WO2012020711A1 - Microchamber array device which has electrical function and inspection object analysis method using same - Google Patents

Microchamber array device which has electrical function and inspection object analysis method using same Download PDF

Info

Publication number
WO2012020711A1
WO2012020711A1 PCT/JP2011/067978 JP2011067978W WO2012020711A1 WO 2012020711 A1 WO2012020711 A1 WO 2012020711A1 JP 2011067978 W JP2011067978 W JP 2011067978W WO 2012020711 A1 WO2012020711 A1 WO 2012020711A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical function
analysis method
array device
inspection object
microwell
Prior art date
Application number
PCT/JP2011/067978
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 輝夫
秀▲弦▼ 金
ドミニク フルミー
貴富喜 山本
Original Assignee
国立大学法人東京大学
サントル ナショナル ドゥラ ルシェルシュ シヤンティフィック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, サントル ナショナル ドゥラ ルシェルシュ シヤンティフィック filed Critical 国立大学法人東京大学
Publication of WO2012020711A1 publication Critical patent/WO2012020711A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications

Definitions

  • the present invention relates to a microchamber array apparatus having an electrical function and a test object analysis method using the same, and more particularly, to a microchamber array apparatus having an electrical function for performing single cell analysis and the same.
  • the present invention relates to a single cell analysis method.
  • Non-Patent Documents 1 to 3 describe the characteristics of the individual cells involved are completely averaged, and in some cases, the nature of the cells can be misinterpreted.
  • Dielectrophoresis which applies force to particles polarized with a spatially non-uniform electric field, is one of the powerful tools for patterning cells at specific positions (see Non-Patent Document 9 below). This method allows selective and stable treatment of cells. Also, Albrecht et al. Have disclosed a DEP cell patterning chamber method in which a photoresist microwell array is patterned on a slide glass coated with indium tin oxide (ITO) (see Non-Patent Document 10 below). This method results in a precisely defined three-dimensional cell network.
  • ITO indium tin oxide
  • Non-Patent Documents 12 to 15 below Several microfluidic devices of this type have been published so far (see Non-Patent Documents 12 to 15 below), and in addition, they are now more integrated to recover and purify intracellular components after cell disruption. Systems have been made (see Non-Patent Document 16 below).
  • the present invention integrates an electrode for inspection object manipulation (DEP and EP) into a single device microwell for compartmentalization, thereby enabling a simple apparatus and a method using the same to be inspected. It is an object of the present invention to provide a microchamber array device having an electrical function capable of performing an object analysis and an inspection object analysis method using the same.
  • the present invention provides a device and method for capturing an inspection object based on DEP and EP, followed by crushing the inspection object, followed by inspection object analysis.
  • the device includes a large number of arrayed microwells, which allow manipulating and analyzing cell populations in parallel.
  • Microfluidic devices are fabricated by bonding a molded polydimethylsiloxane (PDMS) film to a microwell array substrate.
  • PDMS molded polydimethylsiloxane
  • a microwell array was fabricated on intermeshing indium tin oxide (ITO) electrodes using a negative photoresist. The electric field was highly localized at the edge of the electrode at the bottom of the microwell. If comprised in this way, DEP force for drawing a test object into a microwell and EP for crushing a test object will be induced efficiently.
  • ITO indium tin oxide
  • the number of captured test objects can be adjusted to a single test object by controlling experimental parameters such as the diameter of the microwell and the flow rate of the solution used for transporting the test object. Inspection object crushing using the device of the present invention is very efficient because the electric field is highly localized in the chamber.
  • the present invention provides [1] In a microchamber array apparatus having an electrical function, including a counter electrode formed on a substrate for capturing an inspection object using DEP and crushing the inspection object using EP, A microwell array having microwells with electrodes formed on the bottom; a microfluidic channel for introducing a solution containing the test object or a solution for biochemical analysis of components of the test object; and the micro In order to confine the substance in the test object in a limited volume of the well, a film for sealing the microwell before crushing the test object is provided.
  • the inspection object is a single cell.
  • the inspection object is a vesicle.
  • the test object is a lipid bilayer membrane forming a micro compartment.
  • the microwell has a diameter of 20 to 35 micrometers according to the size of the cell, and the number of microwells ranges from several hundred to several. It is characterized in that it is a microwell array formed in a large number.
  • the counter electrode is composed of interdigitated electrodes (IDE) electrodes engaged with each other.
  • the counter electrode is made of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the wall of the microwell is made of a photoresist.
  • the substrate is a glass substrate.
  • a microwell array including a counterwell formed on a substrate and having a microwell formed on the bottom
  • a microfluidic channel for introducing a solution containing a test object or a solution for biochemical analysis of a component of the test object, and confining the substance in the test object in a limited volume of the microwell
  • a membrane that seals the microwells before crushing the test object, and each microwell is adjusted by DEP in which the dimensions of the microwells, the flow rate of the solution, and the electric field applied to the counter electrode are adjusted.
  • the position of the inspection object is kept constant in the microwell, and the inspection object is crushed using EP by applying a short pulse to the counter electrode in the microwell.
  • the inspection object is analyzed in a state in which a well size is sufficiently small to prevent dilution of the substance in the inspection object that hinders analysis of the substance in the inspection object after crushing the inspection object.
  • the single cell contains a specimen.
  • the lipid bilayer membrane forming the microcompartment contains a specimen.
  • the specimen is a biomolecule.
  • the specimen is analyzed.
  • the radiation is caused by a biochemical reaction.
  • the radiation is caused by a chemical reaction.
  • the radiation is luminescence.
  • the radiation is fluorescence.
  • the radiation is phosphorescence.
  • the single cell contains an intracellular substance.
  • the intracellular substance is a protein.
  • the intracellular substance is a DNA molecule.
  • the intracellular substance is an RNA molecule.
  • the intracellular substance is used to synthesize a product.
  • a microwell with an electrical function that is used to capture a test object using dielectrophoresis By applying a dielectrophoretic force, the test object is positioned at the bottom of the microwell. The dimensions of the microwell make it possible to capture the test object very efficiently. Even when DEP is stopped and a liquid is allowed to flow, the position of the inspection object in the microwell is maintained. This property is utilized when the DEP buffer is exchanged with a solution that is used later to analyze the components in the test object. Inspection object crushing is realized by applying a short electric pulse. Using this apparatus and method, the concentration of ATP in the inspection object for each inspection object can be analyzed.
  • DEP dielectrophoresis
  • FIG. 1 is an exploded schematic view of a microfluidic device showing an embodiment of the present invention. It is a figure which shows the microwell array of the microfluidic device which shows the Example of this invention. It is a figure which shows the electric field strength distribution (V / m) and electric field strength gradient ( ⁇ E2) (V / m2) vector by simulation of the present invention. It is a manufacturing process figure of the microwell array which shows the Example of this invention. It is a manufacturing-process figure of the PDMS film
  • the microchamber array device having an electrical function of the present invention includes a counter electrode formed on a substrate for capturing cells using DEP and crushing cells using EP.
  • a microwell array having formed microwells, a microfluidic channel for introducing a solution containing cells or a solution for biochemical analysis of cellular components, and cellular material in a limited volume of the microwell
  • a membrane for sealing the microwell before cell disruption is provided.
  • a microwell array including a counter electrode formed on a substrate and having a microwell formed on the bottom of the counter electrode; A microfluidic channel for introducing a solution containing cells or a solution for biochemical analysis of cellular components and the microwells prior to cell disruption to confine cellular material in a limited volume of the microwells.
  • FIG. 1 is a diagram showing an experimental concept of single cell capture and disruption showing an embodiment of the present invention
  • FIG. 2 is an exploded schematic view of the microfluidic device
  • FIG. 3 is a diagram showing a microwell array of the microfluidic device.
  • 3 (a) is a plan view thereof
  • FIG. 3 (b) is a sectional view thereof.
  • FIG. 4 is a diagram showing electric field intensity distribution (V / m) and electric field intensity gradient ( ⁇ E2) (V / m2) vectors by simulation.
  • 1 is a substrate (glass substrate), 2 is an interdigitated electrode (Inter-Digitated Electrodes) formed on the substrate 1, and the material thereof is made of ITO.
  • 3 is a microwell formed on the ITO electrode 2
  • 3A is a photoresist
  • 4 is a microwell array in which the microwell 3 is arranged
  • 5 is a microfluidic channel
  • 6 is a PDMS film
  • 7 is a microwell 3
  • 8 is a cell
  • 9 is a solution containing the cell 8
  • 10 is an intracellular substance.
  • a solution (DEP buffer) 9 containing cells 8 is continuously introduced into the microfluidic channel 5, and as shown in FIG. Cells 8 around the well 3 are captured using DEP by the counter electrode 2.
  • the microwell 3 is closed by pressing the PDMS film 6 to form a microchamber 7.
  • the cells 8 are crushed inside the closed microchamber 7 using EP by the ITO electrode 2, and the inside of the microchamber 7 is filled with the intracellular substance 10.
  • the microfluidic device of the present invention comprises a microwell array 4 and a PDMS film 6 bonded thereon.
  • the microwell array 4 as shown in FIG. 3A, the microwell 3 manufactured using the photoresist 3A is aligned with the interdigitated ITO electrodes patterned on the substrate 1. ing.
  • the patterned ITO electrode 2 attracts the cells 8 using DEP and crushes inside the microchamber 7 using EP.
  • the distance between the adjacent ITO electrodes 2 is 6 ⁇ m, which is shorter than the diameter of the cell 8 of about 12.5 ⁇ m.
  • the microwell 3 made using the photoresist 3A is aligned with the ITO electrode 2 meshing with each other, so that both the anode and the cathode protrude into the microwell 3. .
  • the depth of the microwell 3 is 15 ⁇ m, which is slightly longer than the diameter of the target cell 8.
  • the microwell array 4 has 60 ⁇ 60 microwells 3 arranged in a square area of 3 mm ⁇ 3 mm.
  • the photoresist 3A is a material having a good insulating property, the electric field is satisfactorily inhibited except for a region where the microwell 3 is patterned.
  • the interdigitated ITO electrodes 2 are located at the bottom of the microwells 3, the electric field is highly localized inside each microwell 3.
  • the microwell 3 not only physically limits the space that the cells 8 can occupy during capture with DEP, but also disrupts the cells 8 from the microchamber 7 when the microwell 3 is closed.
  • the subsequent intracellular substance 10 is prevented from diffusing.
  • the microwell 3 is tightly closed by pressing a PDMS membrane 6 that acts as a microfluidic channel 5 and constitutes a microchamber 7.
  • FIG. 4 shows a simulated field strength distribution (V / m) and field strength gradient ( ⁇ ⁇ E2) (V / m2) vector, in which the potential is applied to the electrode boundary. Since the electric field around the electrode edge is strong, the direction of the vector of the electric field strength gradient ( ⁇ ⁇ E2) is directed to the inside of the microwell 3. Therefore, the cells 8 in the solution 9 above the microwell 3 are drawn into the bottom of the microwell 3 by the DEP force.
  • FIG. 5 is a manufacturing process diagram of a microwell array
  • FIG. 6 is a manufacturing process diagram of a PDMS film
  • FIG. 7 is a cross-sectional view of a microfluidic device in which a microwell array and a PDMS film are combined.
  • a fabrication process of the microwell array 4 is shown in FIG. First, as shown in FIG. 5A, an ITO electrode film 2 ′ is formed on the substrate 1. Next, the ITO electrode film 2 ′ is patterned to form the ITO electrode 2. The interdigitated ITO electrode 2 for DEP and EP is produced using conventional photolithography.
  • the ITO is etched with the solution for 25 minutes at room temperature.
  • the microwell array 4 is produced on the patterned ITO electrode 2 using a negative photoresist (SU-8 2010, MicroChem Co.) 3A.
  • the photoresist 3A is spin-coated on the substrate 1 on which the ITO electrode 2 is formed and pre-baked.
  • the patterned chromium photomask for the microwell array is aligned with the patterned ITO electrode 2, and the photoresist 3A is irradiated with UV (ultraviolet) light through the photomask, followed by development and rinsing.
  • UV ultraviolet
  • a manufacturing process of the PDMS film 6 is shown in FIG.
  • a negative photoresist (SU-8 2050, MicroChem Co.) 12 serving as a template is patterned on the silicon wafer 11.
  • the template should be thoroughly washed with isopropyl alcohol and deionized water.
  • a reactive ion etching apparatus RIE-10NR, Samco Co.
  • RIE-10NR reactive ion etching apparatus
  • FIG. 6 (b) a PDMS polymer precursor (Silpt 184, Dow Corning Toray, Co.
  • the surface was activated by irradiating them with O 2 plasma using an RIE apparatus. Both were aligned and contacted and joined spontaneously without the application of external pressure.
  • O 2 plasma treatment the SU-8 microwell array 4 and the PDMS film 12 become hydrophilic, which facilitates the injection of the reagent not only into the PDMS channel but also into the microwell 3.
  • the medium Prior to DEP and EP experiments, the medium was adjusted to DEP buffer (HEPES 10 mM, CaCl2 0.1 mM, D) to adjust the conductivity (21.4 mS m-1) of cell suspension 9 for pDEP (positive DEP). -Exchanged for glucose 59 mM and sucrose 236 mM, pH 7.35). Cells in the medium were centrifuged at 190 g for 3 minutes, the medium was gently removed and DEP buffer was added. The diameter of the cell 8 was 12.5 ⁇ 1.6 ⁇ m, and the concentration of the cell 8 was about 1 ⁇ 10 6 cells / ml.
  • DEP buffer HEP buffer
  • the above-described microfluidic device was placed on an xy translation stage placed on an inverted microscope (IX 71, Olympus).
  • the cells 8 were monitored using an electron multiplying charge coupled device (EMCDD) camera (iXonEM + 885 EMCCD Camera, Andor Technology Plc) installed on a microscope.
  • EMCCDD electron multiplying charge coupled device
  • PDMS membrane using a round plastic chip connected to an electric stage (SGAM20; sigma light machine) controlled by a stage controller (SHOT-202AM; sigma light machine) to close the microwell array 4 after capture of cells 8 6 was pressed.
  • the potentials for DEP and EP were applied to the intermeshing ITO electrode 2 using a function generator (WF1974; NF circuit design) after amplifying the amplitude using an amplifier (HSA4010; NF circuit design).
  • a cell suspension as a solution 9 containing cells 8 is introduced into the microfluidic channel 5 through an inflow hole 13 as an access port by a continuous flow of cell supply.
  • the number of cells captured in one microwell 3 is reduced to the diameter of the microwell 3 (20, 25, 30, or 35 ⁇ m) and the flow rate of the solution 9 containing the cells 8 (2 or 4 ⁇ l / min). It is found that it depends.
  • the amplitude and frequency of the applied potential are kept constant at 2 Vp-p and 1 MHz.
  • a single cell 8 is successfully captured in a 25 ⁇ m microwell 3 by applying a sinusoidal potential to the interdigitated ITO electrodes 2 at a flow rate of 2 ⁇ l / min.
  • FIG. 8 is a diagram showing a state of cell trapping in a microwell array having a diameter of 25 ⁇ m when 2 Vp-p is applied to the ITO electrode at a sinusoidal AC voltage of 1 MHz.
  • a solution 9 containing cells 8 is introduced into the microfluidic channel 5 at a flow rate of 2 ⁇ l / min, and is indicated by a broken line. Cells gradually enter the microwell 3, and almost all microwells 3 hold a single cell 8 after 3 minutes. As shown in this figure, there were only a few microwells containing 2 cells or empty.
  • FIG. 8B is a time-lapse image of U-937 (lymphocyte) cells being captured
  • FIG. 8C is a schematic diagram showing the trajectory of the cells observed during cell capture.
  • the number of cells to be captured is largely related to the diameter of the microwell.
  • the effect of microwell diameter on capture was investigated using a microwell array 4 with microwells 3 of diameters 20, 25, 30, and 35 ⁇ m.
  • the cells were captured by applying a sine potential for 3 minutes, and then the capture was stopped by blocking the potential.
  • the number of microwells containing 0, 1, 2, 3, or 4 cells was then counted in 10 ⁇ 10 regions of randomly selected microwells.
  • FIG. 9 (a) the ratio of the number of microwells with 0, 1, 2, 3 or 4 cells trapped inside at a flow rate of 2 ⁇ l / min to the total number of microwells. Is plotted against the diameter.
  • Flow rate is another important parameter in cell capture efficiency.
  • the DEP force is very concentrated around the microwell 3 as shown in the simulation results of FIG.
  • FIG. 9B shows the same experimental conditions as the data in FIG. 9A except that the flow rate was 4 ⁇ l / min.
  • a 30 ⁇ m microwell array shows the best capture results.
  • the two histograms shown in FIG. 9 show that single cells can be captured in different sized microwells by controlling the experimental conditions. This is important because the dilution factor of intracellular material after disruption depends on the size of the microwell.
  • FIG. 10 is a diagram showing how cells are crushed in a microchamber. Confinement of intracellular material obtained from a single cell is realized by disrupting the cell 8 in a closed microchamber 7. In cell disruption, a 30 V, 10 ⁇ s Lorentz pulse was applied at 10 Hz for 10 seconds.
  • FIG. 10A is a fluorescence image showing a closed chamber array before and after the pulse application, and the left and right sides of the broken line are chamber arrays having diameters of 25 ⁇ m and 30 ⁇ m, respectively.
  • a microchamber containing two cells emits brighter light than a microchamber containing a single cell.
  • the success rate of cell disruption is very high, and almost 100% of the cells in the microchamber 7 are disrupted simultaneously. This is because all the cells 8 are positioned at the edge of the electrode, so that a uniform high electric field can be applied to each cell.
  • the fluorescence intensity obtained along is shown.
  • the fluorescence intensity of the cell 8 decreased due to leakage of the intracellular substance 10.
  • the inside of the microchamber 7 is gradually filled with fluorescence as the intracellular substance 10 diffuses out of the cell. Since the volume ratio of the microchamber 7 and the cell 8 is about 7: 1, as shown in FIG. 10C, the fluorescence intensity of the cell decreases to about 1/7 after 3 seconds from the pulse application.
  • the diffusion and dilution of the intracellular substance 10 in the microchamber 7 can be evaluated.
  • FIG. 11 is a diagram showing measurement of intracellular ATP concentration, and shows a luminescence signal generated by luciferase which is an ATP consuming enzyme.
  • FIG. 11A is a diagram illustrating a state in which a large number of cells are captured in the microwell array
  • FIG. 11B is a diagram illustrating a state in which whether the captured cells are alive or dead is checked. .
  • dielectrophoresis can damage biological cells. Since cell capture by dielectrophoresis relies on membrane integrity, the system of the present invention can preferentially capture intact living cells [FIGS. 11 (a) and 11 (b)]. . By optimizing the experimental parameters, the present invention can obtain a high capture efficiency (almost 100%) of living cells.
  • FIG. 11 (b) cell viability in DEP was assessed by calcein-AM (green) and propidium iodide (red) fluorescent markers. Prior to intracellular ATP analysis, capture buffer 9 was replaced with a solution containing firefly luciferase assay reagent.
  • FIG. 11 (c) is a diagram showing a bioluminescence signal detected several seconds after membrane disruption, together with the time dependence of the emission intensity. Similar curves are obtained, confirming the validity of single cell measurements. Caged ATP was used to calibrate the measured values of the device and infer the concentration of ATP present in the microchamber from the amount of luminescence.
  • the intracellular ATP concentration can be calculated from the average value of the intracellular volume (cells have similar size; U937, 12.5 ⁇ 1.6 ⁇ m) or from the assessment of each individual cell in the microchamber It can also be calculated directly.
  • the results found for intracellular concentration levels of ATP obtained from analysis on the device were directly compared with the values obtained in bulk measurements.
  • FIG. 11 (d) shows that the concentration levels obtained by both methods are similar.
  • the test object includes not only cells but also vesicles (vesicles) and lipid bilayers (liposomes) that form microcompartments, and liquids that can be manipulated by DEP or EP. It is also possible to analyze the substances contained in them.
  • the lipid bilayer structure or cell contains specimens such as biomolecules (for example, ATP), and these specimens are analyzed by biochemical reaction or radiation by chemical reaction (luminescence, fluorescence, phosphorescence, etc.). To do. The analysis may be performed using radiation emitted by the specimen. Further, analysis may be performed using a biochemical reaction of a specimen.
  • a single cell to be analyzed contains ribosomes, DNA molecules, and RNA molecules as intracellular substances, and these intracellular substances are used to synthesize products.
  • the present invention single cell capture and disruption using array-type DEP and EP-based microfluidic devices has been successfully demonstrated.
  • the present invention can achieve good single cell capture efficiency (about 95%).
  • the use of sealed microchambers physically limits the diffusion and dilution of intracellular material after membrane disruption. This is important because many biochemical reactions, such as those used for analysis of intracellular components, particularly efficiently, occur only at concentrations above micromolar. Therefore, the device of the present invention provides a useful platform for analyzing intracellular substances for each single cell.
  • Highly integrated microdevices are promising for basic biomedical and pharmaceutical research, and robust portable point-of-care devices can be used in clinical settings.
  • the device of the present invention allows for simple manipulation of cells followed by disruption and analysis on the device.
  • this invention is not limited to the said Example, A various deformation
  • the present invention can be used as a tool that enables single cell analysis by integrating electrodes for cell manipulation (DEP and EP) on microwells for compartmentalization.

