性や耐久性の面からアクリル系樹脂が好ましい。塗布量は、充分な粘着力を発揮させるために10~50g/m塗布することが好ましい。 Furthermore, an adhesive layer can be formed on the back film 5 or the protective film 6 on the side in contact with the base plate 7. Examples of the pressure-sensitive adhesive include acrylic resins, urethane resins, and butyl rubber resins. In particular, an acrylic resin is preferable from the viewpoint of adhesion to polyethylene and durability. The coating amount is preferably 10 to 50 g / m 2 in order to exhibit sufficient adhesive strength.
 裏面フィルム5または保護フィルム6の野地板7に接する側の静摩擦係数(JIS-K7125)は0.2~0.6であることが好ましく、0.3~0.5であることがより好ましい。0.2未満であると、施工時に野地板7にのせた屋根下地シート10が滑り落ちたり、ロール状に巻いた場合に巻ズレが発生し施工性に支障をきたすおそれがある。
 不織布4と裏面フィルム5及び保護フィルム6との積層方法は、フィルムをTダイなどにより製膜後、熱融着により積層したり、接着剤により積層することができる。
The static friction coefficient (JIS-K7125) of the back film 5 or the protective film 6 on the side in contact with the base plate 7 is preferably 0.2 to 0.6, and more preferably 0.3 to 0.5. If it is less than 0.2, the roof base sheet 10 placed on the base plate 7 at the time of construction slides down, or when it is wound in a roll shape, there is a risk that winding misalignment will occur and the workability will be hindered.
The lamination method of the nonwoven fabric 4, the back film 5, and the protective film 6 can be laminated | stacked by heat sealing | fusion after forming a film with a T die etc., or can be laminated | stacked with an adhesive agent.
 屋根下地シート10の総目付は100~500g/mが好ましく、200~300g/mがより好ましい。屋根下地シート10の総目付が100g/m未満だと、施工の際に風の影響を受けめくり上がりやすく施工性が悪くなるおそれがある。屋根下地シート10の総目付が500g/m以上だと運搬しにくくなり、施工性に影響が出るおそれがある。
 屋根下地シート10の総厚みは、200~1000μmが好ましい。屋根下地シート10の総厚みが200μm未満であると、屋根下地シートとしての強度が維持できないおそれがある。屋根下地シート10の総厚みが1000μmより大きいと、シート自体が硬く折り曲げにくくなり、棟部、谷部や立ち上がり部分に施工しにくくなるおそれがある。
 屋根下地シート10の引張強度は、150~500MPaであることが好ましい。屋根下地シート10の引張強度が150MPa未満であると、施工時に必要な強度が得られないおそれがある。屋根下地シート10の引張強度が500MPaより大きいと、施工時に裁断しにくく作業効率が低下するおそれがある。
The total basis weight is preferably 100 ~ 500g / m 2 of roof bed sheet 10, and more preferably 200 ~ 300g / m 2. If the total basis weight of the roof base sheet 10 is less than 100 g / m 2, it is easy to turn up due to the influence of wind during construction and the workability may be deteriorated. If the total basis weight of the roof base sheet 10 is 500 g / m 2 or more, it becomes difficult to transport and the workability may be affected.
The total thickness of the roof base sheet 10 is preferably 200 to 1000 μm. There exists a possibility that the intensity | strength as a roof base sheet cannot be maintained as the total thickness of the roof base sheet 10 is less than 200 micrometers. When the total thickness of the roof base sheet 10 is larger than 1000 μm, the sheet itself is hard and difficult to bend, and it may be difficult to construct the ridge, valley, or rising part.
The tensile strength of the roof base sheet 10 is preferably 150 to 500 MPa. If the tensile strength of the roof base sheet 10 is less than 150 MPa, the strength required during construction may not be obtained. If the tensile strength of the roof base sheet 10 is greater than 500 MPa, it is difficult to cut during construction, and work efficiency may be reduced.
