WO2012026288A1 - Radiation imaging device, radiation imaging system, and radiation detection program - Google Patents

Radiation imaging device, radiation imaging system, and radiation detection program Download PDF

Info

Publication number
WO2012026288A1
WO2012026288A1 PCT/JP2011/067543 JP2011067543W WO2012026288A1 WO 2012026288 A1 WO2012026288 A1 WO 2012026288A1 JP 2011067543 W JP2011067543 W JP 2011067543W WO 2012026288 A1 WO2012026288 A1 WO 2012026288A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
imaging
unit
image
sensor
Prior art date
Application number
PCT/JP2011/067543
Other languages
French (fr)
Japanese (ja)
Inventor
西納 直行
岩切 直人
中津川 晴康
大田 恭義
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010186501A external-priority patent/JP2012040315A/en
Priority claimed from JP2010192850A external-priority patent/JP2012045331A/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012026288A1 publication Critical patent/WO2012026288A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation imaging system, and in particular, a radiation imaging apparatus, a radiation imaging system, and a radiation detection program for capturing a radiation image indicated by radiation emitted from a radiation source and transmitted through a subject.
  • a radiation imaging apparatus and a radiation imaging system
  • a radiation detection program for capturing a radiation image indicated by radiation emitted from a radiation source and transmitted through a subject.
  • radiography apparatus such as FPD (Flat Panel Detector) which can arrange radiation sensitive layer on TFT (Thin Film Transistor) active matrix substrate and convert radiation directly into digital data have been put into practical use.
  • FPD Fluor Deposition Detector
  • TFT Thin Film Transistor
  • a radiographic apparatus that captures a radiographic image represented by irradiated radiation has been put to practical use.
  • the radiography apparatus using this radiation detector can see images immediately, compared with conventional radiography apparatuses using X-ray film or imaging plate, and radiographic imaging (moving image) (Photographing) can also be performed.
  • radiation detectors of this type have been proposed.
  • radiation is once converted into light by a scintillator such as CsI: Tl or GOS (Gd2O2S: Tb), and the converted light is a photodiode or the like.
  • a scintillator such as CsI: Tl or GOS (Gd2O2S: Tb)
  • the converted light is a photodiode or the like.
  • the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
  • Japanese Patent Application Laid-Open No. 2004-223157 discloses a radiation detector in which imaging pixels on a substrate are formed in a matrix and an AEC detection element is formed in a gap between some pixels. Yes.
  • Japanese Patent Laid-Open No. 2002-181942 provides a sensor unit (described as a radiation detection element) for detecting radiation separately from a radiation detector (described as a solid-state imaging device), and starts emitting radiation by the sensor unit. And a technique for controlling the accumulation of charges in the radiation detector and the reading of the accumulated charges by detecting the end.
  • the size of the imaging pixel is reduced at the portion where the AEC detection element is provided, and the sensitivity is lowered. In this way, when the sensitivity of some of the pixels is lowered, the change in image quality is conspicuous even in the captured image, so that the overall image quality is felt to be lowered.
  • EDR Exposure Data Recognizer
  • This type of radiation imaging apparatus captures a density correction radiation image before capturing a diagnostic radiation image, analyzes the density correction radiation image, and obtains an image with an appropriate density and contrast. Obtain various parameters such as gain.
  • the radiographic apparatus performs density adjustment by feeding back various parameters obtained and adjusting the gain amount of the amplifier and taking a diagnostic radiographic image.
  • the present invention has been made in view of the above-described facts, and performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount while suppressing deterioration in image quality of the entire captured image.
  • An object is to provide a radiation imaging apparatus, a radiation imaging system, and a radiation detection program.
  • the present invention also provides a radiation imaging apparatus and a radiation imaging system capable of acquiring a density correction image and adjusting the image quality of a diagnostic radiation image without increasing the exposure dose of the subject. With the goal.
  • an imaging panel for capturing a radiographic image of radiation applied to an imaging area, and an imaging panel disposed so as to overlap the imaging area of the imaging panel.
  • a plurality of sensor units that detect the detected radiation, and a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose by properly using the plurality of sensor units.
  • a radiographic image can be captured by radiation applied to the imaging area by the imaging panel, and each irradiated radiation is detected so as to overlap the imaging area of the imaging panel.
  • a plurality of sensor units are arranged.
  • the detection unit detects at least two of a plurality of sensor units by using a plurality of sensor units, ie, radiation irradiation start, radiation irradiation end, and radiation irradiation amount.
  • a plurality of sensor units means to start radiation irradiation, end radiation irradiation, and detect the amount of radiation irradiation with different sensor units. For example, some sensor units among a plurality of sensor units. Then, any one of the start of radiation irradiation, the end of radiation irradiation, and the radiation dose is performed, and any other detection is performed by the remaining part or all of the remaining sensor units.
  • the plurality of sensor units that detect the irradiated radiation so as to overlap the imaging region of the imaging panel that captures the radiographic image of the radiation applied to the imaging region.
  • at least two detections of radiation start, radiation end, and radiation dose are performed. For this reason, there is no need to provide a sensor unit on the photographing panel, and the pixel size does not become small on the photographing panel. Therefore, radiation irradiation start and radiation irradiation are suppressed while suppressing deterioration in image quality of the entire photographed image. At least two detections of termination and radiation dose can be performed.
  • the radiography apparatus can synchronize the radiation control timing with the external control device through communication. Detecting the start of radiation exposure without taking a radiation image, starting radiographic image capture on the radiographing panel, detecting the end of radiation exposure, starting the extraction of the radiographic image taken from the radiographing panel, and detecting the radiation dose Automatic irradiation control etc. can be performed in parallel. Thus, since it can image
  • the image processing device further includes a specifying unit that specifies an imaging part region in which the imaging part is arranged on the imaging region, and the detection unit is located outside the imaging part region specified by the specifying unit.
  • the detection may be performed using a sensor unit arranged in the camera and a sensor unit arranged in the imaging region.
  • the detection unit detects the start of radiation irradiation by a sensor unit arranged outside the imaging region, and the sensor unit arranged in the imaging region area You may detect the irradiation amount of a radiation.
  • the imaging panel includes a conversion layer that converts radiation into light, captures a radiation image represented by the light converted by the conversion layer, and
  • the sensor units may each include an organic photoelectric conversion material, and may be disposed on the radiation irradiation side of the imaging panel and detect light converted by the conversion layer.
  • a housing having an imaging surface on which an imaging region is arranged at the time of imaging is formed, and the imaging region is arranged on the imaging surface.
  • a pressure light emitting sheet on which a light emitting layer that emits light in response to the pressure received is formed, and the plurality of sensor units are stacked on the pressure light emitting sheet to further detect light from the pressure light emitting sheet.
  • the identification unit may identify an imaging region where the imaging region is arranged based on detection results from the plurality of sensor units.
  • a housing formed with an imaging surface on which an imaging region is arranged at the time of imaging, a contact detection unit that detects contact of the imaging region with the imaging surface, And the specifying unit may specify the imaging region based on a detection result by the contact detection unit.
  • the seventh aspect of the present invention further includes a receiving unit that receives imaging order information including predetermined information capable of specifying an imaging region, and the specifying unit is based on the imaging order information.
  • the imaging region may be specified.
  • the plurality of sensor units may have substantially the same sensitivity to radiation.
  • the plurality of sensor units are arranged at least one of a central part and a peripheral part of the imaging region.
  • an imaging panel for capturing a radiographic image of radiation applied to an imaging region, and an imaging panel disposed so as to overlap the imaging region of the imaging panel.
  • a plurality of sensor units that detect the detected radiation, and a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose by properly using the plurality of sensor units.
  • the tenth aspect of the present invention since it operates in the same manner as the first aspect of the present invention, radiation irradiation start and radiation irradiation end are performed while suppressing deterioration of the image quality of the entire captured image. , And at least two detections of radiation dose can be performed.
  • a computer is disposed so as to overlap with an imaging region of an imaging panel that captures a radiographic image of radiation applied to the imaging region.
  • a plurality of sensor units that detect the radiation are used properly to function as a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose.
  • the computer functions as the detection unit of the first aspect of the present invention, and operates in the same manner as the first aspect of the present invention. While suppressing deterioration of the image quality as a whole, it is possible to detect at least two of radiation start, radiation end, and radiation dose.
  • a plurality of pixels each having a first sensor unit that generates a charge when irradiated with radiation or radiation-converted light is arranged two-dimensionally.
  • an adjustment unit that adjusts a processing parameter when generating a radiographic image by reading out the charge from each pixel of the imaging unit, and reading out the charge from each pixel of the imaging unit,
  • a generation unit that performs processing based on the processing parameter adjusted by the adjustment unit to generate a radiation image for diagnosis, radiation start of radiation based on a detection result by each second sensor unit of the detection unit, Morphism has ended, and a detection unit for performing at least one of the detection of the dose of radiation, the.
  • a plurality of pixels having a first sensor unit that generates charges when irradiated with radiation or light converted from radiation is arranged in a two-dimensional manner on the imaging unit.
  • the detection unit in which a plurality of second sensor units having a larger area than the first sensor unit are two-dimensionally arranged is stacked on the imaging unit.
  • the adjustment unit adjusts the processing parameter when reading the charge from each pixel of the imaging unit and generating the radiation image. Charges are read from the respective pixels of the imaging unit by the generation unit, and processing based on the processing parameters adjusted by the adjustment unit is performed to generate a diagnostic radiation image.
  • the second sensor having a larger area than the first sensor unit is stacked with the imaging unit in which a plurality of pixels having the first sensor unit are two-dimensionally arranged.
  • a detection unit having a plurality of units arranged two-dimensionally is arranged. Based on the image obtained from the detection result by each second sensor unit of the detection unit, the processing parameters for generating a radiation image by reading out the charge from each pixel of the imaging unit are adjusted. A charge is read from each pixel of the imaging unit, and processing based on the adjusted processing parameter is performed to generate a diagnostic radiation image. For this reason, it is possible to adjust the image quality of the diagnostic radiographic image by acquiring the density correction image without increasing the exposure dose of the subject.
  • the adjustment unit adjusts the processing parameter so that the main density range of the subject region of the radiographic image generated by the generation unit is a predetermined appropriate density range. Also good.
  • the generator has an amplifier that amplifies an electrical signal corresponding to the amount of charge generated in the first sensor that is read from each pixel of the imaging unit,
  • the adjustment unit may adjust the gain amount of the amplifier as the processing parameter.
  • the generation unit reads an electric charge from each pixel of the photographing unit as an electric signal and converts the electric signal into digital data having a predetermined number of bits. And a standardization process for standardizing the digital data converted by the A / D converter into digital data having a number of bits smaller than the predetermined number of bits, and the adjustment unit as the processing parameter Processing parameters for the normalization processing may be adjusted.
  • the imaging unit has a conversion layer that converts radiation into light
  • the first sensor unit is configured to receive a radiographic image represented by light converted by the conversion layer.
  • the second sensor unit may be configured to include an organic photoelectric conversion material, be disposed on the radiation irradiation side of the imaging unit, and detect light converted by the conversion layer.
  • the generation unit reads out electric charges from each pixel of the imaging unit at an imaging cycle corresponding to a frame rate of fluoroscopic imaging, and adjusts by the adjustment unit A process based on the processed parameters is performed to generate a radiation image, and the adjustment unit detects the radiation by each second sensor unit of the detection unit in the imaging cycle, and according to the image obtained from the detection result, Processing parameters may be adjusted.
  • a display unit for displaying an image obtained from a detection result by each second sensor unit of the detection unit may be further provided.
  • a plurality of the second sensor units are arranged in a matrix.
  • a plurality of pixels having a first sensor section that generates a charge when irradiated with radiation or light converted from radiation is two-dimensionally formed.
  • An arranged imaging unit for imaging diagnostic radiographic images and a plurality of second sensor units arranged in a stack with the imaging unit and having a larger area than the first sensor unit are arranged two-dimensionally.
  • an adjustment unit that adjusts processing parameters when a radiographic image is generated by reading out charges from each pixel of the imaging unit according to an image obtained from a detection result by each second sensor unit of the detection unit.
  • a detection unit that reads out the electric charge from each pixel of the imaging unit and performs a process based on the processing parameter adjusted by the adjustment unit to generate a radiation image, and a detection result by each second sensor unit of the detection unit.
  • Base There are start of irradiation, has a radiation irradiation end, and a detection unit for performing at least one of the detection of the dose of radiation, the.
  • a second sensor unit having a larger area than the first sensor unit by stacking with a plurality of pixels having a first sensor unit arranged two-dimensionally.
  • a plurality of two-dimensionally arranged detectors are arranged.
  • the processing parameters for generating a radiation image by reading out the charge from each pixel of the imaging unit are adjusted.
  • a charge is read from each pixel of the imaging unit, and processing based on the adjusted processing parameter is performed to generate a diagnostic radiation image. Therefore, similarly to the first aspect of the invention, it is possible to adjust the image quality of the diagnostic radiographic image by acquiring the density correction image without increasing the exposure dose of the subject.
  • the present invention it is possible to detect at least two of the start of radiation irradiation, the end of radiation irradiation, and the amount of radiation irradiation while suppressing deterioration of the image quality of the entire image to be captured. It is done.
  • the present invention it is possible to obtain an effect that the density correction image can be acquired and the image quality adjustment of the diagnostic radiation image can be performed without increasing the exposure dose of the subject.
  • 26B is a graph showing the result of normalization processing so that the main density ranges MIN0 to MAX0 and MIN1 to MAX1 of the subject areas in the cumulative histograms a and b in FIG. 26A become the appropriate density ranges MIN2 to MAX2, respectively.
  • RIS Radiology Information System
  • the RIS 10 is a system for managing information such as medical appointments and diagnosis records in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS (Hospital Information System)”). .
  • HIS Healthcare Information System
  • the RIS 10 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 12, a RIS server 14, and a radiographic imaging system (or an operating room) installed in a hospital. Hereinafter, it is referred to as a “photographing system”) 18. These are configured to be connected to an in-hospital network 16 composed of a wired or wireless LAN (Local Area Network) or the like.
  • the RIS 10 constitutes a part of the HIS provided in the same hospital.
  • An HIS server (not shown) that manages the entire HIS is also connected to the hospital network 16.
  • the terminal device 12 is used by doctors and radiographers to input and browse diagnostic information and facility reservations. A radiographic image capturing request and an imaging reservation are also made via the terminal device 12.
  • Each terminal device 12 includes a personal computer having a display device, and is capable of mutual communication via the RIS server 14 and the hospital network 16.
  • the RIS server 14 receives an imaging request from each terminal device 12, manages the radiographic imaging schedule in the imaging system 18, and includes a database 14A.
  • Database 14A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc. It contains information about the patient.
  • the database 14A includes an identification number (ID information), model, size, sensitivity, usable imaging part (content of imaging request that can be used), date of use start, and date of use, which will be described later, used in the imaging system 18.
  • the information includes the information about the electronic cassette 32 such as the number of uses.
  • the database 14 ⁇ / b> A includes environment information that indicates an environment in which a radiographic image is captured using the electronic cassette 32, that is, an environment in which the electronic cassette 32 is used (for example, a radiographic room or an operating room).
  • the imaging system 18 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 14.
  • the imaging system 18 includes a radiation generator 34 that irradiates a subject with radiation X (see also FIG. 3) that is a dose according to the exposure conditions from a radiation source 130 (see also FIG. 2), and a subject.
  • An electronic cassette incorporating a radiation detector 60 (see also FIG. 3) that generates radiation by absorbing the radiation X transmitted through the imaging region of the person and generates image information indicating a radiation image based on the amount of the generated charge.
  • the console 42 acquires various types of information included in the database 14A from the RIS server 14 and stores them in an HDD 110 (see FIG. 9) described later. Based on the information, the electronic cassette 32, the radiation generator 34, and the cradle 40 are stored. Control.
  • FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 44 of the imaging system 18 according to the present embodiment.
  • the radiation imaging room 44 has a standing table 45 used when performing radiation imaging in a standing position and a prone table 46 used when performing radiation imaging in a lying position. is set up.
  • the space in front of the standing table 45 is the imaging position 48 of the subject when performing radiography in the standing position, and the space above the prone table 46 is that of the subject when performing radiography in the supine position.
  • the shooting position is 50.
  • the standing stand 45 is provided with a holding unit 150 that holds the electronic cassette 32, and the electronic cassette 32 is held by the holding unit 150 when a radiographic image is taken in the standing position.
  • a holding unit 152 that holds the electronic cassette 32 is provided in the prone position table 46, and the electronic cassette 32 is held by the holding unit 152 when radiographic images are taken in the prone position.
  • the radiation source 130 is arranged around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and in a standing position by radiation from a single radiation source 130. 2 is provided, and a support moving mechanism 52 is provided which can be rotated in the vertical direction (arrow B direction in FIG. 2) and supported so as to be movable in the horizontal direction (arrow C direction in FIG. 2). It has been.
  • the support moving mechanism 52 includes a drive source that rotates the radiation source 130 about a horizontal axis, a drive source that moves the radiation source 130 in the vertical direction, and a drive source that moves the radiation source 130 in the horizontal direction. Each is provided (not shown).
  • the cradle 40 is formed with an accommodating portion 40A capable of accommodating the electronic cassette 32.
  • the built-in battery is charged in a state of being accommodated in the accommodating portion 40A of the cradle 40.
  • the electronic cassette 32 is taken out from the cradle 40 by a radiographer or the like at the time of radiographic image capturing, and is held by the holding unit 150 of the stand 45 if the imaging posture is in the upright position. It is held by the holding part 152 of the base 46.
  • the radiation generator 34 and the console 42 are connected by cables and various types of information are transmitted and received by wired communication.
  • the cable connecting 42 is omitted.
  • Various information is transmitted and received between the electronic cassette 32 and the console 42 by wireless communication.
  • communication between the radiation generator 34 and the console 42 may be performed by wireless communication.
  • the electronic cassette 32 is not used only in a state where the electronic cassette 32 is held by the holding portion 150 of the standing base 45 or the holding portion 152 of the standing base 46.
  • the electronic cassette 32 can also be used in the state which is not hold
  • FIG. 3 shows the internal configuration of the electronic cassette 32 according to the present embodiment.
  • the electronic cassette 32 includes a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure.
  • a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure.
  • one electronic cassette 32 can be used repeatedly by sterilizing and cleaning the electronic cassette 32 as necessary with a waterproof and airtight structure.
  • a radiation detector 60 that captures a radiation image of the radiation X that has passed through the subject from the imaging surface 56 side of the housing 54 irradiated with the radiation X, and detection of the irradiated radiation.
  • the radiation detection part 62 to perform is arrange
  • an electronic circuit including a microcomputer and a chargeable and detachable battery 96A are disposed on one end side inside the housing 54.
  • the radiation detector 60 and the electronic circuit are operated by electric power supplied from the battery 96 ⁇ / b> A disposed in the case 31.
  • a lead plate or the like is arranged on the imaging surface 56 side of the case 31.
  • the electronic cassette 32 according to the present embodiment is a rectangular parallelepiped whose photographing surface 56 has a rectangular shape, and the case 31 is disposed at one end in the longitudinal direction.
  • a display unit 56A that displays an operation mode of the electronic cassette 32 such as an operation mode such as “ready state” and “data transmitting”, a remaining capacity of the battery 96A, and the like.
  • an operation mode such as “ready state” and “data transmitting”, a remaining capacity of the battery 96A, and the like.
  • a light emitting diode is applied as the display unit 56A.
  • the present invention is not limited to this, and other light emitting elements other than the light emitting diode, a liquid crystal display, an organic EL display, and the like are used.
  • a display unit may be applied.
  • FIG. 4 is a cross-sectional view schematically showing configurations of the radiation detector 60 and the radiation detection unit 62 according to the present embodiment.
  • the radiation detector 60 includes a TFT active matrix substrate (hereinafter referred to as “TFT substrate”) 66 in which a thin film transistor (TFT: Thin Film Transistor, hereinafter referred to as “TFT”) 70 and a storage capacitor 68 are formed on an insulating substrate 64. I have.
  • TFT substrate TFT active matrix substrate
  • TFT Thin Film Transistor
  • a scintillator 71 that converts incident radiation into light is disposed.
  • the scintillator 71 for example, CsI: Tl, GOS (Gd 2 O 2 S: Tb) can be used.
  • the scintillator 71 is not limited to these materials.
  • the insulating substrate 64 may be any substrate as long as it is light transmissive and absorbs little radiation.
  • a glass substrate, a transparent ceramic substrate, or a light transmissive resin substrate can be used.
  • the insulating substrate 64 is not limited to these materials.
  • the TFT substrate 66 is provided with a sensor portion 72 that generates electric charges when light converted by the scintillator 71 is incident thereon.
  • a flattening layer 67 for flattening the TFT substrate 66 is formed on the TFT substrate 66.
  • An adhesive layer 69 for bonding the scintillator 71 to the TFT substrate 66 is formed between the TFT substrate 66 and the scintillator 71 and on the planarizing layer 67.
  • the sensor unit 72 includes an upper electrode 72A, a lower electrode 72B, and a photoelectric conversion film 72C disposed between the upper electrode 72A and the lower electrode 72B.
  • the photoelectric conversion film 72C absorbs the light emitted from the scintillator 71 and generates a charge corresponding to the absorbed light.
  • the photoelectric conversion film 72C may be formed of a material that generates charges when irradiated with light.
  • the photoelectric conversion film 72C may be formed of amorphous silicon, an organic photoelectric conversion material, or the like.
  • the photoelectric conversion film 72C containing amorphous silicon has a wide absorption spectrum and can absorb light emitted by the scintillator 71.
  • the photoelectric conversion film 72C containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible region, and electromagnetic waves other than light emitted by the scintillator 71 are hardly absorbed by the photoelectric conversion film 72C.
  • the photoelectric conversion film 72 ⁇ / b> C containing the organic photoelectric conversion material can effectively suppress noise generated when radiation such as X-rays is absorbed by the photoelectric conversion film 72 ⁇ / b> C.
  • the photoelectric conversion film 72C includes an organic photoelectric conversion material.
  • the organic photoelectric conversion material include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds
  • CsI (Tl) is used as the material of the scintillator 71
  • the difference in peak wavelength can be made within 5 nm. It becomes.
  • the amount of charge generated in the photoelectric conversion film 72C can be substantially maximized. Since an organic photoelectric conversion material applicable as the photoelectric conversion film 72C is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • FIG. 5 schematically shows the configuration of the TFT 70 and the storage capacitor 68 formed on the TFT substrate 66 according to the present embodiment.
  • a storage capacitor 68 for storing the charge transferred to the lower electrode 72B, and a TFT 70 for converting the charge stored in the storage capacitor 68 into an electric signal and outputting it. Is formed.
  • the region where the storage capacitor 68 and the TFT 70 are formed has a portion overlapping the lower electrode 72B in plan view.
  • the storage capacitor 68 is electrically connected to the corresponding lower electrode 72B through a wiring made of a conductive material that penetrates the insulating film 65A provided between the insulating substrate 64 and the lower electrode 72B. ing. Thereby, the charges collected by the lower electrode 72B can be moved to the storage capacitor 68.
  • the active layer 70B is formed of an amorphous oxide.
  • the amorphous oxide constituting the active layer 70B an oxide containing at least one of In, Ga, and Zn (for example, In—O-based) is preferable, and at least two of In, Ga, and Zn are used.
  • An oxide containing In (eg, In—Zn—O, In—Ga, or Ga—Zn—O) is more preferable, and an oxide containing In, Ga, and Zn is particularly preferable.
  • In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
  • the active layer 70B of the TFT 70 is formed of an amorphous oxide, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain extremely small, effectively suppressing the generation of noise. Can do.
  • the insulating substrate 64 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bio-nanofiber can also be used.
  • flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc.
  • a conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
  • the insulating substrate 64 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
  • the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process.
  • aramid has a thermal expansion coefficient close to that of ITO (indium tin oxide) or a glass substrate, warping after production is small and it is difficult to crack.
  • aramid can form a substrate thinner than a glass substrate or the like.
  • the insulating substrate 64 may be formed by stacking an ultrathin glass substrate and aramid.
  • Bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetic acid bacteria, Acetobacter® Xylinum) and transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc.
  • a thin insulating substrate 64 can be formed.
  • FIG. 6 is a plan view showing the configuration of the TFT substrate 66 according to this embodiment.
  • the TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6). Are provided two-dimensionally.
  • the radiation detector 60 includes a plurality of gate wirings 76 extending in a certain direction (row direction) for turning on / off each TFT 70, and an on-state TFT 70 extending in a crossing direction (column direction).
  • a plurality of data wirings 78 are provided for reading out charges via the.
  • the radiation detector 60 is flat and has a quadrilateral shape with four sides on the outer edge in plan view. Specifically, it is formed in a rectangular shape.
  • the radiation detector 60 is formed by attaching a scintillator 71 to the surface of the TFT substrate 66 as shown in FIG.
  • the scintillator 71 is formed by vapor deposition on the vapor deposition substrate 73 when it is intended to be formed of a columnar crystal such as CsI: Tl.
  • the vapor deposition substrate 73 is often an Al plate in terms of X-ray transmittance and cost, handling properties during vapor deposition, prevention of warpage due to its own weight, and deformation due to radiant heat. Therefore, a certain thickness (about several mm) is required.
  • GOS is used as the scintillator 71
  • the scintillator 71 may be formed by applying GOS to the surface of the TFT substrate 66 without using the vapor deposition substrate 73.
  • the radiation detector 62 is attached to the surface of the radiation detector 60 on the scintillator 71 side.
  • a wiring layer 142 and an insulating layer 144 in which a wiring 160 (FIG. 8) described later is patterned are formed on a resinous support substrate 140, and the radiation of the present invention is formed thereon.
  • a plurality of sensor units 146 are formed for detection, and a scintillator 148 made of GOS or the like is formed on the sensor unit 146.
  • the sensor unit 146 includes an upper electrode 147A, a lower electrode 147B, and a photoelectric conversion film 147C disposed between the upper electrode 147A and the lower electrode 147B.
  • the photoelectric conversion film 147 ⁇ / b> C generates a charge when light converted by the scintillator 148 is incident thereon.
  • the photoelectric conversion film 147C is preferably a photoelectric conversion film containing the above-described organic photoelectric conversion material, rather than a PIN-type or MIS-type photodiode using amorphous silicon. This is because it is better to use a photoelectric conversion film containing an organic photoelectric conversion material in terms of reduction in manufacturing cost and flexibility in comparison with the case of using a PIN type photodiode or a MIS type photodiode. Because it is advantageous.
  • the sensor unit 146 of the radiation detector 62 does not need to be formed as finely as the sensor unit 72 provided in each pixel 74 of the radiation detector 60, and is formed with a size of tens to hundreds of pixels of the radiation detector 60. That's fine.
  • FIG. 7 shows a sensor unit of the radiation detection unit 62 for an imaging region in which the pixels 74 of the radiation detector 60 are arranged in a matrix when the electronic cassette 32 according to the present embodiment is viewed from the imaging surface 56 side.
  • the top view which shows the arrangement configuration of 146 is shown.
  • the radiation detection unit 62 is provided with sensor units 146 in the vicinity of the center and four corners of the rectangular imaging region.
  • Each sensor unit 146 is formed in the same size, and has substantially the same sensitivity to radiation.
  • sensor part 146A-146E when distinguishing each sensor part 146, it describes as sensor part 146A-146E.
  • five sensor units 146 are provided, but the present invention is not limited to this.
  • FIG. 8 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the present embodiment.
  • the radiation detector 60 includes a plurality of pixels 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 arranged in a matrix, and the sensor unit according to the irradiation of the radiation X to the electronic cassette 32.
  • the charges generated at 72 are stored in the storage capacitors 68 of the individual pixels 74.
  • the image information carried on the radiation X irradiated to the electronic cassette 32 is converted into charge information and held in the radiation detector 60.
  • each gate wiring 76 of the radiation detector 60 is connected to a gate line driver 80, and each data wiring 78 is connected to a signal processing unit 82.
  • the TFTs 70 of the individual pixels 74 are sequentially turned on in units of rows by a signal supplied from the gate line driver 80 via the gate wiring 76.
  • the electric charge accumulated in the accumulation capacitor 68 of the pixel 74 in which the TFT 70 is turned on is transmitted through the data wiring 78 as an analog electric signal and input to the signal processing unit 82. Therefore, the charges accumulated in the accumulation capacitors 68 of the individual pixels 74 are read out in order in row units.
  • the signal processing unit 82 includes an amplifier and a sample hold circuit provided for each data wiring 78.
  • the electric signal transmitted through each data wiring 78 is amplified by an amplifier and then held in a sample and hold circuit.
  • a multiplexer and an A / D (analog / digital) converter are connected in order to the output side of the sample and hold circuit, and the electric signals held in the individual sample and hold circuits are sequentially (serially) input to the multiplexer.
  • the digital image data is converted by an A / D converter.
  • An image memory 90 is connected to the signal processing unit 82, and image data output from the A / D converter of the signal processing unit 82 is sequentially stored in the image memory 90.
  • the image memory 90 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 90 every time a radiographic image is captured.
  • the image memory 90 is connected to a cassette control unit 92 that controls the operation of the entire electronic cassette 32.
  • the cassette control unit 92 includes a microcomputer, and includes a CPU (Central Processing Unit) 92A, a memory 92B including a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), and a flash memory.
  • a non-volatile storage unit 92 ⁇ / b> C is provided.
  • a wireless communication unit 94 is connected to the cassette control unit 92.
  • the wireless communication unit 94 according to the present embodiment is compatible with a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g) and is based on wireless communication. Controls the transmission of various information to and from external devices.
  • the cassette control unit 92 can wirelessly communicate with the console 42 via the wireless communication unit 94, and can transmit and receive various information to and from the console 42.
  • the radiation detection unit 62 includes the five sensor units 146. Further, the radiation detection unit 62 is provided with a plurality of wirings 160 individually connected to the sensor unit 146. Each wiring 160 is connected to the signal detection unit 162.
  • the signal detection unit 162 includes an amplifier and an A / D converter provided for each wiring 160, and is connected to the cassette control unit 92. Under the control of the cassette control unit 92, the signal detection unit 162 samples each wiring 160 at a predetermined period and converts an electrical signal transmitted through each wiring 160 into digital data. The signal detection unit 162 sequentially outputs the converted digital data to the cassette control unit 92.
  • the electronic cassette 32 is provided with a power supply unit 96, and the various circuits and elements described above (gate line driver 80, signal processing unit 82, image memory 90, wireless communication unit 94, cassette control unit 92, signal detection).
  • the unit 162 and the like are operated by the electric power supplied from the power source unit 96.
  • the power supply unit 96 incorporates the above-described battery (secondary battery) 96 ⁇ / b> A so as not to impair the portability of the electronic cassette 32. Further, electric power is supplied from the charged battery 96A to various circuits and elements. In FIG. 8, illustration of wirings connecting the power supply unit 96 to various circuits and elements is omitted.
  • FIG. 9 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
  • the console 42 is configured as a server computer.
  • the console 42 includes a display 100 that displays an operation menu, a captured radiographic image, and the like, and an operation panel 102 that includes a plurality of keys and inputs various information and operation instructions.
  • the console 42 includes a CPU 104 that controls the operation of the entire apparatus, a ROM 106 that stores various programs including a control program in advance, a RAM 108 that temporarily stores various data, and various data.
  • An HDD 110 that stores and retains, a display driver 112 that controls display of various types of information on the display 100, and an operation input detection unit 114 that detects an operation state of the operation panel 102 are provided.
  • the console 42 includes a communication interface (I / F) unit 116 that transmits and receives various types of information such as an exposure condition to be described later to and from the radiation generator 34 via the connection terminal 42A and the communication cable 35, and an electronic cassette.
  • a wireless communication unit 118 that transmits and receives various types of information such as exposure conditions and image data by wireless communication.
  • CPU 104, ROM 106, RAM 108, HDD 110, display driver 112, operation input detection unit 114, communication interface unit 116, and wireless communication unit 118 are connected to each other via a system bus BUS. Therefore, the CPU 104 can access the ROM 106, RAM 108, and HDD 110, controls display of various information on the display 100 via the display driver 112, and the radiation generator 34 via the communication I / F unit 116. And control of transmission / reception of various information to / from the radiation generator 34 via the wireless communication unit 118. Further, the CPU 104 can grasp the operation state of the user with respect to the operation panel 102 via the operation input detection unit 114.
  • the radiation generator 34 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42.
  • a radiation source control unit 134 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42.
  • the radiation source control unit 134 is also configured to include a microcomputer, and stores the received exposure conditions and the like.
  • the exposure conditions received from the console 42 include information on tube voltage and tube current.
  • the radiation source controller 134 irradiates the radiation X from the radiation source 130 based on the received exposure conditions.
  • the imaging system 18 can perform still image shooting that performs shooting one by one and fluoroscopic shooting that performs continuous shooting, and can select still image shooting or fluoroscopic shooting as a shooting mode. Has been.
  • the terminal device 12 accepts an imaging request from a doctor or a radiographer when imaging a radiographic image.
  • an imaging request a patient to be imaged, an imaging region to be imaged, and an imaging mode are designated, and tube voltage, tube current, and the like are designated as necessary.
  • the terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request.
  • the RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
  • the console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 9). .).
  • the radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
  • the electronic cassette 32 when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
  • the photographer designates still image photographing or fluoroscopic photographing as the photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X.
  • the imaging system 18 connects the electronic cassette 32 and the console 42 or between the console 42 and the radiation generator 34 with a communication cable and transmits and receives information by wired communication
  • the layout of the apparatus is performed with the communication cable. Limits occur. For this reason, it is preferable that the imaging system 18 transmits and receives information by wireless communication.
  • communication delay in wireless communication becomes a problem when shooting is performed in synchronization with each other by wireless communication.
  • the electronic cassette 32 detects radiation by the radiation detection unit 62 when capturing a radiation image.
  • the electronic cassette 32 detects the start of radiation irradiation, the electronic cassette 32 starts imaging after performing a reset operation for taking out and removing the charge accumulated in the storage capacitor 68 of each pixel 74 of the radiation detector 60.
  • the radiation detection unit 62 detects the radiation dose applied to the electronic cassette 32 and controls the irradiation with radiation from the radiation source 130 ( A so-called AEC (automatic exposure control) is performed. Specifically, in the case of still image shooting, when the detected radiation dose becomes an allowable amount, the irradiation end of radiation from the radiation source 130 and the start of image reading from the radiation detector 60 are started. Imaging is continuously performed at a predetermined frame rate, and irradiation of radiation from the radiation source 130 is terminated when the radiation amount detected by the radiation detection unit 62 becomes an allowable amount.
  • the allowable amount of still image shooting is an appropriate dose for taking a radiographic image of the imaging region clearly, and the allowable amount of fluoroscopic imaging is a dose for suppressing the exposure of the subject within an appropriate range, Each has a different purpose.
  • the allowable amount for still image shooting and the allowable amount for fluoroscopic imaging may be input from the operation panel 102 by the photographer at the time of shooting.
  • the permissible amount for still image photographing and the permissible amount for fluoroscopic photographing are stored in advance in the HDD 110 as per-photographing region permissible amount information for each photographing part, and the photographer specifies the photographing part on the operation panel 102.
  • the imaging mode and the allowable amount corresponding to the imaging region may be obtained from the imaging region allowable amount information.
  • the permissible amount of fluoroscopic imaging is stored in the database 14A of the RIS server 14 so that the daily exposure dose is stored for each patient, and the RIS server 14 determines the exposure dose during a predetermined period (for example, the latest three months).
  • the allowable exposure dose of the patient may be obtained from the total value, and the allowable exposure dose may be notified to the console 42 as the allowable dose.
  • the console 42 transmits the specified tube voltage and tube current to the radiation generator 34 as exposure conditions, and transmits the specified imaging mode, tube voltage, tube current, and allowable amount to the electronic cassette 32 as imaging conditions.
  • the radiation source control unit 134 of the radiation generator 34 receives the exposure conditions from the console 42, the received exposure conditions are stored, and when the cassette control unit 92 of the electronic cassette 32 receives the imaging conditions from the console 42, The received shooting conditions are stored in the storage unit 92C.
  • the photographer When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
  • the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32.
  • the radiation generator 34 starts generating and emitting radiation with a tube voltage and a tube current corresponding to the exposure conditions received from the console 42.
  • the cassette control unit 92 of the electronic cassette 32 When the cassette control unit 92 of the electronic cassette 32 receives the instruction information instructing the start of exposure, the cassette control unit 92 performs shooting control according to the shooting mode stored as the shooting condition in the storage unit 92C.
  • the imaging region is generally arranged at the center of the imaging surface 56 of the electronic cassette 32.
  • the electronic cassette 32 uses the five sensor units 146 of the radiation detection unit 62 properly, and starts the radiation irradiation and detects the radiation dose. Specifically, radiation is detected by sensor units 146A to 146D provided in the vicinity of the four corners of the imaging region. The electronic cassette 32 starts imaging after performing a reset operation when detecting the start of radiation irradiation. The electronic cassette 32 detects the radiation dose irradiated to the electronic cassette 32 by a sensor unit 146E provided in the center portion of the imaging region during imaging.
  • FIG. 10 shows a flowchart showing the flow of processing of the photographing control program executed by the CPU 92A of the cassette control unit 92.
  • the program is stored in advance in a predetermined area of the memory 92B (ROM).
  • step S10 in the figure the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
  • the signal detection unit 162 samples each wiring 160 at a predetermined cycle, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially outputs the converted digital data to the cassette control unit 92. To do.
  • the imaging region of the imaging surface 56 is rarely covered with the imaging part, and is not covered with any imaging part of the four corners.
  • the sensor units 146A to 146D are located in the unplugged region.
  • this blank area since radiation does not pass through the imaging region, high energy radiation is irradiated. Electric charges are generated in each sensor unit 146 provided in the radiation detection unit 62 when irradiated with radiation, and in particular, a large amount of electric charges are generated in the sensor unit that is in the unexposed region. The generated charges flow out as electric signals to the wiring 160, respectively.
  • the cassette control unit 92 uses the digital data values detected by the sensor units 146A to 146D provided in the vicinity of the four corners of the imaging area among the digital data input from the signal detection unit 162. Compared with a predetermined threshold value for radiation detection, the start of radiation irradiation is detected based on whether or not the threshold value is exceeded. If the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 assumes that radiation irradiation has started and proceeds to step S14. When the value of the digital data is less than the threshold value, the cassette control unit 92 proceeds to step S12 again and waits for the start of radiation irradiation.
  • the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning on the TFT 70 to each gate wiring 76 from the gate line driver 80.
  • the cassette control unit 92 turns on the TFTs 70 connected to the gate wirings 76 one by one in order to extract charges.
  • the charge accumulated in the storage capacitor 68 of each pixel 74 sequentially flows out to each data wiring 78 as a charge signal line by line, and the charge accumulated in the storage capacitor 68 of each pixel 74 is removed by dark current or the like. .
  • the cassette control unit 92 determines whether still image shooting is designated as the shooting mode under the shooting conditions stored in the storage unit 92C. If the determination is affirmative, the cassette control unit 92 proceeds to step S18. If the determination is negative (when fluoroscopic imaging is designated as the imaging mode), the cassette control unit 92 proceeds to step S30.
  • step S18 the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning off the TFT 70 to each gate wiring 76 from the gate line driver 80.
  • the cassette control unit 92 uses the value of the digital data detected by the sensor unit 146 ⁇ / b> E provided in the central portion of the imaging region among the digital data input from the signal detection unit 162 as the sensitivity of the sensor unit 146. Correct according to. The cassette control unit 92 accumulates the corrected values. This cumulative value can be regarded as the exposure dose of the subject.
  • step S22 the cassette control unit 92 determines whether or not the cumulative value is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20.
  • step S24 the cassette control unit 92 transmits instruction information for instructing the end of the exposure to the console.
  • the console 42 When the console 42 receives the instruction information for instructing the end of the exposure from the electronic cassette 32, the console 42 transmits the instruction information for instructing the end of the exposure to the radiation generator 34. When receiving the instruction information for instructing the end of the exposure, the radiation generator 34 ends the radiation irradiation.
  • the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
  • the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals.
  • the electric signal flowing out to each data wiring 78 is converted into digital image data by the signal processing unit 82 and stored in the image memory 90.
  • the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42, and ends the process.
  • step S30 the cassette control unit 92 obtains an imaging cycle according to the frame rate of fluoroscopic imaging.
  • the cassette control unit 92 uses the value of the digital data detected by the sensor unit 146E provided in the central portion of the imaging area among the digital data input from the signal detection unit 162 as the sensitivity of the sensor unit 146. Correct according to. The cassette control unit 92 accumulates the corrected values.
  • step S34 the cassette control unit 92 determines whether or not the cumulative value is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S42. If the determination is negative, the cassette control unit 92 proceeds to step S36.
  • step S36 the cassette control unit 92 determines whether or not a period longer than the imaging cycle has elapsed since the charge of each pixel 74 of the radiation detector 60 was read out last time. If the determination is affirmative, the cassette control unit 92 proceeds to step S38. If the determination is negative, the cassette control unit 92 proceeds to step S32.
  • the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate wiring 76 in order from the gate line driver 80 line by line.
  • the TFTs 70 connected to the gate lines 76 are sequentially turned on line by line, and the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals. .
  • the electric signal flowing out to each data wiring 78 is converted into digital image data by the signal processing unit 82 and stored in the image memory 90.
  • step S40 the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42. After the image data is transmitted, the process proceeds to step S32.
  • step S42 the cassette control unit 92 transmits instruction information for instructing the end of the exposure to the console 42, and ends the process.