Abstract

A microchamber array device is provided comprising an electrical function capable of analyzing an inspection object by means of a simple device in which electrodes used for inspection object manipulation (DEP and EP) are integrated in a single device microwell used for partitioning, and by means of a method using the device. An inspection object analysis method using the microchamber array device is also provided. The microchamber array device comprising an electrical function is provided with: a microwell array (4) which includes counter electrodes (2) formed on a substrate (1), comprises microwells (3) having the electrodes (2) formed on the bottoms thereof, and is used to trap cells (8) by means of DEP and crush the cells (8) by means of EP; a microfluid channel (5) which introduces a solution containing the cells (8) or a solution (9) for biochemical analysis of cell components; and a film (6) which hermetically seals the microwells (3) before the cells (8) are crushed, in order to confine cell material in the limited volumes of the microwells (3).

Description

電気的機能を持つマイクロチャンバーアレイ装置およびそれを用いた検査対象物解析方法Microchamber array device having electrical function and inspection object analysis method using the same
 本発明は、電気的機能を持つマイクロチャンバーアレイ装置およびそれを用いた検査対象物解析方法に係り、特に、単一細胞解析を行うための電気的機能を持つマイクロチャンバーアレイ装置およびそれを用いた単一細胞解析方法に関するものである。 The present invention relates to a microchamber array apparatus having an electrical function and a test object analysis method using the same, and more particularly, to a microchamber array apparatus having an electrical function for performing single cell analysis and the same. The present invention relates to a single cell analysis method.
 従来、細胞単位でのバイオアッセイは、細胞集団を精査するが、その場合、関連する個々の細胞の特性は完全に平均化され、また場合によっては、細胞の性質が誤って解釈されることもある(下記非特許文献1~3参照)。したがって、近年は、ゲノミクス、プロテオミクス、およびトランスクリプトミクスに関する新たなかつ興味深い研究の分野で、単一細胞解析方法に対する関心が高まってきている。単一細胞を解析するため、細胞パターニング(下記非特許文献2,4参照)、光ピンセット(下記非特許文献5参照)、およびマイクロフルイディクス(下記非特許文献6~8参照)などのいくつかの方法が開発されてきた。空間的に不均一な電場で分極した粒子に力を作用させる誘電泳動(DEP)は、特定の位置で細胞をパターニングする有力なツールの1つである(下記非特許文献9参照)。この方法は、選択的かつ安定的な細胞の処理を可能とする。また、Albrechtらにより、インジウムスズ酸化物(ITO)でコーティングしたスライドガラス上にフォトレジストマイクロウェルアレイをパターニングしたDEP細胞パターニングチャンバー法が発表されている(下記非特許文献10参照)。この方法によって、正確に定義された3次元細胞ネットワークが得られる。 Traditionally, cell-by-cell bioassays scrutinize cell populations, in which case the characteristics of the individual cells involved are completely averaged, and in some cases, the nature of the cells can be misinterpreted. (See Non-Patent Documents 1 to 3 below). Therefore, in recent years, interest in single cell analysis methods has increased in the field of new and interesting research on genomics, proteomics, and transcriptomics. In order to analyze single cells, cell patterning (see Non-Patent Documents 2 and 4 below), optical tweezers (see Non-Patent Document 5 below), and microfluidics (see Non-Patent Documents 6 to 8 below) A method has been developed. Dielectrophoresis (DEP), which applies force to particles polarized with a spatially non-uniform electric field, is one of the powerful tools for patterning cells at specific positions (see Non-Patent Document 9 below). This method allows selective and stable treatment of cells. Also, Albrecht et al. Have disclosed a DEP cell patterning chamber method in which a photoresist microwell array is patterned on a slide glass coated with indium tin oxide (ITO) (see Non-Patent Document 10 below). This method results in a precisely defined three-dimensional cell network.
 一方、単一細胞毎の細胞内の核酸、タンパク質、または他の成分の解析は、多様な生物学的機能の研究にとって非常に有望である。これらを直接解析するために細胞内物質を得るには、細胞膜を開く必要がある。これは、電位を膜に印加することによってプラスミドDNAまたは小分子を細胞内に導入することができる電気穿孔法(EP)を用いることで、効率的に実現することができる(下記非特許文献11参照)。印加する電界の強度が十分に強いと、不可逆的な膜の機械的分解が生じて、細胞破砕がもたらされる。マイクロ流体デバイスを用いれば、電極間の距離を短くすることによって電位を比較的低くした状態でも高電界強度を形成することが可能になるので、EPによる細胞破砕を行うのに有用である。この種のマイクロ流体デバイスがこれまでにいくつか発表されており(下記非特許文献12~15参照)、それに加えて、現在、細胞破砕後に細胞内成分を回収し精製するための、より統合されたシステムが作られてきている(下記非特許文献16参照)。 On the other hand, analysis of intracellular nucleic acids, proteins, or other components for each single cell is very promising for the study of various biological functions. In order to obtain intracellular substances to directly analyze these, it is necessary to open the cell membrane. This can be realized efficiently by using an electroporation method (EP) in which plasmid DNA or small molecules can be introduced into cells by applying a potential to the membrane (Non-patent Document 11 below). reference). When the strength of the applied electric field is sufficiently strong, irreversible mechanical degradation of the membrane occurs, leading to cell disruption. If a microfluidic device is used, a high electric field strength can be formed even when the potential is relatively low by shortening the distance between the electrodes, which is useful for cell disruption by EP. Several microfluidic devices of this type have been published so far (see Non-Patent Documents 12 to 15 below), and in addition, they are now more integrated to recover and purify intracellular components after cell disruption. Systems have been made (see Non-Patent Document 16 below).
 この取組みを単一細胞レベルにスケールダウンすることは、単一細胞解析にとって非常に有用である。近年、EPを用いた単一細胞破砕の方法が発表されている。例えば、Gaoらにより、細胞破砕後に細胞内成分を検出するためのマイクロ流体デバイスが提案されている(下記非特許文献17参照)。さらに、Khineらにより、捕捉工程において水力学的な力を用いる単一細胞電気穿孔デバイスが提案されている(下記非特許文献18参照)。しかしながら、これらのこれまでの研究では、細胞膜崩壊の直後に、閉じ込めがないために、細胞内物質の拡散と希釈が起こる。解析に役立ち得るほとんどの酵素がマイクロモル範囲の濃度の基質を必要とすることが知られているが、単一細胞からの細胞物質の量は少ないので、それが希釈された状態で解析するのは困難である。よって、密閉された微小区画(下記非特許文献19,20参照)を使用することが、生体分子の単離および高スループットの解析にとって理想的である(下記非特許文献21,22参照)。 ス ケ ー ル It is very useful for single cell analysis to scale down this approach to the single cell level. In recent years, methods for single cell disruption using EP have been published. For example, Gao et al. Have proposed a microfluidic device for detecting intracellular components after cell disruption (see Non-Patent Document 17 below). Furthermore, Khine et al. Have proposed a single-cell electroporation device that uses a hydrodynamic force in the capture step (see Non-Patent Document 18 below). However, in these previous studies, diffusion and dilution of intracellular material occurs immediately after cell membrane disruption due to the lack of confinement. Most enzymes that can be useful for analysis are known to require substrates in the micromolar range, but the amount of cellular material from a single cell is small so that it can be analyzed in a diluted state. It is difficult. Therefore, it is ideal for isolation of biomolecules and high-throughput analysis to use sealed micro compartments (see Non-Patent Documents 19 and 20 below) (see Non-Patent Documents 21 and 22 below).
特表2004-535176号公報JP-T-2004-535176
 以上のように従来技術では、マイクロウェル内において誘電泳動(DEP)と細胞破砕(EP)とは別個の手段により実施されており、細胞操作と処理が複雑なものにならざるを得なかった。
 本発明は、上記状況に鑑みて、区画化用の単一デバイスマイクロウェルに検査対象物操作(DEPおよびEP)用の電極を統合することにより、簡便な装置とそれを用いた方法で検査対象物解析を行うことができる電気的機能を持つマイクロチャンバーアレイ装置およびそれを用いた検査対象物解析方法を提供することを目的とする。
As described above, in the prior art, dielectrophoresis (DEP) and cell disruption (EP) are performed in the microwell by separate means, and the cell manipulation and processing have to be complicated.
In view of the above situation, the present invention integrates an electrode for inspection object manipulation (DEP and EP) into a single device microwell for compartmentalization, thereby enabling a simple apparatus and a method using the same to be inspected. It is an object of the present invention to provide a microchamber array device having an electrical function capable of performing an object analysis and an inspection object analysis method using the same.
 本発明は、DEPおよびEPに基づく検査対象物の捕捉と、それに続く検査対象物の破砕を行い、その後に検査対象物解析を行うためのデバイスおよび方法を提供する。デバイスは、多数のアレイ状マイクロウェルを含み、それにより、細胞集団を並列的に操作し解析することが可能になっている。マイクロ流体デバイスは、成形したポリジメチルシロキサン(PDMS)膜をマイクロウェルアレイ基板に接合することによって作製する。マイクロウェルアレイは、ネガティブ型のフォトレジストを用いて、相互に噛み合ったインジウムスズ酸化物(ITO)電極上に作製した。電界は、マイクロウェルの底部にある電極の縁部に高度に局在化させた。このように構成すると、検査対象物をマイクロウェル内に引き込むためのDEP力と、検査対象物破砕のためのEPとが効率的に誘導される。本発明では、マイクロウェルの直径、および検査対象物搬送に用いられる溶液の流量などの実験パラメーターを制御することによって捕捉検査対象物の数を単一検査対象物に調整できる。本発明のデバイスを用いた検査対象物破砕では、電界がチャンバー内で高度に局在化されているので、非常に高効率である。
本発明は、上記目的を達成するために、
〔1〕電気的機能を持つマイクロチャンバーアレイ装置において、DEPを用いて検査対象物を捕捉し、EPを用いて前記検査対象物を破砕するための、基板上に形成される対向電極を含み、この電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、前記検査対象物を含有する溶液または検査対象物成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、前記マイクロウェルの限定された容積に前記検査対象物内物質を閉じ込めるため、前記検査対象物の破砕の前に前記マイクロウェルを密閉する膜とを具備することを特徴とする。
The present invention provides a device and method for capturing an inspection object based on DEP and EP, followed by crushing the inspection object, followed by inspection object analysis. The device includes a large number of arrayed microwells, which allow manipulating and analyzing cell populations in parallel. Microfluidic devices are fabricated by bonding a molded polydimethylsiloxane (PDMS) film to a microwell array substrate. A microwell array was fabricated on intermeshing indium tin oxide (ITO) electrodes using a negative photoresist. The electric field was highly localized at the edge of the electrode at the bottom of the microwell. If comprised in this way, DEP force for drawing a test object into a microwell and EP for crushing a test object will be induced efficiently. In the present invention, the number of captured test objects can be adjusted to a single test object by controlling experimental parameters such as the diameter of the microwell and the flow rate of the solution used for transporting the test object. Inspection object crushing using the device of the present invention is very efficient because the electric field is highly localized in the chamber.
In order to achieve the above object, the present invention provides
[1] In a microchamber array apparatus having an electrical function, including a counter electrode formed on a substrate for capturing an inspection object using DEP and crushing the inspection object using EP, A microwell array having microwells with electrodes formed on the bottom; a microfluidic channel for introducing a solution containing the test object or a solution for biochemical analysis of components of the test object; and the micro In order to confine the substance in the test object in a limited volume of the well, a film for sealing the microwell before crushing the test object is provided.
 〔2〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が単一の細胞であることを特徴とする。
 〔3〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が小胞であることを特徴とする。
 〔4〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が微小区画を形成する脂質二重膜であることを特徴とする。