 以下、本発明に係る屋根下地シートについて実施例を挙げて説明する。本発明に係る実施例1乃至実施例6の屋根下地シートを作製して、物性値を測定した。なお、比較のため、比較例1乃至比較例4の屋根下地シートを作製して、物性値を測定した。実施例及び比較例における各物性値は、以下の方法により測定した。
(1)裏面フィルムの引張弾性率
 JIS K7161に準じて測定した。
(2)裏面フィルムの100%歪み時引張応力
 JIS K7161に準じて測定した。
(3)保護フィルムの曲げ弾性率
 JIS K7171に準じて測定した。
(4)保護フィルムのタイプDデュロメーター硬さ
 JIS K7215に準じて測定した。
(5)屋根下地シートの釘穴止水性
 試験シートをJIS-S6030規定の3号Uステープル釘(MAX社製、T3-10MB)で合板に打ち付けて固定し、その上に内径4cm、高さ200mmのアクリル製円筒をステープル釘が円筒内径中心になるように立てて試験シートと接触している縁部分をシーリングした。次いで、ISA 5430 5.6、および建築研究所法に準じた方法で、円筒の中に水を150mmの高さまで入れ、24時間放置した後の、減水高さmmを測定した。
 また、前述同様に試験シートをJIS-S6030規定の3号Uステープル釘(MAX社製、T3-10MB)で合板に打ち付けて固定し、ステープル釘を接点に合板に水平方向へ試験シートに10N/10cmの荷重を30秒間加えた後、その上に内径4cm、高さ200mmのアクリル製円筒をステープル釘が円筒内径中心になるように立てて試験シートと接触している縁部分をシーリングした。次いで、ISA 5430 5.6、および建築研究所法に準じた方法で、円筒の中に水を150mmの高さまで入れ、24時間放置した後の、減水高さmmを測定した。
(6)表面静摩擦係数
 屋根下地シートの野地板と反対側の表面の静摩擦係数をJIS-P8147(傾斜法)に準じて測定した。
(7)屋根下地シートの引張強度
 JIS-A6111に準じて測定した。
(8)屋根下地シートのつづり針保持強度
 JIS-A6111に準じて測定した。
(9)屋根下地シートの耐久性
 90℃の恒温乾燥機の中に入れ、60日間放置した試験布について釘穴止水性、引張強度の保持率を評価し初期性能と比較して耐久性を確認した。
(10)吸水膨潤樹脂の染み出し
 上記屋根下地シートの耐久性試験後の試料に対して、吸水膨潤樹脂が屋根下地シートの表面側や野地板側に染み出していないかを目視にて確認した。そして、染み出しているものを「有」、染み出していないものを「無」と評価した。
Hereinafter, an example is given and explained about a roof ground sheet concerning the present invention. The roof base sheet of Example 1 thru | or Example 6 which concerns on this invention was produced, and the physical-property value was measured. For comparison, the roof base sheets of Comparative Examples 1 to 4 were prepared and the physical properties were measured. Each physical property value in Examples and Comparative Examples was measured by the following method.
(1) Tensile modulus of back film It was measured according to JIS K7161.
(2) Tensile stress at 100% strain of back film Measured according to JIS K7161.
(3) Flexural modulus of protective film Measured according to JIS K7171.
(4) Type D durometer hardness of protective film Measured according to JIS K7215.
(5) Nail hole water resistance of the roof base sheet The test sheet was fixed to the plywood by using No. 3 U staple nail (MAX, T3-10MB) specified in JIS-S6030, and the inner diameter was 4cm and the height was 200mm. The edge portion of the acrylic cylinder in contact with the test sheet was sealed so that the staple nail was centered on the inner diameter of the cylinder. Subsequently, water was put in a cylinder to a height of 150 mm by a method according to ISA 5430 5.6 and the Building Research Institute method, and the water reduction height mm after standing for 24 hours was measured.
Similarly to the above, the test sheet was fixed to the plywood with No. 3 U staple nail (MAX, T3-10MB) stipulated in JIS-S6030. A load of 10 cm was applied for 30 seconds, and an acrylic cylinder having an inner diameter of 4 cm and a height of 200 mm was placed thereon so that the staple nail was centered on the inner diameter of the cylinder, and the edge portion in contact with the test sheet was sealed. Subsequently, water was put in a cylinder to a height of 150 mm by a method according to ISA 5430 5.6 and the Building Research Institute method, and the water reduction height mm after standing for 24 hours was measured.
(6) Coefficient of surface static friction The coefficient of static friction of the surface of the roof base sheet opposite to the base plate was measured according to JIS-P8147 (inclination method).
(7) Tensile strength of roof base sheet Measured according to JIS-A6111.
(8) Spelling needle holding strength of roof base sheet Measured according to JIS-A6111.
(9) Durability of the roof base sheet Durability was confirmed by evaluating the retention of nail hole water resistance and tensile strength of the test cloth placed in a constant temperature dryer at 90 ° C and left for 60 days. did.
(10) Permeation of water-absorbing swelling resin With respect to the sample after the durability test of the above-mentioned roof base sheet, it was visually confirmed whether or not the water-absorbing swelling resin exudes to the surface side of the roof base sheet or the base plate side. . And, what exuded was evaluated as “Yes”, and what did not exude was evaluated as “No”.