  • the radiation generator 34 When receiving the instruction information for instructing the end of exposure, the radiation generator 34 ends the generation and emission of radiation.
  • the fluoroscopic imaging is stopped when the cumulative value of the sensor unit 146E provided in the central portion of the imaging area becomes an allowable amount during fluoroscopic imaging.
  • a warning may be displayed on the console 42 by notifying the console 42 that the allowable amount has been exceeded.
  • the console 42 transmits an exposure condition in which at least one of the tube voltage and the tube current is reduced to the radiation generator 34, thereby reducing the radiation dose per unit time irradiated from the radiation source 130 of the radiation generator 34. You may make it make it.
  • the console 42 When the console 42 receives the image information from the electronic cassette 32, the console 42 performs various image processing such as shading correction on the received image information, and stores the image information after the image processing in the HDD 110.
  • the image information stored in the HDD 110 is displayed on the display 100 for confirmation of the captured radiographic image, and is transferred to the RIS server 14 and stored in the database 14A. Thereby, it becomes possible for a doctor to perform interpretation, diagnosis, and the like of a radiographic image taken.
  • the cumulative value of the digital data values detected by the sensor unit 146E can be regarded as the exposure dose of the subject.
  • the electronic cassette 32 is transmitted to the RIS server 14 via the console 42 and stored in the database 14A.
  • the exposure dose and the imaging conditions may be stored together in the database 14A.
  • the electronic cassette 32 transfers the cumulative value (exposure dose) to the console 42.
  • the console 42 stores the accumulated amount (exposure amount) and the imaging conditions in association with each other in the database 14B.
  • the utility value of the database 14B is further increased.
  • the plurality of sensor units 146 that detect the radiation irradiated so as to overlap the imaging region of the radiation detector 60 that captures the radiation image of the radiation irradiated to the imaging region.
  • a plurality of sensor units 146 are selectively used to start radiation irradiation and detect the radiation dose. Since the size of the pixel 74 of the radiation detector 60 is not reduced by arranging the sensor unit 146, the start of radiation irradiation and the amount of radiation irradiation can be suppressed while suppressing the deterioration of the image quality of the entire captured image. Detection can be performed.
  • the electronic cassette 32 detects the start of radiation irradiation, starts imaging, detects the radiation dose, and ends the imaging, whereby the electronic cassette 32 and the console 42 are Even when a communication delay occurs in wireless communication, radiographic images can be stably captured.
  • the radiation detector 60 does not need to provide the AEC detection elements together with the imaging pixels on the substrate 64, so that the circuit arrangement becomes simple.
  • the start of radiation irradiation can be quickly detected by detecting the start of radiation irradiation by the sensor units 146A to 146D.
  • the radiation dose can be stably detected.
  • the configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the second embodiment are the same as those in the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
  • FIG. 11 when the electronic cassette 32 according to the second embodiment is viewed from the imaging surface 56 side, the radiation detector 62 of the radiation detector 60 with respect to the imaging region in which the pixels 74 of the radiation detector 60 are arranged in a matrix is shown.
  • the top view which shows the arrangement configuration of the sensor part 146 is shown.
  • the radiation detection unit 62 is provided with five sensor units 146 along one diagonal line of the rectangular imaging region, and the sensor units 146 are arranged obliquely in the imaging region.
  • Each sensor unit 146 is formed in the same size, and has substantially the same sensitivity to radiation.
  • sensor part 146A-146E when distinguishing each sensor part 146, it describes as sensor part 146A-146E.
  • five sensor units 146 are provided, but the present invention is not limited to this.
  • the imaging region is arranged in the imaging region of the imaging surface 56, it is rare that the entire imaging region is covered with the imaging region.
  • the imaging region differs depending on the type of imaging region such as a hand, foot, chest, or abdomen.
  • the console 42 further transmits the imaging region to the electronic cassette 32 as an imaging condition.
  • the electronic cassette 32 stores the sensor unit 146 that is in the region of the imaging region when the imaging region is arranged for each type of imaging region in the storage unit 92C as imaging region-specific sensor information. I remember it. For example, when the imaging region is a hand, the sensor unit 146C is within the region of the imaging region, and when the imaging region is the abdomen, the sensor units 146B to 146D are within the region of the imaging region. Is remembered.
  • the sensor When the electronic cassette 32 according to the present embodiment receives an imaging condition, the sensor that is within the imaging part region when the imaging part is arranged from the imaging part included in the imaging condition based on the imaging part-specific sensor information.
  • the other sensor unit 146 is specified as the sensor unit 146 that is outside the region of the imaging part when the imaging part is arranged.
  • radiation is detected by the sensor unit 146 identified as outside the imaging region, and the electronic cassette 32 is irradiated by the sensor unit 146 identified as within the imaging region.
  • the detected radiation dose is detected.
  • FIG. 12 shows a flowchart showing the flow of processing of the imaging control program according to the second embodiment. Note that the same parts as those in the first embodiment (FIG. 10) are denoted by the same reference numerals and description thereof is omitted, and different parts are denoted by reference numeral A for description.
  • step S8A in the figure the cassette control unit 92 falls within the region of the imaging part when the imaging part is arranged from the imaging part included in the imaging conditions received from the console 42 based on the imaging part-specific sensor information.
  • the sensor unit 146 and the sensor unit 146 outside the imaging region are specified.
  • step S ⁇ b> 12 ⁇ / b> A the cassette control unit 92 sets a predetermined radiation data threshold value for the digital data detected by each sensor unit 146 outside the imaging region in the digital data input from the signal detection unit 162. The start of radiation irradiation is detected based on whether or not the threshold value is exceeded. If the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 proceeds to step S14 on the assumption that radiation irradiation has started, and if the value of the digital data is less than the threshold value, the cassette control unit 92 In step 92, the process returns to step S12 and waits for the start of radiation irradiation.
  • step S ⁇ b> 20 ⁇ / b> A the cassette control unit 92 sets the digital data value detected by each sensor unit 146 in the imaging region among the digital data input from the signal detection unit 162 according to the sensitivity of the sensor unit 146. to correct.
  • the cassette control unit 92 accumulates the corrected values for each sensor unit 146.
  • step S22A the cassette control unit 92 determines whether any cumulative value of the sensor unit 146 in the imaging region is equal to or greater than an allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20A.
  • step S ⁇ b> 32 ⁇ / b> A the cassette control unit 92 sets the value of the digital data detected by each sensor unit 146 in the imaging region among the digital data input from the signal detection unit 162 according to the sensitivity of the sensor unit 146. to correct.
  • the cassette control unit 92 accumulates the corrected values for each sensor unit 146.
  • step S34A the cassette control unit 92 determines whether or not the cumulative value of any of the sensor units 146 in the region of the imaging region has exceeded an allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S42. If the determination is negative, the cassette control unit 92 proceeds to step S36.
  • a plurality of sensor units 146 are selectively used for each imaging region to start radiation irradiation and detect radiation dose, thereby starting radiation irradiation and Irradiation amount can be detected accurately.
  • the configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the third embodiment are the same as those in the first embodiment (see FIGS. 1 to 3, FIGS. 5 to 7, and FIG. 9). The description is omitted here.
  • FIG. 13 is a cross-sectional view schematically showing the configuration of the electronic cassette 32 according to the third embodiment.
  • the pressure light emitting sheet 170 is attached to the entire imaging region of the top plate portion constituting the imaging surface 56 of the housing 54.
  • a liquid crystal shutter 172 is provided on the entire surface of the photographing region on the surface of the pressure light emitting sheet 170 opposite to the top plate portion. Further, the radiation detector 62 and the radiation detector 60 are sequentially stacked on the liquid crystal shutter 172.
  • a light emitting layer that emits light according to pressure is formed on the pressure light emitting sheet 170.
  • the light emitting layer contains a stress light emitting material whose fluorescent color is changed by pressure stimulation.
  • the stress luminescent material include strontium aluminate (SrAl 2 O 4 : Eu), zinc sulfide (ZnS: Mn) added with manganese as a luminescent center, and the like.
  • the liquid crystal shutter 172 can switch between transmission and non-transmission of light by electrical control.
  • the liquid crystal shutter 172 switches between transmission and non-transmission of light from the pressure light emitting sheet 170 to the radiation detection unit 62.
  • the scintillator 148 is not formed in the radiation detection unit 62 according to the present embodiment, and the sensor unit 146 is formed on the support substrate 140 having optical transparency.
  • the radiation detector 60 is arranged so that the scintillator 71 side faces the radiation detector 62.
  • the radiation detection unit 62 is configured such that each sensor unit 146 can detect the light of the scintillator 71 of the radiation detector 60 and the light of the pressure light emitting sheet 170 by each sensor unit 146.
  • FIG. 14 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the third embodiment.
  • symbol is attached
  • the liquid crystal shutter 172 is connected to the cassette control unit 92.
  • the cassette control unit 92 can switch the liquid crystal shutter 172 between a transmissive state and a non-transmissive state by controlling the voltage applied to the liquid crystal shutter 172.
  • an imaging region is disposed on the imaging surface 56.
  • the electronic cassette 32 performs a specific process of specifying the imaging region where the imaging region is arranged on the imaging surface 56 at a predetermined timing before imaging, such as timing when imaging conditions are received from the console 42, for example. Note that it may be executed before the process of Step 9B of the process of the photographing control program described later.
  • FIG. 15 is a flowchart showing the flow of processing of the specific processing program executed by the CPU 92A of the cassette control unit 92.
  • the program is stored in advance in a predetermined area of the memory 92B (ROM).
  • step S50 the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to place the liquid crystal shutter 172 in a transmissive state.
  • the light of the pressure light emitting sheet 170 can be detected by each sensor unit 146 of the radiation detection unit 62.
  • the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
  • the top plate part of the electronic cassette 32 is distorted, and the part to which the pressure of the pressure light emitting sheet 170 is applied emits light.
  • the cassette control unit 92 compares the digital data value of each sensor unit 146 input from the signal detection unit 162 with a predetermined threshold value for specifying the region of the imaging region.
  • the cassette control unit 92 identifies the sensor unit 146 that is equal to or greater than the threshold value as the sensor unit 146 disposed within the region of the imaging region, and the sensor unit 146 that is less than the threshold value is disposed outside the region of the imaging region. The sensor unit 146 is identified.
  • step S56 the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to place the liquid crystal shutter 172 in a non-transmissive state, and ends the process.
  • the sensor unit 146 that is identified as outside the imaging region is detected by the processing of the specific processing program, and the sensor unit that is identified as within the imaging region is detected.
  • the radiation dose irradiated to the electronic cassette 32 is detected.
  • FIG. 16 shows a flowchart showing the flow of processing of the imaging control program according to the third embodiment. Note that the same parts as those of the first embodiment (FIG. 10) are denoted by the same reference numerals and description thereof is omitted, and different parts are denoted by reference numeral B for description.
  • step S9B in the figure the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to make the liquid crystal shutter 172 non-transmissive.
  • the light of the pressure light emitting sheet 170 does not enter each sensor unit 146 of the radiation detection unit 62.
  • step S ⁇ b> 12 ⁇ / b> B the cassette control unit 92 detects the value of the digital data detected by each sensor unit 146 identified as being out of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162. Is compared with a predetermined threshold value for radiation detection, and the start of radiation irradiation is detected depending on whether or not the threshold value is exceeded.
  • the cassette control unit 92 proceeds to step S14 assuming that radiation irradiation has started, and to step S12 when the value of the digital data is less than the threshold value. Move again and wait for the start of irradiation.
  • step S20B the cassette control unit 92 detects the digital data detected by each sensor unit 146 identified as being within the region of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162. Is corrected according to the sensitivity of the sensor unit 146. The cassette control unit 92 accumulates the corrected values for each sensor unit 146.
  • step S22B the cassette control unit 92 determines whether any cumulative value of the sensor unit 146 in the imaging region is equal to or greater than an allowable amount. When it becomes affirmation determination, the cassette control part 92 transfers to step S24, and when it becomes negative determination, the cassette control part 92 transfers to step S20.
  • step S32B the cassette control unit 92 detects the digital data detected by each sensor unit 146 identified within the region of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162.
  • the data value is corrected according to the sensitivity of the sensor unit 146.
  • the cassette control unit 92 accumulates the corrected values for each sensor unit 146.
  • the pressure light emitting sheet 170 is disposed on the top plate portion that constitutes the imaging surface 56 of the housing 54.
  • the sensor unit in the region of the imaging region is detected.
  • 146 and the sensor unit 146 outside the imaging region can be specified.
  • the radiation irradiation is started and the radiation dose is detected, so that the radiation irradiation is started and the radiation is detected. Irradiation amount can be detected accurately.
  • the configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the fourth embodiment are the same as those in the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
  • FIG. 17 shows the internal configuration of the electronic cassette 32 according to the fourth embodiment. Note that the same parts as those in the first embodiment (FIG. 3) are denoted by the same reference numerals and description thereof is omitted.
  • the electronic cassette 32 is provided with a touch panel 180 for detecting contact of an imaging region with the imaging surface 56 on the imaging surface 56 of the housing 54.
  • a touch panel 180 for detecting contact of an imaging region with the imaging surface 56 on the imaging surface 56 of the housing 54.
  • various types such as a pressure-sensitive type and an electrostatic type can be applied.
  • FIG. 18 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the fourth embodiment.
  • symbol is attached
  • the touch panel 180 is connected to the cassette control unit 92.
  • the cassette control unit 92 can grasp the region of the imaging part where the imaging part of the imaging surface 56 is arranged based on the detection result by the touch panel 180.
  • the electronic cassette 32 grasps the region of the imaging region based on the detection result by the touch panel 180 when performing imaging, and the sensor unit 146 disposed in the region of the imaging region, The sensor unit 146 arranged outside the area is specified.
  • radiation is detected by the sensor unit 146 identified as outside the imaging region, and the electronic cassette 32 is identified by the sensor unit 146 identified as within the imaging region.
  • the amount of radiation irradiated to is detected.
  • the touch panel 180 is provided on the imaging surface 56 of the housing 54, and the touch range where the imaging region is arranged on the imaging surface 56 is detected by the touch panel 180.
  • the sensor unit 146 in the region of the imaging region and the sensor unit 146 outside the region of the imaging region can be specified.
  • the radiation irradiation is started and the radiation dose is detected, so that the radiation irradiation is started and the radiation is detected. Irradiation amount can be detected accurately.
  • the present invention is not limited to this. Absent.
  • the radiation detector 62 is disposed on the top plate portion constituting the imaging surface 56 of the housing 54, and the radiation detector 60 is disposed on the opposite side of the top plate of the radiation detector 62. Also good.
  • the radiation detection unit 62 in FIG. 19 does not have the scintillator 148 and detects the light of the scintillator 71 that has passed through the TFT substrate 66.
  • the sensor unit 146 is preferably formed of a photoelectric conversion film containing an organic photoelectric conversion material.
  • the present invention is not limited to this. Further, the present invention is not limited to the arrangement of the sensor unit 146, and it is sufficient that at least one of the central part and the peripheral part of the photographing region is arranged.
  • the sensor units 146 may be arranged in a matrix in the imaging region.
  • FIG. 20 shows an example in which the sensor units 146 are arranged in a 4 ⁇ 5 matrix.
  • the configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the fifth embodiment are the same as those of the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
  • the TFT substrate 66 is provided with a sensor portion 72 that corresponds to the first sensor portion of the present invention and that generates charges when light converted by the scintillator 71 is incident thereon.
  • the TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above.
  • the pixel 74 has a certain direction (row direction in FIG. 6) and a direction intersecting with the certain direction (column direction in FIG. ) Are provided two-dimensionally. For example, when the radiation detection unit 62 has a size of 17 inches ⁇ 17 inches, 2880 pixels 74 are arranged in the row direction and the column direction.
  • 21 is a plan view showing an arrangement configuration of the sensor unit 146 of the radiation detection unit 62 according to the present embodiment.
  • a large number of sensor units 146 are arranged in a certain direction (row direction in FIG. 21) and in an intersecting direction with respect to the certain direction (column direction in FIG. 21).
  • 16 sensor units 146 are arranged in a matrix in the row direction and the column direction.
  • the source of the TFT 70 is connected to the data wiring 78, and the data wiring 78 is connected to the signal processing unit 82.
  • the drain of the TFT 70 is connected to the storage capacitor 68 and the photoelectric conversion unit 72, and the gate of the TFT 70 is connected to the gate wiring 76.
  • the signal processing unit 82 includes a sample hold circuit 84 for each data wiring 78.
  • the electric signals transmitted through the individual data lines 78 are held in the sample / hold circuit 84.
  • the sample hold circuit 84 includes an operational amplifier 84A and a capacitor 84B, and converts an electric signal into an analog voltage.
  • the sample hold circuit 84 is provided with a switch 84C as a reset circuit that shorts both electrodes of the capacitor 84B and discharges the electric charge accumulated in the capacitor 84B.
  • the operational amplifier 84A can adjust the gain amount by control from a cassette control unit 92 described later.
  • a multiplexer 86 and an A / D converter 88 are sequentially connected to the output side of the sample hold circuit 84.
  • the electric signals held in the individual sample and hold circuits are converted into analog voltages, sequentially input to the multiplexer 86 (serially), and converted into digital image information by the A / D converter 88.
  • An image memory 90 is connected to the signal processing unit 82 (see FIG. 8), and image data output from the A / D converter 88 of the signal processing unit 82 is stored in the image memory 90 in order.
  • the image memory 90 has a storage capacity capable of storing image data for a plurality of frames. Each time a radiographic image is captured, the image data obtained by the imaging is sequentially stored in the image memory 90.
  • the radiation detection unit 62 As described above, a large number of sensor units 146 are arranged in a matrix.
  • the radiation detection unit 62 is provided with a plurality of wires 160 individually connected to the sensor units 146, and the wires 160 are connected to the signal detection unit 162.
  • FIG. 9 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
  • the imaging system 18 can perform still image shooting that performs shooting one by one and fluoroscopic shooting that performs continuous shooting, and can select still image shooting or fluoroscopic shooting as a shooting mode. Has been.
  • the terminal device 12 accepts an imaging request from a doctor or a radiographer when imaging a radiographic image.
  • an imaging request a patient to be imaged, an imaging region to be imaged, and an imaging mode are designated, and tube voltage, tube current, and the like are designated as necessary.
  • the terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request.
  • the RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
  • the console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 9). .).
  • the radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
  • the electronic cassette 32 when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
  • the photographer designates still image photographing or fluoroscopic photographing as the photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X.
  • the photographer designates a lower radiation dose per unit time than in the case of still image shooting in order to suppress the exposure of the subject (for example, 1 in the case of still image shooting). / 10).
  • the radiation detection unit 62 detects radiation when taking a radiation image.
  • the electronic cassette 32 starts imaging after performing a reset operation for taking out and removing the charge accumulated in the storage capacitor 68 of each pixel 74 of the radiation detector 60.
  • the radiation detection unit 62 detects the radiation dose applied to the electronic cassette 32 and controls the irradiation with radiation from the radiation source 130 ( A so-called AEC (automatic exposure control) is performed. Specifically, in the case of still image shooting, radiation of radiation from the radiation source 130 is terminated and reading of an image from the radiation detector 60 is started when the detected radiation dose reaches an allowable amount. In the case of fluoroscopic imaging, imaging is continuously performed at a predetermined frame rate, and irradiation of radiation from the radiation source 130 is terminated when the radiation amount detected by the radiation detection unit 62 becomes an allowable amount.
  • AEC automatic exposure control
  • the permissible amount for taking a still image is an appropriate dose for obtaining a radiographic image of the imaging region clearly.
  • the permissible amount of fluoroscopic imaging is a dose for suppressing the exposure of the subject within an appropriate range.
  • the purposes of the allowable amount of still image shooting and the allowable amount of fluoroscopic shooting are different.
  • the allowable amount of still image shooting and the allowable amount of fluoroscopic shooting may be input from the operation panel 102 by the photographer at the time of shooting.
  • the permissible amount for still image capturing and the permissible amount for fluoroscopic imaging may be stored in advance in the HDD 110 as per-imaging region allowable amount information for each imaging region.
  • the photographer designates an imaging part on the operation panel 102, and when the imaging part is designated, the designated imaging mode and the tolerance corresponding to the imaging part can be obtained from the tolerance information for each imaging part.
  • the permissible amount of fluoroscopic imaging may be stored in the database 14A of the RIS server 14 as a daily exposure amount for each patient.
  • the RIS server 14 obtains the allowable exposure dose of the patient from the total exposure dose in a predetermined period (for example, the last three months) and notifies the console 42 of the allowable exposure dose as the allowable dose. It is good.
  • the console 42 transmits the specified tube voltage and tube current to the radiation generator 34 as exposure conditions, and transmits the specified imaging mode, tube voltage, tube current, and allowable amount to the electronic cassette 32 as imaging conditions.
  • the radiation source control unit 134 of the radiation generating apparatus 34 stores the received exposure condition.
  • the cassette control unit 92 of the electronic cassette 32 receives the shooting conditions from the console 42, the cassette control unit 92 stores the received shooting conditions in the storage unit 92C.
  • the photographer When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
  • the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32.
  • the radiation generator 34 starts generating and emitting radiation with a tube voltage and a tube current corresponding to the exposure conditions received from the console 42.
  • the cassette control unit 92 of the electronic cassette 32 When the cassette control unit 92 of the electronic cassette 32 receives the instruction information instructing the start of exposure, the cassette control unit 92 performs shooting control according to the shooting mode stored as the shooting condition in the storage unit 92C.
  • the radiation detection unit 62 detects the radiation and detects the start of radiation irradiation.
  • the electronic cassette 32 starts imaging after performing a reset operation when detecting the start of radiation irradiation, and detects the radiation dose irradiated to the electronic cassette 32 during imaging.
  • the radiation detection unit 62 detects the radiation and acquires a radiographic image for density correction.
  • the electronic cassette 32 analyzes the radiation image for density correction, and obtains the gain amount of the operational amplifier 84A from which an image with an appropriate density can be obtained.
  • the electronic cassette 32 reads the radiation image from the radiation detector 60 by feeding back the obtained gain amount and adjusting the gain amount of the operational amplifier 84A.
  • FIG. 23 shows a flowchart showing the flow of processing of the photographing control program executed by the CPU 92A of the cassette control unit 92.
  • the program is stored in advance in a predetermined area of the memory 92B (ROM).
  • step S10 in the figure the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
  • the signal detection unit 162 samples each wiring 160 at a predetermined cycle, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially outputs the converted digital data to the cassette control unit 92. To do.
  • Each sensor unit 146 provided in the radiation detection unit 62 is charged when irradiated with radiation.
  • the generated charges flow out as electric signals to the wiring 160, respectively.
  • the cassette control unit 92 compares the value of the digital data detected by each sensor unit 146 input from the signal detection unit 162 with a predetermined threshold value for detecting radiation, and the threshold value is set. The start of radiation irradiation is detected depending on whether or not the value is greater than or equal to the value. When the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 determines that radiation irradiation has started, and proceeds to step S14. If the value of the digital data is less than the threshold value, the cassette control unit 92 moves again to step S12 and waits for the start of radiation irradiation.
  • the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning on the TFT 70 to each gate wiring 76 from the gate line driver 80 and connected to each gate wiring 76.
  • the TFTs 70 are turned on one line at a time to take out charges.
  • the charges accumulated in the storage capacitor 68 of each pixel 74 sequentially flow out to each data wiring 78 as an electric signal, and the charges accumulated in the storage capacitor 68 of each pixel 74 are removed by dark current or the like. .
  • the cassette control unit 92 determines whether still image shooting is designated as the shooting mode under the shooting conditions stored in the storage unit 92C. If the determination is affirmative, the cassette control unit 92 proceeds to step S18. If the determination is negative (when fluoroscopic imaging is designated as the imaging mode), the cassette control unit 92 proceeds to step S40.
  • step S18 the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning off the TFT 70 to each gate wiring 76 from the gate line driver 80.
  • the cassette control unit 92 corrects the digital data value detected by each sensor unit 146 input from the signal detection unit 162 according to the sensitivity of each sensor unit 146, and the corrected value is detected by the sensor unit.
  • Each 146 is accumulated. This cumulative value can be regarded as the radiation dose irradiated.
  • the cassette control unit 92 determines whether or not the cumulative value of any of the sensor units 146 is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20.
  • step S24 the cassette control unit 92 transmits instruction information for instructing the console 42 to end the exposure.
  • the console 42 When the console 42 receives the instruction information for instructing the end of exposure from the electronic cassette 32, the console 42 transmits the instruction information for instructing the end of exposure to the radiation generator 34. When receiving the instruction information for instructing the end of the exposure, the radiation generator 34 ends the radiation irradiation.
  • the cassette control unit 92 arranges the cumulative values of the sensor units 146 provided in the radiation detection unit 62 in a two-dimensional manner corresponding to the arrangement of the sensor units 146, and sets the cumulative values.
  • Image data of a radiation image detected by each sensor unit 146 of the radiation detection unit 62 is generated as a pixel value.
  • This radiation image is a thinned-out image captured by the radiation detector 60 because each sensor unit 146 of the radiation detection unit 62 is formed with a size of several tens to several hundreds of pixels of the radiation detector 60.
  • the cassette control unit 92 analyzes the image data generated in step S26 and derives an appropriate gain amount for the operational amplifier 84A.
  • FIG. 24A shows an example of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62.
  • FIG. 24B shows a cumulative histogram of the radiation image shown in FIG. 24A.
  • the cumulative histogram is a diagram in which the pixel value is represented on the horizontal axis and the appearance rate (frequency) of the pixel of the pixel value is represented on the vertical axis for all image data constituting one radiation image.
  • the radiographic image has a large number of pixels in a subject area in which an image of the imaging region (a face in FIG. 24A) is reflected and a so-called blank region in which the imaging region is not reflected. For this reason, the cumulative histogram also peaks at the cumulative values of the subject area and the missing area. Further, since the density change is larger in the subject area, the width is also widened in the cumulative histogram.
  • the cassette control unit 92 specifies the range of data values based on the image of the imaging region in this cumulative histogram.
  • a known technique can be used as this specifying method.
  • the cassette control unit 92 performs dynamic contour extraction processing such as a snakes algorithm, contour extraction processing using Hough transform, and the like, and recognizes a region surrounded by a line along the contour point as a subject region.
  • the subject area may be recognized using the technique described in Japanese Patent Laid-Open No. 4-11242.
  • a pattern image indicating a standard shape for each imaging region may be stored in the memory 92B (ROM).
  • the cassette control unit 92 performs pattern matching to obtain the similarity between the radiographic image and the pattern image while changing the position and enlargement ratio of the pattern image corresponding to the imaging region in the radiographic image taken, and has the highest similarity.
  • the area may be recognized as a subject area.
  • the cassette control unit 92 obtains a cumulative histogram of the subject area where the radiographic image is recognized. For example, in the cumulative histogram, the half value width of the peak value is set as the main density range of the subject area, and the center of the density range is set to a predetermined appropriate value. The gain amount of the operational amplifier 84A that is at the center of the density range is obtained. For each difference between the center of the density range and the center of the appropriate density range, an appropriate gain amount is stored in advance in the memory 92B (ROM) as gain amount information, and the cassette control unit 92 selects the center of the density range and the appropriate density range. You may obtain
  • an arithmetic expression that defines the relationship between the difference between the center of the density range and the center of the predetermined appropriate density range and the appropriate gain amount is stored in the memory 92B (ROM), and the cassette control unit 92
  • the gain amount may be calculated by an arithmetic expression from the difference between the center of the range and the center of the appropriate density range.
  • the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S28.
  • the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
  • the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals.
  • the electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
  • the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A and reads out the radiation image from the radiation detector 60, thereby setting the density range of the subject region in the read out radiation image to an appropriate density range. can do.
  • the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42, and ends the process.
  • step S40 the cassette control unit 92 obtains an imaging cycle according to the frame rate of fluoroscopic imaging.
  • the cassette control unit 92 corrects the value of the digital data detected by each sensor unit 146 input from the signal detection unit 162 according to the sensitivity of each sensor unit 146, and the corrected value is detected by the sensor unit.
  • Each 146 is accumulated.
  • two storage areas for storing the cumulative value of digital data are prepared for each sensor unit 146.
  • One is a storage area for storing the accumulated value of digital data from the start of fluoroscopic imaging, and the other is a storage area for storing the accumulated value of digital data from the previous imaging in continuous imaging of fluoroscopic imaging.
  • the cassette control unit 92 accumulates the digital data values in the two storage areas for each sensor unit 146.
  • step S60 it is determined whether or not the accumulated value stored in the storage area for storing the accumulated value of the digital data from the start of fluoroscopic imaging is equal to or larger than the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S60. If the determination is negative, the cassette control unit 92 proceeds to step S46.
  • step S46 the cassette control unit 92 determines whether or not a period equal to or longer than the imaging cycle has elapsed since the charge of each pixel 74 of the radiation detector 60 was read out last time. When it becomes affirmation determination, the cassette control part 92 transfers to step S48, and when it becomes negative determination, the cassette control part 92 transfers to step S42.
  • the cassette control unit 92 stores the accumulated values stored in the respective storage areas for storing the accumulated values of the digital data from the previous imaging of the respective sensor units 146 provided in the radiation detecting unit 62. Two-dimensional arrangement is made corresponding to the arrangement of the sensor units 146.
  • the cassette control unit 92 generates image data of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62 using each accumulated value as a pixel value.
  • step S50 the cassette control unit 92 analyzes the image data generated in step S48, similarly to step S28, and derives an appropriate gain amount for the operational amplifier 84A.
  • the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S50.
  • the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
  • each TFT 70 connected to each gate line 76 is turned on line by line, and the electric charge accumulated in each storage capacitor 68 line by line flows out to each data line 78 as an electrical signal.
  • the electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
  • the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A and reads out the radiation image from the radiation detector 60, thereby setting the density range of the subject region in the read out radiation image to an appropriate density range. be able to.
  • the cassette control unit 92 stores the accumulated value of the digital data from the previous photographing among the two storage regions that store the accumulated value of the digital data for each sensor unit 146. All accumulated values are initialized to zero.
  • step S58 the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42. After the image data is transmitted, the process proceeds to step S42.
  • step S60 the cassette control unit 92 transmits instruction information for instructing the end of exposure to the console 42, and ends the process.
  • the radiation generator 34 When receiving the instruction information for instructing the end of exposure, the radiation generator 34 ends the generation and emission of radiation.
  • fluoroscopic imaging is stopped when the cumulative value of any one of the sensor units 146 becomes an allowable amount during fluoroscopic imaging.
  • the console 42 may be notified that the allowable amount has been exceeded, and a warning may be displayed on the console 42.
  • the console 42 transmits an exposure condition in which at least one of the tube voltage and the tube current is reduced to the radiation generator 34, and the radiation dose per unit time irradiated from the radiation source 130 of the radiation generator 34 is reduced. You may make it make it.
  • the console 42 When the console 42 receives the image information from the electronic cassette 32, the console 42 performs various image processing such as shading correction on the received image information, and stores the image information after the image processing in the HDD 110.
  • the image information stored in the HDD 110 is displayed on the display 100 for confirmation of the captured radiographic image, and is transferred to the RIS server 14 and stored in the database 14A. Thereby, it becomes possible for a doctor to perform interpretation, diagnosis, and the like of a radiographic image taken.
  • the cumulative value of the digital data detected by the sensor unit 146 can be regarded as the exposure dose of the subject. For this reason, when the daily exposure dose is stored for each patient in the database 14A of the RIS server 14, the electronic cassette 32 is transmitted to the RIS server 14 via the console 42 and stored in the database 14A. Thus, by storing and managing the daily exposure dose for each patient, it is possible to grasp the total exposure dose for a specific period. Further, the exposure dose and the imaging conditions may be stored together in the database 14A. In this case, the electronic cassette 32 transfers the cumulative value (exposure amount) to the console 42, and the console 42 stores the cumulative amount (exposure amount) and the imaging condition in association with each other in the database 14B. Thus, when the exposure amount and the imaging conditions are stored together, the utility value of the database 14B is further increased.
  • the sensor unit 146 having a larger area than the sensor unit 72 is formed by laminating the plurality of pixels 74 having the sensor unit 72 with the radiation detector 60 arranged two-dimensionally.
  • a plurality of radiation detectors 62 arranged two-dimensionally are arranged.
  • the processing parameters for generating a radiation image by reading out the charge from each pixel 74 of the radiation detector 60 are adjusted. Thereafter, electric charges are read from the respective pixels 74 of the radiation detector 60, and processing based on the adjusted processing parameters is performed to generate a diagnostic radiation image. Thereby, it is possible to obtain an image for density correction without increasing the exposure dose of the subject and to adjust the image quality of the diagnostic radiation image.
  • the gain amount of the operational amplifier 84A is adjusted as a processing parameter from the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62.
  • the image of the subject area can be adjusted to an appropriate density range without being saturated by the A / D converter 88.
  • the sensor unit 14 of the radiation detection unit 62 can perform radiation start and radiation dose detection in parallel.
  • the present embodiment it is not necessary to advance the shooting cycle in order to acquire an image for density correction.
  • the region of interest changes during fluoroscopic imaging, and it is necessary to adjust the density at any time. Therefore, even when it is necessary to acquire an image for density correction at any time, it is not necessary to increase the frame rate.
  • the configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the sixth embodiment are the same as those in the sixth embodiment (FIGS. 1 to 6, 8, 9, 21, and FIG. 22), the description is omitted here.
  • the A / D converter 88 converts the electrical signal amplified by the operational amplifier 84A of the signal processing unit 82 into digital data having a predetermined number of bits (for example, 16 bits). Convert to The cassette control unit 92 converts 16-bit image data into 12-bit image data in the standardization process.
  • the radiation detection unit 62 detects the radiation to acquire a radiographic image for density correction, and the cassette control unit 92 analyzes the radiographic image for density correction.
  • the cassette control unit 92 obtains various parameters for normalization processing so that the main density range of the subject area is an appropriate density range, and the image data of the 16-bit radiation image read from the radiation detector 60 is obtained. Then, normalization processing is performed using the various parameters thus obtained and converted into 12-bit image data.
  • the operational amplifier 84A has a range in which the electric signal flowing out to each data wiring 78 is within a range that can be converted into 16-bit digital data without being saturated by the A / D converter 88. It is assumed that the gain amount is adjusted to a predetermined value.
  • FIG. 25 shows a flowchart showing the flow of processing of the imaging control program according to the sixth embodiment. Note that the same processing portions as those in the shooting control program (see FIG. 23) of the fifth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • step S29 the cassette control unit 92 analyzes the image data generated in step S26, and derives appropriate values for various parameters of the normalization process.
  • the main density range of the subject area is MIN0 to MAX0, and under the imaging conditions different from the above imaging conditions. It is assumed that the main density range of the subject area is MIN1 to MAX1 in the cumulative histogram b of the captured radiographic image.
  • 16-bit image data that is a cumulative histogram indicated by a or b is converted into 12-bit image data by normalization processing.
  • the main density ranges MIN0 to MAX0 and MIN1 to MAX1 of the subject area are converted to the appropriate density ranges MIN2 to MAX2 in the 12-bit image data in the 16-bit image data.
  • FIG. 26B shows cumulative histograms a and b obtained by converting MIN0 to MAX0 and MIN1 to MAX1 in the 16-bit image data into the appropriate density ranges MIN2 to MAX2 in the 12-bit image data. It is shown.
  • a known technique can be used as a standardization method from 16-bit image data to 12-bit image data.
  • 16-bit image data D0 as input data is converted into 12-bit image data D1 as output based on a predetermined conversion function. Specifically, the conversion is performed using a linear function as indicated by a and b in FIG. 26C as the conversion function.
  • the cassette control unit 92 derives Gain and Offset values in which the main density range (for example, MIN0 to MAX0) of the subject area becomes the appropriate density range MIN2 to MAX2 as various parameters of the normalization process. To do.
  • the main density range for example, MIN0 to MAX0
  • step S33 the cassette control unit 92 performs normalization processing on the 16-bit image data stored in the image memory 90 using the parameters derived in step S29 to convert the image data into 12-bit image data.
  • the converted image data is stored in the image memory 90.
  • the cassette control unit 92 performs the normalization process by obtaining various parameters of the normalization process and performing the normalization process of the image data so that the main density range of the subject area becomes the appropriate density range.
  • the density range of the subject area in the radiographic image can be set to an appropriate density range.
  • step S34 the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S33 stored in the image memory 90, and ends the process.
  • step S51 the cassette control unit 92 analyzes the image data generated in step S48 and derives appropriate values for various parameters of normalization processing, as in step S29. .
  • step S55 the cassette control unit 92 derives the 16-bit image data read out in step 54 and stored in the image memory 90 in step S51 as in step S33. Standardization processing is performed using parameters to convert the image data into 12-bit image data, and the converted image data is stored in the image memory 90.
  • step S58 the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S55 stored in the image memory 90.
  • the normalization process is performed so that the main density range of the subject area becomes the appropriate density range based on the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62.
  • the image data is normalized and image data is normalized.
  • the density range of the subject area in the normalized radiographic image can be set to an appropriate density range.
  • the present invention is applied to the electronic cassette 32 which is a portable radiation imaging apparatus.
  • the present invention is not limited to this, and a stationary radiation imaging apparatus is provided. You may apply to.
  • the gain amount of the operational amplifier 84A is adjusted, and in the sixth embodiment, the parameter of the normalization process is adjusted.
  • the present invention is limited to this. It is not a thing.
  • both the gain amount of the operational amplifier 84A and the normalization processing parameter may be adjusted, and further, the parameters of other processing may be adjusted.
  • a linear function is used as the conversion function for normalization processing.
  • the present invention is not limited to this.
  • a conversion function represented by a high-order function such as a quadratic function or a cubic function may be used.
  • a plurality of cumulative histograms to be assumed and a lookup table corresponding to each of the cumulative histograms may be prepared. From the assumed cumulative histogram, a lookup table corresponding to the one that is close to the obtained cumulative histogram is determined as a normalization processing characteristic, and image data conversion is performed based on the lookup table. Good.
  • the present invention is not limited to this.
  • the end of radiation irradiation may be detected.
  • the value of digital data of each sensor unit 146 input from the signal detection unit 162 is compared with a predetermined threshold value for radiation detection.
  • the end of radiation irradiation can be detected based on whether or not it is less than a threshold value.
  • the irradiation start threshold value is larger than the irradiation end threshold value, but the irradiation start threshold value may be smaller than the irradiation end threshold value.
  • the irradiation start threshold value may be smaller than the irradiation end threshold value.
  • the scintillator 148 is formed in the radiation detection unit 62
  • the present invention is not limited to this.
  • the radiation detector 60 detects the radiation without providing the scintillator 148 in the radiation detector 62 as shown in FIG. It is good also as what attaches to the surface on the opposite side to the TFT substrate 66 of the device 60 (surface on the scintillator 71 side), and each sensor part 146 of the radiation detection part 62 concerned detects the light of the scintillator 71.
  • the scintillator 148 becomes unnecessary, and thus the radiation detection unit 62 can be formed thinner.
  • the radiation detector 62 is provided on the surface opposite to the TFT substrate 66 of the scintillator 71.
  • the radiation X passes through the radiation detector 60 after passing through the radiation detector 60. For this reason, it is possible to prevent the radiation image captured by the radiation detector 60 from being affected by the provision of the radiation detection unit 62.
  • the radiation detector 62 may be attached to the surface of the radiation detector 60 on the TFT substrate 66 side as shown in FIG.
  • the radiation X may be incident from above or below in FIG. 30, but when entering from below, the radiation X is suppressed from being absorbed by the sensor unit 146 of the radiation detection unit 62. For this reason, it is preferable to form the sensor part 146 with the photoelectric converting film in which the organic photoelectric converting material contained.
  • the radiation detector 60 is an indirect conversion method in which radiation is once converted into light, and the converted light is converted into electric charge by the sensor unit 72 and accumulated.
  • the present invention is not limited to this.
  • the radiation detector 60 may be a direct conversion system that converts radiation into electric charges in a semiconductor layer such as amorphous selenium.
  • the electronic cassette 32 may transfer the radiation image detected by each sensor unit 146 of the radiation detection unit 62 to the console 42 and the console 42 may display on the display 100. Accordingly, it is possible to quickly check the blurring and positioning of the subject from the displayed radiation image.
  • the cassette control unit 92 of the electronic cassette 32 various parameter determination processes from the radiation images detected by the respective sensor units 146 of the radiation detection unit 62, and the radiation image generated from the radiation detector 60 are processed.
  • the cassette control unit 92 may transmit the digital data input from the signal detection unit 162 to the console 42 as needed, and the console 42 may perform any processing.
  • the present invention is not limited to this.
  • the radiation to be detected may be X-rays, visible light, ultraviolet rays, infrared rays, gamma rays, particle rays, or the like.
  • processing flow of the various programs described in the above embodiments is also an example, and unnecessary steps can be deleted, new steps can be added, and the processing order can be added without departing from the gist of the present invention. Needless to say, can be replaced.
  • a computer-readable medium includes a plurality of sensor units that are arranged so as to overlap a radiographing area of a radiographing panel that captures a radiographic image of radiation applied to the radiographing area, and that respectively detect the irradiated radiation.
  • a radiation detection program that functions as a detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount is selectively stored.
  • Japanese application 2010-186501 and Japanese application 2010-192850 are incorporated herein by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