[2] In the microchamber array device having the electrical function described in [1] above, the inspection object is a single cell.
[3] In the microchamber array device having the electrical function described in [1] above, the inspection object is a vesicle.
[4] In the microchamber array device having the electrical function described in [1] above, the test object is a lipid bilayer membrane forming a micro compartment.
 〔5〕上記〔2〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記マイクロウェルは前記細胞のサイズにあわせて直径20-35マイクロメートルであり、そのマイクロウェルの数が数百から数万個形成されたマイクロウェルアレイであることを特徴とする。
 〔6〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記対向電極が互いに噛み合ったIDE(Inter-Digitated Electrodes)電極からなることを特徴とする。
[5] In the microchamber array device having the electrical function described in [2] above, the microwell has a diameter of 20 to 35 micrometers according to the size of the cell, and the number of microwells ranges from several hundred to several. It is characterized in that it is a microwell array formed in a large number.
[6] The micro-chamber array device having the electrical function described in [1], wherein the counter electrode is composed of interdigitated electrodes (IDE) electrodes engaged with each other.
 〔7〕上記〔6〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記対向電極がインジウムスズ酸化物(ITO)からなることを特徴とする。
 〔8〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記マイクロウェルの壁がフォトレジストで作られることを特徴とする。
 〔9〕上記〔1〕記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記基板がガラス基板であることを特徴とする。
[7] In the microchamber array device having the electrical function described in [6], the counter electrode is made of indium tin oxide (ITO).
[8] In the microchamber array device having the electrical function described in [1], the wall of the microwell is made of a photoresist.
[9] In the microchamber array device having the electrical function described in [1], the substrate is a glass substrate.
 〔10〕電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、基板上に形成される対向電極を含み、該対向電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、検査対象物を含有する溶液または前記検査対象物成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、前記マイクロウェルの限定された容積に前記検査対象物内物質を閉じ込めるため、前記検査対象物破砕の前に前記マイクロウェルを密閉する膜とを備え、前記マイクロウェルの寸法、前記溶液の流量、および前記対向電極に印加される電界を調整したDEPによって前記各マイクロウェルに1個の前記検査対象物を位置付けし、前記マイクロ流体チャネルによって前記溶液を交換するフローが存在する場合でも、前記マイクロウェル内で前記検査対象物の位置を一定に保ち、前記マイクロウェル内で前記対向電極に短パルスを印加することにより、EPを用いて前記検査対象物を破砕し、前記マイクロウェルの寸法が前記検査対象物破砕後に該検査対象物内物質の解析を妨げる前記検査対象物内物質の希釈を防ぐのに十分に小さい状態で前記検査対象物を解析することを特徴とする。 [10] In a test object analysis method using a microchamber array device having an electrical function, a microwell array including a counterwell formed on a substrate and having a microwell formed on the bottom A microfluidic channel for introducing a solution containing a test object or a solution for biochemical analysis of a component of the test object, and confining the substance in the test object in a limited volume of the microwell And a membrane that seals the microwells before crushing the test object, and each microwell is adjusted by DEP in which the dimensions of the microwells, the flow rate of the solution, and the electric field applied to the counter electrode are adjusted. There is a flow for positioning one test object and exchanging the solution by the microfluidic channel. Even in this case, the position of the inspection object is kept constant in the microwell, and the inspection object is crushed using EP by applying a short pulse to the counter electrode in the microwell. The inspection object is analyzed in a state in which a well size is sufficiently small to prevent dilution of the substance in the inspection object that hinders analysis of the substance in the inspection object after crushing the inspection object.
 〔11〕上記〔10〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、単一細胞がDEPを用いて捕捉されることを特徴とする。
 〔12〕上記〔10〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、小胞がDEPを用いて捕捉されることを特徴とする。
 〔13〕上記〔10〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、微小区画を形成する脂質二重膜がDEPを用いて捕捉されることを特徴とする。
[11] In the test object analysis method using the micro-chamber array device having an electrical function described in [10] above, a single cell is captured using DEP.
[12] In the test object analysis method using the microchamber array device having the electrical function described in [10], vesicles are captured using DEP.
[13] In the test object analysis method using the microchamber array device having the electrical function described in [10] above, a lipid bilayer membrane forming a microcompartment is captured using DEP .
 〔14〕上記〔11〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記単一細胞が検体を含有することを特徴とする。
 〔15〕上記〔13〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記微小区画を形成する脂質二重膜が検体を含有することを特徴とする。
[14] In the test object analysis method using the microchamber array device having the electrical function described in [11] above, the single cell contains a specimen.
[15] In the test object analysis method using the microchamber array device having an electrical function described in [13] above, the lipid bilayer membrane forming the microcompartment contains a specimen.
 〔16〕上記〔13〕又は〔14〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体が生体分子であることを特徴とする。
 〔17〕上記〔13〕又は〔14〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析を行うことを特徴とする。
[16] In the test object analysis method using the microchamber array device having the electrical function described in [13] or [14], the specimen is a biomolecule.
[17] In the test object analysis method using the microchamber array device having the electrical function described in [13] or [14], the specimen is analyzed.
 〔18〕上記〔17〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が電気計測を用いて行われることを特徴とする。
 〔19〕上記〔17〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が放射線を用いて行われることを特徴とする。
[18] In the test object analysis method using the microchamber array device having the electrical function described in [17], the analysis of the specimen is performed using electrical measurement.
[19] In the test object analysis method using the micro-chamber array device having an electrical function described in [17] above, the analysis of the specimen is performed using radiation.
 〔20〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が前記検体によって放射される放射線を用いて行われることを特徴とする。
 〔21〕上記〔17〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が生化学反応を用いて行われることを特徴とする。
[20] The test object analysis method using the micro-chamber array device having an electrical function according to [19], wherein the analysis of the specimen is performed using radiation emitted by the specimen. .
[21] In the test object analysis method using the microchamber array device having the electrical function described in [17] above, the analysis of the specimen is performed using a biochemical reaction.
 〔22〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が生化学反応によるものであることを特徴とする。
 〔23〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が化学反応によるものであることを特徴とする。
[22] In the inspection object analysis method using the microchamber array device having the electrical function described in [19], the radiation is caused by a biochemical reaction.
[23] In the inspection object analysis method using the microchamber array device having an electrical function as described in [19] above, the radiation is caused by a chemical reaction.
 〔24〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線がルミネセンスであることを特徴とする。
 〔25〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が蛍光であることを特徴とする。
 〔26〕上記〔19〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線がリン光であることを特徴とする。
[24] In the inspection object analysis method using the microchamber array device having the electrical function described in [19], the radiation is luminescence.
[25] In the inspection object analysis method using the microchamber array device having the electrical function described in [19], the radiation is fluorescence.
[26] In the inspection object analysis method using the microchamber array device having an electrical function as described in [19] above, the radiation is phosphorescence.
 〔27〕上記〔11〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記単一細胞が細胞内物質を含有することを特徴とする。
 〔28〕上記〔27〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がタンパク質であることを特徴とする。
 〔29〕上記〔27〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がDNA分子であることを特徴とする。
[27] In the test object analysis method using the microchamber array device having the electrical function described in [11] above, the single cell contains an intracellular substance.
[28] In the test object analysis method using the microchamber array device having an electrical function described in [27], the intracellular substance is a protein.
[29] In the test object analysis method using the microchamber array device having the electrical function described in [27], the intracellular substance is a DNA molecule.
 〔30〕上記〔27〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がRNA分子であることを特徴とする。
 〔31〕上記〔27〕記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質が生成物を合成するのに用いられることを特徴とする。
[30] In the test object analysis method using the microchamber array device having an electrical function described in [27], the intracellular substance is an RNA molecule.
[31] In the test object analysis method using the microchamber array device having an electrical function according to [27], the intracellular substance is used to synthesize a product.
 本発明によれば、誘電泳動(DEP)を用いて検査対象物を捕捉するのに使用される、電気的機能を持つマイクロウェルを必要とする。誘電泳動力を加えることによって、検査対象物はマイクロウェルの底部に位置づけられる。マイクロウェルの寸法により、検査対象物を非常に効率的に捕捉することが可能になる。また、DEPを停止し液体を流しても、マイクロウェル内での検査対象物の位置が維持される。この性質は、DEP緩衝液を、検査対象物内成分を解析するために後で用いられる溶液と交換する場合に利用される。検査対象物破砕は、短い電気パルスを印加することによって実現される。この装置および方法を用いて、検査対象物毎のATPの検査対象物内濃度を解析することができる。 According to the present invention, there is a need for a microwell with an electrical function that is used to capture a test object using dielectrophoresis (DEP). By applying a dielectrophoretic force, the test object is positioned at the bottom of the microwell. The dimensions of the microwell make it possible to capture the test object very efficiently. Even when DEP is stopped and a liquid is allowed to flow, the position of the inspection object in the microwell is maintained. This property is utilized when the DEP buffer is exchanged with a solution that is used later to analyze the components in the test object. Inspection object crushing is realized by applying a short electric pulse. Using this apparatus and method, the concentration of ATP in the inspection object for each inspection object can be analyzed.