〔実施例1〕
 目付70g/mのポリエステルスパンボンド不織布(東洋紡績株式会社製 エクーレ(登録商標)3701B)に、吸水膨潤倍率が400倍のポリアクリル酸塩架橋体からなる吸水膨潤樹脂(日華化学株式会社製、ネオステッカーWP-01)をポリアクリル系バインダー樹脂を用いて、グラビアコーターにより固形分が12g/m付着するように塗布した。吸水膨潤樹脂の不織布に対する塗布面積割合は不織布の53%であった。
 この不織布の吸水膨潤樹脂を塗布した面に、ひし形のエンボス加工が施され、さらに、150W/m・minでコロナ処理された厚みが80μmの直鎖状低密度ポリエチレンフィルム(酒井化学株式会社製 密度0.95g/cm)からなる表面フィルムを加圧ロールによってラミネートした。さらに、前記不織布の吸水膨潤樹脂を塗布していない面に、Tダイ押出法によって製膜した、引張弾性率が914MPa、100%歪み時の引張応力が32MPaである直鎖状低密度ポリエチレンフィルムからなる25μm厚の裏面フィルムをラミネートした。
 その後、表面フィルムのコロナ処理面にグラビアコーターによって変性ポリオレフィン系樹脂剤(広野化学株式会社製、ユーロックP3639-2)を97wt%と熱発泡剤マイクロカプセル(松本油脂製、マイクロスフェアーF-36D)を3wt%混合したものを表面に3g/m塗布し、100℃で10秒間乾燥して、厚さ301μm、目付229g/mの屋根下地シートを得た。評価結果を表1に示す。
[Example 1]
A water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd.) comprising a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule (registered trademark) 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. , Neo Sticker WP-01) was applied using a polyacrylic binder resin so that the solid content would adhere to 12 g / m 2 using a gravure coater. The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
The surface of this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 · min, and a linear low density polyethylene film having a thickness of 80 μm (manufactured by Sakai Chemical Co., Ltd.) the surface film consisting of a density 0.95 g / cm 3) was laminated by a pressure roll. Furthermore, from a linear low density polyethylene film having a tensile modulus of 914 MPa and a tensile stress at 100% strain of 32 MPa formed on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin by a T-die extrusion method A back film having a thickness of 25 μm was laminated.
Thereafter, 97 wt% of a modified polyolefin resin agent (Hirono Chemical Co., Ltd., Eulock P3639-2) was added to the corona-treated surface of the surface film by a gravure coater, and a thermal foaming agent microcapsule (Matsumoto Yushi Co., Ltd., Microsphere F-36D). 3 g / m 2 was applied to the surface and dried at 100 ° C. for 10 seconds to obtain a roof base sheet having a thickness of 301 μm and a basis weight of 229 g / m 2 . The evaluation results are shown in Table 1.
〔実施例2〕
 裏面フィルムを、引張弾性率が383MPa、100%歪み時の引張応力が11MPaである直鎖状低密度ポリエチレンフィルムからなる25μm厚のものに変更した以外は実施例1と同様に加工し、厚さ301μm、目付229g/mの屋根下地シートを得た。評価結果を表1に示す。
[Example 2]
The back film was processed in the same manner as in Example 1 except that the back film was changed to a film having a thickness of 25 μm made of a linear low density polyethylene film having a tensile modulus of 383 MPa and a tensile stress at 100% strain of 11 MPa. A roof base sheet with 301 μm and a basis weight of 229 g / m 2 was obtained. The evaluation results are shown in Table 1.
〔実施例3〕
 目付70g/mのポリエステルスパンボンド不織布(東洋紡績株式会社製 エクーレ3701B)に、吸水膨潤倍率が400倍のポリアクリル酸塩架橋体からなる吸水膨潤樹脂(日華化学株式会社製、ネオステッカーWP-01)をポリアクリル系バインダー樹脂を用いて、グラビアコーターにより固形分が12g/m付着するように塗布した。吸水膨潤樹脂の不織布に対する塗布面積割合は不織布の53%であった。
 この不織布の吸水膨潤樹脂を塗布した面に、ひし形のエンボス加工が施され、さらに、150W/m・minでコロナ処理された厚みが80μmの直鎖状低密度ポリエチレンフィルム(酒井化学株式会社製 密度0.95g/cm)からなる表面フィルムを加圧ロールによってラミネートした。さらに、前記不織布の吸水膨潤樹脂を塗布していない面に、Tダイ押出法によって製膜した、引張弾性率が697MPa、100%歪み時の引張応力が26MPaである直鎖状低密度ポリエチレンフィルムからなる25μm厚の裏面フィルムをラミネートし、さらに、その上にTダイ押出法によって製膜した、曲げ弾性率が249MPa、タイプDデュロメーター硬さが66である直鎖状低密度ポリエチレンからなる25μm厚の保護フィルムを、凸部がドット状のエンボスがある加圧ロールでラミネートした。
 その後、表面フィルムのコロナ処理面にグラビアコーターによって変性ポリオレフィン系樹脂剤(広野化学株式会社製、ユーロックP3639-2)を97wt%と熱発泡剤マイクロカプセル(松本油脂製、マイクロスフェアーF-36D)を3wt%混合したものを表面に3g/m塗布し、100℃で10秒間乾燥して、厚さ334μm、目付245g/mの屋根下地シートを得た。評価結果を表1に示す。
Example 3
A water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd., Neo Sticker WP) made of a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. -01) was applied using a polyacrylic binder resin by a gravure coater so that the solid content was 12 g / m 2 . The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
The surface of this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 · min, and a linear low density polyethylene film having a thickness of 80 μm (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll. Furthermore, from the linear low density polyethylene film having a tensile elastic modulus of 697 MPa and a tensile stress at 100% strain of 26 MPa formed on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin by a T-die extrusion method. A 25 μm-thick back film is laminated and further formed by a T-die extrusion method, and a 25 μm-thickness film made of linear low-density polyethylene having a flexural modulus of 249 MPa and a type D durometer hardness of 66 is formed. The protective film was laminated with a pressure roll having a dot-like embossment on the convex portion.