A plurality of sensor units (146) that detect radiation respectively applied to the image pickup regions of a radiation detector (60) are disposed such that the sensor units overlap the image pickup regions, said radiation detector picking up radiation images formed by radiation applied to the image pickup regions, and at least two out of radiation application start, radiation application end, and applied radiation quantity are detected by separately using the sensor units (146). Consequently, while suppressing deterioration of the qualities of the whole picked up image, at least two out of the radiation application start, radiation application end, and applied radiation quantity can be detected.

Description

放射線撮影装置、放射線撮影システム、及び放射線検出プログラムRadiation imaging apparatus, radiation imaging system, and radiation detection program
 本発明は、放射線撮影装置及び放射線撮影システムに係り、特に、放射線源から射出されて被検者を透過した放射線により示される放射線画像の撮影を行う放射線撮影装置、放射線撮影システム、及び放射線検出プログラムに関する。 The present invention relates to a radiation imaging apparatus and a radiation imaging system, and in particular, a radiation imaging apparatus, a radiation imaging system, and a radiation detection program for capturing a radiation image indicated by radiation emitted from a radiation source and transmitted through a subject. About.
 近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、放射線を直接デジタルデータに変換できるFPD(Flat Panel Detector)等の放射線検出器が実用化されており、この放射線検出器を用いて、照射された放射線により表わされる放射線画像を撮影する放射線撮影装置が実用化されている。この放射線検出器を用いた放射線撮影装置は、従来のX線フィルムやイメージングプレートを用いた放射線撮影装置に比べて、即時に画像を確認でき、連続的に放射線画像の撮影を行う透視撮影(動画撮影)も行うことができるといったメリットがある。 In recent years, radiation detectors such as FPD (Flat Panel Detector) which can arrange radiation sensitive layer on TFT (Thin Film Transistor) active matrix substrate and convert radiation directly into digital data have been put into practical use. A radiographic apparatus that captures a radiographic image represented by irradiated radiation has been put to practical use. The radiography apparatus using this radiation detector can see images immediately, compared with conventional radiography apparatuses using X-ray film or imaging plate, and radiographic imaging (moving image) (Photographing) can also be performed.
 この種の放射線検出器は、種々のタイプのものが提案されており、例えば、放射線を一度CsI:Tl、GOS(Gd2O2S:Tb)などのシンチレータで光に変換し、変換した光をフォトダイオードなどのセンサ部で電荷に変換して蓄積する間接変換方式や、放射線をアモルファスセレン等の半導体層で電荷に変換する直接変換方式等があり、各方式でも半導体層に使用可能な材料が種々存在する。放射線撮影装置では、放射線検出器に蓄積された電荷を電気信号として読み出し、読み出した電気信号をアンプで増幅した後にA/D(アナログ/デジタル)変換部でデジタルデータに変換している。 Various types of radiation detectors of this type have been proposed. For example, radiation is once converted into light by a scintillator such as CsI: Tl or GOS (Gd2O2S: Tb), and the converted light is a photodiode or the like. There are an indirect conversion method that converts and accumulates charges in the sensor part of the sensor, a direct conversion method that converts radiation into charges in a semiconductor layer such as amorphous selenium, and there are various materials that can be used for the semiconductor layer in each method. . In the radiation imaging apparatus, the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
 ところで、放射線撮影装置では、放射線の照射の開始や終了、放射線の照射量を検出し、放射線を照射する放射線源の制御を行う技術が知られている。 By the way, in the radiography apparatus, a technique is known in which the start and end of radiation irradiation, the amount of radiation irradiation is detected, and the radiation source that controls the radiation is controlled.
 例えば、特開2004-223157号公報には、基板上の撮影用の画素をマトリクス状に形成すると共に、一部の画素の間の隙間にAEC用検出素子を形成した放射線検出器が開示されている。 For example, Japanese Patent Application Laid-Open No. 2004-223157 discloses a radiation detector in which imaging pixels on a substrate are formed in a matrix and an AEC detection element is formed in a gap between some pixels. Yes.
 また、特開2002-181942号公報には、放射線検出器(固体撮像装置と記載)とは別に、放射線を検出するセンサ部(放射線検出素子と記載)を設け、センサ部により放射線の出射の開始及び終了を検出して放射線検出器への電荷の蓄積、蓄積された電荷の読み出し制御する技術が開示されている。 Japanese Patent Laid-Open No. 2002-181942 provides a sensor unit (described as a radiation detection element) for detecting radiation separately from a radiation detector (described as a solid-state imaging device), and starts emitting radiation by the sensor unit. And a technique for controlling the accumulation of charges in the radiation detector and the reading of the accumulated charges by detecting the end.
 しかしながら、特開2004-223157号公報に記載の放射線検出器では、AEC用検出素子を設けた部分で、撮影用の画素のサイズが小さくなり、感度が低下する。このように一部の画素での感度の低下した場合、撮影された画像でも画質の変化が目立つため、全体としても画質が低下して感じられる。 However, in the radiation detector described in Japanese Patent Application Laid-Open No. 2004-223157, the size of the imaging pixel is reduced at the portion where the AEC detection element is provided, and the sensitivity is lowered. In this way, when the sensitivity of some of the pixels is lowered, the change in image quality is conspicuous even in the captured image, so that the overall image quality is felt to be lowered.
 また、放射線撮影装置には、適切な濃度とコントラストの画像を得るために自動的に画像調整をする自動濃度補正機能(所謂、EDR:Exposure Data Recognizer)を有するものがある。 Some radiography apparatuses have an automatic density correction function (so-called EDR: Exposure Data Recognizer) that automatically adjusts an image to obtain an image having an appropriate density and contrast.
 この種の放射線撮影装置は、例えば、診断用の放射線画像の撮影前に濃度補正用の放射線画像を撮影し、濃度補正用の放射線画像を解析して、適切な濃度とコントラストの画像が得られるゲイン量などの各種パラメータを求める。放射線撮影装置は、求めた各種パラメータをフィードバックさせて増幅器のゲイン量等を調整して診断用の放射線画像の撮影を行うことで濃度調整をしている。 This type of radiation imaging apparatus, for example, captures a density correction radiation image before capturing a diagnostic radiation image, analyzes the density correction radiation image, and obtains an image with an appropriate density and contrast. Obtain various parameters such as gain. The radiographic apparatus performs density adjustment by feeding back various parameters obtained and adjusting the gain amount of the amplifier and taking a diagnostic radiographic image.
 しかしながら、濃度補正用の放射線画像の撮影を診断用の放射線画像の撮影とは別に行った場合、被検者の被曝量が多くなる。 However, when the radiographic image for density correction is taken separately from the radiographic image for diagnosis, the exposure dose of the subject increases.
 本発明は上記事実に鑑みてなされたものであり、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行うことができる放射線撮影装置、放射線撮影システム、及び放射線検出プログラムを提供することを目的とする。 The present invention has been made in view of the above-described facts, and performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount while suppressing deterioration in image quality of the entire captured image. An object is to provide a radiation imaging apparatus, a radiation imaging system, and a radiation detection program.
 また、本発明は、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる放射線撮影装置及び放射線撮影システムを提供することを目的とする。 The present invention also provides a radiation imaging apparatus and a radiation imaging system capable of acquiring a density correction image and adjusting the image quality of a diagnostic radiation image without increasing the exposure dose of the subject. With the goal.
 上記目的を達成するために、本発明の第1の態様は、撮影領域に照射された放射線による放射線画像を撮影する撮影パネルと、前記撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部と、前記複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部と、を有している。 To achieve the above object, according to a first aspect of the present invention, there is provided an imaging panel for capturing a radiographic image of radiation applied to an imaging area, and an imaging panel disposed so as to overlap the imaging area of the imaging panel. A plurality of sensor units that detect the detected radiation, and a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose by properly using the plurality of sensor units. .
 本発明の第1の態様によれば、撮影パネルにより、撮影領域に照射された放射線による放射線画像の撮影が可能とされ、当該撮影パネルの撮影領域に重なるように、各々照射された放射線を検出する複数のセンサ部が配置されている。 According to the first aspect of the present invention, a radiographic image can be captured by radiation applied to the imaging area by the imaging panel, and each irradiated radiation is detected so as to overlap the imaging area of the imaging panel. A plurality of sensor units are arranged.
 そして、検出部により、複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出が行われる。この複数のセンサ部を使い分けてとは、異なるセンサ部で放射線の照射開始、放射線の照射終了、及び放射線の照射量の検出を行うことを意味し、例えば、複数のうち、一部のセンサ部で放射線の照射開始、放射線の照射終了、及び放射線の照射量の何れかの行い、残りの一部又は残りの全部のセンサ部で他の何れかの検出を行う。 Then, the detection unit detects at least two of a plurality of sensor units by using a plurality of sensor units, ie, radiation irradiation start, radiation irradiation end, and radiation irradiation amount. Using a plurality of sensor units means to start radiation irradiation, end radiation irradiation, and detect the amount of radiation irradiation with different sensor units. For example, some sensor units among a plurality of sensor units Then, any one of the start of radiation irradiation, the end of radiation irradiation, and the radiation dose is performed, and any other detection is performed by the remaining part or all of the remaining sensor units.
 このように、本発明の第1の態様によれば、撮影領域に照射された放射線による放射線画像を撮影する撮影パネルの撮影領域に重なるように、各々照射された放射線を検出する複数のセンサ部を配置し、複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う。このため、撮影パネルにセンサ部を設ける必要がなく、撮影パネルで画素のサイズが小さくなることがないため、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行うことができる。 As described above, according to the first aspect of the present invention, the plurality of sensor units that detect the irradiated radiation so as to overlap the imaging region of the imaging panel that captures the radiographic image of the radiation applied to the imaging region. , And by using a plurality of sensor units, at least two detections of radiation start, radiation end, and radiation dose are performed. For this reason, there is no need to provide a sensor unit on the photographing panel, and the pixel size does not become small on the photographing panel. Therefore, radiation irradiation start and radiation irradiation are suppressed while suppressing deterioration in image quality of the entire photographed image. At least two detections of termination and radiation dose can be performed.
 このように、放射線の照射開始、放射線の照射終了、及び放射線の照射量の検出の少なくとも2つの検出を行える場合、放射線撮影装置は、通信により外部の制御装置と放射線の照射タイミングなどの同期を取らずに放射線の照射開始を検出して撮影パネルでの放射線画像の撮影開始や、放射線の照射終了を検出して撮影パネルからの撮影された放射線画像の取出し開始、放射線の照射量を検出して自動照射制御などを並行して行うことができる。このように照射タイミングなどの同期を取らずに撮影できるため、様々な放射線源と容易に組み合わせることができ、また、既存の放射線撮影システムにも容易に組み合わせることができる。 As described above, when at least two detections can be performed, that is, radiation irradiation start, radiation irradiation end, and radiation dose detection, the radiography apparatus can synchronize the radiation control timing with the external control device through communication. Detecting the start of radiation exposure without taking a radiation image, starting radiographic image capture on the radiographing panel, detecting the end of radiation exposure, starting the extraction of the radiographic image taken from the radiographing panel, and detecting the radiation dose Automatic irradiation control etc. can be performed in parallel. Thus, since it can image | photograph without synchronizing irradiation timing etc., it can be easily combined with various radiation sources, and can also be easily combined with the existing radiation imaging system.
 本発明の第2の態様によれば、前記撮影領域上で撮影部位が配置される撮影部位領域を特定する特定部をさらに備え、前記検出部が、前記特定部により特定された撮影部位領域外に配置されたセンサ部と、当該撮影部位領域内に配置されたセンサ部を使い分けて前記検出を行ってもよい。 According to the second aspect of the present invention, the image processing device further includes a specifying unit that specifies an imaging part region in which the imaging part is arranged on the imaging region, and the detection unit is located outside the imaging part region specified by the specifying unit. Alternatively, the detection may be performed using a sensor unit arranged in the camera and a sensor unit arranged in the imaging region.
 また、本発明の第3の態様によれば、前記検出部が、前記撮影部位領域外に配置されたセンサ部により放射線の照射開始を検出し、当該撮影部位領域内に配置されたセンサ部により放射線の照射量を検出してもよい。 According to the third aspect of the present invention, the detection unit detects the start of radiation irradiation by a sensor unit arranged outside the imaging region, and the sensor unit arranged in the imaging region area You may detect the irradiation amount of a radiation.
 また、本発明の第4の態様によれば、前記撮影パネルが、放射線を光に変換する変換層を有し、当該変換層で変換された光により表わされる放射線画像を撮影し、前記複数のセンサ部が、各々有機光電変換材料を含んで構成され、前記撮影パネルの放射線の照射面側に配置され、前記変換層で変換された光を検出してもよい。 According to the fourth aspect of the present invention, the imaging panel includes a conversion layer that converts radiation into light, captures a radiation image represented by the light converted by the conversion layer, and The sensor units may each include an organic photoelectric conversion material, and may be disposed on the radiation irradiation side of the imaging panel and detect light converted by the conversion layer.
 また、本発明の第5の態様によれば、撮影の際に撮影部位が配置される撮影面が形成された筐体と、前記筐体内部に配置され、前記撮影面に撮影部位が配置されて受ける圧力に応じて発光する発光層が形成された圧力発光シートと、をさらに備え、前記複数のセンサ部が、圧力発光シートと積層して配置され、前記圧力発光シートの光をさらに検出し、前記特定部が、前記複数のセンサ部による検出結果に基づいて前記撮影部位が配置される撮影部位領域を特定してもよい。 Further, according to the fifth aspect of the present invention, a housing having an imaging surface on which an imaging region is arranged at the time of imaging is formed, and the imaging region is arranged on the imaging surface. A pressure light emitting sheet on which a light emitting layer that emits light in response to the pressure received is formed, and the plurality of sensor units are stacked on the pressure light emitting sheet to further detect light from the pressure light emitting sheet. The identification unit may identify an imaging region where the imaging region is arranged based on detection results from the plurality of sensor units.
 また、本発明の第6の態様によれば、撮影の際に撮影部位が配置される撮影面が形成された筐体と、前記撮影面への撮影部位の接触を検出する接触検出部と、をさらに備え、前記特定部が、前記接触検出部による検出結果に基づいて撮影部位領域を特定してもよい。 Further, according to the sixth aspect of the present invention, a housing formed with an imaging surface on which an imaging region is arranged at the time of imaging, a contact detection unit that detects contact of the imaging region with the imaging surface, And the specifying unit may specify the imaging region based on a detection result by the contact detection unit.
 また、本発明の第7の態様によれば、撮影部位領域を特定可能な所定の情報を含んだ撮影オーダ情報を受信する受信部をさらに備え、前記特定部が、前記撮影オーダ情報に基づいて撮影部位領域を特定してもよい。 The seventh aspect of the present invention further includes a receiving unit that receives imaging order information including predetermined information capable of specifying an imaging region, and the specifying unit is based on the imaging order information. The imaging region may be specified.
 また、本発明の第8の態様によれば、複数のセンサ部が、放射線に対して略同一の感度であってもよい。 Further, according to the eighth aspect of the present invention, the plurality of sensor units may have substantially the same sensitivity to radiation.
 また、本発明の第9の態様によれば、複数のセンサ部が、撮影領域の中央部及び周辺部の少なくとも1つずつ配置されることが好ましい。 Further, according to the ninth aspect of the present invention, it is preferable that the plurality of sensor units are arranged at least one of a central part and a peripheral part of the imaging region.
 上記目的を達成するために、本発明の第10の態様は、撮影領域に照射された放射線による放射線画像を撮影する撮影パネルと、前記撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部と、前記複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部と、を有している。 In order to achieve the above object, according to a tenth aspect of the present invention, there is provided an imaging panel for capturing a radiographic image of radiation applied to an imaging region, and an imaging panel disposed so as to overlap the imaging region of the imaging panel. A plurality of sensor units that detect the detected radiation, and a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose by properly using the plurality of sensor units. .
 従って、本発明の第10の態様によれば、本発明の第1の態様と同様に作用するため、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行うことができる。 Therefore, according to the tenth aspect of the present invention, since it operates in the same manner as the first aspect of the present invention, radiation irradiation start and radiation irradiation end are performed while suppressing deterioration of the image quality of the entire captured image. , And at least two detections of radiation dose can be performed.
 上記目的を達成するために、本発明の第11の態様は、コンピュータを、撮影領域に照射された放射線による放射線画像を撮影する撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部、として機能させる。 In order to achieve the above object, according to an eleventh aspect of the present invention, a computer is disposed so as to overlap with an imaging region of an imaging panel that captures a radiographic image of radiation applied to the imaging region. A plurality of sensor units that detect the radiation are used properly to function as a detection unit that detects at least two of the radiation irradiation start, the radiation irradiation end, and the radiation dose.
 従って、本発明の第11の態様によれば、コンピュータが本発明の第1の態様の検出部として機能することになり、本発明の第1の態様と同様に作用するため、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行うことができる。 Therefore, according to the eleventh aspect of the present invention, the computer functions as the detection unit of the first aspect of the present invention, and operates in the same manner as the first aspect of the present invention. While suppressing deterioration of the image quality as a whole, it is possible to detect at least two of radiation start, radiation end, and radiation dose.
 上記目的を達成するために、本発明の第12の態様は、放射線又は放射線が変換された光が照射されることにより電荷が発生する第1センサ部を有する画素が2次元状に複数配置された撮影部と、前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、前記検出部の各第2センサ部による検出結果から得られる画像に基づいて、前記撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する調整部と、前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成する生成部と、前記検出部の各第2センサ部による検出結果に基づいて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも1つの検出を行う検出部と、を備えている。 In order to achieve the above object, according to a twelfth aspect of the present invention, a plurality of pixels each having a first sensor unit that generates a charge when irradiated with radiation or radiation-converted light is arranged two-dimensionally. An imaging unit, a detection unit in which a plurality of second sensor units having a larger area than the first sensor unit are arranged two-dimensionally, and each second sensor of the detection unit. Based on the image obtained from the detection result by the unit, an adjustment unit that adjusts a processing parameter when generating a radiographic image by reading out the charge from each pixel of the imaging unit, and reading out the charge from each pixel of the imaging unit, A generation unit that performs processing based on the processing parameter adjusted by the adjustment unit to generate a radiation image for diagnosis, radiation start of radiation based on a detection result by each second sensor unit of the detection unit, Morphism has ended, and a detection unit for performing at least one of the detection of the dose of radiation, the.
 本発明の第12の態様によれば、撮影部に、放射線又は放射線が変換された光が照射されることにより電荷が発生する第1センサ部を有する画素が2次元状に複数配置されており、第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部が撮影部と積層して配置されている。 According to the twelfth aspect of the present invention, a plurality of pixels having a first sensor unit that generates charges when irradiated with radiation or light converted from radiation is arranged in a two-dimensional manner on the imaging unit. The detection unit in which a plurality of second sensor units having a larger area than the first sensor unit are two-dimensionally arranged is stacked on the imaging unit.
 そして、調整部により、検出部の各第2センサ部による検出結果から得られる画像に基づいて、撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータが調整される。生成部により、撮影部の各画素から電荷が読み出され、調整部により調整された処理パラメータに基づく処理を行って診断用の放射線画像が生成される。 Then, based on the image obtained from the detection result of each second sensor unit of the detection unit, the adjustment unit adjusts the processing parameter when reading the charge from each pixel of the imaging unit and generating the radiation image. Charges are read from the respective pixels of the imaging unit by the generation unit, and processing based on the processing parameters adjusted by the adjustment unit is performed to generate a diagnostic radiation image.
 このように、本発明の第12の態様によれば、第1センサ部を有する画素が2次元状に複数配置された撮影部と積層して、第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部を配置する。検出部の各第2センサ部による検出結果から得られる画像に基づいて、撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する。撮影部の各画素から電荷を読み出し、調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成する。このため、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる。 Thus, according to the twelfth aspect of the present invention, the second sensor having a larger area than the first sensor unit is stacked with the imaging unit in which a plurality of pixels having the first sensor unit are two-dimensionally arranged. A detection unit having a plurality of units arranged two-dimensionally is arranged. Based on the image obtained from the detection result by each second sensor unit of the detection unit, the processing parameters for generating a radiation image by reading out the charge from each pixel of the imaging unit are adjusted. A charge is read from each pixel of the imaging unit, and processing based on the adjusted processing parameter is performed to generate a diagnostic radiation image. For this reason, it is possible to adjust the image quality of the diagnostic radiographic image by acquiring the density correction image without increasing the exposure dose of the subject.
 本発明の第13の態様によれば、前記調整部が、前記生成部により生成される放射線画像の被写体領域の主な濃度範囲が、所定の適正濃度範囲となるように処理パラメータを調整してもよい。 According to the thirteenth aspect of the present invention, the adjustment unit adjusts the processing parameter so that the main density range of the subject region of the radiographic image generated by the generation unit is a predetermined appropriate density range. Also good.
 また、本発明の第14の態様によれば、前記生成部が、前記撮影部の各画素から読み出される前記第1センサ部に発生した電荷量に応じた電気信号を増幅する増幅器を有し、前記調整部が、前記処理パラメータとして前記増幅器のゲイン量を調整してもよい。 According to a fourteenth aspect of the present invention, the generator has an amplifier that amplifies an electrical signal corresponding to the amount of charge generated in the first sensor that is read from each pixel of the imaging unit, The adjustment unit may adjust the gain amount of the amplifier as the processing parameter.
 また、本発明の第15の態様によれば、前記生成部が、前記撮影部の各画素から電荷を電気信号として読み出して当該電気信号を所定ビット数のデジタルデータに変換するA/D変換器を有し、前記A/D変換器により変換されたデジタルデータを前記所定ビット数よりも少ないビット数のデジタルデータに規格化する規格化処理を行うものとし、前記調整部が、前記処理パラメータとして前記規格化処理の処理パラメータを調整してもよい。 According to the fifteenth aspect of the present invention, the generation unit reads an electric charge from each pixel of the photographing unit as an electric signal and converts the electric signal into digital data having a predetermined number of bits. And a standardization process for standardizing the digital data converted by the A / D converter into digital data having a number of bits smaller than the predetermined number of bits, and the adjustment unit as the processing parameter Processing parameters for the normalization processing may be adjusted.
 また、本発明の第16の態様によれば、前記撮影部が、放射線を光に変換する変換層を有し、前記第1センサ部が前記変換層で変換された光により表わされる放射線画像を撮影し、前記第2センサ部が、有機光電変換材料を含んで構成され、前記撮影部の放射線の照射面側に配置され、前記変換層で変換された光を検出してもよい。 According to the sixteenth aspect of the present invention, the imaging unit has a conversion layer that converts radiation into light, and the first sensor unit is configured to receive a radiographic image represented by light converted by the conversion layer. The second sensor unit may be configured to include an organic photoelectric conversion material, be disposed on the radiation irradiation side of the imaging unit, and detect light converted by the conversion layer.
 また、本発明の第17の態様によれば、前記生成部が、透視撮影の場合、透視撮影のフレームレートに応じた撮影周期で前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って放射線画像を生成し、前記調整部が、前記撮影周期で前記検出部の各第2センサ部により放射線を検出し、検出結果から得られる画像に応じて前記処理パラメータを調整してもよい。 According to the seventeenth aspect of the present invention, in the case of fluoroscopic imaging, the generation unit reads out electric charges from each pixel of the imaging unit at an imaging cycle corresponding to a frame rate of fluoroscopic imaging, and adjusts by the adjustment unit A process based on the processed parameters is performed to generate a radiation image, and the adjustment unit detects the radiation by each second sensor unit of the detection unit in the imaging cycle, and according to the image obtained from the detection result, Processing parameters may be adjusted.
 また、本発明の第18の態様によれば、前記検出部の各第2センサ部による検出結果から得られる画像を表示する表示部をさらに備えてもよい。 Further, according to the eighteenth aspect of the present invention, a display unit for displaying an image obtained from a detection result by each second sensor unit of the detection unit may be further provided.
 また、本発明の第19の態様によれば、前記第2センサ部は、マトリクス状に複数配置されることが好ましい。 Also, according to the nineteenth aspect of the present invention, it is preferable that a plurality of the second sensor units are arranged in a matrix.
 上記目的を達成するために、本発明の第20の態様によれば、放射線又は放射線が変換された光が照射されることにより電荷が発生する第1センサ部を有する画素が2次元状に複数配置された、診断用の放射線画像を撮影するための撮影部と、前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、前記検出部の各第2センサ部による検出結果から得られる画像に応じて、前記撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する調整部と、前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って放射線画像を生成する生成部と、前記検出部の各第2センサ部による検出結果に基づいて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも1つの検出を行う検出部と、を有している。 In order to achieve the above object, according to the twentieth aspect of the present invention, a plurality of pixels having a first sensor section that generates a charge when irradiated with radiation or light converted from radiation is two-dimensionally formed. An arranged imaging unit for imaging diagnostic radiographic images and a plurality of second sensor units arranged in a stack with the imaging unit and having a larger area than the first sensor unit are arranged two-dimensionally. And an adjustment unit that adjusts processing parameters when a radiographic image is generated by reading out charges from each pixel of the imaging unit according to an image obtained from a detection result by each second sensor unit of the detection unit. And a detection unit that reads out the electric charge from each pixel of the imaging unit and performs a process based on the processing parameter adjusted by the adjustment unit to generate a radiation image, and a detection result by each second sensor unit of the detection unit. Base There are start of irradiation, has a radiation irradiation end, and a detection unit for performing at least one of the detection of the dose of radiation, the.
 従って、本発明の第20の態様によれば、第1センサ部を有する画素が2次元状に複数配置された撮影部と積層して、第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部を配置する。検出部の各第2センサ部による検出結果から得られる画像に基づいて、撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する。撮影部の各画素から電荷を読み出し、調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成する。このため、請求項1に記載の発明と同様に、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる。 Therefore, according to the twentieth aspect of the present invention, there is provided a second sensor unit having a larger area than the first sensor unit by stacking with a plurality of pixels having a first sensor unit arranged two-dimensionally. A plurality of two-dimensionally arranged detectors are arranged. Based on the image obtained from the detection result by each second sensor unit of the detection unit, the processing parameters for generating a radiation image by reading out the charge from each pixel of the imaging unit are adjusted. A charge is read from each pixel of the imaging unit, and processing based on the adjusted processing parameter is performed to generate a diagnostic radiation image. Therefore, similarly to the first aspect of the invention, it is possible to adjust the image quality of the diagnostic radiographic image by acquiring the density correction image without increasing the exposure dose of the subject.
 本発明によれば、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行うことができる、という効果が得られる。 According to the present invention, it is possible to detect at least two of the start of radiation irradiation, the end of radiation irradiation, and the amount of radiation irradiation while suppressing deterioration of the image quality of the entire image to be captured. It is done.
 また、本発明によれば、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる、という効果が得られる。 Further, according to the present invention, it is possible to obtain an effect that the density correction image can be acquired and the image quality adjustment of the diagnostic radiation image can be performed without increasing the exposure dose of the subject.
第1の実施の形態に係る放射線情報システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiation information system which concerns on 1st Embodiment. 第1の実施の形態に係る放射線画像撮影システムの放射線撮影室における各装置の配置状態の一例を示す側面図である。It is a side view which shows an example of the arrangement | positioning state of each apparatus in the radiography room of the radiographic imaging system which concerns on 1st Embodiment. 第1の実施の形態に係る電子カセッテの内部構成を示す透過斜視図である。It is a permeation | transmission perspective view which shows the internal structure of the electronic cassette concerning 1st Embodiment. 第1の実施の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector and radiation detection part which concern on 1st Embodiment. 第1の実施の形態に係る放射線検出器の薄膜トランジスタ及びコンデンサの構成を示した断面図である。It is sectional drawing which showed the structure of the thin-film transistor and capacitor | condenser of the radiation detector which concern on 1st Embodiment. 第1の実施の形態に係るTFT基板の構成を示す平面図である。It is a top view which shows the structure of the TFT substrate which concerns on 1st Embodiment. 第1の実施の形態に係る放射線検出部のセンサ部の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the sensor part of the radiation detection part which concerns on 1st Embodiment. 第1の実施の形態に係る電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of the electronic cassette concerning 1st Embodiment. 第1の実施の形態に係るコンソール及び放射線発生装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical system of the console and radiation generator which concern on 1st Embodiment. 第1の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the imaging | photography control program which concerns on 1st Embodiment. 第2の実施の形態に係る放射線検出部のセンサ部の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the sensor part of the radiation detection part which concerns on 2nd Embodiment. 第2の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the imaging | photography control program which concerns on 2nd Embodiment. 第3の実施の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector and radiation detection part which concern on 3rd Embodiment. 第3の実施の形態に係る電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of the electronic cassette concerning 3rd Embodiment. 第3の実施の形態に係る特定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the specific process program which concerns on 3rd Embodiment. 第3の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of processing of a shooting control program according to a third embodiment. 第4の実施の形態に係る電子カセッテの内部構成を示す透過斜視図である。It is a permeation | transmission perspective view which shows the internal structure of the electronic cassette concerning 4th Embodiment. 第4の実施の形態に係る電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of the electronic cassette concerning 4th Embodiment. 他の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector which concerns on another form, and a radiation detection part. 他の形態に係る放射線検出部のセンサ部の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the sensor part of the radiation detection part which concerns on another form. 第6の実施の形態に係る放射線検出部のセンサ部の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the sensor part of the radiation detection part which concerns on 6th Embodiment. 実施の形態に係る放射線検出器の1画素部分に注目した等価回路図である。It is the equivalent circuit diagram which paid its attention to 1 pixel part of the radiation detector which concerns on embodiment. 第6の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the imaging | photography control program which concerns on 6th Embodiment. 放射線検出部の各センサ部により検出された放射線画像の一例を示す図である。It is a figure which shows an example of the radiographic image detected by each sensor part of a radiation detection part. 図24Aの累積ヒストグラムを示すグラフである。It is a graph which shows the accumulation histogram of FIG. 24A. 第7の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the imaging | photography control program which concerns on 7th Embodiment. 異なる撮影条件下で撮影された放射線画像の累積ヒストグラムa、bを示すグラフである。It is a graph which shows the accumulation histogram a and b of the radiographic image image | photographed on different imaging conditions. 図26Aの累積ヒストグラムa、bの被写体領域の主な濃度範囲MIN0~MAX0及びMIN1~MAX1がそれぞれ適正濃度範囲MIN2~MAX2となるように規格化処理した結果を示すグラフである。26B is a graph showing the result of normalization processing so that the main density ranges MIN0 to MAX0 and MIN1 to MAX1 of the subject areas in the cumulative histograms a and b in FIG. 26A become the appropriate density ranges MIN2 to MAX2, respectively. 規格化処理で用いる変換関の一例を示すグラフである。It is a graph which shows an example of the conversion function used by the normalization process. 放射線が照射された際のセンサ部から出力される電気信号のデジタルデータの値の変化を示すグラフである。It is a graph which shows the change of the value of the digital data of the electric signal output from a sensor part at the time of irradiation. 放射線が照射された際のセンサ部から出力される電気信号のデジタルデータの値の変化を示すグラフである。It is a graph which shows the change of the value of the digital data of the electric signal output from a sensor part at the time of irradiation. 放射線が照射された際の累計値の変化を示すグラフである。It is a graph which shows the change of the total value when radiation is irradiated. 他の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector which concerns on another form, and a radiation detection part. 他の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector which concerns on another form, and a radiation detection part.
 以下、図面を参照して、本発明を実施するための形態について詳細に説明する。なお、ここでは、本発明を、可搬型の放射線撮影装置(以下「電子カセッテ」ともいう。)を用いて放射線画像の撮影を行う放射線画像撮影システムに適用した場合の形態例について説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Here, a description will be given of an example in which the present invention is applied to a radiation image capturing system that captures a radiation image using a portable radiation imaging apparatus (hereinafter also referred to as “electronic cassette”).
 [第1の実施の形態]
 まず、図1を参照して、本実施の形態に係る放射線情報システム(以下、「RIS(Radiology Information System)」と称する。)10の構成について説明する。
[First Embodiment]
First, the configuration of a radiation information system (hereinafter referred to as “RIS (Radiology Information System)”) 10 according to the present embodiment will be described with reference to FIG.
 RIS10は、放射線科部門内における、診療予約、診断記録等の情報管理を行うためのシステムであり、病院情報システム(以下、「HIS(Hospital Information System)」と称する。)の一部を構成する。 The RIS 10 is a system for managing information such as medical appointments and diagnosis records in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS (Hospital Information System)”). .
 RIS10は、複数台の撮影依頼端末装置(以下、「端末装置」と称する。)12、RISサーバ14、及び病院内の放射線撮影室(あるいは手術室)の個々に設置された放射線画像撮影システム(以下、「撮影システム」と称する。)18を有している。これらが有線や無線のLAN(Local Area Network)等から成る病院内ネットワーク16に各々接続されて構成されている。なお、RIS10は、同じ病院内に設けられたHISの一部を構成している。病院内ネットワーク16には、HIS全体を管理するHISサーバ(図示省略。)も接続されている。 The RIS 10 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 12, a RIS server 14, and a radiographic imaging system (or an operating room) installed in a hospital. Hereinafter, it is referred to as a “photographing system”) 18. These are configured to be connected to an in-hospital network 16 composed of a wired or wireless LAN (Local Area Network) or the like. The RIS 10 constitutes a part of the HIS provided in the same hospital. An HIS server (not shown) that manages the entire HIS is also connected to the hospital network 16.
 端末装置12は、医師や放射線技師が、診断情報や施設予約の入力、閲覧等を行うためのものである。放射線画像の撮影依頼や撮影予約もこの端末装置12を介して行われる。各端末装置12は、表示装置を有するパーソナル・コンピュータを含んで構成され、RISサーバ14と病院内ネットワーク16を介して相互通信が可能とされている。 The terminal device 12 is used by doctors and radiographers to input and browse diagnostic information and facility reservations. A radiographic image capturing request and an imaging reservation are also made via the terminal device 12. Each terminal device 12 includes a personal computer having a display device, and is capable of mutual communication via the RIS server 14 and the hospital network 16.
 一方、RISサーバ14は、各端末装置12からの撮影依頼を受け付け、撮影システム18における放射線画像の撮影スケジュールを管理するものであり、データベース14Aを含んで構成されている。 On the other hand, the RIS server 14 receives an imaging request from each terminal device 12, manages the radiographic imaging schedule in the imaging system 18, and includes a database 14A.
 データベース14Aは、患者(被検者)の属性情報(氏名、性別、生年月日、年齢、血液型、体重、患者ID(Identification)等)、病歴、受診歴、過去に撮影した放射線画像等の患者に関する情報を含んで構成されている。データベース14Aは、撮影システム18で用いられる、後述する電子カセッテ32の識別番号(ID情報)、型式、サイズ、感度、使用可能な撮影部位(対応可能な撮影依頼の内容)、使用開始年月日、使用回数等の電子カセッテ32に関する情報を含んで構成されている。データベース14Aは、電子カセッテ32を用いて放射線画像を撮影する環境、すなわち、電子カセッテ32を使用する環境(一例として、放射線撮影室や手術室等)を示す環境情報を含んで構成されている。 Database 14A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc. It contains information about the patient. The database 14A includes an identification number (ID information), model, size, sensitivity, usable imaging part (content of imaging request that can be used), date of use start, and date of use, which will be described later, used in the imaging system 18. The information includes the information about the electronic cassette 32 such as the number of uses. The database 14 </ b> A includes environment information that indicates an environment in which a radiographic image is captured using the electronic cassette 32, that is, an environment in which the electronic cassette 32 is used (for example, a radiographic room or an operating room).
 撮影システム18は、RISサーバ14からの指示に応じて医師や放射線技師の操作により放射線画像の撮影を行う。撮影システム18は、放射線源130(図2も参照。)から曝射条件に従った線量とされた放射線X(図3も参照。)を被検者に照射する放射線発生装置34と、被検者の撮影部位を透過した放射線Xを吸収して電荷を発生し、発生した電荷量に基づいて放射線画像を示す画像情報を生成する放射線検出器60(図3も参照。)を内蔵する電子カセッテ32と、電子カセッテ32に内蔵されているバッテリを充電するクレードル40と、電子カセッテ32,放射線発生装置34,及びクレードル40を制御するコンソール42と、を備えている。 The imaging system 18 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 14. The imaging system 18 includes a radiation generator 34 that irradiates a subject with radiation X (see also FIG. 3) that is a dose according to the exposure conditions from a radiation source 130 (see also FIG. 2), and a subject. An electronic cassette incorporating a radiation detector 60 (see also FIG. 3) that generates radiation by absorbing the radiation X transmitted through the imaging region of the person and generates image information indicating a radiation image based on the amount of the generated charge. 32, a cradle 40 that charges a battery built in the electronic cassette 32, and an electronic cassette 32, a radiation generator 34, and a console 42 that controls the cradle 40.
 コンソール42は、RISサーバ14からデータベース14Aに含まれる各種情報を取得して後述するHDD110(図9参照。)に記憶し、当該情報に基づいて、電子カセッテ32、放射線発生装置34、及びクレードル40の制御を行う。 The console 42 acquires various types of information included in the database 14A from the RIS server 14 and stores them in an HDD 110 (see FIG. 9) described later. Based on the information, the electronic cassette 32, the radiation generator 34, and the cradle 40 are stored. Control.
 図2には、本実施の形態に係る撮影システム18の放射線撮影室44における各装置の配置状態の一例が示されている。 FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 44 of the imaging system 18 according to the present embodiment.
 同図に示すように、放射線撮影室44には、立位での放射線撮影を行う際に用いられる立位台45と、臥位での放射線撮影を行う際に用いられる臥位台46とが設置されている。立位台45の前方空間は立位での放射線撮影を行う際の被検者の撮影位置48とされ、臥位台46の上方空間は臥位での放射線撮影を行う際の被検者の撮影位置50とされている。 As shown in the figure, the radiation imaging room 44 has a standing table 45 used when performing radiation imaging in a standing position and a prone table 46 used when performing radiation imaging in a lying position. is set up. The space in front of the standing table 45 is the imaging position 48 of the subject when performing radiography in the standing position, and the space above the prone table 46 is that of the subject when performing radiography in the supine position. The shooting position is 50.
 立位台45には電子カセッテ32を保持する保持部150が設けられており、立位での放射線画像の撮影を行う際には、電子カセッテ32が保持部150に保持される。同様に、臥位台46には電子カセッテ32を保持する保持部152が設けられており、臥位での放射線画像の撮影を行う際には、電子カセッテ32が保持部152に保持される。 The standing stand 45 is provided with a holding unit 150 that holds the electronic cassette 32, and the electronic cassette 32 is held by the holding unit 150 when a radiographic image is taken in the standing position. Similarly, a holding unit 152 that holds the electronic cassette 32 is provided in the prone position table 46, and the electronic cassette 32 is held by the holding unit 152 when radiographic images are taken in the prone position.
 また、放射線撮影室44には、単一の放射線源130からの放射線によって立位での放射線撮影も臥位での放射線撮影も可能とするために、放射線源130を、水平な軸回り(図2の矢印A方向)に回動可能で、鉛直方向(図2の矢印B方向)に移動可能で、さらに水平方向(図2の矢印C方向)に移動可能に支持する支持移動機構52が設けられている。ここで、支持移動機構52は、放射線源130を水平な軸回りに回動させる駆動源と、放射線源130を鉛直方向に移動させる駆動源と、放射線源130を水平方向に移動させる駆動源を各々備えている(何れも図示省略。)。 Further, in the radiation imaging room 44, the radiation source 130 is arranged around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and in a standing position by radiation from a single radiation source 130. 2 is provided, and a support moving mechanism 52 is provided which can be rotated in the vertical direction (arrow B direction in FIG. 2) and supported so as to be movable in the horizontal direction (arrow C direction in FIG. 2). It has been. Here, the support moving mechanism 52 includes a drive source that rotates the radiation source 130 about a horizontal axis, a drive source that moves the radiation source 130 in the vertical direction, and a drive source that moves the radiation source 130 in the horizontal direction. Each is provided (not shown).
 一方、クレードル40には、電子カセッテ32を収納可能な収容部40Aが形成されている。 On the other hand, the cradle 40 is formed with an accommodating portion 40A capable of accommodating the electronic cassette 32.
 電子カセッテ32は、未使用時にはクレードル40の収容部40Aに収納された状態で内蔵されているバッテリに充電が行われる。電子カセッテ32は、放射線画像の撮影時には放射線技師等によってクレードル40から取り出され、撮影姿勢が立位であれば立位台45の保持部150に保持され、撮影姿勢が臥位であれば臥位台46の保持部152に保持される。 When the electronic cassette 32 is not used, the built-in battery is charged in a state of being accommodated in the accommodating portion 40A of the cradle 40. The electronic cassette 32 is taken out from the cradle 40 by a radiographer or the like at the time of radiographic image capturing, and is held by the holding unit 150 of the stand 45 if the imaging posture is in the upright position. It is held by the holding part 152 of the base 46.
 ここで、本実施の形態に係る撮影システム18では、放射線発生装置34とコンソール42とをそれぞれケーブルで接続して有線通信によって各種情報の送受信を行うが、図2では、放射線発生装置34とコンソール42を接続するケーブルを省略している。また、電子カセッテ32とコンソール42との間は、無線通信によって各種情報の送受信が行われる。なお、放射線発生装置34とコンソール42の間の通信も無線通信によって通信を行われてもよい。 Here, in the imaging system 18 according to the present embodiment, the radiation generator 34 and the console 42 are connected by cables and various types of information are transmitted and received by wired communication. In FIG. The cable connecting 42 is omitted. Various information is transmitted and received between the electronic cassette 32 and the console 42 by wireless communication. In addition, communication between the radiation generator 34 and the console 42 may be performed by wireless communication.
 なお、電子カセッテ32は、立位台45の保持部150や臥位台46の保持部152で保持された状態のみで使用されるものではない。電子カセッテ32は、その可搬性から、保持部に保持されていない状態で使用されることもできる。 Note that the electronic cassette 32 is not used only in a state where the electronic cassette 32 is held by the holding portion 150 of the standing base 45 or the holding portion 152 of the standing base 46. The electronic cassette 32 can also be used in the state which is not hold | maintained at the holding | maintenance part from the portability.
 図3には、本実施の形態に係る電子カセッテ32の内部構成が示されている。 FIG. 3 shows the internal configuration of the electronic cassette 32 according to the present embodiment.
 同図に示すように、電子カセッテ32は、放射線Xを透過させる材料からなる筐体54を備えており、防水性、密閉性を有する構造とされている。電子カセッテ32は、手術室等で使用されるとき、血液やその他の雑菌が付着するおそれがある。そこで、電子カセッテ32を防水性、密閉性を有する構造として、必要に応じて殺菌洗浄することにより、1つの電子カセッテ32を繰り返し続けて使用することができる。 As shown in the figure, the electronic cassette 32 includes a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure. When the electronic cassette 32 is used in an operating room or the like, there is a risk that blood and other germs may adhere. Therefore, one electronic cassette 32 can be used repeatedly by sterilizing and cleaning the electronic cassette 32 as necessary with a waterproof and airtight structure.
 筐体54の内部には、放射線Xが照射される筐体54の撮影面56側から、被検者を透過した放射線Xによる放射線画像を撮影する放射線検出器60、照射された放射線の検出を行う放射線検出部62が順に配設されている。 Inside the housing 54, a radiation detector 60 that captures a radiation image of the radiation X that has passed through the subject from the imaging surface 56 side of the housing 54 irradiated with the radiation X, and detection of the irradiated radiation. The radiation detection part 62 to perform is arrange | positioned in order.
 また、筐体54の内部の一端側には、マイクロコンピュータを含む電子回路及び充電可能で、かつ着脱可能なバッテリ96Aを収容するケース31が配置されている。放射線検出器60、及び電子回路は、ケース31に配置されたバッテリ96Aから供給される電力によって作動する。ケース31内部に収容された各種回路が放射線Xの照射に伴って損傷することを回避するため、ケース31の撮影面56側には鉛板等を配設しておくことが望ましい。なお、本実施の形態に係る電子カセッテ32は、撮影面56の形状が長方形とされた直方体とされており、その長手方向一端部にケース31が配置されている。 In addition, an electronic circuit including a microcomputer and a chargeable and detachable battery 96A are disposed on one end side inside the housing 54. The radiation detector 60 and the electronic circuit are operated by electric power supplied from the battery 96 </ b> A disposed in the case 31. In order to avoid various circuits housed in the case 31 from being damaged due to the radiation X, it is desirable to arrange a lead plate or the like on the imaging surface 56 side of the case 31. In addition, the electronic cassette 32 according to the present embodiment is a rectangular parallelepiped whose photographing surface 56 has a rectangular shape, and the case 31 is disposed at one end in the longitudinal direction.