本発明の実施例を示す単一細胞の捕捉および破砕の実験概念を示す図である。It is a figure which shows the experimental concept of the capture | acquisition and crushing of the single cell which shows the Example of this invention. 本発明の実施例を示すマイクロ流体デバイスの分解概略図である。1 is an exploded schematic view of a microfluidic device showing an embodiment of the present invention. 本発明の実施例を示すマイクロ流体デバイスのマイクロウェルアレイを示す図である。It is a figure which shows the microwell array of the microfluidic device which shows the Example of this invention. 本発明のシミュレーションによる電界強度分布(V/m)および電界強度勾配(▽E2)(V/m2)ベクトルを示す図である。It is a figure which shows the electric field strength distribution (V / m) and electric field strength gradient (▽ E2) (V / m2) vector by simulation of the present invention. 本発明の実施例を示すマイクロウェルアレイの製造工程図である。It is a manufacturing process figure of the microwell array which shows the Example of this invention. 本発明の実施例を示すPDMS膜の製造工程図である。It is a manufacturing-process figure of the PDMS film | membrane which shows the Example of this invention. 本発明の実施例を示すマイクロウェルアレイとPDMS膜が組み合わされたマイクロ流体デバイスの断面図である。It is sectional drawing of the microfluidic device with which the microwell array and PDMS film | membrane which combined the Example of this invention were combined. 本発明のマイクロウェルアレイへの細胞捕捉の状態を示す図である。It is a figure which shows the state of the cell capture to the microwell array of this invention. 本発明のマイクロウェルの個数の割合を捕捉された細胞数毎にマイクロウェルの直径に対してプロットした図である。It is the figure which plotted the ratio of the number of the microwells of this invention with respect to the diameter of a microwell for every trapped cell number. 本発明のマイクロチャンバー内で細胞破砕する様子を示す図である。It is a figure which shows a mode that a cell is crushed in the micro chamber of this invention. 本発明の細胞内ATP濃度の測定を示す図である。It is a figure which shows the measurement of the intracellular ATP density | concentration of this invention.
 本発明の電気的機能を持つマイクロチャンバーアレイ装置は、DEPを用いて細胞を捕捉し、EPを用いて細胞を破砕するための、基板上に形成される対向電極を含み、この電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、細胞を含有する溶液または細胞成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、前記マイクロウェルの限定された容積に細胞物質を閉じ込めるため、細胞破砕の前に前記マイクロウェルを密閉する膜とを具備することを特徴とする。 The microchamber array device having an electrical function of the present invention includes a counter electrode formed on a substrate for capturing cells using DEP and crushing cells using EP. A microwell array having formed microwells, a microfluidic channel for introducing a solution containing cells or a solution for biochemical analysis of cellular components, and cellular material in a limited volume of the microwell In order to confine, a membrane for sealing the microwell before cell disruption is provided.
 また、電気的機能を持つマイクロチャンバーアレイ装置を用いた単一細胞解析方法において、基板上に形成される対向電極を含み、この対向電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、細胞を含有する溶液または細胞成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、前記マイクロウェルの限定された容積に細胞物質を閉じ込めるため、細胞破砕の前に前記マイクロウェルを密閉する膜とを備え、前記マイクロウェルの寸法、前記溶液の流量、および前記対向電極に印加される電界を調整したDEPによって前記各マイクロウェルに1個の細胞を位置付けし、前記マイクロ流体チャネルによって前記溶液を交換するフローが存在する場合でも、前記マイクロウェル内で前記細胞の位置を一定に保ち、前記マイクロウェル内で前記対向電極への短パルスの印加により、EPを用いて細胞を破砕し、前記マイクロウェルの寸法が細胞破砕後に細胞内物質の解析を妨げる細胞内物質の希釈を防ぐのに十分に小さい状態で細胞を解析する。 Further, in a single cell analysis method using a micro-chamber array device having an electrical function, a microwell array including a counter electrode formed on a substrate and having a microwell formed on the bottom of the counter electrode; A microfluidic channel for introducing a solution containing cells or a solution for biochemical analysis of cellular components and the microwells prior to cell disruption to confine cellular material in a limited volume of the microwells. A single membrane in each of the microwells by DEP, wherein the microwell dimensions, the flow rate of the solution, and the electric field applied to the counter electrode are adjusted, and the microfluidic channel Even if there is a flow to exchange the solution, the location of the cells in the microwell Dilution of intracellular material that keeps constant and disrupts cells using EP by applying a short pulse to the counter electrode in the microwell and the size of the microwell hinders analysis of intracellular material after cell disruption Analyze the cells in a state small enough to prevent.
 以下、本発明の実施例について図面を用いて詳細に説明する。なお、実施例中では検査対象物として主に単一細胞を例に述べているが、後述する種々の検査対象物に適用可能である。
 図1は本発明の実施例を示す単一細胞の捕捉および破砕の実験概念を示す図、図2はそのマイクロ流体デバイスの分解概略図、図3はそのマイクロ流体デバイスのマイクロウェルアレイを示す図であり、図3(a)はその平面図、図3(b)はその断面図である。また、図4はシミュレーションによる電界強度分布(V/m)および電界強度勾配(▽E2)(V/m2)ベクトルを示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the examples, a single cell is mainly described as an example of the inspection object, but it can be applied to various inspection objects described later.
FIG. 1 is a diagram showing an experimental concept of single cell capture and disruption showing an embodiment of the present invention, FIG. 2 is an exploded schematic view of the microfluidic device, and FIG. 3 is a diagram showing a microwell array of the microfluidic device. 3 (a) is a plan view thereof, and FIG. 3 (b) is a sectional view thereof. FIG. 4 is a diagram showing electric field intensity distribution (V / m) and electric field intensity gradient (▽ E2) (V / m2) vectors by simulation.
 これらの図において、1は基板(ガラス基板)、2は基板1上に形成された相互に噛み合ったIDE(交差指状電極:Inter-Digitated Electrodes)であり、その材料はITOからなる。3はそのITO電極2上に形成されるマイクロウェル、3Aはフォトレジスト、4はそのマイクロウェル3が配列されたマイクロウェルアレイ、5はマイクロ流体チャネル、6はPDMS膜、7はマイクロウェル3を閉じることにより形成されるマイクロチャンバー、8は細胞、9は細胞8を含有する溶液、10は細胞内物質である。 In these drawings, 1 is a substrate (glass substrate), 2 is an interdigitated electrode (Inter-Digitated Electrodes) formed on the substrate 1, and the material thereof is made of ITO. 3 is a microwell formed on the ITO electrode 2, 3A is a photoresist, 4 is a microwell array in which the microwell 3 is arranged, 5 is a microfluidic channel, 6 is a PDMS film, 7 is a microwell 3 A microchamber formed by closing, 8 is a cell, 9 is a solution containing the cell 8, and 10 is an intracellular substance.
 まず、図1(a)に示すように、細胞8を含有する溶液(DEP緩衝液)9は、マイクロ流体チャネル5内へと連続的に導入され、図1(b)に示すように、マイクロウェル3の周りの細胞8は対向電極2によるDEPを用いて捕捉される。その後、図1(c)に示すように、マイクロウェル3はPDMS膜6が押し付けられることによって閉じられ、マイクロチャンバー7を構成する。最後に、図1(d)に示すように、細胞8はITO電極2によるEPを用いて、閉じたマイクロチャンバー7の内部で破砕され、マイクロチャンバー7の内部は細胞内物質10で満たされる。 First, as shown in FIG. 1 (a), a solution (DEP buffer) 9 containing cells 8 is continuously introduced into the microfluidic channel 5, and as shown in FIG. Cells 8 around the well 3 are captured using DEP by the counter electrode 2. Thereafter, as shown in FIG. 1 (c), the microwell 3 is closed by pressing the PDMS film 6 to form a microchamber 7. Finally, as shown in FIG. 1 (d), the cells 8 are crushed inside the closed microchamber 7 using EP by the ITO electrode 2, and the inside of the microchamber 7 is filled with the intracellular substance 10.
 本発明のマイクロ流体デバイスは、図2に示すように、マイクロウェルアレイ4と、その上に接合されたPDMS膜6からなる。
 マイクロウェルアレイ4においては、図3(a)に示すように、フォトレジスト3Aを用いて作製されたマイクロウェル3が、基板1上にパターニングされた相互に噛み合ったITO電極と位置合わせが行われている。
As shown in FIG. 2, the microfluidic device of the present invention comprises a microwell array 4 and a PDMS film 6 bonded thereon.
In the microwell array 4, as shown in FIG. 3A, the microwell 3 manufactured using the photoresist 3A is aligned with the interdigitated ITO electrodes patterned on the substrate 1. ing.
 本発明では、パターニングしたITO電極2により、DEPを用いて細胞8を引き付け、EPを用いてマイクロチャンバー7内部で破砕を行うようにした。図3(b)に示すように、隣り合うITO電極2間の距離は6μmであり、これは細胞8の直径約12.5μmよりも短い。フォトレジスト3Aを用いて作製したマイクロウェル3は、相互に噛み合ったITO電極2と位置合わせされるが、これは、陽極および陰極が両方ともマイクロウェル3の内部に突出するようにするためである。このマイクロウェル3の深さは15μmであり、これは対象の細胞8の直径よりもわずかに長い。マイクロウェルアレイ4には、3mm×3mmの正方形領域内に配置された60×60個のマイクロウェル3が配置されている。フォトレジスト3Aは絶縁性の良い材料なので、電場は、マイクロウェル3がパターニングされた領域を除いて良好に阻害される。さらに、相互に噛み合ったITO電極2がマイクロウェル3の底部に位置するので、電場は各マイクロウェル3の内部で高度に局在化される。マイクロウェル3は、DEPを用いた捕捉中に、細胞8が占有することが可能な空間を物理的に制限するだけではなく、マイクロウェル3が閉じられたときに、マイクロチャンバー7から細胞8破砕後の細胞内物質10が拡散することを防ぐ。マイクロウェル3は、マイクロ流体チャネル5の役割を果たすPDMS膜6を押し付けることによって緊密に閉じられ、マイクロチャンバー7を構成する。 In the present invention, the patterned ITO electrode 2 attracts the cells 8 using DEP and crushes inside the microchamber 7 using EP. As shown in FIG. 3B, the distance between the adjacent ITO electrodes 2 is 6 μm, which is shorter than the diameter of the cell 8 of about 12.5 μm. The microwell 3 made using the photoresist 3A is aligned with the ITO electrode 2 meshing with each other, so that both the anode and the cathode protrude into the microwell 3. . The depth of the microwell 3 is 15 μm, which is slightly longer than the diameter of the target cell 8. The microwell array 4 has 60 × 60 microwells 3 arranged in a square area of 3 mm × 3 mm. Since the photoresist 3A is a material having a good insulating property, the electric field is satisfactorily inhibited except for a region where the microwell 3 is patterned. In addition, since the interdigitated ITO electrodes 2 are located at the bottom of the microwells 3, the electric field is highly localized inside each microwell 3. The microwell 3 not only physically limits the space that the cells 8 can occupy during capture with DEP, but also disrupts the cells 8 from the microchamber 7 when the microwell 3 is closed. The subsequent intracellular substance 10 is prevented from diffusing. The microwell 3 is tightly closed by pressing a PDMS membrane 6 that acts as a microfluidic channel 5 and constitutes a microchamber 7.
 本発明のマイクロ流体デバイスのDEP力を評価するため、市販のコード(Comsol Multiphysics,COMSOL group)を使用して電場の二次元シミュレーションを行った。図4は、シミュレーションによる電界強度分布(V/m)および電界強度勾配(▽E2)(V/m2)ベクトルを示しており、この計算では、電位は電極の境界線に与えられている。電極の縁部ではその周りの電界が強いので、電界強度勾配(▽E2)のベクトルの方向はマイクロウェル3の内部に向いている。したがって、マイクロウェル3の上方にある溶液9中の細胞8は、DEP力によってマイクロウェル3の底部に引き込まれる。 In order to evaluate the DEP force of the microfluidic device of the present invention, a two-dimensional simulation of the electric field was performed using a commercially available code (Comsol Multiphysics, COMSOL group). FIG. 4 shows a simulated field strength distribution (V / m) and field strength gradient (勾 配 E2) (V / m2) vector, in which the potential is applied to the electrode boundary. Since the electric field around the electrode edge is strong, the direction of the vector of the electric field strength gradient (勾 配 E2) is directed to the inside of the microwell 3. Therefore, the cells 8 in the solution 9 above the microwell 3 are drawn into the bottom of the microwell 3 by the DEP force.
 図5はマイクロウェルアレイの製造工程図、図6はPDMS膜の製造工程図、図7はマイクロウェルアレイとPDMS膜が組み合わされたマイクロ流体デバイスの断面図である。
 マイクロウェルアレイ4の作製プロセスを図5に示す。
 まず、図5(a)に示すように、基板1上にITO電極膜2′が形成される。次に、ITO電極膜2′をパターニングしてITO電極2を形成する。このDEPおよびEPのための相互に噛み合ったITO電極2は、従来のフォトリソグラフィーを用いて作製する。厚さ500nmのITO電極膜2′をガラス基板1上にスパッタリングし、電極2の形状をポジティブ型のフォトレジスト(S-1813,Shipley far Ltd.)を用いてパターニングし、次に、HNO3+HCl=1+1溶液によって室温で25分間、ITOをエッチングする。マイクロウェルアレイ4は、パターニングしたITO電極2上でネガティブ型のフォトレジスト(SU-8 2010,MicroChem Co.)3Aを用いて作製している。フォトレジスト3Aは、ITO電極2が形成された基板1上にスピン塗布し、予備焼成する。パターニングしたマイクロウェルアレイ用のクロムフォトマスクを、パターニングしたITO電極2と位置合わせし、フォトレジスト3Aにフォトマスクを通してUV(紫外)光を照射した後、現像およびすすぎを行う。