Thereafter, 97 wt% of a modified polyolefin resin agent (Hirono Chemical Co., Ltd., Eulock P3639-2) was added to the corona-treated surface of the surface film by a gravure coater, and a thermal foaming agent microcapsule (Matsumoto Yushi Co., Ltd., Microsphere F-36D). 3 g / m 2 was applied to the surface and dried at 100 ° C. for 10 seconds to obtain a roof base sheet having a thickness of 334 μm and a basis weight of 245 g / m 2 . The evaluation results are shown in Table 1.
〔実施例4〕
 保護フィルムを、曲げ弾性率が110MPa、タイプDデュロメーター硬さが51である直鎖状低密度ポリエチレンからなる25μm厚のものに変更した以外は実施例3と同様に加工し、厚さ334μm、目付245g/mの屋根下地シートを得た。評価結果を表1に示す。
Example 4
The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 μm thick one made of linear low density polyethylene having a flexural modulus of 110 MPa and a type D durometer hardness of 51, and a thickness of 334 μm. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
〔実施例5〕
 保護フィルムを、曲げ弾性率が327MPa、タイプDデュロメーター硬さが60である直鎖状低密度ポリエチレンからなる25μm厚のものに変更した以外は実施例3と同様に加工し、厚さ334μm、目付245g/mの屋根下地シートを得た。評価結果を表1に示す。
Example 5
The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 μm thickness made of linear low density polyethylene having a flexural modulus of 327 MPa and a Type D durometer hardness of 60, and the thickness was 334 μm. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
〔実施例6〕
 保護フィルムを、曲げ弾性率が86MPa、タイプDデュロメーター硬さが33である直鎖状低密度ポリエチレンからなる25μm厚のものに変更した以外は実施例3と同様に加工し、厚さ334μm、目付245g/mの屋根下地シートを得た。評価結果を表1に示す。
Example 6
The protective film was processed in the same manner as in Example 3 except that the protective film was changed to a 25 μm thickness made of linear low density polyethylene having a flexural modulus of 86 MPa and a type D durometer hardness of 33, and the thickness was 334 μm. A roof base sheet of 245 g / m 2 was obtained. The evaluation results are shown in Table 1.
〔比較例1〕
 裏面フィルムを用いない以外は実施例1と同様に加工し、厚さ281μm、目付199g/mの屋根下地シートを得た。評価結果を表1に示す。
[Comparative Example 1]
Except using no backside film was processed in the same manner as in Example 1 to obtain a thickness of 281Myuemu, the roof bed sheet having a basis weight of 199 g / m 2. The evaluation results are shown in Table 1.
〔比較例2〕
 不織布に吸水膨潤樹脂を塗布しない以外は実施例3と同様に加工し、厚さ329μm、目付233g/mの屋根下地シートを得た。評価結果を表1に示す。
[Comparative Example 2]
A roof base sheet having a thickness of 329 μm and a basis weight of 233 g / m 2 was obtained in the same manner as in Example 3 except that the water-absorbing swelling resin was not applied to the nonwoven fabric. The evaluation results are shown in Table 1.
〔比較例3〕
 目付70g/mのポリエステルスパンボンド不織布(東洋紡績株式会社製 エクーレ3701B)に、吸水膨潤倍率が400倍のポリアクリル酸塩架橋体からなる吸水膨潤樹脂(日華化学株式会社製、ネオステッカーWP-01)をポリアクリル系バインダー樹脂を用いて、グラビアコーターにより固形分が12g/m付着するように塗布した。吸水膨潤樹脂の不織布に対する塗布面積割合は不織布の53%であった。
 この不織布の吸水膨潤樹脂を塗布した面に、ひし形のエンボス加工が施され、さらに、150W/m・minでコロナ処理された厚みが80μmの直鎖状低密度ポリエチレンフィルム(酒井化学株式会社製 密度0.95g/cm)からなる表面フィルムを加圧ロールによってラミネートした。さらに、前記不織布の吸水膨潤樹脂を塗布していない面にTダイ押出法によって製膜した、引張弾性率が1204MPa、100%歪み時の引張応力が46MPaである直鎖状低密度ポリエチレンフィルムからなる25μm厚の裏面フィルムをラミネートした。
 その後、表面フィルムのコロナ処理面にグラビアコーターによって変性ポリオレフィン系樹脂剤(広野化学株式会社製、ユーロックP3639-2)を97wt%と熱発泡剤マイクロカプセル(松本油脂製、マイクロスフェアーF-36D)を3wt%混合したものを表面に3g/m塗布し、100℃で10秒間乾燥して、厚さ301μm、目付229g/mの屋根下地シートを得た。評価結果を表1に示す。
[Comparative Example 3]
The basis weight 70 g / m 2 polyester spun bond nonwoven fabric (manufactured by Toyobo Co., Ltd. Ekure 3701B), imbibition resin (Nicca Chemical Co., Ltd. of water swelling capacity is 400 times the polyacrylate crosslinked, neo sticker WP -01) was applied using a polyacrylic binder resin by a gravure coater so that the solid content was 12 g / m 2 . The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
The surface of this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 · min, and a linear low density polyethylene film having a thickness of 80 μm (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll. Further, the non-woven fabric is formed of a linear low density polyethylene film having a tensile modulus of 1204 MPa and a tensile stress at 100% strain of 46 MPa formed by a T-die extrusion method on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin. A back film having a thickness of 25 μm was laminated.