 また、筐体54の外壁の所定位置には、‘レディ状態’,‘データ送信中’といった動作モード、バッテリ96Aの残容量の状態等の電子カセッテ32の動作状態を示す表示を行う表示部56Aが設けられている。なお、本実施の形態に係る電子カセッテ32では、表示部56Aとして、発光ダイオードを適用しているが、これに限らず、発光ダイオード以外の発光素子や、液晶ディスプレイ、有機ELディスプレイ等の他の表示部を適用してもよい。 Further, at a predetermined position on the outer wall of the housing 54, a display unit 56A that displays an operation mode of the electronic cassette 32 such as an operation mode such as “ready state” and “data transmitting”, a remaining capacity of the battery 96A, and the like. Is provided. In the electronic cassette 32 according to the present embodiment, a light emitting diode is applied as the display unit 56A. However, the present invention is not limited to this, and other light emitting elements other than the light emitting diode, a liquid crystal display, an organic EL display, and the like are used. A display unit may be applied.
 図4には、本実施形態に係る放射線検出器60及び放射線検出部62の構成を模式的に示した断面図が示されている。 FIG. 4 is a cross-sectional view schematically showing configurations of the radiation detector 60 and the radiation detection unit 62 according to the present embodiment.
 放射線検出器60は、絶縁性基板64に薄膜トランジスタ(TFT:Thin Film Transistor、以下「TFT」という)70、及び蓄積容量68が形成されたTFTアクティブマトリクス基板(以下、「TFT基板」という)66を備えている。 The radiation detector 60 includes a TFT active matrix substrate (hereinafter referred to as “TFT substrate”) 66 in which a thin film transistor (TFT: Thin Film Transistor, hereinafter referred to as “TFT”) 70 and a storage capacitor 68 are formed on an insulating substrate 64. I have.
 このTFT基板66上には、入射される放射線を光に変換するシンチレータ71が配置される。 On the TFT substrate 66, a scintillator 71 that converts incident radiation into light is disposed.
 シンチレータ71としては、例えば、CsI:Tl、GOS(GdS:Tb)を用いることができる。なお、シンチレータ71は、これらの材料に限られるものではない。 As the scintillator 71, for example, CsI: Tl, GOS (Gd 2 O 2 S: Tb) can be used. The scintillator 71 is not limited to these materials.
 絶縁性基板64としては、光透過性を有し且つ放射線の吸収が少ないものであれば何れでもよく、例えば、ガラス基板、透明セラミック基板、光透過性の樹脂基板を用いることができる。なお、絶縁性基板64は、これらの材料に限られるものではない。 The insulating substrate 64 may be any substrate as long as it is light transmissive and absorbs little radiation. For example, a glass substrate, a transparent ceramic substrate, or a light transmissive resin substrate can be used. The insulating substrate 64 is not limited to these materials.
 TFT基板66には、シンチレータ71によって変換された光が入射されることにより電荷を発生するセンサ部72が形成されている。また、TFT基板66には、TFT基板66上を平坦化するための平坦化層67が形成されている。また、TFT基板66とシンチレータ71との間であって、平坦化層67上には、シンチレータ71をTFT基板66に接着するための接着層69が形成されている。 The TFT substrate 66 is provided with a sensor portion 72 that generates electric charges when light converted by the scintillator 71 is incident thereon. A flattening layer 67 for flattening the TFT substrate 66 is formed on the TFT substrate 66. An adhesive layer 69 for bonding the scintillator 71 to the TFT substrate 66 is formed between the TFT substrate 66 and the scintillator 71 and on the planarizing layer 67.
 センサ部72は、上部電極72A、下部電極72B、及び上部電極72Aと下部電極72Bとの間に配置された光電変換膜72Cを有している。 The sensor unit 72 includes an upper electrode 72A, a lower electrode 72B, and a photoelectric conversion film 72C disposed between the upper electrode 72A and the lower electrode 72B.
 光電変換膜72Cは、シンチレータ71から発せられた光を吸収し、吸収した光に応じた電荷を発生する。光電変換膜72Cは、光が照射されることにより電荷を発生する材料により形成すればよく、例えば、アモルファスシリコンや有機光電変換材料などにより形成することができる。アモルファスシリコンを含む光電変換膜72Cであれば、幅広い吸収スペクトルを持ち、シンチレータ71による発光を吸収することができる。有機光電変換材料を含む光電変換膜72Cであれば、可視域にシャープな吸収スペクトルを持ち、シンチレータ71による発光以外の電磁波が光電変換膜72Cに吸収されることがほとんどない。有機光電変換材料を含む光電変換膜72Cは、X線等の放射線が光電変換膜72Cで吸収されることによって発生するノイズを効果的に抑制することができる。 The photoelectric conversion film 72C absorbs the light emitted from the scintillator 71 and generates a charge corresponding to the absorbed light. The photoelectric conversion film 72C may be formed of a material that generates charges when irradiated with light. For example, the photoelectric conversion film 72C may be formed of amorphous silicon, an organic photoelectric conversion material, or the like. The photoelectric conversion film 72C containing amorphous silicon has a wide absorption spectrum and can absorb light emitted by the scintillator 71. The photoelectric conversion film 72C containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible region, and electromagnetic waves other than light emitted by the scintillator 71 are hardly absorbed by the photoelectric conversion film 72C. The photoelectric conversion film 72 </ b> C containing the organic photoelectric conversion material can effectively suppress noise generated when radiation such as X-rays is absorbed by the photoelectric conversion film 72 </ b> C.
 本実施の形態では、光電変換膜72Cに有機光電変換材料を含んで構成する。有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ71の材料としてCsI(Tl)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となる。これによって、光電変換膜72Cで発生する電荷量をほぼ最大にすることができる。この光電変換膜72Cとして適用可能な有機光電変換材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 In the present embodiment, the photoelectric conversion film 72C includes an organic photoelectric conversion material. Examples of the organic photoelectric conversion material include quinacridone organic compounds and phthalocyanine organic compounds. For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 71, the difference in peak wavelength can be made within 5 nm. It becomes. As a result, the amount of charge generated in the photoelectric conversion film 72C can be substantially maximized. Since an organic photoelectric conversion material applicable as the photoelectric conversion film 72C is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 図5には、本実施の形態に係るTFT基板66に形成されたTFT70及び蓄積容量68の構成が概略的に示されている。 FIG. 5 schematically shows the configuration of the TFT 70 and the storage capacitor 68 formed on the TFT substrate 66 according to the present embodiment.
 絶縁性基板64上には、下部電極72Bに対応して、下部電極72Bに移動した電荷を蓄積する蓄積容量68と、蓄積容量68に蓄積された電荷を電気信号に変換して出力するTFT70が形成されている。蓄積容量68及びTFT70が形成された領域は、平面視において下部電極72Bと重なる部分を有している。このような構成とすることで、各画素部における蓄積容量68及びTFT70とセンサ部72とが厚さ方向で重なりを有することとなり、少ない面積で蓄積容量68及びTFT70とセンサ部72を配置できる。 On the insulating substrate 64, corresponding to the lower electrode 72B, a storage capacitor 68 for storing the charge transferred to the lower electrode 72B, and a TFT 70 for converting the charge stored in the storage capacitor 68 into an electric signal and outputting it. Is formed. The region where the storage capacitor 68 and the TFT 70 are formed has a portion overlapping the lower electrode 72B in plan view. With such a configuration, the storage capacitor 68 and the TFT 70 and the sensor unit 72 in each pixel unit overlap in the thickness direction, and the storage capacitor 68, the TFT 70, and the sensor unit 72 can be arranged with a small area.
 蓄積容量68は、絶縁性基板64と下部電極72Bとの間に設けられた絶縁膜65Aを貫通して形成された導電性材料の配線を介して、対応する下部電極72Bと電気的に接続されている。これにより、下部電極72Bで捕集された電荷を蓄積容量68に移動させることができる。 The storage capacitor 68 is electrically connected to the corresponding lower electrode 72B through a wiring made of a conductive material that penetrates the insulating film 65A provided between the insulating substrate 64 and the lower electrode 72B. ing. Thereby, the charges collected by the lower electrode 72B can be moved to the storage capacitor 68.
 TFT70は、ゲート電極70A、ゲート絶縁膜65B、及び活性層(チャネル層)70Bが積層され、さらに、活性層70B上にソース電極70Cとドレイン電極70Dが所定の間隔を開けて形成されている。また、放射線検出器60では、活性層70Bが非晶質酸化物により形成されている。活性層70Bを構成する非晶質酸化物としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。 In the TFT 70, a gate electrode 70A, a gate insulating film 65B, and an active layer (channel layer) 70B are stacked, and a source electrode 70C and a drain electrode 70D are formed on the active layer 70B at a predetermined interval. In the radiation detector 60, the active layer 70B is formed of an amorphous oxide. As the amorphous oxide constituting the active layer 70B, an oxide containing at least one of In, Ga, and Zn (for example, In—O-based) is preferable, and at least two of In, Ga, and Zn are used. An oxide containing In (eg, In—Zn—O, In—Ga, or Ga—Zn—O) is more preferable, and an oxide containing In, Ga, and Zn is particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
 TFT70の活性層70Bを非晶質酸化物で形成したものとすれば、X線等の放射線を吸収せず、あるいは吸収したとしても極めて微量に留まるため、ノイズの発生を効果的に抑制することができる。 If the active layer 70B of the TFT 70 is formed of an amorphous oxide, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain extremely small, effectively suppressing the generation of noise. Can do.
 ここで、TFT70の活性層70Bを構成する非晶質酸化物や、光電変換膜72Cを構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板64としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。なお、絶縁性基板64には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 Here, both the amorphous oxide constituting the active layer 70B of the TFT 70 and the organic photoelectric conversion material constituting the photoelectric conversion film 72C can be formed at a low temperature. Therefore, the insulating substrate 64 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bio-nanofiber can also be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc. A conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example. The insulating substrate 64 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
 アラミドは、200度以上の高温プロセスを適用できるために、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドは、ITO(indium tin oxide)やガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて薄く基板を形成できる。なお、超薄型ガラス基板とアラミドを積層して絶縁性基板64を形成してもよい。 Since aramid can be applied to a high-temperature process of 200 ° C. or higher, the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process. Moreover, since aramid has a thermal expansion coefficient close to that of ITO (indium tin oxide) or a glass substrate, warping after production is small and it is difficult to crack. In addition, aramid can form a substrate thinner than a glass substrate or the like. Note that the insulating substrate 64 may be formed by stacking an ultrathin glass substrate and aramid.
 バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂との複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60-70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3-7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄く絶縁性基板64を形成できる。 Bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetic acid bacteria, Acetobacter® Xylinum) and transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc. A thin insulating substrate 64 can be formed.
 図6には、本実施の形態に係るTFT基板66の構成を示す平面図が示されている。 FIG. 6 is a plan view showing the configuration of the TFT substrate 66 according to this embodiment.
 TFT基板66には、上述のセンサ部72、蓄積容量68、TFT70と、を含んで構成される画素74が一定方向(図6の行方向)及び一定方向に対する交差方向(図6の列方向)に2次元状に複数設けられている。 The TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6). Are provided two-dimensionally.
 また、放射線検出器60には、一定方向(行方向)に延設され各TFT70をオン・オフさせるための複数本のゲート配線76と、交差方向(列方向)に延設されオン状態のTFT70を介して電荷を読み出すための複数本のデータ配線78が設けられている。 Further, the radiation detector 60 includes a plurality of gate wirings 76 extending in a certain direction (row direction) for turning on / off each TFT 70, and an on-state TFT 70 extending in a crossing direction (column direction). A plurality of data wirings 78 are provided for reading out charges via the.
 放射線検出器60は、平板状で平面視において外縁に4辺を有する四辺形状をしている。具体的には矩形状に形成されている。 The radiation detector 60 is flat and has a quadrilateral shape with four sides on the outer edge in plan view. Specifically, it is formed in a rectangular shape.
 本実施形態に係る放射線検出器60は、図4に示すように、このようなTFT基板66の表面にシンチレータ71が貼り付けられて形成される。 The radiation detector 60 according to the present embodiment is formed by attaching a scintillator 71 to the surface of the TFT substrate 66 as shown in FIG.
 シンチレータ71は、例えば、CsI:Tl等の柱状結晶で形成しようとする場合、蒸着基板73への蒸着によって形成される。このように蒸着によってシンチレータ71を形成する場合、蒸着基板73は、X線の透過率、コストの面からAlの板がよく使用され、蒸着の際のハンドリング性、自重による反り防止、輻射熱による変形等からある程度(数mm程度)の厚みが必要となる。なお、シンチレータ71としてGOSを用いる場合、蒸着基板73を用いずにTFT基板66の表面にGOSを塗布することにより、シンチレータ71を形成してもよい。 The scintillator 71 is formed by vapor deposition on the vapor deposition substrate 73 when it is intended to be formed of a columnar crystal such as CsI: Tl. Thus, when forming the scintillator 71 by vapor deposition, the vapor deposition substrate 73 is often an Al plate in terms of X-ray transmittance and cost, handling properties during vapor deposition, prevention of warpage due to its own weight, and deformation due to radiant heat. Therefore, a certain thickness (about several mm) is required. Note that when GOS is used as the scintillator 71, the scintillator 71 may be formed by applying GOS to the surface of the TFT substrate 66 without using the vapor deposition substrate 73.
 このような放射線検出器60のシンチレータ71側の面には、放射線検出部62が貼り付けられている。 The radiation detector 62 is attached to the surface of the radiation detector 60 on the scintillator 71 side.
 放射線検出部62は、例えば、樹脂性の支持基板140上に、後述する配線160(図8)がパターニングされた配線層142及び絶縁層144が形成されており、その上に、本発明の放射線を検出するための複数のセンサ部146が形成され、当該センサ部146上に、GOS等からなるシンチレータ148が形成されている。センサ部146は、上部電極147A、下部電極147B、及び上部電極147Aと下部電極147Bとの間に配置された光電変換膜147Cを有している。光電変換膜147Cには、シンチレータ148によって変換された光が入射されることにより電荷を発生する。この光電変換膜147Cは、アモルファスシリコンを用いたPIN型、MIS型フォトダイオードよりも、上述の有機光電変換材料が含有された光電変換膜が好ましい。これは、PIN型フォトダイオードやMIS型フォトダイオードを用いた場合と比較して、製造コストの削減や、フレキシブル化への対応の点で有機光電変換材料が含有された光電変換膜を用いたほうが有利だからである。この放射線検出部62のセンサ部146は、放射線検出器60の各画素74に設けられたセンサ部72ほど細かく形成する必要はなく、放射線検出器60の数十から数百画素のサイズで形成すればよい。 In the radiation detection unit 62, for example, a wiring layer 142 and an insulating layer 144 in which a wiring 160 (FIG. 8) described later is patterned are formed on a resinous support substrate 140, and the radiation of the present invention is formed thereon. A plurality of sensor units 146 are formed for detection, and a scintillator 148 made of GOS or the like is formed on the sensor unit 146. The sensor unit 146 includes an upper electrode 147A, a lower electrode 147B, and a photoelectric conversion film 147C disposed between the upper electrode 147A and the lower electrode 147B. The photoelectric conversion film 147 </ b> C generates a charge when light converted by the scintillator 148 is incident thereon. The photoelectric conversion film 147C is preferably a photoelectric conversion film containing the above-described organic photoelectric conversion material, rather than a PIN-type or MIS-type photodiode using amorphous silicon. This is because it is better to use a photoelectric conversion film containing an organic photoelectric conversion material in terms of reduction in manufacturing cost and flexibility in comparison with the case of using a PIN type photodiode or a MIS type photodiode. Because it is advantageous. The sensor unit 146 of the radiation detector 62 does not need to be formed as finely as the sensor unit 72 provided in each pixel 74 of the radiation detector 60, and is formed with a size of tens to hundreds of pixels of the radiation detector 60. That's fine.
 図7には、本実施の形態に係る電子カセッテ32を撮影面56側から見た場合の、放射線検出器60の画素74がマトリクス状に配置された撮影領域に対する、放射線検出部62のセンサ部146の配置構成を示す平面図が示されている。 FIG. 7 shows a sensor unit of the radiation detection unit 62 for an imaging region in which the pixels 74 of the radiation detector 60 are arranged in a matrix when the electronic cassette 32 according to the present embodiment is viewed from the imaging surface 56 side. The top view which shows the arrangement configuration of 146 is shown.
 放射線検出部62には、矩形状の撮影領域の中央部及び4隅の近傍にそれぞれセンサ部146が設けられている。各センサ部146は、同一サイズで形成されており、放射線に対して略同一の感度とされている。以下、各センサ部146を区別する場合、センサ部146A~146Eと記載する。なお、本実施の形態では、センサ部146を5つとしているが、これに限定されるものではない。 The radiation detection unit 62 is provided with sensor units 146 in the vicinity of the center and four corners of the rectangular imaging region. Each sensor unit 146 is formed in the same size, and has substantially the same sensitivity to radiation. Hereinafter, when distinguishing each sensor part 146, it describes as sensor part 146A-146E. In the present embodiment, five sensor units 146 are provided, but the present invention is not limited to this.
 図8には、本実施の形態に係る電子カセッテ32の電気系の要部構成を示すブロック図が示されている。 FIG. 8 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the present embodiment.
 放射線検出器60は、上述したように、センサ部72、蓄積容量68、TFT70を備えた画素74がマトリクス状に多数個配置されており、電子カセッテ32への放射線Xの照射に伴ってセンサ部72で発生された電荷は、個々の画素74の蓄積容量68に蓄積される。これにより、電子カセッテ32に照射された放射線Xに担持されていた画像情報は電荷情報へ変換されて放射線検出器60に保持される。 As described above, the radiation detector 60 includes a plurality of pixels 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 arranged in a matrix, and the sensor unit according to the irradiation of the radiation X to the electronic cassette 32. The charges generated at 72 are stored in the storage capacitors 68 of the individual pixels 74. As a result, the image information carried on the radiation X irradiated to the electronic cassette 32 is converted into charge information and held in the radiation detector 60.
 また、放射線検出器60の個々のゲート配線76はゲート線ドライバ80に接続されており、個々のデータ配線78は信号処理部82に接続されている。個々の画素74の蓄積容量68に電荷が蓄積されると、個々の画素74のTFT70は、ゲート線ドライバ80からゲート配線76を介して供給される信号により行単位で順にオンされる。TFT70がオンされた画素74の蓄積容量68に蓄積されている電荷は、アナログの電気信号としてデータ配線78を伝送されて信号処理部82に入力される。従って、個々の画素74の蓄積容量68に蓄積されている電荷は行単位で順に読み出される。 Further, each gate wiring 76 of the radiation detector 60 is connected to a gate line driver 80, and each data wiring 78 is connected to a signal processing unit 82. When charges are stored in the storage capacitors 68 of the individual pixels 74, the TFTs 70 of the individual pixels 74 are sequentially turned on in units of rows by a signal supplied from the gate line driver 80 via the gate wiring 76. The electric charge accumulated in the accumulation capacitor 68 of the pixel 74 in which the TFT 70 is turned on is transmitted through the data wiring 78 as an analog electric signal and input to the signal processing unit 82. Therefore, the charges accumulated in the accumulation capacitors 68 of the individual pixels 74 are read out in order in row units.
 信号処理部82は、個々のデータ配線78毎に設けられた増幅器及びサンプルホールド回路を備えている。個々のデータ配線78を伝送された電気信号は増幅器で増幅された後にサンプルホールド回路に保持される。また、サンプルホールド回路の出力側にはマルチプレクサ、A/D(アナログ/デジタル)変換器が順に接続されており、個々のサンプルホールド回路に保持された電気信号はマルチプレクサに順に(シリアルに)入力され、A/D変換器によってデジタルの画像データへ変換される。 The signal processing unit 82 includes an amplifier and a sample hold circuit provided for each data wiring 78. The electric signal transmitted through each data wiring 78 is amplified by an amplifier and then held in a sample and hold circuit. Further, a multiplexer and an A / D (analog / digital) converter are connected in order to the output side of the sample and hold circuit, and the electric signals held in the individual sample and hold circuits are sequentially (serially) input to the multiplexer. The digital image data is converted by an A / D converter.
 信号処理部82には画像メモリ90が接続されており、信号処理部82のA/D変換器から出力された画像データは画像メモリ90に順に記憶される。画像メモリ90は複数フレーム分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ90に順次記憶される。 An image memory 90 is connected to the signal processing unit 82, and image data output from the A / D converter of the signal processing unit 82 is sequentially stored in the image memory 90. The image memory 90 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 90 every time a radiographic image is captured.
 画像メモリ90は電子カセッテ32全体の動作を制御するカセッテ制御部92と接続されている。カセッテ制御部92はマイクロコンピュータを含んで構成されており、CPU(中央処理装置)92A、ROM(Read Only Memory)及びRAM(Random Access Memory)を含むメモリ92B、HDD(ハードディスク・ドライブ)やフラッシュメモリ等からなる不揮発性の記憶部92Cを備えている。 The image memory 90 is connected to a cassette control unit 92 that controls the operation of the entire electronic cassette 32. The cassette control unit 92 includes a microcomputer, and includes a CPU (Central Processing Unit) 92A, a memory 92B including a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), and a flash memory. A non-volatile storage unit 92 </ b> C is provided.
 また、カセッテ制御部92には無線通信部94が接続されている。本実施の形態に係る無線通信部94は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g等に代表される無線LAN(Local Area Network)規格に対応しており、無線通信による外部機器との間での各種情報の伝送を制御する。カセッテ制御部92は、無線通信部94を介してコンソール42と無線通信が可能とされており、コンソール42との間で各種情報の送受信が可能とされている。 In addition, a wireless communication unit 94 is connected to the cassette control unit 92. The wireless communication unit 94 according to the present embodiment is compatible with a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g) and is based on wireless communication. Controls the transmission of various information to and from external devices. The cassette control unit 92 can wirelessly communicate with the console 42 via the wireless communication unit 94, and can transmit and receive various information to and from the console 42.
 一方、放射線検出部62は、上述したように、5つのセンサ部146が配置されている。また、放射線検出部62には、センサ部146とそれぞれ個別に接続された複数の配線160が設けられている。各配線160は信号検出部162に接続されている。 On the other hand, as described above, the radiation detection unit 62 includes the five sensor units 146. Further, the radiation detection unit 62 is provided with a plurality of wirings 160 individually connected to the sensor unit 146. Each wiring 160 is connected to the signal detection unit 162.
 信号検出部162は、配線160毎に設けられた増幅器及びA/D変換器を備えており、カセッテ制御部92と接続されている。信号検出部162は、カセッテ制御部92からの制御により、所定の周期で各配線160のサンプリングを行って各配線160を伝送される電気信号をデジタルデータに変換する。信号検出部162は、変換したデジタルデータを順次、カセッテ制御部92へ出力する。 The signal detection unit 162 includes an amplifier and an A / D converter provided for each wiring 160, and is connected to the cassette control unit 92. Under the control of the cassette control unit 92, the signal detection unit 162 samples each wiring 160 at a predetermined period and converts an electrical signal transmitted through each wiring 160 into digital data. The signal detection unit 162 sequentially outputs the converted digital data to the cassette control unit 92.
 また、電子カセッテ32には電源部96が設けられており、上述した各種回路や各素子(ゲート線ドライバ80、信号処理部82、画像メモリ90、無線通信部94、カセッテ制御部92、信号検出部162等)は、電源部96から供給された電力によって作動する。電源部96は、電子カセッテ32の可搬性を損なわないように、前述したバッテリ(二次電池)96Aを内蔵している。また、充電されたバッテリ96Aから各種回路や各素子へ電力を供給する。なお、図8では、電源部96と各種回路や各素子を接続する配線の図示を省略している。 In addition, the electronic cassette 32 is provided with a power supply unit 96, and the various circuits and elements described above (gate line driver 80, signal processing unit 82, image memory 90, wireless communication unit 94, cassette control unit 92, signal detection). The unit 162 and the like are operated by the electric power supplied from the power source unit 96. The power supply unit 96 incorporates the above-described battery (secondary battery) 96 </ b> A so as not to impair the portability of the electronic cassette 32. Further, electric power is supplied from the charged battery 96A to various circuits and elements. In FIG. 8, illustration of wirings connecting the power supply unit 96 to various circuits and elements is omitted.
 図9には、本実施の形態に係るコンソール42及び放射線発生装置34の電気系の要部構成を示すブロック図が示されている。 FIG. 9 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
 コンソール42は、サーバ・コンピュータとして構成されている。コンソール42は、操作メニューや撮影された放射線画像等を表示するディスプレイ100と、複数のキーを含んで構成され、各種の情報や操作指示が入力される操作パネル102と、を備えている。 The console 42 is configured as a server computer. The console 42 includes a display 100 that displays an operation menu, a captured radiographic image, and the like, and an operation panel 102 that includes a plurality of keys and inputs various information and operation instructions.
 また、本実施の形態に係るコンソール42は、装置全体の動作を司るCPU104と、制御プログラムを含む各種プログラム等が予め記憶されたROM106と、各種データを一時的に記憶するRAM108と、各種データを記憶して保持するHDD110と、ディスプレイ100への各種情報の表示を制御するディスプレイドライバ112と、操作パネル102に対する操作状態を検出する操作入力検出部114と、を備えている。また、コンソール42は、接続端子42A及び通信ケーブル35を介して放射線発生装置34との間で後述する曝射条件等の各種情報の送受信を行う通信インタフェース(I/F)部116と、電子カセッテ32との間で無線通信により曝射条件や画像データ等の各種情報の送受信を行う無線通信部118と、を備えている。 The console 42 according to the present embodiment includes a CPU 104 that controls the operation of the entire apparatus, a ROM 106 that stores various programs including a control program in advance, a RAM 108 that temporarily stores various data, and various data. An HDD 110 that stores and retains, a display driver 112 that controls display of various types of information on the display 100, and an operation input detection unit 114 that detects an operation state of the operation panel 102 are provided. In addition, the console 42 includes a communication interface (I / F) unit 116 that transmits and receives various types of information such as an exposure condition to be described later to and from the radiation generator 34 via the connection terminal 42A and the communication cable 35, and an electronic cassette. And a wireless communication unit 118 that transmits and receives various types of information such as exposure conditions and image data by wireless communication.
 CPU104、ROM106、RAM108、HDD110、ディスプレイドライバ112、操作入力検出部114、通信インタフェース部116、及び無線通信部118は、システムバスBUSを介して相互に接続されている。従って、CPU104は、ROM106、RAM108、HDD110へのアクセスを行うことができると共に、ディスプレイドライバ112を介したディスプレイ100への各種情報の表示の制御、通信I/F部116を介した放射線発生装置34との各種情報の送受信の制御、及び無線通信部118を介した放射線発生装置34との各種情報の送受信の制御を各々行うことができる。また、CPU104は、操作入力検出部114を介して操作パネル102に対するユーザの操作状態を把握することができる。 CPU 104, ROM 106, RAM 108, HDD 110, display driver 112, operation input detection unit 114, communication interface unit 116, and wireless communication unit 118 are connected to each other via a system bus BUS. Therefore, the CPU 104 can access the ROM 106, RAM 108, and HDD 110, controls display of various information on the display 100 via the display driver 112, and the radiation generator 34 via the communication I / F unit 116. And control of transmission / reception of various information to / from the radiation generator 34 via the wireless communication unit 118. Further, the CPU 104 can grasp the operation state of the user with respect to the operation panel 102 via the operation input detection unit 114.
 一方、放射線発生装置34は、放射線源130と、コンソール42との間で曝射条件等の各種情報を送受信する通信I/F部132と、受信した曝射条件に基づいて放射線源130を制御する線源制御部134と、を備えている。 On the other hand, the radiation generator 34 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42. A radiation source control unit 134.
 線源制御部134もマイクロコンピュータを含んで構成されており、受信した曝射条件等を記憶する。このコンソール42から受信する曝射条件には管電圧、管電流の情報が含まれている。線源制御部134は、受信した曝射条件に基づいて放射線源130から放射線Xを照射させる。 The radiation source control unit 134 is also configured to include a microcomputer, and stores the received exposure conditions and the like. The exposure conditions received from the console 42 include information on tube voltage and tube current. The radiation source controller 134 irradiates the radiation X from the radiation source 130 based on the received exposure conditions.
 次に、本実施の形態に係る撮影システム18の作用を説明する。 Next, the operation of the imaging system 18 according to the present embodiment will be described.
 本実施の形態に係る撮影システム18は、1回ずつ撮影を行う静止画撮影と、連続的に撮影を行う透視撮影が可能とされており、撮影モードとして静止画撮影又は透視撮影が選択可能とされている。 The imaging system 18 according to the present embodiment can perform still image shooting that performs shooting one by one and fluoroscopic shooting that performs continuous shooting, and can select still image shooting or fluoroscopic shooting as a shooting mode. Has been.
 端末装置12(図1参照。)は、放射線画像の撮影する場合、医師又は放射線技師からの撮影依頼を受け付ける。当該撮影依頼では、撮影対象とする患者、撮影対象とする撮影部位、撮影モードが指定され、管電圧、管電流などが必要に応じて指定される。 The terminal device 12 (see FIG. 1) accepts an imaging request from a doctor or a radiographer when imaging a radiographic image. In the imaging request, a patient to be imaged, an imaging region to be imaged, and an imaging mode are designated, and tube voltage, tube current, and the like are designated as necessary.
 端末装置12は、受け付けた撮影依頼の内容をRISサーバ14に通知する。RISサーバ14は、端末装置12から通知された撮影依頼の内容をデータベース14Aに記憶する。 The terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request. The RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
 コンソール42は、RISサーバ14にアクセスすることにより、RISサーバ14から撮影依頼の内容及び撮影対象とする患者の属性情報を取得し、撮影依頼の内容及び患者の属性情報をディスプレイ100(図9参照。)に表示する。 The console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 9). .).
 撮影者は、ディスプレイ100に表示された撮影依頼の内容に基づいて放射線画像の撮影を開始する。 The radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
 例えば、図2に示すように、臥位台46上に横臥した被検者の患部の撮影を行う際、臥位台46の保持部152に電子カセッテ32を配置する。 For example, as shown in FIG. 2, when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
 そして、撮影者は、操作パネル102に対して撮影モードとして静止画撮影又は透視撮影を指定し、さらに、操作パネル102に対して放射線Xを照射する際の管電圧及び管電流等を指定する。 The photographer designates still image photographing or fluoroscopic photographing as the photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X.
 ここで、撮影システム18は、例えば、電子カセッテ32とコンソール42やコンソール42と放射線発生装置34との間を通信ケーブルで接続して有線通信で情報の送受信を行う場合、通信ケーブルによって装置のレイアウトに制限が発生する。このため、撮影システム18は、無線通信で情報の送受信を行う方が好ましい。しかし、このように無線通信で情報の送受信を行う場合、無線通信で互いに同期をとって撮影を行おうとした場合、無線通信での通信遅延が問題となる。 Here, for example, when the imaging system 18 connects the electronic cassette 32 and the console 42 or between the console 42 and the radiation generator 34 with a communication cable and transmits and receives information by wired communication, the layout of the apparatus is performed with the communication cable. Limits occur. For this reason, it is preferable that the imaging system 18 transmits and receives information by wireless communication. However, when information is transmitted / received by wireless communication as described above, communication delay in wireless communication becomes a problem when shooting is performed in synchronization with each other by wireless communication.
 また、放射線検出器60は、X線が照射されていない状態であっても暗電流等によってセンサ部72に電荷が発生して各画素74の蓄積容量68に電荷が蓄積される。 In the radiation detector 60, even when X-rays are not irradiated, charges are generated in the sensor unit 72 due to dark current or the like, and the charges are stored in the storage capacitor 68 of each pixel 74.
 このため、本実施の形態に係る電子カセッテ32は、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行う。電子カセッテ32は、放射線の照射開始を検出すると放射線検出器60の各画素74の蓄積容量68に蓄積された電荷を取り出して除去するリセット動作を行った後に撮影を開始する。 For this reason, the electronic cassette 32 according to the present embodiment detects radiation by the radiation detection unit 62 when capturing a radiation image. When the electronic cassette 32 detects the start of radiation irradiation, the electronic cassette 32 starts imaging after performing a reset operation for taking out and removing the charge accumulated in the storage capacitor 68 of each pixel 74 of the radiation detector 60.
 また、本実施の形態に係る撮影システム18では、撮影の際、放射線検出部62により電子カセッテ32に照射された放射線量を検出し、放射線源130からの放射線の照射を制御する自動照射制御(所謂AEC(automatic exposure control))を行っている。具体的には、静止画撮影の場合、検出された放射線量が許容量となった場合に放射線源130からの放射線の照射終了及び放射線検出器60から画像の読み出し開始し、透視撮影の場合、所定のフレームレートで連続的に撮影を行い、放射線検出部62により検出された放射線量が許容量となった場合に放射線源130からの放射線の照射を終了する。静止画撮影の許容量は、撮影部位の放射線画像が鮮明に撮るための適切な線量であり、透視撮影の許容量は、被検者の被曝を適切な範囲内に抑えるための線量であり、それぞれ目的が異なる。 Further, in the imaging system 18 according to the present embodiment, during the imaging, the radiation detection unit 62 detects the radiation dose applied to the electronic cassette 32 and controls the irradiation with radiation from the radiation source 130 ( A so-called AEC (automatic exposure control) is performed. Specifically, in the case of still image shooting, when the detected radiation dose becomes an allowable amount, the irradiation end of radiation from the radiation source 130 and the start of image reading from the radiation detector 60 are started. Imaging is continuously performed at a predetermined frame rate, and irradiation of radiation from the radiation source 130 is terminated when the radiation amount detected by the radiation detection unit 62 becomes an allowable amount. The allowable amount of still image shooting is an appropriate dose for taking a radiographic image of the imaging region clearly, and the allowable amount of fluoroscopic imaging is a dose for suppressing the exposure of the subject within an appropriate range, Each has a different purpose.
 静止画撮影の許容量及び透視撮影の許容量は、それぞれ撮影の際に撮影者により操作パネル102から入力されもよい。また、撮影部位毎に、静止画撮影の許容量及び透視撮影の許容量を撮影部位別許容量情報としてHDD110に予め記憶しておき、撮影者が操作パネル102に対して撮影部位が指定を行い、撮影部位が指定された際に撮影部位別許容量情報から指定された撮影モード及び撮影部位に対応する許容量と得るものとしてもよい。また、透視撮影の許容量は、RISサーバ14のデータベース14Aに、患者毎に日別の被曝量を記憶しておき、RISサーバ14が所定期間(例えば、直近3ヶ月間)での被曝量の合計値から患者の許容される被曝量を求めて当該許容される被曝量を許容量としてコンソール42へ通知されるものとしてもよい。 The allowable amount for still image shooting and the allowable amount for fluoroscopic imaging may be input from the operation panel 102 by the photographer at the time of shooting. In addition, the permissible amount for still image photographing and the permissible amount for fluoroscopic photographing are stored in advance in the HDD 110 as per-photographing region permissible amount information for each photographing part, and the photographer specifies the photographing part on the operation panel 102. When the imaging region is specified, the imaging mode and the allowable amount corresponding to the imaging region may be obtained from the imaging region allowable amount information. In addition, the permissible amount of fluoroscopic imaging is stored in the database 14A of the RIS server 14 so that the daily exposure dose is stored for each patient, and the RIS server 14 determines the exposure dose during a predetermined period (for example, the latest three months). The allowable exposure dose of the patient may be obtained from the total value, and the allowable exposure dose may be notified to the console 42 as the allowable dose.
 コンソール42は、指定された管電圧、管電流を曝射条件として放射線発生装置34へ送信し、指定された撮影モード、管電圧、管電流、許容量を撮影条件として電子カセッテ32へ送信する。放射線発生装置34の線源制御部134は、コンソール42から曝射条件を受信すると、受信した曝射条件を記憶し、電子カセッテ32のカセッテ制御部92は、コンソール42から撮影条件を受信すると、受信した撮影条件を記憶部92Cに記憶する。 The console 42 transmits the specified tube voltage and tube current to the radiation generator 34 as exposure conditions, and transmits the specified imaging mode, tube voltage, tube current, and allowable amount to the electronic cassette 32 as imaging conditions. When the radiation source control unit 134 of the radiation generator 34 receives the exposure conditions from the console 42, the received exposure conditions are stored, and when the cassette control unit 92 of the electronic cassette 32 receives the imaging conditions from the console 42, The received shooting conditions are stored in the storage unit 92C.
 撮影者は、撮影準備完了すると、コンソール42の操作パネル102に対して撮影を指示する撮影指示操作を行う。 When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
 コンソール42は、操作パネル102に対して撮影開始操作が行なわれた場合、曝射開始を指示する指示情報を放射線発生装置34及び電子カセッテ32へ送信する。 When the imaging start operation is performed on the operation panel 102, the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32.
 放射線発生装置34は、コンソール42から受信した曝射条件に応じた管電圧、管電流で放射線の発生・射出を開始する。 The radiation generator 34 starts generating and emitting radiation with a tube voltage and a tube current corresponding to the exposure conditions received from the console 42.
 電子カセッテ32のカセッテ制御部92は、曝射開始を指示する指示情報を受信すると、記憶部92Cに撮影条件として記憶された撮影モードに応じて撮影制御を行う。 When the cassette control unit 92 of the electronic cassette 32 receives the instruction information instructing the start of exposure, the cassette control unit 92 performs shooting control according to the shooting mode stored as the shooting condition in the storage unit 92C.
 ところで、撮影を行う場合、一般的に、撮影部位は電子カセッテ32の撮影面56の中央に配置される。 Incidentally, when imaging is performed, the imaging region is generally arranged at the center of the imaging surface 56 of the electronic cassette 32.
 本実施の形態に係る電子カセッテ32は、放射線検出部62の5つのセンサ部146を使い分けて、放射線の照射開始、及び放射線の照射量の検出を行っている。具体的には、撮影領域の4隅の近傍にそれぞれ設けられたセンサ部146A~146Dにより、放射線の検出を行う。電子カセッテ32は、放射線の照射開始を検出した場合にリセット動作を行った後に撮影を開始する。電子カセッテ32は、撮影中、撮影領域の中央部分に設けられたセンサ部146Eにより、電子カセッテ32に照射された放射線量を検出している。 The electronic cassette 32 according to the present embodiment uses the five sensor units 146 of the radiation detection unit 62 properly, and starts the radiation irradiation and detects the radiation dose. Specifically, radiation is detected by sensor units 146A to 146D provided in the vicinity of the four corners of the imaging region. The electronic cassette 32 starts imaging after performing a reset operation when detecting the start of radiation irradiation. The electronic cassette 32 detects the radiation dose irradiated to the electronic cassette 32 by a sensor unit 146E provided in the center portion of the imaging region during imaging.
 図10にはカセッテ制御部92のCPU92Aにより実行される撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、当該プログラムはメモリ92B(ROM)の所定の領域に予め記憶されている。 FIG. 10 shows a flowchart showing the flow of processing of the photographing control program executed by the CPU 92A of the cassette control unit 92. The program is stored in advance in a predetermined area of the memory 92B (ROM).
 同図のステップS10では、カセッテ制御部92は、信号検出部162を制御して各配線160のサンプリングを開始させる。 In step S10 in the figure, the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
 これにより、信号検出部162は、所定の周期で各配線160のサンプリングを行って各配線160を伝送される電気信号をデジタルデータに変換し、変換したデジタルデータを順次、カセッテ制御部92へ出力する。 As a result, the signal detection unit 162 samples each wiring 160 at a predetermined cycle, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially outputs the converted digital data to the cassette control unit 92. To do.
 ここで、電子カセッテ32の撮影面56に撮影部位が配置された場合でも、撮影面56の撮影領域が全て撮影部位で覆われることは少なく、4隅の何れかの撮影部位で覆われない、所謂、素抜け領域となる。例えば、また、図7では、撮影部位として手が配置された場合、センサ部146A~146Dは素抜け領域に位置する。この素抜け領域は、放射線が撮影部位を透過しないため、高いエネルギーの放射線が照射される。放射線検出部62に設けられた各センサ部146には、放射線が照射されると電荷が発生し、特に素抜け領域内となったセンサ部には、多くの電荷が発生する。発生した電荷は、それぞれ配線160に電気信号として流れ出す。 Here, even when the imaging part is arranged on the imaging surface 56 of the electronic cassette 32, the imaging region of the imaging surface 56 is rarely covered with the imaging part, and is not covered with any imaging part of the four corners. This is a so-called blank region. For example, in FIG. 7, when a hand is placed as an imaging region, the sensor units 146A to 146D are located in the unplugged region. In this blank area, since radiation does not pass through the imaging region, high energy radiation is irradiated. Electric charges are generated in each sensor unit 146 provided in the radiation detection unit 62 when irradiated with radiation, and in particular, a large amount of electric charges are generated in the sensor unit that is in the unexposed region. The generated charges flow out as electric signals to the wiring 160, respectively.
 次のステップS12では、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影領域の4隅の近傍にそれぞれ設けられたセンサ部146A~146Dにより検出されたデジタルデータの値を予め定めた放射線検知用のしきい値と比較し、しきい値以上となった否かにより放射線の照射開始の検出を行う。カセッテ制御部92は、デジタルデータの値がしきい値以上となった場合は放射線の照射が開始されたものとしてステップS14へ移行する。カセッテ制御部92は、デジタルデータの値がしきい値未満の場合はステップS12へ再度移行して、放射線の照射開始待ちを行う。 In the next step S12, the cassette control unit 92 uses the digital data values detected by the sensor units 146A to 146D provided in the vicinity of the four corners of the imaging area among the digital data input from the signal detection unit 162. Compared with a predetermined threshold value for radiation detection, the start of radiation irradiation is detected based on whether or not the threshold value is exceeded. If the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 assumes that radiation irradiation has started and proceeds to step S14. When the value of the digital data is less than the threshold value, the cassette control unit 92 proceeds to step S12 again and waits for the start of radiation irradiation.
 次のステップS14では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から各ゲート配線76にTFT70をオン状態とさせる制御信号を出力させる。カセッテ制御部92は、各ゲート配線76に接続された各TFT70を1ラインずつ順にONさせて電荷の取り出しを行う。これにより、1ラインずつ順に各画素74の蓄積容量68に蓄積された電荷が電荷信号として各データ配線78に流れ出し、暗電流等によって各画素74の蓄積容量68に蓄積された電荷が除去される。 In the next step S14, the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning on the TFT 70 to each gate wiring 76 from the gate line driver 80. The cassette control unit 92 turns on the TFTs 70 connected to the gate wirings 76 one by one in order to extract charges. As a result, the charge accumulated in the storage capacitor 68 of each pixel 74 sequentially flows out to each data wiring 78 as a charge signal line by line, and the charge accumulated in the storage capacitor 68 of each pixel 74 is removed by dark current or the like. .
 次のステップS16では、カセッテ制御部92は、記憶部92Cに記憶された撮影条件で撮影モードとして静止画撮影が指定されたか否かを判定する。肯定判定となった場合、カセッテ制御部92は、ステップS18へ移行し、否定判定の場合(撮影モードとして透視撮影が指定された場合)、カセッテ制御部92はステップS30へ移行する。 In the next step S16, the cassette control unit 92 determines whether still image shooting is designated as the shooting mode under the shooting conditions stored in the storage unit 92C. If the determination is affirmative, the cassette control unit 92 proceeds to step S18. If the determination is negative (when fluoroscopic imaging is designated as the imaging mode), the cassette control unit 92 proceeds to step S30.
 ステップS18では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から各ゲート配線76にTFT70をオフ状態とさせる制御信号を出力させる。 In step S18, the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning off the TFT 70 to each gate wiring 76 from the gate line driver 80.
 次のステップS20では、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影領域の中央部分に設けられたセンサ部146Eにより検出されたデジタルデータの値をセンサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値を累計する。この累計値は、被検者の被曝量と見なすことができる。 In the next step S <b> 20, the cassette control unit 92 uses the value of the digital data detected by the sensor unit 146 </ b> E provided in the central portion of the imaging region among the digital data input from the signal detection unit 162 as the sensitivity of the sensor unit 146. Correct according to. The cassette control unit 92 accumulates the corrected values. This cumulative value can be regarded as the exposure dose of the subject.
 次のステップS22では、カセッテ制御部92は、累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS24へ移行し、否定判定となった場合、カセッテ制御部92はステップS20へ移行する。 In the next step S22, the cassette control unit 92 determines whether or not the cumulative value is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20.
 ステップS24では、カセッテ制御部92は、コンソール42に対して曝者終了を指示する指示情報を送信する。 In step S24, the cassette control unit 92 transmits instruction information for instructing the end of the exposure to the console.
 コンソール42は電子カセッテ32から曝者終了を指示する指示情報を受信すると、曝射終了を指示する指示情報を放射線発生装置34へ送信する。放射線発生装置34は曝射終了を指示する指示情報を受信すると、放射線の照射を終了する。 When the console 42 receives the instruction information for instructing the end of the exposure from the electronic cassette 32, the console 42 transmits the instruction information for instructing the end of the exposure to the radiation generator 34. When receiving the instruction information for instructing the end of the exposure, the radiation generator 34 ends the radiation irradiation.
 次のステップS26では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させる。 In the next step S26, the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
 放射線検出器60では、各ゲート配線76に接続された各TFT70を1ラインずつ順にオンされると、1ラインずつ順に各蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出す。各データ配線78に流れ出した電気信号は信号処理部82でデジタルの画像データに変換されて、画像メモリ90に記憶される。 In the radiation detector 60, when the TFTs 70 connected to the gate wirings 76 are turned on line by line, the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals. The electric signal flowing out to each data wiring 78 is converted into digital image data by the signal processing unit 82 and stored in the image memory 90.
 次のステップS28では、カセッテ制御部92は、画像メモリ90に記憶された画像データをコンソール42へ送信し、処理を終了する。 In the next step S28, the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42, and ends the process.
 一方、ステップS30では、カセッテ制御部92は、透視撮影のフレームレートに応じた撮影周期を求める。 On the other hand, in step S30, the cassette control unit 92 obtains an imaging cycle according to the frame rate of fluoroscopic imaging.
 次のステップS32では、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影領域の中央部分に設けられたセンサ部146Eにより検出されたデジタルデータの値をセンサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値を累計する。 In the next step S32, the cassette control unit 92 uses the value of the digital data detected by the sensor unit 146E provided in the central portion of the imaging area among the digital data input from the signal detection unit 162 as the sensitivity of the sensor unit 146. Correct according to. The cassette control unit 92 accumulates the corrected values.
 次のステップS34では、カセッテ制御部92は、累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS42へ移行し、否定判定となった場合、カセッテ制御部92はステップS36へ移行する。 In the next step S34, the cassette control unit 92 determines whether or not the cumulative value is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S42. If the determination is negative, the cassette control unit 92 proceeds to step S36.
 ステップS36では、カセッテ制御部92は、前回、放射線検出器60の各画素74の電荷の読み出しを行ってから撮影周期以上の期間を経過したか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS38へ移行し、否定判定となった場合、カセッテ制御部92はステップS32へ移行する。 In step S36, the cassette control unit 92 determines whether or not a period longer than the imaging cycle has elapsed since the charge of each pixel 74 of the radiation detector 60 was read out last time. If the determination is affirmative, the cassette control unit 92 proceeds to step S38. If the determination is negative, the cassette control unit 92 proceeds to step S32.
 次のステップS38では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させる。 In the next step S38, the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate wiring 76 in order from the gate line driver 80 line by line.
 これにより、放射線検出器60では、各ゲート配線76に接続された各TFT70を1ラインずつ順にオンされ、1ラインずつ順に各蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出す。各データ配線78に流れ出した電気信号は信号処理部82でデジタルの画像データに変換されて、画像メモリ90に記憶される。 As a result, in the radiation detector 60, the TFTs 70 connected to the gate lines 76 are sequentially turned on line by line, and the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals. . The electric signal flowing out to each data wiring 78 is converted into digital image data by the signal processing unit 82 and stored in the image memory 90.
 次のステップS40では、カセッテ制御部92は、画像メモリ90に記憶された画像データをコンソール42へ送信を行い、画像データの送信後、ステップS32へ移行する。 In the next step S40, the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42. After the image data is transmitted, the process proceeds to step S32.
 一方、ステップS42では、カセッテ制御部92は、コンソール42に対して曝者終了を指示する指示情報を送信し、処理を終了する。 On the other hand, in step S42, the cassette control unit 92 transmits instruction information for instructing the end of the exposure to the console 42, and ends the process.
 放射線発生装置34は、曝射終了を指示する指示情報を受信すると、放射線の発生・射出を終了する。なお、本実施の形態では、透視撮影中に、撮影領域の中央部分に設けられたセンサ部146Eの累計値が許容量となった場合に、透視撮影を停止する場合について説明した。しかし、コンソール42へ許容量を超えたことを通知して、コンソール42で警告を表示させるようにしてもよい。また、コンソール42が放射線発生装置34へ管電圧、管電流の少なくとも一方を低下させた曝者条件を送信して、放射線発生装置34の放射線源130から照射される単位時間あたりの放射線量を低下させるようにしてもよい。 When receiving the instruction information for instructing the end of exposure, the radiation generator 34 ends the generation and emission of radiation. In the present embodiment, a case has been described in which the fluoroscopic imaging is stopped when the cumulative value of the sensor unit 146E provided in the central portion of the imaging area becomes an allowable amount during fluoroscopic imaging. However, a warning may be displayed on the console 42 by notifying the console 42 that the allowable amount has been exceeded. In addition, the console 42 transmits an exposure condition in which at least one of the tube voltage and the tube current is reduced to the radiation generator 34, thereby reducing the radiation dose per unit time irradiated from the radiation source 130 of the radiation generator 34. You may make it make it.