FIG. 5 is a manufacturing process diagram of a microwell array, FIG. 6 is a manufacturing process diagram of a PDMS film, and FIG. 7 is a cross-sectional view of a microfluidic device in which a microwell array and a PDMS film are combined.
A fabrication process of the microwell array 4 is shown in FIG.
First, as shown in FIG. 5A, an ITO electrode film 2 ′ is formed on the substrate 1. Next, the ITO electrode film 2 ′ is patterned to form the ITO electrode 2. The interdigitated ITO electrode 2 for DEP and EP is produced using conventional photolithography. An ITO electrode film 2 ′ having a thickness of 500 nm is sputtered on the glass substrate 1, and the shape of the electrode 2 is patterned using a positive type photoresist (S-1813, Shipley far Ltd.), and then HNO 3 + HCl = 1 + 1 The ITO is etched with the solution for 25 minutes at room temperature. The microwell array 4 is produced on the patterned ITO electrode 2 using a negative photoresist (SU-8 2010, MicroChem Co.) 3A. The photoresist 3A is spin-coated on the substrate 1 on which the ITO electrode 2 is formed and pre-baked. The patterned chromium photomask for the microwell array is aligned with the patterned ITO electrode 2, and the photoresist 3A is irradiated with UV (ultraviolet) light through the photomask, followed by development and rinsing.
 一方、PDMS膜6の作製プロセスを図6に示す。まず、図6(a)に示すように、鋳型の役割を果たすネガティブ型のフォトレジスト(SU-8 2050,MicroChem Co.)12を、シリコンウェハ11上にパターニングする。なお、鋳型は、イソプロピルアルコールおよび脱イオン水を用いて十分に洗浄するようにする。また、製作したPDMS膜を容易に離型できるように、反応性イオンエッチング装置(RIE-10NR,Samco Co.)を用いて、鋳型にCHF3プラズマを照射し、フッ化炭素層でコーティングする。その後、図6(b)に示すように、PDMSのポリマー前駆体(Silopt 184,Dow Corning Toray,Co.Ltd.)13′を硬化剤と質量比10:1で混合して、鋳型に流し込み、PDMSのポリマー前駆体13′から泡を除去するため、混合物を約0.02MPaで30分間乾燥機に入れて保持した。次に、PDMS膜13を75℃で2時間硬化させ、その後、重合したPDMS膜13を型から剥離する。最後に、図6(c)に示すように、マイクロ流体チャネル5へのアクセスポートとしての役割を果たす、細胞8を含む溶液9又は細胞成分の生化学的解析用の溶液の流入穴14および排出穴15を打ち抜き開口し、PDMS膜13とする。 Meanwhile, a manufacturing process of the PDMS film 6 is shown in FIG. First, as shown in FIG. 6A, a negative photoresist (SU-8 2050, MicroChem Co.) 12 serving as a template is patterned on the silicon wafer 11. The template should be thoroughly washed with isopropyl alcohol and deionized water. Further, in order to easily release the produced PDMS film, a reactive ion etching apparatus (RIE-10NR, Samco Co.) is used to irradiate the mold with CHF3 plasma and coat it with a fluorocarbon layer. Thereafter, as shown in FIG. 6 (b), a PDMS polymer precursor (Silpt 184, Dow Corning Toray, Co. Ltd.) 13 'was mixed with a curing agent at a mass ratio of 10: 1 and poured into a mold, To remove bubbles from the PDMS polymer precursor 13 ', the mixture was held in a dryer at about 0.02 MPa for 30 minutes. Next, the PDMS film 13 is cured at 75 ° C. for 2 hours, and then the polymerized PDMS film 13 is peeled off from the mold. Finally, as shown in FIG. 6 (c), the inflow hole 14 and the drainage of the solution 9 containing the cells 8 or the solution for biochemical analysis of the cell components, which serve as an access port to the microfluidic channel 5 The hole 15 is punched and opened to form the PDMS film 13.
 図5に示すマイクロウェルアレイ4と図6に示すPDMS膜13を図7に示すように組み立てるため、RIE装置を用いてそれらにO2プラズマを照射して表面を活性化させた。両方を位置合わせして接触させ、外圧を加えることなく自発的に接合させた。O2プラズマ処理によって、SU-8マイクロウェルアレイ4およびPDMS膜12が親水性になり、そのことにより、PDMSチャネルだけでなくマイクロウェル3に対しても試薬の注入が容易になる。 To assemble the microwell array 4 shown in FIG. 5 and the PDMS film 13 shown in FIG. 6 as shown in FIG. 7, the surface was activated by irradiating them with O 2 plasma using an RIE apparatus. Both were aligned and contacted and joined spontaneously without the application of external pressure. By the O 2 plasma treatment, the SU-8 microwell array 4 and the PDMS film 12 become hydrophilic, which facilitates the injection of the reagent not only into the PDMS channel but also into the microwell 3.
 次に、本発明における単一細胞の捕捉とアレイ上での細胞破砕について説明する。
 まず、実験に用いた装置について説明する。
 細胞8として、理研バイオリソースセンターから入手したU-937細胞を、培養器内のCO2を5%含有する加湿雰囲気において37℃で培養した。培地は、RPMI 1640(Invitrogen Corp.)であり、これにFBS(Gemini Bio-products)10%とペニシリン-ストレプトマイシン溶液(Sigma Chemical Co.)1%を補った。細胞の細胞質からの蛍光を観察するため、U-937細胞をカルセインAM(和光純薬工業)で染色した。DEPおよびEP実験に先立って、pDEP(ポジティブDEP)向けに細胞懸濁液9の導電性(21.4mS m-1)を調節するため、培地をDEP緩衝液(HEPES 10mM、CaCl20.1mM、D-グルコース59mM、およびスクロース236mM、pH7.35)と交換した。培地中の細胞を190gで3分間遠心分離し、静かに培地を除去し、DEP緩衝液を添加した。細胞8の直径は12.5±1.6μm、細胞8の濃度は約1×106個/mlであった。
Next, single cell capture and cell disruption on the array in the present invention will be described.
First, the apparatus used for the experiment will be described.
As cell 8, U-937 cells obtained from RIKEN BioResource Center were cultured at 37 ° C. in a humidified atmosphere containing 5% CO 2 in the incubator. The medium was RPMI 1640 (Invitrogen Corp.) supplemented with 10% FBS (Gemini Bio-products) and 1% penicillin-streptomycin solution (Sigma Chemical Co.). In order to observe the fluorescence from the cytoplasm of the cells, U-937 cells were stained with calcein AM (Wako Pure Chemical Industries). Prior to DEP and EP experiments, the medium was adjusted to DEP buffer (HEPES 10 mM, CaCl2 0.1 mM, D) to adjust the conductivity (21.4 mS m-1) of cell suspension 9 for pDEP (positive DEP). -Exchanged for glucose 59 mM and sucrose 236 mM, pH 7.35). Cells in the medium were centrifuged at 190 g for 3 minutes, the medium was gently removed and DEP buffer was added. The diameter of the cell 8 was 12.5 ± 1.6 μm, and the concentration of the cell 8 was about 1 × 10 6 cells / ml.
 上記したマイクロ流体デバイスは、倒立顕微鏡(IX 71、オリンパス)上に配置したx-y並進ステージ上に載置した。細胞8は、顕微鏡上に設置した電子増倍電荷結合素子(EMCCD)カメラ(iXonEM+885 EMCCD Camera,Andor Technology Plc)を用いてモニターした。細胞8の捕捉後にマイクロウェルアレイ4を閉じるため、ステージコントローラー(SHOT-202AM;シグマ光機)によって制御される、電動ステージ(SGAM20;シグマ光機)に接続した丸いプラスチック製チップを用いてPDMS膜6を押し付けた。DEPおよびEPのための電位は、増幅器(HSA4010;エヌエフ回路設計)を用いて振幅を増幅した後、ファンクションジェネレーター(WF1974;エヌエフ回路設計)を用いて、相互に噛み合ったITO電極2に印加した。 The above-described microfluidic device was placed on an xy translation stage placed on an inverted microscope (IX 71, Olympus). The cells 8 were monitored using an electron multiplying charge coupled device (EMCDD) camera (iXonEM + 885 EMCCD Camera, Andor Technology Plc) installed on a microscope. PDMS membrane using a round plastic chip connected to an electric stage (SGAM20; sigma light machine) controlled by a stage controller (SHOT-202AM; sigma light machine) to close the microwell array 4 after capture of cells 8 6 was pressed. The potentials for DEP and EP were applied to the intermeshing ITO electrode 2 using a function generator (WF1974; NF circuit design) after amplifying the amplitude using an amplifier (HSA4010; NF circuit design).
 上記したマイクロ流体デバイスを用いた実験において、単一細胞の捕捉と、それに続く細胞破砕を実証した。細胞8を含む溶液9としての細胞懸濁液は、細胞供給の連続フローにより、アクセスポートとしての流入穴13を介してマイクロ流体チャネル5に導入される。実験により、1つのマイクロウェル3に捕捉される細胞の数が、マイクロウェル3の直径(20,25,30,または35μm)と細胞8を含む溶液9の流量(2または4μl/min)とに依存することを見出している。電場の振幅と周波数が変動することによって複雑さが増すことを回避するため、印加電位の振幅および周波数は2Vp-pおよび1MHzで一定に保っている。単一の細胞8は、2μl/minの流量で、相互に噛み合ったITO電極2に正弦電位を印加することによって、25μmのマイクロウェル3内へと成功裡に捕捉される。 In the experiment using the microfluidic device described above, single cell capture and subsequent cell disruption were demonstrated. A cell suspension as a solution 9 containing cells 8 is introduced into the microfluidic channel 5 through an inflow hole 13 as an access port by a continuous flow of cell supply. According to the experiment, the number of cells captured in one microwell 3 is reduced to the diameter of the microwell 3 (20, 25, 30, or 35 μm) and the flow rate of the solution 9 containing the cells 8 (2 or 4 μl / min). It is found that it depends. In order to avoid complications due to fluctuations in the amplitude and frequency of the electric field, the amplitude and frequency of the applied potential are kept constant at 2 Vp-p and 1 MHz. A single cell 8 is successfully captured in a 25 μm microwell 3 by applying a sinusoidal potential to the interdigitated ITO electrodes 2 at a flow rate of 2 μl / min.
 図8は、ITO電極に正弦AC電圧1MHzで2Vp-p を印加した場合の、直径25μmのマイクロウェルアレイへの細胞捕捉の状態を示す図である。
 図8(a)は、細胞捕捉中のマイクロウェルアレイのt=0min,t=2.0min,t=3.0minそれぞれの時間経過画像を示す。マイクロ流体チャネル5には、細胞8を含む溶液9が2μl/minの流量で導入されており、破線で示す。マイクロウェル3には徐々に細胞が入り、3分後にはほとんど全てのマイクロウェル3が単一の細胞8を保持している。この図に示されるように、2個の細胞が入った、または空のマイクロウェルは数個のみであった。なお、図8(b)は捕捉中のU-937(リンパ球)細胞の時間経過画像、図8(c)は細胞捕捉中に観察された細胞の軌跡を示す模式図である。
FIG. 8 is a diagram showing a state of cell trapping in a microwell array having a diameter of 25 μm when 2 Vp-p is applied to the ITO electrode at a sinusoidal AC voltage of 1 MHz.
FIG. 8A shows time-lapse images of t = 0 min, t = 2.0 min, and t = 3.0 min of the microwell array during cell capture. A solution 9 containing cells 8 is introduced into the microfluidic channel 5 at a flow rate of 2 μl / min, and is indicated by a broken line. Cells gradually enter the microwell 3, and almost all microwells 3 hold a single cell 8 after 3 minutes. As shown in this figure, there were only a few microwells containing 2 cells or empty. FIG. 8B is a time-lapse image of U-937 (lymphocyte) cells being captured, and FIG. 8C is a schematic diagram showing the trajectory of the cells observed during cell capture.
 捕捉する細胞の数はマイクロウェルの直径と大きく関連している。捕捉に対してマイクロウェルの直径が及ぼす効果を、直径20,25,30,および35μmのマイクロウェル3を有するマイクロウェルアレイ4を用いて調査した。本発明では、正弦電位を3分間印加することによって細胞を捕捉し、その後、電位を遮断して捕捉を停止した。次に、ランダムに選択したマイクロウェル10×10個の領域で、0個、1個、2個、3個、または4個の細胞を含有するマイクロウェルの数を計数した。図9(a)では、2μl/minの流量で、内部に捕捉された細胞数が0個、1個、2個、3個または4個となったマイクロウェルの個数の全体に対する割合をマイクロウェルの直径に対してプロットしている。プロットしたデータはすべて、同じ実験条件下で試験した3つのマイクロウェルアレイにおいて測定した3つのデータ系列の平均値である。図9(a)に示されるように、25μmのマイクロウェルアレイ4は、単一細胞8に関して非常に優れた捕捉効率(約95%)を示している。2個または3個の細胞を含有するマイクロウェル3の数の割合は、マイクロウェルの直径に伴って増加した。 The number of cells to be captured is largely related to the diameter of the microwell. The effect of microwell diameter on capture was investigated using a microwell array 4 with microwells 3 of diameters 20, 25, 30, and 35 μm. In the present invention, the cells were captured by applying a sine potential for 3 minutes, and then the capture was stopped by blocking the potential. The number of microwells containing 0, 1, 2, 3, or 4 cells was then counted in 10 × 10 regions of randomly selected microwells. In FIG. 9 (a), the ratio of the number of microwells with 0, 1, 2, 3 or 4 cells trapped inside at a flow rate of 2 μl / min to the total number of microwells. Is plotted against the diameter. All plotted data is the average of three data series measured in three microwell arrays tested under the same experimental conditions. As shown in FIG. 9 (a), the 25 μm microwell array 4 shows very good capture efficiency (about 95%) for the single cell 8. The proportion of the number of microwells 3 containing 2 or 3 cells increased with the diameter of the microwells.