Thereafter, 97 wt% of a modified polyolefin resin agent (Hirono Chemical Co., Ltd., Eulock P3639-2) was added to the corona-treated surface of the surface film by a gravure coater, and a thermal foaming agent microcapsule (Matsumoto Yushi Co., Ltd., Microsphere F-36D). 3 g / m 2 was applied to the surface and dried at 100 ° C. for 10 seconds to obtain a roof base sheet having a thickness of 301 μm and a basis weight of 229 g / m 2 . The evaluation results are shown in Table 1.
〔比較例4〕
 目付70g/mのポリエステルスパンボンド不織布(東洋紡績株式会社製 エクーレ3701B)に、吸水膨潤倍率が400倍のポリアクリル酸塩架橋体からなる吸水膨潤樹脂(日華化学株式会社製、ネオステッカーWP-01)をポリアクリル系バインダー樹脂を用いて、グラビアコーターにより固形分が12g/m付着するように塗布した。吸水膨潤樹脂の不織布に対する塗布面積割合は不織布の53%であった。
 この不織布の吸水膨潤樹脂を塗布した面に、ひし形のエンボス加工が施され、さらに、150W/m・minでコロナ処理された厚みが80μmの直鎖状低密度ポリエチレンフィルム(酒井化学株式会社製 密度0.95g/cm)からなる表面フィルムを加圧ロールによってラミネートした。さらに、前記不織布の吸水膨潤樹脂を塗布していない面にTダイ押出法によって製膜した、引張弾性率が194MPa、100%歪み時の引張応力が7MPaである直鎖状低密度ポリエチレンフィルムからなる25μm厚の裏面フィルムをラミネートした。
 その後、表面フィルムのコロナ処理面にグラビアコーターによって変性ポリオレフィン系樹脂剤(広野化学株式会社製、ユーロックP3639-2)を97wt%と熱発泡剤マイクロカプセル(松本油脂製、マイクロスフェアーF-36D)を3wt%混合したものを表面に3g/m塗布し、100℃で10秒間乾燥して、厚さ301μm、目付229g/mの屋根下地シートを得た。評価結果を表1に示す。
[Comparative Example 4]
A water-absorbing swelling resin (manufactured by Nikka Chemical Co., Ltd., Neo Sticker WP) made of a polyester spunbonded nonwoven fabric having a basis weight of 70 g / m 2 (Ecoule 3701B manufactured by Toyobo Co., Ltd.) and a polyacrylate cross-linked body having a water absorption swelling ratio of 400 times. -01) was applied using a polyacrylic binder resin by a gravure coater so that the solid content was 12 g / m 2 . The application area ratio of the water-absorbing swelling resin to the nonwoven fabric was 53% of the nonwoven fabric.
The surface of this nonwoven fabric coated with a water-absorbing swelling resin is subjected to rhombus embossing, and further subjected to corona treatment at 150 W / m 2 · min, and a linear low density polyethylene film having a thickness of 80 μm (manufactured by Sakai Chemical Co., Ltd.) A surface film having a density of 0.95 g / cm 3 ) was laminated by a pressure roll. Further, the non-woven fabric is formed of a linear low-density polyethylene film having a tensile modulus of 194 MPa and a tensile stress at 100% strain of 7 MPa, which is formed by a T-die extrusion method on the surface of the nonwoven fabric not coated with the water-absorbing swelling resin. A back film having a thickness of 25 μm was laminated.
Thereafter, 97 wt% of a modified polyolefin resin agent (Hirono Chemical Co., Ltd., Eulock P3639-2) was added to the corona-treated surface of the surface film by a gravure coater, and a thermal foaming agent microcapsule (Matsumoto Yushi Co., Ltd., Microsphere F-36D). ) was 3 wt% mixed 3 g / m 2 coated on the surface of things, and dried for 10 seconds at 100 ° C., to obtain a thickness of 301Myuemu, the roof bed sheet having a basis weight of 229 g / m 2. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1乃至実施例6に係る屋根下地シートは、初期の減水量が通常で1~13mm、引っ張りを掛けても3~44mmと少なく、釘穴止水性に優れている。また、引張強度がタテ方向で286~467N/50mm、ヨコ方向で160~272N/50mmと大きく、強度的にも優れている。さらに、耐久試験後の減水量が通常で2~20mm、引っ張りを掛けても9~47mmと少なく、釘穴止水性の耐久性にも優れている。そして、吸水膨潤樹脂の染み出しも見られない。 As shown in Table 1, the roof base sheets according to Examples 1 to 6 have an initial water reduction amount of 1 to 13 mm in general and 3 to 44 mm even when pulled, and have excellent nail hole water stoppage. ing. Further, the tensile strength is as high as 286 to 467 N / 50 mm in the vertical direction and 160 to 272 N / 50 mm in the horizontal direction, and the strength is also excellent. Furthermore, the amount of water reduction after the durability test is usually 2 to 20 mm, and even when pulled, it is as small as 9 to 47 mm. And no seepage of the water-absorbing swelling resin is observed.