 コンソール42は、電子カセッテ32から画像情報を受信すると、受信した画像情報に対してシェーディング補正などの各種の補正する画像処理を行ない、画像処理後の画像情報をHDD110に記憶する。 When the console 42 receives the image information from the electronic cassette 32, the console 42 performs various image processing such as shading correction on the received image information, and stores the image information after the image processing in the HDD 110.
 HDD110に記憶された画像情報は、撮影した放射線画像の確認等のためにディスプレイ100に表示されると共に、RISサーバ14に転送されてデータベース14Aにも格納される。これにより、医師が撮影された放射線画像の読影や診断等を行うことが可能となる。 The image information stored in the HDD 110 is displayed on the display 100 for confirmation of the captured radiographic image, and is transferred to the RIS server 14 and stored in the database 14A. Thereby, it becomes possible for a doctor to perform interpretation, diagnosis, and the like of a radiographic image taken.
 なお、センサ部146Eにより検出されたデジタルデータの値の累計値は、被検者の被曝量と見なすことができる。このため、RISサーバ14のデータベース14Aに、患者毎に日別の被曝量を記憶させている場合、電子カセッテ32は、コンソール42を介してRISサーバ14へ送信してデータベース14Aに記憶させる。このように患者毎に日別の被曝量を記憶して管理することにより、特定期間の総被曝量の把握が可能となる。また、被曝量と撮影条件とを併せてデータベース14Aに記憶させてもよい。この場合、電子カセッテ32が累計値(被曝量)をコンソール42に転送する。コンソール42が累計量(被曝量)と撮影条件とを関連付けたデータとし、データベース14Bに記憶させる。このように被曝量と撮影条件とを併せて記憶した場合、データベース14Bの利用価値が一層高まる。 In addition, the cumulative value of the digital data values detected by the sensor unit 146E can be regarded as the exposure dose of the subject. For this reason, when the daily exposure dose is stored for each patient in the database 14A of the RIS server 14, the electronic cassette 32 is transmitted to the RIS server 14 via the console 42 and stored in the database 14A. Thus, by storing and managing the daily exposure dose for each patient, the total exposure dose for a specific period can be grasped. Further, the exposure dose and the imaging conditions may be stored together in the database 14A. In this case, the electronic cassette 32 transfers the cumulative value (exposure dose) to the console 42. The console 42 stores the accumulated amount (exposure amount) and the imaging conditions in association with each other in the database 14B. Thus, when the exposure amount and the imaging conditions are stored together, the utility value of the database 14B is further increased.
 以上のように、本実施の形態によれば、撮影領域に照射された放射線による放射線画像を撮影する放射線検出器60の撮影領域に重なるように各々照射された放射線を検出する複数のセンサ部146を配置し、複数のセンサ部146を使い分けて放射線の照射開始、及び放射線の照射量の検出を行っている。センサ部146を配置したことにより放射線検出器60の画素74のサイズが小さくなることがないため、撮影される画像全体としての画質の低下を抑えつつ、放射線の照射開始、及び放射線の照射量の検出を行うことができる。 As described above, according to the present embodiment, the plurality of sensor units 146 that detect the radiation irradiated so as to overlap the imaging region of the radiation detector 60 that captures the radiation image of the radiation irradiated to the imaging region. Are arranged, and a plurality of sensor units 146 are selectively used to start radiation irradiation and detect the radiation dose. Since the size of the pixel 74 of the radiation detector 60 is not reduced by arranging the sensor unit 146, the start of radiation irradiation and the amount of radiation irradiation can be suppressed while suppressing the deterioration of the image quality of the entire captured image. Detection can be performed.
 また、本実施の形態によれば、電子カセッテ32が放射線の照射開始を検出して撮影を開始し、放射線の照射量の検出して撮影を終了することにより、電子カセッテ32とコンソール42との無線通信での通信遅延が発生する場合でも安定して放射線画像の撮影を行うことができる。 Further, according to the present embodiment, the electronic cassette 32 detects the start of radiation irradiation, starts imaging, detects the radiation dose, and ends the imaging, whereby the electronic cassette 32 and the console 42 are Even when a communication delay occurs in wireless communication, radiographic images can be stably captured.
 また、本実施の形態によれば、放射線検出器60は、基板64上に撮影用の画素と共にAEC用検出素子を設ける必要がないため、回路配置も単純になる。 In addition, according to the present embodiment, the radiation detector 60 does not need to provide the AEC detection elements together with the imaging pixels on the substrate 64, so that the circuit arrangement becomes simple.
 また、本実施の形態によれば、センサ部146A~146Dにより放射線の照射開始の検出を行うことにより、放射線の照射開始を速やかに検出できる。センサ部146Eにより放射線の照射量の検出を行うことにより、放射線の照射量を安定して検出できる。 Further, according to the present embodiment, the start of radiation irradiation can be quickly detected by detecting the start of radiation irradiation by the sensor units 146A to 146D. By detecting the radiation dose by the sensor unit 146E, the radiation dose can be stably detected.
 [第2の実施の形態]
 次に、第2の実施の形態について説明する。
[Second Embodiment]
Next, a second embodiment will be described.
 第2の実施の形態に係るRIS10、撮影システム18、電子カセッテ32、放射線検出器60の構成は、上記第1の実施の形態(図1~図6、図8~図9参照)と同一であるので、ここでの説明は省略する。 The configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the second embodiment are the same as those in the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
 図11には、第2の実施の形態に係る電子カセッテ32を撮影面56側から見た場合の、放射線検出器60の画素74がマトリクス状に配置された撮影領域に対する、放射線検出部62のセンサ部146の配置構成を示す平面図が示されている。 In FIG. 11, when the electronic cassette 32 according to the second embodiment is viewed from the imaging surface 56 side, the radiation detector 62 of the radiation detector 60 with respect to the imaging region in which the pixels 74 of the radiation detector 60 are arranged in a matrix is shown. The top view which shows the arrangement configuration of the sensor part 146 is shown.
 放射線検出部62には、矩形状の撮影領域の1つの対角線に沿って5つのセンサ部146が設けられており、撮影領域に斜めにセンサ部146が配置されている。各センサ部146は、同一サイズで形成されており、放射線に対して略同一の感度とされている。以下、各センサ部146を区別する場合、センサ部146A~146Eと記載する。なお、本実施の形態では、センサ部146を5つとしているが、これに限定されるものではない。 The radiation detection unit 62 is provided with five sensor units 146 along one diagonal line of the rectangular imaging region, and the sensor units 146 are arranged obliquely in the imaging region. Each sensor unit 146 is formed in the same size, and has substantially the same sensitivity to radiation. Hereinafter, when distinguishing each sensor part 146, it describes as sensor part 146A-146E. In the present embodiment, five sensor units 146 are provided, but the present invention is not limited to this.
 ここで、撮影面56の撮影領域に撮影部位が配置された場合でも、撮影領域が全て撮影部位で覆われることは少ない。また、撮影領域は、手や足、胸部、腹部などの撮影部位の種類によっても覆われる領域が異なる。 Here, even when the imaging region is arranged in the imaging region of the imaging surface 56, it is rare that the entire imaging region is covered with the imaging region. In addition, the imaging region differs depending on the type of imaging region such as a hand, foot, chest, or abdomen.
 そこで、本実施の形態に係る撮影システム18では、コンソール42が撮影条件として撮影部位をさらに電子カセッテ32へ送信する。 Therefore, in the imaging system 18 according to the present embodiment, the console 42 further transmits the imaging region to the electronic cassette 32 as an imaging condition.
 また、本実施の形態に係る電子カセッテ32は、撮影部位の種類毎に、撮影部位が配置された際に撮影部位の領域内となるセンサ部146を、撮影部位別センサ情報として記憶部92Cに記憶している。この撮影部位別センサ情報には、例えば、撮影部位が手の場合、センサ部146Cが撮影部位の領域内となり、撮影部位が腹部の場合、センサ部146B~146Dが撮影部位の領域内となることが記憶されている。 Further, the electronic cassette 32 according to the present embodiment stores the sensor unit 146 that is in the region of the imaging region when the imaging region is arranged for each type of imaging region in the storage unit 92C as imaging region-specific sensor information. I remember it. For example, when the imaging region is a hand, the sensor unit 146C is within the region of the imaging region, and when the imaging region is the abdomen, the sensor units 146B to 146D are within the region of the imaging region. Is remembered.
 本実施の形態に係る電子カセッテ32は、撮影条件を受信すると、撮影部位別センサ情報に基づいて撮影条件に含まれる撮影部位から、当該撮影部位が配置された際に撮影部位領域内となるセンサ部146と特定し、その他のセンサ部146を撮影部位が配置された際に撮影部位の領域外となるセンサ部146と特定する。 When the electronic cassette 32 according to the present embodiment receives an imaging condition, the sensor that is within the imaging part region when the imaging part is arranged from the imaging part included in the imaging condition based on the imaging part-specific sensor information. The other sensor unit 146 is specified as the sensor unit 146 that is outside the region of the imaging part when the imaging part is arranged.
 そして、本実施の形態に係る電子カセッテ32では、撮影部位領域外と特定されたセンサ部146により、放射線の検出を行い、撮影部位領域内と特定されたセンサ部146により、電子カセッテ32に照射された放射線量を検出している。 In the electronic cassette 32 according to the present exemplary embodiment, radiation is detected by the sensor unit 146 identified as outside the imaging region, and the electronic cassette 32 is irradiated by the sensor unit 146 identified as within the imaging region. The detected radiation dose is detected.
 図12には第2の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、第1の実施の形態(図10)と同一部分については同一の符号を付して説明を省略し、異なる部分については符号Aを付して説明をする。 FIG. 12 shows a flowchart showing the flow of processing of the imaging control program according to the second embodiment. Note that the same parts as those in the first embodiment (FIG. 10) are denoted by the same reference numerals and description thereof is omitted, and different parts are denoted by reference numeral A for description.
 同図のステップS8Aでは、カセッテ制御部92は、撮影部位別センサ情報に基づき、コンソール42から受信した撮影条件に含まれる撮影部位から当該撮影部位が配置された際に撮影部位の領域内となるセンサ部146と撮影部位の領域外となるセンサ部146とを特定する。 In step S8A in the figure, the cassette control unit 92 falls within the region of the imaging part when the imaging part is arranged from the imaging part included in the imaging conditions received from the console 42 based on the imaging part-specific sensor information. The sensor unit 146 and the sensor unit 146 outside the imaging region are specified.
 ステップS12Aでは、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影部位領域外の各センサ部146により検出されたデジタルデータの値を予め定めた放射線検知用のしきい値と比較し、しきい値以上となった否かにより放射線の照射開始の検出を行う。デジタルデータの値がしきい値以上となった場合、カセッテ制御部92は、放射線の照射が開始されたものとしてステップS14へ移行し、デジタルデータの値がしきい値未満の場合、カセッテ制御部92は、ステップS12へ再度移行して、放射線の照射開始待ちを行う。 In step S <b> 12 </ b> A, the cassette control unit 92 sets a predetermined radiation data threshold value for the digital data detected by each sensor unit 146 outside the imaging region in the digital data input from the signal detection unit 162. The start of radiation irradiation is detected based on whether or not the threshold value is exceeded. If the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 proceeds to step S14 on the assumption that radiation irradiation has started, and if the value of the digital data is less than the threshold value, the cassette control unit 92 In step 92, the process returns to step S12 and waits for the start of radiation irradiation.
 また、ステップS20Aでは、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影部位領域内の各センサ部146により検出されたデジタルデータの値をセンサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値をセンサ部146毎に累計する。 In step S <b> 20 </ b> A, the cassette control unit 92 sets the digital data value detected by each sensor unit 146 in the imaging region among the digital data input from the signal detection unit 162 according to the sensitivity of the sensor unit 146. to correct. The cassette control unit 92 accumulates the corrected values for each sensor unit 146.
 さらに、ステップS22Aでは、カセッテ制御部92は、撮影部位の領域内のセンサ部146の何れかの累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92は、ステップS24へ移行し、否定判定となった場合、カセッテ制御部92は、ステップS20Aへ移行する。 Furthermore, in step S22A, the cassette control unit 92 determines whether any cumulative value of the sensor unit 146 in the imaging region is equal to or greater than an allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20A.
 また、ステップS32Aでも、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、撮影部位領域内の各センサ部146により検出されたデジタルデータの値をセンサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値をセンサ部146毎に累計する。 Also in step S <b> 32 </ b> A, the cassette control unit 92 sets the value of the digital data detected by each sensor unit 146 in the imaging region among the digital data input from the signal detection unit 162 according to the sensitivity of the sensor unit 146. to correct. The cassette control unit 92 accumulates the corrected values for each sensor unit 146.
 さらに、ステップS34Aでは、カセッテ制御部92は、撮影部位の領域内の何れかのセンサ部146の累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS42へ移行し、否定判定となった場合、カセッテ制御部92は、ステップS36へ移行する。 Further, in step S34A, the cassette control unit 92 determines whether or not the cumulative value of any of the sensor units 146 in the region of the imaging region has exceeded an allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S42. If the determination is negative, the cassette control unit 92 proceeds to step S36.
 以上のように、本実施の形態によれば、撮影部位毎に複数のセンサ部146を使い分けて放射線の照射開始、及び放射線の照射量の検出を行うことにより、放射線の照射開始、及び放射線の照射量の検出を精度良く検出できる。 As described above, according to the present embodiment, a plurality of sensor units 146 are selectively used for each imaging region to start radiation irradiation and detect radiation dose, thereby starting radiation irradiation and Irradiation amount can be detected accurately.
 [第3の実施の形態]
 次に、第3の実施の形態について説明する。
[Third Embodiment]
Next, a third embodiment will be described.
 第3の実施の形態に係るRIS10、撮影システム18、電子カセッテ32、放射線検出器60の構成は、上記第1の実施の形態(図1~図3、図5~図7、図9参照)と同一であるので、ここでの説明は省略する。 The configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the third embodiment are the same as those in the first embodiment (see FIGS. 1 to 3, FIGS. 5 to 7, and FIG. 9). The description is omitted here.
 図13には、第3の実施形態に係る電子カセッテ32の構成を模式的に示した断面図が示されている。 FIG. 13 is a cross-sectional view schematically showing the configuration of the electronic cassette 32 according to the third embodiment.
 本実施形態に係る電子カセッテ32には、筐体54の撮影面56を構成する天板部分の撮影領域全面に圧力発光シート170が貼付けられている。また、圧力発光シート170の天板部分と反対側の面には、撮影領域全面に液晶シャッタ172が設けられている。さらに液晶シャッタ172に放射線検出部62、放射線検出器60が順に積層されている。 In the electronic cassette 32 according to the present embodiment, the pressure light emitting sheet 170 is attached to the entire imaging region of the top plate portion constituting the imaging surface 56 of the housing 54. A liquid crystal shutter 172 is provided on the entire surface of the photographing region on the surface of the pressure light emitting sheet 170 opposite to the top plate portion. Further, the radiation detector 62 and the radiation detector 60 are sequentially stacked on the liquid crystal shutter 172.
 圧力発光シート170には、圧力に応じて発光する発光層が形成されている。発光層には、圧力刺激により蛍光色が変化する応力発光材料が含まれている。筐体54の天板部分に撮影部位が配置されたことにより天板部分が歪んで圧力がかかった際に、発光層の圧力がかかった部分が発光する。この応力発光材料としては、例えば、アルミン酸ストロンチウム(SrAl:Eu)、マンガンを発光中心として添加した硫化亜鉛(ZnS:Mn)等が挙げられる。 A light emitting layer that emits light according to pressure is formed on the pressure light emitting sheet 170. The light emitting layer contains a stress light emitting material whose fluorescent color is changed by pressure stimulation. When the imaging part is arranged on the top plate portion of the housing 54, when the top plate portion is distorted and pressure is applied, the portion where the pressure of the light emitting layer is applied emits light. Examples of the stress luminescent material include strontium aluminate (SrAl 2 O 4 : Eu), zinc sulfide (ZnS: Mn) added with manganese as a luminescent center, and the like.
 液晶シャッタ172は、電気的な制御により光の透過、非透過を切り替えることが可能とされている。液晶シャッタ172は、圧力発光シート170からの光の放射線検出部62への透過、非透過を切り替える。 The liquid crystal shutter 172 can switch between transmission and non-transmission of light by electrical control. The liquid crystal shutter 172 switches between transmission and non-transmission of light from the pressure light emitting sheet 170 to the radiation detection unit 62.
 本実施の形態に係る放射線検出部62には、シンチレータ148が形成されておらず、光透過性を有する支持基板140上にセンサ部146が形成されている。放射線検出器60は、シンチレータ71側が放射線検出部62と対向するように配置されている。 The scintillator 148 is not formed in the radiation detection unit 62 according to the present embodiment, and the sensor unit 146 is formed on the support substrate 140 having optical transparency. The radiation detector 60 is arranged so that the scintillator 71 side faces the radiation detector 62.
 すなわち、放射線検出部62は、各センサ部146により、各センサ部146が放射線検出器60のシンチレータ71の光及び圧力発光シート170の光が検出可能に構成されている。 That is, the radiation detection unit 62 is configured such that each sensor unit 146 can detect the light of the scintillator 71 of the radiation detector 60 and the light of the pressure light emitting sheet 170 by each sensor unit 146.
 図14には、第3の実施の形態に係る電子カセッテ32の電気系の要部構成を示すブロック図が示されている。なお、第1の実施の形態(図8)と同一部分には同一の符号を付して説明を省略する。 FIG. 14 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the third embodiment. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment (FIG. 8), and description is abbreviate | omitted.
 液晶シャッタ172はカセッテ制御部92に接続されている。カセッテ制御部92は液晶シャッタ172に印加する電圧を制御することにより液晶シャッタ172を透過状態と非透過状態とに切り替えことが可能とされている。 The liquid crystal shutter 172 is connected to the cassette control unit 92. The cassette control unit 92 can switch the liquid crystal shutter 172 between a transmissive state and a non-transmissive state by controlling the voltage applied to the liquid crystal shutter 172.
 本実施の形態に係る電子カセッテ32は、撮影を行う場合、撮影面56上に撮影部位が配置される。 When the electronic cassette 32 according to the present embodiment performs imaging, an imaging region is disposed on the imaging surface 56.
 電子カセッテ32は、例えば、コンソール42から撮影条件を受信したタイミングなど、撮影前の予め定めたタイミングで、撮影面56上で撮影部位が配置された撮影部位領域を特定する特定処理を行う。なお、後述する撮影制御プログラムの処理のステップ9Bの処理の前に実行するようにしてもよい。 The electronic cassette 32 performs a specific process of specifying the imaging region where the imaging region is arranged on the imaging surface 56 at a predetermined timing before imaging, such as timing when imaging conditions are received from the console 42, for example. Note that it may be executed before the process of Step 9B of the process of the photographing control program described later.
 図15にはカセッテ制御部92のCPU92Aにより実行される特定処理プログラムの処理の流れを示すフローチャートが示されている。なお、当該プログラムはメモリ92B(ROM)の所定の領域に予め記憶されている。 FIG. 15 is a flowchart showing the flow of processing of the specific processing program executed by the CPU 92A of the cassette control unit 92. The program is stored in advance in a predetermined area of the memory 92B (ROM).
 ステップS50では、カセッテ制御部92は、液晶シャッタ172に印加する電圧を制御して液晶シャッタ172を透過状態とする。 In step S50, the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to place the liquid crystal shutter 172 in a transmissive state.
 これにより、放射線検出部62の各センサ部146により、圧力発光シート170の光の検出が可能となる。 Thereby, the light of the pressure light emitting sheet 170 can be detected by each sensor unit 146 of the radiation detection unit 62.
 次のステップS52では、カセッテ制御部92は、信号検出部162を制御して各配線160のサンプリングを開始させる。 In the next step S52, the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
 電子カセッテ32では、筐体54の撮影面56に撮影部位が配置されると、電子カセッテ32の天板部分が歪み、圧力発光シート170の圧力がかかった部分が発光する。 In the electronic cassette 32, when the imaging part is arranged on the imaging surface 56 of the housing 54, the top plate part of the electronic cassette 32 is distorted, and the part to which the pressure of the pressure light emitting sheet 170 is applied emits light.
 次のステップS54では、カセッテ制御部92は、信号検出部162から入力する各センサ部146のデジタルデータの値をそれぞれ予め定めた撮影部位の領域特定用のしきい値と比較する。カセッテ制御部92は、しきい値以上となったセンサ部146を撮影部位の領域内に配置されたセンサ部146と特定し、しきい値未満のセンサ部146を撮影部位の領域外に配置されたセンサ部146と特定する。 In the next step S54, the cassette control unit 92 compares the digital data value of each sensor unit 146 input from the signal detection unit 162 with a predetermined threshold value for specifying the region of the imaging region. The cassette control unit 92 identifies the sensor unit 146 that is equal to or greater than the threshold value as the sensor unit 146 disposed within the region of the imaging region, and the sensor unit 146 that is less than the threshold value is disposed outside the region of the imaging region. The sensor unit 146 is identified.
 ステップS56では、カセッテ制御部92は、液晶シャッタ172に印加する電圧を制御して液晶シャッタ172を非透過状態として、処理を終了する。 In step S56, the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to place the liquid crystal shutter 172 in a non-transmissive state, and ends the process.
 本実施の形態に係る電子カセッテ32では、上記特定処理プログラムの処理により、撮影部位の領域外と特定されたセンサ部146により、放射線の検出を行い、撮影部位の領域内と特定されたセンサ部146により、電子カセッテ32に照射された放射線量を検出している。 In the electronic cassette 32 according to the present exemplary embodiment, the sensor unit 146 that is identified as outside the imaging region is detected by the processing of the specific processing program, and the sensor unit that is identified as within the imaging region is detected. By 146, the radiation dose irradiated to the electronic cassette 32 is detected.
 図16には第3の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、第1の実施の形態(図10)と同一部分については同一の符号を付して説明を省略し、異なる部分については符号Bを付して説明をする。 FIG. 16 shows a flowchart showing the flow of processing of the imaging control program according to the third embodiment. Note that the same parts as those of the first embodiment (FIG. 10) are denoted by the same reference numerals and description thereof is omitted, and different parts are denoted by reference numeral B for description.
 同図のステップS9Bでは、カセッテ制御部92は、液晶シャッタ172に印加する電圧を制御して液晶シャッタ172を非透過状態とする。 In step S9B in the figure, the cassette control unit 92 controls the voltage applied to the liquid crystal shutter 172 to make the liquid crystal shutter 172 non-transmissive.
 これにより、圧力発光シート170の光は、放射線検出部62の各センサ部146に入射しなくなる。 Thereby, the light of the pressure light emitting sheet 170 does not enter each sensor unit 146 of the radiation detection unit 62.
 ステップS12Bでは、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、上記特定処理プログラムの処理により撮影部位の領域外と特定された各センサ部146により検出されたデジタルデータの値を、予め定めた放射線検知用のしきい値と比較し、しきい値以上となった否かにより放射線の照射開始の検出を行う。カセッテ制御部92は、デジタルデータの値がしきい値以上となった場合、放射線の照射が開始されたものとしてステップS14へ移行し、デジタルデータの値がしきい値未満の場合、ステップS12へ再度移行して、放射線の照射開始待ちを行う。 In step S <b> 12 </ b> B, the cassette control unit 92 detects the value of the digital data detected by each sensor unit 146 identified as being out of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162. Is compared with a predetermined threshold value for radiation detection, and the start of radiation irradiation is detected depending on whether or not the threshold value is exceeded. When the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 proceeds to step S14 assuming that radiation irradiation has started, and to step S12 when the value of the digital data is less than the threshold value. Move again and wait for the start of irradiation.
 また、ステップS20Bでは、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、上記特定処理プログラムの処理により撮影部位の領域内と特定された各センサ部146により検出されたデジタルデータの値を、センサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値をセンサ部146毎に累計する。 In step S20B, the cassette control unit 92 detects the digital data detected by each sensor unit 146 identified as being within the region of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162. Is corrected according to the sensitivity of the sensor unit 146. The cassette control unit 92 accumulates the corrected values for each sensor unit 146.
 さらに、ステップS22Bでは、カセッテ制御部92は、撮影部位領域内のセンサ部146の何れかの累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92は、テップS24へ移行し、否定判定となった場合、カセッテ制御部92は、ステップS20へ移行する。 Furthermore, in step S22B, the cassette control unit 92 determines whether any cumulative value of the sensor unit 146 in the imaging region is equal to or greater than an allowable amount. When it becomes affirmation determination, the cassette control part 92 transfers to step S24, and when it becomes negative determination, the cassette control part 92 transfers to step S20.
 また、ステップS32Bにおいても、カセッテ制御部92は、信号検出部162から入力するデジタルデータのうち、上記特定処理プログラムの処理により撮影部位の領域内と特定された各センサ部146により検出されたデジタルデータの値を、センサ部146の感度に応じて補正する。カセッテ制御部92は、補正した値をセンサ部146毎に累計する。 Also in step S32B, the cassette control unit 92 detects the digital data detected by each sensor unit 146 identified within the region of the imaging region by the processing of the specific processing program among the digital data input from the signal detection unit 162. The data value is corrected according to the sensitivity of the sensor unit 146. The cassette control unit 92 accumulates the corrected values for each sensor unit 146.
 以上のように、本実施の形態によれば、筐体54の撮影面56を構成する天板部分に圧力発光シート170を配置する。撮影面56に撮影部位が配置されて、かつ、天板部分が歪んで圧力発光シート170の圧力がかかったことによる、発光をセンサ部146で検出することにより、撮影部位の領域内のセンサ部146と撮影部位の領域外のセンサ部146を特定できる。また、撮影部位の領域内のセンサ部146と撮影部位の領域外のセンサ部146を使い分けて、放射線の照射開始、及び放射線の照射量の検出を行うことにより、放射線の照射開始、及び放射線の照射量の検出を精度良く検出できる。 As described above, according to the present embodiment, the pressure light emitting sheet 170 is disposed on the top plate portion that constitutes the imaging surface 56 of the housing 54. By detecting light emission by the sensor unit 146 when the imaging region is arranged on the imaging surface 56 and the top plate portion is distorted and the pressure of the pressure light emitting sheet 170 is applied, the sensor unit in the region of the imaging region is detected. 146 and the sensor unit 146 outside the imaging region can be specified. In addition, by using the sensor unit 146 in the region of the imaging region and the sensor unit 146 outside the region of the imaging region, the radiation irradiation is started and the radiation dose is detected, so that the radiation irradiation is started and the radiation is detected. Irradiation amount can be detected accurately.
 [第4の実施の形態]
 次に、第4の実施の形態について説明する。
[Fourth Embodiment]
Next, a fourth embodiment will be described.
 第4の実施の形態に係るRIS10、撮影システム18、電子カセッテ32、放射線検出器60の構成は、上記第1の実施の形態(図1~図6、図8~図9参照)と同一であるので、ここでの説明は省略する。 The configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the fourth embodiment are the same as those in the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
 図17には、第4の実施の形態に係る電子カセッテ32の内部構成が示されている。なお、第1の実施の形態(図3)と同一部分については同一の符号を付して説明を省略する。 FIG. 17 shows the internal configuration of the electronic cassette 32 according to the fourth embodiment. Note that the same parts as those in the first embodiment (FIG. 3) are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態に係る電子カセッテ32には、筐体54の撮影面56に、撮影面56への撮影部位の接触を検出するタッチパネル180が設けられている。このタッチパネル180としては、感圧式や静電式等の各種方式のものを適用することができる。 The electronic cassette 32 according to the present exemplary embodiment is provided with a touch panel 180 for detecting contact of an imaging region with the imaging surface 56 on the imaging surface 56 of the housing 54. As the touch panel 180, various types such as a pressure-sensitive type and an electrostatic type can be applied.
 図18には、第4の実施の形態に係る電子カセッテ32の電気系の要部構成を示すブロック図が示されている。なお、第1の実施の形態(図8)と同一部分には同一の符号を付して説明を省略する。 FIG. 18 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the fourth embodiment. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment (FIG. 8), and description is abbreviate | omitted.
 タッチパネル180はカセッテ制御部92に接続されている。カセッテ制御部92は、タッチパネル180による検出結果により、撮影面56の撮影部位が配置された撮影部位の領域を把握することが可能とされている。 The touch panel 180 is connected to the cassette control unit 92. The cassette control unit 92 can grasp the region of the imaging part where the imaging part of the imaging surface 56 is arranged based on the detection result by the touch panel 180.
 本実施の形態に係る電子カセッテ32は、撮影を行う際に、タッチパネル180による検出結果に基づいて撮影部位の領域を把握し、撮影部位の領域内に配置されたセンサ部146と、撮影部位の領域外に配置されたセンサ部146とを特定する。 The electronic cassette 32 according to the present embodiment grasps the region of the imaging region based on the detection result by the touch panel 180 when performing imaging, and the sensor unit 146 disposed in the region of the imaging region, The sensor unit 146 arranged outside the area is specified.
 そして、本実施の形態に係る電子カセッテ32では、撮影部位の領域外と特定されたセンサ部146により、放射線の検出を行い、撮影部位の領域内と特定されたセンサ部146により、電子カセッテ32に照射された放射線量を検出を行う。 In the electronic cassette 32 according to the present embodiment, radiation is detected by the sensor unit 146 identified as outside the imaging region, and the electronic cassette 32 is identified by the sensor unit 146 identified as within the imaging region. The amount of radiation irradiated to is detected.
 以上のように、本実施の形態によれば、筐体54の撮影面56にタッチパネル180を設け、タッチパネル180により撮影面56に撮影部位が配置された接触範囲を検出する。これにより、撮影部位の領域内のセンサ部146と撮影部位の領域外のセンサ部146を特定できる。また、撮影部位の領域内のセンサ部146と撮影部位の領域外のセンサ部146を使い分けて、放射線の照射開始、及び放射線の照射量の検出を行うことにより、放射線の照射開始、及び放射線の照射量の検出を精度良く検出できる。 As described above, according to the present embodiment, the touch panel 180 is provided on the imaging surface 56 of the housing 54, and the touch range where the imaging region is arranged on the imaging surface 56 is detected by the touch panel 180. Thereby, the sensor unit 146 in the region of the imaging region and the sensor unit 146 outside the region of the imaging region can be specified. In addition, by using the sensor unit 146 in the region of the imaging region and the sensor unit 146 outside the region of the imaging region, the radiation irradiation is started and the radiation dose is detected, so that the radiation irradiation is started and the radiation is detected. Irradiation amount can be detected accurately.
 以上、本発明を第1~第4の実施の形態を用いて説明したが、本発明の技術的範囲は上記各実施の形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施の形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本発明の技術的範囲に含まれる。 The present invention has been described above using the first to fourth embodiments. However, the technical scope of the present invention is not limited to the scope described in each of the above embodiments. Various modifications or improvements can be added to the above-described embodiments without departing from the gist of the invention, and embodiments to which the modifications or improvements are added are also included in the technical scope of the present invention.
 また、上記の実施の形態は、クレーム(請求項)にかかる発明を限定するものではなく、また実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。前述した実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組み合わせにより種々の発明を抽出できる。実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。 The above embodiments do not limit the invention according to the claims (claims), and all the combinations of features described in the embodiments are essential for the solution means of the invention. Is not limited. The embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
 例えば、上記第1の実施の形態では、図4に示すように、シンチレータ148を挟んでTFT基板66と放射線検出部62を配置した場合について説明したが、本発明はこれに限定されるものではない。例えば、図19に示すように、筐体54の撮影面56を構成する天板部分に放射線検出部62を配置し、放射線検出部62の天板の反対側に放射線検出器60を配置してもよい。図19の放射線検出部62は、シンチレータ148が形成されておらず、TFT基板66を透過したシンチレータ71の光を検出する。この場合、放射線検出部62のセンサ部146での放射線の吸収を抑えるため、センサ部146は有機光電変換材料が含有された光電変換膜で形成することが好ましい。 For example, in the first embodiment, the case where the TFT substrate 66 and the radiation detection unit 62 are disposed with the scintillator 148 sandwiched as shown in FIG. 4 is described, but the present invention is not limited to this. Absent. For example, as shown in FIG. 19, the radiation detector 62 is disposed on the top plate portion constituting the imaging surface 56 of the housing 54, and the radiation detector 60 is disposed on the opposite side of the top plate of the radiation detector 62. Also good. The radiation detection unit 62 in FIG. 19 does not have the scintillator 148 and detects the light of the scintillator 71 that has passed through the TFT substrate 66. In this case, in order to suppress radiation absorption by the sensor unit 146 of the radiation detection unit 62, the sensor unit 146 is preferably formed of a photoelectric conversion film containing an organic photoelectric conversion material.
 また、上記第1及び第2の実施の形態では、放射線検出部62にセンサ部146を5つ設けた場合について説明したが、本発明はこれに限定されるものではない。また、センサ部146の配置についても本発明はこれに限定されるものではなく、撮影領域の中央部及び周辺部の少なくとも1つずつ配置されていればよい。例えば、図20に示すように、センサ部146を撮影領域にマトリクス状に配置してもよい。図20では、センサ部146を4×5のマトリクス状に配置した例を示している。 In the first and second embodiments described above, the case where five sensor units 146 are provided in the radiation detection unit 62 has been described, but the present invention is not limited to this. Further, the present invention is not limited to the arrangement of the sensor unit 146, and it is sufficient that at least one of the central part and the peripheral part of the photographing region is arranged. For example, as shown in FIG. 20, the sensor units 146 may be arranged in a matrix in the imaging region. FIG. 20 shows an example in which the sensor units 146 are arranged in a 4 × 5 matrix.
 [第5の実施の形態]
 次に、第5の実施の形態について説明する。
[Fifth Embodiment]
Next, a fifth embodiment will be described.
 第5の実施の形態に係るRIS10、撮影システム18、電子カセッテ32、放射線検出器60の構成は、上記第1の実施の形態(図1~図6、図8~図9参照)と同一であるので、ここでの説明は省略する。 The configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the fifth embodiment are the same as those of the first embodiment (see FIGS. 1 to 6 and FIGS. 8 to 9). Since there is, explanation here is omitted.
 TFT基板66には、本発明の第1センサ部に対応し、かつ、シンチレータ71によって変換された光が入射されることにより電荷を発生するセンサ部72が形成されている。 The TFT substrate 66 is provided with a sensor portion 72 that corresponds to the first sensor portion of the present invention and that generates charges when light converted by the scintillator 71 is incident thereon.
 TFT基板66には、上述のセンサ部72、蓄積容量68、TFT70と、を含んで構成される画素74が、一定方向(図6の行方向)及び一定方向に対する交差方向(図6の列方向)に2次元状に複数設けられている。例えば、放射線検出部62を、17インチ×17インチのサイズとした場合、画素74を行方向及び列方向に2880個ずつ配置する。 The TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above. The pixel 74 has a certain direction (row direction in FIG. 6) and a direction intersecting with the certain direction (column direction in FIG. ) Are provided two-dimensionally. For example, when the radiation detection unit 62 has a size of 17 inches × 17 inches, 2880 pixels 74 are arranged in the row direction and the column direction.
 図21には、本実施の形態に係る放射線検出部62のセンサ部146の配置構成を示す平面図が示されている。 21 is a plan view showing an arrangement configuration of the sensor unit 146 of the radiation detection unit 62 according to the present embodiment.
 放射線検出部62には、センサ部146が一定方向(図21の行方向)及び一定方向に対する交差方向(図21の列方向)に多数配置されている。例えば、放射線検出部62には、センサ部146を行方向及び列方向に16個ずつマトリクス状に配置する。 In the radiation detection unit 62, a large number of sensor units 146 are arranged in a certain direction (row direction in FIG. 21) and in an intersecting direction with respect to the certain direction (column direction in FIG. 21). For example, in the radiation detection unit 62, 16 sensor units 146 are arranged in a matrix in the row direction and the column direction.
 図22に示すように、TFT70のソースは、データ配線78に接続されており、このデータ配線78は、信号処理部82に接続されている。また、TFT70のドレインは蓄積容量68及び光電変換部72に接続され、TFT70のゲートはゲート配線76に接続されている。 As shown in FIG. 22, the source of the TFT 70 is connected to the data wiring 78, and the data wiring 78 is connected to the signal processing unit 82. The drain of the TFT 70 is connected to the storage capacitor 68 and the photoelectric conversion unit 72, and the gate of the TFT 70 is connected to the gate wiring 76.
 信号処理部82は、個々のデータ配線78毎にサンプルホールド回路84を備えている。個々のデータ配線78により伝送された電気信号はサンプルホールド回路84に保持される。サンプルホールド回路84はオペアンプ84Aとコンデンサ84Bを含んで構成され、電気信号をアナログ電圧に変換する。また、サンプルホールド回路84には、コンデンサ84Bの両電極をショートさせ、コンデンサ84Bに蓄積された電荷を放電させるリセット回路としてスイッチ84Cが設けられている。オペアンプ84Aは、後述するカセッテ制御部92からの制御によりゲイン量を調整可能とされている。 The signal processing unit 82 includes a sample hold circuit 84 for each data wiring 78. The electric signals transmitted through the individual data lines 78 are held in the sample / hold circuit 84. The sample hold circuit 84 includes an operational amplifier 84A and a capacitor 84B, and converts an electric signal into an analog voltage. In addition, the sample hold circuit 84 is provided with a switch 84C as a reset circuit that shorts both electrodes of the capacitor 84B and discharges the electric charge accumulated in the capacitor 84B. The operational amplifier 84A can adjust the gain amount by control from a cassette control unit 92 described later.
 サンプルホールド回路84の出力側にはマルチプレクサ86、A/D変換器88が順に接続されている。個々のサンプルホールド回路に保持された電気信号はアナログ電圧に変換されてマルチプレクサ86に順に(シリアルに)入力され、A/D変換器88によってデジタルの画像情報へ変換される。 A multiplexer 86 and an A / D converter 88 are sequentially connected to the output side of the sample hold circuit 84. The electric signals held in the individual sample and hold circuits are converted into analog voltages, sequentially input to the multiplexer 86 (serially), and converted into digital image information by the A / D converter 88.
 信号処理部82には画像メモリ90が接続されており(図8参照。)、信号処理部82のA/D変換器88から出力された画像データは画像メモリ90に順に記憶される。画像メモリ90は複数フレーム分の画像データを記憶可能な記憶容量を有している。放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ90に順次記憶される。 An image memory 90 is connected to the signal processing unit 82 (see FIG. 8), and image data output from the A / D converter 88 of the signal processing unit 82 is stored in the image memory 90 in order. The image memory 90 has a storage capacity capable of storing image data for a plurality of frames. Each time a radiographic image is captured, the image data obtained by the imaging is sequentially stored in the image memory 90.
 一方、放射線検出部62には、上述したように、センサ部146がマトリクス状に多数個配置されている。また、放射線検出部62には、各センサ部146とそれぞれ個別に接続された複数の配線160が設けられており、各配線160は信号検出部162に接続されている。 On the other hand, in the radiation detection unit 62, as described above, a large number of sensor units 146 are arranged in a matrix. The radiation detection unit 62 is provided with a plurality of wires 160 individually connected to the sensor units 146, and the wires 160 are connected to the signal detection unit 162.
 上記図9には、本実施の形態に係るコンソール42及び放射線発生装置34の電気系の要部構成を示すブロック図が示されている。 FIG. 9 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
 次に、本実施の形態に係る撮影システム18の作用を説明する。 Next, the operation of the imaging system 18 according to the present embodiment will be described.
 本実施の形態に係る撮影システム18は、1回ずつ撮影を行う静止画撮影と、連続的に撮影を行う透視撮影が可能とされており、撮影モードとして静止画撮影又は透視撮影が選択可能とされている。 The imaging system 18 according to the present embodiment can perform still image shooting that performs shooting one by one and fluoroscopic shooting that performs continuous shooting, and can select still image shooting or fluoroscopic shooting as a shooting mode. Has been.
 端末装置12(図1参照。)は、放射線画像の撮影する場合、医師又は放射線技師からの撮影依頼を受け付ける。当該撮影依頼では、撮影対象とする患者、撮影対象とする撮影部位、撮影モードが指定され、管電圧、管電流などが必要に応じて指定される。 The terminal device 12 (see FIG. 1) accepts an imaging request from a doctor or a radiographer when imaging a radiographic image. In the imaging request, a patient to be imaged, an imaging region to be imaged, and an imaging mode are designated, and tube voltage, tube current, and the like are designated as necessary.
 端末装置12は、受け付けた撮影依頼の内容をRISサーバ14に通知する。RISサーバ14は、端末装置12から通知された撮影依頼の内容をデータベース14Aに記憶する。 The terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request. The RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
 コンソール42は、RISサーバ14にアクセスすることにより、RISサーバ14から撮影依頼の内容及び撮影対象とする患者の属性情報を取得し、撮影依頼の内容及び患者の属性情報をディスプレイ100(図9参照。)に表示する。 The console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 9). .).
 撮影者は、ディスプレイ100に表示された撮影依頼の内容に基づいて放射線画像の撮影を開始する。 The radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
 例えば、図2に示すように、臥位台46上に横臥した被検者の患部の撮影を行う際、臥位台46の保持部152に電子カセッテ32を配置する。 For example, as shown in FIG. 2, when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
 そして、撮影者は、操作パネル102に対して撮影モードとして静止画撮影又は透視撮影を指定し、さらに、操作パネル102に対して放射線Xを照射する際の管電圧及び管電流等を指定する。なお、撮影者は、透視撮影の場合、被検者の被曝を抑えるため、静止画撮影の場合と比べて単位時間当たりの放射線の照射量を低く指定する(例えば、静止画撮影の場合の1/10程度)。 The photographer designates still image photographing or fluoroscopic photographing as the photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X. In the case of fluoroscopic imaging, the photographer designates a lower radiation dose per unit time than in the case of still image shooting in order to suppress the exposure of the subject (for example, 1 in the case of still image shooting). / 10).
 ここで、放射線検出器60では、X線が照射されていない状態であっても暗電流等によってセンサ部72に電荷が発生し、各画素74の蓄積容量68に電荷が蓄積される。 Here, in the radiation detector 60, even when X-rays are not irradiated, charges are generated in the sensor unit 72 due to dark current or the like, and charges are stored in the storage capacitor 68 of each pixel 74.
 このため、本実施の形態に係る電子カセッテ32では、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行う。放射線の照射開始を検出すると、電子カセッテ32は、放射線検出器60の各画素74の蓄積容量68に蓄積された電荷を取り出して除去するリセット動作を行った後に、撮影を開始する。 For this reason, in the electronic cassette 32 according to the present embodiment, the radiation detection unit 62 detects radiation when taking a radiation image. When the start of radiation irradiation is detected, the electronic cassette 32 starts imaging after performing a reset operation for taking out and removing the charge accumulated in the storage capacitor 68 of each pixel 74 of the radiation detector 60.
 また、本実施の形態に係る撮影システム18では、撮影の際、放射線検出部62により電子カセッテ32に照射された放射線量を検出し、放射線源130からの放射線の照射を制御する自動照射制御(所謂AEC(automatic exposure control))を行っている。具体的には、静止画撮影の場合、検出された放射線量が許容量となった場合に放射線源130からの放射線の照射を終了させると共に放射線検出器60から画像の読み出し開始する。透視撮影の場合、所定のフレームレートで連続的に撮影を行い、放射線検出部62により検出された放射線量が許容量となった場合に、放射線源130からの放射線の照射を終了させる。静止画撮影の許容量は、撮影部位の放射線画像が鮮明に撮るための適切な線量である。透視撮影の許容量は、被検者の被曝を適切な範囲内に抑えるための線量である。静止画撮影の許容量及び透視撮影の許容量のそれぞれの目的が異なる。 Further, in the imaging system 18 according to the present embodiment, during the imaging, the radiation detection unit 62 detects the radiation dose applied to the electronic cassette 32 and controls the irradiation with radiation from the radiation source 130 ( A so-called AEC (automatic exposure control) is performed. Specifically, in the case of still image shooting, radiation of radiation from the radiation source 130 is terminated and reading of an image from the radiation detector 60 is started when the detected radiation dose reaches an allowable amount. In the case of fluoroscopic imaging, imaging is continuously performed at a predetermined frame rate, and irradiation of radiation from the radiation source 130 is terminated when the radiation amount detected by the radiation detection unit 62 becomes an allowable amount. The permissible amount for taking a still image is an appropriate dose for obtaining a radiographic image of the imaging region clearly. The permissible amount of fluoroscopic imaging is a dose for suppressing the exposure of the subject within an appropriate range. The purposes of the allowable amount of still image shooting and the allowable amount of fluoroscopic shooting are different.
 静止画撮影の許容量及び透視撮影の許容量は、それぞれ撮影の際に撮影者により操作パネル102から入力されてもよい。また、撮影部位毎に、静止画撮影の許容量及び透視撮影の許容量を撮影部位別許容量情報としてHDD110に予め記憶しておいてもよい。撮影者が操作パネル102に対して撮影部位が指定を行い、撮影部位が指定された際に撮影部位別許容量情報から指定された撮影モード及び撮影部位に対応する許容量を得るものとしてもよい。また、透視撮影の許容量は、RISサーバ14のデータベース14Aに、患者毎に日別の被曝量を記憶しておいてもよい。RISサーバ14が所定期間(例えば、直近3ヶ月間)での被曝量の合計値から患者の許容される被曝量を求めて、当該許容される被曝量を許容量としてコンソール42へ通知されるものとしてもよい。 The allowable amount of still image shooting and the allowable amount of fluoroscopic shooting may be input from the operation panel 102 by the photographer at the time of shooting. In addition, the permissible amount for still image capturing and the permissible amount for fluoroscopic imaging may be stored in advance in the HDD 110 as per-imaging region allowable amount information for each imaging region. The photographer designates an imaging part on the operation panel 102, and when the imaging part is designated, the designated imaging mode and the tolerance corresponding to the imaging part can be obtained from the tolerance information for each imaging part. . In addition, the permissible amount of fluoroscopic imaging may be stored in the database 14A of the RIS server 14 as a daily exposure amount for each patient. The RIS server 14 obtains the allowable exposure dose of the patient from the total exposure dose in a predetermined period (for example, the last three months) and notifies the console 42 of the allowable exposure dose as the allowable dose. It is good.
 コンソール42は、指定された管電圧、管電流を曝射条件として放射線発生装置34へ送信し、指定された撮影モード、管電圧、管電流、許容量を撮影条件として電子カセッテ32へ送信する。放射線発生装置34の線源制御部134は、コンソール42から曝射条件を受信すると、受信した曝射条件を記憶する。電子カセッテ32のカセッテ制御部92は、コンソール42から撮影条件を受信すると、受信した撮影条件を記憶部92Cに記憶する。 The console 42 transmits the specified tube voltage and tube current to the radiation generator 34 as exposure conditions, and transmits the specified imaging mode, tube voltage, tube current, and allowable amount to the electronic cassette 32 as imaging conditions. When receiving the exposure condition from the console 42, the radiation source control unit 134 of the radiation generating apparatus 34 stores the received exposure condition. When the cassette control unit 92 of the electronic cassette 32 receives the shooting conditions from the console 42, the cassette control unit 92 stores the received shooting conditions in the storage unit 92C.
 撮影者は、撮影準備完了すると、コンソール42の操作パネル102に対して撮影を指示する撮影指示操作を行う。 When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
 コンソール42は、操作パネル102に対して撮影開始操作が行なわれた場合、曝射開始を指示する指示情報を放射線発生装置34及び電子カセッテ32へ送信する。 When the imaging start operation is performed on the operation panel 102, the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32.
 放射線発生装置34は、コンソール42から受信した曝射条件に応じた管電圧、管電流で放射線の発生・射出を開始する。 The radiation generator 34 starts generating and emitting radiation with a tube voltage and a tube current corresponding to the exposure conditions received from the console 42.
 電子カセッテ32のカセッテ制御部92は、曝射開始を指示する指示情報を受信すると、記憶部92Cに撮影条件として記憶された撮影モードに応じて撮影制御を行う。 When the cassette control unit 92 of the electronic cassette 32 receives the instruction information instructing the start of exposure, the cassette control unit 92 performs shooting control according to the shooting mode stored as the shooting condition in the storage unit 92C.
 ところで、本実施の形態に係る電子カセッテ32では、上述のように、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行い、放射線の照射開始を検出する。電子カセッテ32は、放射線の照射開始を検出した場合にリセット動作を行った後に撮影を開始し、撮影中、電子カセッテ32に照射された放射線量を検出している。 Incidentally, in the electronic cassette 32 according to the present embodiment, as described above, when the radiation image is taken, the radiation detection unit 62 detects the radiation and detects the start of radiation irradiation. The electronic cassette 32 starts imaging after performing a reset operation when detecting the start of radiation irradiation, and detects the radiation dose irradiated to the electronic cassette 32 during imaging.
 また、本実施の形態に係る電子カセッテ32では、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行って濃度補正用の放射線画像を取得する。電子カセッテ32は、その濃度補正用の放射線画像を解析して、適切な濃度の画像が得られるオペアンプ84Aのゲイン量を求める。電子カセッテ32は、求めたゲイン量をフィードバックさせてオペアンプ84Aのゲイン量等を調整して、放射線検出器60から放射線画像の読み出しを行っている。 Further, in the electronic cassette 32 according to the present embodiment, when a radiographic image is taken, the radiation detection unit 62 detects the radiation and acquires a radiographic image for density correction. The electronic cassette 32 analyzes the radiation image for density correction, and obtains the gain amount of the operational amplifier 84A from which an image with an appropriate density can be obtained. The electronic cassette 32 reads the radiation image from the radiation detector 60 by feeding back the obtained gain amount and adjusting the gain amount of the operational amplifier 84A.