 流量もまた、細胞捕捉効率における別の重要なパラメーターである。本発明のデバイスでは、図4のシミュレーション結果に示されるように、DEP力はマイクロウェル3の周りに非常に集中している。したがって、フローの速度が増加した場合、細胞がマイクロウェルの上を流れるときに電場に触れる時間が短くなる。図9(b)は、流量が4μl/minであったことを除いて図9(a)のデータと実験条件は同じである。この場合、30μmのマイクロウェルアレイが最良の捕捉結果を示している。図9に示す2つのヒストグラムは、実験条件を制御することによって、異なるサイズのマイクロウェルに単一細胞を捕捉できることを示している。破砕後の細胞内物質の希釈係数はマイクロウェルのサイズによって決まるので、このことは重要である。 Flow rate is another important parameter in cell capture efficiency. In the device of the present invention, the DEP force is very concentrated around the microwell 3 as shown in the simulation results of FIG. Thus, when the flow rate is increased, the time that the cells touch the electric field as they flow over the microwell is reduced. FIG. 9B shows the same experimental conditions as the data in FIG. 9A except that the flow rate was 4 μl / min. In this case, a 30 μm microwell array shows the best capture results. The two histograms shown in FIG. 9 show that single cells can be captured in different sized microwells by controlling the experimental conditions. This is important because the dilution factor of intracellular material after disruption depends on the size of the microwell.
 図10はマイクロチャンバー内で細胞を破砕する様子を示す図である。
 単一細胞から得られる細胞内物質の閉じ込めは、閉じたマイクロチャンバー7内で細胞8を破砕することによって実現される。細胞破砕では、30V,10μsのローレンツパルスを10Hzで10秒間印加した。図10(a)は、パルス印加前後の閉じたチャンバーアレイを示す蛍光画像であり、破線の左側と右側はそれぞれ直径25μmと30μmのチャンバーアレイである。2個の細胞が入ったマイクロチャンバーは、単一細胞が入ったマイクロチャンバーよりも明るい光を発している。細胞破砕の成功率は非常に高く、マイクロチャンバー7内の細胞はほぼ100%が同時に破砕している。これは、全ての細胞8が電極の縁部に位置付けられているので、各細胞に均一な高い電場を印加することができるためである。
FIG. 10 is a diagram showing how cells are crushed in a microchamber.
Confinement of intracellular material obtained from a single cell is realized by disrupting the cell 8 in a closed microchamber 7. In cell disruption, a 30 V, 10 μs Lorentz pulse was applied at 10 Hz for 10 seconds. FIG. 10A is a fluorescence image showing a closed chamber array before and after the pulse application, and the left and right sides of the broken line are chamber arrays having diameters of 25 μm and 30 μm, respectively. A microchamber containing two cells emits brighter light than a microchamber containing a single cell. The success rate of cell disruption is very high, and almost 100% of the cells in the microchamber 7 are disrupted simultaneously. This is because all the cells 8 are positioned at the edge of the electrode, so that a uniform high electric field can be applied to each cell.
 図10(b)は、t=0においてパルスが印加されたときの、単一細胞破砕の間の時間経過画像を示し、図10(c)は、図10(b)の画像における白い破線に沿って得られる蛍光強度を示す。電気パルスを印加すると、細胞内物質10の漏れ出しにより、細胞8の蛍光強度は減少した。他方では、細胞内物質10が細胞外に拡散することによって、マイクロチャンバー7の内部は徐々に蛍光で満たされる。マイクロチャンバー7と細胞8との体積比は約7:1なので、図10(c)に示されるように、細胞の蛍光強度はパルス印加から3秒後には約1/7に減少する。このように、経過時間に応じたマイクロチャンバー7内の蛍光分布を調査することによって、マイクロチャンバー7内での細胞内物質10の拡散および希釈を評価することができる。 FIG. 10 (b) shows a time-lapse image during single cell disruption when a pulse is applied at t = 0, and FIG. 10 (c) is a white dashed line in the image of FIG. 10 (b). The fluorescence intensity obtained along is shown. When the electric pulse was applied, the fluorescence intensity of the cell 8 decreased due to leakage of the intracellular substance 10. On the other hand, the inside of the microchamber 7 is gradually filled with fluorescence as the intracellular substance 10 diffuses out of the cell. Since the volume ratio of the microchamber 7 and the cell 8 is about 7: 1, as shown in FIG. 10C, the fluorescence intensity of the cell decreases to about 1/7 after 3 seconds from the pulse application. Thus, by examining the fluorescence distribution in the microchamber 7 according to the elapsed time, the diffusion and dilution of the intracellular substance 10 in the microchamber 7 can be evaluated.
 図11は細胞内ATP濃度の測定を示す図であり、ATP消費酵素であるルシフェラーゼによって発生する発光信号を示している。
 本発明の汎用性を実証するため、ヒトU937およびHepG2を含む異なる細胞タイプを捕捉した。図11(a)はマイクロウェルアレイへの多数の細胞を捕捉した様子を示す図であり、図11(b)はその捕捉した細胞が生きているか死んでいるかをチェックする様子を示す図である。
FIG. 11 is a diagram showing measurement of intracellular ATP concentration, and shows a luminescence signal generated by luciferase which is an ATP consuming enzyme.
In order to demonstrate the versatility of the present invention, different cell types including human U937 and HepG2 were captured. FIG. 11A is a diagram illustrating a state in which a large number of cells are captured in the microwell array, and FIG. 11B is a diagram illustrating a state in which whether the captured cells are alive or dead is checked. .
 誘電泳動は生体細胞を損傷する恐れがある。誘電泳動による細胞の捕捉は膜の一体性に依存しているので、本発明のシステムは、無傷の生きた細胞を優先的に捕らえることができる〔図11(a)および図11(b)〕。実験パラメーターを最適化することによって、本発明では、生きた細胞の高い捕捉効率(ほぼ100%)を得ることができる。図11(b)では、DEP中における細胞の生存率を、カルセイン-AM(緑)およびヨウ化プロピジウム(赤)蛍光マーカーによって評価した。細胞内ATP解析に先立って、捕捉緩衝液9を、ホタルルシフェラーゼアッセイ試薬を含有する溶液と交換した。ATPはルシフェリンの二段階酸化を触媒するルシフェラーゼと反応し、それによって560nmの光が得られる。100msのEPパルスによって細胞膜崩壊が引き起こされた直後に細胞内ATPが放出され、ルシフェラーゼアッセイ試薬と自由に反応した。図11(c)は、膜崩壊の数秒後に検出された生物発光信号を、発光強度の時間依存性とともに示す図である。類似の曲線が得られることから単一細胞測定の妥当性を裏付けている。デバイスの測定値を校正し、マイクロチャンバー内に存在するATPの濃度を発光量から推測するため、ケージドATPを使用した。細胞内ATP濃度は、細胞内体積(細胞は類似のサイズを有する;U937,12.5±1.6μm)の平均値から計算することができ、またはマイクロチャンバー内の個々の細胞それぞれの評価から直接計算することもできる。デバイス上の解析から得られるATPの細胞内濃度レベルに関して見出した結果(細胞直径は12.5±1.6μm)を、バルク測定で得られた値と直接比較した。図11(d)は、両方の方法によって得られた濃度レベルが類似していることを示している。 Dielectrophoresis can damage biological cells. Since cell capture by dielectrophoresis relies on membrane integrity, the system of the present invention can preferentially capture intact living cells [FIGS. 11 (a) and 11 (b)]. . By optimizing the experimental parameters, the present invention can obtain a high capture efficiency (almost 100%) of living cells. In FIG. 11 (b), cell viability in DEP was assessed by calcein-AM (green) and propidium iodide (red) fluorescent markers. Prior to intracellular ATP analysis, capture buffer 9 was replaced with a solution containing firefly luciferase assay reagent. ATP reacts with luciferase, which catalyzes the two-step oxidation of luciferin, resulting in 560 nm light. Immediately after cell membrane disruption was caused by a 100 ms EP pulse, intracellular ATP was released and reacted freely with the luciferase assay reagent. FIG. 11 (c) is a diagram showing a bioluminescence signal detected several seconds after membrane disruption, together with the time dependence of the emission intensity. Similar curves are obtained, confirming the validity of single cell measurements. Caged ATP was used to calibrate the measured values of the device and infer the concentration of ATP present in the microchamber from the amount of luminescence. The intracellular ATP concentration can be calculated from the average value of the intracellular volume (cells have similar size; U937, 12.5 ± 1.6 μm) or from the assessment of each individual cell in the microchamber It can also be calculated directly. The results found for intracellular concentration levels of ATP obtained from analysis on the device (cell diameter 12.5 ± 1.6 μm) were directly compared with the values obtained in bulk measurements. FIG. 11 (d) shows that the concentration levels obtained by both methods are similar.
 なお、本発明の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法では、微小区画を形成する脂質二重膜や細胞をDEPを用いて捕捉する。つまり、本発明では、検査対象物は細胞だけでなく、小胞(ベシクル:Vesicle)や微小区画を形成する脂質二重膜(リポソーム)など内部に液体を含み、なおかつDEPやEPで操作できるものをも対象とし、それらの内部に含有される物質を解析することも可能である。 Note that in the test object analysis method using the microchamber array device having an electrical function of the present invention, lipid bilayer membranes and cells that form microcompartments are captured using DEP. In other words, in the present invention, the test object includes not only cells but also vesicles (vesicles) and lipid bilayers (liposomes) that form microcompartments, and liquids that can be manipulated by DEP or EP. It is also possible to analyze the substances contained in them.
 上記脂質二重膜構造もしくは細胞は、生体分子などの検体(例えば、ATP)を含有しており、これらの検体の解析を生化学反応又は化学反応による放射線(ルミネセンス、蛍光、リン光など)を用いて行う。なお、検体によって放射される放射線を用いて解析を行ってもよい。また、検体の生化学反応を用いて解析を行ってもよい。また、解析の対象となる単一細胞は、細胞内物質としてリボソーム、DNA分子、RNA分子を含有しており、この細胞内物質が生成物を合成するのに用いられる。 The lipid bilayer structure or cell contains specimens such as biomolecules (for example, ATP), and these specimens are analyzed by biochemical reaction or radiation by chemical reaction (luminescence, fluorescence, phosphorescence, etc.). To do. The analysis may be performed using radiation emitted by the specimen. Further, analysis may be performed using a biochemical reaction of a specimen. A single cell to be analyzed contains ribosomes, DNA molecules, and RNA molecules as intracellular substances, and these intracellular substances are used to synthesize products.
 上記したように、本発明において、アレイ形式のDEPおよびEPに基づくマイクロ流体デバイスを用いた、単一細胞の捕捉および破砕を成功裡に実証した。マイクロウェルの寸法、および流量などの他の実験パラメーターを調節することによって、本発明は、良好な単一細胞捕捉効率(約95%)を実現することができる。さらに、密閉されたマイクロチャンバーを使用することで、膜崩壊後の細胞内物質の拡散および希釈が物理的に制限される。多くのプロセス、特に細胞内成分の解析に用いられるような多くの生化学反応は、マイクロモル以上の濃度状態においてのみ効率的に発生するので、このことは重要である。したがって、本発明のデバイスは、単一細胞毎の細胞内物質を解析するための有用なプラットフォームとなる。高度に統合されたマイクロデバイスは、生物医学および薬学の基礎研究にとって有望であり、堅牢な携帯型のポイントオブケアデバイスは臨床現場で用いることができる。本発明のデバイスにより、細胞の単純な操作と、それに続く破砕およびデバイス上での解析が可能になる。 As described above, in the present invention, single cell capture and disruption using array-type DEP and EP-based microfluidic devices has been successfully demonstrated. By adjusting other experimental parameters such as microwell dimensions and flow rates, the present invention can achieve good single cell capture efficiency (about 95%). In addition, the use of sealed microchambers physically limits the diffusion and dilution of intracellular material after membrane disruption. This is important because many biochemical reactions, such as those used for analysis of intracellular components, particularly efficiently, occur only at concentrations above micromolar. Therefore, the device of the present invention provides a useful platform for analyzing intracellular substances for each single cell. Highly integrated microdevices are promising for basic biomedical and pharmaceutical research, and robust portable point-of-care devices can be used in clinical settings. The device of the present invention allows for simple manipulation of cells followed by disruption and analysis on the device.
 なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
 本発明は、区画化用のマイクロウェル上に細胞操作(DEPおよびEP)用の電極を統合することにより、単一細胞解析を行うことができるツールとして利用可能である。 The present invention can be used as a tool that enables single cell analysis by integrating electrodes for cell manipulation (DEP and EP) on microwells for compartmentalization.