 これに対して、裏面フィルムのない比較例1の屋根下地シートは、初期の減水量が通常で15mm、引っ張りを掛けて71mm、耐久試験後の減水量が通常で17mm、引っ張りを掛けて79mmと多く、釘穴止水性が劣っている。そして、吸水膨潤樹脂の染み出しも見られる。
 また、吸水膨潤樹脂のない比較例2の屋根下地シートは、初期の減水量が通常で94mm、引っ張りを掛けて107mm、耐久試験後の減水量が通常で101mm、引っ張りを掛けて123mmと非常に多く、釘穴止水性が著しく劣っている。
On the other hand, the roof base sheet of Comparative Example 1 having no back film is usually 15 mm in initial water loss, 71 mm after pulling, 17 mm after normal durability test, and 79 mm after pulling. Many are inferior in nail hole sealing. And seepage of the water-absorbing swelling resin is also seen.
In addition, the roof base sheet of Comparative Example 2 having no water-absorbing swelling resin has an initial water reduction amount of 94 mm, 107 mm after pulling, 101 mm after the endurance test, and 123 mm after pulling. Many are very inferior in nail hole sealing.
 また、裏面フィルムの引張弾性率が1204MPaで100%歪み時の引張応力が46MPaといずれも大きい比較例3の屋根下地シートは、吸水膨潤樹脂の染み出しが発生している。
 また、裏面フィルムの引張弾性率が194MPaで100%歪み時の引張応力が7MPaといずれも小さい比較例4の屋根下地シートは、初期の減水量が通常で20mm、引っ張りを掛けて52mm、耐久試験後の減水量が通常で34mm、引っ張りを掛けて78mmと多く、釘穴止水性が劣っている。さらに強度的にも劣っており、特に耐久試験後の引張強度保持率がタテ方向で85%、ヨコ方向で88%と小さい。そして、吸水膨潤樹脂の染み出しも見られる。
Further, in the roof base sheet of Comparative Example 3 where the tensile modulus of the back film is 1204 MPa and the tensile stress at 100% strain is as large as 46 MPa, the water-absorbing swelling resin oozes out.
In addition, the roof base sheet of Comparative Example 4 in which the tensile modulus of the back film is 194 MPa and the tensile stress at 100% strain is as small as 7 MPa, the initial water reduction amount is usually 20 mm, the tension is 52 mm, and the durability test. The amount of water loss afterwards is usually 34 mm, and the pulled water amount is as high as 78 mm. Furthermore, it is inferior also in strength, and the tensile strength retention after the durability test is as small as 85% in the vertical direction and 88% in the horizontal direction. And seepage of the water-absorbing swelling resin is also seen.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態及び実施例は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments and examples are for explaining the present invention and do not limit the scope of the present invention.
 本願は、2010年8月25日に出願された日本国特許出願2010-188494を基礎とする優先権を主張し、当該基礎出願の内容をすべて本願にとりこむものとする。 This application claims priority based on Japanese Patent Application 2010-188494 filed on August 25, 2010, and incorporates all the contents of the basic application into this application.
 1 防滑層
 2 表面フィルム
 3 吸水膨潤樹脂
 4 不織布
 5 裏面フィルム
 6 保護フィルム
 7 野地板
10 屋根下地シート
DESCRIPTION OF SYMBOLS 1 Anti-slip layer 2 Surface film 3 Water absorption swelling resin 4 Nonwoven fabric 5 Back film 6 Protective film 7 Base plate 10 Roof base sheet

Claims (10)

  1.  野地板の上に設けられる屋根下地シートにおいて、
     不織布と、
     該不織布の前記野地板とは反対側に設けられる吸水膨潤樹脂の層と、
     該吸水膨潤樹脂の層に積層される前記野地板とは反対側が防滑処理されてなる表面フィルムと、
     前記不織布の前記野地板側に積層される引張弾性率が300~1000MPaで、100%歪み時引張応力が10~40MPaである裏面フィルムと、
    を備える屋根下地シート。
    In the roof base sheet provided on the field plate,
    Non-woven fabric,
    A layer of water-absorbing swelling resin provided on the opposite side of the non-woven fabric base plate,
    A surface film having a non-slip treatment on the side opposite to the base plate laminated on the water-absorbing swelling resin layer;
    A back film having a tensile elastic modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa laminated on the base plate side of the nonwoven fabric;
    Roof base sheet with.
  2.  前記裏面フィルムの前記野地板側に保護フィルムが積層されてなる請求項1に記載の屋根下地シート。 The roof base sheet according to claim 1, wherein a protective film is laminated on the base plate side of the back film.
  3.  前記保護フィルムの曲げ弾性率が100~300MPaで、タイプDデュロメーター硬さが50以上である請求項2に記載の屋根下地シート。 The roof base sheet according to claim 2, wherein the protective film has a flexural modulus of 100 to 300 MPa and a type D durometer hardness of 50 or more.