 図23にはカセッテ制御部92のCPU92Aにより実行される撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、当該プログラムはメモリ92B(ROM)の所定の領域に予め記憶されている。 FIG. 23 shows a flowchart showing the flow of processing of the photographing control program executed by the CPU 92A of the cassette control unit 92. The program is stored in advance in a predetermined area of the memory 92B (ROM).
 同図のステップS10では、カセッテ制御部92は、信号検出部162を制御して各配線160のサンプリングを開始させる。 In step S10 in the figure, the cassette control unit 92 controls the signal detection unit 162 to start sampling of each wiring 160.
 これにより、信号検出部162は、所定の周期で各配線160のサンプリングを行って各配線160を伝送される電気信号をデジタルデータに変換し、変換したデジタルデータを順次、カセッテ制御部92へ出力する。 As a result, the signal detection unit 162 samples each wiring 160 at a predetermined cycle, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially outputs the converted digital data to the cassette control unit 92. To do.
 放射線検出部62に設けられた各センサ部146には、放射線が照射されると電荷が発生する。発生した電荷は、それぞれ配線160に電気信号として流れ出す。 Each sensor unit 146 provided in the radiation detection unit 62 is charged when irradiated with radiation. The generated charges flow out as electric signals to the wiring 160, respectively.
 次のステップS12では、カセッテ制御部92は、信号検出部162から入力する各センサ部146により検出されたデジタルデータの値を予め定めた放射線検知用の所定のしきい値と比較し、しきい値以上となった否かにより放射線の照射開始の検出を行う。デジタルデータの値がしきい値以上となった場合、カセッテ制御部92は放射線の照射が開始されたと判断してステップS14へ移行する。デジタルデータの値がしきい値未満の場合、カセッテ制御部92はステップS12へ再度移行して、放射線の照射開始待ちを行う。 In the next step S12, the cassette control unit 92 compares the value of the digital data detected by each sensor unit 146 input from the signal detection unit 162 with a predetermined threshold value for detecting radiation, and the threshold value is set. The start of radiation irradiation is detected depending on whether or not the value is greater than or equal to the value. When the value of the digital data is equal to or greater than the threshold value, the cassette control unit 92 determines that radiation irradiation has started, and proceeds to step S14. If the value of the digital data is less than the threshold value, the cassette control unit 92 moves again to step S12 and waits for the start of radiation irradiation.
 次のステップS14では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から各ゲート配線76にTFT70をオン状態とさせる制御信号を出力させ、各ゲート配線76に接続された各TFT70を1ラインずつ順にONさせて電荷の取り出しを行う。これにより、1ラインずつ順に各画素74の蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出し、暗電流等によって各画素74の蓄積容量68に蓄積された電荷が除去される。 In the next step S <b> 14, the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning on the TFT 70 to each gate wiring 76 from the gate line driver 80 and connected to each gate wiring 76. The TFTs 70 are turned on one line at a time to take out charges. As a result, the charges accumulated in the storage capacitor 68 of each pixel 74 sequentially flow out to each data wiring 78 as an electric signal, and the charges accumulated in the storage capacitor 68 of each pixel 74 are removed by dark current or the like. .
 次のステップS16では、カセッテ制御部92は、記憶部92Cに記憶された撮影条件で撮影モードとして静止画撮影が指定されたか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS18へ移行し、否定判定の場合(撮影モードとして透視撮影が指定された場合)、カセッテ制御部92はステップS40へ移行する。 In the next step S16, the cassette control unit 92 determines whether still image shooting is designated as the shooting mode under the shooting conditions stored in the storage unit 92C. If the determination is affirmative, the cassette control unit 92 proceeds to step S18. If the determination is negative (when fluoroscopic imaging is designated as the imaging mode), the cassette control unit 92 proceeds to step S40.
 ステップS18では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から各ゲート配線76にTFT70をオフ状態とさせる制御信号を出力させる。 In step S18, the cassette control unit 92 controls the gate line driver 80 to output a control signal for turning off the TFT 70 to each gate wiring 76 from the gate line driver 80.
 次のステップS20では、カセッテ制御部92は、信号検出部162から入力する各センサ部146により検出されたデジタルデータの値を各センサ部146の感度に応じて補正し、補正した値をセンサ部146毎にそれぞれ累計する。この累計値は、照射された放射線量と見なすことができる。 In the next step S20, the cassette control unit 92 corrects the digital data value detected by each sensor unit 146 input from the signal detection unit 162 according to the sensitivity of each sensor unit 146, and the corrected value is detected by the sensor unit. Each 146 is accumulated. This cumulative value can be regarded as the radiation dose irradiated.
 次のステップS22では、カセッテ制御部92は、何れかのセンサ部146の累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92はステップS24へ移行し、否定判定となった場合、カセッテ制御部92はステップS20へ移行する。 In the next step S22, the cassette control unit 92 determines whether or not the cumulative value of any of the sensor units 146 is greater than or equal to the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S24. If the determination is negative, the cassette control unit 92 proceeds to step S20.
 ステップS24では、カセッテ制御部92は、コンソール42に対して曝射終了を指示する指示情報を送信する。 In step S24, the cassette control unit 92 transmits instruction information for instructing the console 42 to end the exposure.
 コンソール42は電子カセッテ32から曝射終了を指示する指示情報を受信すると、曝射終了を指示する指示情報を放射線発生装置34へ送信する。放射線発生装置34は曝射終了を指示する指示情報を受信すると、放射線の照射を終了する。 When the console 42 receives the instruction information for instructing the end of exposure from the electronic cassette 32, the console 42 transmits the instruction information for instructing the end of exposure to the radiation generator 34. When receiving the instruction information for instructing the end of the exposure, the radiation generator 34 ends the radiation irradiation.
 次のステップS26では、カセッテ制御部92は、放射線検出部62に設けられた各センサ部146の累計値をそれぞれ各センサ部146の配列に対応して2次元状に配列し、各累計値を画素値として、放射線検出部62の各センサ部146により検出された放射線画像の画像データを生成する。この放射線画像は、放射線検出部62の各センサ部146が放射線検出器60の数十から数百画素のサイズで形成されるため、放射線検出器60により撮影される画像の間引き画像となる。 In the next step S26, the cassette control unit 92 arranges the cumulative values of the sensor units 146 provided in the radiation detection unit 62 in a two-dimensional manner corresponding to the arrangement of the sensor units 146, and sets the cumulative values. Image data of a radiation image detected by each sensor unit 146 of the radiation detection unit 62 is generated as a pixel value. This radiation image is a thinned-out image captured by the radiation detector 60 because each sensor unit 146 of the radiation detection unit 62 is formed with a size of several tens to several hundreds of pixels of the radiation detector 60.
 次のステップS28では、カセッテ制御部92は、上記ステップS26で生成した画像データの解析を行い、オペアンプ84Aの適切なゲイン量を導出する。 In the next step S28, the cassette control unit 92 analyzes the image data generated in step S26 and derives an appropriate gain amount for the operational amplifier 84A.
 ここで、この画像の解析について説明する。 Here, the analysis of this image will be described.
 図24Aには、放射線検出部62の各センサ部146により検出された放射線画像の一例が示されている。図24Bには、図24Aに示す放射線画像の累積ヒストグラムが示されている。累積ヒストグラムとは、1枚の放射線画像を成す全画像データについて、画素値を横軸に、その画素値の画素の出現率(頻度)を縦軸にして表した図である。 FIG. 24A shows an example of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62. FIG. 24B shows a cumulative histogram of the radiation image shown in FIG. 24A. The cumulative histogram is a diagram in which the pixel value is represented on the horizontal axis and the appearance rate (frequency) of the pixel of the pixel value is represented on the vertical axis for all image data constituting one radiation image.
 放射線画像は、撮影部位の像(図24Aでは顔)が写った被写体領域と、撮影部位の写っていない所謂、素抜け領域とで画素数が多い。このため、累積ヒストグラムにおいても被写体領域及び素抜け領域の累積値でピークとなる。また、被写体領域の方が濃度変化が大きいため、累積ヒストグラムにおいても幅が広くなる。 The radiographic image has a large number of pixels in a subject area in which an image of the imaging region (a face in FIG. 24A) is reflected and a so-called blank region in which the imaging region is not reflected. For this reason, the cumulative histogram also peaks at the cumulative values of the subject area and the missing area. Further, since the density change is larger in the subject area, the width is also widened in the cumulative histogram.
 カセッテ制御部92は、この累積ヒストグラムにおいて、撮影部位の像によるデータ値の範囲を特定する。この特定方法としては、公知の技術を用いることができる。本実施の形態では、カセッテ制御部92は、スネークスアルゴリズムなどの動的輪郭抽出処理、ハフ変換などを利用した輪郭抽出処理を行い、輪郭点に沿った線で囲まれる領域を被写体領域と認識する。なお、例えば、特開平4-11242号に記載の技術を用いて、被写体領域を認識するものとしてもよい。また、例えば、撮影部位毎に標準的な形状を示すパターン画像をメモリ92B(ROM)に記憶しておいてもよい。カセッテ制御部92は、撮影された放射線画像内で撮影部位に応じたパターン画像の位置や拡大率を変えつつ、放射線画像とパターン画像との類似度を求めるパターンマッチングを行い、類似度の最も高い領域を被写体領域と認識するものとしてもよい。 The cassette control unit 92 specifies the range of data values based on the image of the imaging region in this cumulative histogram. A known technique can be used as this specifying method. In the present embodiment, the cassette control unit 92 performs dynamic contour extraction processing such as a snakes algorithm, contour extraction processing using Hough transform, and the like, and recognizes a region surrounded by a line along the contour point as a subject region. . For example, the subject area may be recognized using the technique described in Japanese Patent Laid-Open No. 4-11242. Further, for example, a pattern image indicating a standard shape for each imaging region may be stored in the memory 92B (ROM). The cassette control unit 92 performs pattern matching to obtain the similarity between the radiographic image and the pattern image while changing the position and enlargement ratio of the pattern image corresponding to the imaging region in the radiographic image taken, and has the highest similarity. The area may be recognized as a subject area.
 カセッテ制御部92は、放射線画像の認識された被写体領域の累積ヒストグラムを求め、例えば、当該累積ヒストグラムにおいてピーク値の半値幅を被写体領域の主な濃度範囲として、当該濃度範囲の中心が所定の適正濃度範囲の中心になるようなオペアンプ84Aのゲイン量を求める。濃度範囲の中心と適正濃度範囲の中心との差毎に適正なゲイン量をゲイン量情報としてメモリ92B(ROM)に予め記憶しておき、カセッテ制御部92は、濃度範囲の中心と適正濃度範囲の中心との差に対応するゲイン量をゲイン量情報から求めてもよい。また、濃度範囲の中心と所定の適正濃度範囲の中心との差と、適正なゲイン量との関係を定めた演算式をメモリ92B(ROM)に記憶しておき、カセッテ制御部92は、濃度範囲の中心と適正濃度範囲の中心との差から演算式によりゲイン量を算出してもよい。 The cassette control unit 92 obtains a cumulative histogram of the subject area where the radiographic image is recognized. For example, in the cumulative histogram, the half value width of the peak value is set as the main density range of the subject area, and the center of the density range is set to a predetermined appropriate value. The gain amount of the operational amplifier 84A that is at the center of the density range is obtained. For each difference between the center of the density range and the center of the appropriate density range, an appropriate gain amount is stored in advance in the memory 92B (ROM) as gain amount information, and the cassette control unit 92 selects the center of the density range and the appropriate density range. You may obtain | require the gain amount corresponding to the difference with the center of gain from gain amount information. Further, an arithmetic expression that defines the relationship between the difference between the center of the density range and the center of the predetermined appropriate density range and the appropriate gain amount is stored in the memory 92B (ROM), and the cassette control unit 92 The gain amount may be calculated by an arithmetic expression from the difference between the center of the range and the center of the appropriate density range.
 次のステップS30では、カセッテ制御部92は、オペアンプ84Aのゲイン量を上記ステップS28で導出したゲイン量に調整する。 In the next step S30, the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S28.
 次のステップS32では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させる。 In the next step S32, the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
 放射線検出器60では、各ゲート配線76に接続された各TFT70が1ラインずつ順にオンされると、1ラインずつ順に各蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出す。各データ配線78に流れ出した電気信号は信号処理部82のオペアンプ84Aで増幅された後、マルチプレクサ86を介してA/D変換器88に順に入力され、デジタルの画像データに変換されて、画像メモリ90に記憶される。 In the radiation detector 60, when the TFTs 70 connected to the gate wirings 76 are turned on line by line, the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals. The electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
 このように、カセッテ制御部92は、オペアンプ84Aのゲイン量を調整して放射線検出器60から放射線画像の読み出しを行うことにより、読み出された放射線画像において被写体領域の濃度範囲を適正濃度範にすることができる。 In this manner, the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A and reads out the radiation image from the radiation detector 60, thereby setting the density range of the subject region in the read out radiation image to an appropriate density range. can do.
 次のステップS34では、カセッテ制御部92は、画像メモリ90に記憶された画像データをコンソール42へ送信し、処理を終了する。 In the next step S34, the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42, and ends the process.
 一方、ステップS40では、カセッテ制御部92は、透視撮影のフレームレートに応じた撮影周期を求める。 On the other hand, in step S40, the cassette control unit 92 obtains an imaging cycle according to the frame rate of fluoroscopic imaging.
 次のステップS42では、カセッテ制御部92は、信号検出部162から入力する各センサ部146により検出されたデジタルデータの値を各センサ部146の感度に応じて補正し、補正した値をセンサ部146毎にそれぞれ累計する。なお、本実施の形態では、各センサ部146毎に、デジタルデータの累計値を記憶する記憶領域を2つ用意している。一方を、透視撮影撮影開始からのデジタルデータの累計値を記憶する記憶領域としており、他方を、透視撮影の連続的な撮影において、前回の撮影からのデジタルデータの累計値を記憶する記憶領域としている。本ステップS42では、カセッテ制御部92は、各センサ部146毎に、デジタルデータの値を2つの記憶領域にそれぞれ累計する
 次のステップS44では、カセッテ制御部92は、何れかのセンサ部146で、透視撮影開始からのデジタルデータの累計値を記憶する記憶領域に記憶された累計値が許容量以上となったか否かを判定する。肯定判定となった場合、カセッテ制御部92は、ステップS60へ移行し、否定判定となった場合、カセッテ制御部92は、ステップS46へ移行する。
In the next step S42, the cassette control unit 92 corrects the value of the digital data detected by each sensor unit 146 input from the signal detection unit 162 according to the sensitivity of each sensor unit 146, and the corrected value is detected by the sensor unit. Each 146 is accumulated. In the present embodiment, two storage areas for storing the cumulative value of digital data are prepared for each sensor unit 146. One is a storage area for storing the accumulated value of digital data from the start of fluoroscopic imaging, and the other is a storage area for storing the accumulated value of digital data from the previous imaging in continuous imaging of fluoroscopic imaging. Yes. In this step S 42, the cassette control unit 92 accumulates the digital data values in the two storage areas for each sensor unit 146. Then, it is determined whether or not the accumulated value stored in the storage area for storing the accumulated value of the digital data from the start of fluoroscopic imaging is equal to or larger than the allowable amount. If the determination is affirmative, the cassette control unit 92 proceeds to step S60. If the determination is negative, the cassette control unit 92 proceeds to step S46.
 ステップS46では、カセッテ制御部92は、前回、放射線検出器60の各画素74の電荷の読み出しを行ってから撮影周期以上の期間を経過したか否かを判定する。肯定判定となった場合、カセッテ制御部92は、ステップS48へ移行し、否定判定となった場合、カセッテ制御部92は、ステップS42へ移行する。 In step S46, the cassette control unit 92 determines whether or not a period equal to or longer than the imaging cycle has elapsed since the charge of each pixel 74 of the radiation detector 60 was read out last time. When it becomes affirmation determination, the cassette control part 92 transfers to step S48, and when it becomes negative determination, the cassette control part 92 transfers to step S42.
 次のステップS48では、カセッテ制御部92は、放射線検出部62に設けられた各センサ部146の、前回の撮影からのデジタルデータの累計値を記憶する各記憶領域に記憶された累計値をそれぞれ各センサ部146の配列に対応して2次元状に配列する。カセッテ制御部92は、各累計値を画素値として、放射線検出部62の各センサ部146により検出された放射線画像の画像データを生成する。 In the next step S48, the cassette control unit 92 stores the accumulated values stored in the respective storage areas for storing the accumulated values of the digital data from the previous imaging of the respective sensor units 146 provided in the radiation detecting unit 62. Two-dimensional arrangement is made corresponding to the arrangement of the sensor units 146. The cassette control unit 92 generates image data of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62 using each accumulated value as a pixel value.
 次のステップS50では、カセッテ制御部92は、上記ステップS28と同様に、上記ステップS48で生成した画像データの解析を行い、オペアンプ84Aの適切なゲイン量を導出する。 In the next step S50, the cassette control unit 92 analyzes the image data generated in step S48, similarly to step S28, and derives an appropriate gain amount for the operational amplifier 84A.
 次のステップS52では、カセッテ制御部92は、オペアンプ84Aのゲイン量を上記ステップS50で導出したゲイン量に調整する。 In the next step S52, the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S50.
 次のステップS54では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させる。 In the next step S54, the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line.
 これにより、放射線検出器60では、各ゲート配線76に接続された各TFT70が1ラインずつ順にオンされ、1ラインずつ順に各蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出す。各データ配線78に流れ出した電気信号は信号処理部82のオペアンプ84Aで増幅された後、マルチプレクサ86を介してA/D変換器88に順に入力され、デジタルの画像データに変換されて、画像メモリ90に記憶される。 As a result, in the radiation detector 60, each TFT 70 connected to each gate line 76 is turned on line by line, and the electric charge accumulated in each storage capacitor 68 line by line flows out to each data line 78 as an electrical signal. . The electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
 このように、カセッテ制御部92は、オペアンプ84Aのゲイン量を調整して放射線検出器60から放射線画像の読み出しを行うことにより、読み出された放射線画像において被写体領域の濃度範囲を適正濃度範することができる。 As described above, the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A and reads out the radiation image from the radiation detector 60, thereby setting the density range of the subject region in the read out radiation image to an appropriate density range. be able to.
 次のステップS56では、カセッテ制御部92は、各センサ部146毎のデジタルデータの累計値を記憶する2つの記憶領域のうち、前回の撮影からのデジタルデータの累計値を記憶する記憶領域に記憶された累計値を全てゼロに初期化する。 In the next step S56, the cassette control unit 92 stores the accumulated value of the digital data from the previous photographing among the two storage regions that store the accumulated value of the digital data for each sensor unit 146. All accumulated values are initialized to zero.
 次のステップS58では、カセッテ制御部92は、画像メモリ90に記憶された画像データをコンソール42へ送信を行い、画像データの送信後、ステップS42へ移行する。 In the next step S58, the cassette control unit 92 transmits the image data stored in the image memory 90 to the console 42. After the image data is transmitted, the process proceeds to step S42.
 一方、ステップS60では、カセッテ制御部92は、コンソール42に対して曝射終了を指示する指示情報を送信し、処理を終了する。 On the other hand, in step S60, the cassette control unit 92 transmits instruction information for instructing the end of exposure to the console 42, and ends the process.
 放射線発生装置34は、曝射終了を指示する指示情報を受信すると、放射線の発生・射出を終了する。なお、本実施の形態では、透視撮影中に、何れかのセンサ部146の累計値が許容量となった場合に、透視撮影を停止する場合について説明した。しかし、コンソール42へ許容量を超えたことを通知して、コンソール42で警告を表示させるものとしてもよい。また、コンソール42が放射線発生装置34へ管電圧、管電流の少なくとも一方を低下させた曝射条件を送信して、放射線発生装置34の放射線源130から照射される単位時間あたりの放射線量を低下させるようにしてもよい。 When receiving the instruction information for instructing the end of exposure, the radiation generator 34 ends the generation and emission of radiation. In the present embodiment, a case has been described in which fluoroscopic imaging is stopped when the cumulative value of any one of the sensor units 146 becomes an allowable amount during fluoroscopic imaging. However, the console 42 may be notified that the allowable amount has been exceeded, and a warning may be displayed on the console 42. Further, the console 42 transmits an exposure condition in which at least one of the tube voltage and the tube current is reduced to the radiation generator 34, and the radiation dose per unit time irradiated from the radiation source 130 of the radiation generator 34 is reduced. You may make it make it.
 コンソール42は、電子カセッテ32から画像情報を受信すると、受信した画像情報に対してシェーディング補正などの各種の補正する画像処理を行ない、画像処理後の画像情報をHDD110に記憶する。 When the console 42 receives the image information from the electronic cassette 32, the console 42 performs various image processing such as shading correction on the received image information, and stores the image information after the image processing in the HDD 110.
 HDD110に記憶された画像情報は、撮影した放射線画像の確認等のためにディスプレイ100に表示されると共に、RISサーバ14に転送されて、データベース14Aにも格納される。これにより、医師が撮影された放射線画像の読影や診断等を行うことが可能となる。 The image information stored in the HDD 110 is displayed on the display 100 for confirmation of the captured radiographic image, and is transferred to the RIS server 14 and stored in the database 14A. Thereby, it becomes possible for a doctor to perform interpretation, diagnosis, and the like of a radiographic image taken.
 なお、センサ部146により検出されたデジタルデータの値の累計値は、被検者の被曝量と見なすことができる。このため、RISサーバ14のデータベース14Aに、患者毎に日別の被曝量を記憶させている場合、電子カセッテ32は、コンソール42を介してRISサーバ14へ送信してデータベース14Aに記憶させる。このように患者毎に日別の被曝量を記憶管理することにより、特定期間の総被曝量の把握が可能となる。また、被曝量と撮影条件とを併せてデータベース14Aに記憶させてもよい。この場合、電子カセッテ32が累計値(被曝量)をコンソール42に転送し、コンソール42が累計量(被曝量)と撮影条件を関連付けたデータとし、データベース14Bに記憶させる。このように被曝量と撮影条件とを併せて記憶した場合、データベース14Bの利用価値が一層高まる。 The cumulative value of the digital data detected by the sensor unit 146 can be regarded as the exposure dose of the subject. For this reason, when the daily exposure dose is stored for each patient in the database 14A of the RIS server 14, the electronic cassette 32 is transmitted to the RIS server 14 via the console 42 and stored in the database 14A. Thus, by storing and managing the daily exposure dose for each patient, it is possible to grasp the total exposure dose for a specific period. Further, the exposure dose and the imaging conditions may be stored together in the database 14A. In this case, the electronic cassette 32 transfers the cumulative value (exposure amount) to the console 42, and the console 42 stores the cumulative amount (exposure amount) and the imaging condition in association with each other in the database 14B. Thus, when the exposure amount and the imaging conditions are stored together, the utility value of the database 14B is further increased.
 以上のように、本実施の形態によれば、センサ部72を有する画素74が2次元状に複数配置された放射線検出器60と積層して、センサ部72よりも面積が大きいセンサ部146が2次元状に複数配置された放射線検出部62を配置する。放射線検出部62のセンサ部146による検出結果から得られる画像に基づいて、放射線検出器60の各画素74から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する。その後、放射線検出器60の各画素74から電荷を読み出し、調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成する。これにより、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる。 As described above, according to the present embodiment, the sensor unit 146 having a larger area than the sensor unit 72 is formed by laminating the plurality of pixels 74 having the sensor unit 72 with the radiation detector 60 arranged two-dimensionally. A plurality of radiation detectors 62 arranged two-dimensionally are arranged. Based on the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62, the processing parameters for generating a radiation image by reading out the charge from each pixel 74 of the radiation detector 60 are adjusted. Thereafter, electric charges are read from the respective pixels 74 of the radiation detector 60, and processing based on the adjusted processing parameters is performed to generate a diagnostic radiation image. Thereby, it is possible to obtain an image for density correction without increasing the exposure dose of the subject and to adjust the image quality of the diagnostic radiation image.
 また、本実施の形態によれば、放射線検出部62のセンサ部146による検出結果から得られる画像から、処理パラメータとしてオペアンプ84Aのゲイン量を調整する。これにより、被写体領域の画像をA/D変換器88で飽和させずに適切な濃度範囲に調整することができる。 Further, according to the present embodiment, the gain amount of the operational amplifier 84A is adjusted as a processing parameter from the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62. Thereby, the image of the subject area can be adjusted to an appropriate density range without being saturated by the A / D converter 88.
 また、本実施の形態によれば、放射線検出部62のセンサ部14により、放射線の照射開始や放射線の照射量の検出を並行して行うことができる。 In addition, according to the present embodiment, the sensor unit 14 of the radiation detection unit 62 can perform radiation start and radiation dose detection in parallel.
 さらに、本実施の形態によれば、濃度補正用の画像の取得を行うために撮影周期を早める必要がない。これにより、例えば、透視撮影中に関心部位が変わり、随時、濃度調整を行う必要があるため、随時、濃度補正用の画像を取得する必要がある場合でも、フレームレートを早くする必要がない。 Furthermore, according to the present embodiment, it is not necessary to advance the shooting cycle in order to acquire an image for density correction. Thereby, for example, the region of interest changes during fluoroscopic imaging, and it is necessary to adjust the density at any time. Therefore, even when it is necessary to acquire an image for density correction at any time, it is not necessary to increase the frame rate.
 [第6の実施の形態]
 次に、第6の実施の形態について説明する。
[Sixth Embodiment]
Next, a sixth embodiment will be described.
 第6の実施の形態に係るRIS10、撮影システム18、電子カセッテ32、放射線検出器60の構成は、上記第6の実施の形態(図1~図6、図8、図9、図21、図22参照)と同一であるので、ここでの説明は省略する。 The configurations of the RIS 10, the imaging system 18, the electronic cassette 32, and the radiation detector 60 according to the sixth embodiment are the same as those in the sixth embodiment (FIGS. 1 to 6, 8, 9, 21, and FIG. 22), the description is omitted here.
 ここで、本実施の形態に係る電子カセッテ32では、信号処理部82のオペアンプ84Aで増幅された電気信号を、A/D変換器88により、所定のビット数(例えば、16ビット)のデジタルデータに変換する。カセッテ制御部92は、16ビットの画像データを規格化処理において12ビットの画像データに変換するようにしている。放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行って、濃度補正用の放射線画像を取得し、カセッテ制御部92は、その濃度補正用の放射線画像を解析する。カセッテ制御部92は、被写体領域の主な濃度範囲が、適正濃度範囲となるように規格化処理の各種パラメータを求め、放射線検出器60から読み出された16ビットの放射線画像の画像データに対して、求めた各種パラメータを用いて規格化処理を行って12ビットの画像データに変換している。 Here, in the electronic cassette 32 according to the present embodiment, the A / D converter 88 converts the electrical signal amplified by the operational amplifier 84A of the signal processing unit 82 into digital data having a predetermined number of bits (for example, 16 bits). Convert to The cassette control unit 92 converts 16-bit image data into 12-bit image data in the standardization process. When taking a radiographic image, the radiation detection unit 62 detects the radiation to acquire a radiographic image for density correction, and the cassette control unit 92 analyzes the radiographic image for density correction. The cassette control unit 92 obtains various parameters for normalization processing so that the main density range of the subject area is an appropriate density range, and the image data of the 16-bit radiation image read from the radiation detector 60 is obtained. Then, normalization processing is performed using the various parameters thus obtained and converted into 12-bit image data.
 なお、本実施の形態に係る電子カセッテ32では、各データ配線78に流れ出した電気信号がA/D変換器88で飽和せずに16ビットのデジタルデータに変換可能な範囲となるようにオペアンプ84Aのゲイン量が所定の値に調整されているものとする。 In the electronic cassette 32 according to the present embodiment, the operational amplifier 84A has a range in which the electric signal flowing out to each data wiring 78 is within a range that can be converted into 16-bit digital data without being saturated by the A / D converter 88. It is assumed that the gain amount is adjusted to a predetermined value.
 図25には、第6の実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、第5の実施の形態の撮影制御プログラム(図23参照)と同一処理部分については同一の符号を付して説明を省略する。 FIG. 25 shows a flowchart showing the flow of processing of the imaging control program according to the sixth embodiment. Note that the same processing portions as those in the shooting control program (see FIG. 23) of the fifth embodiment are denoted by the same reference numerals and description thereof is omitted.
 ステップS29では、カセッテ制御部92は、上記ステップS26で生成した画像データの解析を行い、規格化処理の各種パラメータの適切な値を導出する。 In step S29, the cassette control unit 92 analyzes the image data generated in step S26, and derives appropriate values for various parameters of the normalization process.
 ここで、この画像の解析について説明する。 Here, the analysis of this image will be described.
 例えば、図26Aに示すように、ある撮影条件の下に撮影された放射線画像の累積ヒストグラムaにおいて被写体領域の主な濃度範囲がMIN0~MAX0であり、上記撮影条件とは異なる撮影条件の下に撮影された放射線画像の累積ヒストグラムbにおいて被写体領域の主な濃度範囲がMIN1~MAX1であるものとする。 For example, as shown in FIG. 26A, in the cumulative histogram a of radiographic images captured under a certain imaging condition, the main density range of the subject area is MIN0 to MAX0, and under the imaging conditions different from the above imaging conditions. It is assumed that the main density range of the subject area is MIN1 to MAX1 in the cumulative histogram b of the captured radiographic image.
 本実施の形態では、このようなaまたはbで示す累積ヒストグラムとなる16ビットの画像データを規格化処理により12ビットの画像データの変換している。その変換の際に、16ビットの画像データにおいて、被写体領域の主な濃度範囲MIN0~MAX0及びMIN1~MAX1がそれぞれ、12ビットの画像データにおいて、適正濃度範囲MIN2~MAX2となるように変換する。 In the present embodiment, 16-bit image data that is a cumulative histogram indicated by a or b is converted into 12-bit image data by normalization processing. At the time of the conversion, the main density ranges MIN0 to MAX0 and MIN1 to MAX1 of the subject area are converted to the appropriate density ranges MIN2 to MAX2 in the 12-bit image data in the 16-bit image data.
 図26Bは、このようにして、16ビットの画像データにおいてMIN0~MAX0及びMIN1~MAX1が、12ビットの画像データにおいて適正濃度範囲MIN2~MAX2となるように変換した場合の累積ヒストグラムa、bが示されている。 FIG. 26B shows cumulative histograms a and b obtained by converting MIN0 to MAX0 and MIN1 to MAX1 in the 16-bit image data into the appropriate density ranges MIN2 to MAX2 in the 12-bit image data. It is shown.
 16ビットの画像データから12ビットの画像データへの規格化処理の方法としては、公知の技術を用いることができる。本実施の形態では、所定の変換関数に基づいて入力データである16ビットの画像データD0を出力である12ビットの画像データD1に変換している。具体的には、変換関数として、図26Cにa,bで示すような一次関数を用いて変換を行う。 A known technique can be used as a standardization method from 16-bit image data to 12-bit image data. In the present embodiment, 16-bit image data D0 as input data is converted into 12-bit image data D1 as output based on a predetermined conversion function. Specifically, the conversion is performed using a linear function as indicated by a and b in FIG. 26C as the conversion function.
 この一次関数は、D1=D0×Gain+Offsetと表わすことができる。この一次関数は、Gainの値を変えることにより傾きが変わり、Offsetの値を変えることにより、直線全体をシフトさせることができる。 This linear function can be expressed as D1 = D0 × Gain + Offset. This linear function changes its slope by changing the value of Gain, and can shift the entire straight line by changing the value of Offset.
 本実施の形態では、カセッテ制御部92は、規格化処理の各種パラメータとして、被写体領域の主な濃度範囲(例えば、MIN0~MAX0)が適正濃度範囲MIN2~MAX2となるGain及びOffsetの値を導出する。 In the present embodiment, the cassette control unit 92 derives Gain and Offset values in which the main density range (for example, MIN0 to MAX0) of the subject area becomes the appropriate density range MIN2 to MAX2 as various parameters of the normalization process. To do.
 ステップS33では、カセッテ制御部92は、画像メモリ90に記憶された16ビットの画像データに対して、ステップS29で導出したパラメータを用いて規格化処理を行って12ビットの画像データに変換し、変換後の画像データを画像メモリ90に記憶させる。 In step S33, the cassette control unit 92 performs normalization processing on the 16-bit image data stored in the image memory 90 using the parameters derived in step S29 to convert the image data into 12-bit image data. The converted image data is stored in the image memory 90.
 このように、カセッテ制御部92は、被写体領域の主な濃度範囲が適正濃度範囲となるように規格化処理の各種パラメータを求めて画像データの規格化処理を行うことにより、規格化処理された放射線画像において被写体領域の濃度範囲を適正濃度範にすることができる。 As described above, the cassette control unit 92 performs the normalization process by obtaining various parameters of the normalization process and performing the normalization process of the image data so that the main density range of the subject area becomes the appropriate density range. The density range of the subject area in the radiographic image can be set to an appropriate density range.
 ステップS34では、カセッテ制御部92は、画像メモリ90に記憶されたステップS33による変換後に画像データをコンソール42へ送信し、処理を終了する。 In step S34, the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S33 stored in the image memory 90, and ends the process.
 一方、透視撮影においても、ステップS51では、カセッテ制御部92は、上記ステップS29と同様に、上記ステップS48で生成した画像データの解析を行い、規格化処理の各種パラメータの適切な値を導出する。ステップS55では、カセッテ制御部92は、上記ステップS33と同様に、上記ステップ54の処理により読み出され、かつ、画像メモリ90に記憶された16ビットの画像データに対して、ステップS51で導出したパラメータを用いて規格化処理を行って12ビットの画像データに変換し、変換後の画像データを画像メモリ90に記憶させる。ステップS58では、カセッテ制御部92は、画像メモリ90に記憶されたステップS55による変換後に画像データをコンソール42へ送信する。 On the other hand, also in fluoroscopic imaging, in step S51, the cassette control unit 92 analyzes the image data generated in step S48 and derives appropriate values for various parameters of normalization processing, as in step S29. . In step S55, the cassette control unit 92 derives the 16-bit image data read out in step 54 and stored in the image memory 90 in step S51 as in step S33. Standardization processing is performed using parameters to convert the image data into 12-bit image data, and the converted image data is stored in the image memory 90. In step S58, the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S55 stored in the image memory 90.
 以上のように、本実施の形態によれば、放射線検出部62のセンサ部146による検出結果から得られる画像に基づいて、被写体領域の主な濃度範囲が適正濃度範囲となるように規格化処理の各種パラメータを求めて画像データの規格化処理を行う。これによって、規格化処理された放射線画像において被写体領域の濃度範囲を適正濃度範にすることができる。 As described above, according to the present embodiment, the normalization process is performed so that the main density range of the subject area becomes the appropriate density range based on the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62. The image data is normalized and image data is normalized. As a result, the density range of the subject area in the normalized radiographic image can be set to an appropriate density range.
 以上、本発明を第5及び第6の実施の形態を用いて説明したが、本発明の技術的範囲は上記各実施の形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施の形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本発明の技術的範囲に含まれる。 As mentioned above, although this invention was demonstrated using 5th and 6th embodiment, the technical scope of this invention is not limited to the range as described in each said embodiment. Various modifications or improvements can be added to the above-described embodiments without departing from the gist of the invention, and embodiments to which the modifications or improvements are added are also included in the technical scope of the present invention.
 また、上記の実施の形態は、クレーム(請求項)にかかる発明を限定するものではなく、また実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。前述した実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組み合わせにより種々の発明を抽出できる。実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。 The above embodiments do not limit the invention according to the claims (claims), and all the combinations of features described in the embodiments are essential for the solution means of the invention. Is not limited. The embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
 例えば、上記各実施の形態では、可搬型の放射線撮影装置である電子カセッテ32に本発明を適応した場合について説明したが、本発明はこれに限定されるものではなく、据置型の放射線撮影装置に適用してもよい。 For example, in each of the above embodiments, the case where the present invention is applied to the electronic cassette 32 which is a portable radiation imaging apparatus has been described. However, the present invention is not limited to this, and a stationary radiation imaging apparatus is provided. You may apply to.
 また、上記第5の実施の形態では、オペアンプ84Aのゲイン量を調整し、第6の実施の形態では、規格化処理のパラメータを調整する場合について説明したが、本発明はこれに限定されるものではない。例えば、オペアンプ84Aのゲイン量と規格化処理のパラメータを共に調整するものとしてもよく、さらに、他の処理のパラメータを調整するものとしてもよい。 In the fifth embodiment, the gain amount of the operational amplifier 84A is adjusted, and in the sixth embodiment, the parameter of the normalization process is adjusted. However, the present invention is limited to this. It is not a thing. For example, both the gain amount of the operational amplifier 84A and the normalization processing parameter may be adjusted, and further, the parameters of other processing may be adjusted.
 また、上記第6の実施の形態では、規格化処理の変換関数として一次関数を用いた場合について説明したが、本発明はこれに限定されるものではない。例えば、2次関数や3次関数等の高次の関数で表される変換関数を使用してもよい。また、想定される複数の累積ヒストグラムと、この累積ヒストグラムの各々に対応するルックアップテーブルを用意しておいてもよい。想定される累積ヒストグラムの中から、求めた累積ヒストグラムに近いものに対応するルックアップテーブルを規格化処理特性として決定し、当該ルックアップテーブルに基づいて、画像データの変換を行わせるようにしてもよい。 In the sixth embodiment, the case where a linear function is used as the conversion function for normalization processing has been described. However, the present invention is not limited to this. For example, a conversion function represented by a high-order function such as a quadratic function or a cubic function may be used. Further, a plurality of cumulative histograms to be assumed and a lookup table corresponding to each of the cumulative histograms may be prepared. From the assumed cumulative histogram, a lookup table corresponding to the one that is close to the obtained cumulative histogram is determined as a normalization processing characteristic, and image data conversion is performed based on the lookup table. Good.
 また、上記各実施の形態では、放射線の照射開始と放射線の照射量を検出する場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線の照射終了の検出を行うものとしてもよい。図27Aに示すように、信号検出部162から入力する各センサ部146のデジタルデータの値を、予め定めた放射線検知用の所定のしきい値と比較する。放射線の照射終了を、しきい値未満となった否かにより検出できる。なお、図27Bに示すように、照射開始と照射終了の検出でしきい値を異ならせてもよい。図27Bでは、照射開始のしきい値を照射終了のしきい値よりも大きくているが、照射開始のしきい値を照射終了のしきい値よりも小さくしてもよい。このように照射開始と照射終了の検出にヒステリシス性を持たせることにより、ノイズの影響等を抑えて照射開始や照射終了の検出をことができる。例えば、照射線が照射されることによりセンサ部146に電荷が発生するが、センサ部146内で発生した電荷の一部が一時的にトラップされ、放射線の照射終了後もセンサ部146からトラップされた電荷が配線160に電気信号として流れ出す。この場合、照射終了のしきい値を大きくすることにより、照射終了をすみやかに検出できる。 In each of the above embodiments, the case where the irradiation start and the irradiation dose are detected has been described, but the present invention is not limited to this. For example, the end of radiation irradiation may be detected. As shown in FIG. 27A, the value of digital data of each sensor unit 146 input from the signal detection unit 162 is compared with a predetermined threshold value for radiation detection. The end of radiation irradiation can be detected based on whether or not it is less than a threshold value. In addition, as shown to FIG. 27B, you may vary a threshold value by the detection of the irradiation start and irradiation end. In FIG. 27B, the irradiation start threshold value is larger than the irradiation end threshold value, but the irradiation start threshold value may be smaller than the irradiation end threshold value. In this way, by providing hysteresis to the detection of the start and end of irradiation, it is possible to detect the start and end of irradiation while suppressing the influence of noise and the like. For example, although electric charges are generated in the sensor unit 146 by irradiation of irradiation rays, a part of the electric charges generated in the sensor unit 146 is temporarily trapped and trapped from the sensor unit 146 even after the end of radiation irradiation. The charged electric charges flow out as electric signals to the wiring 160. In this case, the irradiation end can be detected promptly by increasing the irradiation end threshold.
 また、各センサ部146のデジタルデータの値を累計している場合、図28のT1に示すように、累計値の増加量が大きく減少する変曲点があった場合に照射終了と検出することもできる。 In addition, when the values of the digital data of each sensor unit 146 are accumulated, as shown at T1 in FIG. 28, when there is an inflection point at which the increase amount of the accumulated value greatly decreases, it is detected that the irradiation has ended. You can also.
 また、上記各実施の形態では、放射線検出部62にシンチレータ148が形成されている場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線検出器60は、シンチレータ71が形成された蒸着基板73が光透過性を有するものとした場合、図29に示すように、係る放射線検出部62にシンチレータ148を設けずに、放射線検出器60のTFT基板66とは逆側の面(シンチレータ71側の面)に貼り付けて、係る放射線検出部62の各センサ部146がシンチレータ71の光を検出するものとしてもよい。このように、本実施の形態によれば、放射線検出部62をシンチレータ71に貼り付けることにより、シンチレータ148が不要となるため、放射線検出部62をより薄く形成できる。この場合、撮影の際に放射線XがTFT基板66側から入射するように筐体54内に配置すると、シンチレータ71のTFT基板66とは逆側の面に放射線検出部62を設けたことにより、放射線Xが放射線検出器60を透過した後に放射線検出部62を透過する。このため、放射線検出器60で撮影される放射線画像に放射線検出部62を設けたことによる影響が及ぶことを防ぐことができる。 In each of the above-described embodiments, the case where the scintillator 148 is formed in the radiation detection unit 62 has been described, but the present invention is not limited to this. For example, when the vapor deposition substrate 73 on which the scintillator 71 is formed has a light transmission property, the radiation detector 60 detects the radiation without providing the scintillator 148 in the radiation detector 62 as shown in FIG. It is good also as what attaches to the surface on the opposite side to the TFT substrate 66 of the device 60 (surface on the scintillator 71 side), and each sensor part 146 of the radiation detection part 62 concerned detects the light of the scintillator 71. As described above, according to the present embodiment, by attaching the radiation detection unit 62 to the scintillator 71, the scintillator 148 becomes unnecessary, and thus the radiation detection unit 62 can be formed thinner. In this case, when the radiation X is arranged in the housing 54 so that the radiation X is incident from the TFT substrate 66 side at the time of imaging, the radiation detector 62 is provided on the surface opposite to the TFT substrate 66 of the scintillator 71. The radiation X passes through the radiation detector 60 after passing through the radiation detector 60. For this reason, it is possible to prevent the radiation image captured by the radiation detector 60 from being affected by the provision of the radiation detection unit 62.
 また、例えば、TFT基板66が光透過性を有する場合、図30に示すように、放射線検出器60のTFT基板66側の面に放射線検出部62を貼り付けてもよい。放射線Xは、図30の上方又は下方の何れから入射してもよいが、下方から入射する場合、放射線検出部62のセンサ部146での放射線の吸収を抑える。このため、センサ部146は有機光電変換材料が含有された光電変換膜で形成することが好ましい。 For example, when the TFT substrate 66 has optical transparency, the radiation detector 62 may be attached to the surface of the radiation detector 60 on the TFT substrate 66 side as shown in FIG. The radiation X may be incident from above or below in FIG. 30, but when entering from below, the radiation X is suppressed from being absorbed by the sensor unit 146 of the radiation detection unit 62. For this reason, it is preferable to form the sensor part 146 with the photoelectric converting film in which the organic photoelectric converting material contained.
 また、上記各実施の形態では、放射線検出器60が、放射線を一度光に変換し、変換した光をセンサ部72で電荷に変換して蓄積する間接変換方式であるものとした場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線検出器60が、放射線をアモルファスセレン等の半導体層で電荷に変換する直接変換方式であるものとしてもよい。 Further, in each of the above-described embodiments, a case has been described in which the radiation detector 60 is an indirect conversion method in which radiation is once converted into light, and the converted light is converted into electric charge by the sensor unit 72 and accumulated. However, the present invention is not limited to this. For example, the radiation detector 60 may be a direct conversion system that converts radiation into electric charges in a semiconductor layer such as amorphous selenium.
 また、上記各実施の形態では、放射線検出部62の各センサ部146により検出された放射線画像により、放射線検出器60から生成される放射線画像の画質の調整を行う場合について説明したが、本発明はこれに限定されるものではない。例えば、電子カセッテ32が放射線検出部62の各センサ部146により検出された放射線画像をコンソール42へ転送し、コンソール42がディスプレイ100に表示させるものとしてもよい。これにより、表示された放射線画像から被写体のぶれやポジショニングの確認を速やかに行うことができる。 In each of the above embodiments, the case where the image quality of the radiation image generated from the radiation detector 60 is adjusted by the radiation image detected by each sensor unit 146 of the radiation detection unit 62 has been described. Is not limited to this. For example, the electronic cassette 32 may transfer the radiation image detected by each sensor unit 146 of the radiation detection unit 62 to the console 42 and the console 42 may display on the display 100. Accordingly, it is possible to quickly check the blurring and positioning of the subject from the displayed radiation image.
 また、上記では、電子カセッテ32のカセッテ制御部92において、放射線検出部62の各センサ部146により検出された放射線画像からの各種のパラメーラの決定処理、放射線検出器60から生成される放射線画像の規格化処理、放射線の照射開始、放射線の照射終了、及び放射線の照射量の検出処理を行う場合について説明したが、本発明はこれに限定されるものではない。例えば、カセッテ制御部92が信号検出部162から入力するデジタルデータを随時コンソール42へ送信するものとし、コンソール42において何れかの処理を行うものとしてもよい。 Further, in the above, in the cassette control unit 92 of the electronic cassette 32, various parameter determination processes from the radiation images detected by the respective sensor units 146 of the radiation detection unit 62, and the radiation image generated from the radiation detector 60 are processed. Although the case where the normalization process, the radiation irradiation start, the radiation irradiation end, and the radiation dose detection process are performed has been described, the present invention is not limited to this. For example, the cassette control unit 92 may transmit the digital data input from the signal detection unit 162 to the console 42 as needed, and the console 42 may perform any processing.
 また、上記各実施の形態では、放射線としてX線を検出することにより放射線画像を撮影する放射線撮影装置に本発明を適用した場合について説明したが、本発明はこれに限定されるものではない。例えば、検出対象とする放射線は、X線の他や可視光、紫外線、赤外線、ガンマ線、粒子線等いずれであってもよい。 In each of the above embodiments, the case where the present invention is applied to a radiation imaging apparatus that captures a radiation image by detecting X-rays as radiation has been described, but the present invention is not limited to this. For example, the radiation to be detected may be X-rays, visible light, ultraviolet rays, infrared rays, gamma rays, particle rays, or the like.
 その他、上記各実施の形態で説明した構成は一例であり、本発明の主旨を逸脱しない範囲内において、不要な部分を削除したり、新たな部分を追加したり、接続状態等を変更したりすることができることは言うまでもない。 In addition, the configuration described in each of the above embodiments is an example, and an unnecessary part is deleted, a new part is added, or a connection state is changed without departing from the gist of the present invention. It goes without saying that you can do it.
 さらに、上記各実施の形態で説明した各種プログラムの処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において、不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ換えたりすることができることは言うまでもない。 Furthermore, the processing flow of the various programs described in the above embodiments is also an example, and unnecessary steps can be deleted, new steps can be added, and the processing order can be added without departing from the gist of the present invention. Needless to say, can be replaced.
 本発明に係るコンピュータ可読媒体は、コンピュータを、撮影領域に照射された放射線による放射線画像を撮影する撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部を、使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部、として機能させる放射線検出プログラムを記憶する。 A computer-readable medium according to the present invention includes a plurality of sensor units that are arranged so as to overlap a radiographing area of a radiographing panel that captures a radiographic image of radiation applied to the radiographing area, and that respectively detect the irradiated radiation. A radiation detection program that functions as a detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount is selectively stored.
 日本出願2010-186501及び日本出願2010-192850の開示はその全体が参照により本明細書に取り込まれる。 The disclosures of Japanese application 2010-186501 and Japanese application 2010-192850 are incorporated herein by reference in their entirety.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (20)