Claims (31)

  1. (a)DEPを用いて検査対象物を捕捉し、EPを用いて前記検査対象物を破砕するための、基板上に形成される対向電極を含み、該電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、
    (b)前記検査対象物を含有する溶液または前記検査対象物成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、
    (c)前記マイクロウェルの限定された容積に前記検査対象物内物質を閉じ込めるため、前記検査対象物の破砕の前に前記マイクロウェルを密閉する膜とを具備することを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。
    (A) A microwell including a counter electrode formed on a substrate for capturing an inspection object using DEP and crushing the inspection object using EP, the electrode being formed at the bottom. A microwell array having
    (B) a microfluidic channel for introducing a solution containing the test object or a solution for biochemical analysis of the test object component;
    (C) an electrical function comprising: a membrane for sealing the microwell before crushing the test object in order to confine the substance in the test object in a limited volume of the microwell Microchamber array device with
  2.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が単一の細胞であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 The micro chamber array apparatus with an electrical function according to claim 1, wherein the test object is a single cell.
  3.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が小胞であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 2. The micro chamber array apparatus having an electrical function according to claim 1, wherein the test object is a vesicle.
  4.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記検査対象物が微小区画を形成する脂質二重膜であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 2. The microchamber array device having an electrical function according to claim 1, wherein the test object is a lipid bilayer membrane forming a micro compartment.
  5.  請求項2記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記マイクロウェルは前記細胞のサイズにあわせて直径20-35マイクロメートルであり、そのマイクロウェルの数が数百から数万個形成されたマイクロウェルアレイであることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 3. The micro-chamber array device having an electrical function according to claim 2, wherein the microwell has a diameter of 20 to 35 micrometers in accordance with the size of the cell, and the number of microwells is formed from several hundred to several tens of thousands. A microchamber array device having an electrical function, characterized by being a microwell array.
  6.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記対向電極が互いに噛み合ったIDE(交差指状電極)からなることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 2. The micro chamber array apparatus having an electrical function according to claim 1, wherein the counter electrodes are made of IDE (interstitial electrodes) engaged with each other.
  7.  請求項6記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記対向電極がインジウムスズ酸化物(ITO)からなることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 7. The micro chamber array device having an electrical function according to claim 6, wherein the counter electrode is made of indium tin oxide (ITO).
  8.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記マイクロウェルの壁がフォトレジストで作られることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 2. The micro chamber array apparatus having an electrical function according to claim 1, wherein a wall of the microwell is made of a photoresist.
  9.  請求項1記載の電気的機能を持つマイクロチャンバーアレイ装置において、前記基板がガラス基板であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置。 2. The micro chamber array apparatus with electrical function according to claim 1, wherein the substrate is a glass substrate.
  10. (a)基板上に形成される対向電極を含み、該対向電極が底部に形成されたマイクロウェルを有するマイクロウェルアレイと、
    (b)検査対象物を含有する溶液または前記検査対象物成分の生化学的解析用の溶液を導入するためのマイクロ流体チャネルと、
    (c)前記マイクロウェルの限定された容積に前記検査対象物内物質を閉じ込めるため、前記検査対象物破砕の前に前記マイクロウェルを密閉する膜とを備え、
    (d)前記マイクロウェルの寸法、前記溶液の流量、および前記対向電極に印加される電界を調整したDEPによって前記各マイクロウェルに1個の前記検査対象物を位置付けし、
    (e)前記マイクロ流体チャネルによって前記溶液を交換するフローが存在する場合でも、前記マイクロウェル内で前記検査対象物の位置を一定に保ち、
    (f)前記マイクロウェル内で前記対向電極に短パルスを印加することにより、EPを用いて前記検査対象物を破砕し、
    (g)前記マイクロウェルの寸法が前記検査対象物破砕後に該検査対象物内物質の解析を妨げる前記検査対象物内物質の希釈を防ぐのに十分に小さい状態で前記検査対象物を解析することを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。
    (A) a microwell array including a counterwell formed on a substrate, the microwell having the counterelectrode formed on the bottom;
    (B) a microfluidic channel for introducing a solution containing a test object or a solution for biochemical analysis of a component of the test object;
    (C) a membrane for sealing the microwell before crushing the test object in order to confine the substance in the test object in a limited volume of the microwell;
    (D) positioning one test object in each microwell by DEP with adjusted dimensions of the microwell, the flow rate of the solution, and the electric field applied to the counter electrode;
    (E) Even when there is a flow for exchanging the solution by the microfluidic channel, the position of the test object is kept constant in the microwell,
    (F) crushing the inspection object using EP by applying a short pulse to the counter electrode in the microwell;
    (G) Analyzing the inspection object in a state where the dimensions of the microwell are sufficiently small to prevent dilution of the substance in the inspection object after the inspection object is crushed. An inspection object analysis method using a microchamber array device having an electrical function characterized by the above.
  11.  請求項10記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、単一細胞がDEPを用いて捕捉されることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 The test object analysis method using the micro-chamber array device having an electrical function according to claim 10, wherein a single cell is captured using DEP. Inspection object analysis method used.
  12.  請求項10記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、小胞がDEPを用いて捕捉されることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 The method of analyzing an object to be inspected using the micro chamber array device having an electric function according to claim 10, wherein the vesicle is captured using DEP. Inspection object analysis method.
  13.  請求項10記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、微小区画を形成する脂質二重膜がDEPを用いて捕捉されることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 The test object analysis method using the microchamber array device having an electrical function according to claim 10, wherein the lipid bilayer membrane forming a microcompartment is captured using DEP. Inspection object analysis method using micro chamber array device.
  14.  請求項11記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記単一細胞が検体を含有することを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 12. The test object analysis method using the micro chamber array device having an electrical function according to claim 11, wherein the single cell contains a specimen, and the micro chamber array device having an electrical function is used. Inspection object analysis method.
  15.  請求項13記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記微小区画を形成する脂質二重膜が検体を含有することを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 14. The test object analyzing method using the micro chamber array device having an electrical function according to claim 13, wherein the lipid bilayer membrane forming the micro compartment contains a specimen. Inspection object analysis method using chamber array device.
  16.  請求項13又は14記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体が生体分子であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 15. The test object analyzing method using the micro chamber array device having an electric function according to claim 13 or 14, wherein the micro chamber array device having an electric function is used, wherein the specimen is a biomolecule. Inspection object analysis method.
  17.  請求項13又は14記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析を行うことを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 15. A test object analysis method using the micro chamber array apparatus having an electrical function according to claim 13 or 14, wherein the specimen is analyzed, and the test using the micro chamber array apparatus having an electrical function is performed. Object analysis method.
  18. 請求項17記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が電気計測を用いて行われることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 18. The test object analyzing method using the micro chamber array device having an electrical function according to claim 17, wherein the analysis of the specimen is performed using electrical measurement. Inspection object analysis method using
  19.  請求項17記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が放射線を用いて行われることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 18. The test object analysis method using the micro chamber array device having an electrical function according to claim 17, wherein the analysis of the specimen is performed using radiation. Inspection object analysis method used.
  20.  請求項19記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が前記検体によって放射される放射線を用いて行われることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 20. The test object analysis method using the micro chamber array device having an electrical function according to claim 19, wherein the analysis of the specimen is performed using radiation emitted by the specimen. Inspection object analysis method using micro chamber array device.
  21.  請求項17記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記検体の解析が生化学反応を用いて行われることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 18. A test object analyzing method using a micro chamber array device having an electrical function according to claim 17, wherein the analysis of the specimen is performed using a biochemical reaction. Inspection object analysis method using apparatus.
  22.  請求項19記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が生化学反応によるものであることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 20. The inspection object analysis method using the micro chamber array device having an electrical function according to claim 19, wherein the radiation is caused by a biochemical reaction. Inspection object analysis method.
  23.  請求項19記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が化学反応によるものであることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 20. The inspection object analysis method using the micro-chamber array device having an electrical function according to claim 19, wherein the micro-chamber array device having an electrical function is used, wherein the radiation is caused by a chemical reaction. Inspection object analysis method.
  24.  請求項19記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線がルミネセンスであることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 20. The inspection object analysis method using the micro-chamber array device having an electric function according to claim 19, wherein the radiation is luminescence, and the inspection object using the micro-chamber array device having an electric function is provided. Object analysis method.
  25.  請求項19記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線が蛍光であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 20. The inspection object analysis method using the micro-chamber array apparatus having an electrical function according to claim 19, wherein the radiation is fluorescence. analysis method.
  26.  請求項18記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記放射線がリン光であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 19. The inspection object analysis method using the micro chamber array apparatus having an electrical function according to claim 18, wherein the radiation is phosphorescence, and the inspection object using the micro chamber array apparatus having an electrical function is provided. Object analysis method.
  27.  請求項11記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記単一細胞が細胞内物質を含有することを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 12. The test object analyzing method using the micro chamber array device having an electric function according to claim 11, wherein the single cell contains an intracellular substance. Inspection object analysis method used.
  28.  請求項27記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がタンパク質であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 28. A test object analysis method using a microchamber array apparatus having an electrical function according to claim 27, wherein the intracellular substance is a protein, and the test using the microchamber array apparatus having an electrical function is provided. Object analysis method.
  29.  請求項27記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がDNA分子であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 28. The test object analyzing method using the micro chamber array device having an electrical function according to claim 27, wherein the micro chamber array device having an electrical function is used, wherein the intracellular substance is a DNA molecule. Inspection object analysis method.
  30.  請求項27記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質がRNA分子であることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 28. The test object analyzing method using the micro chamber array device having an electrical function according to claim 27, wherein the micro chamber array device having an electrical function is used, wherein the intracellular substance is an RNA molecule. Inspection object analysis method.
  31.  請求項27記載の電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法において、前記細胞内物質が生成物を合成するのに用いられることを特徴とする電気的機能を持つマイクロチャンバーアレイ装置を用いた検査対象物解析方法。 28. The test object analyzing method using the micro chamber array device having an electrical function according to claim 27, wherein the intracellular substance is used for synthesizing a product. Inspection object analysis method using array device.
PCT/JP2011/067978 2010-08-09 2011-08-05 Microchamber array device which has electrical function and inspection object analysis method using same WO2012020711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-178790 2010-08-09
JP2010178790A JP5804620B2 (en) 2010-08-09 2010-08-09 Microchamber array device having electrical function and inspection object analysis method using the same