  4.  前記表面フィルムの防滑処理がエンボス加工、活性化処理及び樹脂付与処理による請求項1乃至3のいずれか1項に記載の屋根下地シート。 The roof base sheet according to any one of claims 1 to 3, wherein the anti-slip treatment of the surface film is performed by embossing, activation treatment, and resin application treatment.
  5.  前記表面フィルム表面に発泡樹脂または中空微小球が積層されてなる請求項4に記載の屋根下地シート。 The roof base sheet according to claim 4, wherein foam resin or hollow microspheres are laminated on the surface film surface.
  6.  前記裏面フィルムまたは前記保護フィルムの前記野地板側が防滑処理されてなる請求項1乃至5のいずれか1項に記載の屋根下地シート。 The roof base sheet according to any one of claims 1 to 5, wherein the back plate or the base plate side of the protective film is anti-slip treated.
  7.  前記裏面フィルムまたは前記保護フィルムの防滑処理がエンボス加工、活性化処理及び樹脂付与処理による請求項6に記載の屋根下地シート。 The roof foundation sheet according to claim 6, wherein the anti-slip treatment of the back film or the protective film is performed by embossing, activation treatment, and resin application treatment.
  8.  前記表面フィルムが直鎖状低密度ポリエチレンフィルムである請求項1乃至7のいずれか1項に記載の屋根下地シート。 The roof base sheet according to any one of claims 1 to 7, wherein the surface film is a linear low-density polyethylene film.
  9.  野地板の上に設けられる屋根下地シートの製造方法において、
     不織布の前記野地板とは反対側に吸水膨潤樹脂の層を設ける工程と、
     該吸水膨潤樹脂の層に表面フィルムを積層する工程と、
     該表面フィルムの前記野地板とは反対側を防滑処理する工程と、
     前記不織布の前記野地板側に引張弾性率が300~1000MPaで、100%歪み時引張応力が10~40MPaである裏面フィルムを積層する工程と、
    を備える屋根下地シートの製造方法。
    In the manufacturing method of the roof base sheet provided on the base plate,
    Providing a layer of water-absorbing swelling resin on the opposite side of the non-woven fabric base plate,
    Laminating a surface film on the layer of the water-absorbing swelling resin;
    A step of anti-slip treatment on the side opposite to the base plate of the surface film;
    Laminating a back film having a tensile modulus of 300 to 1000 MPa and a tensile stress at 100% strain of 10 to 40 MPa on the base plate side of the nonwoven fabric;
    A method for producing a roof base sheet.
  10.  さらに、前記裏面フィルムの前記野地板側に保護フィルムを積層する工程を備える請求項9に記載の屋根下地シートの製造方法。 Furthermore, the manufacturing method of the roof base sheet of Claim 9 provided with the process of laminating | stacking a protective film on the said base plate side of the said back surface film.
PCT/JP2011/069199 2010-08-25 2011-08-25 Roof backing sheet and production method for same WO2012026532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012530710A JP5934096B2 (en) 2010-08-25 2011-08-25 Roof base sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-188494 2010-08-25
JP2010188494 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026532A1 true WO2012026532A1 (en) 2012-03-01

Family

ID=45723523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069199 WO2012026532A1 (en) 2010-08-25 2011-08-25 Roof backing sheet and production method for same

Country Status (2)

Country Link
JP (1) JP5934096B2 (en)
WO (1) WO2012026532A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194048A (en) * 2014-03-31 2015-11-05 セーレン株式会社 Waterproof sheet for building substrate
WO2016027799A1 (en) * 2014-08-20 2016-02-25 セーレン株式会社 Roofing underlay with pressure-sensitive adhesive layer
JP2016094735A (en) * 2014-11-13 2016-05-26 セーレン株式会社 Waterproof sheet for building substrate
JPWO2015025503A1 (en) * 2013-08-21 2017-03-02 セーレン株式会社 Thermal barrier sheet
JP2018080528A (en) * 2016-11-17 2018-05-24 大泰化工株式会社 Waterproof construction and method of manufacturing waterproof construction
US20200392734A1 (en) * 2019-06-14 2020-12-17 Owens Corning Intellectual Capital, Llc Roofing underlayment
US20200399904A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150609A (en) * 1997-08-01 1999-02-23 E I Du Pont De Nemours & Co Substrate member of roof
JPH11166300A (en) * 1997-12-04 1999-06-22 Showa Kogyo Kk Roofing substrate material
JP2000238187A (en) * 1999-02-25 2000-09-05 Lonseal Corp Olefinic building sheet
JP2003118023A (en) * 2001-10-12 2003-04-23 Ck:Kk Self-repairable waterproof sheet
JP3545732B2 (en) * 2001-02-14 2004-07-21 セーレン株式会社 Architectural tarpaulin
JP2005113678A (en) * 2003-09-18 2005-04-28 Dupont-Asahi Flushspan Products Kk Roofing base material having adhesive surface
JP2006177106A (en) * 2004-12-24 2006-07-06 Seiren Co Ltd Water-stop built-up roofing material
JP2007223046A (en) * 2006-02-21 2007-09-06 Fukuvi Chem Ind Co Ltd Moisture permeating waterproof sheet for building material
JP2009084840A (en) * 2007-09-28 2009-04-23 Seiren Co Ltd Waterproof sheet for building substrate
JP2009275415A (en) * 2008-05-15 2009-11-26 Suminoe Textile Co Ltd Waterproof sheet for building material with moisture-permeable function and heat shielding function