  1.  撮影領域に照射された放射線による放射線画像を撮影する撮影パネルと、
     前記撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部と、
     前記複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部と、
     を有する放射線撮影装置。
    An imaging panel for taking a radiographic image of radiation applied to the imaging area;
    A plurality of sensor units arranged so as to overlap the imaging region of the imaging panel and detecting each irradiated radiation;
    A detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount by properly using the plurality of sensor units;
    Radiation imaging apparatus having
  2.  前記撮影領域上で撮影部位が配置される撮影部位領域を特定する特定部をさらに備え、
     前記検出部は、前記特定部により特定された撮影部位領域外に配置されたセンサ部と、当該撮影部位領域内に配置されたセンサ部を使い分けて前記検出を行う
     請求項1記載の放射線撮影装置。
    Further comprising a specifying unit for specifying an imaging region where the imaging region is arranged on the imaging region;
    The radiation imaging apparatus according to claim 1, wherein the detection unit performs the detection by properly using a sensor unit arranged outside the imaging region area specified by the specifying unit and a sensor unit arranged inside the imaging region area. .
  3.  前記検出部は、前記撮影部位領域外に配置されたセンサ部により放射線の照射開始を検出し、当該撮影部位領域内に配置されたセンサ部により放射線の照射量を検出する
     請求項2記載の放射線撮影装置。
    The radiation according to claim 2, wherein the detection unit detects the start of radiation irradiation with a sensor unit arranged outside the imaging region, and detects the radiation dose by the sensor unit arranged within the imaging region. Shooting device.
  4.  前記撮影パネルは、放射線を光に変換する変換層を有し、当該変換層で変換された光により表わされる放射線画像を撮影し、
     前記複数のセンサ部は、各々有機光電変換材料を含んで構成され、前記撮影パネルの放射線の照射面側に配置され、前記変換層で変換された光をさらに検出する
     請求項2又は請求項3記載の放射線撮影装置。
    The imaging panel has a conversion layer that converts radiation into light, and captures a radiation image represented by the light converted in the conversion layer;
    The plurality of sensor units are each configured to include an organic photoelectric conversion material, and are disposed on the radiation irradiation surface side of the imaging panel, and further detect light converted by the conversion layer. The radiation imaging apparatus described.
  5.  撮影の際に撮影部位が配置される撮影面が形成された筐体と、
     前記筐体内部に配置され、前記撮影面に撮影部位が配置されて受ける圧力に応じて発光する発光層が形成された圧力発光シートと、をさらに備え、
     前記複数のセンサ部が、圧力発光シートと積層して配置され、前記圧力発光シートの光を検出し、
     前記特定部は、前記複数のセンサ部による検出結果に基づいて前記撮影部位が配置される撮影部位領域を特定する
     請求項4記載の放射線撮影装置。
    A housing on which an imaging surface on which an imaging part is arranged at the time of imaging is formed;
    A pressure light-emitting sheet that is disposed inside the housing and has a light-emitting layer that emits light in response to pressure received when the imaging part is disposed on the imaging surface;
    The plurality of sensor units are arranged to be laminated with a pressure light emitting sheet, detect light of the pressure light emitting sheet,
    The radiographic apparatus according to claim 4, wherein the specifying unit specifies an imaging part region in which the imaging part is arranged based on detection results by the plurality of sensor units.
  6.  撮影の際に撮影部位が配置される撮影面が形成された筐体と、
     前記撮影面への撮影部位の接触を検出する接触検出部と、をさらに備え、
     前記特定部は、前記接触検出部による検出結果に基づいて撮影部位領域を特定する
     請求項2~請求項4の何れか1項記載の放射線撮影装置。
    A housing on which an imaging surface on which an imaging part is arranged at the time of imaging is formed;
    A contact detection unit that detects contact of the imaging region with the imaging surface;
    The radiographic apparatus according to any one of claims 2 to 4, wherein the specifying unit specifies an imaging region based on a detection result by the contact detection unit.
  7.  撮影部位領域を特定可能な所定の情報を含んだ撮影オーダ情報を受信する受信部をさらに備え、
     前記特定部は、前記撮影オーダ情報に基づいて撮影部位領域を特定する
     請求項2~請求項4の何れか1項記載の放射線撮影装置。
    A receiving unit for receiving imaging order information including predetermined information capable of specifying the imaging region;
    The radiographic apparatus according to any one of claims 2 to 4, wherein the specifying unit specifies an imaging region based on the imaging order information.
  8.  複数のセンサ部は、放射線に対して略同一の感度とされた
     請求項1~請求項6の何れか1項記載の放射線撮影装置。
    The radiation imaging apparatus according to any one of claims 1 to 6, wherein the plurality of sensor units have substantially the same sensitivity to radiation.
  9.  複数のセンサ部は、撮影領域の中央部及び周辺部の少なくとも1つずつ配置された
     請求項1~請求項8の何れか1項記載の放射線撮影装置。
    The radiation imaging apparatus according to any one of claims 1 to 8, wherein the plurality of sensor units are arranged at least one of a central part and a peripheral part of the imaging region.
  10.  撮影領域に照射された放射線による放射線画像を撮影する撮影パネルと、
     前記撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部と、
     前記複数のセンサ部を使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部と、
     を有する放射線撮影システム。
    An imaging panel for taking a radiographic image of radiation applied to the imaging area;
    A plurality of sensor units arranged so as to overlap the imaging region of the imaging panel and detecting each irradiated radiation;
    A detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount by properly using the plurality of sensor units;
    A radiation imaging system having
  11.  コンピュータを、
     撮影領域に照射された放射線による放射線画像を撮影する撮影パネルの撮影領域に重なるように配置され、各々照射された放射線を検出する複数のセンサ部を、使い分けて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う検出部、
     として機能させる放射線検出プログラム。
    Computer
    Radiation irradiation is started by using multiple sensor units that are arranged so as to overlap the imaging area of the imaging panel that captures the radiation image of the radiation applied to the imaging area, and each detects the irradiated radiation. , And a detection unit that detects at least two of the radiation doses,
    Radiation detection program to function as
  12.  放射線又は放射線が変換された光が照射されることにより電荷を発生する第1センサ部を有する画素が2次元状に複数配置された撮影部と、
     前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、
     前記検出部の各第2センサ部による検出結果から得られる画像に基づいて、前記撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する調整部と、
     前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成する生成部と、
     前記検出部の各第2センサ部による検出結果に基づいて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う照射検出部と、
     を備えた放射線撮影装置。
    An imaging unit in which a plurality of pixels each having a first sensor unit that generates charges when irradiated with radiation or light converted from radiation is arranged two-dimensionally;
    A detection unit arranged in a stack with the imaging unit, and a plurality of second sensor units having a larger area than the first sensor unit are arranged two-dimensionally,
    An adjustment unit that adjusts a processing parameter when generating a radiation image by reading out charges from each pixel of the imaging unit based on an image obtained from a detection result by each second sensor unit of the detection unit;
    A generation unit that reads out electric charges from each pixel of the imaging unit and generates a diagnostic radiation image by performing processing based on the processing parameter adjusted by the adjustment unit;
    An irradiation detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount based on the detection result by each second sensor unit of the detection unit;
    A radiography apparatus comprising:
  13.  前記調整部は、前記生成部により生成される放射線画像の被写体領域の主な濃度範囲が、所定の適正濃度範囲となるように処理パラメータを調整する
     請求項12記載の放射線撮影装置。
    The radiographic apparatus according to claim 12, wherein the adjustment unit adjusts a processing parameter so that a main density range of a subject area of a radiographic image generated by the generation unit is a predetermined appropriate density range.
  14.  前記生成部は、前記撮影部の各画素から読み出される、前記第1センサ部に発生した電荷量に応じた電気信号を増幅する増幅器を有し、
     前記調整部は、前記処理パラメータとして前記増幅器のゲイン量を調整する
     請求項12又は請求項13記載の放射線撮影装置。
    The generation unit includes an amplifier that amplifies an electrical signal that is read from each pixel of the imaging unit and that corresponds to the amount of charge generated in the first sensor unit;
    The radiation imaging apparatus according to claim 12, wherein the adjustment unit adjusts a gain amount of the amplifier as the processing parameter.
  15.  前記生成部は、前記撮影部の各画素から電荷を電気信号として読み出して当該電気信号を所定ビット数のデジタルデータに変換するA/D変換器を有し、前記A/D変換器により変換されたデジタルデータを前記所定ビット数よりも少ないビット数のデジタルデータに規格化する規格化処理を行うものとし、
     前記調整部は、前記処理パラメータとして前記規格化処理の処理パラメータを調整する
     請求項12~請求項14の何れか1項記載の放射線撮影装置。
    The generation unit includes an A / D converter that reads electric charges from each pixel of the photographing unit as an electric signal and converts the electric signal into digital data having a predetermined number of bits, and is converted by the A / D converter. Standardization processing for normalizing the digital data into digital data having a number of bits smaller than the predetermined number of bits,
    The radiation imaging apparatus according to any one of claims 12 to 14, wherein the adjustment unit adjusts a processing parameter of the normalization process as the processing parameter.
  16.  前記撮影部は、放射線を光に変換する変換層を有し、前記第1センサ部が前記変換層で変換された光により表わされる放射線画像を撮影し、
     前記第2センサ部は、有機光電変換材料を含んで構成され、前記撮影部の放射線の照射面側に配置され、前記変換層で変換された光を検出する
     請求項12~請求項15の何れか1項記載の放射線撮影装置。
    The imaging unit includes a conversion layer that converts radiation into light, and the first sensor unit captures a radiographic image represented by light converted by the conversion layer,
    The second sensor unit is configured to include an organic photoelectric conversion material, is disposed on a radiation irradiation side of the imaging unit, and detects light converted by the conversion layer. A radiation imaging apparatus according to claim 1.
  17.  前記生成部は、透視撮影の場合、透視撮影のフレームレートに応じた撮影周期で前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って放射線画像を生成し、
     前記調整部は、前記撮影周期で前記検出部の各第2センサ部により放射線を検出し、検出結果から得られる画像に応じて前記処理パラメータを調整する
     請求項12~請求項16の何れか1項記載の放射線撮影装置。
    In the case of fluoroscopic imaging, the generating unit reads out electric charges from each pixel of the imaging unit at an imaging cycle corresponding to a frame rate of fluoroscopic imaging, and performs processing based on the processing parameters adjusted by the adjusting unit to obtain a radiographic image Generate
    The adjustment unit detects radiation by each of the second sensor units of the detection unit in the imaging period, and adjusts the processing parameter according to an image obtained from the detection result. The radiation imaging apparatus according to the item.
  18.  前記検出部の各第2センサ部による検出結果から得られる画像を表示する表示部をさらに備えた請求項12~請求項17の何れか1項記載の放射線撮影装置。 18. The radiation imaging apparatus according to claim 12, further comprising a display unit that displays an image obtained from a detection result by each second sensor unit of the detection unit.
  19.  前記第2センサ部は、マトリクス状に複数配置された
     請求項12~請求項19の何れか1項記載の放射線撮影装置。
    The radiation imaging apparatus according to any one of claims 12 to 19, wherein a plurality of the second sensor units are arranged in a matrix.
  20. 放射線又は放射線が変換された光が照射されることにより電荷を発生する第1センサ部を有する画素が2次元状に複数配置された、診断用の放射線画像を撮影するための撮影部と、
     前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、
     前記検出部の各第2センサ部による検出結果から得られる画像に応じて、前記撮影部の各画素から電荷を読み出して放射線画像を生成する際の処理パラメータを調整する調整部と、
     前記撮影部の各画素から電荷を読み出し、前記調整部により調整された処理パラメータに基づく処理を行って放射線画像を生成する生成部と、
     前記検出部の各第2センサ部による検出結果に基づいて放射線の照射開始、放射線の照射終了、及び放射線の照射量の少なくとも2つの検出を行う照射検出部と、
     を有する放射線撮影システム。
    An imaging unit for imaging a diagnostic radiographic image, in which a plurality of pixels having a first sensor unit that generates a charge when irradiated with radiation or light converted from radiation is arranged two-dimensionally;
    A detection unit arranged in a stack with the imaging unit, and a plurality of second sensor units having a larger area than the first sensor unit are arranged two-dimensionally,
    An adjustment unit that adjusts processing parameters when reading out charges from each pixel of the imaging unit and generating a radiation image according to an image obtained from a detection result by each second sensor unit of the detection unit;
    A generation unit that reads out electric charge from each pixel of the imaging unit and generates a radiation image by performing processing based on the processing parameter adjusted by the adjustment unit;
    An irradiation detection unit that performs at least two detections of radiation irradiation start, radiation irradiation end, and radiation irradiation amount based on the detection result by each second sensor unit of the detection unit;
    A radiation imaging system having
PCT/JP2011/067543 2010-08-23 2011-07-29 Radiation imaging device, radiation imaging system, and radiation detection program WO2012026288A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010186501A JP2012040315A (en) 2010-08-23 2010-08-23 Radiation imaging device, radiation imaging system, and radiation detection program
JP2010-186501 2010-08-23
JP2010192850A JP2012045331A (en) 2010-08-30 2010-08-30 Radiation imaging device and radiation imaging system
JP2010-192850 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012026288A1 true WO2012026288A1 (en) 2012-03-01