Publications (1)

Publication Number Publication Date
WO2012020711A1 true WO2012020711A1 (en) 2012-02-16

Family

ID=45567679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067978 WO2012020711A1 (en) 2010-08-09 2011-08-05 Microchamber array device which has electrical function and inspection object analysis method using same

Country Status (2)

Country Link
JP (1) JP5804620B2 (en)
WO (1) WO2012020711A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021575A (en) * 2015-07-21 2015-11-04 青岛大学 Photoelectric sensor for detection of kinase activity on the basis of local area surface plasma resonance
WO2016125251A1 (en) * 2015-02-03 2016-08-11 株式会社日立製作所 Flow cell device for single cell analysis, and single cell analysis device
WO2017090640A1 (en) * 2015-11-25 2017-06-01 一般財団法人生産技術研究奨励会 Microchamber array device and method of analyzing inspection object using same
WO2019069900A1 (en) * 2017-10-03 2019-04-11 Nok株式会社 Cell capturing device
WO2020035980A1 (en) * 2018-08-15 2020-02-20 ソニー株式会社 Particle acquisition method, particle trapping chamber, and particle analysis system
US20210348289A1 (en) * 2020-05-08 2021-11-11 The Regents Of The University Of California Guided template based electrokinetic microassembly (tea)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857333B2 (en) * 2012-10-31 2018-01-02 Berkeley Lights, Inc. Pens for biological micro-objects
CN103323383B (en) * 2013-06-03 2015-03-11 北京理工大学 Particle counting system of micro-fluidic chip based on electric resistance technology
US11192107B2 (en) 2014-04-25 2021-12-07 Berkeley Lights, Inc. DEP force control and electrowetting control in different sections of the same microfluidic apparatus
EP3446102A4 (en) 2016-04-15 2020-01-15 Berkeley Lights, Inc. Methods, systems and kits for in-pen assays
EP3300805B1 (en) 2016-09-30 2022-05-11 The University of Tokyo Microdevice for capturing particles, and method for capturing, concentrating, or separating particles using the same
US20180179485A1 (en) * 2016-12-22 2018-06-28 The Charles Stark Draper Laboratory, Inc. System and method of using a microfluidic electroporation device for cell treatment
US11015161B2 (en) 2017-09-06 2021-05-25 The Charles Stark Draper Laboratory, Inc. Electroporation aided biological material delivery system and method
EP3721209B1 (en) 2017-10-15 2024-02-07 Berkeley Lights, Inc. Methods for in-pen assays
CN110499251A (en) * 2018-05-17 2019-11-26 中国科学院大连化学物理研究所 The extracellular vesica analysis chip of the unicellular source property of high flux multiparameter and application
GB2577074B (en) 2018-09-12 2022-06-01 Quantumdx Group Ltd Microfluidic device with DEP arrays
CN116324367A (en) 2020-09-29 2023-06-23 Nok株式会社 Microparticle capturing device
US20230191400A1 (en) * 2021-12-17 2023-06-22 Hidaca Ltd. Well array device, system and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535176A (en) * 2001-04-27 2004-11-25 コミサリア ア レネルジィ アトミーク Miniature devices and uses for separating and isolating biological objects

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859459A1 (en) * 1998-12-22 2000-06-29 Evotec Biosystems Ag Microsystems for cell permeation and fusion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535176A (en) * 2001-04-27 2004-11-25 コミサリア ア レネルジィ アトミーク Miniature devices and uses for separating and isolating biological objects

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALBRECHT, D. R. ET AL.: "Probing the role of multicellular microenvironments", NATURE METHODS, vol. 3, no. 5, 2006, pages 369 - 375, XP009095542, DOI: doi:10.1038/nmeth873 *
HUNT, T. P. ET AL.: "Dielectrophoresis tweezers for single cell manipulation", BIOMED MICRODEVICES, vol. 8, 2006, pages 227 - 230, XP019392061, DOI: doi:10.1007/s10544-006-8170-z *
KOESTERA, P. J. ET AL.: "Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation", BIOSENS BIOELECTRON, vol. 26, 2010, pages 1731 - 1735 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125251A1 (en) * 2015-02-03 2016-08-11 株式会社日立製作所 Flow cell device for single cell analysis, and single cell analysis device
JPWO2016125251A1 (en) * 2015-02-03 2017-06-29 株式会社日立製作所 Single cell analysis flow cell device and single cell analysis apparatus
CN105021575A (en) * 2015-07-21 2015-11-04 青岛大学 Photoelectric sensor for detection of kinase activity on the basis of local area surface plasma resonance
WO2017090640A1 (en) * 2015-11-25 2017-06-01 一般財団法人生産技術研究奨励会 Microchamber array device and method of analyzing inspection object using same
JP2017093359A (en) * 2015-11-25 2017-06-01 一般財団法人生産技術研究奨励会 Microchamber array device and method of analyzing inspection object using the same
US11186860B2 (en) 2015-11-25 2021-11-30 The Foundation For The Promotion Of Industrial Science Microchamber array device and method of analyzing inspection object using same
CN111212900A (en) * 2017-10-03 2020-05-29 Nok株式会社 Cell capturing device
JPWO2019069900A1 (en) * 2017-10-03 2019-11-14 Nok株式会社 Cell capture device
EP3693453A4 (en) * 2017-10-03 2020-11-25 Nok Corporation Cell capturing device
WO2019069900A1 (en) * 2017-10-03 2019-04-11 Nok株式会社 Cell capturing device
US11421198B2 (en) 2017-10-03 2022-08-23 Nok Corporation Cell capture apparatus
CN111212900B (en) * 2017-10-03 2023-09-29 Nok株式会社 Cell capturing device
WO2020035980A1 (en) * 2018-08-15 2020-02-20 ソニー株式会社 Particle acquisition method, particle trapping chamber, and particle analysis system
CN112567224A (en) * 2018-08-15 2021-03-26 索尼公司 Particle acquisition method, particle capture chamber and particle analysis system
US20210293667A1 (en) * 2018-08-15 2021-09-23 Sony Corporation Particle obtaining method, particle capturing chamber, and particle analysis system
US20210348289A1 (en) * 2020-05-08 2021-11-11 The Regents Of The University Of California Guided template based electrokinetic microassembly (tea)
US11840769B2 (en) * 2020-05-08 2023-12-12 The Regents Of The University Of California Guided template based electrokinetic microassembly (TEA)

Also Published As

Publication number Publication date
JP2012034641A (en) 2012-02-23
JP5804620B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5804620B2 (en) Microchamber array device having electrical function and inspection object analysis method using the same
Tavakoli et al. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy
Kim et al. Electroactive microwell arrays for highly efficient single‐cell trapping and analysis
Mashaghi et al. Droplet microfluidics: A tool for biology, chemistry and nanotechnology
Vasdekis et al. Review of methods to probe single cell metabolism and bioenergetics
Oomen et al. Chemical analysis of single cells
Wang et al. Single-cell electroporation
Pang et al. Digital microfluidics for cell manipulation
Fritzsch et al. Single-cell analysis in biotechnology, systems biology, and biocatalysis
Abdelgawad et al. The digital revolution: a new paradigm for microfluidics
Jebrail et al. Let's get digital: digitizing chemical biology with microfluidics
RU2548619C1 (en) Method of sealing granules, method of detecting target molecule, array, kit and device for detecting target molecule
Jebrail et al. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine
Heinemann et al. On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening
Bodénès et al. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae
Lin et al. Micro/nanofluidics-enabled single-cell biochemical analysis
US20090093374A1 (en) Method of arraying cells at single-cell level inside microfluidic channel and method of analysing cells using the same, and cell analysis chip used for carrying out the same
AU2015286488A1 (en) Substance sealing method and target molecule detecting method
Kurosawa et al. Electroporation through a micro-fabricated orifice and its application to the measurement of cell response to external stimuli
Sun et al. Recent progress in high-throughput droplet screening and sorting for bioanalysis
Wang et al. Single-cell metabolite analysis on a microfluidic chip
JPWO2016199741A1 (en) High-density microchamber array and measurement method using the same
Ota et al. Generation of femtoliter reactor arrays within a microfluidic channel for biochemical analysis
Tseng et al. Micro/nanofluidic devices for single cell analysis
Collier et al. Micro/nanofabricated environments for synthetic biology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816376

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816376

Country of ref document: EP

Kind code of ref document: A1