JP2010043496A (en) * 2008-08-18 2010-02-25 Seiren Co Ltd Thermal-insulating moisture-permeable waterproof sheet for construction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150609A (en) * 1997-08-01 1999-02-23 E I Du Pont De Nemours & Co Substrate member of roof
JPH11166300A (en) * 1997-12-04 1999-06-22 Showa Kogyo Kk Roofing substrate material
JP2000238187A (en) * 1999-02-25 2000-09-05 Lonseal Corp Olefinic building sheet
JP3545732B2 (en) * 2001-02-14 2004-07-21 セーレン株式会社 Architectural tarpaulin
JP2003118023A (en) * 2001-10-12 2003-04-23 Ck:Kk Self-repairable waterproof sheet
JP2005113678A (en) * 2003-09-18 2005-04-28 Dupont-Asahi Flushspan Products Kk Roofing base material having adhesive surface
JP2006177106A (en) * 2004-12-24 2006-07-06 Seiren Co Ltd Water-stop built-up roofing material
JP2007223046A (en) * 2006-02-21 2007-09-06 Fukuvi Chem Ind Co Ltd Moisture permeating waterproof sheet for building material
JP2009084840A (en) * 2007-09-28 2009-04-23 Seiren Co Ltd Waterproof sheet for building substrate
JP2009275415A (en) * 2008-05-15 2009-11-26 Suminoe Textile Co Ltd Waterproof sheet for building material with moisture-permeable function and heat shielding function
JP2010043496A (en) * 2008-08-18 2010-02-25 Seiren Co Ltd Thermal-insulating moisture-permeable waterproof sheet for construction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015025503A1 (en) * 2013-08-21 2017-03-02 セーレン株式会社 Thermal barrier sheet
JP2015194048A (en) * 2014-03-31 2015-11-05 セーレン株式会社 Waterproof sheet for building substrate
WO2016027799A1 (en) * 2014-08-20 2016-02-25 セーレン株式会社 Roofing underlay with pressure-sensitive adhesive layer
JPWO2016027799A1 (en) * 2014-08-20 2017-06-01 セーレン株式会社 Roof underfloor with adhesive layer
JP2016094735A (en) * 2014-11-13 2016-05-26 セーレン株式会社 Waterproof sheet for building substrate
JP2018080528A (en) * 2016-11-17 2018-05-24 大泰化工株式会社 Waterproof construction and method of manufacturing waterproof construction
US20200392734A1 (en) * 2019-06-14 2020-12-17 Owens Corning Intellectual Capital, Llc Roofing underlayment
US20200399904A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core
US11518137B2 (en) * 2019-06-24 2022-12-06 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core

Also Published As

Publication number Publication date
JPWO2012026532A1 (en) 2013-10-28
JP5934096B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5934096B2 (en) Roof base sheet and manufacturing method thereof
US6925766B2 (en) Multilayer slip resistant sheet material
JP2009275415A (en) Waterproof sheet for building material with moisture-permeable function and heat shielding function
JP5171473B2 (en) Thermal barrier breathable waterproof sheet for construction
US20230175266A1 (en) Permeable water-resistive sloped roof underlayment/air barrier
KR101702125B1 (en) Heat reflect, water-proof and moisture-permeable sheet dose not use fixing member and method of manufacturing the same, method of construction
JP2006328879A (en) Moisture-permeable waterproof sheet for building material
KR101702124B1 (en) Water-proof and moisture-permeable sheet dose not use fixing member and method of manufacturing the same, method of construction
JP5570093B2 (en) Waterproof sheet for building foundation
JP6115852B2 (en) Roofing material and manufacturing method thereof
US20240123718A1 (en) Fire-resistant multi-layer membrane
JP4639080B2 (en) Waterproofing roof
JP6411760B2 (en) Waterproof sheet for building foundation
JP2007223046A (en) Moisture permeating waterproof sheet for building material
JP6514877B2 (en) Building base tarpaulin
JP7026445B2 (en) Field curing sheet
JP6113948B2 (en) Waterproof structure for building foundation and building constructed with the structure
US20200407972A1 (en) Permeable water-resistive self adhesive underlayment/air barrier building membrane
US11525265B2 (en) Permeable water resistive roof underlayment
AU2004210015B2 (en) Multilayer slip resistant sheet material
JP2978509B2 (en) Adhesive insulating sheet and insulating sheet using the same
CA3113191A1 (en) Fire-resistant multi-layer membrane
CA3076331A1 (en) Permeable water-resistive self adhesive underlayment/air barrier building membrane
JP2009243093A (en) Thermal barrier waterproof sheet for building material
CA2515231A1 (en) Multilayer slip resistant sheet material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012530710

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11819995

Country of ref document: EP

Kind code of ref document: A1