Family

ID=45723296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067543 WO2012026288A1 (en) 2010-08-23 2011-07-29 Radiation imaging device, radiation imaging system, and radiation detection program

Country Status (1)

Country Link
WO (1) WO2012026288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046916A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Radiographic imaging unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363850A (en) * 2003-06-04 2004-12-24 Canon Inc Inspection device
JP2009153984A (en) * 2009-01-29 2009-07-16 Canon Inc X-ray radiographing apparatus
JP2009240568A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Radiographic imaging apparatus
JP2010158561A (en) * 2005-10-06 2010-07-22 Fujifilm Corp Mammography apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363850A (en) * 2003-06-04 2004-12-24 Canon Inc Inspection device
JP2010158561A (en) * 2005-10-06 2010-07-22 Fujifilm Corp Mammography apparatus
JP2009240568A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Radiographic imaging apparatus
JP2009153984A (en) * 2009-01-29 2009-07-16 Canon Inc X-ray radiographing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046916A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Radiographic imaging unit

Similar Documents

Publication Publication Date Title
JP5455857B2 (en) Radiation image capturing apparatus, radiation image capturing method, and radiation image capturing program
JP5832966B2 (en) Radiation image capturing apparatus, radiation image capturing system, detection sensitivity control method and program for starting radiation irradiation
JP5986443B2 (en) Radiographic imaging apparatus, control method and program for detecting sensitivity at start of radiation irradiation
JP5676632B2 (en) Radiation image capturing apparatus, program executed by the apparatus, and radiation image capturing method
JP5595876B2 (en) Radiography apparatus and radiation imaging system
WO2012014612A1 (en) Radiography device and radiography system
JP5676405B2 (en) Radiation image capturing apparatus, radiation image capturing system, program, and radiation image capturing method
JP5749556B2 (en) Radiation detection panel
US8735829B2 (en) Radiographic image capturing system, program storage medium, and method
JP5485312B2 (en) Radiation detection apparatus, radiographic imaging apparatus, radiation detection method and program
JP5485308B2 (en) Radiographic imaging apparatus, radiographic imaging method and program
JP2012125409A (en) X-ray imaging apparatus
JP2012047723A (en) Radiation detection panel
JP2012040315A (en) Radiation imaging device, radiation imaging system, and radiation detection program
JP2012045331A (en) Radiation imaging device and radiation imaging system
JP2012040053A (en) Radiation image capturing device and radiation image capturing system
JP5489951B2 (en) Imaging area specifying device, radiographic imaging system, and imaging area specifying method
JP5634894B2 (en) Radiation imaging apparatus and program
WO2012026288A1 (en) Radiation imaging device, radiation imaging system, and radiation detection program
WO2012011376A1 (en) Radiation image capturing device and radiation image capturing system
JP5595940B2 (en) Radiation imaging equipment
JP2012026884A (en) Radiographing apparatus, and radiographing system
WO2012056950A1 (en) Radiation detector and radiographic imaging device
JP6067156B2 (en) Radiographic imaging apparatus, control method and program for detecting sensitivity at start of radiation irradiation
WO2012029403A1 (en) Radiation imaging system, radiation imaging device, and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819753

Country of ref document: EP

Kind code of ref document: A1